Science.gov

Sample records for film transistor technologies

  1. DEVICE TECHNOLOGY. Nanomaterials in transistors: From high-performance to thin-film applications.

    PubMed

    Franklin, Aaron D

    2015-08-14

    For more than 50 years, silicon transistors have been continuously shrunk to meet the projections of Moore's law but are now reaching fundamental limits on speed and power use. With these limits at hand, nanomaterials offer great promise for improving transistor performance and adding new applications through the coming decades. With different transistors needed in everything from high-performance servers to thin-film display backplanes, it is important to understand the targeted application needs when considering new material options. Here the distinction between high-performance and thin-film transistors is reviewed, along with the benefits and challenges to using nanomaterials in such transistors. In particular, progress on carbon nanotubes, as well as graphene and related materials (including transition metal dichalcogenides and X-enes), outlines the advances and further research needed to enable their use in transistors for high-performance computing, thin films, or completely new technologies such as flexible and transparent devices.

  2. Technological Innovation of Thin-Film Transistors: Technology Development, History, and Future

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshitaka

    2012-06-01

    The scale of the liquid crystal display industry has expanded rapidly, driven by technological innovations for thin-film transistors (TFTs). The TFT technology, which started from amorphous silicon (a-Si), has produced large TVs, and low-temperature polycrystalline silicon (poly-Si) has become a core technology for small displays, such as mobile phones. Recently, various TFT technological seeds have been realized, indicating that new information appliances that match new lifestyles and information infrastructures will be available in the near future. In this article, I review the history of TFT technology and discuss the future of TFT technological development from the technological innovation viewpoint.

  3. Review on thin-film transistor technology, its applications, and possible new applications to biological cells

    NASA Astrophysics Data System (ADS)

    Tixier-Mita, Agnès; Ihida, Satoshi; Ségard, Bertrand-David; Cathcart, Grant A.; Takahashi, Takuya; Fujita, Hiroyuki; Toshiyoshi, Hiroshi

    2016-04-01

    This paper presents a review on state-of-the-art of thin-film transistor (TFT) technology and its wide range of applications, not only in liquid crystal displays (TFT-LCDs), but also in sensing devices. The history of the evolution of the technology is first given. Then the standard applications of TFT-LCDs, and X-ray detectors, followed by state-of-the-art applications in the field of chemical and biochemical sensing are presented. TFT technology allows the fabrication of dense arrays of independent and transparent microelectrodes on large glass substrates. The potential of these devices as electrical substrates for biological cell applications is then described. The possibility of using TFT array substrates as new tools for electrical experiments on biological cells has been investigated for the first time by our group. Dielectrophoresis experiments and impedance measurements on yeast cells are presented here. Their promising results open the door towards new applications of TFT technology.

  4. Technology demonstration of a novel poly-Si nanowire thin film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Libin; Liang, Renrong; Shan, Bolin; Xu, Jun; Wang, Jing

    2016-11-01

    A simple process flow method for the fabrication of poly-Si nanowire thin film transistors (NW-TFTs) without advanced lithographic tools is introduced in this paper. The cross section of the nanowire channel was manipulated to have a parallelogram shape by combining a two-step etching process and a spacer formation technique. The electrical and temperature characteristics of the developed NW-TFTs are measured in detail and compared with those of conventional planar TFTs (used as a control). The as-demonstrated NW-TFT exhibits a small subthreshold swing (191 mV/dec), a high ON/OFF ratio (8.5 × 107), a low threshold voltage (1.12 V), a decreased OFF-state current, and a low drain-induced-barrier lowering value (70.11 mV/V). The effective trap densities both at the interface and grain boundaries are also significantly reduced in the NW-TFT. The results show that all improvements of the NW-TFT originate from the enhanced gate controllability of the multi-gate over the channel. Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0302300 and 2016YFA0200404), the National Natural Science Foundation of China (Grant No. 61306105), the National Science and Technology Major Project of China (Grant No. 2011ZX02708-002), the Tsinghua University Initiative Scientific Research Program, China and the Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation, China.

  5. All solution processed organic thin film transistor-backplane with printing technology for electrophoretic display

    USGS Publications Warehouse

    Lee, Myung W.; Song, C.K.

    2012-01-01

    In this study, solution processes were developed for backplane using an organic thin film transistor (OTFT) as a driving device for an electrophoretic display (EPD) panel. The processes covered not only the key device of OTFTs but also interlayer and pixel electrodes. The various materials and printing processes were adopted to achieve the requirements of devices and functioning layers. The performance of OTFT of the backplane was sufficient to drive EPD sheet by producing a mobility of 0.12 cm2/v x sec and on/off current ratio of 10(5).

  6. Organic thin-film transistors.

    PubMed

    Klauk, Hagen

    2010-07-01

    Over the past 20 years, organic transistors have developed from a laboratory curiosity to a commercially viable technology. This critical review provides a short summary of several important aspects of organic transistors, including materials, microstructure, carrier transport, manufacturing, electrical properties, and performance limitations (200 references).

  7. Thin-film transistor array technology for high-performance direct-conversion x-ray sensors

    NASA Astrophysics Data System (ADS)

    den Boer, Willem; Aggas, Steven; Byun, Young H.; Gu, Tieer; Zhong, Johnny Q.; Thomsen, Scott V.; Jeromin, Lothar S.; Lee, Denny L. Y.

    1998-07-01

    Thin Film Transistor (TFT) array technology is presented for Digital X-ray Sensors in Direct Radiography applications. Circuit simulations were performed to optimize the design of the TFT array. The sensor array uses a combination of a mushroom electrode with a high fill factor of 86% and a polymer passivation dielectric to minimize column capacitance and improve signal-to-noise ratio. A 14 in. X 8.5 in. sensor array with 1536 X 2560 pixels was developed using this technology. The TFT arrays are processed entirely in Class 1 clean room environments to eliminate line defects and minimize pixel defects. The best 14 in. X 8.5 in. panels have exhibited fewer than 0.001% pixel defects, as detected during in process testing prior to Se coating. In typical image quality comparisons with conventional X-ray film/screen combinations, the digital X-ray sensor exhibited equal or better performance than film-screens. Clinical studies were also conducted. Radiologists concluded that diagnostically significant projection radiographic images can be produced with the new digital X-ray sensor that are equivalent or superior to conventional film/screen images at the same X-ray exposures. The detector recently received FDA approval.

  8. Improvement of electrical properties of silicon-based thin-film transistors by modifying technological fabrication processes

    NASA Astrophysics Data System (ADS)

    Bonnaud, Olivier; Mohammed-Brahim, Tayeb

    2009-07-01

    This paper is a review of technological process evolution associated to electrical performance improvement of silicon-based thin-film transistors (TFTs) that were performed mainly in the GM/IETR laboratory. The main objective in agreement with the fields of applications is to fabricate TFTs at a temperature low enough to be compatible with the substrates, glass substrates in a first place and flexible substrates in a second one, which implies several approaches. In fact, the electrical properties of the TFTs, mainly field-effect mobility of carriers in the channel, I on/ I off drain current ratio, and subthreshold slope, are strongly dependent on the quality and the nature of the channel material, on the material quality and thus on the density of states at the interface with the gate insulator, and on the quality of the gate insulator itself. All the improvements are directly linked to all these aspects, which means an actual combination of the efforts. For the glass substrate, compatible technology processes such as deposition techniques, or solid phase, or laser crystallizations of active layers were studied and compared. The paper details all these approaches and electrical performances. In addition, some results about the use of a silicon-germanium compound as channel active layer and airgap transistors for which the insulator is released, complete the presentation of the evolution of the silicon-based TFTs during the last twenty years.

  9. Recent Progress in the Development of Printed Thin-Film Transistors and Circuits with High-Resolution Printing Technology.

    PubMed

    Fukuda, Kenjiro; Someya, Takao

    2016-11-28

    Printed electronics enable the fabrication of large-scale, low-cost electronic devices and systems, and thus offer significant possibilities in terms of developing new electronics/optics applications in various fields. Almost all electronic applications require information processing using logic circuits. Hence, realizing the high-speed operation of logic circuits is also important for printed devices. This report summarizes recent progress in the development of printed thin-film transistors (TFTs) and integrated circuits in terms of materials, printing technologies, and applications. The first part of this report gives an overview of the development of functional inks such as semiconductors, electrodes, and dielectrics. The second part discusses high-resolution printing technologies and strategies to enable high-resolution patterning. The main focus of this report is on obtaining printed electrodes with high-resolution patterning and the electrical performance of printed TFTs using such printed electrodes. In the final part, some applications of printed electronics are introduced to exemplify their potential.

  10. Technology and characterization of Thin-Film Transistors (TFTs) with a-IGZO semiconductor and high-k dielectric layer

    NASA Astrophysics Data System (ADS)

    Mroczyński, R.; Wachnicki, Ł.; Gierałtowska, S.

    2016-12-01

    In this work, we present the design of the technology and fabrication of TFTs with amorphous IGZO semiconductor and high-k gate dielectric layer in the form of hafnium oxide (HfOx). In the course of this work, the IGZO fabrication was optimized by means of Taguchi orthogonal tables approach in order to obtain an active semiconductor with reasonable high concentration of charge carriers, low roughness and relatively high mobility. The obtained Thin-Film Transistors can be characterized by very good electrical parameters, i.e., the effective mobility (μeff ≍ 12.8 cm2V-1s-1) significantly higher than that for a-Si TFTs (μeff ≍ 1 cm2V-1s-1). However, the value of sub-threshold swing (i.e., 640 mV/dec) points that the interfacial properties of IGZO/HfOx stack is characterized by high value of interface states density (Dit) which, in turn, demands further optimization for future applications of the demonstrated TFT structures.

  11. Exploring Two-Dimensional Transport Phenomena in Metal Oxide Heterointerfaces for Next-Generation, High-Performance, Thin-Film Transistor Technologies.

    PubMed

    Labram, John G; Lin, Yen-Hung; Anthopoulos, Thomas D

    2015-11-04

    In the last decade, metal oxides have emerged as a fascinating class of electronic material, exhibiting a wide range of unique and technologically relevant characteristics. For example, thin-film transistors formed from amorphous or polycrystalline metal oxide semiconductors offer the promise of low-cost, large-area, and flexible electronics, exhibiting performances comparable to or in excess of incumbent silicon-based technologies. Atomically flat interfaces between otherwise insulating or semiconducting complex oxides, are also found to be highly conducting, displaying 2-dimensional (2D) charge transport properties, strong correlations, and even superconductivity. Field-effect devices employing such carefully engineered interfaces are hoped to one day compete with traditional group IV or III-V semiconductors for use in the next-generation of high-performance electronics. In this Concept article we provide an overview of the different metal oxide transistor technologies and potential future research directions. In particular, we look at the recent reports of multilayer oxide thin-film transistors and the possibility of 2D electron transport in these disordered/polycrystalline systems and discuss the potential of the technology for applications in large-area electronics.

  12. Polycrystalline silicon conductivity modulated thin film transistors

    NASA Astrophysics Data System (ADS)

    Anish, Kumar K. P.

    1997-09-01

    Polycrystalline silicon (poly-Si) thin-film transistors (TFTs) on glass has received significant attention for use in large area microelectronic applications. These applications include both niche and large volume applications such as printer drivers, image scanners, active-matrix liquid crystal displays (AMLCDs), electro-luminescent displays, plasma assisted displays, etc. Currently, the leading technology for these applications is amorphous-Si (a-Si) TFT. However, as the information content increases, a-Si technology encounters severe challenges due to its inherent low mobility, high parasitic capacitance, low aperture ratio, and non-compatibility to CMOS process. On the other hand, poly-Si technology offers high mobility, low parasitic capacitance, small size, CMOS compatibility, good stability, and uses the infrastructure of silicon science and technology. Thus, a simple low temperature poly-Si technology which allows large area system integration on panel will be in great demand for future high definition displays. However, it was found that poly-Si material properties vary with its method of preparation, its grain size, its surface roughness, and the nature and distribution of the inter-granular and bulk defects. Therefore, extensive studies are needed to optimize the key parameters such as the off-current, on-current, and breakdown voltage of the devices. These parameters can be optimized by means of material preparation as well as innovative device designs. In this thesis, three TFT structures were invented and fabricated using a simple low temperature poly-Si technology. With these novel structures, pixels, pixel drivers, and analog and digital peripheral circuits can all be built on the same glass substrate. This allows the ultimate goal of display systems on glass to be much more closer to reality. First, a high voltage transistor called the Conductivity Modulated Thin Film Transistor (CMTFT) is presented. Using this structure, the fundamental current

  13. Zinc Oxide Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Fortunato, E.; Barquinha, P.; Pimentel, A.; Gonçalves, A.; Marques, A.; Pereira, L.; Martins, R.

    ZnO thin film transistors (ZnO-TFT) have been fabricated by rf magnetron sputtering at room temperature with a bottom-gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 21 V, a field effect mobility of 20 cm2/Vs, a gate voltage swing of 1.24 V/decade and an on/off ratio of 2×105. The ZnO-TFT present an average optical transmission (including the glass substrate) of 80 % in the visible part of the spectrum. The combination of transparency, high channel mobility and room temperature processing makes the ZnO-TFT a very promising low cost optoelectronic device for the next generation of invisible and flexible electronics. Moreover, the processing technology used to fabricate this device is relatively simple and it is compatible with inexpensive plastic/flexible substrate technology.

  14. Carbon Nanotube Thin Film Transistors for Flat Panel Display Application.

    PubMed

    Liang, Xuelei; Xia, Jiye; Dong, Guodong; Tian, Boyuan; Peng, Lianmao

    2016-12-01

    Carbon nanotubes (CNTs) are promising materials for both high performance transistors for high speed computing and thin film transistors for macroelectronics, which can provide more functions at low cost. Among macroelectronics applications, carbon nanotube thin film transistors (CNT-TFT) are expected to be used soon for backplanes in flat panel displays (FPDs) due to their superior performance. In this paper, we review the challenges of CNT-TFT technology for FPD applications. The device performance of state-of-the-art CNT-TFTs are compared with the requirements of TFTs for FPDs. Compatibility of the fabrication processes of CNT-TFTs and current TFT technologies are critically examined. Though CNT-TFT technology is not yet ready for backplane production line of FPDs, the challenges can be overcome by close collaboration between research institutes and FPD manufacturers in the short term.

  15. Thiophene polymer semiconductors for organic thin-film transistors.

    PubMed

    Ong, Beng S; Wu, Yiliang; Li, Yuning; Liu, Ping; Pan, Hualong

    2008-01-01

    Printed organic thin-film transistors (OTFTs) have received great interests as potentially low-cost alternative to silicon technology for application in large-area, flexible, and ultra-low-cost electronics. One of the critical materials for TFTs is semiconductor, which has a dominant impact on the transistor properties. We review here the structural studies and design of thiophene-based polymer semiconductors with respect to solution processability, ambient stability, molecular self-organization, and field-effect transistor properties for OTFT applications. We show that through judicial monomer design, delicately controlled pi-conjugation, and strategically positioned pendant side-chain distribution, novel solution-processable thiophene polymer semiconductors with excellent self-organization ability to form extended lamellar pi-stacking orders can be developed. OTFTs using semiconductors of this nature processed in ambient conditions have provided excellent field-effect transistor properties.

  16. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  17. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Bilayer Photoresist Insulator for High Performance Organic Thin-Film Transistors on Plastic Films

    NASA Astrophysics Data System (ADS)

    Wang, He; Li, Chun-Hong; Pan, Feng; Wang, Hai-Bo; Yan, Dong-Hang

    2009-11-01

    A novel bilayer photoresist insulator is applied in flexible vanadyl-phthalocyanine (VOPc) organic thin-film transistors (OTFTs). The micron-size patterns of this photoresisit insulator can be directly defined only by photolithography without the etching process. Furthermore, these OTFTs exhibit high field-effect mobility (about 0.8 cm2/Vs) and current on/off ratio (about 106). In particular, they show rather low hysteresis (< 1 V). The results demonstrate that this bilayer photoresist insulator can be applied in large-area electronics and in the facilitation of patterning insulators.

  18. High Performance Airbrushed Organic Thin Film Transistors

    SciTech Connect

    Chan, C.; Richter, L; Dinardo, B; Jaye, C; Conrad, B; Ro, H; Germack, D; Fischer, D; DeLongchamp, D; Gunlach, D

    2010-01-01

    Spray-deposited poly-3-hexylthiophene (P3HT) transistors were characterized using electrical and structural methods. Thin-film transistors with octyltrichlorosilane treated gate dielectrics and spray-deposited P3HT active layers exhibited a saturation regime mobility as high as 0.1 cm{sup 2} V{sup -1} s{sup -1}, which is comparable to the best mobilities observed in high molecular mass P3HT transistors prepared using other methods. Optical and atomic force microscopy showed the presence of individual droplets with an average diameter of 20 {micro}m and appreciable large-scale film inhomogeneities. Despite these inhomogeneities, near-edge x-ray absorption fine structure spectroscopy of the device-relevant channel interface indicated excellent orientation of the P3HT.

  19. Stretchable transistors with buckled carbon nanotube films as conducting channels

    DOEpatents

    Arnold, Michael S; Xu, Feng

    2015-03-24

    Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.

  20. Bipolar transistor in VESTIC technology: prototype

    NASA Astrophysics Data System (ADS)

    Mierzwiński, Piotr; Kuźmicz, Wiesław; Domański, Krzysztof; Tomaszewski, Daniel; Głuszko, Grzegorz

    2016-12-01

    VESTIC technology is an alternative for traditional CMOS technology. This paper presents first measurement data of prototypes of VES-BJT: bipolar transistors in VESTIC technology. The VES-BJT is a bipolar transistor on the SOI substrate with symmetric lateral structure and both emitter and collector made of polysilicon. The results indicate that VES-BJT can be a device with useful characteristics. Therefore, VESTIC technology has the potential to become a new BiCMOS-type technology with some unique properties.

  1. Effect of morphology on organic thin film transistor sensors.

    PubMed

    Locklin, Jason; Bao, Zhenan

    2006-01-01

    This review provides a general introduction to organic field-effect transistors and their application as chemical sensors. Thin film transistor device performance is greatly affected by the molecular structure and morphology of the organic semiconductor layer. Various methods for organic semiconductor deposition are surveyed. Recent progress in the fabrication of organic thin film transistor sensors as well as the correlation between morphology and analyte response is discussed.

  2. Advanced heterostructure transistor technologies for wireless communications

    NASA Astrophysics Data System (ADS)

    Wang, N.-L. Larry; Lin, Barry; Chau, Frank H.-F.; Jackson, Gordon; Chen, Zhengming; Lee, C. P.

    1999-08-01

    Wireless communication has enjoyed tremendous growth in the last five years. Most of the market is below the 3 GHz. Recently, millimeter wave frequency band was also opened up to commercial applications, such as the Local Multipoint Distribution System. The rapid growth of the market demands cost effective RF circuitry with ever better performance. Thus, the heterostructure transistors are pursued to meeting the market needs. This article will first analyze the technical demand on RF transistor circuitry for wireless application. Existing and emerging transistor technologies will be discussed for its strength. A general comparison will be made.

  3. Method for double-sided processing of thin film transistors

    DOEpatents

    Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.; Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang

    2008-04-08

    This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  4. Organic thin-film transistors as transducers for (bio)analytical applications.

    PubMed

    Bartic, Carmen; Borghs, Gustaaf

    2006-01-01

    The use of organic thin-film transistors (OTFTs) in sensorics is relatively new. Although electronic noses, electronic textiles and disposable biochemical sensors appear to be viable applications for this type of devices, the benefits of the technology still have to be proven. This paper aims to provide a review of the recent advances in the area of chemically sensitive field-effect devices based on organic thin-film transistors (OTFTs), with emphasis on bioanalytical applications. Detection principle, device configuration, materials and fabrication processes as well as sensor performances will be discussed, with emphasis on the potential for implementation in real applications and the important challenges ahead.

  5. Graphene-based flexible and stretchable thin film transistors

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-07-01

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  6. Graphene-based flexible and stretchable thin film transistors.

    PubMed

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-08-21

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  7. Electron transporting water-gated thin film transistors

    NASA Astrophysics Data System (ADS)

    Al Naim, Abdullah; Grell, Martin

    2012-10-01

    We demonstrate an electron-transporting water-gated thin film transistor, using thermally converted precursor-route zinc-oxide (ZnO) intrinsic semiconductors with hexamethyldisilazene (HMDS) hydrophobic surface modification. Water gated HMDS-ZnO thin film transistors (TFT) display low threshold and high electron mobility. ZnO films constitute an attractive alternative to organic semiconductors for TFT transducers in sensor applications for waterborne analytes. Despite the use of an electrolyte as gate medium, the gate geometry (shape of gate electrode and distance between gate electrode and TFT channel) is relevant for optimum performance of water-gated TFTs.

  8. Study on the Hydrogenated ZnO-Based Thin Film Transistors. Part 1

    DTIC Science & Technology

    2011-04-30

    zinc oxide (a-IGZO) thin film transistors ( TFTs ) was...Amorphous indium-gallium- zinc oxide thin - film transistors (a-IGZO TFTs ) have been investigated for switching devices in the active matrix liquid crystal...depletion-mode ZnO -based thin - film transistors ( TFTs ) were studied using two approaches. The first approach used elevated substrate

  9. Examination of the ambient effects on the stability of amorphous indium-gallium-zinc oxide thin film transistors using a laser-glass-sealing technology

    SciTech Connect

    Yamada, Kazuo; Takeda, Satoshi; Nomura, Kenji; Abe, Katsumi; Hosono, Hideo

    2014-09-29

    The effect of an ambient atmosphere with a positive bias constant current stress (CCS) and a negative bias illumination stress (NBIS) on the stability of amorphous In-Ga-Zn-O thin film transistors (TFTs) is examined by utilizing a glass-hermetic-sealant with a moisture permeability of less than 10{sup −6} g/m{sup 2} · day. In the CCS test, the threshold voltage shift (ΔV{sub th}) was remarkably suppressed in the glass-sealed TFTs. The unsealed and resin-sealed TFTs exhibited large ΔV{sub th} values. During the NBIS tests, the glass-sealed TFTs had almost the same negative ΔV{sub th} as the unsealed and resin sealed TFTs. Among the different TFTs, no significant differences were observed in the threshold voltage, the subthreshold swing and the saturation mobility as a function of the photon energy. It is concluded that ambient molecules were the primary origin of the instability of the ΔV{sub th}, induced by a CCS, but they were not related to the NBIS instability. The major role of the effective passivation layers in the NBIS test was not to simply block out the ambient effects, but to reduce the extra density of states at/near the surface of the back channel.

  10. Performance of Indium Gallium Zinc Oxide Thin-Film Transistors in Saline Solution

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Lacour, S. P.

    2016-06-01

    Transistors are often envisioned as alternative transducing devices to microelectrodes to communicate with the nervous system. Independently of the selected technology, the transistors should have reliable performance when exposed to physiological conditions (37°C, 5% CO2). Here, we report on the reliable performance of parylene encapsulated indium gallium zinc oxide (IGZO) based thin-film transistors (TFTs) after prolonged exposure to phosphate buffer saline solution in an incubator. The encapsulated IGZO TFTs (W/L = 500 μm/20 μm) have an ON/OFF current ratio of 107 and field effect mobility of 8.05 ± 0.78 cm2/Vs. The transistors operate within 4 V; their threshold voltages and subthreshold slope are ~1.9 V and 200 mV/decade, respectively. After weeks immersed in saline solution and at 37°C, we did not observe any significant deterioration in the transistors' performance. The long-term stability of IGZO transistors at physiological conditions is a promising result in the direction of metal oxide bioelectronics.

  11. Organic Thin-Film Transistors with Enhanced Sensing Capabilities

    NASA Astrophysics Data System (ADS)

    Angione, M. Daniela; Marinelli, Francesco; Dell'Aquila, Antonio; Luzio, Alessandro; Pignataro, Bruno; Torsi, Luisa

    Organic thin-film transistors, used as sensing devices, have been attracting quite a considerable interest lately as they offer advantages such as multi parameter behaviour and possibility to be quite easily molecularly tuned for the detection of specific analytes. Here, a study on the dependences of the devices responses on important parameters such as the active layer thickness and its morphology as well as on the transistor channel length is presented. To introduce the least number of variables the system chosen for this study is quite a simple and well assessed one being based on a thiophene oligomer active layer exposed to 1-butanol vapours.

  12. Mechanical force sensors using organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Darlinski, Grzegorz; Böttger, Ulrich; Waser, Rainer; Klauk, Hagen; Halik, Marcus; Zschieschang, Ute; Schmid, Günter; Dehm, Christine

    2005-05-01

    The pressure dependence of pentacene (C22H14) transistors with solution-processed polyvinylphenol gate dielectric on glass substrates is investigated by applying uniaxial mechanical pressure with a needle. We found that organic thin-film transistors are sensitive to applied pressure inherently. The measurements reveal a reversible current dependence of the transfer characteristics where the drain current is switching between two states. Experimental and simulation results suggest that switch-on voltage and interface resistance are affected. The change takes seconds, hinting at trap states being responsible for the effect.

  13. Heterojunction bipolar transistor technology for data acquisition and communication

    NASA Technical Reports Server (NTRS)

    Wang, C.; Chang, M.; Beccue, S.; Nubling, R.; Zampardi, P.; Sheng, N.; Pierson, R.

    1992-01-01

    Heterojunction Bipolar Transistor (HBT) technology has emerged as one of the most promising technologies for ultrahigh-speed integrated circuits. HBT circuits for digital and analog applications, data conversion, and power amplification have been realized, with speed performance well above 20 GHz. At Rockwell, a baseline AlGaAs/GaAs HBT technology has been established in a manufacturing facility. This paper describes the HBT technology, transistor characteristics, and HBT circuits for data acquisition and communication.

  14. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.

    2008-06-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  15. Organic thin-film transistors for chemical and biological sensing.

    PubMed

    Lin, Peng; Yan, Feng

    2012-01-03

    Organic thin-film transistors (OTFTs) show promising applications in various chemical and biological sensors. The advantages of OTFT-based sensors include high sensitivity, low cost, easy fabrication, flexibility and biocompatibility. In this paper, we review the chemical sensors and biosensors based on two types of OTFTs, including organic field-effect transistors (OFETs) and organic electrochemical transistors (OECTs), mainly focusing on the papers published in the past 10 years. Various types of OTFT-based sensors, including pH, ion, glucose, DNA, enzyme, antibody-antigen, cell-based sensors, dopamine sensor, etc., are classified and described in the paper in sequence. The sensing mechanisms and the detection limits of the devices are described in details. It is expected that OTFTs may have more important applications in chemical and biological sensing with the development of organic electronics.

  16. Printed organic thin-film transistor-based integrated circuits

    NASA Astrophysics Data System (ADS)

    Mandal, Saumen; Noh, Yong-Young

    2015-06-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted.

  17. Unidirectional coating technology for organic field-effect transistors: materials and methods

    NASA Astrophysics Data System (ADS)

    Sun, Huabin; Wang, Qijing; Qian, Jun; Yin, Yao; Shi, Yi; Li, Yun

    2015-05-01

    Solution-processed organic field-effect transistors (OFETs) are essential for developing organic electronics. The encouraging development in solution-processed OFETs has attracted research interest because of their potential in low-cost devices with performance comparable to polycrystalline-silicon-based transistors. In recent years, unidirectional coating technology, featuring thin-film coating along only one direction and involving specific materials as well as solution-assisted fabrication methods, has attracted intensive interest. Transistors with organic semiconductor layers, which are deposited via unidirectional coating methods, have achieved high performance. In particular, carrier mobility has been greatly enhanced to values much higher than 10 cm2 V-1 s-1. Such significant improvement is mainly attributed to better control in morphology and molecular packing arrangement of organic thin film. In this review, typical materials that are being used in OFETs are discussed, and demonstrations of unidirectional coating methods are surveyed.

  18. All 2D, high mobility, flexible, transparent thin film transistor

    DOEpatents

    Das, Saptarshi; Sumant, Anirudha V.; Roelofs, Andreas

    2017-01-17

    A two-dimensional thin film transistor and a method for manufacturing a two-dimensional thin film transistor includes layering a semiconducting channel material on a substrate, providing a first electrode material on top of the semiconducting channel material, patterning a source metal electrode and a drain metal electrode at opposite ends of the semiconducting channel material from the first electrode material, opening a window between the source metal electrode and the drain metal electrode, removing the first electrode material from the window located above the semiconducting channel material providing a gate dielectric above the semiconducting channel material, and providing a top gate above the gate dielectric, the top gate formed from a second electrode material. The semiconducting channel material is made of tungsten diselenide, the first electrode material and the second electrode material are made of graphene, and the gate dielectric is made of hexagonal boron nitride.

  19. Thin film transistors for flexible electronics: contacts, dielectrics and semiconductors.

    PubMed

    Quevedo-Lopez, M A; Wondmagegn, W T; Alshareef, H N; Ramirez-Bon, R; Gnade, B E

    2011-06-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed.

  20. Method for formation of thin film transistors on plastic substrates

    DOEpatents

    Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

  1. Method for formation of thin film transistors on plastic substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    1998-10-06

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

  2. Chemical and biological sensing with organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Mabeck, Jeffrey Todd

    Organic thin-film transistors (OTFTs) offer a great deal of promise for applications in chemical and biological sensing where there is a demand for small, portable, and inexpensive sensors. OTFTs have many advantages over other types of sensors, including low-cost fabrication, straightforward miniaturization, simple instrumentation, and inherent signal amplification. This dissertation examines two distinct types of OTFTs: organic field-effect transistors (OFETs) based on pentacene, and organic electrochemical transistors (OECTs) based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The bulk of the previous work on sensing with OFETs has focused on gas sensing, and this dissertation contributes to this body of work by briefly treating the large, reversible response of pentacene OFETs to humidity. However, there are many applications where the analyte of interest must be detected in an aqueous environment rather than a gaseous environment, and very little work has been done in this area for OFETs. Therefore, the integration of pentacene OFETs with microfluidics is treated in detail. Using poly(dimethylsiloxane) (PDMS) microfluidic channels to confine aqueous solutions over the active region of pentacene transistors, it is demonstrated that the current-voltage characteristics remain stable under aqueous flow with a decrease in mobility of ˜30% compared to its value when dry. The operation of PEDOT:PSS transistors is also treated in detail. It is demonstrated that their transistor behavior cannot be attributed solely to a field effect and that ion motion is key to the switching mechanism. It is also demonstrated that simple glucose sensors based on PEDOT:PSS OECTs are sensitive to low glucose concentrations below 1 mM, therefore showing promise for potential application in the field of noninvasive glucose monitoring for diabetic patients using saliva rather than blood samples. Furthermore, a novel microfluidic gating technique has been

  3. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Growth Related Carrier Mobility Enhancement of Pentacene Thin-Film Transistors with High-k Oxide Gate Dielectric

    NASA Astrophysics Data System (ADS)

    Yu, Ai-Fang; Qi, Qiong; Jiang, Peng; Jiang, Chao

    2009-07-01

    Carrier mobility enhancement from 0.09 to 0.59 cm2/Vs is achieved for pentacene-based thin-film transistors (TFTs) by modifying the HfO2 gate dielectric with a polystyrene (PS) thin film. The improvement of the transistor's performance is found to be strongly related to the initial film morphologies of pentacene on the dielectrics. In contrast to the three-dimensional island-like growth mode on the HfO2 surface, the Stranski-Krastanov growth mode on the smooth and nonpolar PS/HfO2 surface is believed to be the origin of the excellent carrier mobility of the TFTs. A large well-connected first monolayer with fewer boundaries is formed via the Stranski-Krastanov growth mode, which facilitates a charge transport parallel to the substrate and promotes higher carrier mobility.

  4. Metal oxide semiconductor thin-film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  5. Review of solution-processed oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Si Joon; Yoon, Seokhyun; Kim, Hyun Jae

    2014-02-01

    In this review, we summarize solution-processed oxide thin-film transistors (TFTs) researches based on our fulfillments. We describe the fundamental studies of precursor composition effects at the beginning in order to figure out the role of each component in oxide semiconductors, and then present low temperature process for the adoption of flexible devices. Moreover, channel engineering for high performance and reliability of solution-processed oxide TFTs and various coating methods: spin-coating, inkjet printing, and gravure printing are also presented. The last topic of this review is an overview of multi-functional solution-processed oxide TFTs for various applications such as photodetector, biosensor, and memory.

  6. Review paper: Transparent amorphous oxide semiconductor thin film transistor

    NASA Astrophysics Data System (ADS)

    Kwon, Jang-Yeon; Lee, Do-Joong; Kim, Ki-Bum

    2011-03-01

    Thin film transistors (TFTs) with oxide semiconductors have drawn great attention in the last few years, especially for large area electronic applications, such as high resolution active matrix liquid crystal displays (AMLCDs) and active matrix organic light-emitting diodes (AMOLEDs), because of their high electron mobility and spatial uniform property. This paper reviews and summarizes recent emerging reports that include potential applications, oxide semiconductor materials, and the impact of the fabrication process on electrical performance. We also address the stability behavior of such devices under bias/illumination stress and critical factors related to reliability, such as the gate insulator, the ambient and the device structure.

  7. Photocurrent Suppression of Transparent Organic Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Chuang, Chiao-Shun; Tsai, Shu-Ting; Lin, Yung-Sheng; Chen, Fang-Chung; Shieh, Hang-Ping D.

    2007-12-01

    Organic thin-film transistors (OTFTs) with high transmittance and low photosensitivity have been demonstrated. By using titanium dioxide nanoparticles as the additives in the polymer gate insulators, the level of device photoresponse has been reduced. The device shows simultaneously a high transparence and a minimal threshold voltage shift under white light illumination. It is inferred that the localized energy levels deep in the energy gap of pentacene behave as the recombination centers, enhancing substantially the recombination process in the conducting channel of the OTFTs. Therefore, the electron trapping is relieved and the shift of threshold voltage is reduced upon illumination.

  8. New generation transistor technologies enabled by 2D crystals

    NASA Astrophysics Data System (ADS)

    Jena, D.

    2013-05-01

    The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.

  9. Dual-gate thin-film transistors, integrated circuits and sensors.

    PubMed

    Spijkman, Mark-Jan; Myny, Kris; Smits, Edsger C P; Heremans, Paul; Blom, Paul W M; de Leeuw, Dago M

    2011-08-02

    The first dual-gate thin-film transistor (DGTFT) was reported in 1981 with CdSe as the semiconductor. Other TFT technologies such as a-Si:H and organic semiconductors have led to additional ways of making DGTFTs. DGTFTs contain a second gate dielectric with a second gate positioned opposite of the first gate. The main advantage is that the threshold voltage can be set as a function of the applied second gate bias. The shift depends on the ratio of the capacitances of the two gate dielectrics. Here we review the fast growing field of DGTFTs. We summarize the reported operational mechanisms, and the application in logic gates and integrated circuits. The second emerging application of DGTFTs is sensitivity enhancement of existing ion-sensitive field-effect transistors (ISFET). The reported sensing mechanism is discussed and an outlook is presented.

  10. Correlation between microstructure, electronic properties and flicker noise in organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Jurchescu, Oana D.; Hamadani, Behrang H.; Xiong, Hao D.; Park, Sungkyu K.; Subramanian, Sankar; Zimmerman, Neil M.; Anthony, John E.; Jackson, Thomas N.; Gundlach, David J.

    2008-03-01

    We report on observations of a correlation between the microstructure of organic thin films and their electronic properties when incorporated in field-effect transistors. We present a simple method to induce enhanced grain growth in solution-processed thin film transistors by chemical modification of the source-drain contacts. This leads to improved device performance and gives a unique thin film microstructure for fundamental studies concerning the effect of structural order on the charge transport. We demonstrate that the 1/f flicker noise is sensitive to organic semiconductor thin film microstructure changes in the transistor channel.

  11. Thin film transistors of single-walled carbon nanotubes grown directly on glass substrates.

    PubMed

    Bae, Eun Ju; Min, Yo-Sep; Kim, Un Jeong; Park, Wanjun

    2007-12-12

    We report a transistor of randomly networked single-walled carbon nanotubes on a glass substrate. The carbon nanotube networks acting as the active components of the thin film transistor were selectively formed on the transistor channel areas that were previously patterned with catalysts to avoid the etching process for isolating nanotubes. The nanotube density was more than 50 microm(-2), which is much larger than the percolation threshold. Transistors were successfully fabricated with a conducting and transparent ZnO for the back-side gate and the top-side gate. This allows the transparent electronics or suggests thin film applications of nanotubes for future opto-electronics.

  12. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors

    SciTech Connect

    Ou-Yang, Wei E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2014-10-20

    To avoid the problem of air sensitive and wet-etched Zn and/or Ga contained amorphous oxide transistors, we propose an alternative amorphous semiconductor of indium silicon tungsten oxide as the channel material for thin film transistors. In this study, we employ the material to reveal the relation between the active thin film and the transistor performance with aid of x-ray reflectivity study. By adjusting the pre-annealing temperature, we find that the film densification and interface flatness between the film and gate insulator are crucial for achieving controllable high-performance transistors. The material and findings in the study are believed helpful for realizing controllable high-performance stable transistors.

  13. Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating.

    PubMed

    Zhang, Fengjiao; Di, Chong-an; Berdunov, Nikolai; Hu, Yuanyuan; Hu, Yunbin; Gao, Xike; Meng, Qing; Sirringhaus, Henning; Zhu, Daoben

    2013-03-13

    Construction of ultrathin film organic transistors is an important challenge towards deeper understanding of the charge transport mechanism and multifunctional applications. We report on precise thickness control of ultrathin films of several organic semiconductors by using a simple spin-coating approach. Ultrathin film, n-channel organic transistors with mobilities well over 1.0 cm(2) V(-1) s(-1) have been realized and their potential in high-sensitivity gas sensing and other applications is demonstrated.

  14. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  15. Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Jung; Kim, Sangwook; Lee, Je-Hun; Park, Jin-Seong; Kim, Sunil; Park, Jaechul; Lee, Eunha; Lee, Jaechul; Park, Youngsoo; Kim, Joo Han; Shin, Sung Tae; Chung, U.-In

    2009-12-01

    We developed amorphous hafnium-indium-zinc oxide (HIZO) thin films as oxide semiconductors and investigated the films electrically and physically. Adding of hafnium (Hf) element can suppress growing the columnar structure and drastically decrease the carrier concentration and hall mobility in HIZO films. The thin film transistors (TFTs) with amorphous HIZO active channel exhibit good electrical properties with field effect mobility of around 10 cm2/Vs, S of 0.23 V/decade, and high Ion/off ratio of over 108, enough to operate the next electronic devices. In particular, under bias-temperature stress test, the HIZO TFTs with 0.3 mol % (Hf content) showed only 0.46 V shift in threshold voltage, compared with 3.25 V shift in HIZO TFT (0.1 mol %). The Hf ions may play a key role to improve the instability of TFTs due to high oxygen bonding ability. Therefore, the amorphous HIZO semiconductor will be a prominent candidate as an operation device for large area electronic applications.

  16. Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Xie, Guangzhong; Su, Yuanjie; Hongfei, Du; Ye, Zongbiao; Jiang, Yadong

    2016-02-01

    In this work, in order to enhance the recovery performance of organic thin film transistors (OTFTs) ammonia (NH3) sensors, poly (3-hexylthiophene) (P3HT) and molybdenum disulfide (MoS2) were combined as sensitive materials. Different sensitive film structures as active layers of OTFTs, i.e., P3HT-MoS2 composite film, P3HT/MoS2 bilayer film and MoS2/P3HT bilayer film were fabricated by spray technology. OTFT gas sensors based on P3HT-MoS2 composite film showed a shorter recovery time than others when the ammonia concentration changed from 4 to 20 ppm. Specifically, x-ray diffraction (XRD), Raman and UV-visible absorption were employed to explore the interface properties between P3HT and single-layer MoS2. Through the complementary characterization, a mechanism based on charge transfer is proposed to explain the physical originality of these OTFT gas sensors: closer interlayer d-spacing and better π-π stacking of the P3HT chains in composite film have ensured a short recovery time of OTFT gas sensors. Moreover, sensing mechanisms of OTFTs were further studied by comparing the device performance in the presence of nitrogen or dry air as a carrier gas. This work not only strengthens the fundamental understanding of the sensing mechanism, but provides a promising approach to optimizing the OTFT gas sensors.

  17. Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors.

    PubMed

    Xie, Tao; Xie, Guangzhong; Su, Yuanjie; Hongfei, Du; Ye, Zongbiao; Jiang, Yadong

    2016-02-12

    In this work, in order to enhance the recovery performance of organic thin film transistors (OTFTs) ammonia (NH3) sensors, poly (3-hexylthiophene) (P3HT) and molybdenum disulfide (MoS2) were combined as sensitive materials. Different sensitive film structures as active layers of OTFTs, i.e., P3HT-MoS2 composite film, P3HT/MoS2 bilayer film and MoS2/P3HT bilayer film were fabricated by spray technology. OTFT gas sensors based on P3HT-MoS2 composite film showed a shorter recovery time than others when the ammonia concentration changed from 4 to 20 ppm. Specifically, x-ray diffraction (XRD), Raman and UV-visible absorption were employed to explore the interface properties between P3HT and single-layer MoS2. Through the complementary characterization, a mechanism based on charge transfer is proposed to explain the physical originality of these OTFT gas sensors: closer interlayer d-spacing and better π-π stacking of the P3HT chains in composite film have ensured a short recovery time of OTFT gas sensors. Moreover, sensing mechanisms of OTFTs were further studied by comparing the device performance in the presence of nitrogen or dry air as a carrier gas. This work not only strengthens the fundamental understanding of the sensing mechanism, but provides a promising approach to optimizing the OTFT gas sensors.

  18. Trap States of the Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Yu, Kyeong Min; Yuh, Jin Tae; Park, Sang Hee Ko; Ryu, Min Ki; Yun, Eui Jung; Bae, Byung Seong

    2013-10-01

    We investigated the temperature dependent recovery of the threshold voltage shift observed in both ZnO and indium gallium zinc oxide (IGZO) thin film transistors (TFTs) after application of gate bias and light illumination. Two types of recovery were observed for both the ZnO and IGZO TFTs; low temperature recovery (below 110 °C) which is attributed to the trapped charge and high temperature recovery (over 110 °C) which is related to the annihilation of trap states generated during stresses. From a comparison study of the recovery rate with the analysis of hydrogen diffusion isochronal annealing, a similar behavior was observed for both TFT recovery and hydrogen diffusion. This result suggests that hydrogen plays an important role in the generation and annihilation of trap states in oxide TFTs under gate bias or light illumination stresses.

  19. Highly stable thin film transistors using multilayer channel structure

    NASA Astrophysics Data System (ADS)

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N.

    2015-03-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60 °C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  20. Thin-film transistors with a graphene oxide nanocomposite channel.

    PubMed

    Jilani, S Mahaboob; Gamot, Tanesh D; Banerji, P

    2012-12-04

    Graphene oxide (GO) and graphene oxide-zinc oxide nanocomposites (GO-ZnO) were used as channel materials on SiO(2)/Si to fabricate thin-film transistors (TFT) with an aluminum source and drain. Pure GO-based TFT showed poor field-effect characteristics. However, GO-ZnO-nanocomposite-based TFT showed better field-effect performance because of the anchoring of ZnO nanostructures in the GO matrix, which causes a partial reduction in GO as is found from X-ray photoelectron spectroscopic data. The field-effect mobility of charge carriers at a drain voltage of 1 V was found to be 1.94 cm(2)/(V s). The transport of charge carriers in GO-ZnO was explained by a fluctuation-induced tunneling mechanism.

  1. Highly stable thin film transistors using multilayer channel structure

    SciTech Connect

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO{sub 2}) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60 °C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO{sub 2} layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO{sub 2} layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  2. High-performance carbon nanotube thin-film transistors on flexible paper substrates

    SciTech Connect

    Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong; Lee, Cheol Jin; Shim, Joon Hyung

    2015-03-09

    Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 10{sup 6} and a field-effect mobility of approximately 3 cm{sup 2}/V·s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.

  3. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.

    PubMed

    Jin, Sung Hun; Kang, Seung-Kyun; Cho, In-Tak; Han, Sang Youn; Chung, Ha Uk; Lee, Dong Joon; Shin, Jongmin; Baek, Geun Woo; Kim, Tae-il; Lee, Jong-Ho; Rogers, John A

    2015-04-22

    This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants.

  4. High Electron Mobility Thin‐Film Transistors Based on Solution‐Processed Semiconducting Metal Oxide Heterojunctions and Quasi‐Superlattices

    PubMed Central

    Lin, Yen‐Hung; Faber, Hendrik; Labram, John G.; Stratakis, Emmanuel; Sygellou, Labrini; Kymakis, Emmanuel; Hastas, Nikolaos A.; Li, Ruipeng; Zhao, Kui; Amassian, Aram; Treat, Neil D.; McLachlan, Martyn

    2015-01-01

    High mobility thin‐film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin‐film transistors is reported that exploits the enhanced electron transport properties of low‐dimensional polycrystalline heterojunctions and quasi‐superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band‐like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature‐dependent electron transport and capacitance‐voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas‐like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll‐to‐roll, etc.) and can be seen as an extremely promising technology for application in next‐generation large area optoelectronics such as ultrahigh definition optical displays and large‐area microelectronics where high performance is a key requirement. PMID:27660741

  5. A review of carbon nanotube- and graphene-based flexible thin-film transistors.

    PubMed

    Sun, Dong-Ming; Liu, Chang; Ren, Wen-Cai; Cheng, Hui-Ming

    2013-04-22

    Carbon nanotubes (CNTs) and graphene have attracted great attention for numerous applications for future flexible electronics, owing to their supreme properties including exceptionally high electronic conductivity and mechanical strength. Here, the progress of CNT- and graphene-based flexible thin-film transistors from material preparation, device fabrication techniques to transistor performance control is reviewed. State-of-the-art fabrication techniques of thin-film transistors are divided into three categories: solid-phase, liquid-phase, and gas-phase techniques, and possible scale-up approaches to achieve realistic production of flexible nanocarbon-based transistors are discussed. In particular, the recent progress in flexible all-carbon nanomaterial transistor research is highlighted, and this all-carbon strategy opens up a perspective to realize extremely flexible, stretchable, and transparent electronics with a relatively low-cost and fast fabrication technique, compared to traditional rigid silicon, metal and metal oxide electronics.

  6. Chemical and biological sensors based on organic thin-film transistors.

    PubMed

    Mabeck, Jeffrey T; Malliaras, George G

    2006-01-01

    The application of organic thin-film transistors (OTFTs) to chemical and biological sensing is reviewed. This review covers transistors that are based on the modulation of current through thin organic semiconducting films, and includes both field-effect and electrochemical transistors. The advantages of using OTFTs as sensors (including high sensitivity and selectivity) are described, and results are presented for sensing analytes in both gaseous and aqueous environments. The primary emphasis is on the major developments in the field of OTFT sensing over the last 5-10 years, but some earlier work is discussed briefly to provide a foundation.

  7. Demonstration of flexible thin film transistors with GaN channels

    NASA Astrophysics Data System (ADS)

    Bolat, S.; Sisman, Z.; Okyay, A. K.

    2016-12-01

    We report on the thin film transistors (TFTs) with Gallium Nitride (GaN) channels directly fabricated on flexible substrates. GaN thin films are grown by hollow cathode plasma assisted atomic layer deposition (HCPA-ALD) at 200 °C. TFTs exhibit 103 on-to-off current ratios and are shown to exhibit proper transistor saturation behavior in their output characteristics. Gate bias stress tests reveal that flexible GaN TFTs have extremely stable electrical characteristics. Overall fabrication thermal budget is below 200 °C, the lowest reported for the GaN based transistors so far.

  8. Spin Coated Nano Scale PMMA Films for Organic Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Shekar, B. Chandar; Sathish, S.; Sengoden, R.

    Nano scale poly methyl methacrylate (PMMA) films are prepared by spin coating the solution of PMMA on to p-Si substrate. The thickness of the films coated is measured by Ellipsometry. The SA-XRD spectrum of the as grown and annealed films indicated the amorphous nature. The SEM analysis revealed no pinholes, pits and dendritic features on the surface. Both as grown and annealed films indicated smooth surface and amorphous structure. The capacitance-voltage (C-V) behaviour of the metal-insulator-semiconductor (MIS) structure with Al/PMMA/p-Si has been studied. The C-V behaviour carried out for various frequencies (f) ranging from 20 kHz to 1 MHz and for a bias voltage range of -20 V to +20 V. Both as grown and annealed films showed a small flat band voltage (VFB) shift towards the negative voltage. The small shift in the VFB observed may be due to charge traps and de-traps. The obtained C-V behaviour for as grown and annealed films indicated that as grown PMMA nano scale thin films do not have many defects such as voids and inhomogeneity etc. The observed C-V behavior, a very low shift in the flat band voltage (VFB 0); reasonably higher dielectric constant values; thermal stability up to 2800C; amorphous and smooth surface implies that nano scale thin PMMA film coated by spin coating could be used as an efficient dielectric layer in field effect organic thin film transistors (OTFTs).

  9. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Zong; Ren, Fang-Fang; Ye, Jiandong; Lu, Hai; Liang, Lanju; Huang, Xiaoming; Liu, Mingkai; Shadrivov, Ilya V.; Powell, David A.; Yu, Guang; Jin, Biaobing; Zhang, Rong; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati

    2016-03-01

    Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications.

  10. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays

    PubMed Central

    Xu, Wei-Zong; Ren, Fang-Fang; Ye, Jiandong; Lu, Hai; Liang, Lanju; Huang, Xiaoming; Liu, Mingkai; Shadrivov, Ilya V.; Powell, David A.; Yu, Guang; Jin, Biaobing; Zhang, Rong; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati

    2016-01-01

    Engineering metamaterials with tunable resonances are of great importance for improving the functionality and flexibility of terahertz (THz) systems. An ongoing challenge in THz science and technology is to create large-area active metamaterials as building blocks to enable efficient and precise control of THz signals. Here, an active metamaterial device based on enhancement-mode transparent amorphous oxide thin-film transistor arrays for THz modulation is demonstrated. Analytical modelling based on full-wave techniques and multipole theory exhibits excellent consistent with the experimental observations and reveals that the intrinsic resonance mode at 0.75 THz is dominated by an electric response. The resonant behavior can be effectively tuned by controlling the channel conductivity through an external bias. Such metal/oxide thin-film transistor based controllable metamaterials are energy saving, low cost, large area and ready for mass-production, which are expected to be widely used in future THz imaging, sensing, communications and other applications. PMID:27000419

  11. Application of nanoimprinting technology to organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Chou, Wei-Yang; Chang, Ming-Hua; Cheng, Horng-Long; Yu, Shih-Po; Lee, Yung-Chun; Chiu, Cheng-Yu; Lee, Chung-Yi; Shu, Dun-Ying

    2010-02-01

    The charge carrier transport efficiency and issues of patterning in organic semiconductors limit the potential range of microelectronic and optoelectronic applications of organic devices in nanoscale. We demonstrate high-performance organic field-effect transistors (OFETs) with a mobility of approximately 2.5 cm2/V s using nanogroove gate-dielectrics formed by nanoimprinting. The preferred flow of charge carriers in OFETs parallel to the nanogrooves yields a high mobility anisotropic ratio (above 220), providing a built-in autopattern organic semiconductor function with nanoscale resolution. This nanostructure embedded device has great potential for use in the manufacture and lithography-free patterning of organic semiconductor films in integrated circuits.

  12. The effect of annealing temperature on the stability of gallium tin zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc; McCall, Briana; Alston, Robert; Collis, Ward; Iyer, Shanthi

    2015-10-01

    With the growing need for large area display technology and the push for a faster and cheaper alternative to the current amorphous indium gallium zinc oxide (a-IGZO) as the active channel layer for pixel-driven thin film transistors (TFTs) display applications, gallium tin zinc oxide (GSZO) has shown to be a promising candidate due to the similar electronic configuration of Sn4+ and In3+. In this work TFTs of GSZO sputtered films with only a few atomic % of Ga and Sn have been fabricated. A systematic and detailed comparison has been made of the properties of the GSZO films annealed at two temperatures: 140 °C and 450 °C. The electrical and optical stabilities of the respective devices have been studied to gain more insight into the degradation mechanism and are correlated with the initial TFT performance prior to the application of stress. Post deposition annealing at 450 °C of the films in air was found to lead to a higher atomic concentration of Sn4+ in these films and a superior quality of the film, as attested by the higher film density and less surface and interface roughness in comparison to the lower annealed temperature device. These result in significantly reduced shallow and deep interface traps with improved performance of the device exhibiting VON of -3.5 V, ION/IOFF of 108, field-effect mobility (μFE) of 4.46 cm2 V-1s-1, and sub-threshold swing of 0.38 V dec-1. The device is stable under both electrical and optical bias for wavelengths of 550 nm and above. Thus, this work demonstrates GSZO-based TFTs as a promising viable option to the IGZO TFTs by further tailoring the film composition and relevant processing temperatures.

  13. P-channel thin film transistors using reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Resmi, A. N.; Renuka Devi, P.; Jinesh, K. B.

    2017-04-01

    Chemically reduced graphene oxide (rGO) samples with various degrees of reduction were prepared using hydrazine hydrate as the reducing agent. Scanning tunnelling microscope imaging shows that rGO contains rows of randomly distributed patches of epoxy groups. The local density of states of the rGO samples were mapped with scanning tunnelling spectroscopy, which shows that the bandgap in rGO originates from the epoxide regions itself. The Fermi level of the epoxide regions is shifted towards the valence band, making rGO locally p-type and a range of bandgaps from 0–2.2 eV was observed in these regions. Thin film transistors were fabricated using rGO as the channel layer. The devices show excellent output characteristics with clear saturation and gate dependence. The transfer characteristics show that rGO behaves as a p-type semiconductor; the devices exhibit an on/off ratio of 104, with a low-bias hole mobility of 3.9 cm2 V‑1 s‑1.

  14. Ambipolar charge transport in microcrystalline silicon thin-film transistors

    SciTech Connect

    Knipp, Dietmar; Marinkovic, M.; Chan, Kah-Yoong; Gordijn, Aad; Stiebig, Helmut

    2011-01-15

    Hydrogenated microcrystalline silicon ({mu}c-Si:H) is a promising candidate for thin-film transistors (TFTs) in large-area electronics due to high electron and hole charge carrier mobilities. We report on ambipolar TFTs based on {mu}c-Si:H prepared by plasma-enhanced chemical vapor deposition at temperatures compatible with flexible substrates. Electrons and holes are directly injected into the {mu}c-Si:H channel via chromium drain and source contacts. The TFTs exhibit electron and hole charge carrier mobilities of 30-50 cm{sup 2}/V s and 10-15 cm{sup 2}/V s, respectively. In this work, the electrical characteristics of the ambipolar {mu}c-Si:H TFTs are described by a simple analytical model that takes the ambipolar charge transport into account. The analytical expressions are used to model the transfer curves, the potential and the net surface charge along the channel of the TFTs. The electrical model provides insights into the electronic transport of ambipolar {mu}c-Si:H TFTs.

  15. P-channel thin film transistors using reduced graphene oxide.

    PubMed

    Chakraborty, S; Resmi, A N; Devi, P Renuka; Jinesh, K B

    2017-04-18

    Chemically reduced graphene oxide (rGO) samples with various degrees of reduction were prepared using hydrazine hydrate as the reducing agent. Scanning tunnelling microscope imaging shows that rGO contains rows of randomly distributed patches of epoxy groups. The local density of states of the rGO samples were mapped with scanning tunnelling spectroscopy, which shows that the bandgap in rGO originates from the epoxide regions itself. The Fermi level of the epoxide regions is shifted towards the valence band, making rGO locally p-type and a range of bandgaps from 0-2.2 eV was observed in these regions. Thin film transistors were fabricated using rGO as the channel layer. The devices show excellent output characteristics with clear saturation and gate dependence. The transfer characteristics show that rGO behaves as a p-type semiconductor; the devices exhibit an on/off ratio of 10(4), with a low-bias hole mobility of 3.9 cm(2) V(-1) s(-1).

  16. Nanometer-scale organic thin film transistors from self-assembled monolayers.

    PubMed

    Vuillaume, Dominique

    2002-01-01

    A survey of the most interesting results on nanometer-scale organic thin film transistors (nano-OTFT) is presented. Additionally, we discuss our recent results on the properties of end-group functionalized organic self-assembled monolayers and on their use in the fabrication of nanometer-scale field-effect transistors. Nanometer-scale organic transistors (channel length 30 nm) were fabricated, with a self-assembled monolayer as gate insulator. The carrier transport in these transistors, as a function of the channel length, was investigated, and a transition from a dispersive to a ballistic transport at a channel length of 200 nm was observed. On a molecular scale, alkyl monolayers functionalized at their omega-ends by aromatic moieties were prepared. A high anisotropic conductivity in molecular insulator/semiconductor heterostructures of monolayer thickness was observed. These molecular architectures provide a basis for the building blocks of molecular transistors.

  17. High-Mobility Ambipolar Organic Thin-Film Transistor Processed From a Nonchlorinated Solvent.

    PubMed

    Sonar, Prashant; Chang, Jingjing; Kim, Jae H; Ong, Kok-Haw; Gann, Eliot; Manzhos, Sergei; Wu, Jishan; McNeill, Christopher R

    2016-09-21

    Polymer semiconductor PDPPF-DFT, which combines furan-substituted diketopyrrolopyrrole (DPP) and a 3,4-difluorothiophene base, has been designed and synthesized. PDPPF-DFT polymer semiconductor thin film processed from nonchlorinated hexane is used as an active layer in thin-film transistors. As a result, balanced hole and electron mobilities of 0.26 and 0.12 cm(2)/(V s) are achieved for PDPPF-DFT. This is the first report of using nonchlorinated hexane solvent for fabricating high-performance ambipolar thin-film transistor devices.

  18. Producing smart sensing films by means of organic field effect transistors.

    PubMed

    Manunza, Ileana; Orgiu, Emanuele; Caboni, Alessandra; Barbaro, Massimo; Bonfiglio, Annalisa

    2006-01-01

    We have fabricated the first example of totally flexible field effect device for chemical detection based on an organic field effect transistor (OFET) made by pentacene films grown on flexible plastic structures. The ion sensitivity is achieved by employing a thin Mylar foil as gate dielectric. A sensitivity of the device to the pH of the electrolyte solution has been observed A similar structure can be used also for detecting mechanical deformations on flexible surfaces. Thanks to the flexibility of the substrate and the low cost of the employed technology, these devices open the way for the production of flexible chemical and strain gauge sensors that can be employed in a variety of innovative applications such as wearable electronics, e-textiles, new man-machine interfaces.

  19. Numerical simulation of offset-drain amorphous oxide-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Jeong, Jaewook

    2016-11-01

    In this study, we analyzed the electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with an offset-drain structure by technology computer aided design (TCAD) simulation. When operating in a linear region, an enhancement-type TFT shows poor field-effect mobility because most conduction electrons are trapped in acceptor-like defects in an offset region when the offset length (L off) exceeds 0.5 µm, whereas a depletion-type TFT shows superior field-effect mobility owing to the high free electron density in the offset region compared with the trapped electron density. When operating in the saturation region, both types of TFTs show good field-effect mobility comparable to that of a reference TFT with a large gate overlap. The underlying physics of the depletion and enhancement types of offset-drain TFTs are systematically analyzed.

  20. Field-effect transistors with vacuum-deposited organic-inorganic perovskite films as semiconductor channels

    NASA Astrophysics Data System (ADS)

    Matsushima, Toshinori; Yasuda, Takeshi; Fujita, Katsuhiko; Adachi, Chihaya

    2016-12-01

    Films of the organic-inorganic layered perovskite (C6H5C2H4NH3)2SnI4 were vacuum-deposited on substrates heated at various temperatures (Tsub) to investigate the influence of Tsub on their film quality and transistor performance (hole mobilities, threshold voltages, and current on/off ratios). Appropriate substrate heating at Tsub = 60 °C during vacuum deposition led to better-developed perovskite films with larger grains. These films exhibited the best transistor performance in comparison with films fabricated at the other Tsub. The transistor performance was further enhanced by reducing perovskite semiconductor thickness (t) because of a reduction of bulk resistance in a top-contact/bottom-gate transistor structure. By utilizing the optimized Tsub of 60 °C and t of 31 nm, we obtained the most improved hole mobility of 0.78 ± 0.24 cm2/V s, about 5000 times the hole mobilities of our initial transistors fabricated at Tsub = 24 °C and t = 50 nm.

  1. Carbon nanotube thin film transistors fabricated by an etching based manufacturing compatible process.

    PubMed

    Tian, Boyuan; Liang, Xuelei; Xia, Jiye; Zhang, Han; Dong, Guodong; Huang, Qi; Peng, Lianmao; Xie, Sishen

    2017-03-17

    Carbon nanotube thin film transistors (CNT-TFTs) have been regarded as strong competitors to currently commercialized TFT technologies. Though much progress has been achieved recently, CNT-TFT research is still in the stage of laboratory research. One critical challenge for commercializing CNT-TFT technology is that the commonly used device fabrication method is a lift-off based process, which is not suitable for mass production. In this paper, we report an etching based fabrication process for CNT-TFTs, which is fully manufacturing compatible. In our process, the CNT thin film channel was patterned by dry etching, while wet etching was used for patterning the layers of metal and insulator. The CNT-TFTs were successfully fabricated on a 4 inch wafer in both top-gate and buried-gate geometries with low Schottky barrier contact and pretty uniform performance. High output current (>1.2 μA μm(-1)), high on/off current ratio (>10(5)) and high mobility (>30 cm(2) V(-1) s(-1)) were obtained. Though the fabrication process still needs to be optimized, we believe our research on the etching fabrication process pushes CNT-TFT technology a step forward towards real applications in the near future.

  2. Graphene as tunable contact for high performance thin film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Yuan

    Graphene has been one of the most extensively studied materials due to its unique band structure, the linear dispersion at the K point. It gives rise to novel phenomena, such as the anomalous quantum Hall effect, and has opened up a new category of "Fermi-Dirac" physics. Graphene has also attracted enormous attention for future electronics because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. However, graphene has zero intrinsic band gap, thus can not be used as the active channel material for logic transistors with sufficient on/off current ratio. Previous approaches to address this challenge include the induction of a transport gap in graphene nanostructures or bilayer graphene. However, these approaches have proved successful in improving the on-- off ratio of the resulting devices, but often at a severe sacrifice of the deliverable current density. Alternatively, with a finite density of states, tunable work-function and optical transparency, graphene can function as a unique tunable contact material to create a new structure of electronic devices. In this thesis, I will present my effort toward on-off ratio of graphene based vertical thin film transistor. I will include the work form four of my first author publication. I will first present my research studies on the a dramatic enhancement of the overall quantum efficiency and spectral selectivity of graphene photodetector, by coupling with plasmonic nanostructures. It is observed that metallic plasmonic nanostructures can be integrated with graphene photodetectors to greatly enhance the photocurrent and external quantum efficiency by up to 1,500%. Plasmonic nanostructures of variable resonance frequencies selectively amplify the photoresponse of graphene to light of different wavelengths, enabling highly specific detection of multicolours. Then I will show a new design of highly flexible vertical TFTs (VTFTs) with superior electrical

  3. Thin Film Transistors Using Wafer-Scale Low-Temperature MOCVD WSe2

    NASA Astrophysics Data System (ADS)

    Gong, Yiyang; Zhang, Xiaotian; Redwing, Joan M.; Jackson, Thomas N.

    2016-12-01

    We report on thin film transistors using continuous WSe2 thin films synthesized by metal organic chemical vapor deposition at 400°C. O2 plasma etching is used to provide precise thickness modification of the WSe2 thin film with an etch rate ˜0.25 nm/min. Device performance is found to vary with the thickness of the WSe2 films. P-channel thin film transistors with plasma-thinned 3 nm WSe2 channels have mobility ˜0.01 cm2/Vs and current on-off ratio greater than 104. Our results suggest that plasma etching may provide an approach for post-growth modification of the electrical properties of two-dimensional transition metal dichalcogenide thin films.

  4. Self-formed copper oxide contact interlayer for high-performance oxide thin film transistors

    SciTech Connect

    Gao, Xu E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya; Mitoma, Nobuhiko; Lin, Meng-Fang; Kizu, Takio; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2014-07-14

    Oxide thin film transistor employing copper source/drain electrodes shows a small turn on voltage and reduced hysteresis. Cross-sectional high-resolution transmission electron microscopy image confirmed the formation of ∼4 nm CuO{sub x} related interlayer. The lower bond-dissociation energy of Cu-O compared to Si-O and In-O suggests that the interlayer was formed by adsorbing oxygen molecules from surrounding environment instead of getting oxygen atoms from the semiconductor film. The formation of CuO{sub x} interlayer acting as an acceptor could suppress the carrier concentration in the transistor channel, which would be utilized to control the turn on voltage shifts in oxide thin film transistors.

  5. Carbon Nanotubes, Semiconductor Nanowires and Graphene for Thin Film Transistor and Circuit Applications

    NASA Astrophysics Data System (ADS)

    Pribat, Didier; Cojocaru, Costel-Sorin

    2011-03-01

    In this paper, we briefly review the use of carbon nanotubes and semiconductor nanowires, which represent a new class of nanomaterials actively studied for thin film transistors and electronics applications. Although these nanomaterials are usually synthesised at moderate to high temperatures, they can be transferred to any kind of substrate after growth, paving the way for the fabrication of flexible displays and large area electronics systems on plastic. Over the past few years, the field has progressed well beyond the realisation of elementary devices, since active matrix displays driven by nanowire thin film transistors have been demonstrated, as well as the fabrication of medium scale integrated circuits based on random arrays of carbon nanotubes. Also, graphene, a new nanomaterial has appeared in the landscape; although it is a zero gap semiconductor, it can still be used to make transistors, provided narrow ribbons or bilayers are used. Graphene is also a serious contender for the replacement of oxide-based transparent conducting films.

  6. Photosensitive field-effect transistor based on a composite film of polyvinylcarbazole with nickel nanoparticles

    NASA Astrophysics Data System (ADS)

    Aleshin, A. N.; Shcherbakov, I. P.; Fedichkin, F. S.

    2012-08-01

    The electronic and optoelectronic properties of field-effect transistor structures with an active layer based on composite films of a semiconducting polymer, namely, polyvinylcarbazole (PVC), with nickel nanoparticles have been investigated. It has been shown that these structures at low nickel concentrations (5-10 wt %) possess current-voltage characteristics that indicate an ambipolar transport. For the field-effect transistor structures based on PVC: Ni (Ni ˜ 5 wt %) films, the mobilities of electrons and holes are found to be ˜1.3 and ˜1.9 cm2/V s, respectively. It has been established that the photosensitivity observed in these structures is associated with the specific features of transport in the film of the polymer with nickel nanoparticles. The mechanism of this transport is determined by the modulation of electrical conductivity of the working channel of the field-effect transistor by applying a combination of incident light and gate voltages.

  7. Characterization of novel BaZnSnO thin films by solution process and applications in thin film transistors

    SciTech Connect

    Li, Jun; Huang, Chuan-Xin; Zhang, Jian-Hua; Zhu, Wen-Qing; Jiang, Xue-Yin; Zhang, Zhi-Lin

    2015-08-15

    Graphical abstract: This work reports the Ba content on thin film transistor based on a novel BaZnSnO semiconductor using solution process. - Highlights: • No reports about BaZnSnO thin film using solution process. • BaZnSnO thin film transistor (TFT) was firstly fabricated. • BaZnSnO-TFT shows a acceptable performace. • Influence of Ba content on BaZnSnO-TFT. - Abstract: A novel BaZnSnO semiconductor is fabricated using solution process and the influence of Ba addition on the structure, the chemical state of oxygen and electrical performance of BaZnSnO thin films are investigated. A high performance BaZnSnO-based thin film transistor with 15 mol% Ba is obtained, showing a saturation mobility of 1.94 cm{sup 2}/V s, a threshold voltage of 3.6 V, an on/off current ratio of 6.2 × 10{sup 6}, a subthreshold swing of 0.94 V/decade, and a good bias stability. Transistors with solution processed BaZnSnO films are promising candidates for the development of future large-area, low-cost and high-performance electronic devices.

  8. BIMOS transistor solutions for ESD protection in FD-SOI UTBB CMOS technology

    NASA Astrophysics Data System (ADS)

    Galy, Philippe; Athanasiou, S.; Cristoloveanu, S.

    2016-01-01

    We evaluate the Electro-Static Discharge (ESD) protection capability of BIpolar MOS (BIMOS) transistors integrated in ultrathin silicon film for 28 nm Fully Depleted SOI (FD-SOI) Ultra Thin Body and BOX (UTBB) high-k metal gate technology. Using as a reference our measurements in hybrid bulk-SOI structures, we extend the BIMOS design towards the ultrathin silicon film. Detailed study and pragmatic evaluations are done based on 3D TCAD simulation with standard physical models using Average Current Slope (ACS) method and quasi-static DC stress (Average Voltage Slope AVS method). These preliminary 3D TACD results are very encouraging in terms of ESD protection efficiency in advanced FD-SOI CMOS.

  9. Metal contact effect on the performance and scaling behavior of carbon nanotube thin film transistors

    NASA Astrophysics Data System (ADS)

    Xia, Jiye; Dong, Guodong; Tian, Boyuan; Yan, Qiuping; Zhang, Han; Liang, Xuelei; Peng, Lianmao

    2016-05-01

    Metal-tube contact is known to play an important role in carbon nanotube field-effect transistors (CNT-FETs) which are fabricated on individual CNTs. Less attention has been paid to the contact effect in network type carbon nanotube thin film transistors (CNT-TFTs). In this study, we demonstrate that contact plays an even more important role in CNT-TFTs than in CNT-FETs. Although the Schottky barrier height at the metal-tube contact can be tuned by the work function of the metal, similar to the case in CNT-FETs, the contact resistance (Rc) forms a much higher proportion of the total resistance in CNT-TFTs. Interestingly, the contact resistivity was found to increase with channel length, which is a consequence of the percolating nature of the transport in CNT films, and this behavior does not exist in CNT-FETs and normal 2D Ohmic conductors. Electrical transport in CNT-TFTs has been predicted to scale with channel length by stick percolation theory. However, the scaling behavior is also impacted, or even covered up by the effect of Rc. Once the contact effect is excluded, the covered scaling behavior can be revealed correctly. A possible way of reducing Rc in CNT-TFTs was proposed. We believe the findings in this paper will strengthen our understanding of CNT-TFTs, and even accelerate the commercialization of CNT-TFT technology.Metal-tube contact is known to play an important role in carbon nanotube field-effect transistors (CNT-FETs) which are fabricated on individual CNTs. Less attention has been paid to the contact effect in network type carbon nanotube thin film transistors (CNT-TFTs). In this study, we demonstrate that contact plays an even more important role in CNT-TFTs than in CNT-FETs. Although the Schottky barrier height at the metal-tube contact can be tuned by the work function of the metal, similar to the case in CNT-FETs, the contact resistance (Rc) forms a much higher proportion of the total resistance in CNT-TFTs. Interestingly, the contact

  10. Metal-oxide thin-film transistor-based pH sensor with a silver nanowire top gate electrode

    NASA Astrophysics Data System (ADS)

    Yoo, Tae-Hee; Sang, Byoung-In; Wang, Byung-Yong; Lim, Dae-Soon; Kang, Hyun Wook; Choi, Won Kook; Lee, Young Tack; Oh, Young-Jei; Hwang, Do Kyung

    2016-04-01

    Amorphous InGaZnO (IGZO) metal-oxide-semiconductor thin-film transistors (TFTs) are one of the most promising technologies to replace amorphous and polycrystalline Si TFTs. Recently, TFT-based sensing platforms have been gaining significant interests. Here, we report on IGZO transistor-based pH sensors in aqueous medium. In order to achieve stable operation in aqueous environment and enhance sensitivity, we used Al2O3 grown by using atomic layer deposition (ALD) and a porous Ag nanowire (NW) mesh as the top gate dielectric and electrode layers, respectively. Such devices with a Ag NW mesh at the top gate electrode rapidly respond to the pH of solutions by shifting the turn-on voltage. Furthermore, the output voltage signals induced by the voltage shifts can be directly extracted by implantation of a resistive load inverter.

  11. Temperature Dependence of Transistor Characteristics and Electronic Structure for Amorphous In-Ga-Zn-Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Godo, Hiromichi; Kawae, Daisuke; Yoshitomi, Shuhei; Sasaki, Toshinari; Ito, Shunichi; Ohara, Hiroki; Kishida, Hideyuki; Takahashi, Masahiro; Miyanaga, Akiharu; Yamazaki, Shunpei

    2010-03-01

    We fabricated an inverted-staggered amorphous In-Ga-Zn-oxide (a-IGZO) thin film transistor (TFT) and measured the temperature dependence of its characteristics. A threshold voltage (Vth) shift between 120 and 180 °C was as large as 4 V. In an analysis with two-dimensional (2D) numerical simulation, we reproduced the measured result by assuming two types of donor-like states as carrier generation sources. Furthermore, by ab initio molecular dynamics (MD) simulation, we determined the electronic structures of three types of a-IGZO structures, namely, “stoichiometric a-IGZO”, “oxygen deficiency”, and “hydrogen doping”.

  12. All diamond self-aligned thin film transistor

    DOEpatents

    Gerbi, Jennifer

    2008-07-01

    A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.

  13. Discrepancy in mobility extracted from transfer and output characteristics of organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon; Tsai, Chia-Lung; Huang, Bo-Chieh

    2010-11-01

    The discrepancy in mobility extracted from transfer and output characteristics of organic thin film transistors was studied. The extraction from transfer characteristics demonstrates higher mobility, compared to the extraction from output characteristics. It is shown that the contribution of capacitance variation may lead to an increased drain current, thus overestimating mobility.

  14. Charge carrier transport in polycrystalline organic thin film based field effect transistors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.

  15. Radiation sensitivity of graphene field effect transistors and other thin film architectures

    NASA Astrophysics Data System (ADS)

    Cazalas, Edward

    An important contemporary motivation for advancing radiation detection science and technology is the need for interdiction of nuclear and radiological materials, which may be used to fabricate weapons of mass destruction. The detection of such materials by nuclear techniques relies on achieving high sensitivity and selectivity to X-rays, gamma-rays, and neutrons. To be attractive in field deployable instruments, it is desirable for detectors to be lightweight, inexpensive, operate at low voltage, and consume low power. To address the relatively low particle flux in most passive measurements for nuclear security applications, detectors scalable to large areas that can meet the high absolute detection efficiency requirements are needed. Graphene-based and thin-film-based radiation detectors represent attractive technologies that could meet the need for inexpensive, low-power, size-scalable detection architectures, which are sensitive to X-rays, gamma-rays, and neutrons. The utilization of graphene to detect ionizing radiation relies on the modulation of graphene charge carrier density by changes in local electric field, i.e. the field effect in graphene. Built on the principle of a conventional field effect transistor, the graphene-based field effect transistor (GFET) utilizes graphene as a channel and a semiconducting substrate as an absorber medium with which the ionizing radiation interacts. A radiation interaction event that deposits energy within the substrate creates electron-hole pairs, which modify the electric field and modulate graphene charge carrier density. A detection event in a GFET is therefore measured as a change in graphene resistance or current. Thin (micron-scale) films can also be utilized for radiation detection of thermal neutrons provided nuclides with high neutron absorption cross section are present with appreciable density. Detection in thin-film detectors could be realized through the collection of charge carriers generated within the

  16. Characterization of Zinc Oxide and Pentacene Thin Film Transistors for CMOS Inverters

    NASA Astrophysics Data System (ADS)

    Iechi, Hiroyuki; Watanabe, Yasuyuki; Yamauchi, Hiroshi; Kudo, Kazuhiro

    We fabricated both thin film transistors (TFTs) and diodes using zinc oxide (ZnO) and pentacene, and investigated their basic characteristics. We found that field-effect mobility is influenced by the interface state between the semiconductor and dielectric layers. Furthermore, the complementary metal oxide semiconductor (CMOS) inverter using a p-channel pentacene field-effect transistor (FET) and an n-channel ZnO FET showed a relatively high voltage gain (8 - 12) by optimizing the device structure. The hybrid complementary inverters described here are expected for application in flexible displays, radio frequency identification cards (RFID) tags, and others.

  17. Detection of saliva-range glucose concentrations using organic thin-film transistors

    SciTech Connect

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J.

    2014-07-28

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  18. Amorphous indium zinc oxide thin film transistors with poly-4-vinylphenol gate dielectric layers

    NASA Astrophysics Data System (ADS)

    Pu, Haifeng; Li, Guifeng; Feng, Jiahan; Liu, Baoying; Zhang, Qun

    2011-09-01

    Thin film transistors (TFTs) with amorphous indium zinc oxide (a-IZO) as channel layers and poly-4-vinylphenol as dielectric layers were fabricated. Transmission curves show that the double-layer structure of the a-IZO layer and the poly-4-vinylphenol layer exhibits the antireflection effect. It was found that post heat-treatment at relatively low temperature will improve the electrical performance of the transistors. TFT devices with saturation mobility of 25.4 cm2 V-1 s-1, threshold voltage of 4.0 V, subthreshold swing value of 0.88 V/decade and current on/off ratio of 106 were obtained.

  19. Zinc oxide integrated area efficient high output low power wavy channel thin film transistor

    SciTech Connect

    Hanna, A. N.; Ghoneim, M. T.; Bahabry, R. R.; Hussain, A. M.; Hussain, M. M.

    2013-11-25

    We report an atomic layer deposition based zinc oxide channel material integrated thin film transistor using wavy channel architecture allowing expansion of the transistor width in the vertical direction using the fin type features. The experimental devices show area efficiency, higher normalized output current, and relatively lower power consumption compared to the planar architecture. This performance gain is attributed to the increased device width and an enhanced applied electric field due to the architecture when compared to a back gated planar device with the same process conditions.

  20. Thin-Film Transistor-Based Biosensors for Determining Stoichiometry of Biochemical Reactions.

    PubMed

    Wang, Yi-Wen; Chen, Ting-Yang; Yang, Tsung-Han; Chang, Cheng-Chung; Yang, Tsung-Lin; Lo, Yu-Hwa; Huang, Jian-Jang

    2016-01-01

    The enzyme kinetic in a biochemical reaction is critical to scientific research and drug discovery but can hardly be determined experimentally from enzyme assays. In this work, a charge-current transducer (a transistor) is proposed to evaluate the status of biochemical reaction by monitoring the electrical charge changes. Using the malate-aspartate shuttle as an example, a thin-film transistor (TFT)-based biosensor with an extended gold pad is demonstrated to detect the biochemical reaction between NADH and NAD+. The drain current change indicates the status of chemical equilibrium and stoichiometry.

  1. Thin-Film Transistor-Based Biosensors for Determining Stoichiometry of Biochemical Reactions

    PubMed Central

    Wang, Yi-Wen; Chen, Ting-Yang; Yang, Tsung-Han; Chang, Cheng-Chung; Yang, Tsung-Lin; Lo, Yu-Hwa

    2016-01-01

    The enzyme kinetic in a biochemical reaction is critical to scientific research and drug discovery but can hardly be determined experimentally from enzyme assays. In this work, a charge-current transducer (a transistor) is proposed to evaluate the status of biochemical reaction by monitoring the electrical charge changes. Using the malate-aspartate shuttle as an example, a thin-film transistor (TFT)-based biosensor with an extended gold pad is demonstrated to detect the biochemical reaction between NADH and NAD+. The drain current change indicates the status of chemical equilibrium and stoichiometry. PMID:28033412

  2. Organic/inorganic hybrid synaptic transistors gated by proton conducting methylcellulose films

    SciTech Connect

    Wan, Chang Jin; Wan, Qing E-mail: yshi@nju.edu.cn; Zhu, Li Qiang; Wan, Xiang; Shi, Yi E-mail: yshi@nju.edu.cn

    2016-01-25

    The idea of building a brain-inspired cognitive system has been around for several decades. Recently, electric-double-layer transistors gated by ion conducting electrolytes were reported as the promising candidates for synaptic electronics and neuromorphic system. In this letter, indium-zinc-oxide transistors gated by proton conducting methylcellulose electrolyte films were experimentally demonstrated with synaptic plasticity including paired-pulse facilitation and spatiotemporal-correlated dynamic logic. More importantly, a model based on proton-related electric-double-layer modulation and stretched-exponential decay function was proposed, and the theoretical results are in good agreement with the experimentally measured synaptic behaviors.

  3. Detection of saliva-range glucose concentrations using organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Elkington, D.; Belcher, W. J.; Dastoor, P. C.; Zhou, X. J.

    2014-07-01

    We describe the development of a glucose sensor through direct incorporation of an enzyme (glucose oxidase) into the gate of an organic thin film transistor (OTFT). We show that glucose diffusion is the key determinant of the device response time and present a mechanism of glucose sensing in these devices that involves protonic doping of the transistor channel via enzymatic oxidation of glucose. The integrated OTFT sensor is sensitive across 4 decades of glucose concentration; a range that encompasses both the blood and salivary glucose concentration levels. As such, this work acts as a proof-of-concept for low-cost printed biosensors for salivary glucose.

  4. High-mobility pyrene-based semiconductor for organic thin-film transistors.

    PubMed

    Cho, Hyunduck; Lee, Sunyoung; Cho, Nam Sung; Jabbour, Ghassan E; Kwak, Jeonghun; Hwang, Do-Hoon; Lee, Changhee

    2013-05-01

    Numerous conjugated oligoacenes and polythiophenes are being heavily studied in the search for high-mobility organic semiconductors. Although many researchers have designed fused aromatic compounds as organic semiconductors for organic thin-film transistors (OTFTs), pyrene-based organic semiconductors with high mobilities and on-off current ratios have not yet been reported. Here, we introduce a new pyrene-based p-type organic semiconductor showing liquid crystal behavior. The thin film characteristics of this material are investigated by varying the substrate temperature during the deposition and the gate dielectric condition using the surface modification with a self-assembled monolayer, and systematically studied in correlation with the performances of transistor devices with this compound. OTFT fabricated under the optimum deposition conditions of this compound, namely, 1,6-bis(5'-octyl-2,2'-bithiophen-5-yl)pyrene (BOBTP) shows a high-performance transistor behavior with a field-effect mobility of 2.1 cm(2) V(-1) s(-1) and an on-off current ratio of 7.6 × 10(6) and enhanced long-term stability compared to the pentacene thin-film transistor.

  5. High-mobility and air-stable organic thin-film transistors with highly ordered semiconducting polymer films

    NASA Astrophysics Data System (ADS)

    Umeda, Tokiyoshi; Tokito, Shizuo; Kumaki, Daisuke

    2007-03-01

    We report on high crystalline thin films of liquid-crystalline polythiophene derivative, poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene) (PB16TTT) that exhibit terrace structures and molecular steps of its polymer chains by annealing in its liquid-crystalline phase. The crystallinity of the PB16TTT polymer films formed on SiO2 gate insulating layers with smooth self-assembled monolayer was improved by changing the octyltrichlorosilane treatment time for the SiO2, which led to reproducible high field-effect mobilities of the polymer thin-film transistors up to 0.44cm2/Vs. High stability of the transistor for repeated stressing in ambient air was also demonstrated.

  6. Synthesis of ZnO nanowires for thin film network transistors

    NASA Astrophysics Data System (ADS)

    Dalal, S. H.; Unalan, H. E.; Zhang, Y.; Hiralal, Pritesh; Gangloff, L.; Flewitt, Andrew J.; Amaratunga, Gehan A. J.; Milne, William I.

    2008-08-01

    Zinc oxide nanowire networks are attractive as alternatives to organic and amorphous semiconductors due to their wide bandgap, flexibility and transparency. We demonstrate the fabrication of thin film transistors (TFT)s which utilize ZnO nanowires as the semiconducting channel. These thin film transistors can be transparent and flexible and processed at low temperatures on to a variety of substrates. The nanowire networks are created using a simple contact transfer method that is easily scalable. Apparent nanowire network mobility values can be as high as 3.8 cm2/Vs (effective thin film mobility: 0.03 cm2/Vs) in devices with 20μm channel lengths and ON/OFF ratios of up to 104.

  7. Morphological impact of zinc oxide layers on the device performance in thin-film transistors.

    PubMed

    Faber, Hendrik; Klaumünzer, Martin; Voigt, Michael; Galli, Diana; Vieweg, Benito F; Peukert, Wolfgang; Spiecker, Erdmann; Halik, Marcus

    2011-03-01

    Zinc oxide thin-films are prepared either by spin coating of an ethanolic dispersion of nanoparticles (NP, diameter 5 nm) or by spray pyrolysis of a zinc acetate dihydrate precursor. High-resolution electron microscopy studies reveal a monolayer of particles for the low temperature spin coating approach and larger crystalline domains of more than 30 nm for the spray pyrolysis technique. Thin-film transistor devices (TFTs) based on spray pyrolysis films exhibit higher electron mobilities of up to 24 cm2 V(-1) s(-1) compared to 0.6 cm2 V(-1) s(-1) for NP based TFTs. These observations were dedicated to a reduced number of grain boundaries within the transistor channel.

  8. Molybdenum as a contact material in zinc tin oxide thin film transistors

    SciTech Connect

    Hu, W.; Peterson, R. L.

    2014-05-12

    Amorphous oxide semiconductors are of increasing interest for a variety of thin film electronics applications. Here, the contact properties of different source/drain electrode materials to solution-processed amorphous zinc tin oxide (ZTO) thin-film transistors are studied using the transmission line method. The width-normalized contact resistance between ZTO and sputtered molybdenum is measured to be 8.7 Ω-cm, which is 10, 20, and 600 times smaller than that of gold/titanium, indium tin oxide, and evaporated molybdenum electrodes, respectively. The superior contact formed using sputtered molybdenum is due to a favorable work function lineup, an insulator-free interface, bombardment of ZTO during molybdenum sputtering, and trap-assisted tunneling. The transfer length of the sputtered molybdenum/ZTO contact is 0.34 μm, opening the door to future radio-frequency sub-micron molybdenum/ZTO thin film transistors.

  9. Sigma-pi molecular dielectric multilayers for low-voltage organic thin-film transistors.

    PubMed

    Yoon, Myung-Han; Facchetti, Antonio; Marks, Tobin J

    2005-03-29

    Very thin (2.3-5.5 nm) self-assembled organic dielectric multilayers have been integrated into organic thin-film transistor structures to achieve sub-1-V operating characteristics. These new dielectrics are fabricated by means of layer-by-layer solution phase deposition of molecular silicon precursors, resulting in smooth, nanostructurally well defined, strongly adherent, thermally stable, virtually pinhole-free, organosiloxane thin films having exceptionally large electrical capacitances (up to approximately 2,500 nF.cm(-2)), excellent insulating properties (leakage current densities as low as 10(-9) A.cm(-2)), and single-layer dielectric constant (k)of approximately 16. These 3D self-assembled multilayers enable organic thin-film transistor function at very low source-drain, gate, and threshold voltages (<1 V) and are compatible with a broad variety of vapor- or solution-deposited p- and n-channel organic semiconductors.

  10. Protolytic carbon film technology

    SciTech Connect

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  11. Thin-film transistors based on p-type Cu{sub 2}O thin films produced at room temperature

    SciTech Connect

    Fortunato, Elvira; Figueiredo, Vitor; Barquinha, Pedro; Elamurugu, Elangovan; Goncalves, Goncalo; Martins, Rodrigo; Park, Sang-Hee Ko; Hwang, Chi-Sun

    2010-05-10

    Copper oxide (Cu{sub 2}O) thin films were used to produce bottom gate p-type transparent thin-film transistors (TFTs). Cu{sub 2}O was deposited by reactive rf magnetron sputtering at room temperature and the films exhibit a polycrystalline structure with a strongest orientation along (111) plane. The TFTs exhibit improved electrical performance such as a field-effect mobility of 3.9 cm{sup 2}/V s and an on/off ratio of 2x10{sup 2}.

  12. Conduction Threshold in Accumulation-Mode InGaZnO Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Sungsik; Nathan, Arokia

    2016-03-01

    The onset of inversion in the metal-oxide-semiconductor field-effect transistor (MOSFET) takes place when the surface potential is approximately twice the bulk potential. In contrast, the conduction threshold in accumulation mode transistors, such as the oxide thin film transistor (TFT), has remained ambiguous in view of the complex density of states distribution in the mobility gap. This paper quantitatively describes the conduction threshold of accumulation-mode InGaZnO TFTs as the transition of the Fermi level from deep to tail states, which can be defined as the juxtaposition of linear and exponential dependencies of the accumulated carrier density on energy. Indeed, this permits direct extraction and visualization of the threshold voltage in terms of the second derivative of the drain current with respect to gate voltage.

  13. Conduction Threshold in Accumulation-Mode InGaZnO Thin Film Transistors

    PubMed Central

    Lee, Sungsik; Nathan, Arokia

    2016-01-01

    The onset of inversion in the metal-oxide-semiconductor field-effect transistor (MOSFET) takes place when the surface potential is approximately twice the bulk potential. In contrast, the conduction threshold in accumulation mode transistors, such as the oxide thin film transistor (TFT), has remained ambiguous in view of the complex density of states distribution in the mobility gap. This paper quantitatively describes the conduction threshold of accumulation-mode InGaZnO TFTs as the transition of the Fermi level from deep to tail states, which can be defined as the juxtaposition of linear and exponential dependencies of the accumulated carrier density on energy. Indeed, this permits direct extraction and visualization of the threshold voltage in terms of the second derivative of the drain current with respect to gate voltage. PMID:26932790

  14. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain

    NASA Astrophysics Data System (ADS)

    Lee, Sungsik; Nathan, Arokia

    2016-10-01

    The quest for low power becomes highly compelling in newly emerging application areas related to wearable devices in the Internet of Things. Here, we report on a Schottky-barrier indium-gallium-zinc-oxide thin-film transistor operating in the deep subthreshold regime (i.e., near the OFF state) at low supply voltages (<1 volt) and ultralow power (<1 nanowatt). By using a Schottky-barrier at the source and drain contacts, the current-voltage characteristics of the transistor were virtually channel-length independent with an infinite output resistance. It exhibited high intrinsic gain (>400) that was both bias and geometry independent. The transistor reported here is useful for sensor interface circuits in wearable devices where high current sensitivity and ultralow power are vital for battery-less operation.

  15. Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates.

    PubMed

    Hur, Seung-Hyun; Yoon, Myung-Han; Gaur, Anshu; Shim, Moonsub; Facchetti, Antonio; Marks, Tobin J; Rogers, John A

    2005-10-12

    We report the implementation of three dimensionally cross-linked, organic nanodielectric multilayers as ultrathin gate dielectrics for a type of thin film transistor device that uses networks of single-walled carbon nanotubes as effective semiconductor thin films. Unipolar n- and p-channel devices are demonstrated by use of polymer coatings to control the behavior of the networks. Monolithically integrating these devices yields complementary logic gates. The organic multilayers provide exceptionally good gate dielectrics for these systems and allow for low voltage, low hysteresis operation. The excellent performance characteristics suggest that organic dielectrics of this general type could provide a promising path to SWNT-based thin film electronics.

  16. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.

    PubMed

    Yang, Yingjun; Ding, Li; Han, Jie; Zhang, Zhiyong; Peng, Lian-Mao

    2017-03-29

    Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs.

  17. Film Fabrication Technologies at NREL

    NASA Technical Reports Server (NTRS)

    Mcconnell, Robert D.

    1993-01-01

    The National Renewable Energy Laboratory (NREL) has extensive capabilities for fabricating a variety of high-technology films. Much of the in-house work in NREL's large photovoltaics (PV) program involves the fabrication of multiple thin-film semiconducting layers constituting a thin-film PV device. NREL's smaller program in superconductivity focuses on the fabrication of superconducting films on long, flexible tape substrates. This paper focuses on four of NREL's in-house research groups and their film fabrication techniques, developed for a variety of elements, alloys, and compounds to be deposited on a variety of substrates. As is the case for many national laboratories, NREL's technology transfer efforts are focusing on Cooperative Research and Development Agreements (CRADA's) between NREL researchers and private industry researchers.

  18. Organic thin-film transistors based on solution-processable benzodithiophene dimers modified with hexyl groups

    NASA Astrophysics Data System (ADS)

    Hirota, Takeshi; Toake, Hitoshi; Osuga, Hideji; Uno, Kazuyuki; Tanaka, Ichiro

    2017-04-01

    Benzodithiophene dimers modified with hexyl groups (2C6-BDT-dimer) were investigated as solution-processable organic semiconductors for organic thin-film transistors (OTFTs). Since 2C6-BDT-dimer crystals have an anisotropic shape, flow coating was adopted to grow polycrystalline films. The flow-coated films were inferior to the vacuum-evaporated ones in terms of their crystallinity estimated from X-ray diffraction data. However, the hole mobility of the OTFTs with the flow-coated films, which was 1.7 cm2 V‑1 s‑1 at maximum, was higher than that of the OTFTs with vacuum-evaporated films because the one-dimensional thin crystals of the flow-coated films were aligned in the flow-coating direction.

  19. Room-temperature-operated sensitive hybrid gas sensor based on amorphous indium gallium zinc oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Zan, Hsiao-Wen; Li, Chang-Hung; Yeh, Chun-Cheng; Dai, Ming-Zhi; Meng, Hsin-Fei; Tsai, Chuang-Chuang

    2011-06-01

    An organic sensing layer is capped onto an amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) to form a hybrid sensor. The organic layer, served as a second gate, forms a p-n junction with the a-IGZO film. Oxidizing or reducing vapor molecules act like electron acceptors or electron donors to change the potential of the organic layer and the current of a-IGZO TFT. A sensitive and reversible response to 100 ppb ammonia and 100 ppb acetone is obtained at room temperature. This letter opens a route to develop low-cost large-area bio/chemical sensor arrays based on the emerging a-IGZO TFT technology.

  20. Synthesis and characterization of polystyrene brushes for organic thin film transistors.

    PubMed

    Hwang, Do-Hoon; Nomura, Akihiro; Kim, Jeongsik; Kim, Ji-Hoon; Cho, Hyunduck; Lee, Changhee; Ohno, Kohji; Tsujii, Yoshinobu

    2012-05-01

    We synthesized and characterized polystyrene brushes on a silicon wafer using surface-initiated atom transfer radical polymerization. The thickness of the polymer brush was controlled by adjusting the reaction time. We investigated monomer conversion as well as the molecular weight and density of the polymer brushes. When the monomer conversion reached 100%, the number-average molecular weight and film thickness reached 135,000 and 113 nm, respectively. The estimated densities of the synthesized polystyrene brushes were in the range 0.34-0.54 chains/nm2, high enough to be categorized in the "concentrated brush" regime. The synthesized polymer brush was used as an insulating layer in an organic thin-film transistor. Organic thin-film transistors were fabricated using pentacene as an active p-type organic semiconductor and a polystyrene brush on a SiO2 layer as a gate dielectric. The pentacene based organic thin-film transistor with the polystyrene brush exhibited a field-effect mobility microFET of 0.099 cm2/(V x s).

  1. Oxide semiconductor thin-film transistors: a review of recent advances.

    PubMed

    Fortunato, E; Barquinha, P; Martins, R

    2012-06-12

    Transparent electronics is today one of the most advanced topics for a wide range of device applications. The key components are wide bandgap semiconductors, where oxides of different origins play an important role, not only as passive component but also as active component, similar to what is observed in conventional semiconductors like silicon. Transparent electronics has gained special attention during the last few years and is today established as one of the most promising technologies for leading the next generation of flat panel display due to its excellent electronic performance. In this paper the recent progress in n- and p-type oxide based thin-film transistors (TFT) is reviewed, with special emphasis on solution-processed and p-type, and the major milestones already achieved with this emerging and very promising technology are summarizeed. After a short introduction where the main advantages of these semiconductors are presented, as well as the industry expectations, the beautiful history of TFTs is revisited, including the main landmarks in the last 80 years, finishing by referring to some papers that have played an important role in shaping transparent electronics. Then, an overview is presented of state of the art n-type TFTs processed by physical vapour deposition methods, and finally one of the most exciting, promising, and low cost but powerful technologies is discussed: solution-processed oxide TFTs. Moreover, a more detailed focus analysis will be given concerning p-type oxide TFTs, mainly centred on two of the most promising semiconductor candidates: copper oxide and tin oxide. The most recent data related to the production of complementary metal oxide semiconductor (CMOS) devices based on n- and p-type oxide TFT is also be presented. The last topic of this review is devoted to some emerging applications, finalizing with the main conclusions. Related work that originated at CENIMAT|I3N during the last six years is included in more detail, which

  2. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy

    PubMed Central

    Sekitani, Tsuyoshi; Noguchi, Yoshiaki; Zschieschang, Ute; Klauk, Hagen; Someya, Takao

    2008-01-01

    A major obstacle to the development of organic transistors for large-area sensor, display, and circuit applications is the fundamental compromise between manufacturing efficiency, transistor performance, and power consumption. In the past, improving the manufacturing efficiency through the use of printing techniques has inevitably resulted in significantly lower performance and increased power consumption, while attempts to improve performance or reduce power have led to higher process temperatures and increased manufacturing cost. Here, we lift this fundamental limitation by demonstrating subfemtoliter inkjet printing to define metal contacts with single-micrometer resolution on the surface of high-mobility organic semiconductors to create high-performance p-channel and n-channel transistors and low-power complementary circuits. The transistors employ an ultrathin low-temperature gate dielectric based on a self-assembled monolayer that allows transistors and circuits on rigid and flexible substrates to operate with very low voltages. PMID:18362348

  3. Simple push coating of polymer thin-film transistors

    NASA Astrophysics Data System (ADS)

    Ikawa, Mitsuhiro; Yamada, Toshikazu; Matsui, Hiroyuki; Minemawari, Hiromi; Tsutsumi, Jun'ya; Horii, Yoshinori; Chikamatsu, Masayuki; Azumi, Reiko; Kumai, Reiji; Hasegawa, Tatsuo

    2012-11-01

    Solution processibility is a unique advantage of organic semiconductors, permitting the low-cost production of flexible electronics under ambient conditions. However, the solution affinity to substrate surfaces remains a serious dilemma; liquid manipulation is more difficult on highly hydrophobic surfaces, but the use of such surfaces is indispensable for improving device characteristics. Here we demonstrate a simple technique, which we call ‘push coating’, to produce uniform large-area semiconducting polymer films over a hydrophobic surface with eliminating material loss. We utilize a poly(dimethylsiloxane)-based trilayer stamp whose conformal contact with the substrate enables capillarity-induced wetting of the surface. Films are formed through solvent sorption and retention in the stamp, allowing the stamp to be peeled perfectly from the film. The planar film formation on hydrophobic surfaces also enables subsequent fine film patterning. The technique improves the crystallinity and field-effect mobility of stamped semiconductor films, constituting a major step towards flexible electronics production.

  4. Transparent metal oxide nanowire transistors

    NASA Astrophysics Data System (ADS)

    Chen, Di; Liu, Zhe; Liang, Bo; Wang, Xianfu; Shen, Guozhen

    2012-05-01

    With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive review of the state-of-the-art research activities that focus on transparent metal oxide nanowire transistors. It begins with the brief introduction to the synthetic methods for high quality metal oxide nanowires, and the typical nanowire transfer and printing techniques with emphasis on the simple contact printing methodology. High performance transparent transistors built on both single nanowires and nanowire thin films are then highlighted. The final section deals with the applications of transparent metal oxide nanowire transistors in the field of transparent displays and concludes with an outlook on the current perspectives and future directions of transparent metal oxide nanowire transistors.

  5. Transparent metal oxide nanowire transistors.

    PubMed

    Chen, Di; Liu, Zhe; Liang, Bo; Wang, Xianfu; Shen, Guozhen

    2012-05-21

    With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive review of the state-of-the-art research activities that focus on transparent metal oxide nanowire transistors. It begins with the brief introduction to the synthetic methods for high quality metal oxide nanowires, and the typical nanowire transfer and printing techniques with emphasis on the simple contact printing methodology. High performance transparent transistors built on both single nanowires and nanowire thin films are then highlighted. The final section deals with the applications of transparent metal oxide nanowire transistors in the field of transparent displays and concludes with an outlook on the current perspectives and future directions of transparent metal oxide nanowire transistors.

  6. Wafer scale fabrication of carbon nanotube thin film transistors with high yield

    NASA Astrophysics Data System (ADS)

    Tian, Boyuan; Liang, Xuelei; Yan, Qiuping; Zhang, Han; Xia, Jiye; Dong, Guodong; Peng, Lianmao; Xie, Sishen

    2016-07-01

    Carbon nanotube thin film transistors (CNT-TFTs) are promising candidates for future high performance and low cost macro-electronics. However, most of the reported CNT-TFTs are fabricated in small quantities on a relatively small size substrate. The yield of large scale fabrication and the performance uniformity of devices on large size substrates should be improved before the CNT-TFTs reach real products. In this paper, 25 200 devices, with various geometries (channel width and channel length), were fabricated on 4-in. size ridged and flexible substrates. Almost 100% device yield were obtained on a rigid substrate with high out-put current (>8 μA/μm), high on/off current ratio (>105), and high mobility (>30 cm2/V.s). More importantly, uniform performance in 4-in. area was achieved, and the fabrication process can be scaled up. The results give us more confidence for the real application of the CNT-TFT technology in the near future.

  7. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    SciTech Connect

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja; Rack, Philip D.

    2014-11-26

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT. The typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.

  8. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    DOE PAGES

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja; ...

    2014-11-26

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT. Themore » typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.« less

  9. All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis.

    PubMed

    Sowade, Enrico; Ramon, Eloi; Mitra, Kalyan Yoti; Martínez-Domingo, Carme; Pedró, Marta; Pallarès, Jofre; Loffredo, Fausta; Villani, Fulvia; Gomes, Henrique L; Terés, Lluís; Baumann, Reinhard R

    2016-09-21

    We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement.

  10. All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis

    NASA Astrophysics Data System (ADS)

    Sowade, Enrico; Ramon, Eloi; Mitra, Kalyan Yoti; Martínez-Domingo, Carme; Pedró, Marta; Pallarès, Jofre; Loffredo, Fausta; Villani, Fulvia; Gomes, Henrique L.; Terés, Lluís; Baumann, Reinhard R.

    2016-09-01

    We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement.

  11. All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis

    PubMed Central

    Sowade, Enrico; Ramon, Eloi; Mitra, Kalyan Yoti; Martínez-Domingo, Carme; Pedró, Marta; Pallarès, Jofre; Loffredo, Fausta; Villani, Fulvia; Gomes, Henrique L.; Terés, Lluís; Baumann, Reinhard R.

    2016-01-01

    We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement. PMID:27649784

  12. Lateral protonic/electronic hybrid oxide thin-film transistor gated by SiO{sub 2} nanogranular films

    SciTech Connect

    Zhu, Li Qiang Chao, Jin Yu; Xiao, Hui

    2014-12-15

    Ionic/electronic interaction offers an additional dimension in the recent advancements of condensed materials. Here, lateral gate control of conductivities of indium-zinc-oxide (IZO) films is reported. An electric-double-layer (EDL) transistor configuration was utilized with a phosphorous-doped SiO{sub 2} nanogranular film to provide a strong lateral electric field. Due to the strong lateral protonic/electronic interfacial coupling effect, the IZO EDL transistor could operate at a low-voltage of 1 V. A resistor-loaded inverter is built, showing a high voltage gain of ∼8 at a low supply voltage of 1 V. The lateral ionic/electronic coupling effects are interesting for bioelectronics and portable electronics.

  13. Direct wafer bonding technology for large-scale InGaAs-on-insulator transistors

    SciTech Connect

    Kim, SangHyeon E-mail: sh-kim@kist.re.kr; Ikku, Yuki; Takenaka, Mitsuru; Takagi, Shinichi; Yokoyama, Masafumi; Nakane, Ryosho; Li, Jian; Kao, Yung-Chung

    2014-07-28

    Heterogeneous integration of III-V devices on Si wafers have been explored for realizing high device performance as well as merging electrical and photonic applications on the Si platform. Existing methodologies have unavoidable drawbacks such as inferior device quality or high cost in comparison with the current Si-based technology. In this paper, we present InGaAs-on-insulator (-OI) fabrication from an InGaAs layer grown on a Si donor wafer with a III-V buffer layer instead of growth on a InP donor wafer. This technology allows us to yield large wafer size scalability of III-V-OI layers up to the Si wafer size of 300 mm with a high film quality and low cost. The high film quality has been confirmed by Raman and photoluminescence spectra. In addition, the fabricated InGaAs-OI transistors exhibit the high electron mobility of 1700 cm{sup 2}/V s and uniform distribution of the leakage current, indicating high layer quality with low defect density.

  14. Solution-processed hybrid organic-inorganic complementary thin-film transistor inverter

    NASA Astrophysics Data System (ADS)

    Cheong, Heajeong; Kuribara, Kazunori; Ogura, Shintaro; Fukuda, Nobuko; Yoshida, Manabu; Ushijima, Hirobumi; Uemura, Sei

    2016-04-01

    We investigated hybrid organic-inorganic complementary inverters with a solution-processed indium-gallium-zinc-oxide (IGZO) n-channel thin-film transistor (TFT) and p-channel TFTs using the high-uniformity polymer poly[2,5-bis(alkyl)pyrrolo[3,4-c]pyrrolo-1,4(2H,5H)-dione-alt-5,5-di(thiophene-2-yl)-2,2-(E)-2-(2-(thiophen-2-yl)vinyl)thiophene] (PDVT-10). The IGZO TFT was fabricated at 150 °C for 1 min. It showed a high field-effect mobility of 0.9 cm2·V-1·s-1 and a high on/off current ratio of 107. A hybrid complementary inverter was fabricated by combining IGZO with a PDVT-10 thin-film transistor and its operation was confirmed.

  15. Reduction of persistent photoconductivity in ZnO thin film transistor-based UV photodetector

    NASA Astrophysics Data System (ADS)

    Ivanoff Reyes, Pavel; Ku, Chieh-Jen; Duan, Ziqing; Xu, Yi; Garfunkel, Eric; Lu, Yicheng

    2012-07-01

    We report a ZnO-based thin film transistor UV photodetector with a back gate configuration. The thin-film transistor (TFT) aspect ratio W/L is 150 μm/5 μm and has a current on-off ratio of 1010. The detector shows UV-visible rejection ratio of 104 and cut-off wavelength of 376 nm. The device has low dark current of 5 × 10-14 A. The persistent photoconductivity is suppressed through oxygen plasma treatment of the channel surface which significantly reduces the density of oxygen vacancy confirmed by XPS measurements. The proper gate bias-control further reduces recovery time. The UV-TFT configuration is particularly suitable for making large-area imaging arrays.

  16. High-performance flexible thin-film transistors exfoliated from bulk wafer.

    PubMed

    Zhai, Yujia; Mathew, Leo; Rao, Rajesh; Xu, Dewei; Banerjee, Sanjay K

    2012-11-14

    Mechanically flexible integrated circuits (ICs) have gained increasing attention in recent years with emerging markets in portable electronics. Although a number of thin-film-transistor (TFT) IC solutions have been reported, challenges still remain for the fabrication of inexpensive, high-performance flexible devices. We report a simple and straightforward solution: mechanically exfoliating a thin Si film containing ICs. Transistors and circuits can be prefabricated on bulk silicon wafer with the conventional complementary metal-oxide-semiconductor (CMOS) process flow without additional temperature or process limitations. The short channel MOSFETs exhibit similar electrical performance before and after exfoliation. This exfoliation process also provides a fast and economical approach to producing thinned silicon wafers, which is a key enabler for three-dimensional (3D) silicon integration based on Through Silicon Vias (TSVs).

  17. Recent progress in high-mobility thin-film transistors based on multilayer 2D materials

    NASA Astrophysics Data System (ADS)

    Hong, Young Ki; Liu, Na; Yin, Demin; Hong, Seongin; Kim, Dong Hak; Kim, Sunkook; Choi, Woong; Yoon, Youngki

    2017-04-01

    Two-dimensional (2D) layered semiconductors are emerging as promising candidates for next-generation thin-film electronics because of their high mobility, relatively large bandgap, low-power switching, and the availability of large-area growth methods. Thin-film transistors (TFTs) based on multilayer transition metal dichalcogenides or black phosphorus offer unique opportunities for next-generation electronic and optoelectronic devices. Here, we review recent progress in high-mobility transistors based on multilayer 2D semiconductors. We describe the theoretical background on characterizing methods of TFT performance and material properties, followed by their applications in flexible, transparent, and optoelectronic devices. Finally, we highlight some of the methods used in metal-semiconductor contacts, hybrid structures, heterostructures, and chemical doping to improve device performance.

  18. Process Condition Considered Preparation and Characterization of Plasma Polymerized Methyl Methacrylate Thin Films for Organic Thin Film Transistor Application

    NASA Astrophysics Data System (ADS)

    Lee, Se-Hyun; Lee, Boong-Joo; Lim, Young-Taek; Lim, Jae-Sung; Lee, Sunwoo; Ochiai, Shizuyasu; Yi, Jun-Sin; Shin, Paik-Kyun

    2012-02-01

    Plasma polymerized methyl methaclylate (ppMMA) thin films were prepared with various process conditions such as inductively coupled plasma (ICP) power, substrate bias power, working pressure, substrate heating temperature, substrate position, and monomer flow rate. Thickness, surface morphology, dielectric constant, and leakage current of the ppMMA thin films were investigated for application to organic thin film transistor as gate dielectric. Deposition rate of over 8.6 nm/min, dielectric constant of 3.4, and leakage current density of 8.9 ×10-9 A/cm-2 at electric field of 1 MV/cm were achieved for the ppMMA thin film prepared at the optimized process condition: plasma power of RF 100 W; Ar flow rate of 20 sccm; working pressure of 5 mTorr; substrate temperature of 100 °C substrate position of 100 mm. The ppMMA thin film was then applied to pentacene based organic thin film transistor (OTFT) device fabrication. The OTFT device with 80 nm thick pentacene semiconductor layer showed field effect mobility of 0.144 cm2 V-1 s-1 and threshold voltage of -1.72 V.

  19. Full-Swing InGaZnO Thin Film Transistor Inverter with Depletion Load

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Min; Cho, In-Tak; Lee, Jong-Ho; Kwon, Hyuck-In

    2009-10-01

    A high performance amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) inverter is implemented using the enhancement mode driver and the depletion mode load. The threshold voltage of the TFT is easily controlled by adjusting the active layer thickness in a-IGZO TFTs. The proposed inverter shows much improved switching characteristics including higher voltage gain, wider swing range, and higher noise margins compared to the conventional inverter with an enhancement load.

  20. Fabrication of Organic Thin Film Transistors Using Layer-By-Layer Assembly (Preprint)

    DTIC Science & Technology

    2007-03-01

    thin-film transistors (TFTs) have received considerable attention as a low- cost, light-weight, flexible alternative to traditional amorphous silicon ...as the cathode at which the oxidized PEDOT + molecules are reduced back to their neutral species (i.e. de-doped). The protons generated at the...bias results in a faster depletion rate and a larger Ion/off ratio due to a larger driving force for ion migration and PEDOT de-doping. Similarly

  1. Carbon nanotube network thin-film transistors on flexible/stretchable substrates

    DOEpatents

    Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali

    2016-03-29

    This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.

  2. Persistent photoconductivity in Hf-In-Zn-O thin film transistors

    NASA Astrophysics Data System (ADS)

    Ghaffarzadeh, Khashayar; Nathan, Arokia; Robertson, John; Kim, Sangwook; Jeon, Sanghun; Kim, Changjung; Chung, U.-In; Lee, Je-Hun

    2010-10-01

    Passivated Hf-In-Zn-O (HIZO) thin film transistors suffer from a negative threshold voltage shift under visible light stress due to persistent photoconductivity (PPC). Ionization of oxygen vacancy sites is identified as the origin of the PPC following observations of its temperature- and wavelength-dependence. This is further corroborated by the photoluminescence spectrum of the HIZO. We also show that the gate voltage can control the decay of PPC in the dark, giving rise to a memory action.

  3. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOEpatents

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

    2003-11-04

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  4. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    DOEpatents

    Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickbold, Paul

    2006-09-26

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  5. Method of fabrication of display pixels driven by silicon thin film transistors

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.

    1999-01-01

    Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

  6. Al/CdSe/GaSe/C resonant tunneling thin film transistors

    NASA Astrophysics Data System (ADS)

    Qasrawi, A. F.; Kayed, T. S.; Elsayed, Khaled A.

    2017-02-01

    An Al/CdSe/GaSe/C thin film transistor device was prepared by the physical vapor deposition technique at a vacuum pressure of 10-5 mbar. The x-ray diffraction measurements demonstrated the polycrystalline nature of the surface of the device. The dc current-voltage characteristics recorded for the Al/CdSe/C and Al/CdSe/GaSe/C channels displayed a resonant tunneling diode features during the forward and reverse voltage biasing, respectively. In addition, the switching current ratio of the Al/CdSe/C increased from 18.6 to 9.62×103 as a result of the GaSe deposition on the CdSe surface. Moreover, the alternating electrical signal analyses in the frequency range of 1.0 MHz to 1.8 GHz, showed some remarkable properties of negative resistance and negative capacitance spectra of the Al/CdSe/GaSe/C thin film transistors. Two distinct resonance-antiresonance phenomena in the resistance spectra and one in the capacitance spectra were observed at 0.53, 1.04 and 1.40 GHz for the Al/CdSe/C channel, respectively. The respective resonating peak positions of the resistance spectra shift to 0.38 and 0.95 GHz when GaSe is interfaced with CdSe. These features of the thin film transistors are promising for use in high quality microwave filtering circuits and also for use as ultrafast switches.

  7. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Gao, Xu; Lin, Meng-Fang; Mao, Bao-Hua; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Nabatame, Toshihide; Liu, Zhi; Tsukagoshi, Kazuhito; Wang, Sui-Dong

    2017-01-01

    Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O2/air. The device with a thick IGZO layer shows similar electron mobility in O2/air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O2/air due to the electron transfer to adsorbed gas molecules. The O2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results.

  8. A magnetosensitive thin-film silicon Hall-type field-effect transistor with operating temperature range expanded up to 350°C

    NASA Astrophysics Data System (ADS)

    Leonov, A. V.; Malykh, A. A.; Mordkovich, V. N.; Pavlyuk, M. I.

    2016-01-01

    We describe a magnetosensitive device consisting of a combination of a thin-film Si transistor with built-in conducting channel (fabricated by the silicon-on-insulator technology) and a Hall-type sensor (HS). The transistor has a double-gate field control system of the metal-insulator-semiconductor-insulator-metal type and operates in the regime of carrier accumulation in the channel at partial depletion of adjacent regions of the Si film. It is established that the device can operate at temperatures up to about 350°C, which is 160-180°C higher than the maximum operating temperature of HSs based on bulk Si crystals and comparable with HSs based on wide-bandgap semiconductors.

  9. Mechanisms for the operation of thin film transistors on ferroelectrics

    SciTech Connect

    Seager, C.H.; McIntyre, D.; Tuttle, B.A.; Evans, J.

    1993-12-31

    The electric field emanating from the surface of a poled ferroelectric can control the conduction properties of an overlaying semiconducting film, this combination of materials can thus serve as a non-destructive readout, non-volatile memory device. Here the authors will describe a variety of experimental studies of these devices designed to probe the physics of their operation. The experimental systems included sputtered, n-type semiconductor (SC) films of In{sub 2}O{sub 3} and ZnO deposited on bulk PLZT ferroelectrics (FE) and thin PZT FE films. Two distinctly different types of device response were measured in this study; in the first, the change in SC film conductance observed in the remanent FE state is in the direction expected from the remanent polarization vector in the ferroelectric. In the second, typically seen in the thin film FE devices, the opposite behavior is observed. They find that these two general cases of behavior, including the observed variations of the SC film conductances and carrier mobilities, can be described by a general model which takes into account not only the FE displacement vector, but also charge injected from the semiconductor into the ferroelectric during biasing of the gate.

  10. Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tsao, S. W.; Chang, T. C.; Huang, S. Y.; Chen, M. C.; Chen, S. C.; Tsai, C. T.; Kuo, Y. J.; Chen, Y. C.; Wu, W. C.

    2010-12-01

    This study investigates the effect of hydrogen incorporation on amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs). The threshold voltage ( Vth) and subthreshold swing ( SS) of hydrogen-incorporated a-IGZO TFTs were improved, and the threshold voltage shift (Δ Vth) in hysteresis loop was also suppressed from 4 V to 2 V. The physical property and chemical composition of a-IGZO films were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. Experimental results show that the hydrogen-induced passivation of the interface trap states between active layer and dielectric is responsible for the improvement of SS and Vth.

  11. Low-temperature Amorphous and Nanocrystalline Silicon Materials and Thin-film Transistors

    NASA Astrophysics Data System (ADS)

    Sazonov, Andrei; Striakhilev, Denis; Nathan, Arokia

    Low-temperature processing and characterization of amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si) materials and devices are reviewed. An overview of silicon-based low-temperature thin-film dielectrics is given in the context of thin-film transistor (TFT) device operation. The low-temperature growth and synthesis of these materials are also presented and compared to conventionally fabricated high-temperature processed devices. The effect of using nc-Si contacts on a-Si:H TFTs and the stability of nc-Si TFTs is reviewed.

  12. In situ preparation, electrical and surface analytical characterization of pentacene thin film transistors.

    PubMed

    Lassnig, R; Striedinger, B; Hollerer, M; Fian, A; Stadlober, B; Winkler, A

    2014-09-21

    The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO2 channel area with carbon through repeated adsorption, dissociation, and desorption of pentacene proved to be very advantageous in the creation of devices with stable and reproducible parameters. We mainly focused on the device properties, such as mobility and threshold voltage, as a function of film morphology and preparation temperature. At 300 K, pentacene displays Stranski-Krastanov growth, whereas at 200 K fine-grained, layer-like film growth takes place, which predominantly influences the threshold voltage. Temperature dependent mobility measurements demonstrate good agreement with the established multiple trapping and release model, which in turn indicates a predominant concentration of shallow traps in the crystal grains and at the oxide-semiconductor interface. Mobility and threshold voltage measurements as a function of coverage reveal that up to four full monolayers contribute to the overall charge transport. A significant influence on the effective mobility also stems from the access resistance at the gold contact-semiconductor interface, which is again strongly influenced by the temperature dependent, characteristic film growth mode.

  13. In situ preparation, electrical and surface analytical characterization of pentacene thin film transistors

    PubMed Central

    Lassnig, R.; Striedinger, B.; Hollerer, M.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    The fabrication of organic thin film transistors with highly reproducible characteristics presents a very challenging task. We have prepared and analyzed model pentacene thin film transistors under ultra-high vacuum conditions, employing surface analytical tools and methods. Intentionally contaminating the gold contacts and SiO2 channel area with carbon through repeated adsorption, dissociation, and desorption of pentacene proved to be very advantageous in the creation of devices with stable and reproducible parameters. We mainly focused on the device properties, such as mobility and threshold voltage, as a function of film morphology and preparation temperature. At 300 K, pentacene displays Stranski-Krastanov growth, whereas at 200 K fine-grained, layer-like film growth takes place, which predominantly influences the threshold voltage. Temperature dependent mobility measurements demonstrate good agreement with the established multiple trapping and release model, which in turn indicates a predominant concentration of shallow traps in the crystal grains and at the oxide-semiconductor interface. Mobility and threshold voltage measurements as a function of coverage reveal that up to four full monolayers contribute to the overall charge transport. A significant influence on the effective mobility also stems from the access resistance at the gold contact-semiconductor interface, which is again strongly influenced by the temperature dependent, characteristic film growth mode. PMID:25814770

  14. Novel Low Temperature Processing for Enhanced Properties of Ion Implanted Thin Films and Amorphous Mixed Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Vemuri, Rajitha

    This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals

  15. Fabrication and characterization of high mobility spin-coated zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Singh, Shaivalini; Chakrabarti, P.

    2012-10-01

    A ZnO based thin film transistor (TFT) with bottom-gate configuration and SiO2 as insulating layer has been fabricated and characterized. The ZnO thin film was prepared by spin coating the sol-gel solution on the p-type Si wafers. The optical and structural properties of ZnO films were investigated using UV measurements and scanning electron microscope (SEM). The result of UV-visible study confirms that the films have a good absorbance in UV region and relatively low absorbance in the visible region. The TFT exhibited an off-current of 2.5×10-7 A. The values of field effect channel mobility and on/off current ratio extracted for the device, measured 11 cm2/V.s and ~102 respectively. The value of threshold voltage was found to be 1.3 V.

  16. High-performance ZnO thin-film transistor fabricated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Oh, Byeong-Yun; Kim, Young-Hwan; Lee, Hee-Jun; Kim, Byoung-Yong; Park, Hong-Gyu; Han, Jin-Woo; Heo, Gi-Seok; Kim, Tae-Won; Kim, Kwang-Young; Seo, Dae-Shik

    2011-08-01

    We report the fabrication and characteristics of a ZnO thin-film transistor (TFT) using a 50 nm thick ZnO film as an active layer on an Al2O3 gate dielectric film deposited by atomic layer deposition. Lowering the deposition temperature allowed the control of the carrier concentration of the active channel layer (ZnO film) in the TFT device. The ZnO TFT fabricated at 110 °C exhibited high-performance TFT characteristics including a saturation field-effect mobility of 11.86 cm2 V-1 s-1, an on-to-off current ratio of 3.09 × 107 and a sub-threshold gate-voltage swing of 0.72 V decade-1.

  17. Nanostructured silicon based thin film transistors processed in the plasma dark region.

    PubMed

    Pereira, L; Aguas, H; Gomes, L; Barquinha, P; Fortunato, E; Martins, R

    2010-04-01

    Nanostructured silicon (na-Si:H) thin films were fabricated using plasma enhanced chemical vapour deposition (PECVD) technique under high silane hydrogen dilution and a discharge frequency of 27 MHz, where the substrate was located in the dark region of the plasma, protected by a grounded metal grid. By not exposing the growth surface directly to the plasma we avoid the silicon growth surface to sustain a high ion bombardment leading to a less defective surface and highly compact films. The intrinsic films grown under these conditions were used to produce the channel region of thin film transistors (TFTs) with a bottom gate staggered configuration, integrating different dielectric layers. The devices produced exhibit a field effect mobility close to 1.84 cm2 V(-1) s(-1), threshold voltage around 2 V, on/off ratio above 10(7) and sub-threshold slope below 0.5 V/decade, depending on the dielectric used.

  18. Critical issues in plasma deposition of microcrystalline silicon for thin film transistors

    NASA Astrophysics Data System (ADS)

    Roca i Cabarrocas, Pere; Djeridane, Yassine; Bui, V. D.; Bonnassieux, Yvan; Abramov, Alexey

    2008-03-01

    After more than 20 years of research and despite improved transport properties with respect to amorphous silicon, microcrystalline silicon thin film transistors (TFTs) are not yet ready for industrial production. We review here the progress made in the understanding of the growth of this material with particular emphasis on industry relevant aspects such as deposition rate and uniformity. We show that the synthesis of silicon nanocrystals in the plasma offers unique advantages with respect to deposition rate and film properties. In particular, this allows the production of films which are similar to polycrystalline thin films produced by furnace and laser crystallization. The growth process is also discussed with respect to TFT design: top gate or bottom gate. Results on bottom gate TFTs meeting all the necessary requirements in terms of mobility, ON/OFF ratio and stability required for AMOLED applications are also reported.

  19. Metal Oxide Thin Film Transistors on Paper Substrate: Fabrication, Characterization, and Printing Process

    NASA Astrophysics Data System (ADS)

    Choi, Nack-Bong

    Flexible electronics is an emerging next-generation technology that offers many advantages such as light weight, durability, comfort, and flexibility. These unique features enable many new applications such as flexible display, flexible sensors, conformable electronics, and so forth. For decades, a variety of flexible substrates have been demonstrated for the application of flexible electronics. Most of them are plastic films and metal foils so far. For the fundamental device of flexible circuits, thin film transistors (TFTs) using poly silicon, amorphous silicon, metal oxide and organic semiconductor have been successfully demonstrated. Depending on application, low-cost and disposable flexible electronics will be required for convenience. Therefore it is important to study inexpensive substrates and to explore simple processes such as printing technology. In this thesis, paper is introduced as a new possible substrate for flexible electronics due to its low-cost and renewable property, and amorphous indium gallium zinc oxide (a-IGZO) TFTs are realized as the promising device on the paper substrate. The fabrication process and characterization of a-IGZO TFT on the paper substrate are discussed. a-IGZO TFTs using a polymer gate dielectric on the paper substrate demonstrate excellent performances with field effect mobility of ˜20 cm2 V-1 s-1, on/off current ratio of ˜106, and low leakage current, which show the enormous potential for flexible electronics application. In order to complement the n-channel a-IGZO TFTs and then enable complementary metal-oxide semiconductor (CMOS) circuit architectures, cuprous oxide is studied as a candidate material of p-channel oxide TFTs. In this thesis, a printing process is investigated as an alternative method for the fabrication of low-cost and disposable electronics. Among several printing methods, a modified offset roll printing that prints high resolution patterns is presented. A new method to fabricate a high resolution

  20. Electrochemical characterization of thin film electrodes toward developing a DNA transistor.

    PubMed

    Harrer, Stefan; Ahmed, Shafaat; Afzali-Ardakani, Ali; Luan, Binquan; Waggoner, Philip S; Shao, Xiaoyan; Peng, Hongbo; Goldfarb, Dario L; Martyna, Glenn J; Rossnagel, Stephen M; Deligianni, Lili; Stolovitzky, Gustavo A

    2010-12-21

    The DNA-Transistor is a device designed to control the translocation of single-stranded DNA through a solid-state nanopore. Functionality of the device is enabled by three electrodes exposed to the DNA-containing electrolyte solution within the pore and the application of a dynamic electrostatic potential well between the electrodes to temporarily trap a DNA molecule. Optimizing the surface chemistry and electrochemical behavior of the device is a necessary (but by no means sufficient) step toward the development of a functional device. In particular, effects to be eliminated are (i) electrochemically induced surface alteration through corrosion or reduction of the electrode surface and (ii) formation of hydrogen or oxygen bubbles inside the pore through water decomposition. Even though our motivation is to solve problems encountered in DNA transistor technology, in this paper we report on generic surface chemistry results. We investigated a variety of electrode-electrolyte-solvent systems with respect to their capability of suppressing water decomposition and maintaining surface integrity. We employed cyclic voltammetry and long-term amperometry as electrochemical test schemes, X-ray photoelectron spectroscopy, atomic force microscopy, and scanning, as well as transmission electron microscopy as analytical tools. Characterized electrode materials include thin films of Ru, Pt, nonstoichiometric TiN, and nonstoichiometric TiN carrying a custom-developed titanium oxide layer, as well as custom-oxidized nonstoichiometric TiN coated with a monolayer of hexadecylphosphonic acid (HDPA). We used distilled water as well as aqueous solutions of poly(ethylene glycol) (PEG-300) and glycerol as solvents. One millimolar KCl was employed as electrolyte in all solutions. Our results show that the HDPA-coated custom-developed titanium oxide layer effectively passivates the underlying TiN layer, eliminating any surface alterations through corrosion or reduction within a voltage

  1. Analysis of carrier transport in quaterrylene thin film transistors formed by ultraslow vacuum deposition

    NASA Astrophysics Data System (ADS)

    Hayakawa, Ryoma; Petit, Matthieu; Chikyow, Toyohiro; Wakayama, Yutaka

    2008-07-01

    Quaterrylene field-effect transistors (FETs) with top-contact Au electrodes were formed on a SiO2 (200nm )/p-Si (001) substrate by an ultraslow vacuum deposition technique, and their carrier transport was investigated. The quaterrylene FETs showed typical p-channel transistor behavior. The dependence of carrier mobility on grain size, film thickness, and temperature was examined to gain insight into the transport mechanism. Carrier mobility increased with grain size, showing that carrier transport was limited by grain boundaries. Temperature dependence in the range from 300to60K was divided into two distinct behaviors. Above 210K, carrier mobility showed thermally activated behavior, with energies of 100-150meV required to overcome the potential barriers at grain boundaries. In contrast, the conduction mechanism became tunnel-transfer-like below 210K. In the low temperature range, tunnel transfer through potential barriers at grain boundaries predominated over the thermally activated type. The change in carrier mobility was correlated with film thickness. Carrier mobility rose sharply with increasing thickness in the two-dimensional (2D) growth region, followed by saturation at 3 or 4 ML, where the growth process changed from 2D to three-dimensional mode. This result reveals that the first few layers of 2D growth work as an effective transistor channel. Enhancement in 2D growth in the vertical direction is crucial to improving carrier transport.

  2. Scanned Probe Characterization of Atmospheric Effects on diF TESADT Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Bougher, Cortney; Huston, Shawn; Ward, Jeremy; Obaid, Abdul; Loth, Marsha; Anthony, John; Jurchescu, Oana; Conrad, Brad

    2014-03-01

    Single crystal organic semiconductors have been shown to exhibit carrier mobilities comparable to the silicon currently used in photovoltaics. However, during solution deposition of common organic semiconducting materials the resultant thin-film is often polycrystalline. Device performance and electrical properties of organic thin-film transistors are highly dependent on crystal structure and molecular packing. In polycrystalline thin-films, boundary regions between crystal grains can affect the overall performance of devices, as crystal structure and packing may differ from that of the surrounding crystal regions. These boundary regions may also serve as defect sites, allowing environmental factors, such as oxygen content and humidity, to alter local charge transport through devices. We utilize Kelvin Probe Force Microscopy (KPFM) to characterize how grain boundaries alter local conductivity and device performance as a function of doping in 2,8-difluoro-5,11-triethysilylethynyl anthradithiophene (diF TESADT) thin-film transistor surfaces. Device voltage drops at grain boundaries are characterized as a function of both atmospheric dopants and transition time between dopants. NC Space Grant Consortium, Appalachian State University Office of Student Research, Ralph E Powe Junior Faculty Enhancement Award.

  3. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    SciTech Connect

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong; Szulczewski, Greg; Li, Dawen

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystal orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.

  4. Rapid curing of solution-processed zinc oxide films by pulse-light annealing for thin-film transistor applications

    NASA Astrophysics Data System (ADS)

    Kim, Dong Wook; Park, Jaehoon; Hwang, Jaeeun; Kim, Hong Doo; Ryu, Jin Hwa; Lee, Kang Bok; Baek, Kyu Ha; Do, Lee-Mi; Choi, Jong Sun

    2015-01-01

    In this study, a pulse-light annealing method is proposed for the rapid fabrication of solution-processed zinc oxide (ZnO) thinfilm transistors (TFTs). Transistors that were fabricated by the pulse-light annealing method, with the annealing being carried out at 90℃ for 15 s, exhibited a mobility of 0.05 cm2/Vs and an on/off current ratio of 106. Such electrical properties are quite close to those of devices that are thermally annealed at 165℃ for 40 min. X-ray photoelectron spectroscopy analysis of ZnO films showed that the activation energy required to form a Zn-O bond is entirely supplied within 15 s of pulse-light exposure. We conclude that the pulse-light annealing method is viable for rapidly curing solution-processable oxide semiconductors for TFT applications.

  5. Organic ferroelectric gate field-effect transistor memory using high-mobility rubrene thin film

    NASA Astrophysics Data System (ADS)

    Kanashima, Takeshi; Katsura, Yuu; Okuyama, Masanori

    2014-01-01

    An organic ferroelectric gate field-effect transistor (FET) memory has been fabricated using an organic semiconductor of rubrene thin film with a high mobility and a gate insulating layer of poly(vinylidene fluoride-tetrafluoroethylene) [P(VDF-TeFE)] thin film. A rubrene thin-film sheet was grown by physical vapor transport (PVT), and placed onto a spin-coated P(VDF-TeFE) thin-film layer, and Au source and drain electrodes were formed on this rubrene thin film. A hysteresis loop of the drain current-gate voltage (ID-VG) characteristic has been clearly observed in the ferroelectric gate FET, and is caused by the ferroelectricity. The maximum drain current is 1.5 × 10-6 A, which is about two orders of magnitude larger than that of the P(VDF-TeFE) gate FET using a pentacene thin film. Moreover, the mobility of this organic ferroelectric gate FET using rubrene thin film is 0.71 cm2 V-1 s-1, which is 35 times larger than that of the FET with pentacene thin film.

  6. Conduction mechanism in amorphous InGaZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Bhoolokam, Ajay; Nag, Manoj; Steudel, Soeren; Genoe, Jan; Gelinck, Gerwin; Kadashchuk, Andrey; Groeseneken, Guido; Heremans, Paul

    2016-01-01

    We validate a model which is a combination of multiple trapping and release and percolation model for describing the conduction mechanism in amorphous indium gallium zinc oxide (a-IGZO) thin film transistors (TFT). We show that using just multiple trapping and release or percolation model is insufficient to explain TFT behavior as a function of temperature. We also show the intrinsic mobility is dependent on temperature due to scattering by ionic impurities or lattice. In solving the Poisson equation to find the surface potential and back potential as a function of gate voltage, we explicitly allow for the back surface to be floating, as is the case for a-IGZO transistors. The parameters for gap states, percolation barriers and intrinsic mobility at room temperature that we extract with this comprehensive model are in good agreement with those extracted in literature with partially-complete models.

  7. Organic Thin-Film Transistors Fabricated on Plastic Substrates with a Polymeric Gate Dielectrics

    NASA Astrophysics Data System (ADS)

    Lee, Jung Hun; Kim, Seong Hyun; Kim, Gi Heon; Lim, Sang Chul; Jang, Jin; Zyung, Taehyoung

    2003-05-01

    An organic thin-film transistor using pentacene as an active layer was fabricated on plastic substrate. An organic layer such as thermal curable polymer (JSS-362, Japan Synthetic Rubber (JSR)) was used as the gate dielectrics. The JSS-362 may act not only as a dielectric layer but also as a surface smoothing layer. From the electrical measurement, typical ID-VD characteristics of the field-effect transistor (FET) were observed. The field effect mobility μ was calculated to be 0.12 cm2\\cdotV-1\\cdots-1, while the threshold voltage VT was approximately -15 V. The on/off ratio was above 104 when VG was scanned from -75 V to +0 V.

  8. Memory operation devices based on light-illumination ambipolar carbon-nanotube thin-film-transistors

    SciTech Connect

    Aïssa, B.; Nedil, M.; Kroeger, J.; Haddad, T.; Rosei, F.

    2015-09-28

    We report the memory operation behavior of a light illumination ambipolar single-walled carbon nanotube thin film field-effect transistors devices. In addition to the high electronic-performance, such an on/off transistor-switching ratio of 10{sup 4} and an on-conductance of 18 μS, these memory devices have shown a high retention time of both hole and electron-trapping modes, reaching 2.8 × 10{sup 4} s at room temperature. The memory characteristics confirm that light illumination and electrical field can act as an independent programming/erasing operation method. This could be a fundamental step toward achieving high performance and stable operating nanoelectronic memory devices.

  9. Patterned oxide semiconductor by electrohydrodynamic jet printing for transparent thin film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Sangkyu; Kim, Jeonghyun; Choi, Junghyun; Park, Hyunjung; Ha, Jaehwan; Kim, Yongkwan; Rogers, John A.; Paik, Ungyu

    2012-03-01

    This paper explores transport in transparent thin film transistors formed using a liquid precursor to indium zinc oxide, delivered to target substrates by electrohydrodynamic jet (e-jet) printing. Under optimized conditions, we observe field effect mobilities as high as 32 cm2V-1s-1, with on/off current ratios of 103 and threshold voltages of 2 V. These results provide evidence that material manipulated in fine-jet, electric field induced liquid flows can yield semiconductor devices without any adverse effects of residual charge or unintentional doping. E-jet printing methods provide levels of resolution (˜1.5 μm) that provide a path to printed transistors with small critical dimensions.

  10. Transparent ambipolar organic thin film transistors based on multilayer transparent source-drain electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Hu, Yongsheng; Lin, Jie; Li, Yantao; Liu, Xingyuan

    2016-08-01

    A fabrication method for transparent ambipolar organic thin film transistors with transparent Sb2O3/Ag/Sb2O3 (SAS) source and drain electrodes has been developed. A pentacene/N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic di-imide (PTCDI-C13) bilayer heterojunction is used as the active semiconductor. The electrodes are deposited by room temperature electron beam evaporation. The devices are fabricated without damaging the active layers. The SAS electrodes have high transmittance (82.5%) and low sheet resistance (8 Ω/sq). High performance devices with hole and electron mobilities of 0.3 cm2/V s and 0.027 cm2/V s, respectively, and average visible range transmittance of 72% were obtained. These transistors have potential for transparent logic integrated circuit applications.

  11. Design of Novel Organic Thin Film Transistors for Wearable Electronics

    DTIC Science & Technology

    2012-08-01

    OF ANATASE HIGH DIELECTRIC CONSTANT TITANIA 12 5.0 NANOCOMPOSITE LEAD SULPHIDE EMBEDDED IN PHTHALOCYANINE MATRIX 13 6.0 SCOPE OF...public release; distribution is unlimited. 12 4.0 CATHODIC ELECTRODEPOSITION OF ANATASE HIGH DİELECTRIC CONSTANT TITANIA Polycrystalline... titania (TiO2) films were prepared on the indium tin oxide glass substrate on high temperature annealing of TiO2 hydrates electrodeposited from the

  12. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    PubMed Central

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-01-01

    The use of indium–gallium–zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic–inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic–inorganic hybrid devices. PMID:26677773

  13. MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics

    DOE PAGES

    Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; ...

    2016-10-10

    Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. But, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. We designed devices with unique ring-type structures andmore » use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.« less

  14. The effect of asymmetrical electrode form after negative bias illuminated stress in amorphous IGZO thin film transistors

    NASA Astrophysics Data System (ADS)

    Su, Wan-Ching; Chang, Ting-Chang; Liao, Po-Yung; Chen, Yu-Jia; Chen, Bo-Wei; Hsieh, Tien-Yu; Yang, Chung-I.; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan; Chang, Kuan-Chang; Tsai, Tsung-Ming

    2017-03-01

    This paper investigates the degradation behavior of InGaZnO thin film transistors (TFTs) under negative bias illumination stress (NBIS). TFT devices with two different source and drain layouts were exanimated: one having a parallel format electrode and the other with UI format electrode. UI means that source/drain electrodes shapes is defined as a forked-shaped structure. The I-V curve of the parallel electrode exhibited a symmetric degradation under forward and reverse sweeping in the saturation region after 1000 s NBIS. In contrast, the I-V curve of the UI electrode structure under similar conditions was asymmetric. The UI electrode structure also shows a stretch-out phenomenon in its C-V measurement. Finally, this work utilizes the ISE-Technology Computer Aided Design (ISE-TCAD) system simulations, which simulate the electron field and IV curves, to analyze the mechanisms dominating the parallel and UI device degradation behaviors.

  15. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    NASA Astrophysics Data System (ADS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-01

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  16. MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics

    PubMed Central

    Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng

    2016-01-01

    Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass. PMID:27721484

  17. MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics

    SciTech Connect

    Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng

    2016-10-10

    Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. But, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. We designed devices with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.

  18. MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics

    NASA Astrophysics Data System (ADS)

    Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng

    2016-10-01

    Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.

  19. MgZnO High Voltage Thin Film Transistors on Glass for Inverters in Building Integrated Photovoltaics.

    PubMed

    Hong, Wen-Chiang; Ku, Chieh-Jen; Li, Rui; Abbaslou, Siamak; Reyes, Pavel; Wang, Szu-Ying; Li, Guangyuan; Lu, Ming; Sheng, Kuang; Lu, Yicheng

    2016-10-10

    Building integrated photovoltaics (BIPV) have attracted considerable interests because of its aesthetically attractive appearance and overall low cost. In BIPV, system integration on a glass substrate like windows is essential to cover a large area of a building with low cost. However, the conventional high voltage devices in inverters have to be built on the specially selected single crystal substrates, limiting its application for large area electronic systems, such as the BIPV. We demonstrate a Magnesium Zinc Oxide (MZO) based high voltage thin film transistor (HVTFT) built on a transparent glass substrate. The devices are designed with unique ring-type structures and use modulated Mg doping in the channel - gate dielectric interface, resulting in a blocking voltage of over 600 V. In addition to BIPV, the MZO HVTFT based inverter technology also creates new opportunities for emerging self-powered smart glass.

  20. Ultra-Flexible, Invisible Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends

    DTIC Science & Technology

    2015-02-25

    Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends Xinge Yu , Li Zeng , Nanjia Zhou , Peijun Guo , Fengyuan Shi , Donald B...chemical vapor deposition processes. Thus, a key issue for inexpensive large-scale roll-to-roll production is to enable MO TFT manu- facturing with...4. TITLE AND SUBTITLE Ultra-Flexible, ’Invisible’ Thin-Film Transistors Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends 5a. CONTRACT

  1. Noise Characterization of Polycrystalline Silicon Thin Film Transistors for X-ray Imagers Based on Active Pixel Architectures.

    PubMed

    Antonuk, L E; Koniczek, M; McDonald, J; El-Mohri, Y; Zhao, Q; Behravan, M

    2008-01-01

    An examination of the noise of polycrystalline silicon thin film transistors, in the context of flat panel x-ray imager development, is reported. The study was conducted in the spirit of exploring how the 1/f, shot and thermal noise components of poly-Si TFTs, determined from current noise power spectral density measurements, as well as through calculation, can be used to assist in the development of imagers incorporating pixel amplification circuits based on such transistors.

  2. The Role of the Silicon Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile Technology Platforms

    DTIC Science & Technology

    2011-09-01

    The Role of the Silicon Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile Technology Platforms by Gregory A. Mitchell...Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile Technology Platforms 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...MD 20783-1197 ARL-TN-0459 September 2011 The Role of the Silicon Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile

  3. Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits.

    PubMed

    Sporea, R A; Trainor, M J; Young, N D; Shannon, J M; Silva, S R P

    2014-03-06

    Ultra-large-scale integrated (ULSI) circuits have benefited from successive refinements in device architecture for enormous improvements in speed, power efficiency and areal density. In large-area electronics (LAE), however, the basic building-block, the thin-film field-effect transistor (TFT) has largely remained static. Now, a device concept with fundamentally different operation, the source-gated transistor (SGT) opens the possibility of unprecedented functionality in future low-cost LAE. With its simple structure and operational characteristics of low saturation voltage, stability under electrical stress and large intrinsic gain, the SGT is ideally suited for LAE analog applications. Here, we show using measurements on polysilicon devices that these characteristics lead to substantial improvements in gain, noise margin, power-delay product and overall circuit robustness in digital SGT-based designs. These findings have far-reaching consequences, as LAE will form the technological basis for a variety of future developments in the biomedical, civil engineering, remote sensing, artificial skin areas, as well as wearable and ubiquitous computing, or lightweight applications for space exploration.

  4. Crystallization behavior of amorphous indium-gallium-zinc-oxide films and its effects on thin-film transistor performance

    NASA Astrophysics Data System (ADS)

    Suko, Ayaka; Jia, JunJun; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Yano, Koki; Shigesato, Yuzo

    2016-03-01

    Amorphous indium-gallium-zinc oxide (a-IGZO) films were deposited by DC magnetron sputtering and post-annealed in air at 300-1000 °C for 1 h to investigate the crystallization behavior in detail. X-ray diffraction, electron beam diffraction, and high-resolution electron microscopy revealed that the IGZO films showed an amorphous structure after post-annealing at 300 °C. At 600 °C, the films started to crystallize from the surface with c-axis preferred orientation. At 700-1000 °C, the films totally crystallized into polycrystalline structures, wherein the grains showed c-axis preferred orientation close to the surface and random orientation inside the films. The current-gate voltage (Id-Vg) characteristics of the IGZO thin-film transistor (TFT) showed that the threshold voltage (Vth) and subthreshold swing decreased markedly after the post-annealing at 300 °C. The TFT using the totally crystallized films also showed the decrease in Vth, whereas the field-effect mobility decreased considerably.

  5. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    SciTech Connect

    Lee, Ching-Ting Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-28

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g{sub m} change, threshold voltage V{sub T} change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  6. Carbon-Incorporated Amorphous Indium Zinc Oxide Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Parthiban, S.; Park, K.; Kim, H.-J.; Yang, S.; Kwon, J.-Y.

    2014-11-01

    We propose the use of amorphous-carbon indium zinc oxide (a-CIZO) as a channel material for thin-film transistor (TFT) fabrication. This study chose a carbon dopant as a carrier suppressor and strong oxygen binder in amorphous-indium zinc oxide (a-IZO) channel material. a-CIZO thin films were deposited using radiofrequency (RF) sputtering and postannealed at 150°C. X-ray diffraction and transmission electron microscopy analysis revealed that the film remained amorphous even after postannealing. The a-CIZO TFT postannealed at 150°C exhibited saturation field-effect mobility of 16.5 cm2 V-1 s-1 and on-off current ratio of ˜4.3 × 107.

  7. Fabrication of Vertical Organic Light-Emitting Transistor Using ZnO Thin Film

    NASA Astrophysics Data System (ADS)

    Yamauchi, Hiroshi; Iizuka, Masaaki; Kudo, Kazuhiro

    2007-04-01

    Organic light-emitting diodes (OLEDs) combined with thin film transistor (TFT) are well suitable elements for low-cost, large-area active matrix displays. On the other hand, zinc oxide (ZnO) is a transparent material and its electrical conductivity is controlled from conductive to insulating by growth conditions. The drain current of ZnO FET is 180 μA. The OLED uses ZnO thin film (Al-doped) for the electron injection layer and is controlled by radio frequency (rf) and direct current (dc) sputtering conditions, such as Al concentration and gas pressure. Al concentration in the ZnO film and deposition rate have strong effects on electron injection. Furthermore, the OLED driven by ZnO FET shows a luminance of 13 cd/m2, a luminance efficiency of 0.7 cd/A, and an on-off ratio of 650.

  8. The effect of thermal annealing on pentacene thin film transistor with micro contact printing.

    PubMed

    Shin, Hong-Sik; Yun, Ho-Jin; Baek, Kyu-Ha; Ham, Yong-Hyun; Park, Kun-Sik; Kim, Dong-Pyo; Lee, Ga-Won; Lee, Hi-Deok; Lee, Kijun; Do, Lee-Mi

    2012-07-01

    We used micro contact printing (micro-CP) to fabricate inverted coplanar pentacene thin film transistors (TFTs) with 1-microm channels. The patterning of micro-scale source/drain electrodes without etch process was successfully achieved using Polydimethylsiloxane (PDMS) elastomer stamp. We used the Ag nano particle ink as an electrode material, and the sheet resistance and surface roughness of the Ag electrodes were effectively reduced with the 2-step thermal annealing on a hotplate, which improved the mobility, the on-off ratio, and the subthreshold slope (SS) of the pentacene TFTs. In addition, the device annealing on a hotplate in a N2 atmosphere for 30 sec can enhance the off-current and the mobility properties of OTFTs without damaging the pentacene thin films and increase the adhesion between pentacene and dielectric layer (SiO2), which was investigated with the pentacene films phase change of the XRD spectrum after device annealing.

  9. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Fengjing; Wang, Jiawei; Wang, Liang; Cai, Xiaoyong; Jiang, Chao; Wang, Gongtang

    2017-03-01

    Perovskite/MoS2 hybrid thin film transistor photodetectors consist of few-layered MoS2 and CH3NH3PbI3 film with various thickness prepared by two-step vacuum deposition. By implementing perovskite CH3NH3PbI3 film onto the MoS2 flake, the perovskite/MoS2 hybrid photodetector exhibited a photoresponsivity of 104 A/W and fast response time of about 40 ms. Improvement of photodetection performance is attributed to the balance between light absorption in the perovskite layer and an effective transfer of photogenerated carriers from perovskite entering the MoS2 channel. This work may provide guidance to develop high-performance hybrid structure optoelectronic devices. Project supported by the National Natural Science Foundation of China (Nos. 11374070, 61327009 214320051) and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09040201).

  10. Fabrication of InGaN thin-film transistors using pulsed sputtering deposition

    PubMed Central

    Itoh, Takeki; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-01-01

    We report the first demonstration of operational InGaN-based thin-film transistors (TFTs) on glass substrates. The key to our success was coating the glass substrate with a thin amorphous layer of HfO2, which enabled a highly c-axis-oriented growth of InGaN films using pulsed sputtering deposition. The electrical characteristics of the thin films were controlled easily by varying their In content. The optimized InGaN-TFTs exhibited a high on/off ratio of ~108, a field-effect mobility of ~22 cm2 V−1 s−1, and a maximum current density of ~30 mA/mm. These results lay the foundation for developing high-performance electronic devices on glass substrates using group III nitride semiconductors. PMID:27383148

  11. Electrical instability of high-mobility zinc oxynitride thin-film transistors upon water exposure

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hwan; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-03-01

    We investigate the effects of water absorption on the electrical performance and stability in high-mobility zinc oxynitride (ZnON) thin-film transistors (TFTs). The ZnON TFT exhibits a smaller field-effect mobility, lower turn-on voltage, and higher subthreshold slope with a deteriorated electrical stability under positive gate bias stresses after being exposed to water. From the Hall measurements, an increase of the electron concentration and a decrease of the Hall mobility are observed in the ZnON thin film after water absorption. The observed phenomena are mainly attributed to the water molecule-induced increase of the defective ZnXNY bond and the oxygen vacancy inside the ZnON thin film based on the x-ray photoelectron spectroscopy analysis.

  12. Electrical instability of high-mobility zinc oxynitride thin-film transistors upon water exposure.

    PubMed

    Kim, Dae-Hwan; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-03-03

    We investigate the effects of water absorption on the electrical performance and stability in high-mobility zinc oxynitride (ZnON) thin-film transistors (TFTs). The ZnON TFT exhibits a smaller field-effect mobility, lower turn-on voltage, and higher subthreshold slope with a deteriorated electrical stability under positive gate bias stresses after being exposed to water. From the Hall measurements, an increase of the electron concentration and a decrease of the Hall mobility are observed in the ZnON thin film after water absorption. The observed phenomena are mainly attributed to the water molecule-induced increase of the defective ZnXNY bond and the oxygen vacancy inside the ZnON thin film based on the x-ray photoelectron spectroscopy analysis.

  13. Fabrication of InGaN thin-film transistors using pulsed sputtering deposition

    NASA Astrophysics Data System (ADS)

    Itoh, Takeki; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-07-01

    We report the first demonstration of operational InGaN-based thin-film transistors (TFTs) on glass substrates. The key to our success was coating the glass substrate with a thin amorphous layer of HfO2, which enabled a highly c-axis-oriented growth of InGaN films using pulsed sputtering deposition. The electrical characteristics of the thin films were controlled easily by varying their In content. The optimized InGaN-TFTs exhibited a high on/off ratio of ~108, a field-effect mobility of ~22 cm2 V‑1 s‑1, and a maximum current density of ~30 mA/mm. These results lay the foundation for developing high-performance electronic devices on glass substrates using group III nitride semiconductors.

  14. Suppression of excess oxygen for environmentally stable amorphous In-Si-O thin-film transistors

    SciTech Connect

    Aikawa, Shinya E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Kizu, Takio; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Nabatame, Toshihide

    2015-05-11

    We discuss the environmental instability of amorphous indium oxide (InO{sub x})-based thin-film transistors (TFTs) in terms of the excess oxygen in the semiconductor films. A comparison between amorphous InO{sub x} doped with low and high concentrations of oxygen binder (SiO{sub 2}) showed that out-diffusion of oxygen molecules causes drastic changes in the film conductivity and TFT turn-on voltages. Incorporation of sufficient SiO{sub 2} could suppress fluctuations in excess oxygen because of the high oxygen bond-dissociation energy and low Gibbs free energy. Consequently, the TFT operation became rather stable. The results would be useful for the design of reliable oxide TFTs with stable electrical properties.

  15. Thin film transistor based on TiOx prepared by DC magnetron sputtering.

    PubMed

    Chung, Sung Mook; Shin, Jae-Heon; Hong, Chan-Hwa; Cheong, Woo-Seok

    2012-07-01

    This paper reports on the thin film transistor (TFT) based on TiOx prepared by direct current (DC) magnetron sputtering for the application of n-type channel transparent TFTs. A ceramic TiOx target was prepared for the sputtering of the TiO2 films. The structural, optical, and electrical properties of the TiO2 films were investigated after their heat treatment. It is observed from XRD measurement that the TiO2 films show anatase structure having (101), (004), and (105) planes after heat treatment. The anatase-structure TiO2 films show a band-gap energy of approximately 3.20 eV and a transmittance of approximately 91% (@550 nm). The bottom-gate TFTs fabricated with the TiO2 film as an n-type channel layer. These devices exhibit the on-off ratio, the field-effect mobility, and the threshold voltage of about 10(4), 0.002 cm2/Vs, and 6 V, respectively. These results indicate the possibility of applying TiO2 films depositied by DC magnetron sputtering to TiO2-based opto-electronic devices.

  16. High Performance and Highly Reliable ZnO Thin Film Transistor Fabricated by Atomic Layer Deposition for Next Generation Displays

    DTIC Science & Technology

    2011-08-19

    zinc oxide ( ZnO ) thin film as an active channel layer in TFT has become of great interest owing to their specific...630-0192 Japan Phone: +81-743-72-6060 Fax: +81-743-72-6069 E-mail: uraoka@ms.naist.jp Keywords: zinc oxide , thin film transistors , atomic layer...deposition Symposium topic: Transparent Semiconductors Oxides [Abstract] In this study, we fabricated TFTs using ZnO thin film as the

  17. Analysis of stability improvement in ZnO thin film transistor with dual-gate structure under negative bias stress

    NASA Astrophysics Data System (ADS)

    Yun, Ho-Jin; Kim, Young-Su; Jeong, Kwang-Seok; Kim, Yu-Mi; Yang, Seung-dong; Lee, Hi-Deok; Lee, Ga-Won

    2014-01-01

    In this study, we fabricated dual-gate zinc oxide thin film transistors (ZnO TFTs) without additional processes and analyzed their stability characteristics under a negative gate bias stress (NBS) by comparison with conventional bottom-gate structures. The dual-gate device shows superior electrical parameters, such as subthreshold swing (SS) and on/off current ratio. NBS of VGS = -20 V with VDS = 0 was applied, resulting in a negative threshold voltage (Vth) shift. After applying stress for 1000 s, the Vth shift is 0.60 V in a dual-gate ZnO TFT, while the Vth shift is 2.52 V in a bottom-gate ZnO TFT. The stress immunity of the dual-gate device is caused by the change in field distribution in the ZnO channel by adding another gate as the technology computer aided design (TCAD) simulation shows. Additionally, in flicker noise analysis, a lower noise level with a different mechanism is observed in the dual-gate structure. This can be explained by the top side of the ZnO film having a larger crystal and fewer grain boundaries than the bottom side, which is revealed by the enhanced SS and XRD results. Therefore, the improved stability of the dual-gate ZnO TFT is greatly related to the E-field cancellation effect and crystal quality of the ZnO film.

  18. Critical invisible defect detection system of thin film transistor panels using Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Park, Yonmook; Heo, Keun

    2016-07-01

    In this paper, a novel method that can perform measurements of the contact potential difference (CPD) between a tip and a thin film transistor (TFT) panel using the Kelvin probe force microscopy (KPFM) is proposed for inspection of critical invisible defects on TFT panels. In this application, the surface potential of a TFT panel is inferred from the electrostatic interaction force between a tip and a TFT panel induced by the electric field. The experimental results are given to illustrate that the KPFM provides a novel and feasible way to detect the most critical invisible defects on TFT panels.

  19. Dynamic control of THz waves through thin-film transistor metamaterials

    NASA Astrophysics Data System (ADS)

    Ren, Fang-Fang; Xu, Wei-Zong; Lu, Hai; Ye, Jiandong; Tan, Hark Hoe; Jagadish, Chennupati

    2015-12-01

    We propose a hybrid metamaterial with embedded amorphous oxide thin-film transistor (TFT) arrays, which embraces the advantages of energy saving, low cost and high yields for tunable amplitude modulation in terahertz (THz) regime. The properties of this active metamaterial system are numerically investigated based on full-wave techniques and multipole theory. The calculation results attribute the modulation to a change in the damping rate of an electric dipoletype resonance mode caused by the increased conductivity of the transparent oxide layer. Such a device, expanding the horizon of oxide electronics into metamaterials, opens up many fascinating prospects for producing stable, uniform, and low-cost THz components.

  20. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor.

    PubMed

    Nomura, Kenji; Ohta, Hiromichi; Ueda, Kazushige; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo

    2003-05-23

    We report the fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator. The device exhibits an on-to-off current ratio of approximately 106 and a field-effect mobility of approximately 80 square centimeters per volt per second at room temperature, with operation insensitive to visible light irradiation. The result provides a step toward the realization of transparent electronics for next-generation optoelectronics.

  1. Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor

    NASA Astrophysics Data System (ADS)

    Nomura, Kenji; Ohta, Hiromichi; Ueda, Kazushige; Kamiya, Toshio; Hirano, Masahiro; Hosono, Hideo

    2003-05-01

    We report the fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator. The device exhibits an on-to-off current ratio of ~106 and a field-effect mobility of ~80 square centimeters per volt per second at room temperature, with operation insensitive to visible light irradiation. The result provides a step toward the realization of transparent electronics for next-generation optoelectronics.

  2. Charge pumping method for photosensor application by using amorphous indium-zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Po-Tsun; Chou, Yi-Teh; Teng, Li-Feng

    2009-06-01

    The study investigated the photoreaction behavior of amorphous indium-zinc oxide thin film transistor (a-IZO TFT), which was thought to be insensitive to visible light. The obvious threshold voltage shift was observed after light illumination, and it exhibited slow recovery while returning to initial status. The photoreaction mechanism is well explained by the dynamic equilibrium of charge exchange reaction between O2(g) and O2- in a-IZO layer. A charge pumping technique is used to confirm the mechanism and accelerate recoverability. Using knowledge of photoreaction behavior, an operation scheme of photosensing elements consist of a-IZO TFT is also demonstrated in this work.

  3. Oxide Thin-Film Transistors Fabricated Using Biodegradable Gate Dielectric Layer of Chicken Albumen

    NASA Astrophysics Data System (ADS)

    Jeon, Da-Bin; Bak, Jun-Yong; Yoon, Sung-Min

    2013-12-01

    An oxide thin-film transistor (TFT) using chicken albumen as gate dielectric on paper substrate was demonstrated. Chicken albumen, which was directly extracted from chicken egg white, was deposited as gate dielectric layer. An In-Ga-Zn-O was chosen as an active channel. The TFT feasibilities were successfully confirmed, in which channel mobility and subthreshold slope of the TFT were 6.48 cm2 V-1 s-1 and 1.28 V/s, respectively. This is the first report on the device configuration combining the biodegradable gate insulator and oxide semiconducting channel.

  4. Electric field modulation of thermopower for transparent amorphous oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Koide, Hirotaka; Nagao, Yuki; Koumoto, Kunihito; Takasaki, Yuka; Umemura, Tomonari; Kato, Takeharu; Ikuhara, Yuichi; Ohta, Hiromichi

    2010-11-01

    To clarify the electronic density of states (DOS) around the conduction band bottom for state of the art transparent amorphous oxide semiconductors (TAOSs), InGaZnO4 and In2MgO4, we fabricated TAOS-based transparent thin film transistors (TTFTs) and measured their gate voltage dependence of thermopower (S). TAOS-based TTFTs exhibit an unusual S behavior. The |S|-value abruptly increases but then gradually decreases as Vg increases, clearly suggesting the antiparabolic shaped DOS is hybridized with the original parabolic shaped DOS around the conduction band bottom.

  5. Electrical stress in CdS thin film transistors using HfO2 gate dielectric

    NASA Astrophysics Data System (ADS)

    García, R.; Mejia, I.; Molinar-Solis, J. E.; Salas-Villasenor, A. L.; Morales, A.; García, B.; Quevedo-Lopez, M. A.; Alemán, M.

    2013-05-01

    During thin film transistor (TFT) operation, gate dielectric is under a bias stress condition. In this work, bias stress effect for CdS TFT using HfO2 as gate dielectric is analyzed. Threshold voltage, Ion/Ioff ratio, and subthreshold slope were studied in order to understand changes produced at the dielectric semiconductor interface. We observed that threshold voltage shift is related with negative charge trapping in the dielectric/semiconductor interface and for this phenomenon we propose a trapping charge model. Finally, the TFT output characteristic was modeled considering a shift in the threshold voltage for each gate voltage curve.

  6. Self-aligned imprint lithography for top-gate amorphous silicon thin-film transistor fabrication

    NASA Astrophysics Data System (ADS)

    Lausecker, E.; Huang, Y.; Fromherz, T.; Sturm, J. C.; Wagner, S.

    2010-06-01

    We developed self-aligned imprint lithography (SAIL) for top-gate amorphous silicon (a-Si) thin-film transistors (TFTs). Our SAIL process enables a device pattern definition in a single imprint step that uses a three-level mold. The various levels of the mold are defined by a stepwise opening of a chromium hardmask and subsequent dry-etching. For TFT fabrication we imprint, and consecutively etch the imprint resist levels and device layers. The imprinted top-gate a-Si TFTs have nickel silicide source/drain self-aligned to the gate with mobilities of ˜0.4 cm2/V s.

  7. Dithienocoronenediimide-based copolymers as novel ambipolar semiconductors for organic thin-film transistors.

    PubMed

    Usta, Hakan; Newman, Christopher; Chen, Zhihua; Facchetti, Antonio

    2012-07-17

    A new class of ambipolar donor-acceptor π-conjugated polymers based on a dithienocoronenediimide core is presented. Solution-processed top-gate/bottom-contact thin film transistors (TFTs) exhibit electron and hole mobilities of up to 0.30 cm(2)/V·s and 0.04 cm(2)/V·s, respectively, which are the highest reported to date for an ambipolar polymer in ambient conditions. The polymers presented here are the first examples of coronenediimide-based semiconductors showing high organic TFT performances.

  8. Determination of the surface potential in thin-film transistors from C{endash}V measurements

    SciTech Connect

    Migliorato, P.; Tam, S. W.-B.; Lui, O. K. B.; Shimoda, T.

    2001-06-01

    In this article we present a method for the determination of the gate voltage versus surface potential (V{sub GS}{minus}{psi}{sub S}) relationship in thin-film transistors (TFTs), from low frequency capacitance{endash}voltage (C{endash}V) characteristics. This information is very important for device design, process characterization, and modeling of TFTs and provides the basis for extracting the gap density of states. The accuracy of the method is demonstrated by applying it to the analysis of C{endash}V data generated by two-dimensional simulations. Its application to laser recrystallized polysilicon TFTs is presented. {copyright} 2001 American Institute of Physics.

  9. Electrical in-situ characterisation of interface stabilised organic thin-film transistors.

    PubMed

    Striedinger, Bernd; Fian, Alexander; Petritz, Andreas; Lassnig, Roman; Winkler, Adolf; Stadlober, Barbara

    2015-07-14

    We report on the electrical in-situ characterisation of organic thin film transistors under high vacuum conditions. Model devices in a bottom-gate/bottom-contact (coplanar) configuration are electrically characterised in-situ, monolayer by monolayer (ML), while the organic semiconductor (OSC) is evaporated by organic molecular beam epitaxy (OMBE). Thermal SiO2 with an optional polymer interface stabilisation layer serves as the gate dielectric and pentacene is chosen as the organic semiconductor. The evolution of transistor parameters is studied on a bi-layer dielectric of a 150 nm of SiO2 and 20 nm of poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) and compared to the behaviour on a pure SiO2 dielectric. The thin layer of PNDPE, which is an intrinsically photo-patternable organic dielectric, shows an excellent stabilisation performance, significantly reducing the calculated interface trap density at the OSC/dielectric interface up to two orders of magnitude, and thus remarkably improving the transistor performance.

  10. Electrical in-situ characterisation of interface stabilised organic thin-film transistors

    PubMed Central

    Striedinger, Bernd; Fian, Alexander; Petritz, Andreas; Lassnig, Roman; Winkler, Adolf; Stadlober, Barbara

    2015-01-01

    We report on the electrical in-situ characterisation of organic thin film transistors under high vacuum conditions. Model devices in a bottom-gate/bottom-contact (coplanar) configuration are electrically characterised in-situ, monolayer by monolayer (ML), while the organic semiconductor (OSC) is evaporated by organic molecular beam epitaxy (OMBE). Thermal SiO2 with an optional polymer interface stabilisation layer serves as the gate dielectric and pentacene is chosen as the organic semiconductor. The evolution of transistor parameters is studied on a bi-layer dielectric of a 150 nm of SiO2 and 20 nm of poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) and compared to the behaviour on a pure SiO2 dielectric. The thin layer of PNDPE, which is an intrinsically photo-patternable organic dielectric, shows an excellent stabilisation performance, significantly reducing the calculated interface trap density at the OSC/dielectric interface up to two orders of magnitude, and thus remarkably improving the transistor performance. PMID:26457122

  11. Fully transparent thin film transistors based on zinc oxide channel layer and molybdenum doped indium oxide electrodes

    NASA Astrophysics Data System (ADS)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2016-03-01

    In this work we report the fabrication of thin film transistors (TFT) with zinc oxide channel and molybdenum doped indium oxide (IMO) electrodes, achieved by room temperature sputtering. A set of devices was fabricated, with varying channel width and length from 5μm to 300μm. Output and transfer characteristics were then extracted to study the performance of thin film transistors, namely threshold voltage and saturation current, enabling to determine optimal fabrication process parameters. Optical transmission in the UV-VIS-IR are also reported.

  12. Competing weak localization and weak antilocalization in amorphous indium-gallium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Hsiang; Lyu, Syue-Ru; Heredia, Elica; Liu, Shu-Hao; Jiang, Pei-hsun; Liao, Po-Yung; Chang, Ting-Chang; Chen, Hua-Mao

    2017-01-01

    We have investigated the gate-voltage dependence and the temperature dependence of the magnetoconductivity of amorphous indium-gallium-zinc-oxide thin-film transistors. A weak-localization feature is observed at small magnetic fields on top of an overall negative magnetoconductivity at higher fields. An intriguing controllable competition between weak localization and weak antilocalization is observed by tuning the gate voltage or by varying the temperature. Our findings reflect controllable quantum interference competition in the electron systems in amorphous indium-gallium-zinc-oxide thin-film transistors.

  13. Highly Bendable In-Ga-ZnO Thin Film Transistors by Using a Thermally Stable Organic Dielectric Layer

    PubMed Central

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; kim, Yonghun; Park, Min-Ji; Yoon, Sung-Min; Youn, Hyoc-Min; Lee, Heon; Lee, Byoung Hun; Jung, Gun Young

    2016-01-01

    Flexible In-Ga-ZnO (IGZO) thin film transistor (TFT) on a polyimide substrate is produced by employing a thermally stable SA7 organic material as the multi-functional barrier and dielectric layers. The IGZO channel layer was sputtered at Ar:O2 gas flow rate of 100:1 sccm and the fabricated TFT exhibited excellent transistor performances with a mobility of 15.67 cm2/Vs, a threshold voltage of 6.4 V and an on/off current ratio of 4.5 × 105. Further, high mechanical stability was achieved by the use of organic/inorganic stacking of dielectric and channel layers. Thus, the IGZO transistor endured unprecedented bending strain up to 3.33% at a bending radius of 1.5 mm with no significant degradation in transistor performances along with a superior reliability up to 1000 cycles. PMID:27876893

  14. Highly Bendable In-Ga-ZnO Thin Film Transistors by Using a Thermally Stable Organic Dielectric Layer

    NASA Astrophysics Data System (ADS)

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; Kim, Yonghun; Park, Min-Ji; Yoon, Sung-Min; Youn, Hyoc-Min; Lee, Heon; Lee, Byoung Hun; Jung, Gun Young

    2016-11-01

    Flexible In-Ga-ZnO (IGZO) thin film transistor (TFT) on a polyimide substrate is produced by employing a thermally stable SA7 organic material as the multi-functional barrier and dielectric layers. The IGZO channel layer was sputtered at Ar:O2 gas flow rate of 100:1 sccm and the fabricated TFT exhibited excellent transistor performances with a mobility of 15.67 cm2/Vs, a threshold voltage of 6.4 V and an on/off current ratio of 4.5 × 105. Further, high mechanical stability was achieved by the use of organic/inorganic stacking of dielectric and channel layers. Thus, the IGZO transistor endured unprecedented bending strain up to 3.33% at a bending radius of 1.5 mm with no significant degradation in transistor performances along with a superior reliability up to 1000 cycles.

  15. Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Ji Heon; Kim, Tae Ho; Lee, Hyunjea; Park, Young Ran; Choi, Woong; Lee, Cheol Jin

    2016-06-01

    We investigated the dependence of electron mobility on the thickness of MoS2 nanosheets by fabricating bottom-gate single and few-layer MoS2 thin-film transistors with SiO2 gate dielectrics and Au electrodes. All the fabricated MoS2 transistors showed on/off-current ratio of ˜107 and saturated output characteristics without high-k capping layers. As the MoS2 thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS2 transistors increased from ˜10 to ˜18 cm2V-1s-1. The increased subthreshold swing of the fabricated transistors with MoS2 thickness suggests that the increase of MoS2 mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS2 layer on its thickness.

  16. Quasi one-dimensional transport in doped polythiophene and polythiophene thin film transistors

    NASA Astrophysics Data System (ADS)

    Yuen, Jonathan Dsu-Bei

    Conducting and semiconducting polymers are important materials in the development of printed, mechanically flexible, large area electronics for various applications, such as flat panel displays and photovoltaic cells. The development of conjugated polymers of high mobility for thin-film transistor active layers, in particular, has been very rapid, starting with early mobilities of around 10-4cm2/Vs to a recent report of 1cm 2/Vs in transistors with an active layer of poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). Metallic behavior has a long history in the field of conjugated polymers and recently, even "true" metallic transport has been observed with drho/dT > 0. Thus, development of such high-mobility polymers also raises the possibility that similar behavior will also occur in such materials. A suitable candidate is PBTTT, which is a high performance, rigid-rod conjugated polymer that possesses a thermally-induced liquid crystalline phase where the polymer chains pack into stacked structures, forming two-dimensional layered terraces which extend laterally over hundreds of nanometers, contributing greatly to its high mobility. In this work, the electrical properties of PBTTT are studied under high charge densities both as the active layer in transistors and in electrochemically doped films, in order to determine the mechanism that governs its transport. This thesis will first describe the process of experimental setup and optimization required to produce high performance transistors and doped films; data derived from this is analyzed and correlated to suitable models that may describe charge behavior in these samples. We show that the data obtained using a wide range of parameters (temperature, gate-induced carrier density, source-drain voltage and doping level) scale onto the universal curve predicted for transport in a systems with electronic structure described by the Luttinger Liquid model, a one-dimensional "metallic" system where

  17. Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors

    PubMed Central

    2016-01-01

    The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin probe microscopy (SKPM) with self-consistent modeling is developed for the nondestructive detection of contact diffusion on active devices. Scans of the surface potential are modeled using physically based Technology Computer Aided Design (TCAD) simulations when the transistor terminals are grounded and under biased conditions. The simulations also incorporate the tip geometry to investigate its effect on the measurements due to electrostatic tip–sample interactions. The method is particularly useful for semiconductor– and metal–semiconductor interfaces where the potential contrast resulting from dopant diffusion is below that usually detectable with scanning probe microscopy. PMID:27581104

  18. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric

    PubMed Central

    Liang, Jiajie; Li, Lu; Chen, Dustin; Hajagos, Tibor; Ren, Zhi; Chou, Shu-Yu; Hu, Wei; Pei, Qibing

    2015-01-01

    Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of ∼30 cm2 V−1 s−1, on/off ratio of 103–104, switching current >100 μA, transconductance >50 μS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays. PMID:26173436

  19. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric.

    PubMed

    Liang, Jiajie; Li, Lu; Chen, Dustin; Hajagos, Tibor; Ren, Zhi; Chou, Shu-Yu; Hu, Wei; Pei, Qibing

    2015-07-15

    Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of ∼30 cm(2) V(-1) s(-1), on/off ratio of 10(3)-10(4), switching current >100 μA, transconductance >50 μS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays.

  20. Microstructural control of charge transport in organic blend thin-film transistors

    SciTech Connect

    Hunter, Simon; Chen, Jihua; Anthopoulos, Thomas D.

    2014-07-17

    In this paper, the charge-transport processes in organic p-channel transistors based on the small-molecule 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES ADT), the polymer poly(triarylamine)(PTAA) and blends thereof are investigated. In the case of blend films, lateral conductive atomic force microscopy in combination with energy filtered transmission electron microscopy are used to study the evolution of charge transport as a function of blends composition, allowing direct correlation of the film's elemental composition and morphology with hole transport. Low-temperature transport measurements reveal that optimized blend devices exhibit lower temperature dependence of hole mobility than pristine PTAA devices while also providing a narrower bandgap trap distribution than pristine diF-TES ADT devices. These combined effects increase the mean hole mobility in optimized blends to 2.4 cm2/Vs; double the value measured for best diF-TES ADT-only devices. The bandgap trap distribution in transistors based on different diF-TES ADT:PTAA blend ratios are compared and the act of blending these semiconductors is seen to reduce the trap distribution width yet increase the average trap energy compared to pristine diF-TES ADT-based devices. In conclusion, our measurements suggest that an average trap energy of <75 meV and a trap distribution of <100 meV is needed to achieve optimum hole mobility in transistors based on diF-TES ADT:PTAA blends.

  1. Microstructural control of charge transport in organic blend thin-film transistors

    DOE PAGES

    Hunter, Simon; Chen, Jihua; Anthopoulos, Thomas D.

    2014-07-17

    In this paper, the charge-transport processes in organic p-channel transistors based on the small-molecule 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES ADT), the polymer poly(triarylamine)(PTAA) and blends thereof are investigated. In the case of blend films, lateral conductive atomic force microscopy in combination with energy filtered transmission electron microscopy are used to study the evolution of charge transport as a function of blends composition, allowing direct correlation of the film's elemental composition and morphology with hole transport. Low-temperature transport measurements reveal that optimized blend devices exhibit lower temperature dependence of hole mobility than pristine PTAA devices while also providing a narrower bandgap trap distribution thanmore » pristine diF-TES ADT devices. These combined effects increase the mean hole mobility in optimized blends to 2.4 cm2/Vs; double the value measured for best diF-TES ADT-only devices. The bandgap trap distribution in transistors based on different diF-TES ADT:PTAA blend ratios are compared and the act of blending these semiconductors is seen to reduce the trap distribution width yet increase the average trap energy compared to pristine diF-TES ADT-based devices. In conclusion, our measurements suggest that an average trap energy of <75 meV and a trap distribution of <100 meV is needed to achieve optimum hole mobility in transistors based on diF-TES ADT:PTAA blends.« less

  2. Rare-metal-free high-performance Ga-Sn-O thin film transistor

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-03-01

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.

  3. Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Park, Jaechul; Song, Ihun; Kim, Sunil; Kim, Sangwook; Kim, Changjung; Lee, Jaecheol; Lee, Hyungik; Lee, Eunha; Yin, Huaxiang; Kim, Kyoung-Kok; Kwon, Kee-Won; Park, Youngsoo

    2008-08-01

    We have demonstrated a self-aligned top-gate amorphous gallium indium zinc oxide thin film transistor (a-GIZO TFT). It had a field effect mobility of 5 cm2/V s, a threshold voltage of 0.2 V, and a subthreshold swing of 0.2 V/decade. Ar plasma was treated on the source/drain region of the a-GIZO active layer to reduce the series resistance. After Ar plasma treatment, the surface of the source/drain region was divided into In-rich and In-deficient regions. The a-GIZO TFT also had a constant sheet resistance of 1 kΩ/◻ for a film thickness of over 40 nm. The interface between the source/drain Mo metal and the Ar plasma-treated a-GIZO indicated a good Ohmic contact and a contact resistivity of 50 μΩ cm2.

  4. AC Stress-Induced Degradation of Amorphous InGaZnO Thin Film Transistor Inverter

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hwan; Kong, Dongsik; Kim, Sungchul; Jeon, Young Woo; Kim, Yongsik; Kim, Dong Myong; Kwon, Hyuck-In

    2011-09-01

    The degradation of amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFT) inverter operation is investigated under AC pulse stresses. From the extraction of subgap density of states (DOSs), the dominant mechanism of the pulse stress-induced degradation of driver TFT is considered as the increase of acceptor-like deep states, while that of the load TFT is attributed to the increased number of electrons trapped into the interface and/or a-IGZO thin films. We also observe that the rising and falling time of the induced pulse affects each TFT of the inverter in a different manner, and discuss the related mechanism of this phenomenon.

  5. Anomalous capacitance change in low-temperature grown ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Seo, O.; Kim, H.; Jo, J.

    2010-10-01

    We studied capacitance-voltage characteristics of ZnO thin-film transistors (TFT's), grown by metalorganic chemical vapor deposition (MOCVD). We compared two ZnO TFT's: one grown at 450 °C and the other at 350 °C. ZnO grown at 450 °C showed smooth capacitance profile with electron density of 1.5×1020 cm-3. In contrast, ZnO grown at 350 °C showed a capacitance jump when gate voltage was changed to negative voltages. Current-voltage characteristics measured in the two samples did not show much difference. We explain that the capacitance jump is related to p-type ZnO layer formed at the SiO2 interface. Current-voltage and capacitance-voltage data support that our ZnO films have anisotropic conductivity.

  6. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors

    PubMed Central

    Senanayak, Satyaprasad P.; Yang, Bingyan; Thomas, Tudor H.; Giesbrecht, Nadja; Huang, Wenchao; Gann, Eliot; Nair, Bhaskaran; Goedel, Karl; Guha, Suchi; Moya, Xavier; McNeill, Christopher R.; Docampo, Pablo; Sadhanala, Aditya; Friend, Richard H.; Sirringhaus, Henning

    2017-01-01

    Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μFET) of 0.5 cm2/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA+ cations, and thermal vibrations of the lead halide inorganic cages. PMID:28138550

  7. Recent progress in n-channel organic thin-film transistors.

    PubMed

    Wen, Yugeng; Liu, Yunqi

    2010-03-26

    Particular attention has been focused on n-channel organic thin-film transistors (OTFTs) during the last few years, and the potentially cost-effective circuitry-based applications in flexible electronics, such as flexible radiofrequency identity tags, smart labels, and simple displays, will benefit from this fast development. This article reviews recent progress in performance and molecular design of n-channel semiconductors in the past five years, and limitations and practicable solutions for n-channel OTFTs are dealt with from the viewpoint of OTFT constitution and geometry, molecular design, and thin-film growth conditions. Strategy methodology is especially highlighted with an aim to investigate basic issues in this field.

  8. Rare-metal-free high-performance Ga-Sn-O thin film transistor.

    PubMed

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-03-14

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm(2)/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.

  9. Significant electrical control of amorphous oxide thin film transistors by an ultrathin Ti surface polarity modifier

    SciTech Connect

    Cho, Byungsu; Choi, Yonghyuk; Shin, Seokyoon; Jeon, Heeyoung; Seo, Hyungtak; Jeon, Hyeongtag

    2014-01-27

    We demonstrate an enhanced electrical stability through a Ti oxide (TiO{sub x}) layer on the amorphous InGaZnO (a-IGZO) back-channel; this layer acts as a surface polarity modifier. Ultrathin Ti deposited on the a-IGZO existed as a TiO{sub x} thin film, resulting in oxygen cross-binding with a-IGZO surface. The electrical properties of a-IGZO thin film transistors (TFTs) with TiO{sub x} depend on the surface polarity change and electronic band structure evolution. This result indicates that TiO{sub x} on the back-channel serves as not only a passivation layer protecting the channel from ambient molecules or process variables but also a control layer of TFT device parameters.

  10. Rare-metal-free high-performance Ga-Sn-O thin film transistor

    PubMed Central

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-01-01

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds. PMID:28290547

  11. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors.

    PubMed

    Senanayak, Satyaprasad P; Yang, Bingyan; Thomas, Tudor H; Giesbrecht, Nadja; Huang, Wenchao; Gann, Eliot; Nair, Bhaskaran; Goedel, Karl; Guha, Suchi; Moya, Xavier; McNeill, Christopher R; Docampo, Pablo; Sadhanala, Aditya; Friend, Richard H; Sirringhaus, Henning

    2017-01-01

    Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μFET) of 0.5 cm(2)/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA(+) cations, and thermal vibrations of the lead halide inorganic cages.

  12. Optimization of pulsed laser deposited ZnO thin-film growth parameters for thin-film transistors (TFT) application

    NASA Astrophysics Data System (ADS)

    Gupta, Manisha; Chowdhury, Fatema Rezwana; Barlage, Douglas; Tsui, Ying Yin

    2013-03-01

    In this work we present the optimization of zinc oxide (ZnO) film properties for a thin-film transistor (TFT) application. Thin films, 50±10 nm, of ZnO were deposited by Pulsed Laser Deposition (PLD) under a variety of growth conditions. The oxygen pressure, laser fluence, substrate temperature and annealing conditions were varied as a part of this study. Mobility and carrier concentration were the focus of the optimization. While room-temperature ZnO growths followed by air and oxygen annealing showed improvement in the (002) phase formation with a carrier concentration in the order of 1017-1018/cm3 with low mobility in the range of 0.01-0.1 cm2/V s, a Hall mobility of 8 cm2/V s and a carrier concentration of 5×1014/cm3 have been achieved on a relatively low temperature growth (250 °C) of ZnO. The low carrier concentration indicates that the number of defects have been reduced by a magnitude of nearly a 1000 as compared to the room-temperature annealed growths. Also, it was very clearly seen that for the (002) oriented films of ZnO a high mobility film is achieved.

  13. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics.

    PubMed

    Sangwan, Vinod K; Ortiz, Rocio Ponce; Alaboson, Justice M P; Emery, Jonathan D; Bedzyk, Michael J; Lauhon, Lincoln J; Marks, Tobin J; Hersam, Mark C

    2012-08-28

    In the past decade, semiconducting carbon nanotube thin films have been recognized as contending materials for wide-ranging applications in electronics, energy, and sensing. In particular, improvements in large-area flexible electronics have been achieved through independent advances in postgrowth processing to resolve metallic versus semiconducting carbon nanotube heterogeneity, in improved gate dielectrics, and in self-assembly processes. Moreover, controlled tuning of specific device components has afforded fundamental probes of the trade-offs between materials properties and device performance metrics. Nevertheless, carbon nanotube transistor performance suitable for real-world applications awaits understanding-based progress in the integration of independently pioneered device components. We achieve this here by integrating high-purity semiconducting carbon nanotube films with a custom-designed hybrid inorganic-organic gate dielectric. This synergistic combination of materials circumvents conventional design trade-offs, resulting in concurrent advances in several transistor performance metrics such as transconductance (6.5 μS/μm), intrinsic field-effect mobility (147 cm(2)/(V s)), subthreshold swing (150 mV/decade), and on/off ratio (5 × 10(5)), while also achieving hysteresis-free operation in ambient conditions.

  14. High performance thin film transistor with ZnO channel layer deposited by DC magnetron sputtering.

    PubMed

    Moon, Yeon-Keon; Moon, Dae-Yong; Lee, Sang-Ho; Jeong, Chang-Oh; Park, Jong-Wan

    2008-09-01

    Research in large area electronics, especially for low-temperature plastic substrates, focuses commonly on limitations of the semiconductor in thin film transistors (TFTs), in particular its low mobility. ZnO is an emerging example of a semiconductor material for TFTs that can have high mobility, while a-Si and organic semiconductors have low mobility (<1 cm2/Vs). ZnO-based TFTs have achieved high mobility, along with low-voltage operation low off-state current, and low gate leakage current. In general, ZnO thin films for the channel layer of TFTs are deposited with RF magnetron sputtering methods. On the other hand, we studied ZnO thin films deposited with DC magnetron sputtering for the channel layer of TFTs. After analyzing the basic physical and chemical properties of ZnO thin films, we fabricated a TFT-unit cell using ZnO thin films for the channel layer. The field effect mobility (micro(sat)) of 1.8 cm2/Vs and threshold voltage (Vth) of -0.7 V were obtained.

  15. High-mobility thin film transistors with neodymium-substituted indium oxide active layer

    SciTech Connect

    Lin, Zhenguo; Lan, Linfeng Xiao, Peng; Sun, Sheng; Li, Yuzhi; Song, Wei; Gao, Peixiong; Wang, Lei; Ning, Honglong; Peng, Junbiao

    2015-09-14

    Thin-film transistors (TFTs) with neodymium-substituted indium oxide (InNdO) channel layer were demonstrated. The structural properties of the InNdO films as a function of annealing temperature have been analyzed using X-ray diffraction and transmission electron microscopy. The InNdO thin films showed polycrystalline nature when annealed at 450 °C with a lattice parameter (cubic cell) of 10.255 Å, which is larger than the cubic In{sub 2}O{sub 3} film (10.117 Å). The high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy showed that no Nd{sub 2}O{sub 3} clusters were found in the InNdO film, implying that Nd was incorporated into the In{sub 2}O{sub 3} lattice. The InNdO TFTs annealed at 450 °C exhibited more excellent electrical properties with a high mobility of 20.4 cm{sup 2} V{sup −1} s{sup −1} and better electric bias stability compared to those annealed at 300 °C, which was attributed to the reduction of the scattering centers and/or charge traps due to the decrease of the |Nd3d{sub 5/2}{sup 5}4f{sup 4}O2p{sup −1}〉 electron configuration.

  16. Air-stable solution-processed n-channel organic thin film transistors with polymerenhanced morphology

    SciTech Connect

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Chen, Jihua; Li, Dawen

    2015-05-04

    N,N0-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN2 film is much lower than the value of PDIF-CN2 single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PaMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN2 thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PaMS or PMMA polymers, the morphology of the PDIF-CN2 polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm2/V s has been achieved from OTFTs based on the PDIF-CN2 film with the pre-deposition of PaMS polymer.

  17. Air-stable solution-processed n-channel organic thin film transistors with polymerenhanced morphology

    DOE PAGES

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; ...

    2015-05-04

    N,N0-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN2 film is much lower than the value of PDIF-CN2 single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PaMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN2 thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PaMS or PMMA polymers, the morphologymore » of the PDIF-CN2 polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm2/V s has been achieved from OTFTs based on the PDIF-CN2 film with the pre-deposition of PaMS polymer.« less

  18. Investigation of on-current degradation behavior induced by surface hydrolysis effect under negative gate bias stress in amorphous InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Kuan-Hsien; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Hsieh, Tien-Yu; Chen, Min-Chen; Yeh, Bo-Liang; Chou, Wu-Ching

    2014-03-01

    This study investigates the electrical instability under negative gate bias stress (NGBS) induced by surface hydrolysis effect. Electrical characteristics exhibit instability for amorphous InGaZnO (a-IGZO) Thin Film Transistors (TFTs) under NGBS, in which on-current degradation and current crowding phenomenon can be observed. When the negative gate bias is applied on the TFT, hydrogen ions will dissociate from ZnO-H bonds and the dissociated hydrogen ions will cause electrical instability under NGBS. The ISE-Technology Computer Aided Design simulation tool and moisture partial pressure modulation measurement are utilized to clarify the anomalous degradation behavior.

  19. Polymer dielectric materials for organic thin-film transistors: Interfacial control and development for printable electronics

    NASA Astrophysics Data System (ADS)

    Kim, Choongik

    Organic thin-film transistors (OTFTs) have been extensively studied for organic electronics. In these devices, organic semiconductor-dielectric interface characteristics play a critical role in influencing OTFT operation and performance. This study begins with exploring how the physicochemical characteristics of the polymer gate dielectric affects the thin-film growth mode, microstructure, and OTFT performance parameters of pentacene films deposited on bilayer polymer (top)-SiO2 (bottom) dielectrics. Pentacene growth mode varies considerably with dielectric substrate, and correlations are established between pentacene film deposition temperature, the thin-film to bulk microstructural phase transition, and OTFT device performance. Furthermore, the primary influence of the polymer dielectric layer glass transition temperature on pentacene film microstructure and OTFT response is shown for the first time. Following the first study, the influence of the polymer gate dielectric viscoelastic properties on overlying organic semiconductor film growth, film microstructure, and TFT response are investigated in detail. From the knowledge that nanoscopically-confined thin polymer films exhibit glass transition temperatures that deviate substantially from those of the corresponding bulk materials, pentacene (p-channel) and cyanoperylene (n-channel) films grown on polymer gate dielectrics at temperatures well-below their bulk glass transition temperatures (Tg(b)) have been shown to exhibit morphological/microstructural transitions and dramatic OTFT performance discontinuities at well-defined temperatures (defined as the polymer "surface glass transition temperature," or Tg(s)). These transitions are characteristic of the particular polymer architecture and independent of film thickness or overall film cooperative chain dynamics. Furthermore, by analyzing the pentacene films grown on UV-curable polymer dielectrics with different curing times (hence, different degrees of

  20. Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors

    SciTech Connect

    Kizu, Takio E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Mitoma, Nobuhiko; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Miyanaga, Miki; Awata, Hideaki; Nabatame, Toshihide

    2015-09-28

    Using practical high-density sputtering targets, we investigated the effect of Zn and W codoping on the thermal stability of the amorphous film and the electrical characteristics in thin film transistors. zinc oxide is a potentially conductive component while W oxide is an oxygen vacancy suppressor in oxide films. The oxygen vacancy from In-O and Zn-O was suppressed by the W additive because of the high oxygen bond dissociation energy. With controlled codoping of W and Zn, we demonstrated a high mobility with a maximum mobility of 40 cm{sup 2}/V s with good stability under a negative bias stress in InWZnO thin film transistors.

  1. Performance Investigation of Multilayer MoS2 Thin-Film Transistors Fabricated via Mask-free Optically Induced Electrodeposition.

    PubMed

    Li, Meng; Liu, Na; Li, Pan; Shi, Jialin; Li, Guangyong; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-03-08

    Transition metal dichalcogenides, particularly MoS2, have recently received enormous interest in explorations of the physics and technology of nanodevice applications because of their excellent optical and electronic properties. Although monolayer MoS2 has been extensively investigated for various possible applications, its difficulty of fabrication renders it less appealing than multilayer MoS2. Moreover, multilayer MoS2, with its inherent high electronic/photonic state densities, has higher output driving capabilities and can better satisfy the ever-increasing demand for versatile devices. Here, we present multilayer MoS2 back-gate thin-film transistors (TFTs) that can achieve a relatively low subthreshold swing of 0.75 V/decade and a high mobility of 41 cm(2)·V(-1)·s(-1), which exceeds the typical mobility value of state-of-the-art amorphous silicon-based TFTs by a factor of 80. Ag and Au electrode-based MoS2 TFTs were fabricated by a convenient and rapid process. Then we performed a detailed analysis of the impacts of metal contacts and MoS2 film thickness on electronic performance. Our findings show that smoother metal contacts exhibit better electronic characteristics and that MoS2 film thickness should be controlled within a reasonable range of 30-40 nm to obtain the best mobility values, thereby providing valuable insights regarding performance enhancement for MoS2 TFTs. Additionally, to overcome the limitations of the conventional fabrication method, we employed a novel approach known as optically induced electrodeposition (OIE), which allows the flexible and precise patterning of metal films and enables rapid and mask-free device fabrication, for TFT fabrication.

  2. Highly sensitive ion-sensitive field-effect transistor sensor using fully transparent amorphous In–Ga–Zn–O thin-film transistors

    NASA Astrophysics Data System (ADS)

    Ahn, Min-Ju; Lim, Cheol-Min; Cho, Won-Ju

    2017-03-01

    In this study, a highly sensitive ion-sensitive field-effect transistor (ISFET) sensor was developed using fully transparent amorphous In–Ga–Zn–O thin-film transistors fabricated on a glass substrate. To overcome the issues associated with conventional ISFETs, such as low sensitivity and poor reliability, a dual-gate (DG) operating mode was employed, which is able to significantly amplify the sensitivity through capacitive coupling between the front and back gate dielectrics. As a result, when compared to the sensitivity in the single-gate mode, the DG mode exhibited a high sensitivity of 269.3 mV/pH, which is beyond the Nernst response limit.

  3. Screen printing as a scalable and low-cost approach for rigid and flexible thin-film transistors using separated carbon nanotubes.

    PubMed

    Cao, Xuan; Chen, Haitian; Gu, Xiaofei; Liu, Bilu; Wang, Wenli; Cao, Yu; Wu, Fanqi; Zhou, Chongwu

    2014-12-23

    Semiconducting single-wall carbon nanotubes are very promising materials in printed electronics due to their excellent mechanical and electrical property, outstanding printability, and great potential for flexible electronics. Nonetheless, developing scalable and low-cost approaches for manufacturing fully printed high-performance single-wall carbon nanotube thin-film transistors remains a major challenge. Here we report that screen printing, which is a simple, scalable, and cost-effective technique, can be used to produce both rigid and flexible thin-film transistors using separated single-wall carbon nanotubes. Our fully printed top-gated nanotube thin-film transistors on rigid and flexible substrates exhibit decent performance, with mobility up to 7.67 cm2 V(-1) s(-1), on/off ratio of 10(4)∼10(5), minimal hysteresis, and low operation voltage (<10 V). In addition, outstanding mechanical flexibility of printed nanotube thin-film transistors (bent with radius of curvature down to 3 mm) and driving capability for organic light-emitting diode have been demonstrated. Given the high performance of the fully screen-printed single-wall carbon nanotube thin-film transistors, we believe screen printing stands as a low-cost, scalable, and reliable approach to manufacture high-performance nanotube thin-film transistors for application in display electronics. Moreover, this technique may be used to fabricate thin-film transistors based on other materials for large-area flexible macroelectronics, and low-cost display electronics.

  4. Electrical characterization of organic thin film transistors and alternative device architectures

    NASA Astrophysics Data System (ADS)

    Newman, Christopher R.

    In the last 10--15 years, organic semiconductors have evolved from experimental curiosities into viable alternatives for practical applications involving large-area and low-cost electronics such as display backplanes, electronic paper, radio frequency identification (RFID) tags, and solar cells. Many of the initially-stated goals in this field have been achieved; organic semconductors have demonstrated performance comparable to or greater than amorphous silicon (a-Si), the entrenched technology for most of the applications listed above. At present, the major obstacles remaining to commercialization of devices based on organic semiconductors involve material stability, processing considerations and optimization of the other device components (e.g. metal contacts and dielectric materials). Despite these technical achievements, significant gaps remain in our understanding of the underlying transport physics in these devices. This thesis summarizes experiments performed on organic field-effect transistors (OFETs) in an attempt to address some of these knowledge gaps. The FET, in addition to being a very useful device for practical applications (such as the driving elements in pixel backplanes), is also a very flexible architecture from an experimental standpoint. The presence of a capacitively-coupled gate electrode allows the investigation of transport physics as a function of carrier concentration. For devices in which non-idealities (i.e. carrier traps) largely dictate the observed characteristics, this is a very useful feature. Although practical OFETs are fabricated as conventional single-gate structures on an organic thin film (OTFTs), more exotic structures can often provide insights that standard OTFTs cannot. Specifically, single-crystal OFETs allow the investigation of carrier transport in the absence of grain boundaries, and double-gated OTFTs facilitate the investigation and comparison of properties across two discrete interfaces. One of the remaining

  5. Nitrogen-doped amorphous oxide semiconductor thin film transistors with double-stacked channel layers

    NASA Astrophysics Data System (ADS)

    Xie, Haiting; Wu, Qi; Xu, Ling; Zhang, Lei; Liu, Guochao; Dong, Chengyuan

    2016-11-01

    The amorphous oxide semiconductor (AOS) thin film transistors (TFTs) with the double-stacked channel layers (DSCL) combing the amorphous InZnO (a-IZO) films and the nitrogen-doped amorphous InGaZnO (a-IGZO:N) films were proposed and fabricated, which showed the excellent performance with the field-effect mobility of 49.6 cm2 V-1 s-1 and the subthreshold swing of 0.5 V/dec. More interestingly, very stable properties were observed in the bias stress and light illumination tests for these a-IZO/a-IGZO:N TFTs, as seemed to be the evident improvements over the prior arts. The improved performance and stability might be mainly due to the hetero-junctions in the channel layers and less interface/bulk trap density from the in situ nitrogen doping process in the a-IGZO layers. In addition, the passivation effect of the a-IGZO:N films also made some contributions to the stable properties exhibited in these novel DSCL TFTs.

  6. p-Channel oxide thin film transistors using solution-processed copper oxide.

    PubMed

    Kim, Sang Yun; Ahn, Cheol Hyoun; Lee, Ju Ho; Kwon, Yong Hun; Hwang, Sooyeon; Lee, Jeong Yong; Cho, Hyung Koun

    2013-04-10

    Cu2O thin films were synthesized on Si (100) substrate with thermally grown 200-nm SiO2 by sol-gel spin coating method and postannealing under different oxygen partial pressure (0.04, 0.2, and 0.9 Torr). The morphology of Cu2O thin films was improved through N2 postannealing before O2 annealing. Under relatively high oxygen partial pressure of 0.9 Torr, the roughness of synthesized films was increased with the formation of CuO phase. Bottom-gated copper oxide (CuxO) thin film transistors (TFTs) were fabricated via conventional photolithography, and the electrical properties of the fabricated TFTs were measured. The resulting Cu2O TFTs exhibited p-channel operation, and field effect mobility of 0.16 cm2/(V s) and on-to-off drain current ratio of ∼1×10(2) were observed in the TFT device annealed at PO2 of 0.04 Torr. This study presented the potential of the solution-based process of the Cu2O TFT with p-channel characteristics for the first time.

  7. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate

    PubMed Central

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-01-01

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays. PMID:27941915

  8. High mobility amorphous zinc oxynitride semiconductor material for thin film transistors

    SciTech Connect

    Ye Yan; Lim, Rodney; White, John M.

    2009-10-01

    Zinc oxynitride semiconductor material is produced through a reactive sputtering process in which competition between reactions responsible for the growth of hexagonal zinc oxide (ZnO) and for the growth of cubic zinc nitride (Zn{sub 3}N{sub 2}) is promoted. In contrast to processes in which the reaction for either the oxide or the nitride is dominant, the multireaction process yields a substantially amorphous or a highly disordered nanocrystalline film with higher Hall mobility, 47 cm{sup 2} V{sup -1} s{sup -1} for the as-deposited film produced at 50 deg. C and 110 cm{sup 2} V{sup -1} s{sup -1} after annealing at 400 deg. C. In addition, it has been observed that the Hall mobility of the material increases as the carrier concentration decreases in a carrier concentration range where a multicomponent metal oxide semiconductor, indium-gallium-zinc oxide, follows the opposite trend. This indicates that the carrier transports in the single-metal compound and the multimetal compound are probably dominated by different mechanisms. Film stability and thin film transistor performance of the material have also been tested, and results are presented herein.

  9. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate

    NASA Astrophysics Data System (ADS)

    Han, Dedong; Zhang, Yi; Cong, Yingying; Yu, Wen; Zhang, Xing; Wang, Yi

    2016-12-01

    In this work, we have successfully fabricated bottom gate fully transparent tin-doped zinc oxide thin film transistors (TZO TFTs) fabricated on flexible plastic substrate at low temperature by RF magnetron sputtering. The effect of O2/Ar gas flow ratio during channel deposition on the electrical properties of TZO TFTs was investigated, and we found that the O2/Ar gas flow ratio have a great influence on the electrical properties. TZO TFTs on flexible substrate has very nice electrical characteristics with a low off-state current (Ioff) of 3 pA, a high on/off current ratio of 2 × 107, a high saturation mobility (μsat) of 66.7 cm2/V•s, a steep subthreshold slope (SS) of 333 mV/decade and a threshold voltage (Vth) of 1.2 V. Root-Mean-Square (RMS) roughness of TZO thin film is about 0.52 nm. The transmittance of TZO thin film is about 98%. These results highlight that the excellent device performance can be realized in TZO film and TZO TFT can be a promising candidate for flexible displays.

  10. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays.

    PubMed

    Engel, Michael; Small, Joshua P; Steiner, Mathias; Freitag, Marcus; Green, Alexander A; Hersam, Mark C; Avouris, Phaedon

    2008-12-23

    Thin film transistors (TFTs) are now poised to revolutionize the display, sensor, and flexible electronics markets. However, there is a limited choice of channel materials compatible with low-temperature processing. This has inhibited the fabrication of high electrical performance TFTs. Single-walled carbon nanotubes (CNTs) have very high mobilities and can be solution-processed, making thin film CNT-based TFTs a natural direction for exploration. The two main challenges facing CNT-TFTs are the difficulty of placing and aligning CNTs over large areas and low on/off current ratios due to admixture of metallic nanotubes. Here, we report the self-assembly and self-alignment of CNTs from solution into micron-wide strips that form regular arrays of dense and highly aligned CNT films covering the entire chip, which is ideally suitable for device fabrication. The films are formed from pre-separated, 99% purely semiconducting CNTs and, as a result, the CNT-TFTs exhibit simultaneously high drive currents and large on/off current ratios. Moreover, they deliver strong photocurrents and are also both photo- and electroluminescent.

  11. Grain Boundary Induced Bias Instability in Soluble Acene-Based Thin-Film Transistors

    PubMed Central

    Nguyen, Ky V.; Payne, Marcia M.; Anthony, John E.; Lee, Jung Hun; Song, Eunjoo; Kang, Boseok; Cho, Kilwon; Lee, Wi Hyoung

    2016-01-01

    Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant increase in the number of nuleation sites, thereby increasing the GB density of TES-ADT spherulites. The density of GBs strongly influences the angular spread and crystallographic orientation of TES-ADT spherulites. Accordingly, the FETs with higher GB densities showed much poorer electrical characteristics than devices with lower GB density. Especially, GBs provide charge trapping sites which are responsible for bias-stress driven electrical instability. Dielectric surface treatment with a polystyrene brush layer clarified the GB-induced charge trapping by reducing charge trapping at the semiconductor-dielectric interface. Our study provides an understanding on GB induced bias instability for the development of high performance OFETs. PMID:27615358

  12. Bismuth ferrite based thin films, nanofibers, and field effect transistor devices

    NASA Astrophysics Data System (ADS)

    Rivera-Beltran, Rut

    In this research an attempt has been made to explore bismuth ferrite thin films with low leakage current and nanofibers with high photoconductivity. Thin films were deposited with pulsed laser deposition (PLD) method. An attempt has been made to develop thin films under different deposition parameters with following target compositions: i) 0.6BiFeO3-0.4(Bi0.5 K0.5)TiO3 (BFO-BKT) and ii) bi-layered 0.88Bi 0.5Na0.5TiO3-0.08Bi0.5K0.5TiO 3-0.04BaTiO3/BiFeO3 (BNT-BKT-BT/BFO). BFO-BKT thin film shows suppressed leakage current by about four orders of magnitude which in turn improve the ferroelectric and dielectric properties of the films. The optimum remnant polarization is 19 muC.cm-2 at the oxygen partial pressure of 300 mtorr. The BNT-BKT-BT/BFO bi-layered thin films exhibited ferroelectric behavior as: Pr = 22.0 muC.cm-2, Ec = 100 kV.cm-1 and epsilonr = 140. The leakage current of bi-layered thin films have been reduced two orders of magnitude compare to un-doped bismuth ferrite. Bismuth ferrite nanofibers were developed by electrospinning technique and its electronic properties such as photoconductivity and field effect transistor performance were investigated extensively. Nanofibers were deposited by electrospinning of sol-gel solution on SiO2/Si substrate at driving voltage of 10 kV followed by heat treatment at 550 °C for 2 hours. The composition analysis through energy dispersive detector and electron energy loss spectroscopy revealed the heterogeneous nature of the composition with Bi rich and Fe deficient regions. X-ray photoelectron spectroscopy results confirmed the combination of Fe3+ and Fe2+ valence state in the fibers. The photoresponse result is almost hundred times higher for a fiber of 40 nm diameter compared to a fiber with 100 nm diameter. This effect is described by a size dependent surface recombination mechanism. A single and multiple BFO nanofibers field effect transistors devices were fabricated and characterized. Bismuth ferrite FET behaves

  13. Sensing extremely limited H₂ contents by Pd nanogap connected to an amorphous InGaZnO thin-film transistor.

    PubMed

    Lee, Young Tack; Jung, Hwaebong; Nam, Seung Hee; Jeon, Pyo Jin; Kim, Jin Sung; Jang, Byungjin; Lee, Wooyoung; Im, Seongil

    2013-10-07

    A palladium (Pd) nanogap-based thin-film has been connected to an electrically stable amorphous InGaZnO thin-film transistor, to form a hydrogen sensor demonstrating a dramatic sensing capability. As a result of the Pd connection to the transistor source, our sensor circuit greatly enhances the hydrogen-induced signal and sensing speed in the sense of output voltage, clearly resolving a minimum hydrogen content of 0.05%. When the nanogap-based Pd thin-film was connected to the transistor gate, an extremely limited hydrogen content of even less than 0.05% was visibly detected through gate voltage shifts. Our results exhibit the most promising and practical ways to sense extremely limited hydrogen contents, originating from two methods: transistor-to-Pd nanogap resistor and transistor-to-Pd nanogap capacitor coupling.

  14. Laser printed organic semiconductor PQT-12 for bottom-gate organic thin-film transistors: Fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Makrygianni, M.; Ainsebaa, A.; Nagel, M.; Sanaur, S.; Raptis, Y. S.; Zergioti, I.; Tsamakis, D.

    2016-12-01

    In this work, we report on the effect of laser printed Poly (3,3‴-didodecyl quarter thiophene) on its optical, structural and electrical properties for bottom-gate/bottom-contact organic thin-film transistors applications. This semiconducting π-conjugated polymer was solution-deposited (spin-coated) on a donor substrate and transferred by means of solid phase laser-induced forward transfer (LIFT) technique on SiO2/Si receiver substrates to form the active material. This article presents a detailed study of the electrical properties of the fabricated transistors by measuring the parasitic resistances for gold (Au) and platinum (Pt) as source-drain electrodes, for optimizing OTFTs in terms of contacts. In addition, X-ray diffraction patterns revealed that it is possible to control the polymer microstructure through the choice of solvent. Also, no significant change in polymer chain orientation was observed between two printed patterns at 90 and 130 mJ/cm2 as confirmed by Raman spectra. The results demonstrate hole mobility values of (2.6 ± 1.3) × 10-2 cm2/Vs, and lower parasitic resistance for dielectric surface roughness around 1.2 nm and Pt electrodes. Higher performances are correlated to i) the well-ordering of PQT-12 surface when a high-boiling-point solvent is used and ii) the less limitating Pt source/drain electrodes. This analytical study proves that solid phase LIFT printing is a reliable technology for the fabrication of thin, organic large area electronics in a well-defined manner.

  15. Compositional tuning of atomic layer deposited MgZnO for thin film transistors

    NASA Astrophysics Data System (ADS)

    Wrench, J. S.; Brunell, I. F.; Chalker, P. R.; Jin, J. D.; Shaw, A.; Mitrovic, I. Z.; Hall, S.

    2014-11-01

    Thin film transistors (TFTs) have been fabricated using magnesium zinc oxide (MgZnO) layers deposited by atomic layer deposition at 200 °C. The composition of the MgZnO is systematically modified by varying the ratio of MgO and ZnO deposition cycles. A blue-shift of the near band-edge photoluminescence after post-deposition annealing at 300 °C indicates significant activation of the Mg dopant. A 7:1 ratio of ZnO:MgO deposition cycles was used to fabricate a device with a TFT channel width of 2000 μm and a channel length of 60 μm. This transistor yielded an effective saturation mobility of 4 cm2/V s and a threshold voltage of 7.1 V, respectively. The on/off ratio was 1.6 × 10 6 and the maximum interface state density at the ZnO/SiO2 interface is ˜ 6.5 × 10 12 cm-2.

  16. Using gapped topological surface states of Bi2Se3 films in a field effect transistor

    NASA Astrophysics Data System (ADS)

    Sun, Jifeng; Singh, David J.

    2017-02-01

    Three dimensional topological insulators are insulators with topologically protected surface states that can have a high band velocity and high mobility at room temperature. This suggests electronic applications that exploit these surface states, but the lack of a band gap poses a fundamental difficulty. We report a first principles study based on density functional theory for thin Bi2Se3 films in the context of a field effect transistor. It is known that a gap is induced in thin layers due to hybridization between the top and bottom surfaces, but it is not known whether it is possible to use the topological states in this type of configuration. In particular, it is unclear whether the benefits of topological protection can be retained to a sufficient degree. We show that there is a thickness regime in which the small gap induced by hybridization between the two surfaces is sufficient to obtain transistor operation at room temperature, and furthermore, that the band velocity and spin texture that are important for the mobility are preserved for Fermi levels of relevance to device application.

  17. Passivation effect on gate-bias stress instability of carbon nanotube thin film transistors

    SciTech Connect

    Won Lee, Sang; Suh, Dongseok; Young Lee, Si; Hee Lee, Young

    2014-04-21

    A prior requirement of any developed transistor for practical use is the stability test. Random network carbon nanotube-thin film transistor (CNT-TFT) was fabricated on SiO{sub 2}/Si. Gate bias stress stability was investigated with various passivation layers of HfO{sub 2} and Al{sub 2}O{sub 3}. Compared to the threshold voltage shift without passivation layer, the measured values in the presence of passivation layers were reduced independent of gate bias polarity except HfO{sub 2} under positive gate bias stress (PGBS). Al{sub 2}O{sub 3} capping layer was found to be the best passivation layer to prevent ambient gas adsorption, while gas adsorption on HfO{sub 2} layer was unavoidable, inducing surface charges to increase threshold voltage shift in particular for PGBS. This high performance in the gate bias stress test of CNT-TFT even superior to that of amorphous silicon opens potential applications to active TFT industry for soft electronics.

  18. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, K.H.

    1998-06-30

    A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.

  19. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, Kurt H.

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  20. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification.

    PubMed

    Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A

    2015-11-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p(++)-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.

  1. Inverter Circuits Using ZnO Nanoparticle Based Thin-Film Transistors for Flexible Electronic Applications

    PubMed Central

    Vidor, Fábio F.; Meyers, Thorsten; Hilleringmann, Ulrich

    2016-01-01

    Innovative systems exploring the flexibility and the transparency of modern semiconducting materials are being widely researched by the scientific community and by several companies. For a low-cost production and large surface area applications, thin-film transistors (TFTs) are the key elements driving the system currents. In order to maintain a cost efficient integration process, solution based materials are used as they show an outstanding tradeoff between cost and system complexity. In this paper, we discuss the integration process of ZnO nanoparticle TFTs using a high-k resin as gate dielectric. The performance in dependence on the transistor structure has been investigated, and inverted staggered setups depict an improved performance over the coplanar device increasing both the field-effect mobility and the ION/IOFF ratio. Aiming at the evaluation of the TFT characteristics for digital circuit applications, inverter circuits using a load TFT in the pull-up network and an active TFT in the pull-down network were integrated. The inverters show reasonable switching characteristics and V/V gains. Conjointly, the influence of the geometry ratio and the supply voltage on the devices have been analyzed. Moreover, as all integration steps are suitable to polymeric templates, the fabrication process is fully compatible to flexible substrates. PMID:28335282

  2. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification

    PubMed Central

    Lassnig, R.; Hollerer, M.; Striedinger, B.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p++-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3–4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact–channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility. PMID:26543442

  3. Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel

    PubMed Central

    Xu, Wei; Hu, Zhanhao; Liu, Huimin; Lan, Linfeng; Peng, Junbiao; Wang, Jian; Cao, Yong

    2016-01-01

    Shrinking the device dimension has long been the pursuit of the semiconductor industry to increase the device density and operation speed. In the application of thin film transistors (TFTs), all-organic TFT arrays made by all-solution process are desired for low cost and flexible electronics. One of the greatest challenges is how to achieve ultrashort channel through a cost-effective method. In our study, ultrashort-channel devices are demonstrated by direct inkjet printing conducting polymer as source/drain and gate electrodes without any complicated substrate’s pre-patterning process. By modifying the substrate’s wettability, the conducting polymer’s contact line is pinned during drying process which makes the channel length well-controlled. An organic TFT array of 200 devices with 2 μm channel length is fabricated on flexible substrate through all-solution process. The simple and scalable process to fabricate high resolution organic transistor array offers a low cost approach in the development of flexible and wearable electronics. PMID:27378163

  4. Compositional tuning of atomic layer deposited MgZnO for thin film transistors

    SciTech Connect

    Wrench, J. S.; Brunell, I. F.; Chalker, P. R.; Jin, J. D.; Shaw, A.; Mitrovic, I. Z.; Hall, S.

    2014-11-17

    Thin film transistors (TFTs) have been fabricated using magnesium zinc oxide (MgZnO) layers deposited by atomic layer deposition at 200 °C. The composition of the MgZnO is systematically modified by varying the ratio of MgO and ZnO deposition cycles. A blue-shift of the near band-edge photoluminescence after post-deposition annealing at 300 °C indicates significant activation of the Mg dopant. A 7:1 ratio of ZnO:MgO deposition cycles was used to fabricate a device with a TFT channel width of 2000 μm and a channel length of 60 μm. This transistor yielded an effective saturation mobility of 4 cm{sup 2}/V s and a threshold voltage of 7.1 V, respectively. The on/off ratio was 1.6×10{sup 6} and the maximum interface state density at the ZnO/SiO{sub 2} interface is ∼6.5×10{sup 12} cm{sup −2}.

  5. Flexible All-organic, All-solution Processed Thin Film Transistor Array with Ultrashort Channel

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Hu, Zhanhao; Liu, Huimin; Lan, Linfeng; Peng, Junbiao; Wang, Jian; Cao, Yong

    2016-07-01

    Shrinking the device dimension has long been the pursuit of the semiconductor industry to increase the device density and operation speed. In the application of thin film transistors (TFTs), all-organic TFT arrays made by all-solution process are desired for low cost and flexible electronics. One of the greatest challenges is how to achieve ultrashort channel through a cost-effective method. In our study, ultrashort-channel devices are demonstrated by direct inkjet printing conducting polymer as source/drain and gate electrodes without any complicated substrate’s pre-patterning process. By modifying the substrate’s wettability, the conducting polymer’s contact line is pinned during drying process which makes the channel length well-controlled. An organic TFT array of 200 devices with 2 μm channel length is fabricated on flexible substrate through all-solution process. The simple and scalable process to fabricate high resolution organic transistor array offers a low cost approach in the development of flexible and wearable electronics.

  6. Effect of Zinc Oxide Film Deposition Position on the Characteristics of Zinc Oxide Thin Film Transistors Fabricated by Low-Temperature Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Takechi, Kazushige; Nakata, Mitsuru; Eguchi, Toshimasa; Otsuki, Shigeyoshi; Yamaguchi, Hirotaka; Kaneko, Setsuo

    2008-09-01

    We report on the effect of zinc oxide (ZnO) film deposition position on the characteristics of ZnO thin-film transistors (TFTs) fabricated by magnetron sputtering with no intentional heating of the substrate. We evaluate the properties of ZnO (channel semiconductor) films deposited at various positions with respect to the target position. We show that the film deposition at a position off-centered from the target results in good TFT characteristics. This might be due to the fact that the off-centered deposition position is effective for suppressing the effect of energetic negative ions in the plasma.

  7. Amorphous LaZnSnO thin films by a combustion solution process and application in thin film transistors

    NASA Astrophysics Data System (ADS)

    Li, Jun; Huang, Chuan-Xin; Fu, Yi-Zhou; Zhang, Jian-Hua; Jiang, Xue-Yin; Zhang, Zhi-Lin

    2016-01-01

    Amorphous LaZnSnO thin films with different La doping concentration are prepared by a combustion solution process and the electrical performances of thin film transistors (TFTs) are investigated. The influence of La content on the structure, oxygen vacancies, optical and electrical performance of LaZnSnO thin films are investigated. At an appropriate amount of La doping (15 mol.%), LaZnSnO-TFT shows a superior electrical performance including a mobility of 4.2 cm2/V s, a subthreshold swing of 0.50 V/decade and an on/off current ratio of 1.9 × 107. The high performance LaZnSnO-TFT is attributed to the better interface between SiO2 and LaZnSnO channel layer and the suppression of oxygen vacancies by optimizing La content. It suggests that La doping can be a useful technique for fabricating high performance solution-processed oxide TFTs. [Figure not available: see fulltext.

  8. Carrier trapping anisotropy in ambipolar SnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Liang, Lingyan; Cao, Hongtao

    2017-03-01

    The anisotropic carrier trapping behaviors was demonstrated for ambipolar tin monoxide (SnO) thin-film transistors (TFTs). On one hand, the TFTs exhibited good stability with almost no changes in transfer characteristics under negative gate-bias stress (NGBS). On the other, under positive gate-bias stress (PGBS), the transfer curves presented parallel and positive shift with no degradation in field-effect mobility and subthreshold voltage swing. The stress-time evolution of the turn-on voltage shift, induced by different positive stress voltages and temperatures, could be described by the stretched exponential model. The relaxation time was extracted to be 1.6 × 104 s at room temperature with activation energy of 0.43 eV, indicating that the ambipolar SnO TFTs under PGBS approach the stability of amorphous indium-gallium-zinc oxide based TFTs.

  9. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals

    NASA Astrophysics Data System (ADS)

    Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei

    2016-01-01

    High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals.

  10. Statistical Origin of the Meyer-Neldel Rule in Amorphous Semiconductor Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Kikuchi, Minoru

    1990-09-01

    The origin of the Meyer-Neldel (MN) rule [G0{\\propto}\\exp (AEσ)] in the dc conductance of amorphous semiconductor thin-film transistors (TFT) is investigated based on the statistical model. We analyzed the temperature derivative of the band bending energy eVs(T) at the semiconductor interface as a function of Vs. It is shown that the condition for the validity of the rule, i.e., the linearity of the derivative deVs/dkT to Vs, certainly holds as a natural consequence of the interplay between the steep tail states and the low gap density of states spectrum. An expression is derived which relates the parameter A in the rule to the gap states spectrum. Model calculations show a magnitude of A in fair agreement with the experimental observations. The effects of the Fermi level position and the magnitude of the midgap density of states are also discussed.

  11. Ambient effect on thermal stability of amorphous InGaZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Xu, Jianeng; Wu, Qi; Xu, Ling; Xie, Haiting; Liu, Guochao; Zhang, Lei; Dong, Chengyuan

    2016-12-01

    The thermal stability of amorphous InGaZnO thin film transistors (a-IGZO TFTs) with various ambient gases was investigated. The a-IGZO TFTs in air were more thermally stable than the devices in the ambient argon. Oxygen, rather than nitrogen and moisture, was responsible for this improvement. Furthermore, the thermal stability of the a-IGZO TFTs improved with the increasing oxygen content in the surrounding atmosphere. The related physical mechanism was examined, indicating that the higher ambient oxygen content induced more combinations of the oxygen vacancies and adsorbed oxygen ions in the a-IGZO, which resulted in the larger defect formation energy. This larger defect formation energy led to the smaller variation in the threshold voltage for the corresponding TFT devices.

  12. DC sputtered amorphous In-Sn-Zn-O thin-film transistors: Electrical properties and stability

    NASA Astrophysics Data System (ADS)

    Nakata, Mitsuru; Zhao, Chumin; Kanicki, Jerzy

    2016-02-01

    In this study, we investigated the electrical properties of DC sputtered amorphous In-Sn-Zn-O (a-ITZO) thin-film transistors (TFTs) fabricated under various process conditions. Fabricated a-ITZO TFTs achieved a threshold voltage (VT) of 1.0 V, subthreshold swing (SS) of 0.38 V/dec and field-effect mobility (μeff) of around 30 cm2/V s. An analytical field-effect mobility model is proposed for a-ITZO TFTs with key parameters extracted using different methods. The impacts of a-ITZO channel thickness and oxygen gas flow ratio on device performance were evaluated. Finally, the a-ITZO TFT bias-temperature stress (BTS) induced electrical instability was studied. In comparison to amorphous In-Ga-Zn-O (a-IGZO) TFTs, improved electrical stability was observed for a-ITZO TFTs using exactly the same BTS conditions.

  13. Reduction of channel resistance in amorphous oxide thin-film transistors with buried layer

    NASA Astrophysics Data System (ADS)

    Chong, Eugene; Kim, Bosul; Lee, Sang Yeol

    2012-04-01

    A silicon-indium-zinc-oxide (SIZO) thin film transistor (TFT) with low channel-resistance (RCH) indium-zinc-oxide (In2O3:ZnO = 9:1) buried layer annealed at low temperature of 200°C exhibited high field-effect mobility (μFE) over 55.8 cm2/V·s which is 5 times higher than that of the conventional TFTs due to small threshold voltage (Vth) change of 1.8 V under bias-temperature stress (BTS) condition for 420 minutes. The low-RCH buried-layer allows more strong current-path formed in channel layer well within relatively high-RCH channel-layer since it is less affected by the channel bulk and/or back interface trap with high carrier concentration.

  14. ZnO thin film transistor immunosensor with high sensitivity and selectivity

    NASA Astrophysics Data System (ADS)

    Reyes, Pavel Ivanoff; Ku, Chieh-Jen; Duan, Ziqing; Lu, Yicheng; Solanki, Aniruddh; Lee, Ki-Bum

    2011-04-01

    A zinc oxide thin film transistor-based immunosensor (ZnO-bioTFT) is presented. The back-gate TFT has an on-off ratio of 108 and a threshold voltage of 4.25 V. The ZnO channel surface is biofunctionalized with primary monoclonal antibodies that selectively bind with epidermal growth factor receptor (EGFR). Detection of the antibody-antigen reaction is achieved through channel carrier modulation via pseudo double-gating field effect caused by the biochemical reaction. The sensitivity of 10 fM detection of pure EGFR proteins is achieved. The ZnO-bioTFT immunosensor also enables selectively detecting 10 fM of EGFR in a 5 mg/ml goat serum solution containing various other proteins.

  15. Effect of mesa structure formation on the electrical properties of zinc oxide thin film transistors.

    PubMed

    Singh, Shaivalini; Chakrabarti, P

    2014-05-01

    ZnO based bottom-gate thin film transistor (TFT) with SiO2 as insulating layer has been fabricated with two different structures. The effect of formation of mesa structure on the electrical characteristics of the TFTs has been studied. The formation of mesa structure of ZnO channel region can definitely result in better control over channel region and enhance value of channel mobility of ZnO TFT. As a result, by fabricating a mesa structured TFT, a better value of mobility and on-state current are achieved at low voltages. A typical saturation current of 1.85 x 10(-7) A under a gate bias of 50 V is obtained for non mesa structure TFT while for mesa structured TFT saturation current of 5 x 10(-5) A can be obtained at comparatively very low gate bias of 6.4 V.

  16. Effects of oxygen flow rate on the electrical stability of zinc oxynitride thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hwan; Jeong, Hwan-Seok; Jeong, Chan-Yong; Song, Sang-Hun; Kwon, Hyuck-In

    2017-02-01

    We investigated the effects of the oxygen flow rate (OFR) during the deposition of a zinc oxynitride (ZnON) channel layer on the electrical performance and stability of high-mobility ZnON thin-film transistors (TFTs). The ZnON TFTs prepared at a lower OFR exhibited higher electrical performance characteristics and a higher electrical stability under positive gate bias stresses than those prepared at a higher OFR, but showed a lower electrical stability under negative gate bias stresses. The lower density of subgap states within the channel layer and the higher hole concentration due to the small bandgap were considered as physical mechanisms responsible for the observed phenomena, respectively.

  17. Influence of curvature on the device physics of thin film transistors on flexible substrates

    SciTech Connect

    Amalraj, Rex; Sambandan, Sanjiv

    2014-10-28

    Thin film transistors (TFTs) on elastomers promise flexible electronics with stretching and bending. Recently, there have been several experimental studies reporting the behavior of TFTs under bending and buckling. In the presence of stress, the insulator capacitance is influenced due to two reasons. The first is the variation in insulator thickness depending on the Poisson ratio and strain. The second is the geometric influence of the curvature of the insulator-semiconductor interface during bending or buckling. This paper models the role of curvature on TFT performance and brings to light an elegant result wherein the TFT characteristics is dependent on the area under the capacitance-distance curve. The paper compares models with simulations and explains several experimental findings reported in literature.

  18. Investigation of the drain current shift in ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Abdel-Motaleb, Ibrahim; Shetty, Neeraj; Leedy, Kevin; Cortez, Rebecca

    2011-01-01

    A ZnO thin film transistor (TFT), with barium strontium titanate (BST) as a gate oxide, has been fabricated and characterized. The ZnO and the BST layers were deposited using pulsed laser deposition. The I-V characteristics were measured, and an upward shift in the drain current was observed when the voltage sweeping was repeated. The reasons for this shift were investigated and it was found that the shift could be attributed to the combination effect of the reduction in the built-in potential of the grain boundaries, the population and depopulation of trap centers in the channel, and the existence of mobile charges in the gate oxide layer.

  19. Light Response of Top Gate InGaZnO Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Park, Sang-Hee Ko; Ryu, Minki; Yoon, Sung Min; Yang, Shinhyuk; Hwang, Chi-Sun; Jeon, Jae-Hong; Kim, Kyounghwan

    2011-03-01

    The light stability of top gate indium gallium zinc oxide (IGZO) thin film transistor (TFT) has been investigated under gate bias and constant current stress to explore the possibility of active matrix display applications. While the halogen lamp irradiation onto the device under positive gate bias stress caused just -0.18 V of threshold voltage shift (ΔVth), it resulted in -15.1 V shift under negative gate bias stress. When the white light extracted from the halogen lamp of 100 µW/cm2 power illuminated the device under constant current stress, operation voltage shifted just -0.05 V for 21 h. The result shows good promise for the application of highly stable IGZO TFT to active matrix organic light emitting diodes (AMOLEDs).

  20. Amorphous silicon-indium-zinc oxide semiconductor thin film transistors processed below 150 °C

    NASA Astrophysics Data System (ADS)

    Chong, Eugene; Chun, Yoon Soo; Lee, Sang Yeol

    2010-09-01

    Amorphous silicon-indium-zinc-oxide (a-SIZO) thin film transistor (TFT) was investigated with the process temperature below 150 °C. The a-SIZO TFT exhibited a field effect mobility of 21.6 cm2/V s and an on/off ratio of 107. The stabilities of a-SIZO TFT and indium-zinc-oxide (IZO) TFT were compared, and a-SIZO TFT showed 3.7 V shift for threshold voltage (Vth) compared to 10.8 V shift in IZO TFT after bias temperature stress. Si incorporation into IZO-system as a stabilizer, which was confirmed by x-ray photoelectron spectroscopy, resulted in small shift in Vth in a-SIZO TFT without deteriorating mobility of higher than 21.6 cm2/V s.

  1. Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors Fabricated by Direct Transfer Printing

    NASA Astrophysics Data System (ADS)

    Adachi, Susumu; Okamura, Shoichi

    2010-10-01

    This letter describes the fabrication of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) by direct transfer printing. An a-IGZO layer and a silicon dioxide (SiO2) layer were sequentially sputtered on a poly(dimethylsiloxane) (PDMS) stamp; the stamp was then pressed onto a glass substrate on which a gate metal had been previously deposited. Then, a-IGZO/SiO2 layers were successfully transferred by simply releasing the stamp from the substrate; a bottom-gate TFT was finally constructed. The measured current-voltage characteristics exhibited good field-effect mobility exceeding 10 cm2 V-1 s-1. The on/off current ratio and subthreshold slope were 4×105 and 0.86 V/decade, respectively.

  2. Numerical Analysis on the Mechanical Properties of Organic Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Lee, S. C.; Lee, D. K.; Seol, Y. G.; Ahn, J. H.; Lee, N. E.; Kim, Y. J.

    The organic thin film transistor (OTFT) on flexible substrate electroplated electrodes has many advantages as in the fabrication of low cost sensors, e-paper, smart cards, and flexible displays. In this study, we simulated the mechanical and electrical characteristics of the OTFT with various voltage conditions by using COMSOL. The model consisting of a channel, source and drain was employed to investigate the temperature distribution and thermal stress concentration. The channel length is 40 µm and the voltage ranged between -20V and -40V. The OTFT was fabricated using pentacene as a semiconducting layer and electroplated Ni as a gate electrode. Mechanical properties of the fabricated OTFT were characterized by thermal stress which was predicted with the result of stress distribution.

  3. Phthalocyanine-Based Organic Thin-Film Transistors: A Review of Recent Advances.

    PubMed

    Melville, Owen A; Lessard, Benoît H; Bender, Timothy P

    2015-06-24

    Metal phthalocyanines (MPcs) are versatile conjugated macrocycles that have attracted a great deal of interest as active components in modern organic electronic devices. In particular, the charge transport properties of MPcs, their chemical stability, and their synthetic versatility make them ideal candidate materials for use in organic thin-film transistors (OTFTs). This article reviews recent progress in both the material design and device engineering of MPc-based OTFTs, including the introduction of solubilizing groups on the MPcs and the surface modification of substrates to induce favorable MPc self-assembly. Finally, a discussion on emerging niche applications based on MPc OTFTs will be explored, in addition to a perspective and outlook on these promising materials in OTFTs. The scope of this review is focused primarily on the advances made in the field of MPc-based OTFTs since 2008.

  4. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals

    PubMed Central

    Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei

    2016-01-01

    High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals. PMID:26744240

  5. Trap states and transport characteristics in picene thin film field-effect transistor

    NASA Astrophysics Data System (ADS)

    Kawasaki, Naoko; Kubozono, Yoshihiro; Okamoto, Hideki; Fujiwara, Akihiko; Yamaji, Minoru

    2009-01-01

    Transport characteristics and trap states are investigated in picene thin film field-effect transistor under O2 atmosphere on the basis of multiple shallow trap and release (MTR) model. The channel transport is dominated by MTR below 300 K. It has been clarified on the basis of MTR model that the O2-exposure induces a drastic reduction in shallow trap density to increase both the field-effect mobility μ and on-off ratio. We also found that the O2-exposure never caused an increase in hole carrier density. Actually, a very high μ value of 3.2 cm2 V-1 s-1 is realized under 500 Torr of O2.

  6. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors.

    PubMed

    Kim, Bongjun; Geier, Michael L; Hersam, Mark C; Dodabalapur, Ananth

    2017-02-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  7. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    PubMed Central

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-01-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design. PMID:28145438

  8. Molecular doping for control of gate bias stress in organic thin film transistors

    NASA Astrophysics Data System (ADS)

    Hein, Moritz P.; Zakhidov, Alexander A.; Lüssem, Björn; Jankowski, Jens; Tietze, Max L.; Riede, Moritz K.; Leo, Karl

    2014-01-01

    The key active devices of future organic electronic circuits are organic thin film transistors (OTFTs). Reliability of OTFTs remains one of the most challenging obstacles to be overcome for broad commercial applications. In particular, bias stress was identified as the key instability under operation for numerous OTFT devices and interfaces. Despite a multitude of experimental observations, a comprehensive mechanism describing this behavior is still missing. Furthermore, controlled methods to overcome these instabilities are so far lacking. Here, we present the approach to control and significantly alleviate the bias stress effect by using molecular doping at low concentrations. For pentacene and silicon oxide as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias stress behavior is explained in terms of the shift of Fermi Level and, thus, exponentially reduced proton generation at the pentacene/oxide interface.

  9. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-02-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  10. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors

    NASA Astrophysics Data System (ADS)

    Hanyu, Yuichiro; Domen, Kay; Nomura, Kenji; Hiramatsu, Hidenori; Kumomi, Hideya; Hosono, Hideo; Kamiya, Toshio

    2013-11-01

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300 °C exhibit good operation characteristics; while those annealed at ≥400 °C show deteriorated ones. Thermal desorption spectra (TDS) of H2O indicate that this threshold annealing temperature corresponds to depletion of H2O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300-430 °C. A plausible structural model is suggested.

  11. Restorative effect of oxygen annealing on device performance in HfIZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Jun

    2015-03-01

    Metal-oxide based thin-film transistors (oxide-TFTs) are very promising for use in next generation electronics such as transparent displays requiring high switching and driving performance. In this study, we demonstrate an optimized process to secure excellent device performance with a favorable shift of the threshold voltage toward 0V in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs by using post-treatment with oxygen annealing. This enhancement results from the improved interfacial characteristics between gate dielectric and semiconductor layers due to the reduction in the density of interfacial states related to oxygen vacancies afforded by oxygen annealing. The device statistics confirm the improvement in the device-to-device and run-to-run uniformity. We also report on the photo-induced stability in such oxide-TFTs against long-term UV irradiation, which is significant for transparent displays.

  12. Contact resistance improvement using interfacial silver nanoparticles in amorphous indium-zinc-oxide thin film transistors

    SciTech Connect

    Xu, Rui; He, Jian; Song, Yang; Li, Wei; Zaslavsky, A.; Paine, D. C.

    2014-09-01

    We describe an approach to reduce the contact resistance at compositional conducting/semiconducting indium-zinc-oxide (IZO) homojunctions used for contacts in thin film transistors (TFTs). By introducing silver nanoparticles (Ag NPs) at the homojunction interface between the conducting IZO electrodes and the amorphous IZO channel, we reduce the specific contact resistance, obtained by transmission line model measurements, down to ∼10{sup −2 }Ω cm{sup 2}, ∼3 orders of magnitude lower than either NP-free homojunction contacts or solid Ag metal contacts. The resulting back-gated TFTs with Ag NP contacts exhibit good field effect mobility of ∼27 cm{sup 2}/V s and an on/off ratio >10{sup 7}. We attribute the improved contact resistance to electric field concentration by the Ag NPs.

  13. Restorative effect of oxygen annealing on device performance in HfIZO thin-film transistors

    SciTech Connect

    Ha, Tae-Jun

    2015-03-15

    Metal-oxide based thin-film transistors (oxide-TFTs) are very promising for use in next generation electronics such as transparent displays requiring high switching and driving performance. In this study, we demonstrate an optimized process to secure excellent device performance with a favorable shift of the threshold voltage toward 0V in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs by using post-treatment with oxygen annealing. This enhancement results from the improved interfacial characteristics between gate dielectric and semiconductor layers due to the reduction in the density of interfacial states related to oxygen vacancies afforded by oxygen annealing. The device statistics confirm the improvement in the device-to-device and run-to-run uniformity. We also report on the photo-induced stability in such oxide-TFTs against long-term UV irradiation, which is significant for transparent displays.

  14. The ergonomics approach for thin film transistor-liquid crystal display manufacturing process.

    PubMed

    Lu, Chih-Wei; Yao, Chia-Chun; Kuo, Chein-Wen

    2012-01-01

    The thin film transistor-liquid crystal display (TFT-LCD) has been used all over the world. Although the manufacture process of TFT-LCD was highly automated, employees are hired to do manual job in module assembly process. The operators may have high risk of musculoskeletal disorders because of the long work hours and the repetitive activities in an unfitted work station. The tools of this study were questionnaire, checklist and to evaluate the work place design. The result shows that the participants reported high musculoskeletal disorder symptoms in shoulder (59.8%), neck (49.5%), wrist (39.5%), and upper back (30.6%). And, to reduce the ergonomic risk factors, revising the height of the work benches, chairs and redesigning the truck to decrease the chance of unsuitable positions were recommended and to reduce other ergonomics hazards and seta good human machine interface and appropriate job design.

  15. Analytical approximation of the InGaZnO thin-film transistors surface potential

    NASA Astrophysics Data System (ADS)

    Colalongo, Luigi

    2016-10-01

    Surface-potential-based mathematical models are among the most accurate and physically based compact models of thin-film transistors, and in turn of indium gallium zinc oxide TFTs, available today. However, the need of iterative computations of the surface potential limits their computational efficiency and diffusion in CAD applications. The existing closed-form approximations of the surface potential are based on regional approximations and empirical smoothing functions that could result not accurate enough in particular to model transconductances and transcapacitances. In this work we present an extremely accurate (in the range of nV) and computationally efficient non-iterative approximation of the surface potential that can serve as a basis for advanced surface-potential-based indium gallium zinc oxide TFTs models.

  16. Analysis of the contact resistance in amorphous InGaZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Ling; Lu, Congyan; Liu, Yu; Lv, Hangbing; Xu, Guangwei; Ji, Zhuoyu; Liu, Ming

    2015-08-01

    Contact resistance has great impact on the performance of oxide thin film transistors (TFTs) and their applications. In this letter, temperature, gate voltage, and electrode dependences of the contact resistance were investigated in amorphous InGaZnO (a-IGZO) TFTs. We found that gate voltage dependent contact resistance made a large contribution to or even dominated the "field effect" of oxide TFTs. After separating the influence of contact resistance, the intrinsic temperature dependent field effect mobility of the a-IGZO TFTs was obtained. Furthermore, the experimental data of the contact resistance can be well described by an optimized transmission line model, and the height of the Schottky barrier in the interface between the metal electrode and a-IGZO semiconductor was found to be related to the gate voltage and account for the contact resistance's dependence on the gate voltage.

  17. Effect of Hydrogen in Zinc Oxide Thin-Film Transistor Grown by Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Jo, Jungyol; Seo, Ogweon; Jeong, Euihyuk; Seo, Hyunseok; Lee, Byeongon; Choi, Yearn-Ik

    2007-04-01

    We studied the transport characteristics of ZnO grown by metal organic chemical vapor deposition (MOCVD) at temperatures between 200 and 500 °C. The crystal quality, measured by X-ray diffraction, improved as the growth temperature increased. However, the mobility measured in the thin-film transistor (TFT) decreased in films grown at higher temperatures. In our experiments, a ZnO TFT grown at 250 °C showed good electrical characteristics, with a 13 cm2 V-1 s-1 mobility and a 103 on/off ratio. We conclude that hydrogen incorporated during MOCVD growth plays an important role in determining the transistor characteristics. This was supported by results of secondary ion mass spectroscopy (SIMS), where a higher hydrogen concentration was observed in films grown at lower temperatures.

  18. Low-voltage polymer/small-molecule blend organic thin-film transistors and circuits fabricated via spray deposition

    SciTech Connect

    Hunter, By Simon; Anthopoulos, Thomas D.; Ward, Jeremy W.; Jurchescu, Oana D.; Payne, Marcia M.; Anthony, John E.

    2015-06-01

    Organic thin-film electronics have long been considered an enticing candidate in achieving high-throughput manufacturing of low-power ubiquitous electronics. However, to achieve this goal, more work is required to reduce operating voltages and develop suitable mass-manufacture techniques. Here, we demonstrate low-voltage spray-cast organic thin-film transistors based on a semiconductor blend of 2,8-difluoro- 5,11-bis (triethylsilylethynyl) anthradithiophene and poly(triarylamine). Both semiconductor and dielectric films are deposited via successive spray deposition in ambient conditions (air with 40%–60% relative humidity) without any special precautions. Despite the simplicity of the deposition method, p-channel transistors with hole mobilities of >1 cm{sup 2}/Vs are realized at −4 V operation, and unipolar inverters operating at −6 V are demonstrated.

  19. Fabrication of Amorphous Indium Gallium Zinc Oxide Thin Film Transistor by using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Zhu, Wencong

    Compared with other transparent semiconductors, amorphous indium gallium zinc oxide (a-IGZO) has both good uniformity and high electron mobility, which make it as a good candidate for displays or large-scale transparent circuit. The goal of this research is to fabricate alpha-IGZO thin film transistor (TFT) with channel milled by focused ion beam (FIB). TFTs with different channel geometries can be achieved by applying different milling strategies, which facilitate modifying complex circuit. Technology Computer-Aided Design (TCAD) was also introduced to understand the effect of trapped charges on the device performance. The investigation of the trapped charge at IGZO/SiO2 interface was performed on the IGZO TFT on p-Silicon substrate with thermally grown SiO2 as dielectric. The subgap density-of-state model was used for the simulation, which includes conduction band-tail trap states and donor-like state in the subgap. The result shows that the de-trapping and donor-state ionization determine the interface trapped charge density at various gate biases. Simulation of IGZO TFT with FIB defined channel on the same substrate was also applied. The drain and source were connected intentionally during metal deposition and separated by FIB milling. Based on the simulation, the Ga ions in SiO2 introduced by the ion beam was drifted by gate bias and affects the saturation drain current. Both side channel and direct channel transparent IGZO TFTs were fabricated on the glass substrate with coated ITO. Higher ion energy (30 keV) was used to etch through the substrate between drain and source and form side channels at the corner of milled trench. Lower ion energy (16 keV) was applied to stop the milling inside IGZO thin film and direct channel between drain and source was created. Annealing after FIB milling removed the residual Ga ions and the devices show switch feature. Direct channel shows higher saturation drain current (~10-6 A) compared with side channel (~10-7 A) because

  20. Benzothienobenzothiophene-based conjugated oligomers as semiconductors for stable organic thin-film transistors.

    PubMed

    Yu, Han; Li, Weili; Tian, Hongkun; Wang, Haibo; Yan, Donghang; Zhang, Jingping; Geng, Yanhou; Wang, Fosong

    2014-04-09

    Two benzothienobenzothiophene (BTBT)-based conjugated oligomers, i.e., 2,2'-bi[1]benzothieno[3,2-b][1]benzothiophene (1) and 5,5'-bis([1]benzothieno[3,2-b][1]benzothiophen-2-yl)-2,2'-bithiophene (2), were prepared and characterized. Both oligomers exhibit excellent thermal stability, with 5% weight-loss temperatures (T(L)) above 370 °C; no phase transition was observed before decomposition. The highest occupied molecular orbital (HOMO) levels of 1 and 2 are -5.3 and -4.9 eV, respectively, as measured by ultraviolet photoelectron spectroscopy. Thin-film X-ray diffraction and atomic force microscopy characterizations indicate that both oligomers form highly crystalline films with large domain sizes on octadecyltrimethoxysilane-modified substrates. Organic thin-film transistors with top-contact and bottom-gate geometry based on 1 and 2 exhibited mobilities up to 2.12 cm(2)/V·s for 1 and 1.39 cm(2)/V·s for 2 in an ambient atmosphere. 1-based devices exhibited great air and thermal stabilities, as evidenced by the slight performance degradation after 2 months of storage under ambient conditions and after thermal annealing at temperatures below 250 °C.

  1. Stability of Indium Gallium Zinc Aluminum Oxide Thin-Film Transistors with Treatment Processes

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-02-01

    The indium-gallium-zinc-aluminum-oxide (IGZAO) channel layer of the bottom-gate-type thin-film transistors (TFTs) was deposited on indium tin oxide-coated glass substrates using a magnetron radio frequency co-sputtering system with dual targets of indium gallium zinc oxide and Al. The 3 s orbital of Al cations provided an extra transport pathway and widened the bottom of the conduction band, thus increasing the electron mobility in the IGZAO films. The Al-O bonds could sustain the stability of oxygen of the IGZAO films. The IGZAO TFTs were processed by O2 plasma and post-annealing treatments. Hysteresis analysis was carried out in order to study the stability of the resulting IGZAO TFTs, the positive bias temperature stress (PBTS) performance, and the hot carrier effect were also measured. For the IGZAO TFTs, the threshold voltage shift of the PBTS performance and the hot carrier effect were 0.1 V and 0.06 V, respectively. Overall, the IGZAO TFTs exhibited good stability in this study.

  2. Silicon induced stability and mobility of indium zinc oxide based bilayer thin film transistors

    NASA Astrophysics Data System (ADS)

    Chauhan, Ram Narayan; Tiwari, Nidhi; Liu, Po-Tsun; Shieh, Han-Ping D.; Kumar, Jitendra

    2016-11-01

    Indium zinc oxide (IZO), silicon containing IZO, and IZO/IZO:Si bilayer thin films have been prepared by dual radio frequency magnetron sputtering on glass and SiO2/Si substrates for studying their chemical compositions and electrical characteristics in order to ascertain reliability for thin film transistor (TFT) applications. An attempt is therefore made here to fabricate single IZO and IZO/IZO:Si bilayer TFTs to study the effect of film thickness, silicon incorporation, and bilayer active channel on device performance and negative bias illumination stress (NBIS) stability. TFTs with increasing single active IZO layer thickness exhibit decrease in carrier mobility but steady improvement in NBIS; the best values being μFE ˜ 27.0, 22.0 cm2/Vs and ΔVth ˜ -13.00, -6.75 V for a channel thickness of 7 and 27 nm, respectively. While silicon incorporation is shown to reduce the mobility somewhat, it raises the stability markedly (ΔVth ˜ -1.20 V). Further, IZO (7 nm)/IZO:Si (27 nm) bilayer based TFTs display useful characteristics (field effect mobility, μFE = 15.3 cm2/Vs and NBIS value, ΔVth =-0.75 V) for their application in transparent electronics.

  3. Fabrication of high performance thin-film transistors via pressure-induced nucleation.

    PubMed

    Kang, Myung-Koo; Kim, Si Joon; Kim, Hyun Jae

    2014-10-31

    We report a method to improve the performance of polycrystalline Si (poly-Si) thin-film transistors (TFTs) via pressure-induced nucleation (PIN). During the PIN process, spatial variation in the local solidification temperature occurs because of a non-uniform pressure distribution during laser irradiation of the amorphous Si layer, which is capped with an SiO2 layer. This leads to a four-fold increase in the grain size of the poly-Si thin-films formed using the PIN process, compared with those formed using conventional excimer laser annealing. We find that thin films with optimal electrical properties can be achieved with a reduction in the number of laser irradiations from 20 to 6, as well as the preservation of the interface between the poly-Si and the SiO2 gate insulator. This interface preservation becomes possible to remove the cleaning process prior to gate insulator deposition, and we report devices with a field-effect mobility greater than 160 cm(2)/Vs.

  4. Atomic layer deposition of Nb-doped ZnO for thin film transistors

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Wrench, J. S.; Jin, J. D.; Whittles, T. J.; Mitrovic, I. Z.; Raja, M.; Dhanak, V. R.; Chalker, P. R.; Hall, S.

    2016-11-01

    We present physical and electrical characterization of niobium-doped zinc oxide (NbZnO) for thin film transistor (TFT) applications. The NbZnO films were deposited using atomic layer deposition. X-ray diffraction measurements indicate that the crystallinity of the NbZnO films reduces with an increase in the Nb content and lower deposition temperature. It was confirmed using X-ray photoelectron spectroscopy that Nb5+ is present within the NbZnO matrix. Furthermore, photoluminescence indicates that the band gap of the ZnO increases with a higher Nb content, which is explained by the Burstein-Moss effect. For TFT applications, a growth temperature of 175 °C for 3.8% NbZnO provided the best TFT characteristics with a saturation mobility of 7.9 cm2/Vs, the current On/Off ratio of 1 × 108, and the subthreshold swing of 0.34 V/decade. The transport is seen to follow a multiple-trap and release mechanism at lower gate voltages and percolation thereafter.

  5. A review on the recent developments of solution processes for oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Du Ahn, Byung; Jeon, Hye-Ji; Sheng, Jiazhen; Park, Jozeph; Park, Jin-Seong

    2015-06-01

    This review article introduces the recent advances in the development of oxide semiconductor materials based on solution processes and their potential applications. In the early stage, thin film transistors based on oxide semiconductors fabricated by solution processes used to face critical problems such as high annealing temperatures (>400 °C) required to obtain reasonable film quality, and the relatively low field effect mobility (<5 cm2 V-1 s-1) compared to devices fabricated by conventional vacuum-based techniques. In order to overcome such hurdles, the proper selection of high mobility amorphous oxide semiconductor materials is addressed first. The latter involves the combination of high mobility compounds and multilayered active stacks. Ensuing overviews are provided on the selection of optimum precursors and alternative annealing methods that enable the growth of high quality films at relatively low process temperatures (<200 °C). Reasonably high field effect mobility values (~10 cm2 V-1 s-1) could thus be obtained by optimizing the above process parameters. Finally, potential applications of solution processed oxide semiconductor devices are summarized, involving, for instance, flexible displays, biosensors, and non-volatile memory devices. As such, further innovations in the solution process methods of oxide semiconductor devices are anticipated to allow the realization of cost effective, large area electronics in the near future.

  6. Low temperature atomic layer deposited ZnO photo thin film transistors

    SciTech Connect

    Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci; Biyikli, Necmi; Okyay, Ali K.; Yu, Hyun Yong

    2015-01-01

    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250 °C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80 °C; I{sub on}/I{sub off} ratio is extracted as 7.8 × 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80 °C. I{sub D}–V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.

  7. Enhanced photocurrent of Ge-doped InGaO thin film transistors with quantum dots

    SciTech Connect

    Lee, Sang Moo; Park, Si Jin; Kang, Seong Jun; Lee, Kwang Ho; Park, Jin-Seong; Park, Soohyung; Yi, Yeonjin

    2015-01-19

    The photocurrent of germanium-doped indium-gallium oxide (GIGO) thin film transistors (TFTs) can be observed when the device is exposed to a ultra-violet light because GIGO is a wide band gap semiconducting material. Therefore, we decorated cadmium selenide (CdSe) quantum-dots (QDs) on the surface of GIGO to increase the photocurrent for low-energy light, i.e., visible light. A 10 nm GIGO film was deposited on the SiO{sub 2}/Si substrate by a radio frequency sputter system. Also, we prepared CdSe QDs with sizes of ∼6.3 nm, which can absorb red visible light. QDs were spin-coated onto the GIGO film, and post-annealing was done to provide cross-linking between QDs. The prepared devices showed a 231% increase in photocurrent when exposed to 650 nm light due to the QDs on the GIGO surface. Measurements to construct an energy level diagram were made using ultraviolet photoelectron spectroscopy to determine the origin of the photocurrent, and we found that the small band gap of CdSe QDs enables the increase in photocurrent in the GIGO TFTs. This result is relevant for developing highly transparent photosensors based on oxide semiconductors and QDs.

  8. Enhanced photocurrent of Ge-doped InGaO thin film transistors with quantum dots

    NASA Astrophysics Data System (ADS)

    Lee, Sang Moo; Park, Si Jin; Lee, Kwang Ho; Park, Jin-Seong; Park, Soohyung; Yi, Yeonjin; Kang, Seong Jun

    2015-01-01

    The photocurrent of germanium-doped indium-gallium oxide (GIGO) thin film transistors (TFTs) can be observed when the device is exposed to a ultra-violet light because GIGO is a wide band gap semiconducting material. Therefore, we decorated cadmium selenide (CdSe) quantum-dots (QDs) on the surface of GIGO to increase the photocurrent for low-energy light, i.e., visible light. A 10 nm GIGO film was deposited on the SiO2/Si substrate by a radio frequency sputter system. Also, we prepared CdSe QDs with sizes of ˜6.3 nm, which can absorb red visible light. QDs were spin-coated onto the GIGO film, and post-annealing was done to provide cross-linking between QDs. The prepared devices showed a 231% increase in photocurrent when exposed to 650 nm light due to the QDs on the GIGO surface. Measurements to construct an energy level diagram were made using ultraviolet photoelectron spectroscopy to determine the origin of the photocurrent, and we found that the small band gap of CdSe QDs enables the increase in photocurrent in the GIGO TFTs. This result is relevant for developing highly transparent photosensors based on oxide semiconductors and QDs.

  9. Absorption and optical conduction in InSe/ZnSe/InSe thin film transistors

    NASA Astrophysics Data System (ADS)

    Al Garni, S. E.; Qasrawi, A. F.

    2016-01-01

    In this work, (n)InSe/(p)ZnSe and (n)InSe/(p)ZnSe/(n)InSe heterojunction thin film transistor (TFT) devices are produced by the thermal evaporation technique. They are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion X-ray spectroscopy and optical spectroscopy techniques. While the InSe films are found to be amorphous, the ZnSe and InSe/ZnSe films exhibited polycrystalline nature of crystallization. The optical analysis has shown that these devices exhibit a conduction band offsets of 0.47 and valence band offsets of 0.67 and 0.74eV, respectively. In addition, while the dielectric spectra of the InSe and ZnSe displayed resonance peaks at 416 and 528THz, the dielectric spectra of InSe/ZnSe and InSe/ZnSe/InSe layers indicated two additional peaks at 305 and 350THz, respectively. On the other hand, the optical conductivity analysis and modeling in the light of free carrier absorption theory reflected low values of drift mobilities associated with incident alternating electric fields at terahertz frequencies. The drift mobility of the charge carrier particles at femtoseconds scattering times increased as a result of the ZnSe sandwiching between two InSe layers. The valence band offsets, the dielectric resonance at 305 and 350THz and the optical conductivity values nominate TFT devices for use in optoelectronics.

  10. Characterization of Strain Induced by PECVD Silicon Nitride Films in Transistor Channels

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Benoit, D.; Clément, L.; Morin, P.; Cooper, D.; Bertin, F.

    2011-11-01

    In order to reach high levels of transistor performance, it is desirable to increase electrical conductivity of the device. An efficient way to enhance carrier mobility in the conduction channel is to generate strain in the structure using process-induced stress. To achieve that, stress engineering of the contact etch stop layer (CESL), an amorphous hydrogenated silicon nitride film deposited by plasma enhanced chemical vapour deposition on top of the metal oxide semiconductor assembly, is widely used since it is a low-cost technique. Indeed, this film possesses an intrinsic stress that can be set from tensile (σ = 1.6 GPa) to compressive (σ = -3.0 GPa) depending on deposition conditions. From an electrical point of view, strain induced in the silicon channel can lead to an increase of carrier mobility as high as 8-10% which in turn increases Ion/Ioff and decreases switching time of the transistor. Usually, strain induced in the channel is very low (0.1-0.3%), making quantitative measurements challenging. Moreover, stress transmission mechanisms are not fully understood at the nano-metre scale. To evaluate stress transmission in the silicon channel, we used dark-field electron holography characterization technique operating on both the Titan and Tecnai F20 transmission electron microscopes. Strain maps with nanometre spatial resolution, high sensitivity (Δɛ≈10-3%) and large field of view (400-500 nm2) have been obtained on CESL strained devices. In order to understand stress transfer mechanisms, we have analysed structures with varying spacing between patterns. The experimental results are compared to those obtained by 2-D finite elements analysis simulation.

  11. Organic/Inorganic Nano-hybrids with High Dielectric Constant for Organic Thin Film Transistor Applications

    NASA Astrophysics Data System (ADS)

    Yu, Yang-Yen; Jiang, Ai-Hua; Lee, Wen-Ya

    2016-11-01

    The organic material soluble polyimide (PI) and organic-inorganic hybrid PI-barium titanate (BaTiO3) nanoparticle dielectric materials (IBX, where X is the concentration of BaTiO3 nanoparticles in a PI matrix) were successfully synthesized through a sol-gel process. The effects of various BaTiO3 contents on the hybrid film performance and performance optimization were investigated. Furthermore, pentacene-based organic thin film transistors (OTFTs) with PI-BaTiO3/polymethylmethacrylate or cyclic olefin copolymer (COC)-modified gate dielectrics were fabricated and examined. The hybrid materials showed effective dispersion of BaTiO3 nanoparticles in the PI matrix and favorable thermal properties. X-ray diffraction patterns revealed that the BaTiO3 nanoparticles had a perovskite structure. The hybrid films exhibited high formability and planarity. The IBX hybrid dielectric films exhibited tunable insulating properties such as the dielectric constant value and capacitance in ranges of 4.0-8.6 and 9.2-17.5 nF cm-2, respectively. Adding the modified layer caused the decrease of dielectric constant values and capacitances. The modified dielectric layer without cross-linking displayed a hydrophobic surface. The electrical characteristics of the pentacene-based OTFTs were enhanced after the surface modification. The optimal condition for the dielectric layer was 10 wt% hybrid film with the COC-modified layer; moreover, the device exhibited a threshold voltage of 0.12 V, field-effect mobility of 4.32 × 10-1 cm2 V-1 s-1, and on/off current of 8.4 × 107.

  12. Organic/Inorganic Nano-hybrids with High Dielectric Constant for Organic Thin Film Transistor Applications.

    PubMed

    Yu, Yang-Yen; Jiang, Ai-Hua; Lee, Wen-Ya

    2016-12-01

    The organic material soluble polyimide (PI) and organic-inorganic hybrid PI-barium titanate (BaTiO3) nanoparticle dielectric materials (IBX, where X is the concentration of BaTiO3 nanoparticles in a PI matrix) were successfully synthesized through a sol-gel process. The effects of various BaTiO3 contents on the hybrid film performance and performance optimization were investigated. Furthermore, pentacene-based organic thin film transistors (OTFTs) with PI-BaTiO3/polymethylmethacrylate or cyclic olefin copolymer (COC)-modified gate dielectrics were fabricated and examined. The hybrid materials showed effective dispersion of BaTiO3 nanoparticles in the PI matrix and favorable thermal properties. X-ray diffraction patterns revealed that the BaTiO3 nanoparticles had a perovskite structure. The hybrid films exhibited high formability and planarity. The IBX hybrid dielectric films exhibited tunable insulating properties such as the dielectric constant value and capacitance in ranges of 4.0-8.6 and 9.2-17.5 nF cm(-2), respectively. Adding the modified layer caused the decrease of dielectric constant values and capacitances. The modified dielectric layer without cross-linking displayed a hydrophobic surface. The electrical characteristics of the pentacene-based OTFTs were enhanced after the surface modification. The optimal condition for the dielectric layer was 10 wt% hybrid film with the COC-modified layer; moreover, the device exhibited a threshold voltage of 0.12 V, field-effect mobility of 4.32 × 10(-1) cm(2) V(-1) s(-1), and on/off current of 8.4 × 10(7).

  13. Vacuum filtration based formation of liquid crystal films of semiconducting carbon nanotubes and high performance transistor devices

    NASA Astrophysics Data System (ADS)

    King, Benjamin; Panchapakesan, Balaji

    2014-05-01

    In this paper, we report ultra-thin liquid crystal films of semiconducting carbon nanotubes using a simple vacuum filtration process. Vacuum filtration of nanotubes in aqueous surfactant solution formed nematic domains on the filter membrane surface and exhibited local ordering. A 2D fast Fourier transform was used to calculate the order parameters from scanning electron microscopy images. The order parameter was observed to be sensitive to the filtration time demonstrating different regions of transformation namely nucleation of nematic domains, nanotube accumulation and large domain growth.Transmittance versus sheet resistance measurements of such films resulted in optical to dc conductivity of σ opt/σ dc = 9.01 indicative of purely semiconducting nanotube liquid crystal network.Thin films of nanotube liquid crystals with order parameters ranging from S = 0.1-0.5 were patterned into conducting channels of transistor devices which showed high I on/I off ratios from 10-19 800 and electron mobility values μ e = 0.3-78.8 cm2 (V-s)-1, hole mobility values μ h = 0.4-287 cm2 (V-s)-1. High I on/I off ratios were observed at low order parameters and film mass. A Schottky barrier transistor model is consistent with the observed transistor characteristics. Electron and hole mobilities were seen to increase with order parameters and carbon nanotube mass fractions. A fundamental tradeoff between decreasing on/off ratio and increasing mobility with increasing nanotube film mass and order parameter is therefore concluded. Increase in order parameters of nanotubes liquid crystals improved the electronic transport properties as witnessed by the increase in σ dc/σ opt values on macroscopic films and high mobilities in microscopic transistors. Liquid crystal networks of semiconducting nanotubes as demonstrated here are simple to fabricate, transparent, scalable and could find wide ranging device applications.

  14. Nonhydrolytic alkyl halide elimination reaction and its application in solution-processed zinc tin oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Yoo, Young Bum; Park, Jee Ho; Baik, Hong Koo; Song, Kie Moon

    2014-04-01

    In this study, we fabricated zinc tin oxide (ZTO) thin-film transistors (TFTs) using a sol-gel solution at an annealing temperature of 350 °C. We used a precursor combination of alkoxide and metal chloride to utilize the alkyl halide elimination reaction. Compared with transistor using chloride-only precursors, the resulting ZTO transistor showed improved performance. Solution-processed ZTO-TFTs prepared at 350 °C using an alkoxide-chloride precursor combination showed a field-effect mobility of 4.17 cm2 V-1 s-1, whereas that prepared using a chloride-only solution showed a mobility of 0.98 cm2 V-1 s-1. Thermal analysis showed that the alkoxide-chloride precursor was decomposed well at a given annealing temperature and formed oxide with few residual impurities compared with chloride-only precursors.

  15. Performance improvement in polymeric thin film transistors using chemically modified both silver bottom contacts and dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Ying-Tao; Ouyang, Shi-Hong; Wang, Dong-Ping; Zhu, Da-Long; Xu, Xin; Tan, Te; Fong, Hon-Hang

    2015-09-01

    An efficient interface modification is introduced to improve the performance of polymeric thin film transistors. This efficient interface modification is first achieved by 4-fluorothiophenol (4-FTP) self-assembled monolayers (SAM) to chemically treat the silver source-drain (S/D) contacts while the silicon oxide (SiO2) dielectric interface is further primed by either hexamethyldisilazane (HMDS) or octyltrichlorosilane (OTS-C8). Results show that contact resistance is the dominant factor that limits the field effect mobility of the PTDPPTFT4 transistors. With proper surface modification applied to both the dielectric surface and the bottom contacts, the field effect mobilities of the bottom-gate bottom-contact PTDPPTFT4 transistors were significantly improved from 0.15 cm2·V-1·s-1 to 0.91 cm2·V-1·s-1. Project supported by the National Basic Research Program of China (Grant No. 2013CB328803).

  16. Proton induced multilevel storage capability in self-assembled indium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Guo, Li Qiang; Jin Wan, Chang; Qiang Zhu, Li; Wan, Qing

    2013-09-01

    Multilevel memory capability of self-assembled indium-zinc-oxide (IZO) electric-double-layer (EDL) thin-film transistors gated by nanogranular SiO2 proton conducting electrolytes is investigated. More than four distinct memory states are obtained by programming gate voltage. The observed multilevel storage behavior is mainly due to the controlled interfacial electrochemical doping of IZO channel by penetrated protons under programmed gate voltages. In addition, such IZO-based EDL transistor multilevel memory exhibits good characteristics of programming/erasing endurance and data retention. Such oxide-based EDL transistors with proton-induced multilevel memory behavior are interesting for low-cost memory and neuromorphic system applications after further properties and size optimization.

  17. Electronic properties of organic thin film transistors with nanoscale tapered electrodes

    NASA Astrophysics Data System (ADS)

    Park, Jeongwon

    2008-10-01

    Organic thin-film transistors (OTFTs) have received increasing attention because of their potential applications in displays, optoelectronics, logic circuits, and sensors. Ultrathin OTFTs are of technical interest as a possible route toward reduced bias stress in standard OTFTs and enhanced sensitivity in chemical field-effect transistors (ChemFETs). ChemFETs are OTFTs whose output characteristics are sensitive to the presence of analytes via changes in the channel mobility and/or threshold voltage induced by analyte chemisorption onto the channel materials. The fundamental understanding of charge transport properties of organic thin-films is critical for the applications. OTFT has been demonstrated by many groups; however, there has been much less progress towards more reliable contact structure between organic materials and electrodes. This thesis investigates the electrical properties of metal phthalocyanine thin-film devices. In chapter 1, the basic electrical properties in OTFTs are reviewed. In chapter 2, we have investigated the microfabrication process of OTFTs to control the contact morphology and the charge transport properties of phthalocyanine thin-film devices. In chapter 3, the channel thickness dependence of the mobility was investigated in bottom-contact copper phthalocyanine (CuPc) OTFTs. The current-voltage characteristics of bottom contact CuPc OTFTs with low contact resistance fabricated by the bilayer photoresist lift-off process were analyzed to determine the mobility, threshold voltage and contact resistance. The independence of measured electronic properties from channel thickness is due to the contact resistance being negligible for all channel thicknesses. For practical applications, the aging and recovery process in CuPc OTFTs were investigated in chapter 4. An origin of the aging process on CuPc OTFTs has been investigated based on the responses of thick 1000ML CuPc OTFTs under a controlled atmosphere. The recovery process under 30

  18. Temperature and layer thickness dependent in situ investigations on epindolidione organic thin-film transistors.

    PubMed

    Lassnig, R; Striedinger, B; Jones, A O F; Scherwitzl, B; Fian, A; Głowacl, E D; Stadlober, B; Winkler, A

    2016-08-01

    We report on in situ performance evaluations as a function of layer thickness and substrate temperature for bottom-gate, bottom-gold contact epindolidione organic thin-film transistors on various gate dielectrics. Experiments were carried out under ultra-high vacuum conditions, enabling quasi-simultaneous electrical and surface analysis. Auger electron spectroscopy and thermal desorption spectroscopy (TDS) were applied to characterize the quality of the substrate surface and the thermal stability of the organic films. Ex situ atomic force microscopy (AFM) was used to gain additional information on the layer formation and surface morphology of the hydrogen-bonded organic pigment. The examined gate dielectrics included SiO2, in its untreated and sputtered forms, as well as the spin-coated organic capping layers poly(vinyl-cinnamate) (PVCi) and poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE, from the class of polynorbornenes). TDS and AFM revealed Volmer-Weber island growth dominated film formation with no evidence of a subjacent wetting layer. This growth mode is responsible for the comparably high coverage required for transistor behavior at 90-95% of a monolayer composed of standing molecules. Surface sputtering and an increased sample temperature during epindolidione deposition augmented the surface diffusion of adsorbing molecules and therefore led to a lower number of better-ordered islands. Consequently, while the onset of charge transport was delayed, higher saturation mobility was obtained. The highest, bottom-contact configuration, mobilities of approximately 2.5 × 10(-3)cm(2)/Vs were found for high coverages (50 nm) on sputtered samples. The coverage dependence of the mobility showed very different characteristics for the different gate dielectrics, while the change of the threshold voltage with coverage was approximately the same for all systems. An apparent decrease of the mobility with increasing coverage on the

  19. Temperature and layer thickness dependent in situ investigations on epindolidione organic thin-film transistors

    PubMed Central

    Lassnig, R.; Striedinger, B.; Jones, A.O.F.; Scherwitzl, B.; Fian, A.; Głowacl, E.D.; Stadlober, B.; Winkler, A.

    2016-01-01

    We report on in situ performance evaluations as a function of layer thickness and substrate temperature for bottom-gate, bottom-gold contact epindolidione organic thin-film transistors on various gate dielectrics. Experiments were carried out under ultra-high vacuum conditions, enabling quasi-simultaneous electrical and surface analysis. Auger electron spectroscopy and thermal desorption spectroscopy (TDS) were applied to characterize the quality of the substrate surface and the thermal stability of the organic films. Ex situ atomic force microscopy (AFM) was used to gain additional information on the layer formation and surface morphology of the hydrogen-bonded organic pigment. The examined gate dielectrics included SiO2, in its untreated and sputtered forms, as well as the spin-coated organic capping layers poly(vinyl-cinnamate) (PVCi) and poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE, from the class of polynorbornenes). TDS and AFM revealed Volmer-Weber island growth dominated film formation with no evidence of a subjacent wetting layer. This growth mode is responsible for the comparably high coverage required for transistor behavior at 90–95% of a monolayer composed of standing molecules. Surface sputtering and an increased sample temperature during epindolidione deposition augmented the surface diffusion of adsorbing molecules and therefore led to a lower number of better-ordered islands. Consequently, while the onset of charge transport was delayed, higher saturation mobility was obtained. The highest, bottom-contact configuration, mobilities of approximately 2.5 × 10−3cm2/Vs were found for high coverages (50 nm) on sputtered samples. The coverage dependence of the mobility showed very different characteristics for the different gate dielectrics, while the change of the threshold voltage with coverage was approximately the same for all systems. An apparent decrease of the mobility with increasing coverage on the

  20. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  1. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors

    NASA Astrophysics Data System (ADS)

    Park, Ick-Joon; Jeong, Chan-Yong; Cho, In-Tak; Lee, Jong-Ho; Cho, Eou-Sik; Kwon, Sang Jik; Kim, Bosul; Cheong, Woo-Seok; Song, Sang-Hun; Kwon, Hyuck-In

    2012-10-01

    In this work, we present the results concerning the use of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) as a driving transistor of the flexible thermal and pressure sensors which are applicable to artificial skin systems. Although the a-IGZO TFT has been attracting much attention as a driving transistor of the next-generation flat panel displays, no study has been performed about the application of this new device to the driving transistor of the flexible sensors yet. The proposed thermal sensor pixel is composed of the series-connected a-IGZO TFT and ZnO-based thermistor fabricated on a polished metal foil, and the ZnO-based thermistor is replaced by the pressure sensitive rubber in the pressure sensor pixel. In both sensor pixels, the a-IGZO TFT acts as the driving transistor and the temperature/pressure-dependent resistance of the ZnO-based thermistor/pressure-sensitive rubber mainly determines the magnitude of the output currents. The fabricated a-IGZO TFT-driven flexible thermal sensor shows around a seven times increase in the output current as the temperature increases from 20 °C to 100 °C, and the a-IGZO TFT-driven flexible pressure sensors also exhibit high sensitivity under various pressure environments.

  2. Solution-processed small molecule-polymer blend organic thin-film transistors with hole mobility greater than 5 cm2/Vs.

    PubMed

    Smith, Jeremy; Zhang, Weimin; Sougrat, Rachid; Zhao, Kui; Li, Ruipeng; Cha, Dongkyu; Amassian, Aram; Heeney, Martin; McCulloch, Iain; Anthopoulos, Thomas D

    2012-05-08

    Using phase-separated organic semiconducting blends containing a small molecule, as the hole transporting material, and a conjugated amorphous polymer, as the binder material, we demonstrate solution-processed organic thin-film transistors with superior performance characteristics that include; hole mobility >5 cm(2) /Vs, current on/off ratio ≥10(6) and narrow transistor parameter spread. These exceptional characteristics are attributed to the electronic properties of the binder polymer and the advantageous nanomorphology of the blend film.

  3. Studies of tetracene- and pentacene-based organic thin-film transistors fabricated by the neutral cluster beam deposition method.

    PubMed

    Abthagir, P Syed; Ha, Young-Geun; You, Eun-Ah; Jeong, Seon-Hwa; Seo, Hoon-Seok; Choi, Jong-Ho

    2005-12-22

    The neutral cluster beam deposition (NCBD) method has been applied to produce and characterize organic thin-film transistors (OTFTs) based upon tetracene and pentacene molecules as active layers. Organic thin films were prepared by the NCBD method on hexamethyldisilazane (HMDS)-untreated and -pretreated silicon dioxide (SiO2) substrates at room temperature. The surface morphology and structures for the tetracene and pentacene thin films were examined by atomic force microscopy (AFM) and X-ray diffraction (XRD). The measurements demonstrate that the weakly bound and highly directional neutral cluster beams are efficient in producing high-quality single-crystalline thin films with uniform, smooth surfaces and that SiO2 surface treatment with HMDS enhances the crystallinity of the pentacene thin-film phase. Tetracene- and pentacene-based OTFTs with the top-contact structure showed typical source-drain current modulation behavior with different gate voltages. Device parameters such as hole carrier mobility, current on/off ratio, threshold voltage, and subthreshold slope have been derived from the current-voltage characteristics together with the effects of surface treatment with HMDS. In particular, the high field-effect room-temperature mobilities for the HMDS-untreated OTFTs are found to be comparable to the most widely reported values for the respective untreated tetracene and pentacene thin-film transistors. The device performance strongly correlates with the surface morphology, and the structural properties of the organic thin films are discussed.

  4. All-amorphous-oxide transparent, flexible thin-film transistors. Efficacy of bilayer gate dielectrics.

    PubMed

    Liu, Jun; Buchholz, D Bruce; Hennek, Jonathan W; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2010-09-01

    Optically transparent and mechanically flexible thin-film transistors (TF-TFTs) composed exclusively of amorphous metal oxide films are fabricated on plastic substrates by combining an amorphous Ta(2)O(5)/SiO(x) bilayer transparent oxide insulator (TOI) gate dielectric with an amorphous zinc-indium-tin oxide (a-ZITO) transparent oxide semiconductor (TOS) channel and a-ZITO transparent oxide conductor (TOC) electrodes. The bilayer gate dielectric is fabricated by the post-cross-linking of vapor-deposited hexachlorodisiloxane-derived films to form thin SiO(x) layers (v-SiO(x)) on amorphous Ta(2)O(5) (a-Ta(2)O(5)) films grown by ion-assisted deposition at room temperature. The a-Ta(2)O(5)/v-SiO(x) bilayer TOI dielectric integrates the large capacitance of the high dielectric constant a-Ta(2)O(5) layer with the excellent dielectric/semiconductor interfacial compatibility of the v-SiO(x) layer in a-ZITO TOS-based TF-TFTs. These all-amorphous-oxide TF-TFTs, having a channel length and width of 100 and 2000 microm, respectively, perform far better than a-Ta(2)O(5)-only devices and exhibit saturation-regime field-effect mobilities of approximately 20 cm(2)/V x s, on-currents >10(-4) A, and current on-off ratios >10(5). These TFTs operate at low voltages (approximately 4.0 V) and exhibit good visible-region optical transparency and excellent mechanical flexibility.

  5. Optimisation of amorphous zinc tin oxide thin film transistors by remote-plasma reactive sputtering

    NASA Astrophysics Data System (ADS)

    Niang, K. M.; Cho, J.; Heffernan, S.; Milne, W. I.; Flewitt, A. J.

    2016-08-01

    The influence of the stoichiometry of amorphous zinc tin oxide (a-ZTO) thin films used as the semiconducting channel in thin film transistors (TFTs) is investigated. A-ZTO has been deposited using remote-plasma reactive sputtering from zinc:tin metal alloy targets with 10%, 33%, and 50% Sn at. %. Optimisations of thin films are performed by varying the oxygen flow, which is used as the reactive gas. The structural, optical, and electrical properties are investigated for the optimised films, which, after a post-deposition annealing at 500 °C in air, are also incorporated as the channel layer in TFTs. The optical band gap of a-ZTO films slightly increases from 3.5 to 3.8 eV with increasing tin content, with an average transmission ˜90% in the visible range. The surface roughness and crystallographic properties of the films are very similar before and after annealing. An a-ZTO TFT produced from the 10% Sn target shows a threshold voltage of 8 V, a switching ratio of 108, a sub-threshold slope of 0.55 V dec-1, and a field effect mobility of 15 cm2 V-1 s-1, which is a sharp increase from 0.8 cm2 V-1 s-1 obtained in a reference ZnO TFT. For TFTs produced from the 33% Sn target, the mobility is further increased to 21 cm2 V-1 s-1, but the sub-threshold slope is slightly deteriorated to 0.65 V dec-1. For TFTs produced from the 50% Sn target, the devices can no longer be switched off (i.e., there is no channel depletion). The effect of tin content on the TFT electrical performance is explained in the light of preferential sputtering encountered in reactive sputtering, which resulted in films sputtered from 10% and 33% Sn to be stoichiometrically close to the common Zn2SnO4 and ZnSnO3 phases.

  6. High performance nanocomposite thin film transistors with bilayer carbon nanotube-polythiophene active channel by ink-jet printing

    NASA Astrophysics Data System (ADS)

    Hsieh, Gen-Wen; Li, Flora M.; Beecher, Paul; Nathan, Arokia; Wu, Yiliang; Ong, Beng S.; Milne, William I.

    2009-12-01

    Nanocomposite thin film transistors (TFTs) based on nonpercolating networks of single-walled carbon nanotubes (CNTs) and polythiophene semiconductor [poly[5,5'-bis(3-dodecyl-2-thienyl)-2,2'-bithiophene] (PQT-12)] thin film hosts are demonstrated by ink-jet printing. A systematic study on the effect of CNT loading on the transistor performance and channel morphology is conducted. With an appropriate loading of CNTs into the active channel, ink-jet printed composite transistors show an effective hole mobility of 0.23 cm2 V-1 s-1, which is an enhancement of more than a factor of 7 over ink-jet printed pristine PQT-12 TFTs. In addition, these devices display reasonable on/off current ratio of 105-106, low off currents of the order of 10 pA, and a sharp subthreshold slope (<0.8 V dec-1). The work presented here furthers our understanding of the interaction between polythiophene polymers and nonpercolating CNTs, where the CNT density in the bilayer structure substantially influences the morphology and transistor performance of polythiophene. Therefore, optimized loading of ink-jet printed CNTs is crucial to achieve device performance enhancement. High performance ink-jet printed nanocomposite TFTs can present a promising alternative to organic TFTs in printed electronic applications, including displays, sensors, radio-frequency identification (RFID) tags, and disposable electronics.

  7. Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits

    SciTech Connect

    Petti, Luisa; Faber, Hendrik; Anthopoulos, Thomas D.; Münzenrieder, Niko; Cantarella, Giuseppe; Tröster, Gerhard; Patsalas, Panos A.

    2015-03-02

    Indium oxide (In{sub 2}O{sub 3}) films were deposited by ultrasonic spray pyrolysis in ambient air and incorporated into bottom-gate coplanar and staggered thin-film transistors. As-fabricated devices exhibited electron-transporting characteristics with mobility values of 1 cm{sup 2}V{sup −1}s{sup −1} and 16 cm{sup 2}V{sup −1}s{sup −1} for coplanar and staggered architectures, respectively. Integration of In{sub 2}O{sub 3} transistors enabled realization of unipolar inverters with high gain (5.3 V/V) and low-voltage operation. The low temperature deposition (≤250 °C) of In{sub 2}O{sub 3} also allowed transistor fabrication on free-standing 50 μm-thick polyimide foils. The resulting flexible In{sub 2}O{sub 3} transistors exhibit good characteristics and remain fully functional even when bent to tensile radii of 4 mm.

  8. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors

    NASA Astrophysics Data System (ADS)

    Kwon, Jang Yeon; Kyeong Jeong, Jae

    2015-02-01

    This review gives an overview of the recent progress in vacuum-based n-type transition metal oxide (TMO) thin film transistors (TFTs). Several excellent review papers regarding metal oxide TFTs in terms of fundamental electron structure, device process and reliability have been published. In particular, the required field-effect mobility of TMO TFTs has been increasing rapidly to meet the demands of the ultra-high-resolution, large panel size and three dimensional visual effects as a megatrend of flat panel displays, such as liquid crystal displays, organic light emitting diodes and flexible displays. In this regard, the effects of the TMO composition on the performance of the resulting oxide TFTs has been reviewed, and classified into binary, ternary and quaternary composition systems. In addition, the new strategic approaches including zinc oxynitride materials, double channel structures, and composite structures have been proposed recently, and were not covered in detail in previous review papers. Special attention is given to the advanced device architecture of TMO TFTs, such as back-channel-etch and self-aligned coplanar structure, which is a key technology because of their advantages including low cost fabrication, high driving speed and unwanted visual artifact-free high quality imaging. The integration process and related issues, such as etching, post treatment, low ohmic contact and Cu interconnection, required for realizing these advanced architectures are also discussed.

  9. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics.

    PubMed

    Heo, Jinseong; Byun, Kyung-Eun; Lee, Jaeho; Chung, Hyun-Jong; Jeon, Sanghun; Park, Seongjun; Hwang, Sungwoo

    2013-01-01

    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene-thin-film-semiconductor-metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene-In-Ga-Zn-O (IGZO)-metal asymmetric junctions on a transparent 150 × 150 mm(2) glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (Ion/Ioff) up to 10(6) with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V.

  10. Fabrication and characterization of oxide-based thin film transistors, and process development for oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Lim, Wantae

    2009-12-01

    This dissertation is focused on the development of thin film transistors (TFTs) using oxide materials composed of post-transitional cations with (n-1)d 10ns0 (n≥4). The goal is to achieve high performance oxide-based TFTs fabricated at low processing temperature on either glass or flexible substrates for next generation display applications. In addition, etching mechanism and Ohmic contact formation for oxide heterostructure (ZnO/CuCrO 2) system is demonstrated. The deposition and characterization of oxide semiconductors (In 2O3-ZnO, and InGaZnO4) using a RF-magnetron sputtering system are studied. The main influence on the resistivity of the films is found to be the oxygen partial pressure in the sputtering ambient. The films remained amorphous and transparent (> 70%) at all process conditions. These films showed good transmittance at suitable conductivity for transistor fabrication. The electrical characteristics of both top- and bottom-gate type Indium Zinc Oxide (InZnO) and Indium Gallium Zinc Oxide (InGaZnO4)-based TFTs are reported. The InZnO films were favorable for depletion-mode TFTs due to their tendency to form oxygen vacancies, while enhancement-mode devices were realized with InGaZnO4 films. The InGaZnO4-based TFTs fabricated on either glass or plastic substrates at low temperature (<100°C) exhibit good electrical properties: the saturation mobility of 5--12 cm2.V-1.s-1 and threshold voltage of 0.5--2.5V. The devices are also examined as a function of aging time in order to verify long-term stability in air. The effect of gate dielectric materials on electrical properties of InGaZnO 4-based TFTs was investigated. The use of SiNx film as a gate dielectric reduces the trap density and the roughness at the channel/gate dielectric interface compared to SiO2 gate dielectric, resulting in an improvement of device parameters by reducing scattering of trapped charges at the interface. The quality of interface is shown to have large effect on TFT performance

  11. Electrical properties of magnesium incorporated zinc tin oxide thin film transistors by solution process.

    PubMed

    Jeon, In Young; Lee, Ji Yoon; Yoon, Dae Ho

    2013-03-01

    Zinc tin oxide (ZTO) films were fabricated on SiO2/Si substrate as a function of Mg concentration (the ratio of 3 to 10 atomic%) using a spin-coating process. For the characterization of thin film transistors (TFTs), Zn0.3Sn0.70 channel TFT exhibited a higher on/off ratio compared to Zn0.5 Sn.0.5O channel TFT because the higher Sn concentration can induce more charge carriers. 3 atomic% Mg incorporated Zn0.3Sn0.7O channel TFTs showed stable electrical performances such as I(on/off) - 1 x 10(7), micro(sat) = 1.40 cm2 V(-1) s(-1), and S = 0.39 V/decade. However, 10 atomic% Mg incorporated Zn0.3Sn0.7O channel TFTs deteriorated their electrical performances due to Mg segregation. The Mg incorporated Zn0.3Sn0.7O channel TFTs effectively suppress off-current and threshold voltage change during positive gate bias stress due to their strong bonding with oxygen.

  12. Photosensor application of amorphous InZnO-based thin film transistor

    NASA Astrophysics Data System (ADS)

    Liu, Po-Tsun; Chou, Yi-Teh; Teng, Li-Feng

    2010-03-01

    Thin film transistor (TFT) device structure with transparent conductive oxide semiconductor is proposed for the photosensor application. The adoption of TFT-based photosensor device also is promising to be integrated with pixel-array circuits in a flat panel display and realize the system-on-panel (SoP) concept. The photosensitive TFT device can be applied to sense the ambient light brightness and then give the feedback to the backlight system adjusting the backlight intensity for the power-saving green displays. In this work, we studied the photosensitivity of amorphous indium zinc oxide (a-IZO) TFT to ultraviolet light. The a-IZO-based semiconductors have been paid much attention due to their uniform amorphous phase and high field-effect carrier mobility characteristics. The obvious threshold voltage shift was observed after light illumination, and exhibited slow recovery while returning to initial status after removing the light source. This mechanism for the photoreaction is well explained by the dynamic equilibrium of charge exchange reaction between O2(g) and O2- in the backchannel region of IZO-based films. An electrical trigger using charge pumping method is used to confirm the proposed mechanism and accelerate photoreaction recoverability for the first time. Using knowledge of photoreaction behavior, an operation scheme of photosensing elements consist of a-IZO TFTs is also demonstrated in this paper.

  13. Organic semiconductor growth and morphology considerations for organic thin-film transistors.

    PubMed

    Virkar, Ajay A; Mannsfeld, Stefan; Bao, Zhenan; Stingelin, Natalie

    2010-09-08

    Analogous to conventional inorganic semiconductors, the performance of organic semiconductors is directly related to their molecular packing, crystallinity, growth mode, and purity. In order to achieve the best possible performance, it is critical to understand how organic semiconductors nucleate and grow. Clever use of surface and dielectric modification chemistry can allow one to control the growth and morphology, which greatly influence the electrical properties of the organic transistor. In this Review, the nucleation and growth of organic semiconductors on dielectric surfaces is addressed. The first part of the Review concentrates on small-molecule organic semiconductors. The role of deposition conditions on film formation is described. The modification of the dielectric interface using polymers or self-assembled mono-layers and their effect on organic-semiconductor growth and performance is also discussed. The goal of this Review is primarily to discuss the thin-film formation of organic semiconducting species. The patterning of single crystals is discussed, while their nucleation and growth has been described elsewhere (see the Review by Liu et. al).([¹]) The second part of the Review focuses on polymeric semiconductors. The dependence of physico-chemical properties, such as chain length (i.e., molecular weight) of the constituting macromolecule, and the influence of small molecular species on, e.g., melting temperature, as well as routes to induce order in such macromolecules, are described.

  14. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    SciTech Connect

    Esro, M.; Adamopoulos, G.; Mazzocco, R.; Kolosov, O.; Krier, A.; Vourlias, G.; Milne, W. I.

    2015-05-18

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (La{sub x}Al{sub 1−x}O{sub y}) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the La{sub x}Al{sub 1−x}O{sub y} films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlO{sub y} dielectrics exhibit a wide band gap (∼6.18 eV), high dielectric constant (k ∼ 16), low roughness (∼1.9 nm), and very low leakage currents (<3 nA/cm{sup 2}). TFTs employing solution processed LaAlO{sub y} gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (∼10 V), high on/off current modulation ratio of >10{sup 6}, subthreshold swing of ∼650 mV dec{sup −1}, and electron mobility of ∼12 cm{sup 2} V{sup −1} s{sup −1}.

  15. High Performance, Low Temperature Solution-Processed Barium and Strontium Doped Oxide Thin Film Transistors

    PubMed Central

    2013-01-01

    Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm2 V–1 s–1. We show that it is possible to solution-process these materials at low process temperature (225–200 °C yielding mobilities up to 4.4 cm2 V–1 s–1) and demonstrate a facile “ink-on-demand” process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium. PMID:24511184

  16. INFLUENCE OF FILM STRUCTURE AND LIGHT ON CHARGE TRAPPING AND DISSIPATION DYNAMICS IN SPUN-CAST ORGANIC THIN-FILM TRANSISTORS MEASURED BY SCANNING KELVIN PROBE MICROSCOPY

    SciTech Connect

    Teague, L.; Moth, M.; Anthony, J.

    2012-05-03

    Herein, time-dependent scanning Kelvin probe microscopy of solution processed organic thin film transistors (OTFTs) reveals a correlation between film microstructure and OTFT device performance with the location of trapped charge within the device channel. The accumulation of the observed trapped charge is concurrent with the decrease in I{sub SD} during operation (V{sub G}=-40 V, V{sub SD}= -10 V). We discuss the charge trapping and dissipation dynamics as they relate to the film structure and show that application of light quickly dissipates the observed trapped charge.

  17. A multifunctional polymer-graphene thin-film transistor with tunable transport regimes.

    PubMed

    Mosciatti, Thomas; Haar, Sébastien; Liscio, Fabiola; Ciesielski, Artur; Orgiu, Emanuele; Samorì, Paolo

    2015-03-24

    Here we describe a strategy to fabricate multifunctional graphene-polymer hybrid thin-film transistors (PG-TFT) whose transport properties are tunable by varying the deposition conditions of liquid-phase exfoliated graphene (LPE-G) dispersions onto a dielectric surface and via thermal annealing post-treatments. In particular, the ionization energy (IE) of the LPE-G drop-cast on SiO2 can be finely adjusted prior to polymer deposition via thermal annealing in air environment, exhibiting values gradually changing from 4.8 eV up to 5.7 eV. Such a tunable graphene's IE determines dramatically different electronic interactions between the LPE-G and the semiconducting polymer (p- or n-type) sitting on its top, leading to devices where the output current of the PG-TFT can be operated from being completely turned off up to modulable. In fact upon increasing the surface coverage of graphene nanoflakes on the SiO2 the charge transport properties within the top polymer layer are modified from being semiconducting up to truly conductive (graphite-like). Significantly, when the IE of LPE-G is outside the polymer band gap, the PG-TFT can operate as a multifunctional three terminal switch (transistor) and/or memory device featuring high number of erase-write cycles. Our PG-TFT, based on a fine energy level engineering, represents a memory device operating without the need of a dielectric layer separating a floating gate from the active channel.

  18. High Mobility Flexible Amorphous IGZO Thin-Film Transistors with a Low Thermal Budget Ultra-Violet Pulsed Light Process.

    PubMed

    Benwadih, M; Coppard, R; Bonrad, K; Klyszcz, A; Vuillaume, D

    2016-12-21

    Amorphous, sol-gel processed, indium gallium zinc oxide (IGZO) transistors on plastic substrate with a printable gate dielectric and an electron mobility of 4.5 cm(2)/(V s), as well as a mobility of 7 cm(2)/(V s) on solid substrate (Si/SiO2) are reported. These performances are obtained using a low temperature pulsed light annealing technique. Ultraviolet (UV) pulsed light system is an innovative technique compared to conventional (furnace or hot-plate) annealing process that we successfully implemented on sol-gel IGZO thin film transistors (TFTs) made on plastic substrate. The photonic annealing treatment has been optimized to obtain IGZO TFTs with significant electrical properties. Organic gate dielectric layers deposited on this pulsed UV light annealed films have also been optimized. This technique is very promising for the development of amorphous IGZO TFTs on plastic substrates.

  19. Effect of O2 plasma treatment on density-of-states in a-IGZO thin film transistors

    NASA Astrophysics Data System (ADS)

    Ding, Xingwei; Huang, Fei; Li, Sheng; Zhang, Jianhua; Jiang, Xueyin; Zhang, Zhilin

    2017-01-01

    This work reports an efficient route for enhancing the performance of amorphous InGaZnO (a-IGZO) thin film transistors (TFT). The mobility was greatly improved by about 38% by means of O2 plasma treatment. Temperature-stress was carried out to investigate the stability and extract the parameters related to activation energy ( E a) and density-of-states (DOS). The DOS was calculated on the basis of the experimentally obtained E a, which can explain the experimental observation. A lower activation energy ( E a, 0.72 eV) and a smaller DOS were obtained in the O2 plasma treatment TFT based on the temperature-dependent transfer curves. The results showed that temperature stability and electrical properties enhancements in a-IGZO thin film transistors were attributed to the smaller DOS. [Figure not available: see fulltext.

  20. High mobility n-type organic thin-film transistors deposited at room temperature by supersonic molecular beam deposition

    SciTech Connect

    Chiarella, F. Barra, M.; Ciccullo, F.; Cassinese, A.; Toccoli, T.; Aversa, L.; Tatti, R.; Verucchi, R.

    2014-04-07

    In this paper, we report on the fabrication of N,N′-1H,1H-perfluorobutil dicyanoperylenediimide (PDIF-CN{sub 2}) organic thin-film transistors by Supersonic Molecular Beam Deposition. The devices exhibit mobility up to 0.2 cm{sup 2}/V s even if the substrate is kept at room temperature during the organic film growth, exceeding by three orders of magnitude the electrical performance of those grown at the same temperature by conventional Organic Molecular Beam Deposition. The possibility to get high-mobility n-type transistors avoiding thermal treatments during or after the deposition could significantly extend the number of substrates suitable to the fabrication of flexible high-performance complementary circuits by using this compound.

  1. Integrating Epitaxial-Like Pb(Zr,Ti)O3 Thin-Film into Silicon for Next-Generation Ferroelectric Field-Effect Transistor

    PubMed Central

    Park, Jae Hyo; Kim, Hyung Yoon; Jang, Gil Su; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Kiaee, Zohreh; Joo, Seung Ki

    2016-01-01

    The development of ferroelectric random-access memory (FeRAM) technology with control of grain boundaries would result in a breakthrough for new nonvolatile memory devices. The excellent piezoelectric and electrical properties of bulk ferroelectrics are degraded when the ferroelectric is processed into thin films because the grain boundaries then form randomly. Controlling the nature of nucleation and growth are the keys to achieving a good crystalline thin-film. However, the sought after high-quality ferroelectric thin-film has so far been thought to be impossible to make, and research has been restricted to atomic-layer deposition which is extremely expensive and has poor reproducibility. Here we demonstrate a novel epitaxial-like growth technique to achieve extremely uniform and large rectangular-shaped grains in thin-film ferroelectrics by dividing the nucleation and growth phases. With this technique, it is possible to achieve 100-μm large uniform grains, even made available on Si, which is large enough to fabricate a field-effect transistor in each grain. The electrical and reliability test results, including endurance and retention test results, were superior to other FeRAMs reported so far and thus the results presented here constitute the first step toward the development of FeRAM using epitaxial-like ferroelectric thin-films. PMID:27005886

  2. Total ionizing dose radiation effects on NMOS parasitic transistors in advanced bulk CMOS technology devices

    NASA Astrophysics Data System (ADS)

    Baoping, He; Zujun, Wang; Jiangkun, Sheng; Shaoyan, Huang

    2016-12-01

    In this paper, total ionizing dose effect of NMOS transistors in advanced CMOS technology are examined. The radiation tests are performed at 60Co sources at the dose rate of 50 rad (Si)/s. The investigation's results show that the radiation-induced charge buildup in the gate oxide can be ignored, and the field oxide isolation structure is the main total dose problem. The total ionizing dose (TID) radiation effects of field oxide parasitic transistors are studied in detail. An analytical model of radiation defect charge induced by TID damage in field oxide is established. The I - V characteristics of the NMOS parasitic transistors at different doses are modeled by using a surface potential method. The modeling method is verified by the experimental I - V characteristics of 180 nm commercial NMOS device induced by TID radiation at different doses. The model results are in good agreement with the radiation experimental results, which shows the analytical model can accurately predict the radiation response characteristics of advanced bulk CMOS technology device. Project supported by the National Natural Science Foundation of China (No. 11305126).

  3. Dual-gate photo thin-film transistor: a “smart” pixel for high- resolution and low-dose X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Ou, Hai; Chen, Jun

    2015-06-01

    Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The "smart" pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients.

  4. Nano-crystallization in ZnO-doped In2O3 thin films via excimer laser annealing for thin-film transistors

    NASA Astrophysics Data System (ADS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Ishihara, Ryoichi; van der Cingel, Johan; Mofrad, Mohammad R. T.; Bermundo, Juan Paolo Soria; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki; Uraoka, Yukiharu

    2016-06-01

    In a previous work, we reported the high field effect mobility of ZnO-doped In2O3 (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  5. Effects of Oxygen Contents in the Active Channel Layer on Electrical Characteristics of IGZO-Based Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Chiu, C. J.; Chang, S. P.; Lu, C. Y.; Su, P. Y.; Chang, S. J.

    2011-12-01

    The authors report the fabrication of high performance a-IGZO thin film transistors (TFTs) with polymer gate dielectric prepared by spin-coating on a glass substrate. It was found that transmittance of the deposited polymer film was larger than 90% at 600 nm. It was also found that the a-IGZO TFT prepared with 0.14% oxygen partial pressure with annealing could provide us a higher mobility (i.e.,17.5 cm2/Vs) while maintaining good substrate swing and good Ion/Ioff.

  6. InN thin-film transistors fabricated on polymer sheets using pulsed sputtering deposition at room temperature

    NASA Astrophysics Data System (ADS)

    Lye, Khe Shin; Kobayashi, Atsushi; Ueno, Kohei; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-07-01

    Indium nitride (InN) is potentially suitable for the fabrication of high performance thin-film transistors (TFTs) because of its high electron mobility and peak electron velocity. However, InN is usually grown using a high temperature growth process, which is incompatible with large-area and lightweight TFT substrates. In this study, we report on the room temperature growth of InN films on flexible polyimide sheets using pulsed sputtering deposition. In addition, we report on the fabrication of InN-based TFTs on flexible polyimide sheets and the operation of these devices.

  7. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer.

    PubMed

    Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng

    2016-02-28

    Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (±2 V) and subthreshold swing (SS) (122-161 mV dec(-1)), high effective mobility (up to 17.6-37.7 cm(2) V(-1) s(-1)) and high on/off ratio (10(4)-10(7)). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption.

  8. Patterning technology for solution-processed organic crystal field-effect transistors

    NASA Astrophysics Data System (ADS)

    Li, Yun; Sun, Huabin; Shi, Yi; Tsukagoshi, Kazuhito

    2014-04-01

    Organic field-effect transistors (OFETs) are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recent development in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed.

  9. Nitrogen-doped graphene films from simple photochemical doping for n-type field-effect transistors

    NASA Astrophysics Data System (ADS)

    Li, Xinyu; Tang, Tao; Li, Ming; He, Xiancong

    2015-01-01

    Highly nitrogen-doped GO (NGO) and n-type graphene field effect transistor (FET) have been achieved by simple irradiation of graphene oxide (GO) thin films in NH3 atmosphere. The electrical properties of the NGO film were performed on electric field effect measurements, and it displays an n-type FET behavior with a charge neutral point (Dirac point) located at around -8 V. It is suggested that the amino-like nitrogen (N-A) mainly contributes to the n-type behavior. Furthermore, compared to the GO film irradiated in Ar atmosphere, the NGO film is much more capable to improve the electrical conductivity. It may attribute to nitrogen doping and oxygen reduction, both of which can effectively enhance the electrical conductivity.

  10. SiNx Charge Trap Nonvolatile Memory Based on ZnO Thin Film Transistor Prepared by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Kim, E.; Lee, K.; Kim, D.; Parsons, G. N.; Park, K.

    2011-12-01

    We fabricated a nonvolatile thin film transistor (TFT) memory with SiNx charge traps using a ZnO thin film as an active channel layer. The thin film of ZnO was deposited by using atomic layer deposition process at TALD = 125 °C. The ZnO films were investigated by X-ray diffraction and X-ray photoemission measurements. The electrical measurements of the nonvolatile TFT memory showed a field-effect mobility of 2.95 cm2 V-1 s-1, a threshold voltage of -7.24 V, a subthreshold swing of 1.7 V/dec, and an on/off ratio of 3.4×105. From the C-V measurement, the memory window of 2 V was obtained.

  11. Nitrogen-doped graphene films from simple photochemical doping for n-type field-effect transistors

    SciTech Connect

    Li, Xinyu; Tang, Tao; Li, Ming E-mail: lixinyu5260@163.com; He, Xiancong E-mail: lixinyu5260@163.com

    2015-01-05

    Highly nitrogen-doped GO (NGO) and n-type graphene field effect transistor (FET) have been achieved by simple irradiation of graphene oxide (GO) thin films in NH{sub 3} atmosphere. The electrical properties of the NGO film were performed on electric field effect measurements, and it displays an n-type FET behavior with a charge neutral point (Dirac point) located at around −8 V. It is suggested that the amino-like nitrogen (N-A) mainly contributes to the n-type behavior. Furthermore, compared to the GO film irradiated in Ar atmosphere, the NGO film is much more capable to improve the electrical conductivity. It may attribute to nitrogen doping and oxygen reduction, both of which can effectively enhance the electrical conductivity.

  12. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis.

    PubMed

    Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae

    2013-05-01

    We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.

  13. Effects of thermomechanical properties of polarizer components on light leakage in thin-film transistor liquid-crystal displays

    NASA Astrophysics Data System (ADS)

    Lin, Taiy-In; Chen, Alexander; Chen, Shou-I.; Leu, Jihperng

    2015-07-01

    In this paper, we present static thermal analysis of stress and strain on a thin-film transistor liquid-crystal display (TFT-LCD) panel and their correlation with light leakage phenomena under high-temperature durability test. Three-dimensional (3D) finite element analysis (FEA) is coupled with experimental parameters of key components of the TFT-LCD panel for the analysis. A strong correlation exists between light leakage and retardation difference induced by stress on triacetyl cellulose (TAC) films. Moreover, shrinkage in stretched poly(vinyl alcohol) (PVA) film and modulus of the adhesive layer are key factors affecting stress distribution and displacement of polarizer stack. An increase in Young’s modulus (E) of the adhesive layer effectively reduces polarizer shrinkage and light leakage at the center of the panel. A TAC film with lower Young’s modulus and/or coefficient of thermal expansion (CTE) is also an effective solution.

  14. Physical/chemical properties of tin oxide thin film transistors prepared using plasma-enhanced atomic layer deposition

    SciTech Connect

    Lee, Byung Kook; Jung, Eunae; Kim, Seok Hwan; Moon, Dae Chul; Lee, Sun Sook; Park, Bo Keun; Hwang, Jin Ha; Chung, Taek-Mo; Kim, Chang Gyoun; An, Ki-Seok

    2012-10-15

    Thin film transistors (TFTs) with tin oxide films as the channel layer were fabricated by means of plasma enhanced atomic layer deposition (PE-ALD). The as-deposited tin oxide films show n-type conductivity and a nano-crystalline structure of SnO{sub 2}. Notwithstanding the relatively low deposition temperatures of 70, 100, and 130 °C, the bottom gate tin oxide TFTs show an on/off drain current ratio of 10{sup 6} while the device mobility values were increased from 2.31 cm{sup 2}/V s to 6.24 cm{sup 2}/V s upon increasing the deposition temperature of the tin oxide films.

  15. High performance p-type NiOx thin-film transistor by Sn doping

    NASA Astrophysics Data System (ADS)

    Lin, Tengda; Li, Xiuling; Jang, Jin

    2016-06-01

    Major obstacles towards power efficient complementary electronics employing oxide thin-film transistors (TFTs) lie in the lack of equivalent well performing p-channel devices. Here, we report a significant performance enhancement of solution-processed p-type nickel oxide (NiOx) TFTs by introducing Sn dopant. The Sn-doped NiOx (Sn-NiOx) TFTs annealed at 280 °C demonstrate substantially improved electrical performances with the increase in the on/off current ratio (Ion/Ioff) by ˜100 times, field-effect mobility (μlin) by ˜3 times, and the decrease in subthreshold swing by half, comparing with those of pristine NiOx TFTs. X-ray photoelectron spectroscopy and X-ray diffraction results confirm that Sn atoms tend to substitute Ni sites and induce more amorphous phase. A decrease in density of states in the gap of NiOx by Sn doping and the shift of Fermi level (EF) into the midgap lead to the improvements of TFT performances. As a result, Sn-NiOx can be a promising material for the next-generation, oxide-based electronics.

  16. Thin-Film Transistors Fabricated Using Sputter Deposition of Zinc Oxide

    NASA Astrophysics Data System (ADS)

    Xiao, Nan

    2013-01-01

    Development of thin film transistors (TFTs) with conventional channel layer materials, such as amorphous silicon (a-Si) and polysilicon (poly-Si), has been extensively investigated. A-Si TFT currently serves the large flat panel industry; however advanced display products are demanding better TFT performance because of the associated low electron mobility of a-Si. This has motivated interest in semiconducting metal oxides, such as Zinc Oxide (ZnO), for TFT backplanes. This work involves the fabrication and characterization of TFTs using ZnO deposited by sputtering. An overview of the process details and results from recently fabricated TFTs following a full-factorial designed experiment will be presented. Material characterization and analysis of electrical results will be described. The investigated process variables were the gate dielectric and ZnO sputtering process parameters including power density and oxygen partial pressure. Electrical results showed clear differences in treatment combinations, with certain I-V characteristics demonstrating superior performance to preliminary work. A study of device stability will also be discussed.

  17. Mechanical Flexibility of Zinc Oxide Thin-Film Transistors Prepared by Transfer Printing Method

    NASA Astrophysics Data System (ADS)

    Eun, K. T.; Hwang, W. J.; Sharma, B. K.; Ahn, J. H.; Lee, Y. K.; Choa, S. H.

    In the present study, we demonstrate the performance of Zinc oxide thin film transistors (ZnO TFTs) array subjected to the strain under high bending test and the reliability of TFTs was confirmed for the bending fatigue test of 2000 cycles. Initially, ZnO TFTs were fabricated on Si substrate and subsequently transferred on flexible PET substrate using transfer printing process. It was observed that when the bending radius reached ≥ 11 mm then cracks start to initiate first at SiO2 bridges, acting as interconnecting layers among individual TFT. Whatever the strain is applied to the devices, it is almost equivalently adopted by the SiO2 bridges, as they are relatively weak compared to rest of the part. The initial cracking of destructed SiO2 bridge leads to the secondary cracks to the ITO electrodes upon further increment of bending radius. Numerical simulation suggested that the strain of SiO2 layer reached to fracture level of 0.55% which was concentrated at the edge of SiO2 bridge layer. It also suggests that the round shape of SiO2 bridge can be more fruitful to compensate the stress concentration and to prevent failure of device.

  18. Model for determination of mid-gap states in amorphous metal oxides from thin film transistors

    NASA Astrophysics Data System (ADS)

    Bubel, S.; Chabinyc, M. L.

    2013-06-01

    The electronic density of states in metal oxide semiconductors like amorphous zinc oxide (a-ZnO) and its ternary and quaternary oxide alloys with indium, gallium, tin, or aluminum are different from amorphous silicon, or disordered materials such as pentacene, or P3HT. Many ZnO based semiconductors exhibit a steep decaying density of acceptor tail states (trap DOS) and a Fermi level (EF) close to the conduction band energy (EC). Considering thin film transistor (TFT) operation in accumulation mode, the quasi Fermi level for electrons (Eq) moves even closer to EC. Classic analytic TFT simulations use the simplification EC-EF> `several'kT and cannot reproduce exponential tail states with a characteristic energy smaller than 1/2 kT. We demonstrate an analytic model for tail and deep acceptor states, valid for all amorphous metal oxides and include the effect of trap assisted hopping instead of simpler percolation or mobility edge models, to account for the observed field dependent mobility.

  19. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

    PubMed Central

    Zang, Yaping; Zhang, Fengjiao; Huang, Dazhen; Gao, Xike; Di, Chong-an; Zhu, Daoben

    2015-01-01

    The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa−1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications. PMID:25872157

  20. Performance Enhancement of Organic Thin-Film Transistors Using Bathophenanthroline:Cs Electron Injection Layer

    NASA Astrophysics Data System (ADS)

    Kim, Myunghwan; Kim, Jeongsoo; Son, Heegeun; Jang, Ji-Hyang; Yi, Moonsuk

    2010-10-01

    In this study, we fabricated an organic thin-film transistor (OTFT) with a bathophenanthroline (Bphen):Cs electron injection layer between an organic semiconductor (C60) and a metal electrode. We compared the electrical characteristics of OTFTs with and without Bphen:Cs insertion layer which depend on the insertion layer thickness. We found that the Bphen:Cs layer inserted between the active layer (C60) and the metal electrode played an important role in improving the electrical characteristics of the devices. When the OTFT with 5-Å-thick Bphen:Cs was compared with that without Bphen:Cs, the mobility and the output current were determined to increase from 0.029 cm2 V-1 s-1 and 4.32×10-7 A to 0.127 cm2 V-1 s-1 and 1.67×10-6 A, respectively. This improvement was attributed to the reduction in contact resistance between C60 and the Al electrode layer when a Bphen:Cs electron injection layer of optimum thickness was applied.

  1. Electrical instability of amorphous indium-gallium-zinc oxide thin film transistors under monochromatic light illumination

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoming; Wu, Chenfei; Lu, Hai; Ren, Fangfang; Xu, Qingyu; Ou, Huiling; Zhang, Rong; Zheng, Youdou

    2012-06-01

    The electrical instability behaviors of a positive-gate-bias-stressed amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistor (TFT) are studied under monochromatic light illumination. It is found that as the wavelength of incident light reduces from 750 nm to 450 nm, the threshold voltage of the illuminated TFT shows a continuous negative shift, which is caused by photo-excitation of trapped electrons at the channel/dielectric interface. Meanwhile, an increase of the sub-threshold swing (SS) is observed when the illumination wavelength is below 625 nm (˜2.0 eV). The SS degradation is accompanied by a simultaneous increase of the field effect mobility (μFE) of the TFT, which then decreases at even shorter wavelength beyond 540 nm (˜2.3 eV). The variation of SS and μFE is explained by a physical model based on generation of singly ionized oxygen vacancies (Vo+) and double ionized oxygen vacancies (Vo2+) within the a-IGZO active layer by high energy photons, which would form trap states near the mid-gap and the conduction band edge, respectively.

  2. Localized Tail States and Electron Mobility in Amorphous ZnON Thin Film Transistors

    PubMed Central

    Lee, Sungsik; Nathan, Arokia; Ye, Yan; Guo, Yuzheng; Robertson, John

    2015-01-01

    The density of localized tail states in amorphous ZnON (a-ZnON) thin film transistors (TFTs) is deduced from the measured current-voltage characteristics. The extracted values of tail state density at the conduction band minima (Ntc) and its characteristic energy (kTt) are about 2 × 1020 cm−3eV−1 and 29 meV, respectively, suggesting trap-limited conduction prevails at room temperature. Based on trap-limited conduction theory where these tail state parameters are considered, electron mobility is accurately retrieved using a self-consistent extraction method along with the scaling factor ‘1/(α + 1)’ associated with trapping events at the localized tail states. Additionally, it is found that defects, e.g. oxygen and/or nitrogen vacancies, can be ionized under illumination with hv ≫ Eg, leading to very mild persistent photoconductivity (PPC) in a-ZnON TFTs. PMID:26304606

  3. Roll-printed organic thin-film transistor using patterned poly(dimethylsiloxane) (PDMS) stamp.

    PubMed

    Jo, Jeongdai; Yu, Jong-Su; Lee, Taik-Min; Kim, Dong-Soo; Kim, Kwang-Young

    2010-05-01

    The roll-printed gate, source, and drain electrodes of organic thin-film transistors (OTFTs) were fabricated by gravure printing or gravure-offset printing using patterned poly(dimethylsiloxane) (PDMS) stamp with various channel lengths and low-resistance silver (Ag) pastes on flexible 150 x 150 mm2 plastic substrates. Bottom-contact roll-printed OTFTs used polyvinylphenol (PVP) as polymeric dielectric and bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) as organic semiconductor; they were formed by spin coating or ink-jetting. Depending on the choice of roll-printing method, the printed OTFTs obtained had a field-effect mobility of between 0.08 and 0.1 cm2/Vs, an on/off current ratio of between 10(4) and 10(5), and a subthreshold slope of between 1.96 and 2.32 V/decade. The roll-printing using patterned PDMS stamp and soluble processes made it possible to fabricate a printed OTFT with a channel length of between 12 to 74 microm on a plastic substrate; this was not previously possible using traditional printing techniques. The proposed fabrication process was 20 steps shorted than conventional fabrication techniques.

  4. The utilization of thin film transistor liquid crystal display waste glass as a pozzolanic material.

    PubMed

    Lin, K L; Huang, Wu-Jang; Shie, J L; Lee, T C; Wang, K S; Lee, C H

    2009-04-30

    This investigation elucidates the pozzolanic behavior of waste glass blended cement (WGBC) paste used in thin film transistor liquid crystal displays (TFT-LCD). X-ray diffraction (XRD) results demonstrate that the TFT-LCD waste glass was entirely non-crystalline. The leaching concentrations of the clay and TFT-LCD waste glass all met the current regulatory thresholds of the Taiwan EPA. The pozzolanic strength activity indices of TFT-LCD waste glass at 28 days and 56 days were 89% and 92%, respectively. Accordingly, this material can be regarded as a good pozzolanic material. The amount of TFT-LCD waste glass that is mixed into WGBC pastes affects the strength of the pastes. The strength of the paste clearly declined as the amount of TFT-LCD waste glass increased. XRD patterns indicated that the major difference was the presence of hydrates of calcium silicate (CSH, 2 theta=32.1 degrees), aluminate and aluminosilicate, which was present in WGBC pastes. Portland cement may have increased the alkalinity of the solution and induced the decomposition of the glass phase network. WGBC pastes that contained 40% TFT-LCD waste glass have markedly lower gel/space ratios and exhibit less degree of hydration than ordinary Portland cement (OPC) pastes. The most satisfactory characteristics of the strength were observed when the mixing ratio of the TFT-LCD waste glass was 10%.

  5. Polymer Thin Film Transistors: High Electron Mobility and Ambipolar Charge Transport

    NASA Astrophysics Data System (ADS)

    Jenekhe, Samson; Babel, Amit

    2004-03-01

    Along with high performance unipolar FETs, knowledge of ambipolar charge transport in conjugated polymers and organic semiconductors is important to realize the ultimate vision of all-plastic complementary integrated circuits for logic and memory applications. We present herein studies of electron transport in n-type conjugated ladder polymer, poly(benzobisimidazobenzophenanthroline) (BBL) in which we observed field-effect electron mobilities as high as 0.05-0.1 cm^2/Vs.^[1] We have also developed new ambipolar thin film transistors based on blends of BBL and copper phthalocyanine (CuPc). Ambipolar hole mobilities were as high as 2.0 × 10-4 cm^2/Vs while electron mobilities were up to 3.0 × 10-5 cm^2/Vs. Transmission electron microscopy showed crystallization of CuPc in the α -crystal form within the semicrystalline BBL matrix. On prolonged treatment of the blend FETs in methanol, unipolar hole mobilities as high as 2.0 × 10-3 cm^2/Vs were observed, comparable to hole mobilities in thermally evaporated CuPc FETs. [1] Babel, A.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13656.

  6. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    PubMed Central

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-01-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully. PMID:27725695

  7. Wireless thin film transistor based on micro magnetic induction coupling antenna

    PubMed Central

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-01-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT). PMID:26691929

  8. A physics-based model of threshold voltage for amorphous oxide semiconductor thin-film transistors

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Le; Chen, Wei-Feng; Zhou, Lei; Wu, Wei-Jing; Xu, Miao; Wang, Lei; Peng, Jun-Biao

    2016-03-01

    In the application of the Lambert W function, the surface potential for amorphous oxide semiconductor thin-film transistors (AOS TFTs) under the subthreshold region is approximated by an asymptotic equation only considering the tail states. While the surface potential under the above-threshold region is approximated by another asymptotic equation only considering the free carriers. The intersection point between these two asymptotic equations represents the transition from the weak accumulation to the strong accumulation. Therefore, the gate voltage corresponding to the intersection point is defined as threshold voltage of AOS TFTs. As a result, an analytical expression for the threshold voltage is derived from this novel definition. It is shown that the threshold voltage achieved by the proposed physics-based model is agreeable with that extracted by the conventional linear extrapolation method. Furthermore, we find that the free charge per unit area in the channel starts increasing sharply from the threshold voltage point, where the concentration of the free carriers is a little larger than that of the localized carriers. The proposed model for the threshold voltage of AOS TFTs is not only physically meaningful but also mathematically convenient, so it is expected to be useful for characterizing and modeling AOS TFTs.

  9. Wireless thin film transistor based on micro magnetic induction coupling antenna

    NASA Astrophysics Data System (ADS)

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-01

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the ‘internet of things’ (IoT).

  10. Wireless thin film transistor based on micro magnetic induction coupling antenna.

    PubMed

    Jun, Byoung Ok; Lee, Gwang Jun; Kang, Jong Gu; Kim, Seunguk; Choi, Ji-Woong; Cha, Seung Nam; Sohn, Jung Inn; Jang, Jae Eun

    2015-12-22

    A wireless thin film transistor (TFT) structure in which a source/drain or a gate is connected directly to a micro antenna to receive or transmit signals or power can be an important building block, acting as an electrical switch, a rectifier or an amplifier, for various electronics as well as microelectronics, since it allows simple connection with other devices, unlike conventional wire connections. An amorphous indium gallium zinc oxide (α-IGZO) TFT with magnetic antenna structure was fabricated and studied for this purpose. To enhance the induction coupling efficiency while maintaining the same small antenna size, a magnetic core structure consisting of Ni and nanowires was formed under the antenna. With the micro-antenna connected to a source/drain or a gate of the TFT, working electrical signals were well controlled. The results demonstrated the device as an alternative solution to existing wire connections which cause a number of problems in various fields such as flexible/wearable devices, body implanted devices, micro/nano robots, and sensors for the 'internet of things' (IoT).

  11. Reduced graphene oxide/molecular imprinted polymer-organic thin film transistor for amino acid detection

    NASA Astrophysics Data System (ADS)

    Halim, Nurul Farhanah AB.; Musa, Nur Hazwani; Zakaria, Zulkhairi; Von Schleusingen, Mubaraq; Ahmad, Mohd Noor; Derman, Nazree; Shakaff, Ali Yeon Md.

    2017-03-01

    This works reports the electrical performance of reduced graphene oxide (RGO)/Molecular imprinted polymer (MIP)- organic thin film transistor (OTFT) for amino-acid detection, serine. These biomimetic sensors consider MIP as man-tailored biomimetic recognition sites that play an important role in signal transduction. MIP provides recognition sites compatible with serine molecules was developed by dispersing serine with methylacrylate acid (MAA) as functional monomer and Ethylene glycol dimethylacrylate (EGDMA) as cross-linker. The imprinted polymeric were mixed with reduced graphene oxide to produced sensing layer for the sensor. RGO-MIP layer was introduced between source and drain of OTFT via spin coating as a detecting layer for serine molecules. RGO was introduced into MIP, to allow a highly conductive sensing material thus enhanced selectivity and sensitivity of the sensor. By analyzing the electrical performance of the sensors, the performances of OTFT sensor enhanced with RGO/MIP interlayer and OTFT sensor with MIP interlayer when exposed to serine analyte were obtained. The results showed that there were remarkable shifts of drain current (ID) obtained from OTFT sensor with RGO/MIP interlayer after exposed to serine analyte. Moreover, the sensitivity of OTFT sensor with RGO/MIP interlayer was nearly higher than the OTFT sensor with MIP interlayer. Hence, it proved that RGO successfully enhanced the sensing performance of OTFT sensor.

  12. Design of Sequential Lateral Solidification Crystallization Method for Low Temperature Poly-Si Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Park, Ji-Yong; Park, Hye-Hyang; Lee, Ki-Yong; Chung, Ho-Kyoon

    2004-04-01

    Sequential lateral solidification (SLS) is known as a promising method for making low-temperature poly-Si thin film transistors (LTPS TFT) with superior performance for the fabrication of highly circuit-integrated flat panel displays such as TFT liquid crystal display (LCD) and TFT organic light Emitting diode (OLED). In this work we studied the dependence of TFT characteristics on SLS poly-Si grain width and suggested the methods of designing SLS mask pattern to achieve uniform TFT performance. We varied the width of the poly-Si grain by employing the 2-shot SLS mask pattern with different overlaps between the 1st and 2nd laser pulses. The width of the poly-Si grain decreased with decreasing the overlap. However, the measured TFT characteristics revealed that the width of the poly-Si grain negligibly influences the device properties. We could achieve the TFT mobility of approximately 350 cm2/V\\cdots for the overlap of not less than 1 μm. We suggested that the SLS mask pattern (x, y) should be designed such that 2+y≤ x<2 (C-SLG distance) and y > (optical resolution), where x is the spacing of the laser-absorbed region and y is the spacing of the laser-nonabsorbed region on the substrate.

  13. Solution-processed gadolinium doped indium-oxide thin-film transistors with oxide passivation

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hun; Kim, Taehun; Lee, Jihun; Avis, Christophe; Jang, Jin

    2017-03-01

    We studied the effect of Gd doping on the structural properties of solution processed, crystalline In2O3 for thin-film transistor (TFT) application. With increasing Gd in In2O3 up to 20%, the material structure changes into amorphous phase, and the oxygen vacancy concentration decreases from 15.4 to 8.4%, and M-OH bonds from 33.5 to 23.7%. The field-effect mobility for the Gd doped In2O3 TFTs decreases and threshold voltage shifts to the positive voltage with increasing Gd concentration. In addition, the stability of the solution processed TFTs can also be improved by increasing Gd concentration. As a result, the optimum Gd concentration is found to be ˜5% in In2O3 and the 5% Gd doped In2O3 TFTs with the Y2O3 passivation layer exhibit the linear mobility of 9.74 cm2/V s, the threshold voltage of -0.27 V, the subthreshold swing of 79 mV/dec., and excellent bias stability.

  14. Active Matrix Driving Organic Light-Emitting Diode Panel Using Organic Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Ohta, Satoru; Chuman, Takashi; Miyaguchi, Satoshi; Satoh, Hideo; Tanabe, Takahisa; Okuda, Yoshiyuki; Tsuchida, Masami

    2005-06-01

    We developed an active matrix driving organic light-emitting diode (OLED) panel on a glass substrate using two organic thin-film transistors (OTFTs) per pixel, a switching OTFT and a driving OTFT. The OTFTs are bottom contact structures with the high-dielectric constant gate insulator tantalum oxide (Ta2O5, relative dielectric constant of 23) produced by anodization in ammonium adipate solution and with pentacene as the active layer. The W/L (where W and L are the OTFTs channel width and length, respectively) was 400 μm/10 μm for the switching OTFTs and 680 μm/10 μm for the driving OTFTs. The characteristics of the OTFTs were improved by treating the Ta2O5 surface with hexamethyldisilazane (HMDS), so that the field-effect mobility was 2.0× 10-1 cm2 V-1 s-1 and the current on/off ratio was 105. A green phosphorescent dopant, tris(2-phenylpyridine)iridium [Ir(ppy)3], was used for the OLED layer. The panel had 8× 8 pixels and the aperture ratio was 27%. We confirmed a 16-gray-scale representation and a luminance of 400 cd/m2.

  15. Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector

    PubMed Central

    Jung, Chulseung; Kim, Seung Min; Moon, Hyunseong; Han, Gyuchull; Kwon, Junyeon; Hong, Young Ki; Omkaram, Inturu; Yoon, Youngki; Kim, Sunkook; Park, Jozeph

    2015-01-01

    Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min. Our MoSe2 TFT with a reasonably high field-effect mobility (10 cm2/V · s) exhibits a high photoresponsivity (93.7 A/W) and a fast photoresponse time (τrise ~ 0.4 s) under the illumination of light, which demonstrates the practical feasibility of multilayer MoSe2 TFTs for photodetector applications. PMID:26477744

  16. Electrical properties of pseudo-single-crystalline germanium thin-film-transistors fabricated on glass substrates

    NASA Astrophysics Data System (ADS)

    Kasahara, K.; Nagatomi, Y.; Yamamoto, K.; Higashi, H.; Nakano, M.; Yamada, S.; Wang, D.; Nakashima, H.; Hamaya, K.

    2015-10-01

    By developing a low-temperature (≤300 °C) fabrication process for the gate-stack structure on Ge(111), we study electrical properties of thin film transistors (TFTs) consisting of (111)-oriented pseudo-single-crystalline-germanium (PSC-Ge) channels on glass. Although the Hall mobility ( μ Hall ) of p-type PSC-Ge layers reaches 210 cm2/V s and the gate-stack/Ge interface has low trap density, we observe field-effect-mobility (μFE) fluctuation in the p-channel TFTs from 8.2 to 71 cm2/V s, depending on the thickness of the PSC-Ge layer. Considering the μFE fluctuation and low I on / I off ratio in the p-TFTs, we infer the presence of defective Ge layers near the surface of the glass substrate. This study reveals that it is quite important for the high-performance p-Ge TFTs to improve the quality of the Ge layer near the surface of the glass substrate or to choose other materials with better Ge/substrate interface qualities.

  17. Electrical characterization of reduced graphene oxide (rGO) on organic thin film transistor (OTFT)

    NASA Astrophysics Data System (ADS)

    Musa, Nurhazwani; Halim, Nurul Farhanah Ab.; Ahmad, Mohd Noor; Zakaria, Zulkhairi; Hashim, Uda

    2017-03-01

    A green method and eco-friendly solution were used to chemically reduce graphene oxide (GO) to graphene using green reductant. In this study, graphene oxide (GO) were prepared by using Tours method. Then, reduced graphene oxides (rGO) were prepared by using three typical reduction agents: L-ascorbic acid (L-AA), formamidinesulfinic acid (FAS) and sodium sulfite (Na2SO3). The reduced materials were characterized by Fourier transform infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA) and X-ray diffraction (XRD). Graphene based organic thin film transistor (G-OTFT) was prepared by a spin coating and thermal evaporation technique. The electrical characterization of G-OTFT was analyzed by using semiconductor parameter analyzer (SPA). The G-OTFT devices show p-type semiconducting behaviour. This article focuses on the synthesis and reduction of graphene oxide using three different reductants in order to maximise its electrical conductivity. The rGO product demonstrated a good electrical conductivity performance with highly sensitivity sensor.

  18. Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Heesoo; Chang, Ki Soo; Tak, Young Jun; Jung, Tae Soo; Park, Jeong Woo; Kim, Won-Gi; Chung, Jusung; Jeong, Chan Bae; Kim, Hyun Jae

    2016-10-01

    A new technique is proposed for the activation of low temperature amorphous InGaZnO thin film transistor (a-IGZO TFT) backplanes through application of a bias voltage and annealing at 130 °C simultaneously. In this ‘electrical activation’, the effects of annealing under bias are selectively focused in the channel region. Therefore, electrical activation can be an effective method for lower backplane processing temperatures from 280 °C to 130 °C. Devices fabricated with this method exhibit equivalent electrical properties to those of conventionally-fabricated samples. These results are analyzed electrically and thermodynamically using infrared microthermography. Various bias voltages are applied to the gate, source, and drain electrodes while samples are annealed at 130 °C for 1 hour. Without conventional high temperature annealing or electrical activation, current-voltage curves do not show transfer characteristics. However, electrically activated a-IGZO TFTs show superior electrical characteristics, comparable to the reference TFTs annealed at 280 °C for 1 hour. This effect is a result of the lower activation energy, and efficient transfer of electrical and thermal energy to a-IGZO TFTs. With this approach, superior low-temperature a-IGZO TFTs are fabricated successfully.

  19. Quasi-unipolar pentacene films embedded with fullerene for non-volatile organic transistor memories

    SciTech Connect

    Lee, Juhee; Lee, Sungpyo; Lee, Moo Hyung; Kang, Moon Sung

    2015-02-09

    Quasi-unipolar non-volatile organic transistor memory (NOTM) can combine the best characteristics of conventional unipolar and ambipolar NOTMs and, as a result, exhibit improved device performance. Unipolar NOTMs typically exhibit a large signal ratio between the programmed and erased current signals but also require a large voltage to program and erase the memory cells. Meanwhile, an ambipolar NOTM can be programmed and erased at lower voltages, but the resulting signal ratio is small. By embedding a discontinuous n-type fullerene layer within a p-type pentacene film, quasi-unipolar NOTMs are fabricated, of which the signal storage utilizes both electrons and holes while the electrical signal relies on only hole conduction. These devices exhibit superior memory performance relative to both pristine unipolar pentacene devices and ambipolar fullerene/pentacene bilayer devices. The quasi-unipolar NOTM exhibited a larger signal ratio between the programmed and erased states while also reducing the voltage required to program and erase a memory cell. This simple approach should be readily applicable for various combinations of advanced organic semiconductors that have been recently developed and thereby should make a significant impact on organic memory research.

  20. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  1. Photosensitivity of InZnO thin-film transistors using a solution process

    NASA Astrophysics Data System (ADS)

    Choi, Jongwon; Park, Junghak; Lim, Keon-Hee; Cho, Nam-kwang; Lee, Jinwon; Jeon, Sanghun; Kim, Youn Sang

    2016-09-01

    Oxide semiconductor devices play a role in both switches and photo-sensors in interactive displays. During the fabrication of oxide semiconductor devices, the sol-gel solution process that is used to form an oxide semiconductor has various merits, including its simplicity and low cost as well as its good composition controllability. Here, we present the photosensitivity characteristics of an oxide photo thin-film transistor (TFT) created using the InZnO (IZO) sol-gel process. Upon exposure to light, photocurrent (Iphoto) in the negative gate bias regime is significantly increased with a negligible threshold voltage shift. The photosensitivity is modulated by geometrical factors and by the IZO material composition. We observed a significant effect of the channel thickness and IZO composition on the photosensitivity, which was attributed to the screening effect of optically ionized oxygen vacancies (Vo++). In particular, the optimized bi-layered oxide photo-TFT presents a good Iphoto/Idark photosensitivity value of 3 × 104 and a subthreshold slope of 0.96 V/decade. In addition, the persistent photoconductivity of the oxide photo-TFT was removed by applying positive gate voltage, resulting in good high-speed operation. These results taken together demonstrate that the IZO photo-TFT produced by the sol-gel process can be workable when applied to interactive displays.

  2. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    SciTech Connect

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a “step-composition gradient channel.” We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (−3.7 V) and good instability characteristics with a reduced threshold voltage shift (Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm{sup 2}/V s. We presented a unique active layer of the “step-composition gradient channel” in the oxide TFTs and explained the mechanism of adequate channel design.

  3. Ar plasma treated ZnON transistor for future thin film electronics

    SciTech Connect

    Lee, Eunha E-mail: jeonsh@korea.ac.kr; Benayad, Anass; Kim, HeeGoo; Park, Gyeong-Su; Kim, Taeho; Jeon, Sanghun E-mail: jeonsh@korea.ac.kr

    2015-09-21

    To achieve high-mobility and high-reliability oxide thin film transistors (TFTs), ZnON has been investigated following an anion control strategy based on the substitution of oxygen with nitrogen in ZnO. However, as nitrogen possesses, compared to oxygen, a low reactivity with Zn, the chemical composition of ZnON changes easily, causing in turn a degradation of both the performance and the stability. Here, we have solved the issues of long-time stability and composition non-uniformity while maintaining a high channel mobility by adopting the argon plasma process, which can delay the reaction of oxygen with Zn–O–N; as a result, owing to the formation of very fine nano-crystalline structure in stable glassy phase without changes in the chemical composition, the material properties and stability under e-radiation have significantly improved. In particular, the channel mobility of the ZnON TFTs extracted from the pulsed I−V method was measured to be 138 cm{sup 2}/V s.

  4. On-Current Modeling of Polycrystalline Silicon Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Navneet; Tyagi, B. P.

    2005-01-01

    We propose an on-current (above threshold voltage) model of polycrystalline silicon thin-film transistors (poly-Si TFTs). The model includes the study of the effect of trap state density, poly-Si inversion layer thickness and temperature on the TFT characteristics. Effective carrier mobility and I-V characteristics are described by considering the mechanism of capture and release of carriers at grain boundary trap states and the thermionic emission theory. It is found that at low as well as at high doping concentrations, the effective carrier mobility (µeff) increases with increasing temperature whereas a dip is observed at intermediate doping concentration. At very high and very low doping concentration the effect of temperature on the mobility is found to be almost negligible. Calculations reveal that effective carrier mobility and drain current increase as the gate bias increases and are larger for a lower trap state density. The calculated value of activation energy decreases as the gate bias increases and is larger for a larger poly-Si inversion layer thickness. A comparison between the present predictions and the experimental results shows reasonably good agreement.

  5. Temperature-dependent charge injection and transport in pentacene thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Dong Wook; Shin, Hyunji; Park, Ji-Ho; Park, Jaehoon; Choi, Jong Sun

    2015-11-01

    The electrical characteristics of p-channel pentacene thin-film transistors (TFTs) were analyzed at different operating temperatures ranging from 253 to 353 K. An improvement in the drain current and field-effect mobility of the pentacene TFTs is observed with increasing temperature. From the Arrhenius plots of field-effect mobility extracted at various temperatures, a lower activation energy of 99.34 meV was obtained when the device is operating in the saturation region. Such observation is ascribed to the thermally activated hole transport through the pentacene grain boundaries. On the other hand, it was found that the Au/pentacene contact significantly affects the TFTs electrical characteristics in the linear region, which resulted in a higher activation energy. The activation energy based on the linear field-effect mobility, which increased from 344.61 to 444.70 meV with decreasing temperature, implies the charge-injection-limited electrical behavior of pentacene TFTs at low temperatures. The thermally induced electrical characteristic variations in pentacene TFTs can thus be studied through the temperature dependence of the charge injection and transport processes.

  6. Universal diffusion-limited injection and the hook effect in organic thin-film transistors.

    PubMed

    Liu, Chuan; Huseynova, Gunel; Xu, Yong; Long, Dang Xuan; Park, Won-Tae; Liu, Xuying; Minari, Takeo; Noh, Yong-Young

    2016-07-21

    The general form of interfacial contact resistance was derived for organic thin-film transistors (OTFTs) covering various injection mechanisms. Devices with a broad range of materials for contacts, semiconductors, and dielectrics were investigated and the charge injections in staggered OTFTs was found to universally follow the proposed form in the diffusion-limited case, which is signified by the mobility-dependent injection at the metal-semiconductor interfaces. Hence, real ohmic contact can hardly ever be achieved in OTFTs with low carrier concentrations and mobility, and the injection mechanisms include thermionic emission, diffusion, and surface recombination. The non-ohmic injection in OTFTs is manifested by the generally observed hook shape of the output conductance as a function of the drain field. The combined theoretical and experimental results show that interfacial contact resistance generally decreases with carrier mobility, and the injection current is probably determined by the surface recombination rate, which can be promoted by bulk-doping, contact modifications with charge injection layers and dopant layers, and dielectric engineering with high-k dielectric materials.

  7. Method for the determination of bulk and interface density of states in thin-film transistors

    SciTech Connect

    Lui, O. K. B.; Tam, S. W.-B.; Migliorato, P.; Shimoda, T.

    2001-06-01

    In this article we present a method for the accurate determination of interface and bulk density of states (DOS) in thin-film transistors (TFTs), based on the combined analysis of transfer (I{sub D}{endash}V{sub GS}) and capacitance{endash}voltage characteristics. This analysis has achieved a number of results, eliminating sources of inaccuracies that are known to be present in other methods. A procedure for the determination of the electron and hole flatband conductances and bulk Fermi energy is demonstrated. A recursive procedure is employed to extract the bulk DOS directly from Poisson{close_quote}s equation. The advantages of this method are the greater immunity to noise from the original data, the use of the complete Fermi function (no 0 K approximation), and the applicability to thin active layers. This method yields the interface state density spectrum as well as the bulk DOS. This information is very important for device design, process characterization, and modeling of TFTs. {copyright} 2001 American Institute of Physics.

  8. Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors

    NASA Astrophysics Data System (ADS)

    Martins, R.; Barquinha, P.; Ferreira, I.; Pereira, L.; Gonçalves, G.; Fortunato, E.

    2007-02-01

    The role of order and disorder on the electronic performances of n-type ionic oxides such as zinc oxide, gallium zinc oxide, and indium zinc oxide used as active (channel) or passive (drain/source) layers in thin film transistors (TFTs) processed at room temperature are discussed, taking as reference the known behavior observed in conventional covalent semiconductors such as silicon. The work performed shows that while in the oxide semiconductors the Fermi level can be pinned up within the conduction band, independent of the state of order, the same does not happen with silicon. Besides, in the oxide semiconductors the carrier mobility is not bandtail limited and so disorder does not affect so strongly the mobility as it happens in covalent semiconductors. The electrical properties of the oxide films (resistivity, carrier concentration, and mobility) are highly dependent on the oxygen vacancies (source of free carriers), which can be controlled by changing the oxygen partial pressure during the deposition process and/or by adding other metal ions to the matrix. In this case, we make the oxide matrix less sensitive to the presence of oxygen, widening the range of oxygen partial pressures that can be used and thus improving the process control of the film resistivity. The results obtained in fully transparent TFT using polycrystalline ZnO or amorphous indium zinc oxide (IZO) as channel layers and highly conductive poly/nanocrystalline ZGO films or amorphous IZO as drain/source layers show that both devices work in the enhancement mode, but the TFT with the highest electronic saturation mobility and on/off ratio 49.9cm2/Vs and 4.3×108, respectively, are the ones in which the active and passive layers are amorphous. The ZnO TFT whose channel is based on polycrystalline ZnO, the mobility and on/off ratio are, respectively, 26cm2/Vs and 3×106. This behavior is attributed to the fact that the electronic transport is governed by the s-like metal cation conduction bands

  9. Characteristics of flexographic printed indium-zinc-oxide thin films as an active semiconductor layer in thin film field-effect transistors

    NASA Astrophysics Data System (ADS)

    Dilfer, Stefan; Hoffmann, Rudolf C.; Dörsam, Edgar

    2014-11-01

    Characteristics of oxide semiconductor thin film transistors prepared by flexographic printing technique have been studied. The device was a field-effect transistor substrate (15 mm × 15 mm, n-doped silicon, 90 nm SiO2 layer) with pre-structured gold electrodes and a printed active layer. The active layer was printed with a indium-zinc-oxide precursor solution and then annealed at 450 °C for 4 min on a hotplate. Influences of typographical parameters, i.e. printing pressure, anilox roller pressure, ink supply rate, printing velocity and printing plate (cliché) properties were studied. Reference active layers were produced by spin coating. The printed IZO ceramic layer with a dry film thickness between 3 and 8 nm, deposited onto the substrate for field-effect transistors provided a good performance with charge carrier mobilities (μ) up to 2.4 cm2 V-1 s-1, on/off current ratios (Ion/off ratio) up to 5.2 × 107 and mean threshold voltages (Vth) of +4 V. The characterization of the printed and annealed IZO layer by AFM revealed the amorphous nature of the printed active layer films with a root-mean square roughness of 0.8 nm.

  10. Impact of universal mobility law on polycrystalline organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Raja, Munira; Donaghy, David; Myers, Robert; Eccleston, Bill

    2012-10-01

    We have developed novel analytical models for polycrystalline organic thin-film transistor (OTFT) by employing new concepts on the charge carrier injection to polysilicon thin-films. The models, also incorporate the effect of contact resistance associated with the poor ohmic nature of the contacts. The drain current equations of the OTFT, both in the quasi-diffusion and quasi-drift regimes, predict temperature dependencies on essential material and device parameters. Interestingly, under the drift regime, the polycrystalline OTFT model reveals similar power dependencies on the applied voltages, to those of purely disordered model developed by utilizing the universal mobility law (UML). Such similarities are not thought to be coincidental since the effect of gate voltage on surface potential is influenced by the Fermi level pinning in the grain boundary. Nonetheless, the best fits on the data of 6,13-bis(tri-isopropylsilylethynyl) OTFTs are attained with the proposed polycrystalline rather than the disordered model, particularly at low gate voltages where the diffusive component is dominant. Moreover, in order to understand the effect of grain boundaries, we devise a relationship for the dependency of the effective mobility on carrier concentration, assuming a crystalline region to be in direct contact with a disordered region. Interestingly, we find a similar dependency as the UML in purely disordered materials, which further signifies the conduction to be limited by the grain boundaries. Subsequently, an analytical model for the variation of the effective mobility with gate voltage is established. Such models are vital in assisting the development of more accurate designs of the novel organic circuits.

  11. Molecular orientation dependence of hole-injection barrier in pentacene thin film on the Au surface in organic thin film transistor

    NASA Astrophysics Data System (ADS)

    Ihm, Kyuwook; Kim, Bongsoo; Kang, Tai-Hee; Kim, Ki-Jeong; Joo, Min Ho; Kim, Tae Hyeong; Yoon, Sang Soo; Chung, Sukmin

    2006-07-01

    We have investigated the effects of a buffer layer insertion on the performance of the pentacene based thin film transistor with a bottom contact structure. When the pentacene molecules have a standing up coordination on the Au surface that is modified by the benzenethiol or methanethiol, the transition region in the pentacene thin film is removed along the boundary between the Au and silicon oxide region, and the hole-injection barrier decreases by 0.4eV. Pentacene on various surfaces showed that the highly occupied molecular level is 0.2-0.4eV lower in the standing up coordination than in the lying down coordination.

  12. Tips pentacene crystal alignment for improving performance of solution processed organic thin film transistors

    NASA Astrophysics Data System (ADS)

    He, Zhengran

    A newly-developed p-type organic semiconductor 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS pentacene) demonstrates various advantages such as high mobility, air stability and solution processibility, but at the same time its application is restricted by major issues, such as crystal misorientation and performance variation of organic thin-film transistors (OTFTs). This dissertation demonstrates several different approaches to address these issues. As a result, both crystal orientation and areal coverage can be effectively improved, leading to an enhancement of average mobility and performance consistency of OTFTs. Chapter 1 presents an introduction and background of this dissertation. Chapter 2 explores the usage of inorganic silica nanoparticles to manipulate the morphology of TIPS pentacene thin films and the performance of solution-processed organic OTFTs. The resultant drop-cast films yield improved morphological uniformity at ~10% SiO2 loading, which also leads to a 3-fold increase in average mobility and nearly 4-times reduction in the ratio of standard deviation of mobility (μStdev) to average mobility (μAvg). The experimental results suggest that the SiO2 nanoparticles mostly aggregate at TIPS pentacene grain boundaries, and that 10% nanoparticle concentration effectively reduces the undesirable crystal misorientation without considerably compromising TIPS pentacene crystallinity. Chapter 3 discusses the utilization of air flow to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs. Under air-flow navigation (AFN), TIPS pentacene forms thin films with improved crystal orientation and increased areal coverage, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency. Chapter 4 investigates the critical roles of lateral and vertical phase separation in the performance of the next-generation organic and hybrid electronic

  13. Effect of cadmium arachidate layers on the growth of pentacene and the performance of pentacene-based thin film transistors.

    PubMed

    Nayak, Pradipta K; Kim, Jinwoo; Cho, Junhee; Lee, Changhee; Hong, Yongtaek

    2009-06-02

    The effect of cadmium arachidate (CdA) layers deposited by Langmuir-Blodgett technique on the growth of pentacene thin films and the performance of pentacene-based thin film transistors has been investigated. The hydrophobicity of the SiO2 gate dielectric surface was increased (surface energy reduced) with the deposition of CdA layers as a result of the presence of long hydrophobic alkyl chains attached to the cadmium atoms. The change in surface wetting properties of SiO2 strongly influenced the growth mechanism of pentacene thin films. The grain size and root-mean-square surface roughness of pentacene was decreased with an increase in the number of CdA layers compared to the pentacene deposited on a bare SiO2 surface. Organic thin film transistors (OTFTs) with seven layers of CdA on SiO2 showed the highest mobility of 0.27 cm2/Vs and the lowest subthreshold slope of 2.4 V/dec. The enhanced electrical properties of the OTFTs with SiO2/CdA as the dielectric is attributed to the better intermolecular connection, tight packing, and improved surface quality of the pentacene, as evident from the X-ray diffraction (XRD) and atomic force microscopy (AFM) results.

  14. Characterizing p-channel thin film transistors using ZnO/hydrated polyvinyl alcohol as the conducting channel

    NASA Astrophysics Data System (ADS)

    Liau, Leo Chau-Kuang; Hsu, Tzu-Hsien; Lo, Pei-Hsuan

    2014-08-01

    We report the characteristics of p-channel thin film transistors (p-TFTs) with ZnO/hydrated polyvinyl alcohol (PVA) (ZnO/PVA) conducting channels. The metal-oxide-semiconductor structure of the p-TFTs was composed of indium tin oxide (ITO)/SiO2/ZnO/PVA layers. The TFT was assembled using PVA gel, which was glued to ITO substrates patterned to form source and drain electrodes. The ZnO/PVA composite film acted as an effective conducting film because of the chemisorption reaction at the film interface where free electrons can be generated. The formation of the conducting channel was also affected by VG applied to the TFT. The ZnO/PVA-based TFTs demonstrated p-channel transistor performance, shown by current-voltage (I-V) data analysis. The electrical parameters of the device were evaluated, including the on/off ratio (˜103), threshold voltage (Vth, -1 V), and subthreshold swing (-2.2 V/dec). The PVA/ZnO-based p-TFTs were fabricated using simple and cost-effective approaches instead of doping methods.

  15. Characterizing p-channel thin film transistors using ZnO/hydrated polyvinyl alcohol as the conducting channel

    SciTech Connect

    Liau, Leo Chau-Kuang Hsu, Tzu-Hsien; Lo, Pei-Hsuan

    2014-08-11

    We report the characteristics of p-channel thin film transistors (p-TFTs) with ZnO/hydrated polyvinyl alcohol (PVA) (ZnO/PVA) conducting channels. The metal-oxide-semiconductor structure of the p-TFTs was composed of indium tin oxide (ITO)/SiO{sub 2}/ZnO/PVA layers. The TFT was assembled using PVA gel, which was glued to ITO substrates patterned to form source and drain electrodes. The ZnO/PVA composite film acted as an effective conducting film because of the chemisorption reaction at the film interface where free electrons can be generated. The formation of the conducting channel was also affected by V{sub G} applied to the TFT. The ZnO/PVA-based TFTs demonstrated p-channel transistor performance, shown by current-voltage (I-V) data analysis. The electrical parameters of the device were evaluated, including the on/off ratio (∼10{sup 3}), threshold voltage (V{sub th}, −1 V), and subthreshold swing (−2.2 V/dec). The PVA/ZnO-based p-TFTs were fabricated using simple and cost-effective approaches instead of doping methods.

  16. Automated Composites Processing Technology: Film Module

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce

    2004-01-01

    NASA's Marshall Space Flight Center (MSFC) has developed a technology that combines a film/adhesive laydown module with fiber placement technology to enable the processing of composite prepreg tow/tape and films, foils or adhesives on the same placement machine. The development of this technology grew out of NASA's need for lightweight, permeation-resistant cryogenic propellant tanks. Autoclave processing of high performance composites results in thermally-induced stresses due to differences in the coefficients of thermal expansion of the fiber and matrix resin components. These stresses, together with the reduction in temperature due to cryogen storage, tend to initiate microcracking within the composite tank wall. One way in which to mitigate this problem is to introduce a thin, crack-resistant polymer film or foil into the tank wall. Investigation into methods to automate the processing of thin film or foil materials into composites led to the development of this technology. The concept employs an automated film supply and feed module that may be designed to fit existing fiber placement machines, or may be designed as integral equipment to new machines. This patent-pending technology can be designed such that both film and foil materials may be processed simultaneously, leading to a decrease in part build cycle time. The module may be designed having a compaction device independent of the host machine, or may utilize the host machine's compactor. The film module functions are controlled by a dedicated system independent of the fiber placement machine controls. The film, foil, or adhesive is processed via pre-existing placement machine run programs, further reducing operational expense.

  17. Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors.

    PubMed

    Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng

    2016-06-28

    Ultrathin film with thickness below 15 nm of organic semiconductors provides excellent platform for some fundamental research and practical applications in the field of organic electronics. However, it is quite challenging to develop a general principle for the growth of uniform and continuous ultrathin film over large area. Dip-coating is a useful technique to prepare diverse structures of organic semiconductors, but the assembly of organic semiconductors in dip-coating is quite complicated, and there are no reports about the core rules for the growth of ultrathin film via dip-coating until now. In this work, we develop a general strategy for the growth of ultrathin film of organic semiconductor via dip-coating, which provides a relatively facile model to analyze the growth behavior. The balance between the three direct factors (nucleation rate, assembly rate, and recession rate) is the key to determine the growth of ultrathin film. Under the direction of this rule, ultrathin films of four organic semiconductors are obtained. The field-effect transistors constructed on the ultrathin film show good field-effect property. This work provides a general principle and systematic guideline to prepare ultrathin film of organic semiconductors via dip-coating, which would be highly meaningful for organic electronics as well as for the assembly of other materials via solution processes.

  18. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper

    NASA Astrophysics Data System (ADS)

    Kim, Minkyu; Jeong, Jong Han; Lee, Hun Jung; Ahn, Tae Kyung; Shin, Hyun Soo; Park, Jin-Seong; Jeong, Jae Kyeong; Mo, Yeon-Gon; Kim, Hye Dong

    2007-05-01

    The authors report on the fabrication of thin film transistors (TFTs), which use an amorphous indium gallium zinc oxide (a-IGZO) channel, by rf sputtering at room temperature and for which the channel length and width are patterned by photolithography and dry etching. To prevent plasma damage to the active channel, a 100-nm-thick SiOx layer deposited by plasma enhanced chemical vapor deposition was adopted as an etch stopper structure. The a-IGZO TFT (W /L=10μm/50μm) fabricated on glass exhibited a high field-effect mobility of 35.8cm2/Vs, a subthreshold gate swing value of 0.59V/decade, a thrseshold voltage of 5.9V, and an Ion/off ratio of 4.9×106, which is acceptable for use as the switching transistor of an active-matrix TFT backplane.

  19. Extended-gate field-effect transistor (EG-FET) with molecularly imprinted polymer (MIP) film for selective inosine determination.

    PubMed

    Iskierko, Zofia; Sosnowska, Marta; Sharma, Piyush Sindhu; Benincori, Tiziana; D'Souza, Francis; Kaminska, Izabela; Fronc, Krzysztof; Noworyta, Krzysztof

    2015-12-15

    A novel recognition unit of chemical sensor for selective determination of the inosine, renal disfunction biomarker, was devised and prepared. For that purpose, inosine-templated molecularly imprinted polymer (MIP) film was deposited on an extended-gate field-effect transistor (EG-FET) signal transducing unit. The MIP film was prepared by electrochemical polymerization of bis(bithiophene) derivatives bearing cytosine and boronic acid substituents, in the presence of the inosine template and a thiophene cross-linker. After MIP film deposition, the template was removed, and was confirmed by UV-visible spectroscopy. Subsequently, the film composition was characterized by spectroscopic techniques, and its morphology and thickness were determined by AFM. The finally MIP film-coated extended-gate field-effect transistor (EG-FET) was used for signal transduction. This combination is not widely studied in the literature, despite the fact that it allows for facile integration of electrodeposited MIP film with FET transducer. The linear dynamic concentration range of the chemosensor was 0.5-50 μM with inosine detectability of 0.62 μM. The obtained detectability compares well to the levels of the inosine in body fluids which are in the range 0-2.9 µM for patients with diagnosed diabetic nephropathy, gout or hyperuricemia, and can reach 25 µM in certain cases. The imprinting factor for inosine, determined from piezomicrogravimetric experiments with use of the MIP film-coated quartz crystal resonator, was found to be 5.5. Higher selectivity for inosine with respect to common interferents was also achieved with the present molecularly engineered sensing element. The obtained analytical parameters of the devised chemosensor allow for its use for practical sample measurements.

  20. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    SciTech Connect

    Lai, Hsin-Cheng; Pei, Zingway; Jian, Jyun-Ruri; Tzeng, Bo-Jie

    2014-07-21

    In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology is suitable for use in flexible displays.

  1. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Cheng; Pei, Zingway; Jian, Jyun-Ruri; Tzeng, Bo-Jie

    2014-07-01

    In this study, the Al2O3 nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm2/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology is suitable for use in flexible displays.

  2. ZnO-Based Transparent Thin-Film Transistors with MgO Gate Dielectric Grown by in-situ MOCVD

    NASA Astrophysics Data System (ADS)

    Zhao, Wang; Dong, Xin; Zhao, Long; Shi, Zhi-Feng; Wang, Jin; Wang, Hui; Xia, Xiao-Chuan; Chang, Yu-Chun; Zhang, Bao-Lin; Du, Guo-Tong

    2010-12-01

    ZnO transparent thin-film transistors with MgO gate dielectric were fabricated by in-situ metal organic chemical vapor deposition (MOCVD) technology. We used an uninterrupted growth method to simplify the fabrication steps and to avoid the unexpectable contaminating during epitaxy process. MgO layer is helpful to reduce the gate leakage current, as well as to achieve high transparency in visible light band, due to the wide band gap (7.7eV) and high dielectric constant (9.8). The XRD measurement indicates that the ZnO layer has high crystal quality. The field effect mobility and the on/off current ratio of the device is 2.69 cm2 V-1s-1 and ~ 1 × 104, respectively.

  3. Defect reduction in photon-accelerated negative bias instability of InGaZnO thin-film transistors by high-pressure water vapor annealing

    NASA Astrophysics Data System (ADS)

    Seung Rim, You; Jeong, Wooho; Du Ahn, Byung; Jae Kim, Hyun

    2013-04-01

    We investigated the effects of high-pressure water vapor annealing (WHPA) under negative bias temperature illumination stress and light incidence on amorphous InGaZnO thin-film transistors. WHPA could improve device reliability and reduce the hump occurrence. It was attributed to the effective reduction and passivation in oxygen vacancies under WHPA. By comparing the experimental and technology computer-aided design simulation, we could confirm that the low-density of deep-donor-like oxygen vacancy (Vo) states near the valance band maximum contributed to the reduction of photo-excited single ionized oxygen vacancies (Vo+) and double ionized oxygen vacancies (Vo2+) as shallow-donor states near the conduction band minimum.

  4. Sputtering technology in solid film lubrication

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1978-01-01

    Potential and present sputtering technology is discussed as it applies to the deposition of solid film lubricants particularly MoS2, WS2, and PTFE. Since the sputtered films are very thin, the selection of the sputtering parameters and substrate condition is very critical as reflected by the lubricating properties. It was shown with sputtered MoS2 films that the lubricating characteristics are directly affected by the selected sputtering parameters (power density, pressure, sputter etching, dc-biasing, etc.) and the substrate temperature, chemistry, topography and the environmental conditions during the friction tests. Electron microscopy and other surface sensitive analytical techniques illustrate the resulting changes in sputtered MoS2 film morphology and chemistry which directly influence the film adherence and frictional properties.

  5. Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits

    NASA Astrophysics Data System (ADS)

    Petti, Luisa; Pattanasattayavong, Pichaya; Lin, Yen-Hung; Münzenrieder, Niko; Cantarella, Giuseppe; Yaacobi-Gross, Nir; Yan, Feng; Tröster, Gerhard; Anthopoulos, Thomas D.

    2017-03-01

    We report on low operating voltage thin-film transistors (TFTs) and integrated inverters based on copper(I) thiocyanate (CuSCN) layers processed from solution at low temperature on free-standing plastic foils. As-fabricated coplanar bottom-gate and staggered top-gate TFTs exhibit hole-transporting characteristics with average mobility values of 0.0016 cm2 V-1 s-1 and 0.013 cm2 V-1 s-1, respectively, current on/off ratio in the range 102-104, and maximum operating voltages between -3.5 and -10 V, depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as -3.5 V. Importantly, discrete CuSCN transistors and integrated logic inverters remain fully functional even when mechanically bent to a tensile radius of 4 mm, demonstrating the potential of the technology for flexible electronics.

  6. ZnO thin-film transistors with a polymeric gate insulator built on a polyethersulfone substrate

    NASA Astrophysics Data System (ADS)

    Hyung, Gun Woo; Park, Jaehoon; Koo, Ja Ryong; Choi, Kyung Min; Kwon, Sang Jik; Cho, Eou Sik; Kim, Yong Seog; Kim, Young Kwan

    2012-03-01

    Zinc oxide (ZnO) thin-film transistors (TFTs) with a cross-linked poly(vinyl alcohol) (c-PVA) insulator are fabricated on a polyethersulfone substrate. The ZnO film, formed by atomic layer deposition, shows a polycrystalline hexagonal structure with a band gap energy of about 3.37 eV. The fabricated ZnO TFT exhibits a field-effect mobility of 0.38 cm2/Vs and a threshold voltage of 0.2 V. The hysteresis of the device is mainly caused by trapped electrons at the c-PVA/ZnO interface, whereas the positive threshold voltage shift occurs as a consequence of constant positive gate bias stress after 5000 s due to an electron injection from the ZnO film into the c-PVA insulator.

  7. Wrinkle-free graphene electrodes in zinc tin oxide thin-film transistors for large area applications

    NASA Astrophysics Data System (ADS)

    Lee, Se-Hee; Kim, Jae-Hee; Park, Byeong-Ju; Park, Jozeph; Kim, Hyun-Suk; Yoon, Soon-Gil

    2017-02-01

    Wrinkle-free graphene was used to form the source-drain electrodes in thin film transistors based on a zinc tin oxide (ZTO) semiconductor. A 10 nm thick titanium adhesion layer was applied prior to transferring a conductive graphene film on top of it by chemical detachment. The formation of an interlayer oxide between titanium and graphene allows the achievement of uniform surface roughness over the entire substrate area. The resulting devices were thermally treated in ambient air, and a substantial decrease in field effect mobility is observed with increasing annealing temperature. The increase in electrical resistivity of the graphene film at higher annealing temperatures may have some influence, however the growth of the oxide interlayer at the ZTO/Ti boundary is suggested to be most influential, thereby inducing relatively high contact resistance.

  8. The 6.5 kV clustered insulated gate bipolar transistor in homogeneous base technology

    NASA Astrophysics Data System (ADS)

    Luther-King, N.; Sweet, M.; Spulber, O.; Vershinin, K.; Ngw, C. K.; Bose, S. C.; De Souza, M. M.; Sankara Narayanan, E. M.

    2001-01-01

    The aim of this paper is to evaluate the performance of a new power semiconductor device called the clustered insulated gate bipolar transistor (CIGBT) in the homogeneous base (HB) technology for high power applications. The CIGBT belongs to a new family of MOS controlled power devices with thyristor mode of operation in the on-state and current saturation characteristics even at high gate biases. The saturation characteristics are achieved through a unique 'self-clamping' phenomenon at a predetermined anode voltage. This inherent feature enables a wide FBSOA and low loss during switching. Our detailed analysis of the CIGBT using a 2-D mixed device-circuit simulation tool indicates that 525 μm of lightly doped silicon is adequate to block 6.5 kV in the HB technology. The thin substrate improves the trade-off between conduction and switching losses even further. With an on-state voltage drop as low as 2 V at 30 A cm -2 and 3.1 V at 100 A cm -2 the device is able to turn off under inductive switching conditions at a 3 kV line voltage, with significantly low energy losses in comparison to an optimised homogeneous base insulated gate bipolar transistor (HB-IGBT). Further, the device shows good short circuit withstand capability and its positive temperature coefficient of the forward voltage drop eases parallel integration.

  9. Organic transistors in optical displays and microelectronic applications.

    PubMed

    Gelinck, Gerwin; Heremans, Paul; Nomoto, Kazumasa; Anthopoulos, Thomas D

    2010-09-08

    Organic thin-film transistors (OTFTs) offer unprecedented opportunities for implementation in a broad range of technological applications spanning from large-volume microelectronics and optical displays to chemical and biological sensors. In this Progress Report, we review the application of organic transistors in the fields of flexible optical displays and microelectronics. The advantages associated with the use of OTFT technology are discussed with primary emphasis on the latest developments in the area of active-matrix electrophoretic and organic light-emitting diode displays based on OTFT backplanes and on the application of organic transistors in microelectronics including digital and analog circuits.

  10. Present status of amorphous In-Ga-Zn-O thin-film transistors.

    PubMed

    Kamiya, Toshio; Nomura, Kenji; Hosono, Hideo

    2010-08-01

    The present status and recent research results on amorphous oxide semiconductors (AOSs) and their thin-film transistors (TFTs) are reviewed. AOSs represented by amorphous In-Ga-Zn-O (a-IGZO) are expected to be the channel material of TFTs in next-generation flat-panel displays because a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays, large and fast liquid crystal and three-dimensional (3D) displays, which cannot be satisfied using conventional silicon and organic TFTs. The major insights of this review are summarized as follows. (i) Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs. (ii) A sixth-generation (6G) process is demonstrated for 32″ and 37″ displays. (iii) An 8G sputtering apparatus and a sputtering target have been developed. (iv) The important effect of deep subgap states on illumination instability is revealed. (v) Illumination instability under negative bias has been intensively studied, and some mechanisms are proposed. (vi) Degradation mechanisms are classified into back-channel effects, the creation of traps at an interface and in the gate insulator, and the creation of donor states in annealed a-IGZO TFTs by the Joule heating; the creation of bulk defects should also be considered in the case of unannealed a-IGZO TFTs. (vii) Dense passivation layers improve the stability and photoresponse and are necessary for practical applications. (viii) Sufficient knowledge of electronic structures and electron transport in a-IGZO has been accumulated to construct device simulation models.

  11. TOPICAL REVIEW: Present status of amorphous In-Ga-Zn-O thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kamiya, Toshio; Nomura, Kenji; Hosono, Hideo

    2010-08-01

    The present status and recent research results on amorphous oxide semiconductors (AOSs) and their thin-film transistors (TFTs) are reviewed. AOSs represented by amorphous In-Ga-Zn-O (a-IGZO) are expected to be the channel material of TFTs in next-generation flat-panel displays because a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays, large and fast liquid crystal and three-dimensional (3D) displays, which cannot be satisfied using conventional silicon and organic TFTs. The major insights of this review are summarized as follows. (i) Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs. (ii) A sixth-generation (6G) process is demonstrated for 32'' and 37'' displays. (iii) An 8G sputtering apparatus and a sputtering target have been developed. (iv) The important effect of deep subgap states on illumination instability is revealed. (v) Illumination instability under negative bias has been intensively studied, and some mechanisms are proposed. (vi) Degradation mechanisms are classified into back-channel effects, the creation of traps at an interface and in the gate insulator, and the creation of donor states in annealed a-IGZO TFTs by the Joule heating; the creation of bulk defects should also be considered in the case of unannealed a-IGZO TFTs. (vii) Dense passivation layers improve the stability and photoresponse and are necessary for practical applications. (viii) Sufficient knowledge of electronic structures and electron transport in a-IGZO has been accumulated to construct device simulation models.

  12. Present status of amorphous In–Ga–Zn–O thin-film transistors

    PubMed Central

    Kamiya, Toshio; Nomura, Kenji; Hosono, Hideo

    2010-01-01

    The present status and recent research results on amorphous oxide semiconductors (AOSs) and their thin-film transistors (TFTs) are reviewed. AOSs represented by amorphous In–Ga–Zn–O (a-IGZO) are expected to be the channel material of TFTs in next-generation flat-panel displays because a-IGZO TFTs satisfy almost all the requirements for organic light-emitting-diode displays, large and fast liquid crystal and three-dimensional (3D) displays, which cannot be satisfied using conventional silicon and organic TFTs. The major insights of this review are summarized as follows. (i) Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs. (ii) A sixth-generation (6G) process is demonstrated for 32″ and 37″ displays. (iii) An 8G sputtering apparatus and a sputtering target have been developed. (iv) The important effect of deep subgap states on illumination instability is revealed. (v) Illumination instability under negative bias has been intensively studied, and some mechanisms are proposed. (vi) Degradation mechanisms are classified into back-channel effects, the creation of traps at an interface and in the gate insulator, and the creation of donor states in annealed a-IGZO TFTs by the Joule heating; the creation of bulk defects should also be considered in the case of unannealed a-IGZO TFTs. (vii) Dense passivation layers improve the stability and photoresponse and are necessary for practical applications. (viii) Sufficient knowledge of electronic structures and electron transport in a-IGZO has been accumulated to construct device simulation models. PMID:27877346

  13. Stacked color image sensor using wavelength-selective organic photoconductive films with zinc-oxide thin film transistors as a signal readout circuit

    NASA Astrophysics Data System (ADS)

    Seo, Hokuto; Aihara, Satoshi; Namba, Masakazu; Watabe, Toshihisa; Ohtake, Hiroshi; Kubota, Misao; Egami, Norifumi; Hiramatsu, Takahiro; Matsuda, Tokiyoshi; Furuta, Mamoru; Nitta, Hiroshi; Hirao, Takashi

    2010-01-01

    Our group has been developing a new type of image sensor overlaid with three organic photoconductive films, which are individually sensitive to only one of the primary color components (blue (B), green (G), or red (R) light), with the aim of developing a compact, high resolution color camera without any color separation optical systems. In this paper, we firstly revealed the unique characteristics of organic photoconductive films. Only choosing organic materials can tune the photoconductive properties of the film, especially excellent wavelength selectivities which are good enough to divide the incident light into three primary colors. Color separation with vertically stacked organic films was also shown. In addition, the high-resolution of organic photoconductive films sufficient for high-definition television (HDTV) was confirmed in a shooting experiment using a camera tube. Secondly, as a step toward our goal, we fabricated a stacked organic image sensor with G- and R-sensitive organic photoconductive films, each of which had a zinc oxide (ZnO) thin film transistor (TFT) readout circuit, and demonstrated image pickup at a TV frame rate. A color image with a resolution corresponding to the pixel number of the ZnO TFT readout circuit was obtained from the stacked image sensor. These results show the potential for the development of high-resolution prism-less color cameras with stacked organic photoconductive films.

  14. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250 °C. GaN thin films are grown at 200 °C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3 V/decade. The entire TFT device fabrication process temperature is below 250 °C, which is the lowest process temperature reported for GaN based transistors, so far.

  15. Development of Liquid Crystal Display Panel Integrated with Drivers Using Amorphous In-Ga-Zn-Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Takeshi Osada,; Kengo Akimoto,; Takehisa Sato,; Masataka Ikeda,; Masashi Tsubuku,; Junichiro Sakata,; Jun Koyama,; Tadashi Serikawa,; Shunpei Yamazaki,

    2010-03-01

    We designed, prototyped, and evaluated a liquid crystal panel integrated with a gate driver and a source driver using amorphous In-Ga-Zn-oxide thin film transistors (TFTs). Using bottom-gate bottom-contact (BGBC) thin film transistors, superior characteristics could be obtained. We obtained TFT characteristics with little variation even when the thickness of the gate insulator (GI) film was reduced owing to etching of source/drain (S/D) wiring, which is a typical process for the BGBC TFT. Moreover, a favorable ON-state current was obtained even when an In-Ga-Zn-oxide layer was formed over the S/D electrode. Since the upper portion of the In-Ga-Zn-oxide layer is not etched, the BGBC structure is predicted to be effective in thinning the In-Ga-Zn-oxide layer in the future. Upon evaluation, we found that the prototyped liquid crystal panel integrated with the gate and source drivers using the TFTs with improved characteristics had stable drive.

  16. Analysis of amorphous indium-gallium-zinc-oxide thin-film transistor contact metal using Pilling-Bedworth theory and a variable capacitance diode model

    NASA Astrophysics Data System (ADS)

    Kiani, Ahmed; Hasko, David G.; Milne, William I.; Flewitt, Andrew J.

    2013-04-01

    It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation.

  17. Testing of flexible InGaZnO-based thin-film transistors under mechanical strain

    NASA Astrophysics Data System (ADS)

    Münzenrieder, N. S.; Cherenack, K. H.; Tröster, G.

    2011-08-01

    Thin-film transistors (TFTs) fabricated on flexible plastic substrates are an integral part of future flexible large-area electronic devices like displays and smart textiles. Devices for such applications require stable electrical performance under electrical stress and also during applied mechanical stress induced by bending of the flexible substrate. Mechanical stress can be tensile or compressive strain depending on whether the TFT is located outside or inside of the bending plane. Especially the impact of compressive bending on TFT performance is hard to measure, because the device is covered with the substrate in this case. We present a method which allows us to continuously measure the electrical performance parameters of amorphous Indium-Gallium-Zinc Oxide (a-IGZO) based TFTs exposed to arbitrary compressive and tensile bending radii. To measure the influence of strain on a TFT it is attached and electrically connected to a flexible carrier foil, which afterwards is fastened to two plates in our bending tester. The bending radius can be adjusted by changing the distance between these plates. Thus it is possible to apply bending radii in the range between a totally flat substrate and ≈1 mm, corresponding to a strain of ≈3.5%. The tested bottom-gate TFTs are especially designed for use with our bending tester and fabricated on 50 μm thick flexible Kapton® E polyimide substrates. To show the different application areas of our bending method we characterized our TFTs while they are bent to different tensile and compressive bending radii. These measurements show that the field effect mobilities and threshold voltages of the tested a-IGZO TFTs are nearly, but not absolutely, stable under applied strain, compared to the initial values the mobilities shift by ≈3.5% in the tensile case and ≈-1.5% in the compressive one, at a bending radius of 8 mm. We also measured the influence of repeated bending (2500 cycles over ≈70 h), where a shift of the

  18. Effective mobility enhancement of amorphous In-Ga-Zn-O thin-film transistors by holographically generated periodic conductor

    NASA Astrophysics Data System (ADS)

    Jeong, Jaewook; Kim, Joonwoo; Kim, Donghyun; Jeon, Heonsu; Jeong, Soon Moon; Hong, Yongtaek

    2016-08-01

    In this study, we demonstrate a mobility enhancement structure for fully transparent amorphous indium-gallium-zinc-oxide thin-film transistors (a-IGZO TFTs) by embedding a holographically generated periodic nano-conductor in the back-channel regions. The intrinsic field-effect mobility was enhanced up to 2 times compared to that of a reference sample. The enhancement originated from a decrease in the effective channel length due to the highly conductive nano-conductor region. By combining conventional and holographic lithography, the performance of the a-IGZO TFT can be effectively improved without varying the composition of the channel layer.

  19. Temperature effect on negative bias-induced instability of HfInZnO amorphous oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Woong; Kim, Jang Hyun; Chang, Ji Soo; Kim, Sang Wan; Kim, Wandong; Park, Jae Chul; Song, Ihun; Kim, Chang Jung; Jung, U. In; Park, Byung-Gook

    2011-02-01

    Negative bias-induced instability of amorphous hafnium indium zinc oxide (α-HIZO) thin film transistors (TFTs) was investigated at various temperatures. In order to examine temperature-induced effects, fabricated TFTs with different combinations of gate insulator and gate metal were stressed by a negative gate bias at various temperatures. As a result, it is proved that negative bias-induced hole-trapping in the gate insulators and temperature-enhanced electron injection from the gate metals occurs at the same time at all temperatures, and the instability of HIZO TFT is more affected by the dominant factor out of the two mechanisms.

  20. Effect of Al2O3 encapsulation on multilayer MoSe2 thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Ah; Yeoul Kim, Seong; Kim, Jiyoung; Choi, Woong

    2017-03-01

    We report the effect of Al2O3 encapsulation on the device performance of multilayer MoSe2 thin-film transistors based on statistical investigation of 29 devices with a SiO2 bottom-gate dielectric. On average, Al2O3 encapsulation by atomic layer deposition increased the field-effect mobility from 10.1 cm2 V‑1 s‑1 to 14.8 cm2 V‑1 s‑1, decreased the on/off-current ratio from 8.5  ×  105 to 2.3  ×  105 and negatively shifted the threshold voltage from  ‑1.1 V to  ‑8.1 V. Calculation based on the Y-function method indicated that the enhancement of intrinsic carrier mobility occurred independently of the reduction of contact resistance after Al2O3 encapsulation. Furthermore, contrary to previous reports in the literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method for improving the carrier mobility of multilayer MoSe2 transistors, providing important implications on the application of MoSe2 and other 2D materials into high-performance transistors.

  1. Low-voltage-operated organic one-time programmable memory using printed organic thin-film transistors and antifuse capacitors.

    PubMed

    Jung, Soon-Won; Na, Bock Soon; Park, Chan Woo; Koo, Jae Bon

    2014-11-01

    We demonstrate an organic one-time programmable memory cell formed entirely at plastic-compatible temperatures. All the processes are performed at below 130 degrees C. Our memory cell consists of a printed organic transistor and an organic capacitor. Inkjet-printed organic transistors are fabricated by using high-k polymer dielectric blends comprising poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)] and poly(methyl methacrylate) (PMMA) for low-voltage operation. P(NDI2OD-T2) transistors have a high field-effect mobility of 0.2 cm2/Vs and a low operation gate voltage of less than 10 V. The operation voltage effectively decreases owing to the high permittivity of the P(VDF-TrFE):PMMA blended film. The data in the memory cell are programmed by electrically breaking the organic capacitor. The organic capacitor acts like an antifuse capacitor, because it is initially open, and it becomes permanently short-circuited by applying a high voltage. The organic memory cells are programmed with 4 V, and they are read out with 2 V. The memory data are read out by sensing the current in the memory cell. The printed organic one-time programmable memory is suitable for applications storing small amount of data, such as low-cost radio-frequency identification (RFID) tag.

  2. Enhanced carrier mobility of multilayer MoS2 thin-film transistors by Al2O3 encapsulation

    NASA Astrophysics Data System (ADS)

    Kim, Seong Yeoul; Park, Seonyoung; Choi, Woong

    2016-10-01

    We report the effect of Al2O3 encapsulation on the carrier mobility and contact resistance of multilayer MoS2 thin-film transistors by statistically investigating 70 devices with SiO2 bottom-gate dielectric. After Al2O3 encapsulation by atomic layer deposition, calculation based on Y-function method indicates that the enhancement of carrier mobility from 24.3 cm2 V-1 s-1 to 41.2 cm2 V-1 s-1 occurs independently from the reduction of contact resistance from 276 kΩ.μm to 118 kΩ.μm. Furthermore, contrary to the previous literature, we observe a negligible effect of thermal annealing on contact resistance and carrier mobility during the atomic layer deposition of Al2O3. These results demonstrate that Al2O3 encapsulation is a useful method of improving the carrier mobility of multilayer MoS2 transistors, providing important implications on the application of MoS2 and other two-dimensional materials into high-performance transistors.

  3. A flexible organic active matrix circuit fabricated using novel organic thin film transistors and organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Heredia, G.; González, L. A.; Alshareef, H. N.; Gnade, B. E.; Quevedo-López, M.

    2010-11-01

    We present an active matrix circuit fabricated on plastic (polyethylene naphthalene, PEN) and glass substrates using organic thin film transistors and organic capacitors to control organic light-emitting diodes (OLEDs). The basic circuit is fabricated using two pentacene-based transistors and a capacitor using a novel aluminum oxide/parylene stack (Al2O3/parylene) as the dielectric for both the transistor and the capacitor. We report that our circuit can deliver up to 15 µA to each OLED pixel. To achieve 200 cd m-2 of brightness a 10 µA current is needed; therefore, our approach can initially deliver 1.5× the required current to drive a single pixel. In contrast to parylene-only devices, the Al2O3/parylene stack does not fail after stressing at a field of 1.7 MV cm-1 for >10 000 s, whereas 'parylene only' devices show breakdown at approximately 1000 s. Details of the integration scheme are presented.

  4. Bias-illumination stress effect in thin film transistors with a nitrogen low-doped IZO active layer

    NASA Astrophysics Data System (ADS)

    Cheremisin, Alexander B.; Kuznetsov, Sergey N.; Stefanovich, Genrikh B.

    2016-10-01

    The effect of ZnO and IZO moderate nitridation on the performance of thin film transistors (TFTs) has been studied by methods of transfer and capacitance-voltage characteristics, isochronal annealing and computer modeling. Layers of ZnO:N and IZO:N were prepared by reactive sputtering. It is shown that nitridation of the ZnO matrix up to a concentration of 9 at.% results in the deterioration of transistor parameters. However, nitridation of the IZO matrix does not impair a transistor’s static parameters and also provides enhanced performance reproducibility. An additional positive effect is manifested in the electrical stress stability of transistor characteristics at negative bias and positive bias in darkness. Negative bias illumination stress (NBIS) of IZO:N structures also causes TFTs’ degradation similar to that for IGZO devices. However, our observations of the NBIS effect have revealed the following important features. Holes trapped under NBIS could not be neutralized by electrons in the channel in the accumulation regime, thus indicating negligible interaction between positively-charged defects and the conduction band. In addition, trapped holes’ depopulation was performed by thermal activation with an isochronal annealing method. An activation energy of ˜0.8 eV was revealed which is interpreted as the energy level of defects above the valence-band maximum. The specified features do not correlate with the assumption of the key role of oxygen vacancies in NBIS that is extensively presented in literature.

  5. Strong Influence of Humidity on Low-Temperature Thin-Film Fabrication via Metal Aqua Complex for High Performance Oxide Semiconductor Thin-Film Transistors.

    PubMed

    Lim, Keon-Hee; Huh, Jae-Eun; Lee, Jinwon; Cho, Nam-Kwang; Park, Jun-Woo; Nam, Bu-Il; Lee, Eungkyu; Kim, Youn Sang

    2017-01-11

    Oxide semiconductors thin film transistors (OS TFTs) with good transparency and electrical performance have great potential for future display technology. In particular, solution-processed OS TFTs have been attracted much attention due to many advantages such as continuous, large scale, and low cost processability. Recently, OS TFTs fabricated with a metal aqua complex have been focused because they have low temperature processability for deposition on flexible substrate as well as high field-effect mobility for application of advanced display. However, despite some remarkable results, important factors to optimize their electrical performance with reproducibility and uniformity have not yet been achieved. Here, we newly introduce the strong effects of humidity to enhance the electrical performance of OS TFTs fabricated with the metal aqua complex. Through humidity control during the spin-coating process and annealing process, we successfully demonstrate solution-processed InOx/SiO2 TFTs with a good electrical uniformity of ∼5% standard deviation, showing high average field-effect mobility of 2.76 cm(2)V(-1)s(-1) and 15.28 cm(2)V(-1)s(-1) fabricated at 200 and 250 °C, respectively. Also, on the basis of the systematic analyses, we demonstrate the mechanism for the change in electrical properties of InOx TFTs depending on the humidity control. Finally, on the basis of the mechanism, we extended the humidity control to the fabrication of the AlOx insulator. Subsequently, we successfully achieved humidity-controlled InOx/AlOx TFTs fabricated at 200 °C showing high average field-effect mobility of 9.5 cm(2)V(-1)s(-1).

  6. Pentacene Organic Thin-Film Transistors on Flexible Paper and Glass Substrates

    DTIC Science & Technology

    2014-02-12

    of Cincinnati, Cincinnati, OH 45221-0030, USA 2 US Air Force Research Laboratory, Human Effectiveness Directorate, Wright-Patterson Air Force Base...ultra-thin (100 µM) flexible glass. The transistors were fabricated entirely through dry-step processing. The transconductance and field- effect mobility...para- meters for both inorganic and organic field- effect transistor (FET) operation are the transconductance and the field- effect Figure 1. Organic thin

  7. Solution-processed high-k magnesium oxide dielectrics for low-voltage oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Jiang, Guixia; Liu, Ao; Liu, Guoxia; Zhu, Chundan; Meng, You; Shin, Byoungchul; Fortunato, Elvira; Martins, Rodrigo; Shan, Fukai

    2016-10-01

    Solution-processed metal-oxide thin films with high dielectric constants (k) have been extensively studied for low-cost and high-performance thin-film transistors (TFTs). In this report, MgO dielectric films were fabricated using the spin-coating method. The MgO dielectric films annealed at various temperatures (300, 400, 500, and 600 °C) were characterized by using thermogravimetric analysis, optical spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and atomic-force microscopy. The electrical measurements indicate that the insulating properties of MgO thin films are improved with an increase in annealing temperature. In order to clarify the potential application of MgO thin films as gate dielectrics in TFTs, solution-derived In2O3 channel layers were separately fabricated on various MgO dielectric layers. The optimized In2O3/MgO TFT exhibited an electron mobility of 5.48 cm2/V s, an on/off current ratio of 107, and a subthreshold swing of 0.33 V/dec at a low operation voltage of 6 V. This work represents a great step toward the development of portable and low-power consumption electronics.

  8. Pulsed laser deposition of ZnO grown on glass substrates for realizing high-performance thin-film transistors

    NASA Astrophysics Data System (ADS)

    Yoshida, T.; Tachibana, T.; Maemoto, T.; Sasa, S.; Inoue, M.

    2010-12-01

    We report characterization of ZnO thin-film transistors (TFTs) on glass substrates fabricated by pulsed laser deposition (PLD). ZnO films were characterized by X-ray diffraction (XRD), atomic force microscopy and Hall effect measurements. The XRD results showed high c-axis-oriented ZnO(0002) diffraction corresponding to the wurtzite phase. Moreover, the crystallization and the electrical properties of ZnO thin films grown at room temperature are controllable by PLD growth conditions such as oxygen gas pressure. The ZnO films are very smooth, with a root-mean-square roughness of 1 nm. From the Hall effect measurements, we have succeeded in fabricating ZnO films on glass substrates with an electron mobility of 21.7 cm2/V s. By using the ZnO thin film grown by two-step PLD and a HfO2 high- k gate insulator, a transconductance of 24.1 mS/mm, a drain current on/off ratio of 4.4×106 and a subthreshold gate swing of 0.26 V/decade were obtained for the ZnO TFT.

  9. Enhanced performance of a-IGZO thin-film transistors by forming AZO/IGZO heterojunction source/drain contacts

    NASA Astrophysics Data System (ADS)

    Zou, Xiao; Fang, Guojia; Wan, Jiawei; Liu, Nishuang; Long, Hao; Wang, Haolin; Zhao, Xingzhong

    2011-05-01

    A low-cost Al-doped ZnO (AZO) thin film was deposited by radio-frequency magnetron sputtering with different Ar/O2 flow ratios. The optical and electrical properties of an AZO film were investigated. A highly conductive AZO film was inserted between the amorphous InGaZnO (a-IGZO) channel and the metal Al electrode to form a heterojunction source/drain contact, and bottom-gate amorphous a-IGZO thin-film transistors (TFTs) with a high κ HfON gate dielectric were fabricated. The AZO film reduced the source/drain contact resistivity down to 79 Ω cm. Enhanced device performance of a-IGZO TFT with Al/AZO bi-layer S/D electrodes (W/L = 500/40 µm) was achieved with a saturation mobility of 13.7 cm2 V-1 s-1, a threshold voltage of 0.6 V, an on-off current ratio of 4.7 × 106, and a subthreshold gate voltage swing of 0.25 V dec-1. It demonstrated the potential application of the AZO film as a promising S/D contact material for the fabrication of the high performance TFTs.

  10. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer

    NASA Astrophysics Data System (ADS)

    Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng

    2016-02-01

    Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (+/-2 V) and subthreshold swing (SS) (122-161 mV dec-1), high effective mobility (up to 17.6-37.7 cm2 V-1 s-1) and high on/off ratio (104-107). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption.Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge

  11. High electron mobility thin-film transistors based on Ga{sub 2}O{sub 3} grown by atmospheric ultrasonic spray pyrolysis at low temperatures

    SciTech Connect

    Thomas, Stuart R. E-mail: thomas.anthopoulos@imperial.ac.uk; Lin, Yen-Hung; Faber, Hendrik; Anthopoulos, Thomas D. E-mail: thomas.anthopoulos@imperial.ac.uk; Adamopoulos, George; Sygellou, Labrini; Stratakis, Emmanuel; Pliatsikas, Nikos; Patsalas, Panos A.

    2014-09-01

    We report on thin-film transistors based on Ga{sub 2}O{sub 3} films grown by ultrasonic spray pyrolysis in ambient atmosphere at 400–450 °C. The elemental, electronic, optical, morphological, structural, and electrical properties of the films and devices were investigated using a range of complementary characterisation techniques, whilst the effects of post deposition annealing at higher temperature (700 °C) were also investigated. Both as-grown and post-deposition annealed Ga{sub 2}O{sub 3} films are found to be slightly oxygen deficient, exceptionally smooth and exhibit a wide energy bandgap of ∼4.9 eV. Transistors based on as-deposited Ga{sub 2}O{sub 3} films show n-type conductivity with the maximum electron mobility of ∼2 cm{sup 2}/V s.

  12. Interaction of bipolaron with the H2O/O2 redox couple causes current hysteresis in organic thin-film transistors.

    PubMed

    Qu, Minni; Li, Hui; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2014-01-01

    Hysteresis in the current-voltage characteristics is one of the major obstacles to the implementation of organic thin-film transistors in large-area integrated circuits. The hysteresis has been correlated either extrinsically to various charge-trapping/transfer mechanisms arising from gate dielectrics or surrounding ambience or intrinsically to the polaron-bipolaron reaction in low-mobility conjugated polymer thin-film transistors. However, a comprehensive understanding essential for developing viable solutions to eliminate hysteresis is yet to be established. By embedding carbon nanotubes in the polymer-based conduction channel of various lengths, here we show that the bipolaron formation/recombination combined with the H2O/O2 electrochemical reaction is responsible for the hysteresis in organic thin-film transistors. The bipolaron-induced hysteresis is a thermally activated process with an apparent activation energy of 0.29 eV for the bipolaron dissociation. This finding leads to a hysteresis model that is generally valid for thin-film transistors with both band transport and hopping conduction in semiconducting thin films.

  13. Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure

    NASA Astrophysics Data System (ADS)

    Liu, Po-Tsun; Chang, Chih-Hsiang; Chang, Chih-Jui

    2016-06-01

    This study investigates the instability induced by bias temperature illumination stress (NBTIS) for an amorphous indium-tungsten-oxide thin film transistor (a-IWO TFT) with SiO2 backchannel passivation layer (BPL). It is found that this electrical degradation phenomenon can be attributed to the generation of defect states during the BPL process, which deteriorates the photo-bias stability of a-IWO TFTs. A method proposed by adding an oxygen-rich a-IWO thin film upon the a-IWO active channel layer could effectively suppress the plasma damage to channel layer during BPL deposition process. The bi-layer a-IWO TFT structure with an oxygen-rich back channel exhibits superior electrical reliability of device under NBTIS.

  14. Electrical properties of zinc-oxide-based thin-film transistors using strontium-oxide-doped semiconductors

    NASA Astrophysics Data System (ADS)

    Wu, Shao-Hang; Zhang, Nan; Hu, Yong-Sheng; Chen, Hong; Jiang, Da-Peng; Liu, Xing-Yuan

    2015-10-01

    Strontium-zinc-oxide (SrZnO) films forming the semiconductor layers of thin-film transistors (TFTs) are deposited by using ion-assisted electron beam evaporation. Using strontium-oxide-doped semiconductors, the off-state current can be dramatically reduced by three orders of magnitude. This dramatic improvement is attributed to the incorporation of strontium, which suppresses carrier generation, thereby improving the TFT. Additionally, the presence of strontium inhibits the formation of zinc oxide (ZnO) with the hexagonal wurtzite phase and permits the formation of an unusual phase of ZnO, thus significantly changing the surface morphology of ZnO and effectively reducing the trap density of the channel. Project supported by the National Natural Science Foundation of China (Grant No. 6140031454) and the Innovation Program of Chinese Academy of Sciences and State Key Laboratory of Luminescence and Applications.

  15. Flexible logic circuits based on top-gate thin film transistors with printed semiconductor carbon nanotubes and top electrodes

    NASA Astrophysics Data System (ADS)

    Xu, Weiwei; Liu, Zhen; Zhao, Jianwen; Xu, Wenya; Gu, Weibing; Zhang, Xiang; Qian, Long; Cui, Zheng

    2014-11-01

    In this report printed thin film transistors and logic circuits on flexible substrates are reported. The top-gate thin film transistors were made of the sorted semiconducting single-walled carbon nanotubes (sc-SWCNTs) ink as channel material and printed silver lines as top electrodes and interconnect. 5 nm HfOx thin films pre-deposited on PET substrates by atomic layer deposition (ALD) act as the adhesion layers to significantly improve the immobilization efficiency of sc-SWCNTs and environmental stability. The immobilization mechanism was investigated in detail. The flexible partially-printed top-gate SWCNT TFTs display ambipolar characteristics with slightly strong p-type when using 50 nm HfOx thin films as dielectric layer, as well as the encapsulation layer by atomic layer deposition (ALD) at 120 °C. The hole mobility, on/off ratio and subthreshold swing (SS) are ~46.2 cm2 V-1 s-1, 105 and 109 mV per decade, respectively. Furthermore, partially-printed TFTs show small hysteresis, low operating voltage (2 V) and high stability in air. Flexible partially-printed inverters show good performance with voltage gain up to 33 with 1.25 V supply voltage, and can work at 10 kHz. The frequency of flexible partially-printed five-stage ring oscillators can reach 1.7 kHz at supply voltages of 2 V with per stage delay times of 58.8 μs. This work paves a way to achieve printed SWCNT advanced logic circuits and systems on flexible substrates.In this report printed thin film transistors and logic circuits on flexible substrates are reported. The top-gate thin film transistors were made of the sorted semiconducting single-walled carbon nanotubes (sc-SWCNTs) ink as channel material and printed silver lines as top electrodes and interconnect. 5 nm HfOx thin films pre-deposited on PET substrates by atomic layer deposition (ALD) act as the adhesion layers to significantly improve the immobilization efficiency of sc-SWCNTs and environmental stability. The immobilization mechanism

  16. Dual Input AND Gate Fabricated From a Single Channel Poly (3-Hexylthiophene) Thin Film Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    Pinto, N. J.; Perez, R.; Mueller, C. H.; Theofylaktos, N.; Miranda, F. A.

    2006-01-01

    A regio-regular poly (3-hexylthiophene) (RRP3HT) thin film transistor having a split-gate architecture has been fabricated on a doped silicon/silicon nitride substrate and characterized. This device demonstrates AND logic functionality. The device functionality was controlled by applying either 0 or -10 V to each of the gate electrodes. When -10 V was simultaneously applied to both gates, the device was conductive (ON), while any other combination of gate voltages rendered the device resistive (OFF). The p-type carrier charge mobility was about 5x10(exp -4) per square centimeter per V-sec. The low mobility is attributed to the sharp contours of the RRP3HT film due to substrate non-planarity. A significant advantage of this architecture is that AND logic devices with multiple inputs can be fabricated using a single RRP3HT channel with multiple gates.

  17. Thin-film transistor behaviour and the associated physical origin of water-annealed In-Ga-Zn oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Du Ahn, Byung; Lim, Jun Hyung; Cho, Mann-Ho; Park, Jin-Seong; Chung, Kwun-Bum

    2012-10-01

    A transparent In-Ga-Zn oxide semiconductor was thermally annealed in an ambient atmosphere of water vapour and the associated electrical and physical properties of the film were investigated. After annealing in water vapour, the resulting thin-film transistor (TFT) exhibits n-type behaviour with a field effect mobility of 11.4 cm2 V-1 s-1, and an on/off current ratio of 6.65 × 109. The annealing process in water vapour induces changes in the elemental composition and chemical bonding states of Zn and O. These phenomena affect the changes of band alignment including the band gap and conduction band offset (Δ(ECB - EF)) of InGaZnO semiconductors, which is the basis for the improved operation and performance of these TFTs.

  18. Low-voltage and hysteresis-free organic thin-film transistors employing solution-processed hybrid bilayer gate dielectrics

    SciTech Connect

    Ha, Tae-Jun

    2014-07-28

    This study presents a promising approach to realize low-voltage (<3 V) organic thin-film transistors (OTFTs) exhibiting improved electrical and optical stability. Such device performance results from the use of solution-processed hybrid bilayer gate dielectrics consisting of zirconium dioxide (high-k dielectric) and amorphous fluoropolymer, CYTOP{sup ®} (low-k dielectric). Employing a very thin amorphous fluoropolymer film reduces interfacial defect-states by repelling water molecules and other aqueous chemicals from an organic semiconductor active layer due to the hydrophobic surface-property. The chemically clean interface, stemming from decrease in density of trap states improves all the key device properties such as field-effect mobility, threshold voltage, and sub-threshold swing. Furthermore, degradation by electrical bias-stress and photo-induced hysteresis were suppressed in OTFTs employing hybrid bilayer gate dielectrics.

  19. Top gate ZnO-Al2O3 thin film transistors fabricated using a chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Gogoi, Paragjyoti; Saikia, Rajib; Changmai, Sanjib

    2015-04-01

    ZnO thin films were prepared by a simple chemical bath deposition technique using an inorganic solution mixture of ZnCl2 and NH3 on glass substrates and then were used as the active material in thin film transistors (TFTs). The TFTs were fabricated in a top gate coplanar electrode structure with high-k Al2O3 as the gate insulator and Al as the source, drain and gate electrodes. The TFTs were annealed in air at 500 °C for 1 h. The TFTs with a 50 μm channel length exhibited a high field-effect mobility of 0.45 cm2/(V·s) and a low threshold voltage of 1.8 V. The sub-threshold swing and drain current ON-OFF ratio were found to be 0.6 V/dec and 106, respectively.

  20. Fabrication and characterization of Cu(In,Ga)Se{sub 2} p-channel thin film transistors

    SciTech Connect

    Zhu, Xiaobo; Liu, C. W.

    2014-10-06

    Cu(In,Ga)Se{sub 2} thin film transistors are demonstrated with the on-off ratio of ∼10{sup 3} and the saturation hole mobility of 1.8 cm{sup 2}/V-s. Due to the high hole concentration (∼5 × 10{sup 17 }cm{sup −3}), the channel needs to be etched to turn off for the accumulation mode operation. The Cu(In,Ga)Se{sub 2} film after etching reveals a larger mobility, and a narrower (112) X-ray diffraction line than the original thick layer, indicating the better crystallinity of the initial growth as compared to the subsequent Cu(In,Ga)Se{sub 2} layer. Both the hole concentration and the saturation mobility increase with the decreasing Cu/(In + Ga) ratio probably due to the effect of Cu vacancies.

  1. Effect of UV-light illumination on oxide-based electric-double-layer thin-film transistors

    NASA Astrophysics Data System (ADS)

    Zhou, Jumei; Hu, Yunping

    2017-01-01

    Indium-tin-oxide (ITO)-based thin-film transistors (TFTs) were fabricated using porous SiO2 deposited by plasma-enhanced chemical vapor deposition and Al2O3 deposited by atomic layer deposition as dielectrics. The results showed that the porous SiO2 film exhibited a high electric-double-layer (EDL) capacitance. Devices gated by the EDL dielectric exhibited a high drain current on/off ratio of >106 and a low operation voltage of <2.0 V in the dark. When illuminated by 254 nm UV light, ITO-based EDL TFTs gated by a single SiO2 dielectric displayed weak photo-responses. However, devices gated by a stacked Al2O3/EDL dielectric displayed a high photo responsivity of more than 104 with a gate bias of -0.5 V (depletion state).

  2. Toward Active-Matrix Lab-On-A-Chip: Programmable Electrofluidic control Enaled by Arrayed Oxide Thin Film Transistors

    SciTech Connect

    Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D

    2012-01-01

    Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m x n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm{sup 2} V{sup -1} s{sup -1}, low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 x 5 electrode array connected to a 2 x 5 IGZO thin film transistor array with the semiconductor channel width of 50 {mu}m and mobility of 6.3 cm{sup 2} V{sup -1} s{sup -1}. Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.

  3. Ionic liquid versus SiO2 gated a-IGZO thin film transistors: A direct comparison

    DOE PAGES

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...

    2015-08-12

    Here, ionic liquid gated field effect transistors have been extensively studied due to their low operation voltage, ease of processing and the realization of high electric fields at low bias voltages. Here, we report ionic liquid (IL) gated thin film transistors (TFTs) based on amorphous Indium Gallium Zinc Oxide (a-IGZO) active layers and directly compare the characteristics with a standard SiO2 gated device. The transport measurements of the top IL gated device revealed the n-channel property of the IGZO thin film with a current ON/OFF ratio ~105, a promising field effect mobility of 14.20 cm2V–1s–1, and a threshold voltage ofmore » 0.5 V. Comparable measurements on the bottom SiO2 gate insulator revealed a current ON/OFF ratio >108, a field effect mobility of 13.89 cm2V–1s–1 and a threshold voltage of 2.5 V. Furthermore, temperature-dependent measurements revealed that the ionic liquid electric double layer can be “frozen-in” by cooling below the glass transition temperature with an applied electrical bias. Positive and negative freezing bias locks-in the IGZO TFT “ON” and “OFF” state, respectively, which could lead to new switching and possibly non-volatile memory applications.« less

  4. Thin Film Transistor Gas Sensors Incorporating High-Mobility Diketopyrrolopyrole-Based Polymeric Semiconductor Doped with Graphene Oxide.

    PubMed

    Cheon, Kwang Hee; Cho, Jangwhan; Kim, Yun-Hi; Chung, Dae Sung

    2015-07-01

    In this work, we fabricated a diketopyrrolopyrole-based donor-acceptor copolymer composite film. This is a high-mobility semiconductor component with a functionalized-graphene-oxide (GO) gas-adsorbing dopant, used as an active layer in gas-sensing organic-field-effect transistor (OFET) devices. The GO content of the composite film was carefully controlled so that the crystalline orientation of the semiconducting polymer could be conserved, without compromising its gas-adsorbing ability. The resulting optimized device exhibited high mobility (>1 cm(2) V(-1) s(-1)) and revealed sensitive response during programmed exposure to various polar organic molecules (i.e., ethanol, acetone, and acetonitrile). This can be attributed to the high mobility of polymeric semiconductors, and also to their high surface-to-volume ratio of GO. The operating mechanism of the gas sensing GO-OFET is fully discussed in conjunction with charge-carrier trap theory. It was found that each transistor parameter (e.g., mobility, threshold voltage), responds independently to each gas molecule, which enables high selectivity of GO-OFETs for various gases. Furthermore, we also demonstrated practical GO-OFET devices that operated at low voltage (<1.5 V), and which successfully responded to gas exposure.

  5. Toward active-matrix lab-on-a-chip: programmable electrofluidic control enabled by arrayed oxide thin film transistors.

    PubMed

    Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D

    2012-01-21

    Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m×n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm(2) V(-1) s(-1), low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 × 5 electrode array connected to a 2 × 5 IGZO thin film transistor array with the semiconductor channel width of 50 μm and mobility of 6.3 cm(2) V(-1) s(-1). Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.

  6. High-Quality Solution-Processed Silicon Oxide Gate Dielectric Applied on Indium Oxide Based Thin-Film Transistors.

    PubMed

    Jaehnike, Felix; Pham, Duy Vu; Anselmann, Ralf; Bock, Claudia; Kunze, Ulrich

    2015-07-01

    A silicon oxide gate dielectric was synthesized by a facile sol-gel reaction and applied to solution-processed indium oxide based thin-film transistors (TFTs). The SiOx sol-gel was spin-coated on highly doped silicon substrates and converted to a dense dielectric film with a smooth surface at a maximum processing temperature of T = 350 °C. The synthesis was systematically improved, so that the solution-processed silicon oxide finally achieved comparable break downfield strength (7 MV/cm) and leakage current densities (<10 nA/cm(2) at 1 MV/cm) to thermally grown silicon dioxide (SiO2). The good quality of the dielectric layer was successfully proven in bottom-gate, bottom-contact metal oxide TFTs and compared to reference TFTs with thermally grown SiO2. Both transistor types have field-effect mobility values as high as 28 cm(2)/(Vs) with an on/off current ratio of 10(8), subthreshold swings of 0.30 and 0.37 V/dec, respectively, and a threshold voltage close to zero. The good device performance could be attributed to the smooth dielectric/semiconductor interface and low interface trap density. Thus, the sol-gel-derived SiO2 is a promising candidate for a high-quality dielectric layer on many substrates and high-performance large-area applications.

  7. Addition of ferrocene controls polymorphism and enhances charge mobilities in poly(3-hexylthiophene) thin-film transistors

    NASA Astrophysics Data System (ADS)

    Smith, Brandon; Clark, Michael; Grieco, Christopher; Larsen, Alec; Asbury, John; Gomez, Enrique

    2015-03-01

    Crystalline organic molecules often exhibit the ability to form multiple crystal structures depending on the processing conditions. Exploiting this polymorphism to optimize molecular orbital overlap between adjacent molecules within the unit lattice of conjugated polymers is an approach to enhance charge transport within the material. We have demonstrated the formation of tighter π- π stacking poly(3-hexylthiophene-2,5-diyl) polymorphs in films spin coated from ferrocene-containing solutions using grazing incident X-ray diffraction. As a result, we found that the addition of ferrocene to casting solutions yields thin-film transistors which exhibit significantly higher source-drain current and charge mobilities than neat polymer devices. Insights gleaned from ferrocene/poly(3-hexylthiophene) mixtures can serve as a template for selection and optimization of next generation small molecule/polymer systems possessing greater baseline charge mobilities. Ultimately, the development of such techniques to enhance the characteristics of organic transistors without imparting high costs or loss of advantageous properties will be a critical factor determining the future of organic components within the electronics market.

  8. Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process

    SciTech Connect

    Lin, Meng-Fang E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Gao, Xu; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya; Nabatame, Toshihide

    2015-01-15

    The stable operation of transistors under a positive bias stress (PBS) is achieved using Hf incorporated into InO{sub x}-based thin films processed at relatively low temperatures (150 to 250 °C). The mobilities of the Hf-InO{sub x} thin-film transistors (TFTs) are higher than 8 cm{sup 2}/Vs. The TFTs not only have negligible degradation in the mobility and a small shift in the threshold voltage under PBS for 60 h, but they are also thermally stable at 85 °C in air, without the need for a passivation layer. The Hf-InO{sub x} TFT can be stable even annealed at 150 °C for positive bias temperature stability (PBTS). A higher stability is achieved by annealing the TFTs at 250 °C, originating from a reduction in the trap density at the Hf-InO{sub x}/gate insulator interface. The knowledge obtained here will aid in the realization of stable TFTs processed at low temperatures.

  9. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method.

    PubMed

    Yuan, Yongbo; Giri, Gaurav; Ayzner, Alexander L; Zoombelt, Arjan P; Mannsfeld, Stefan C B; Chen, Jihua; Nordlund, Dennis; Toney, Michael F; Huang, Jinsong; Bao, Zhenan

    2014-01-01

    Organic semiconductors with higher carrier mobility and better transparency have been actively pursued for numerous applications, such as flat-panel display backplane and sensor arrays. The carrier mobility is an important figure of merit and is sensitively influenced by the crystallinity and the molecular arrangement in a crystal lattice. Here we describe the growth of a highly aligned meta-stable structure of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from a blended solution of C8-BTBT and polystyrene by using a novel off-centre spin-coating method. Combined with a vertical phase separation of the blend, the highly aligned, meta-stable C8-BTBT films provide a significantly increased thin film transistor hole mobility up to 43 cm(2) Vs(-1) (25 cm(2) Vs(-1) on average), which is the highest value reported to date for all organic molecules. The resulting transistors show high transparency of >90% over the visible spectrum, indicating their potential for transparent, high-performance organic electronics.

  10. High-performance calcium-doped zinc oxide thin-film transistors fabricated on glass at low temperature

    NASA Astrophysics Data System (ADS)

    Yu, Wen; Han, Dedong; Cui, Guodong; Cong, Yingying; Dong, Junchen; Zhang, Xiaomi; Zhang, Xing; Wang, Yi; Zhang, Shengdong

    2016-04-01

    High-performance calcium-doped zinc oxide thin-film transistors (Ca-ZnO TFTs) have been successfully fabricated on transparent glass at low temperature by RF magnetron sputtering. To study the effects of calcium doping on zinc oxide thin-film transistors, the characteristics of Ca-ZnO TFTs and ZnO TFTs are compared and analyzed in detail from different perspectives, including electrical performance, surface morphology, and crystal structure of the material. The results suggest that the incorporation of calcium element can decrease the root-mean-square roughness of the material, suppress growth of a columnar structure, and improve device performance. The TFTs with Ca-ZnO active layer exhibit excellent electrical properties with the saturation mobility (μsat) of 147.1 cm2 V-1 s-1, threshold voltage (V t) of 2.91 V, subthreshold slope (SS) of 0.271 V/dec, and I on/I off ratio of 2.34 × 108. In addition, we also study the uniformity of the devices. The experimental results show that the Ca-ZnO TFTs possess good uniformity, which is important for large-area application.

  11. Photo-modulated thin film transistor based on dynamic charge transfer within quantum-dots-InGaZnO interface

    SciTech Connect

    Liu, Xiang; Yang, Xiaoxia; Liu, Mingju; Tao, Zhi; Wei, Lei Li, Chi Zhang, Xiaobing; Wang, Baoping; Dai, Qing; Nathan, Arokia

    2014-03-17

    The temporal development of next-generation photo-induced transistor across semiconductor quantum dots and Zn-related oxide thin film is reported in this paper. Through the dynamic charge transfer in the interface between these two key components, the responsibility of photocurrent can be amplified for scales of times (∼10{sup 4} A/W 450 nm) by the electron injection from excited quantum dots to InGaZnO thin film. And this photo-transistor has a broader waveband (from ultraviolet to visible light) optical sensitivity compared with other Zn-related oxide photoelectric device. Moreover, persistent photoconductivity effect can be diminished in visible waveband which lead to a significant improvement in the device's relaxation time from visible illuminated to dark state due to the ultrafast quenching of quantum dots. With other inherent properties such as integrated circuit compatible, low off-state current and high external quantum efficiency resolution, it has a great potential in the photoelectric device application, such as photodetector, phototransistor, and sensor array.

  12. Ionic liquid versus SiO2 gated a-IGZO thin film transistors: A direct comparison

    SciTech Connect

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; Haglund, Amanda V.; Dai, Sheng; Ward, Thomas Zac; Mandrus, David; Rack, Philip D.

    2015-08-12

    Here, ionic liquid gated field effect transistors have been extensively studied due to their low operation voltage, ease of processing and the realization of high electric fields at low bias voltages. Here, we report ionic liquid (IL) gated thin film transistors (TFTs) based on amorphous Indium Gallium Zinc Oxide (a-IGZO) active layers and directly compare the characteristics with a standard SiO2 gated device. The transport measurements of the top IL gated device revealed the n-channel property of the IGZO thin film with a current ON/OFF ratio ~105, a promising field effect mobility of 14.20 cm2V–1s–1, and a threshold voltage of 0.5 V. Comparable measurements on the bottom SiO2 gate insulator revealed a current ON/OFF ratio >108, a field effect mobility of 13.89 cm2V–1s–1 and a threshold voltage of 2.5 V. Furthermore, temperature-dependent measurements revealed that the ionic liquid electric double layer can be “frozen-in” by cooling below the glass transition temperature with an applied electrical bias. Positive and negative freezing bias locks-in the IGZO TFT “ON” and “OFF” state, respectively, which could lead to new switching and possibly non-volatile memory applications.

  13. Electrical dependence on the chemical composition of the gate dielectric in indium gallium zinc oxide thin-film transistors

    SciTech Connect

    Tari, Alireza Lee, Czang-Ho; Wong, William S.

    2015-07-13

    Bottom-gate thin-film transistors were fabricated by depositing a 50 nm InGaZnO (IGZO) channel layer at 150 °C on three separate gate dielectric films: (1) thermal SiO{sub 2}, (2) plasma-enhanced chemical-vapor deposition (PECVD) SiN{sub x}, and (3) a PECVD SiO{sub x}/SiN{sub x} dual-dielectric. X-ray photoelectron and photoluminescence spectroscopy showed the V{sub o} concentration was dependent on the hydrogen concentration of the underlying dielectric film. IGZO films on SiN{sub x} (high V{sub o}) and SiO{sub 2} (low V{sub o}) had the highest and lowest conductivity, respectively. A PECVD SiO{sub x}/SiN{sub x} dual-dielectric layer was effective in suppressing hydrogen diffusion from the nitride layer into the IGZO and resulted in higher resistivity films.

  14. Epitaxial Growth of MOF Thin Film for Modifying the Dielectric Layer in Organic Field-Effect Transistors.

    PubMed

    Gu, Zhi-Gang; Chen, Shan-Ci; Fu, Wen-Qiang; Zheng, Qingdong; Zhang, Jian

    2017-03-01

    Metal-organic framework (MOF) thin films are important in the application of sensors and devices. However, the application of MOF thin films in organic field effect transistors (OFETs) is still a challenge to date. Here, we first use the MOF thin film prepared by a liquid-phase epitaxial (LPE) approach (also called SURMOFs) to modify the SiO2 dielectric layer in the OFETs. After the semiconductive polymer of PTB7-Th (poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]) was coated on MOF/SiO2 and two electrodes on the semiconducting film were deposited sequentially, MOF-based OFETs were fabricated successfully. By controlling the LPE cycles of SURMOF HKUST-1 (also named Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylate), the performance of the HKUST-1/SiO2-based OFETs showed high charge mobility and low threshold voltage. This first report on the application of MOF thin film in OFETs will offer an effective approach for designing a new kind of materials for the OFET application.

  15. Fabrication and Characterization of Fully Transparent ZnO Thin-Film Transistors and Self-Switching Nano-Diodes

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Ashida, K.; Sasaki, S.; Koyama, M.; Maemoto, T.; Sasa, S.; Kasai, S.; Iñiguez-de-la-Torre, I.; González, T.

    2015-10-01

    Fully transparent zinc oxide (ZnO) based thin-film transistors (TFTs) and a new type of rectifiers calls self-switching nano-diodes (SSDs) were fabricated on glass substrates at room temperature by using low resistivity and transparent conducting Al- doped ZnO (AZO) thin-films. The deposition conditions of AZO thin-films were optimized with pulsed laser deposition (PLD). AZO thin-films on glass substrates were characterized and the transparency of 80% and resistivity with 1.6*10-3 Ωcm were obtained of 50 nm thickness. Transparent ZnO-TFTs were fabricated on glass substrates by using AZO thin-films as electrodes. A ZnO-TFT with 2 μm long gate device exhibits a transconductance of 400 μS/mm and an ON/OFF ratio of 2.8*107. Transparent ZnO-SSDs were also fabricated by using ZnO based materials and clear diode-like characteristics were observed.

  16. Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology

    SciTech Connect

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Li, Dawen; Chen, Jihua

    2015-05-04

    N,N′-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN{sub 2}) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN{sub 2} film is much lower than the value of PDIF-CN{sub 2} single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PαMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN{sub 2} thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PαMS or PMMA polymers, the morphology of the PDIF-CN{sub 2} polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm{sup 2}/V s has been achieved from OTFTs based on the PDIF-CN{sub 2} film with the pre-deposition of PαMS polymer.

  17. Flexible logic circuits based on top-gate thin film transistors with printed semiconductor carbon nanotubes and top electrodes.

    PubMed

    Xu, Weiwei; Liu, Zhen; Zhao, Jianwen; Xu, Wenya; Gu, Weibing; Zhang, Xiang; Qian, Long; Cui, Zheng

    2014-12-21

    In this report printed thin film transistors and logic circuits on flexible substrates are reported. The top-gate thin film transistors were made of the sorted semiconducting single-walled carbon nanotubes (sc-SWCNTs) ink as channel material and printed silver lines as top electrodes and interconnect. 5 nm HfOx thin films pre-deposited on PET substrates by atomic layer deposition (ALD) act as the adhesion layers to significantly improve the immobilization efficiency of sc-SWCNTs and environmental stability. The immobilization mechanism was investigated in detail. The flexible partially-printed top-gate SWCNT TFTs display ambipolar characteristics with slightly strong p-type when using 50 nm HfO(x) thin films as dielectric layer, as well as the encapsulation layer by atomic layer deposition (ALD) at 120 °C. The hole mobility, on/off ratio and subthreshold swing (SS) are ∼ 46.2 cm(2) V(-1) s(-1), 10(5) and 109 mV per decade, respectively. Furthermore, partially-printed TFTs show small hysteresis, low operating voltage (2 V) and high stability in air. Flexible partially-printed inverters show good performance with voltage gain up to 33 with 1.25 V supply voltage, and can work at 10 kHz. The frequency of flexible partially-printed five-stage ring oscillators can reach 1.7 kHz at supply voltages of 2 V with per stage delay times of 58.8 μs. This work paves a way to achieve printed SWCNT advanced logic circuits and systems on flexible substrates.

  18. Fabrication and characterization of thin-film transistor materials and devices

    NASA Astrophysics Data System (ADS)

    Hong, David

    A class of inorganic thin-film transistor (TFT) semiconductor materials has emerged involving oxides composed of post-transitional cations with (n-1)d 10ns0 (n≥4) electronic configurations. This thesis is devoted to the pursuit of topics involving the development of these materials for TFT applications: Deposition of zinc oxide and zinc tin oxide semiconductor layers via reactive sputtering from a metal target, and the characterization of indium gallium zinc oxide (IGZO)-based TFTs utilizing various insulator materials as the gate dielectric. The first topic involves the deposition of oxide semiconductor layers via reactive sputtering from a metal target. Two oxide semiconductors are utilized for fabricating TFTs via reactive sputtering from a metal target: zinc oxide and zinc tin oxide. With optimized processing parameters, zinc oxide and zinc tin oxide via this deposition method exhibit similar characteristics to TFTs fabricated via sputtering from a ceramic target. Additionally the effects of gate capacitance density and gate dielectric material are explored utilizing TFTs with IGZO as the semiconductor layers. IGZO-based TFTs exhibit ideal behavior with improved TFT performance such as higher current drive at a given overvoltage, a decrease in the subthreshold swing, and a decrease in the magnitude of the turn-on voltage. Additionally it is shown that silicon dioxide is the preferred dielectric material, with silicon nitride a poor choice for oxide-based TFTs. Finally a simple method to characterize the band tail state distribution near the conduction band minimum of a semiconductor by analyzing two-terminal current-voltage characteristics of a TFT with a floating gate is presented. The characteristics trap energy (ET) as a function of post-deposition annealing temperature is shown to correlate very well with IGZO TFT performance, with a lower value of E T, corresponding to a more abrupt distribution of band tail states, correlating with improved TFT mobility

  19. Li-Assisted Low-Temperature Phase Transitions in Solution-Processed Indium Oxide Films for High-Performance Thin Film Transistor

    PubMed Central

    Nguyen, Manh-Cuong; Jang, Mi; Lee, Dong-Hwi; Bang, Hyun-Jun; Lee, Minjung; Jeong, Jae Kyeong; Yang, Hoichang; Choi, Rino

    2016-01-01

    Lithium (Li)-assisted indium oxide (In2O3) thin films with ordered structures were prepared on solution-processed zirconium oxide (ZrO2) gate dielectrics by spin-casting and thermally annealing hydrated indium nitrate solutions with different Li nitrate loadings. It was found that the Li-assisted In precursor films on ZrO2 dielectrics could form crystalline structures even at processing temperatures (T) below 200 °C. Different In oxidation states were observed in the Li-doped films, and the development of such states was significantly affected by both temperature and the mol% of Li cations, [Li+]/([In3+] + [Li+]), in the precursor solutions. Upon annealing the Li-assisted precursor films below 200 °C, metastable indium hydroxide and/or indium oxyhydroxide phases were formed. These phases were subsequently transformed into crystalline In2O3 nanostructures after thermal dehydration and oxidation. Finally, an In2O3 film doped with 13.5 mol% Li+ and annealed at 250 °C for 1 h exhibited the highest electron mobility of 60 cm2 V−1 s−1 and an on/off current ratio above 108 when utilized in a thin film transistor. PMID:27121951

  20. Composite films of oxidized multiwall carbon nanotube and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as a contact electrode for transistor and inverter devices.

    PubMed

    Yun, Dong-Jin; Rhee, Shi-Woo

    2012-02-01

    Composite films of multiwall carbon nanotube (MWNT)/poly(3,4-ethylenedioxythiophene) polymerized with poly(4-styrenesulfonate) (PEDOT:PSS) were prepared by spin-coating a mixture solution. The effect of the MWNT loading and the MWNT oxidation, with acid solution or ultraviolet (UV)-ozone treatment, on the film properties such as surface roughness, work function, surface energy, optical transparency and conductivity were studied. Also pentacene thin film transistors and inverters were made with these composite films as a contact metal and the device characteristics were measured. The oxidation of MWNT reduced the conductivity of MWNT/PEDOT:PSS composite film but increased the work function and transparency. UV-ozone treated MWNT/PEDOT:PSS composite film showed higher conductivity (14000 Ω/□) and work function (4.9 eV) than acid-oxidized MWNT/PEDOT:PSS composite film and showed better performance as a source/drain electrode in organic thin film transistor (OTFT) than other types of MWNT/PEDOT:PSS composite films. Hole injection barrier of the UV-ozone treated MWNT/PEDOT:PSS composite film with pentacene was significantly lower than any other films because of the higher work function.

  1. Schottky Barrier Thin Film Transistor (SB-TFT) on low-temperature polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    De Iacovo, A.; Ferrone, A.; Colace, L.; Minotti, A.; Maiolo, L.; Pecora, A.

    2016-12-01

    We report on the fabrication and characterization of Schottky barrier transistors on polycrystalline silicon. The transistors were realized exploiting Cr-Si and Ti-Si Schottky barrier with a low thermal budget process, compatible with polymeric, ultraflexible substrates. We obtained devices with threshold voltages as low as 1.7 V (for n channel) and 4 V (for p channel) with channel lengths ranging from 2 to 40 μm. Resulting on/off ratios are as high as 5 · 103. The devices showed threshold voltages and subthreshold slopes comparable with already published N- and P-MOS devices realized with the same process on polyimide substrates thus representing a cheaper and scalable alternative to ultraflexible transistors with doped source and drain.

  2. Progress of p-channel bottom-gate poly-Si thin-film transistor by nickel silicide seed-induced lateral crystallization

    NASA Astrophysics Data System (ADS)

    Lee, Sol Kyu; Seok, Ki Hwan; Park, Jae Hyo; Kim, Hyung Yoon; Chae, Hee Jae; Jang, Gil Su; Lee, Yong Hee; Han, Ji Su; Joo, Seung Ki

    2016-06-01

    Excimer laser annealing (ELA) is known to be the most common crystallization technology for the fabrication of low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) in the mass production industry. This technology, however, cannot be applied to bottom-gate (BG) TFTs, which are well developed for the liquid-crystal display (LCD) back-planes, because strong laser energy of ELA can seriously damage the other layers. Here, we propose a novel high-performance BG poly-Si TFT using Ni silicide seed-induced lateral crystallization (SILC). The SILC technology renders it possible to ensure low damage in the layers, smooth surface, and longitudinal large grains in the channel. It was observed that the electrical properties exhibited a steep subthreshold slope of 110 mV/dec, high field-effect mobility of 304 cm2/Vsec, high I on/ I off ratio of 5.9 × 107, and a low threshold voltage of -3.9 V.

  3. Origin of mobility enhancement by chemical treatment of gate-dielectric surface in organic thin-film transistors: Quantitative analyses of various limiting factors in pentacene thin films

    NASA Astrophysics Data System (ADS)

    Matsubara, R.; Sakai, Y.; Nomura, T.; Sakai, M.; Kudo, K.; Majima, Y.; Knipp, D.; Nakamura, M.

    2015-11-01

    For the better performance of organic thin-film transistors (TFTs), gate-insulator surface treatments are often applied. However, the origin of mobility increase has not been well understood because mobility-limiting factors have not been compared quantitatively. In this work, we clarify the influence of gate-insulator surface treatments in pentacene thin-film transistors on the limiting factors of mobility, i.e., size of crystal-growth domain, crystallite size, HOMO-band-edge fluctuation, and carrier transport barrier at domain boundary. We quantitatively investigated these factors for pentacene TFTs with bare, hexamethyldisilazane-treated, and polyimide-coated SiO2 layers as gate dielectrics. By applying these surface treatments, size of crystal-growth domain increases but both crystallite size and HOMO-band-edge fluctuation remain unchanged. Analyzing the experimental results, we also show that the barrier height at the boundary between crystal-growth domains is not sensitive to the treatments. The results imply that the essential increase in mobility by these surface treatments is only due to the increase in size of crystal-growth domain or the decrease in the number of energy barriers at domain boundaries in the TFT channel.

  4. Rapid low-temperature processing of metal-oxide thin film transistors with combined far ultraviolet and thermal annealing

    NASA Astrophysics Data System (ADS)

    Leppäniemi, J.; Ojanperä, K.; Kololuoma, T.; Huttunen, O.-H.; Dahl, J.; Tuominen, M.; Laukkanen, P.; Majumdar, H.; Alastalo, A.

    2014-09-01

    We propose a combined far ultraviolet (FUV) and thermal annealing method of metal-nitrate-based precursor solutions that allows efficient conversion of the precursor to metal-oxide semiconductor (indium zinc oxide, IZO, and indium oxide, In2O3) both at low-temperature and in short processing time. The combined annealing method enables a reduction of more than 100 °C in annealing temperature when compared to thermally annealed reference thin-film transistor (TFT) devices of similar performance. Amorphous IZO films annealed at 250 °C with FUV for 5 min yield enhancement-mode TFTs with saturation mobility of ˜1 cm2/(V.s). Amorphous In2O3 films annealed for 15 min with FUV at temperatures of 180 °C and 200 °C yield TFTs with low-hysteresis and saturation mobility of 3.2 cm2/(V.s) and 7.5 cm2/(V.s), respectively. The precursor condensation process is clarified with x-ray photoelectron spectroscopy measurements. Introducing the FUV irradiation at 160 nm expedites the condensation process via in situ hydroxyl radical generation that results in the rapid formation of a continuous metal-oxygen-metal structure in the film. The results of this paper are relevant in order to upscale printed electronics fabrication to production-scale roll-to-roll environments.

  5. Low-Temperature-Processed Zinc Oxide Thin-Film Transistors Fabricated by Plasma-Assisted Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Kawamura, Yumi; Tani, Mai; Hattori, Nozomu; Miyatake, Naomasa; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu

    2012-02-01

    We investigated zinc oxide (ZnO) thin films prepared by plasma assisted atomic layer deposition (PA-ALD), and thin-film transistors (TFTs) with the ALD ZnO channel layer for application to next-generation displays. We deposited the ZnO channel layer by PA-ALD at 100 or 300 °C, and fabricated TFTs. The transfer characteristic of the 300 °C-deposited ZnO TFT exhibited high mobility (5.7 cm2 V-1 s-1), although the threshold voltage largely shifted toward the negative (-16 V). Furthermore, we deposited Al2O3 thin film as a gate insulator by PA-ALD at 100 °C for the low-temperature TFT fabrication process. In the case of ZnO TFTs with the Al2O3 gate insulator, the shift of the threshold voltage improved (-0.1 V). This improvement of the negative shift seems to be due to the negative charges of the Al2O3 film deposited by PA-ALD. On the basis of the experimental results, we confirmed that the threshold voltage of ZnO TFTs is controlled by PA-ALD for the deposition of the gate insulator.

  6. Effects of solution temperature on solution-processed high-performance metal oxide thin-film transistors.

    PubMed

    Lee, Keun Ho; Park, Jee Ho; Yoo, Young Bum; Jang, Woo Soon; Oh, Jin Young; Chae, Soo Sang; Moon, Kyeong Ju; Myoung, Jae Min; Baik, Hong Koo

    2013-04-10

    Herein, we report a novel and easy strategy for fabricating solution-processed metal oxide thin-film transistors by controlling the dielectric constant of H2O through manipulation of the metal precursor solution temperature. As a result, indium zinc oxide (IZO) thin-film transistors (TFTs) fabricated from IZO solution at 4 °C can be operated after annealing at low temperatures (∼250 °C). In contrast, IZO TFTs fabricated from IZO solutions at 25 and 60 °C must be annealed at 275 and 300 °C, respectively. We also found that IZO TFTs fabricated from the IZO precursor solution at 4 °C had the highest mobility of 12.65 cm2/(V s), whereas the IZO TFTs fabricated from IZO precursor solutions at 25 and 60 °C had field-effect mobility of 5.39 and 4.51 cm2/(V s), respectively, after annealing at 350 °C. When the IZO precursor solution is at 4 °C, metal cations such as indium (In3+) and zinc ions (Zn2+) can be fully surrounded by H2O molecules, because of the higher dielectric constant of H2O at lower temperatures. These chemical complexes in the IZO precursor solution at 4 °C are advantageous for thermal hydrolysis and condensation reactions yielding a metal oxide lattice, because of their high potential energies. The IZO TFTs fabricated from the IZO precursor solution at 4 °C had the highest mobility because of the formation of many metal-oxygen-metal (M-O-M) bonds under these conditions. In these bonds, the ns-orbitals of the metal cations overlap each other and form electron conduction pathways. Thus, the formation of a high proportion of M-O-M bonds in the IZO thin films is advantageous for electron conduction, because oxide lattices allow electrons to travel easily through the IZO.

  7. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate.

    PubMed

    Salvatore, Giovanni A; Münzenrieder, Niko; Barraud, Clément; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Ensslin, Klaus; Tröster, Gerhard

    2013-10-22

    Recently, transition metal dichalcogenides (TMDCs) have attracted interest thanks to their large field effective mobility (>100 cm(2)/V · s), sizable band gap (around 1-2 eV), and mechanical properties, which make them suitable for high performance and flexible electronics. In this paper, we present a process scheme enabling the fabrication and transfer of few-layers MoS2 thin film transistors from a silicon template to any arbitrary organic or inorganic and flexible or rigid substrate or support. The two-dimensional semiconductor is mechanically exfoliated from a bulk crystal on a silicon/polyvinyl alcohol (PVA)/polymethyl methacrylane (PMMA) stack optimized to ensure high contrast for the identification of subnanometer thick flakes. Thin film transistors (TFTs) with structured source/drain and gate electrodes are fabricated following a designed procedure including steps of UV lithography, wet etching, and atomic layer deposited (ALD) dielectric. Successively, after the dissolution of the PVA sacrificial layer in water, the PMMA film, with the devices on top, can be transferred to another substrate of choice. Here, we transferred the devices on a polyimide plastic foil and studied the performance when tensile strain is applied parallel to the TFT channel. We measured an electron field effective mobility of 19 cm(2)/(V s), an I(on)/I(off)ratio greater than 10(6), a gate leakage current as low as 0.3 pA/μm, and a subthreshold swing of about 250 mV/dec. The devices continue to work when bent to a radius of 5 mm and after 10 consecutive bending cycles. The proposed fabrication strategy can be extended to any kind of 2D materials and enable the realization of electronic circuits and optical devices easily transferrable to any other support.

  8. Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors.

    PubMed

    Kergoat, Loïg; Piro, Benoît; Berggren, Magnus; Horowitz, Gilles; Pham, Minh-Chau

    2012-02-01

    Organic electronics have, over the past two decades, developed into an exciting area of research and technology to replace classic inorganic semiconductors. Organic photovoltaics, light-emitting diodes, and thin-film transistors are already well developed and are currently being commercialized for a variety of applications. More recently, organic transistors have found new applications in the field of biosensors. The progress made in this direction is the topic of this review. Various configurations are presented, with their detection principle, and illustrated by examples from the literature.

  9. Organic field effect transistors for textile applications.

    PubMed

    Bonfiglio, Annalisa; De Rossi, Danilo; Kirstein, Tünde; Locher, Ivo R; Mameli, Fulvia; Paradiso, Rita; Vozzi, Giovanni

    2005-09-01

    In this paper, several issues concerning the development of textiles endowed with electronic functions will be discussed. In particular, issues concerning materials, structures, electronic models, and the mechanical constraints due to textile technologies will be detailed. The idea starts from an already developed organic field-effect transistor that is realized on a flexible film that can be applied, after the assembly, on whatever kind of substrate, in particular, on textiles. This could pave the way to a variety of applications aimed to conjugate the favorable mechanical properties of textiles with the electronic functions of transistors. Furthermore, a possible perspective for the developments of organic sensors based on this structure are described.

  10. Effect of Chloride Precursors on the Stability of Solution-Processed Indium Zinc Oxide Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Dong Hee; Park, Sung Min; Yang, Jung Il; Cho, Dong Kyu; Woo, Sang Hyun; Lim, Yoo Sung; Kuk Kim, Dae; Yi, Moonsuk

    2013-10-01

    In this experiment, solution-processed indium zinc oxide (IZO) films were prepared by spin-coating the films as an active layer in thin-film transistors (TFTs). These films were coated with nitrate and a mixture of acetate- and chloride-based precursors to allow the IZO films to contain indium and zinc components. The solution-processed IZO-based TFT fabricated using a zinc acetate precursor for the IZO films exhibited a mobility of 2.83 cm2 V-1 s-1, an on/off current ratio of ˜1×105, and a subthreshold swing value of 2.48 V/dec. The IZO-TFT with the zinc chloride precursor exhibited a mobility of 4.37 cm2 V-1 s-1, an on/off current ratio of ˜1×103, and a subthreshold swing value of 6.44 V/dec. In comparison, the IZO-TFT with a mixture of zinc acetate and chloride precursors exhibited a mobility of 1.45 cm2 V-1 s-1, an on/off current ratio of ˜1×105, and a subthreshold swing value of 1.83 V/dec. The first two devices suffered from a large threshold voltage (Vth) shift, >7 and >6 V, respectively, after a gate voltage of 20 V was applied for 2 h. In contrast, the device fabricated using the mixed precursors showed a higher stability, shifting about 1.7 V under the same stress conditions.

  11. Thin Films in the Technology of Superhigh Frequencies.

    DTIC Science & Technology

    A comprehensive discussion of the physics, manufacturing processes and applications of thin films in modern communications technology. The following...subjects are discussed in detail: (1) Structure and properties of thin films : vacuum vaporization, cathode sputtering, thin film structure and...physical properties. (2) Thin films as SHF load resistors: peculiarities of SHF resistors, material selection, behavior in an SHF field, cylindrical disc

  12. The influence of interfacial defects on fast charge trapping in nanocrystalline oxide-semiconductor thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Jihyun; Jeon, Sanghun

    2016-05-01

    Defects in oxide semiconductors not only influence the initial device performance but also affect device reliability. The front channel is the major carrier transport region during the transistor turn-on stage, therefore an understanding of defects located in the vicinity of the interface is very important. In this study, we investigated the dynamics of charge transport in a nanocrystalline hafnium-indium-zinc-oxide thin-film transistor (TFT) by short pulse I-V, transient current and 1/f noise measurement methods. We found that the fast charging behavior of the tested device stems from defects located in both the front channel and the interface, following a multi-trapping mechanism. We found that a silicon-nitride stacked hafnium-indium-zinc-oxide TFT is vulnerable to interfacial charge trapping compared with silicon-oxide counterpart, causing significant mobility degradation and threshold voltage instability. The 1/f noise measurement data indicate that the carrier transport in a silicon-nitride stacked TFT device is governed by trapping/de-trapping processes via defects in the interface, while the silicon-oxide device follows the mobility fluctuation model.

  13. Gate insulator effects on the electrical performance of ZnO thin film transistor on a polyethersulphone substrate.

    PubMed

    Lee, Jae-Kyu; Choi, Duck-Kyun

    2012-07-01

    Low temperature processing for fabrication of transistor backplane is a cost effective solution while fabrication on a flexible substrate offers a new opportunity in display business. Combination of both merits is evaluated in this investigation. In this study, the ZnO thin film transistor on a flexible Polyethersulphone (PES) substrate is fabricated using RF magnetron sputtering. Since the selection and design of compatible gate insulator is another important issue to improve the electrical properties of ZnO TFT, we have evaluated three gate insulator candidates; SiO2, SiNx and SiO2/SiNx. The SiO2 passivation on both sides of PES substrate prior to the deposition of ZnO layer was effective to enhance the mechanical and thermal stability. Among the fabricated devices, ZnO TFT employing SiNx/SiO2 stacked gate exhibited the best performance. The device parameters of interest are extracted and the on/off current ratio, field effect mobility, threshold voltage and subthreshold swing are 10(7), 22 cm2/Vs, 1.7 V and 0.4 V/decade, respectively.

  14. Impedance Analysis of Controlled-Polarization-Type Ferroelectric-Gate Thin Film Transistor Using Resistor-Capacitor Lumped Constant Circuit

    NASA Astrophysics Data System (ADS)

    Fukushima, Tadahiro; Maeda, Kazuhiro; Yoshimura, Takeshi; Ashida, Atsushi; Fujimura, Norifumi

    2011-04-01

    We propose a novel ferroelectric-gate field-effect transistor using a polar oxide semiconductor channel, which is called a controlled-polarization (CP)-type ferroelectric-gate thin film transistor (TFT). Although the CP-type ferroelectric-gate TFTs with a ZnO/YMnO3 structure shows nonvolatile memory operation, the relationship between the electrical characteristics of the TFTs and the direction of spontaneous polarization of the ferroelectric layer (PSFe) below the channel has not been revealed. In this study, the direction of PSFe is analyzed by the impedance spectra of the channel conductance because it can be expected that the channel conductance depends on the direction of the PSFe. The five conditions of the channel conductance are assumed and the impedances between the source electrode and the gate electrode of each condition are calculated by SPICE. The direction of PSFe at various gate voltages is determined by the comparison of the calculated results and experimental results. It was found that the channel conductance of the ferroelectric-gate TFT has steep change by the change of the direction of PSFe.

  15. Enhanced Sensitivity of Gas Sensor Based on Poly(3-hexylthiophene) Thin-Film Transistors for Disease Diagnosis and Environment Monitoring

    PubMed Central

    Cavallari, Marco R.; Izquierdo, José E. E.; Braga, Guilherme S.; Dirani, Ely A. T.; Pereira-da-Silva, Marcelo A.; Rodríguez, Estrella F. G.; Fonseca, Fernando J.

    2015-01-01

    Electronic devices based on organic thin-film transistors (OTFT) have the potential to supply the demand for portable and low-cost gadgets, mainly as sensors for in situ disease diagnosis and environment monitoring. For that reason, poly(3-hexylthiophene) (P3HT) as the active layer in the widely-used bottom-gate/bottom-contact OTFT structure was deposited over highly-doped silicon substrates covered with thermally-grown oxide to detect vapor-phase compounds. A ten-fold organochloride and ammonia sensitivity compared to bare sensors corroborated the application of this semiconducting polymer in sensors. Furthermore, P3HT TFTs presented approximately three-order higher normalized sensitivity than any chemical sensor addressed herein. The results demonstrate that while TFTs respond linearly at the lowest concentration values herein, chemical sensors present such an operating regime mostly above 2000 ppm. Simultaneous alteration of charge carrier mobility and threshold voltage is responsible for pushing the detection limit down to units of ppm of ammonia, as well as tens of ppm of alcohol or ketones. Nevertheless, P3HT transistors and chemical sensors could compose an electronic nose operated at room temperature for a wide range concentration evaluation (1–10,000 ppm) of gaseous analytes. Targeted analytes include not only biomarkers for diseases, such as uremia, cirrhosis, lung cancer and diabetes, but also gases for environment monitoring in food, cosmetic and microelectronics industries. PMID:25912354

  16. Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Qian, Hui-Min; Yu, Guang; Lu, Hai; Wu, Chen-Fei; Tang, Lan-Feng; Zhou, Dong; Ren, Fang-Fang; Zhang, Rong; Zheng, You-Liao; Huang, Xiao-Ming

    2015-07-01

    The time and temperature dependence of threshold voltage shift under positive-bias stress (PBS) and the following recovery process are investigated in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. It is found that the time dependence of threshold voltage shift can be well described by a stretched exponential equation in which the time constant τ is found to be temperature dependent. Based on Arrhenius plots, an average effective energy barrier Eτstress = 0.72 eV for the PBS process and an average effective energy barrier Eτrecovery = 0.58 eV for the recovery process are extracted respectively. A charge trapping/detrapping model is used to explain the threshold voltage shift in both the PBS and the recovery process. The influence of gate bias stress on transistor performance is one of the most critical issues for practical device development. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB301900 and 2011CB922100) and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China

  17. High mobility bottom gate InGaZnO thin film transistors with SiO{sub x} etch stopper

    SciTech Connect

    Kim, Minkyu; Jeong, Jong Han; Lee, Hun Jung; Ahn, Tae Kyung; Shin, Hyun Soo; Park, Jin-Seong; Jeong, Jae Kyeong; Mo, Yeon-Gon; Kim, Hye Dong

    2007-05-21

    The authors report on the fabrication of thin film transistors (TFTs), which use an amorphous indium gallium zinc oxide (a-IGZO) channel, by rf sputtering at room temperature and for which the channel length and width are patterned by photolithography and dry etching. To prevent plasma damage to the active channel, a 100-nm-thick SiO{sub x} layer deposited by plasma enhanced chemical vapor deposition was adopted as an etch stopper structure. The a-IGZO TFT (W/L=10 {mu}m/50 {mu}m) fabricated on glass exhibited a high field-effect mobility of 35.8 cm{sup 2}/V s, a subthreshold gate swing value of 0.59 V/decade, a thrseshold voltage of 5.9 V, and an I{sub on/off} ratio of 4.9x10{sup 6}, which is acceptable for use as the switching transistor of an active-matrix TFT backplane.

  18. Positive charge trapping phenomenon in n-channel thin-film transistors with amorphous alumina gate insulators

    NASA Astrophysics Data System (ADS)

    Daus, Alwin; Vogt, Christian; Münzenrieder, Niko; Petti, Luisa; Knobelspies, Stefan; Cantarella, Giuseppe; Luisier, Mathieu; Salvatore, Giovanni A.; Tröster, Gerhard

    2016-12-01

    In this work, we investigate the charge trapping behavior in InGaZnO4 (IGZO) thin-film transistors with amorphous Al2O3 (alumina) gate insulators. For thicknesses ≤10 nm, we observe a positive charge generation at intrinsic defects inside the Al2O3, which is initiated by quantum-mechanical tunneling of electrons from the semiconductor through the Al2O3 layer. Consequently, the drain current shows a counter-clockwise hysteresis. Furthermore, the de-trapping through resonant tunneling causes a drastic subthreshold swing reduction. We report a minimum value of 19 mV/dec at room temperature, which is far below the fundamental limit of standard field-effect transistors. Additionally, we study the thickness dependence for Al2O3 layers with thicknesses of 5, 10, and 20 nm. The comparison of two different gate metals shows an enhanced tunneling current and an enhanced positive charge generation for Cu compared to Cr.

  19. Digital radiology using active matrix readout of amorphous selenium: radiation hardness of cadmium selenide thin film transistors.

    PubMed

    Zhao, W; Waechter, D; Rowlands, J A

    1998-04-01

    A flat-panel x-ray imaging detector using active matrix readout of amorphous selenium (a-Se) is being investigated for digital radiography and fluoroscopy. The active matrix consists of a two-dimensional array of thin film transistors (TFTs). Radiation penetrating through the a-Se layer will interact with the TFTs and it is important to ensure that radiation induced changes will not affect the operation of the x-ray imaging detector. The methodology of the present work is to investigate the effects of radiation on the characteristic curves of the TFTs using individual TFT samples made with cadmium selenide (CdSe) semiconductor. Four characteristic parameters, i.e., threshold voltage, subthreshold swing, field effect mobility, and leakage current, were examined. This choice of parameters was based on the well established radiation damage mechanisms for crystalline silicon metal-oxide-semiconductor field-effect transistors (MOSFETs), which have a similar principle of operation as CdSe TFTs. It was found that radiation had no measurable effect on the leakage current and the field effect mobility. However, radiation shifted the threshold voltage and increased the subthreshold swing. But even the estimated lifetime dose (50 Gy) of a diagnostic radiation detector will not affect the normal operation of an active matrix x-ray detector made with CdSe TFTs. The mechanisms of the effects of radiation will be discussed and compared with those for MOSFETs and hydrogenated amorphous silicon (a-Si:H) TFTs.

  20. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics.

    PubMed

    Zhang, Jialu; Wang, Chuan; Zhou, Chongwu

    2012-08-28

    Transparent electronics has attracted numerous research efforts in recent years because of its promising commercial impact in a wide variety of areas such as transparent displays. High optical transparency as well as good electrical performance is required for transparent electronics. Preseparated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose due to their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report fully transparent transistors based on separated carbon nanotube networks. Using a very thin metal layer together with indium tin oxide as source and drain contacts, excellent electrical performance as well as high transparency (~82%) has been achieved (350-800 nm). Also, devices on flexible substrates are fabricated, and only a very small variation in electric characteristics is observed during a flexibility test. Furthermore, an organic light-emitting diode control circuit with significant output light intensity modulation has been demonstrated with transparent, separated nanotube thin-film transistors. Our results suggest the promising future of separated carbon nanotube based transparent electronics, which can serve as the critical foundation for next-generation transparent display applications.

  1. Analysis of the thin-film SOI lateral bipolar transistor and optimization of its output characteristics for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Adriaensen, S.; Flandre, D.

    2002-09-01

    In this paper, we investigate and optimize the static characteristics of NPN lateral bipolar transistors implemented in a thin-film fully-depleted SOI CMOS process for high-temperature analog applications. The basic lateral SOI bipolar device, which shows good behaviour in high-temperature circuits in spite of its relatively poor performances, is firstly described regarding its process and layout parameters. Then the concept of the graded-base bipolar transistor is introduced. This device presents significantly improved output characteristics while preserving standard current gain and CMOS process compatibility. Measurements and simulations are used to demonstrate the improvements of the breakdown voltage and the Early voltage of the bipolar device.

  2. Multi-level interconnects for heterojunction bipolar transistor integrated circuit technologies

    SciTech Connect

    Patrizi, G.A.; Lovejoy, M.L.; Schneider, R.P. Jr.; Hou, H.Q.; Enquist, P.M.

    1995-12-31

    Heterojunction bipolar transistors (HBTs) are mesa structures which present difficult planarization problems in integrated circuit fabrication. The authors report a multilevel metal interconnect technology using Benzocyclobutene (BCB) to implement high-speed, low-power photoreceivers based on InGaAs/InP HBTs. Processes for patterning and dry etching BCB to achieve smooth via holes with sloped sidewalls are presented. Excellent planarization of 1.9 {micro}m mesa topographies on InGaAs/InP device structures is demonstrated using scanning electron microscopy (SEM). Additionally, SEM cross sections of both the multi-level metal interconnect via holes and the base emitter via holes required in the HBT IC process are presented. All via holes exhibit sloped sidewalls with slopes of 0.4 {micro}m/{micro}m to 2 {micro}m/{micro}m which are needed to realize a robust interconnect process. Specific contact resistances of the interconnects are found to be less than 6 {times} 10{sup {minus}8} {Omega}cm{sup 2}. Integrated circuits utilizing InGaAs/InP HBTs are fabricated to demonstrate the applicability and compatibility of the multi-level interconnect technology with integrated circuit processing.

  3. Bi-layer Channel AZO/ZnO Thin Film Transistors Fabricated by Atomic Layer Deposition Technique.

    PubMed

    Li, Huijin; Han, Dedong; Liu, Liqiao; Dong, Junchen; Cui, Guodong; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-12-01

    This letter demonstrates bi-layer channel Al-doped ZnO/ZnO thin film transistors (AZO/ZnO TFTs) via atomic layer deposition process at a relatively low temperature. The effects of annealing in oxygen atmosphere at different temperatures have also been investigated. The ALD bi-layer channel AZO/ZnO TFTs annealed in dry O2 at 300 °C exhibit a low leakage current of 2.5 × 10(-13)A, I on/I off ratio of 1.4 × 10(7), subthreshold swing (SS) of 0.23 V/decade, and high transmittance. The enhanced performance obtained from the bi-layer channel AZO/ZnO TFT devices is explained by the inserted AZO front channel layer playing the role of the mobility booster.

  4. Electrothermal Annealing (ETA) Method to Enhance the Electrical Performance of Amorphous-Oxide-Semiconductor (AOS) Thin-Film Transistors (TFTs).

    PubMed

    Kim, Choong-Ki; Kim, Eungtaek; Lee, Myung Keun; Park, Jun-Young; Seol, Myeong-Lok; Bae, Hagyoul; Bang, Tewook; Jeon, Seung-Bae; Jun, Sungwoo; Park, Sang-Hee K; Choi, Kyung Cheol; Choi, Yang-Kyu

    2016-09-14

    An electro-thermal annealing (ETA) method, which uses an electrical pulse of less than 100 ns, was developed to improve the electrical performance of array-level amorphous-oxide-semiconductor (AOS) thin-film transistors (TFTs). The practicality of the ETA method was experimentally demonstrated with transparent amorphous In-Ga-Zn-O (a-IGZO) TFTs. The overall electrical performance metrics were boosted by the proposed method: up to 205% for the trans-conductance (gm), 158% for the linear current (Ilinear), and 206% for the subthreshold swing (SS). The performance enhancement were interpreted by X-ray photoelectron microscopy (XPS), showing a reduction of oxygen vacancies in a-IGZO after the ETA. Furthermore, by virtue of the extremely short operation time (80 ns) of ETA, which neither provokes a delay of the mandatory TFTs operation such as addressing operation for the display refresh nor demands extra physical treatment, the semipermanent use of displays can be realized.

  5. Electrical and mechanical characteristics of fully transparent IZO thin-film transistors on stress-relieving bendable substrates

    NASA Astrophysics Data System (ADS)

    Park, Sukhyung; Cho, Kyoungah; Oh, Hyungon; Kim, Sangsig

    2016-10-01

    In this study, we report the electrical and mechanical characteristics of fully transparent indium zinc oxide (IZO) thin-film transistors (TFTs) fabricated on stress-relieving bendable substrates. An IZO TFT on a stress-relieving substrate can operate normally at a bending radius of 6 mm, while an IZO TFT on a normal plastic substrate fails to operate normally at a bending radius of 15 mm. A plastic island with high Young's modulus embedded on a soft elastomer layer with low Young's modulus plays the role of a stress-relieving substrate for the operation of the bent IZO TFT. The stress and strain distributions over the IZO TFT will be analyzed in detail in this paper.

  6. Phosphorus Doping Effect in a Zinc Oxide Channel Layer to Improve the Performance of Oxide Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Han, Dong-Suk; Moon, Yeon-Keon; Lee, Sih; Kim, Kyung-Taek; Moon, Dae-Yong; Lee, Sang-Ho; Kim, Woong-Sun; Park, Jong-Wan

    2012-09-01

    In this study, we fabricated phosphorus-doped zinc oxide-based thin-film transistors (TFTs) using direct current (DC) magnetron sputtering at a relatively low temperature of 100°C. To improve the TFT device performance, including field-effect mobility and bias stress stability, phosphorus dopants were employed to suppress the generation of intrinsic defects in the ZnO-based semiconductor. The positive and negative bias stress stabilities were dramatically improved by introducing the phosphorus dopants, which could prevent turn-on voltage ( V ON) shift in the TFTs caused by charge trapping within the active channel layer. The study showed that phosphorus doping in ZnO was an effective method to control the electrical properties of the active channel layers and improve the bias stress stability of oxide-based TFTs.

  7. The effect of Ta doping in polycrystalline TiO{sub x} and the associated thin film transistor properties

    SciTech Connect

    Ok, Kyung-Chul Park, Yoseb Park, Jin-Seong E-mail: jsparklime@hanyang.ac.kr; Chung, Kwun-Bum E-mail: jsparklime@hanyang.ac.kr

    2013-11-18

    Tantalum (Ta) is suggested to act as an electron donor and crystal phase stabilizer in titanium oxide (TiO{sub x}). A transition occurs from an amorphous state to a crystalline phase at an annealing temperature above 300 °C in a vacuum ambient. As the annealing temperature increases from 300 °C to 450 °C, the mobility increases drastically from 0.07 cm{sup 2}/Vs to 0.61 cm{sup 2}/Vs. The remarkable enhancement of thin film transistor performance is suggested to be due to the splitting of Ti 3d band orbitals as well as the increase in Ta{sup 5+} ions that can act as electron donors.

  8. Conducting glasses recovered from thin film transistor liquid crystal display wastes for dye-sensitized solar cell cathodes.

    PubMed

    Chen, C-C; Chang, F-C; Peng, C Y; Wang, H Paul

    2015-01-01

    Transparent conductive glasses such as thin film transistor (TFT) array and colour filter glasses were recovered from the TFT-liquid crystal display panel wastes by dismantling and sonic cleaning. Noble metals (i.e. platinum (Pt)) and indium tin oxide (ITO) are generally used in the cathode of a dye-sensitized solar cell (DSSC). To reduce the DSSC cost, Pt was replaced with nano nickel-encapsulated carbon-shell (Ni@C) nanoparticles, which were prepared by carbonization of Ni²⁺-β-cyclodextrin at 673 K for 2 h. The recovered conductive glasses were used in the DSSC electrodes in the substitution of relatively expensive ITO. Interestingly, the efficiency of the DSSC having the Ni@C-coated cathode is as high as 2.54%. Moreover, the cost of the DSSC using the recovered materials can be reduced by at least 24%.

  9. High performance indium-zinc-oxide thin-film transistors fabricated with a back-channel-etch-technique

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Lan, Linfeng; Xu, Miao; Zou, Jianhua; Wang, Lei; Wang, Dan; Peng, Junbiao

    2011-12-01

    Indium-zinc-oxide thin-film transistors (TFTs) with back-channel-etch (BCE) structure were demonstrated. A stacked structure of Mo/Al/Mo was used as the source/drain electrodes and patterned by a wet-etch-method. Good etching profile with few residues on the channel was obtained. The TFT showed a field effect mobility of 11.3 cm2 V-1 s-1 and a sub-threshold swing of 0.24 V/decade. The performance of this kind of TFT was better than that of the TFT with etch-stopper-layer structure, which was proved to be due to the lower contact resistance. The BCE-TFTs fabricated with this method have good prospect due to the advantage of low cost.

  10. Flexible ZnO transparent thin-film transistors by a solution-based process at various solution concentrations

    NASA Astrophysics Data System (ADS)

    Lee, C. Y.; Lin, M. Y.; Wu, W. H.; Wang, J. Y.; Chou, Y.; Su, W. F.; Chen, Y. F.; Lin, C. F.

    2010-10-01

    We report solution-processed ZnO thin-film transistors (TFTs) on a flexible substrate, using polymethylmethacrylate (PMMA) as a dielectric layer. To improve the compatibility between the ZnO active layer and the PMMA dielectric, an O2-plasma treatment has been applied to the PMMA dielectric. The structural and electrical characteristics of the ZnO-TFTs, which have different channel morphologies produced by various concentrations of the ZnO solution, were investigated. The ZnO trap centers of the ZnO-TFTs were decreased as the concentration of the ZnO solution increased. The ZnO-TFT with the optimized channel morphology exhibited a high field-effect mobility of 7.53 cm2 V-1 s-1.

  11. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature

    SciTech Connect

    Fortunato, Elvira M.C.; Barquinha, Pedro M.C.; Pimentel, Ana C.M.B.G.; Goncalves, Alexandra M.F.; Marques, Antonio J.S.; Martins, Rodrigo F.P.; Pereira, Luis M.N.

    2004-09-27

    We report high-performance ZnO thin-film transistor (ZnO-TFT) fabricated by rf magnetron sputtering at room temperature with a bottom gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 19 V, a saturation mobility of 27 cm{sup 2}/V s, a gate voltage swing of 1.39 V/decade and an on/off ratio of 3x10{sup 5}. The ZnO-TFT presents an average optical transmission (including the glass substrate) of 80% in the visible part of the spectrum. The combination of transparency, high mobility, and room-temperature processing makes the ZnO-TFT a very promising low-cost optoelectronic device for the next generation of invisible and flexible electronics.

  12. Effect of organic buffer layer in the electrical properties of amorphous-indium gallium zinc oxide thin film transistor.

    PubMed

    Wang, Jian-Xun; Hyung, Gun Woo; Li, Zhao-Hui; Son, Sung-Yong; Kwon, Sang Jik; Kim, Young Kwan; Cho, Eou Sik

    2012-07-01

    In this research, we reported on the fabrication of top-contact amorphous-indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) with an organic buffer layer between inorganic gate dielectric and active layer in order to improve the electrical properties of devices. By inserting an organic buffer layer, it was possible to make an affirmation of the improvements in the electrical characteristics of a-IGZO TFTs such as subthreshold slope (SS), on/off current ratio (I(ON/OFF)), off-state current, and saturation field-effect mobility (muFE). The a-IGZO TFTs with the cross-linked polyvinyl alcohol (c-PVA) buffer layer exhibited the pronounced improvements of the muFE (17.4 cm2/Vs), SS (0.9 V/decade), and I(ON/OFF) (8.9 x 10(6)).

  13. Light-induced hysteresis and recovery behaviors in photochemically activated solution-processed metal-oxide thin-film transistors

    SciTech Connect

    Jo, Jeong-Wan; Park, Sung Kyu E-mail: skpark@cau.ac.kr; Kim, Yong-Hoon E-mail: skpark@cau.ac.kr

    2014-07-28

    In this report, photo-induced hysteresis, threshold voltage (V{sub T}) shift, and recovery behaviors in photochemically activated solution-processed indium-gallium-zinc oxide (IGZO) thin-film transistors (TFTs) are investigated. It was observed that a white light illumination caused negative V{sub T} shift along with creation of clockwise hysteresis in electrical characteristics which can be attributed to photo-generated doubly ionized oxygen vacancies at the semiconductor/gate dielectric interface. More importantly, the photochemically activated IGZO TFTs showed much reduced overall V{sub T} shift compared to thermally annealed TFTs. Reduced number of donor-like interface states creation under light illumination and more facile neutralization of ionized oxygen vacancies by electron capture under positive gate potential are claimed to be the origin of the less V{sub T} shift in photochemically activated TFTs.

  14. Nanocomposites of polyimide and mixed oxide nanoparticles for high performance nanohybrid gate dielectrics in flexible thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Ju Hyun; Hwang, Byeong-Ung; Kim, Do-Il; Kim, Jin Soo; Seol, Young Gug; Kim, Tae Woong; Lee, Nae-Eung

    2017-01-01

    Organic gate dielectrics in thin film transistors (TFTs) for flexible display have advantages of high flexibility yet have the disadvantage of low dielectric constant (low-k). To supplement low-k characteristics of organic gate dielectrics, an organic/inorganic nanocomposite insulator loaded with high-k inorganic oxide nanoparticles (NPs) has been investigated but high loading of high-k NPs in polymer matrix is essential. Herein, compositing of over-coated polyimide (PI) on self-assembled (SA) layer of mixed HfO2 and ZrO2 NPs as inorganic fillers was used to make dielectric constant higher and leakage characteristics lower. A flexible TFT with lower the threshold voltage and high current on/off ratio could be fabricated by using the hybrid gate dielectric structure of the nanocomposite with SA layer of mixed NPs on ultrathin atomic-layer deposited Al2O3.

  15. Photoresist-Free Fully Self-Patterned Transparent Amorphous Oxide Thin-Film Transistors Obtained by Sol-Gel Process

    NASA Astrophysics Data System (ADS)

    Lim, Hyun Soo; Rim, You Seung; Kim, Hyun Jae

    2014-04-01

    We demonstrated self-patterned solution-processed amorphous oxide semiconductor thin-film transistors (TFTs) using photosensitive sol-gels. The photosensitive sol-gels were synthesized by adding β-diketone compounds, i.e., benzoylacetone and acetylacetone, to sol-gels. The chemically modified photosensitive sol-gels showed a high optical absorption at specific wavelengths due to the formation of metal chelate bonds. Photoreactions of the modified solutions enabled a photoresist-free process. Moreover, Zn-Sn-O with a high Sn ratio, which is hard to wet-etch using conventional photolithography due to its chemical durability, was easily patterned via the self-patterning process. Finally, we fabricated a solution-processed oxide TFT that included fully self-patterned electrodes and an active layer.

  16. Subgap states in p-channel tin monoxide thin-film transistors from temperature-dependent field-effect characteristics

    NASA Astrophysics Data System (ADS)

    Jeong, Chan-Yong; Lee, Daeun; Han, Young-Joon; Choi, Yong-Jin; Kwon, Hyuck-In

    2015-08-01

    This paper experimentally investigates the subgap density of states (DOS) in p-type tin monoxide (SnO) thin-film transistors (TFTs) for the first time by using temperature-dependent field-effect measurements. As the temperature increases, the turn-on voltage moves in the positive direction, and the off-current and subthreshold slope continuously increase. We found that the conductivity of the SnO TFT obeys the Meyer-Neldel (MN) rule with a characteristic MN parameter of 28.6 eV-1 in the subthreshold region, from which we successfully extracted the subgap DOS by combing the field-effect method and the MN relation. The extracted subgap DOS from fabricated p-type SnO TFTs are exponentially distributed in energy, and exhibit around two orders of magnitude higher values compared to those of the n-type amorphous indium-gallium-zinc oxide TFTs.

  17. Solvent-dependent electrical characteristics and stability of organic thin-film transistors with drop cast bis(triisopropylsilylethynyl) pentacene

    NASA Astrophysics Data System (ADS)

    Kim, Chang Su; Lee, Stephanie; Gomez, Enrique D.; Anthony, John E.; Loo, Yueh-Lin

    2008-09-01

    The solvent from which the active layer is drop cast dramatically influences the electrical characteristics and electrical stability of thin-film transistors comprising bis(triisopropylsilylethynyl) pentacene. Casting from high boiling solvents allows slower crystallization; devices cast from toluene and chlorobenzene thus exhibit mobilities >0.1 cm2/V s and on/off ratios of ˜106. More importantly, the solvent choice influences the device stability. Devices from toluene exhibit stable characteristics, whereas devices from chlorobenzene show hystereses on cycling, with dramatic threshold voltage shifts toward positive voltages. The instability in chlorobenzene devices is attributed to the migration of water and solvent impurities to the charge transport interface on repetitive testing.

  18. Enhanced Performance of Organic Thin Film Transistor Devices Using Hydroxyethyl-Terminated P3HT as the Active Layer.

    PubMed

    Yeh, Je-Yuan; Tsiang, Raymond Chien-Chao

    2015-05-01

    Hydroxyethyl-terminated poly(3-hexylthiophene) (P3HT-OH) have been synthesized via a catalyst-transfer polycondensation using Grignard metathesis mediated by a nickel-based catalyst. This hydrophilic P3HT-OH is compared against the hydrophobic P3HT when used as an active layer on silicon dioxide (SiO2) wafer for organic thin-film-transistor (OTFT) fabrication. Hydroxyl groups at a 7.5% weight content lead to more chain regularity when polymer is bonded to SiO2 wafer surface and thus enhance the performance of OTFT Device, such as an 114.2% increase in ON/OFF ratio, an 12.4% increase in mobility, a 23.3% decrease in threshold voltage and a 30.1% decrease in surface roughness. Analysis and measurements reported in this paper have illustrated for the first time the feasibility of imparting hydrophilicity to the active layer for improving the OTFT performance.

  19. Charge transport and velocity distribution in ambipolar organic thin film Transistors based on a diketopyrrolopyrrole-benzothiadiazole copolymer

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Jun; Sonar, Prashant; Singh, Samarendra Pratap; Dodabalapur, Ananth

    2011-03-01

    There have been reports of charge transport mechanisms in organic thin film transistors (OTFTs) focusing on steady-state characteristics but these measurements provide limited information. Time-resolved measurements can provide additional information in understanding transport mechanisms but existing reports have focused on unipolar organic characteristics. No previous reports on ambipolar organic devices have involved entire velocity distribution and charge transport mechanisms. Recently, we have fabricated ambipolar OTFTs based on a diketopyrrolopyrrole-benzothiadiazole copolymer (PDPP-TBT) with a field-effect mobility of more than 0.2 cm2 V- 1 s - 1 . Velocity distributions are measured by performing specialized dynamic measurements while keeping the RC-time constant of the measurement circuit small. This yields a distribution in arrival times of charge carriers from source to drain which can be converted to velocity distributions. We will also describe dynamic transport measurements on high-k-dielectric PDPP-TBT OTFTs.

  20. Origin of Degradation Phenomenon under Drain Bias Stress for Oxide Thin Film Transistors using IGZO and IGO Channel Layers

    PubMed Central

    Bak, Jun Yong; Kang, Youngho; Yang, Shinhyuk; Ryu, Ho-Jun; Hwang, Chi-Sun; Han, Seungwu; Yoon, Sung-Min

    2015-01-01

    Top-gate structured thin film transistors (TFTs) using In-Ga-Zn-O (IGZO) and In-Ga-O (IGO) channel compositions were investigated to reveal a feasible origin for degradation phenomenon under drain bias stress (DBS). DBS-driven instability in terms of VTH shift, deviation of the SS value, and increase in the on-state current were detected only for the IGZO-TFT, in contrast to the IGO-TFT, which did not demonstrate VTH shift. These behaviors were visually confirmed via nanoscale transmission electron microscopy and energy-dispersive x-ray spectroscopy observations. To understand the degradation mechanism, we performed ab initio molecular dynamic simulations on the liquid phases of IGZO and IGO. The diffusivities of Ga and In atoms were enhanced in IGZO, confirming the degradation mechanism to be increased atomic diffusion. PMID:25601183