NASA Astrophysics Data System (ADS)
Kim, Jae-Ho; Seong, Tae-Yeon; Ahn, Kyung-Jun; Chung, Kwun-Bum; Seok, Hae-Jun; Seo, Hyeong-Jin; Kim, Han-Ki
2018-05-01
We report the characteristics of Sn-doped In2O3 (ITO) films intended for use as transparent conducting electrodes; the films were prepared via a five-generation, in-line type, cylindrical, rotating magnetron sputtering (CRMS) system as a function of film thickness. By using a rotating cylindrical ITO target with high usage (∼80%), we prepared high conductivity, transparent ITO films on five-generation size glass. The effects of film thickness on the electrical, optical, morphological, and structural properties of CRMS-grown ITO films are investigated in detail to correlate the thickness and performance of ITO films. The preferred orientation changed from the (2 2 2) to the (4 0 0) plane with increasing thickness of ITO is attributed to the stability of the (4 0 0) plane against resputtering during the CRMS process. Based on X-ray diffraction, surface field emission scanning electron microscopy, and cross-sectional transmission electron microscopy, we suggest a possible mechanism to explain the preferred orientation and effects of film thickness on the performance of CRMS-grown ITO films.
Liewhiran, Chaikarn; Phanichphant, Sukon
2007-01-01
ZnO nanoparticles were produced by flame spray pyrolysis (FSP) using zinc naphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%). The particle properties were analyzed by XRD, BET, and HR-TEM. The sensing films were produced by mixing the particles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder and were fabricated by doctor-blade technique with various thicknesses (5, 10, 15 μm). The morphology of the sensing films was analyzed by SEM and EDS analyses. The gas sensing characteristics to ethanol (25-250 ppm) were evaluated as a function of film thickness at 400°C in dry air. The relationship between thickness and ethanol sensing characteristics of ZnO thick film on Al2O3 substrate interdigitated with Au electrodes were investigated. The effects of film thickness, as well as the cracking phenomenon, though, many cracks were observed for thicker sensing films. Crack widths increased with increasing film thickness. The film thickness, cracking and ethanol concentration have significant effect on the sensing characteristics. The sensing characteristics with various thicknesses were compared, showing the tendency of the sensitivity to ethanol decreased with increasing film thickness and response time. The relationship between gas sensing properties and film thickness was discussed on the basis of diffusively and reactivity of the gases inside the oxide films. The thinnest sensing film (5 μm) showed the highest sensitivity and the fastest response time (within seconds).
Evolution of microstructure, strain and physical properties in oxide nanocomposite films
Chen, Aiping; Weigand, Marcus; Bi, Zhenxing; ...
2014-06-24
Using LSMO:ZnO nanocomposite films as a model system, we have researched the effect of film thickness on the physical properties of nanocomposites. It shows that strain, microstructure, as well as magnetoresistance strongly rely on film thickness. The magnetotransport properties have been fitted by a modified parallel connection channel model, which is in agreement with the microstructure evolution as a function of film thickness in nanocomposite films on sapphire substrates. The strain analysis indicates that the variation of physical properties in nanocomposite films on LAO is dominated by strain effect. These results confirm the critical role of film thickness on microstructures,more » strain states, and functionalities. Furthermore, it shows that one can use film thickness as a key parameter to design nanocomposites with optimum functionalities.« less
NASA Astrophysics Data System (ADS)
Kim, Si Joon; Mohan, Jaidah; Lee, Jaebeom; Lee, Joy S.; Lucero, Antonio T.; Young, Chadwin D.; Colombo, Luigi; Summerfelt, Scott R.; San, Tamer; Kim, Jiyoung
2018-04-01
We report on the effect of the Hf0.5Zr0.5O2 (HZO) film thickness on the ferroelectric and dielectric properties using pulse write/read measurements. HZO films of thicknesses ranging from 5 to 20 nm were annealed at 400 °C for 1 min in a nitrogen ambient to be compatible with the back-end of the line thermal budget. As the HZO film thickness decreases, low-voltage operation (1.0 V or less) can be achieved without the dead layer effect, although switching polarization (Psw) tends to decrease due to the smaller grain size. Meanwhile, for 20-nm-thick HZO films prepared under the identical stress (similar TiN top electrode thickness and thermal budget), the Psw and dielectric constant are reduced because of additional monoclinic phase formation.
NASA Technical Reports Server (NTRS)
Viehmann, W.; Eubanks, A. G.
1972-01-01
A technique is described for the simultaneous in situ measurement of film thickness, refractive index, total normal emissivity, visible-light scattering, and reflectance of contaminant films on a highly reflective liquid-nitrogen cooled, stainless steel substrate. Emissivities and scattering data are obtained for films of water, carbon dioxide, silicone oil, and a number of aromatic and aliphatic hydrocarbons as a function of film thickness between zero and 20 microns. Of the contaminants investigated, water has by far the greatest effect on emissivity, followed by silicone oil, aliphatic hydrocarbons, aromatic hydrocarbons, and carbon dioxide. The emissivity increases more rapidly with film thickness between zero and 2.5 microns than at thicknesses greater than 2.5 microns. Scattering of visible light changes very little below 2 microns thickness but increases rapidly with thickness beyond 2 to 3 microns. The effect of contaminant films on passive radiation coolers is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaojie; Wang, Cai -Zhuang
Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.
Liu, Xiaojie; Wang, Cai -Zhuang
2017-04-03
Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.
Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang
2018-04-20
Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.
Effect of geometry on hydrodynamic film thickness
NASA Technical Reports Server (NTRS)
Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.
1978-01-01
The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.
Effect of geometry on hydrodynamic film thickness
NASA Technical Reports Server (NTRS)
Brewe, D. E.; Hamrock, B. J.; Taylor, C. M.
1978-01-01
The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. Pressure-viscosity effects were not considered. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza's classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared with those using the exact expression for the film in the analysis. Contour plots are shown that indicate in detail the pressure developed between the solids.
NASA Astrophysics Data System (ADS)
Wei, Y. Y.; Eres, Gyula; Merkulov, V. I.; Lowndes, D. H.
2001-03-01
The correlation between prepatterned catalyst film thickness and carbon nanotube (CNT) growth by selective area chemical vapor deposition (CVD) was studied using Fe and Ni as catalyst. To eliminate sample-to-sample variations and create a growth environment in which the film thickness is the sole variable, samples with continuously changing catalyst film thickness from 0 to 60 nm were fabricated by electron-gun evaporation. Using thermal CVD CNTs preferentially grow as a dense mat on the thin regions of the catalyst film. Moreover, beyond a certain critical film thickness no tubes were observed. The critical film thickness for CNT growth was found to increase with substrate temperature. There appears to be no strong correlation between the film thickness and the diameter of the tubes. In contrast, using plasma enhanced CVD with Ni as catalyst, vertically oriented CNTs grow in the entire range of catalyst film thickness. The diameter of these CNTs shows a strong correlation with the catalyst film thickness. The significance of these experimental trends is discussed within the framework of the diffusion model for CNT growth.
Passport examination by a confocal-type laser profile microscope.
Sugawara, Shigeru
2008-06-10
The author proposes a nondestructive and highly precise method of measuring the thickness of a film pasted on a passport using a confocal-type laser profile microscope. The effectiveness of this method in passport examination is demonstrated. A confocal-type laser profile microscope is used to create profiles of the film surface and film-paper interface; these profiles are used to calculate the film thickness by employing an algorithm developed by the author. The film thicknesses of the passport samples--35 genuine and 80 counterfeit Japanese passports--are measured nondestructively. The intra-sample standard deviation of the film thicknesses of the genuine and counterfeit Japanese passports was of the order of 1 microm The intersample standard deviations of the film thicknesses of passports forged using the same tools and techniques are expected to be of the order of 1 microm. The thickness values of the films on the machine-readable genuine passports ranged between 31.95 microm and 36.95 microm. The likelihood ratio of this method in the authentication of machine-readable Japanese genuine passports is 11.7. Therefore, this method is effective for the authentification of genuine passports. Since the distribution of the film thickness of all forged passports was considerably larger than the accuracy of this method, this method is considered effective also for revealing the relation among the forged passports and acquiring proof of the crime.
Relation between film thickness and surface doping of MoS2 based field effect transistors
NASA Astrophysics Data System (ADS)
Lockhart de la Rosa, César J.; Arutchelvan, Goutham; Leonhardt, Alessandra; Huyghebaert, Cedric; Radu, Iuliana; Heyns, Marc; De Gendt, Stefan
2018-05-01
Ultra-thin MoS2 film doping through surface functionalization with physically adsorbed species is of great interest due to its ability to dope the film without reduction in the carrier mobility. However, there is a need for understanding how the thickness of the MoS2 film is related to the induced surface doping for improved electrical performance. In this work, we report on the relation of MoS2 film thickness with the doping effect induced by the n-dopant adsorbate poly(vinyl-alcohol). Field effect transistors built using MoS2 films of different thicknesses were electrically characterized, and it was observed that the ION/OFF ratio after doping in thin films is more than four orders of magnitudes greater when compared with thick films. Additionally, a semi-classical model tuned with the experimental devices was used to understand the spatial distribution of charge in the channel and explain the observed behavior. From the simulation results, it was revealed that the two-dimensional carrier density induced by the adsorbate is distributed rather uniformly along the complete channel for thin films (<5.2 nm) contrary to what happens for thicker films.
Effective dilution of surfactants due to thinning of the soap film
NASA Astrophysics Data System (ADS)
Sane, Aakash; Mandre, Shreyas; Kim, Ildoo
2017-11-01
A flowing soap film is a system whose hydrodynamic properties can be affected by its thickness. Despite abundant experiments performed using soap films, few have examined the dependence of its physical as well as chemical properties with respect to its thickness. We investigate one such property - surface tension of the flowing film and delineate its dependence on the concentration of the soap solution and flow rate per unit width i.e. thickness of the soap film. Using our proposed method to measure the average surface tension in-situ over the whole soap film, we show that the surface tension increases by reducing the thickness of the film and by reducing the concentration of the soap solution. Our data suggests that thinning of the soap film is effectively diluting the solution. Thinning increases the adsorption of surfactants to the surfaces, but it decreases the total number of molecules per unit area. Our work brings new insight into the physics of soap films and we believe that this effective dilution due to thinning is a signature of the flowing soap films, whose surface concentration of surfactants is affected by the thickness.
Novel Ballistic Processing of Sn-0.7Cu Thick Films
NASA Astrophysics Data System (ADS)
Cavero, D.; Stewart, K.; Morsi, K.
2017-01-01
The present paper discusses a novel process (Ballistic Processing) for the ultra-rapid processing of textured and un-textured thick and potentially thin films. The effect of processing velocity (14.6 to 36.1 m/s) on the developed external structure and internal microstructure of Sn-0.7Cu thick film is discussed. Film thicknesses ranging from 6.08 to 12.79 μm were produced and characterized by two-dimensional hypoeutectic microstructures. Both film thickness and dendrite arm spacing decreased with an increase in processing velocity.
NASA Astrophysics Data System (ADS)
Jalili, S.; Hajakbari, F.; Hojabri, A.
2018-03-01
Silver (Ag) nanolayers were deposited on nickel oxide (NiO) thin films by DC magnetron sputtering. The thickness of Ag layers was in range of 20-80 nm by variation of deposition time between 10 and 40 s. X-ray diffraction results showed that the crystalline properties of the Ag/NiO films improved by increasing the Ag film thickness. Also, atomic force microscopy and field emission scanning electron microscopy images demonstrated that the surface morphology of the films was highly affected by film thickness. The film thickness and the size of particles change by elevating the Ag deposition times. The composition of films was determined by Rutherford back scattering spectroscopy. The transmission of light was gradually reduced by augmentation of Ag films thickness. Furthermore; the optical band gap of the films was also calculated from the transmittance spectra.
Correia, T. M.
2016-01-01
Full-perovskite Pb0.87Ba0.1La0.02(Zr0.6Sn0.33Ti0.07)O3 (PBLZST) thin films were fabricated by a sol–gel method. These revealed both rhombohedral and tetragonal phases, as opposed to the full-tetragonal phase previously reported in ceramics. The fractions of tetragonal and rhombohedral phases are found to be strongly dependent on film thickness. The fraction of tetragonal grains increases with increasing film thickness, as the substrate constraint throughout the film decreases with film thickness. The maximum of the dielectric constant (εm) and the corresponding temperature (Tm) are thickness-dependent and dictated by the fraction of rhombohedral and tetragonal phase, with εm reaching a minimum at 400 nm and Tm shifting to higher temperature with increasing thickness. With the thickness increase, the breakdown field decreases, but field-induced antiferroelectric–ferroelectric (EAFE−FE) and ferroelectric–antiferroelectric (EFE−AFE) switch fields increase. The electrocaloric effect increases with increasing film thickness. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402937
NASA Astrophysics Data System (ADS)
Lappalainen, Jyrki; Lantto, Vilho; Frantti, Johannes; Hiltunen, Jussi
2006-06-01
Microstructure, film orientation, and optical transmission spectra of polycrystalline Nd-modified Pb(ZrxTi1-x)O3 films were studied as a function of film thickness. Pulsed laser deposition was used for the fabrication of films with thickness from 80to465nm on single-crystal MgO(100) substrates. Raman spectroscopy, x-ray diffraction, and spectrophotometry measurements were utilized in the film characterization. With the decreasing film thickness, films first oriented with c axis perpendicular to film surface, and then, after some critical thickness, changed to a-axis orientation. At the same time, compressive stress increased up to 1.3GPa and a clear blueshift of the optical absorption edge was found in transmission spectra.
Tellurium doping effect in avalanche-mode amorphous selenium photoconductive film
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2014-11-01
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a long wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.
Structural, transport and microwave properties of 123/sapphire films: Thickness effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Predtechensky, MR.; Smal, A.N.; Varlamov, Y.D.
1994-12-31
The effect of thickness and growth conditions on the structure and microwave properties has been investigated for the 123/sapphire films. It has been shown that in the conditions of epitaxial growth and Al atoms do not diffuse from substrate into the film and the films with thickness up to 100nm exhibit the excellent DC properties. The increase of thickness of GdBaCuO films causes the formation of extended line-mesh defects and the increase of the surface resistance (R{sub S}). The low value of surface resistance R{sub S}(75GHz,77K)=20 mOhm has been obtained for the two layer YBaCuO/CdBaCuO/sapphire films.
Phase-field simulations of thickness-dependent domain stability in PbTiO3 thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Guang; Hu, Jia-Mian; Zhang, Jinxian
Phase-field approach is used to predict the thickness effect on the domain stability in ferroelectric thin films. The strain relaxation mechanism and critical thickness for dislocation formation from both Matthews-Blakeslee (MB) and People-Bean (PB) models are employed. Thickness - strain domain stability diagrams are obtained for PbTiO3 thin films under different strain relaxation models. The relative domain fractions as a function of film thickness are also calculated and compared with experiment measurements in PbTiO3 thin films grown on SrTiO3 and KTaO3 substrates.
ERIC Educational Resources Information Center
Trefil, James
1983-01-01
Discusses why interference effects cannot be seen with a thick film, starting with a review of the origin of interference patterns in thin films. Considers properties of materials in films, properties of the light source, and the nature of light. (JN)
Numerical investigation of thin film of polar liquid with added surfactant
NASA Astrophysics Data System (ADS)
Gordeeva, V. Y.; Lyushnin, A. V.
2017-11-01
The thin film of polar liquid with an added surfactant is investigated numerically in this paper. The evolution equations for film thickness and surface concentrations were solved using the semi-implicit Crank-Nikolson scheme. A few profiles on the liquid film developing from an ellipse-shaped drop were received. It was confirmed that the developing film divides into two coexisting films with predictable thickness. It was discovered that this pecularity of the polar liquid is valid only in little range of vapor pressure, which corresponds to the disjoining pressure. It was found that the surfactant desorbed on the gas-liquid interface does not effect to the thickness of the film while the surfactant desorbed on the substrate does effect. It was also found that the stable thickness of the film grows with absolute value of the vapor pressure in stated little range.
NASA Astrophysics Data System (ADS)
Yarimbiyik, Arif Emre
2007-12-01
A highly versatile simulation program is developed and used to examine how the resistivity of thin metal films and lines increases as their dimensions approach and become smaller than the mean fee path of electrons in metals such as copper (size effect). The simulation program: (1) provides a more accurate calculation of surface scattering effects than that obtained from the usual formulation of Fuchs' theory, (2) calculates grain-boundary effects that are consistent with the theory of Mayadas and Shatzkes, (3) includes the effects of surface and grain-boundary scattering either separately or together, and (4) simulates the effect on resistivity if a surface of a film or line has a different value for the scattering parameter. The increase in resistivity with decreasing thickness of thin, evaporated copper films (approximately 10 nm to 150 nm thick) was determined from sheet resistance and film thickness measurements. Good agreement between the experimental results with those of the simulation program was obtained when the measured mean grain sizes were used by the simulation program. The mean of the grain sizes tend to decrease with decreasing film thickness and thereby increase the impact of grain-boundary scattering on the effective resistivity of the film. Estimates of the mean grain size for each film were determined from using, in combination, the electron backscatter diffraction (EBSD) and the X-ray diffraction (XRD) methods. With values for the measured change in sheet resistance with temperature of these films, it is shown that measurements of the electrical film thickness, using Matthiessen's rule, agreed to within 3 nm of the physical measurements (profilometer) of these films. Hence, Matthiessen's rule can continue to be used to measure the thickness of a copper film and, by inference, the cross-sectional area of a copper line for dimensions well below the mean free path of electrons in copper at room temperature (39 nm).
Self-Poling of BiFeO3 Thick Films.
Khomyakova, Evgeniya; Sadl, Matej; Ursic, Hana; Daniels, John; Malic, Barbara; Bencan, Andreja; Damjanovic, Dragan; Rojac, Tadej
2016-08-03
Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Parker, R. J.; Zaretsky, E. V.
1973-01-01
An empirical elastohydrodynamic film thickness formula for heavily loaded contacts based upon X-ray film thickness measurements made with a synthetic paraffinic oil is presented. The deduced relation was found to adequately reflect the high load dependence exhibited by the measured minimum film thickness data at high Hertizian contact stresses, that is, above 1.04 x 10 to the ninth N/sq m (150,000 psi). Comparisons were made with the numerical results from a theoretical isothermal film thickness formula. The effects of changes in contact geometry, material, and lubricant properties on the form of the empirical model are also discussed.
NASA Astrophysics Data System (ADS)
Wei, Y. Y.; Eres, Gyula; Lowndes, Douglas H.
2001-03-01
Chemical vapor deposition (CVD) of multi wall carbon nanotubes (MWCNTs) was realized on a substrate with a layer of iron film used as a catalyst. The catalyst film was pre-deposited in an electron-gun evaporator equipped with a movable shutter which partially blocks the beam during the evaporation process to produce a catalyst film with a continuously changing thickness from 0 to 60 nm. This technique creates a growth environment in which the film thickness is the only variable and eliminates sample-to-sample variations, enabling a systematic study of the thickness effect of the catalyst film on CNT growth. After the deposition of the catalyst film, the sample was immediately transferred into a CVD chamber where CNT growth was performed. Using Acetylene (C_2H_2) as a carbon-source gas, at the substrate temperature of around 700^oC, MWCNTs preferentially grow as a dense mat on the thin regions of the catalyst film. Moreover, beyond a certain critical film thickness no tubes were observed. The critical film thickness for CNT growth was found to increase with substrate temperature from 640^oC to 800^oC. There appears to be no strong correlation between the film thickness and the diameter of the tubes. At the substrate temperature of over 900^oC, the deposited carbon formed graphite sheets surrounding the catalyst particles and no CNTs were observed. A plot of the critical thickness of the catalyst film where CNTs start to grow as a function of the substrate temperature has obtained, which can be served as a reference for selecting the growth parameter in MWCNT growth. The significance of these experimental trends is discussed within the framework of the diffusion model for MWCNT growth.
NASA Astrophysics Data System (ADS)
Wang, Han; Wang, Shaokai; Lu, Weibang; Li, Min; Gu, Yizhou; Zhang, Yongyi; Zhang, Zuoguang
2018-06-01
Graphite films have excellent in-plane thermal conductivity but extremely low through-thickness thermal conductivity because of their intrinsic inter-layer spaces. To improve the inter-layer heat transfer of graphite films, we developed a simple interfacial modification with a short duration mixed-acid treatment. The effects of the mixture ratio of sulfuric and nitric acids and treatment time on the through-thickness thermal properties of graphite films were studied. The modification increased the through-thickness thermal conductivity by 27% and 42% for the graphite film and its composite, respectively. X-ray photoelectron spectroscopy, X-ray powder diffraction, and scanning electron microscopy results indicated that the acidification process had two competing effects: the positive contribution made by the enhanced interaction between the graphite layers induced by the functional groups and the negative effect from the destruction of the graphite layers. As a result, an optimal acidification method was found to be sulfuric/nitric acid treatment with a mixture ratio of 3:1 for 15 min. The resultant through-thickness thermal conductivity of the graphite film could be improved to 0.674 W/mK, and the corresponding graphite/epoxy composite shows a through-thickness thermal conductivity of 0.587 W/mK. This method can be directly used for graphite films and their composite fabrication to improve through-thickness thermal conductivity.
Percolative effects on noise in pentacene transistors
NASA Astrophysics Data System (ADS)
Conrad, B. R.; Cullen, W. G.; Yan, W.; Williams, E. D.
2007-12-01
Noise in pentacene thin film transistors has been measured as a function of device thickness from well above the effective conduction channel thickness to only two conducting layers. Over the entire thickness range, the spectral noise form is 1/f, and the noise parameter varies inversely with gate voltage, confirming that the noise is due to mobility fluctuations, even in the thinnest films. Hooge's parameter varies as an inverse power law with conductivity for all film thicknesses. The magnitude and transport characteristics of the spectral noise are well explained in terms of percolative effects arising from the grain boundary structure.
NASA Astrophysics Data System (ADS)
El-Gendy, Y. A.
2017-12-01
Tin monoxide (SnO) films of different thickness have been deposited onto glass substrates at vacuum pressure of ∼ 8 × 10-6 mbar using an e-beam evaporation system. A hot probe test revealed that the deposited films showed p-type conduction. The structure characterization and phase purity of the deposited films was confirmed using X-ray diffraction (XRD) and Raman spectroscopy. The optical transmission and reflection spectra of the deposited films recorded in the wavelength range 190-2500 nm were used to calculate the optical constants employing the Murmann's exact equations. The refractive index dispersion was adequately described by the well-known effective-single-oscillator model proposed by Wemple-DiDomenico, whereby the dispersion parameters were calculated. The nonlinear refractive index and nonlinear optical susceptibility of the deposited films were successfully evaluated using the Miller empirical relations. The lattice dielectric constant and the carrier concentration to the effective mass ratio were also calculated as a function of film thickness using the Spitzer and Fan model. The variation of the optical band gap of the deposited films as a function of film thickness was also presented.
Dimensional effects on the tunneling conductivity of gold-implanted nanocomposite films
NASA Astrophysics Data System (ADS)
Grimaldi, C.; Cattani, M.; Salvadori, M. C.
2015-03-01
We study the dependence of the electrical conductivity on the gold concentration of Au-implanted polymethylmethacrylate (PMMA) and alumina nanocomposite thin films. For Au contents larger than a critical concentration, the conductivity of Au-PMMA and Au-alumina is well described by percolation in two dimensions, indicating that the critical correlation length for percolation is larger than the thickness of the films. Below the critical loading, the conductivity is dominated by tunneling processes between isolated Au particles dispersed in PMMA or alumina continuous matrices. Using an effective medium analysis of the tunneling conductivity, we show that Au-PMMA behaves as a tunneling system in two dimensions, as the film thickness is comparable to the mean Au particle size. On the contrary, the conductivity of Au-alumina films is best described by tunneling in three dimensions, although the film thickness is only a few times larger than the particle size. We interpret the enhancement of the effective dimensionality of Au-alumina films in the tunneling regime as due to the larger film thickness as compared to the mean interparticle distances.
Novel mechanisms for self-assembled pattern formation in nanoscopic metal films
NASA Astrophysics Data System (ADS)
Kalyanaraman, R.; Trice, J.; Favazza, C.; Thomas, D.; Sureshkumar, R.
2007-03-01
Classical hydrodynamic theory of dewetting of spinodally unstable thin films (Vrij, Disc. farad. Soc. 1966) predicts a monotonic increase in patterning length scales with increasing film thickness. We verified this effect for nanoscopic Co metal films following melting by ns laser pulses for thickness regime h<=hc˜8,m (Favazza et al. Nanotechnology, 2006). However, a dramatic change is observed beyond this thickness hc, with length scales decreasing with increasing h. This novel behavior arises from strong thickness dependence of heating by ultrafast laser light resulting in thermocapillary effects, whose magnitude and sign are thickness dependent. We modified the classical theory, according to which the instability occurs when the stabilizing capillary force is overcome by destabilizing attractive long-range interactions, to include thermocapillary effects. The modified theory accurately predicts the experimentally observed trend. This result suggests that a variety of new length scales can be accessed by robust self-assembly via dewetting of metal films under ultrafast light.
Effects of high temperature and film thicknesses on the texture evolution in Ag thin films
NASA Astrophysics Data System (ADS)
Eshaghi, F.; Zolanvari, A.
2017-04-01
In situ high-temperature X-ray diffraction techniques were used to study the effect of high temperatures (up to 600°C) on the texture evolution in silver thin films. Ag thin films with different thicknesses of 40, 80, 120 and 160nm were sputtered on the Si(100) substrates at room temperature. Then, microstructure of thin films was determined using X-ray diffraction. To investigate the influence of temperature on the texture development in the Ag thin films with different thicknesses, (111), (200) and (220) pole figures were evaluated and orientation distribution functions were calculated. Minimizing the total energy of the system which is affected by competition between surface and elastic strain energy was a key factor in the as-deposited and post annealed thin films. Since sputtering depositions was performed at room temperature and at the same thermodynamic conditions, the competition growth caused the formation of the {122} < uvw \\rangle weak fiber texture in as-deposited Ag thin films. It was significantly observed that the post annealed Ag thin films showed {111} < uvw \\rangle orientations as their preferred orientations, but their preferred fiber texture varied with the thickness of thin films. Increasing thin film thickness from 40nm to 160nm led to decreasing the intensity of the {111} < uvw \\rangle fiber texture.
Frictional and morphological properties of Au-MoS2 films sputtered from a compact target
NASA Technical Reports Server (NTRS)
Spalvins, T.
1984-01-01
AuMoS2 films 0.02 to 1.2 microns thick were sputtered from target compacted from 5 wt % Au + 95 wt % MoS2, to investigate the frictional and morphological film growth characteristics. The gold dispersion effects in MoS2 films are of interest to increase the densitification and strengthening of the film structure. Three microstructural growth stages were identified on the nano-micro-macrostructural level. During sliding both sputtered Au-MoS2 and MoS2 films have a tendency to break within the columner region. The remaining or effective film, about 0.2 microns thick, performs the lubrication. The Au-MoS2 films displayed a lower friction coefficient with a high degree of frictional stability and less wear debris generation as compared to pure MoS2 films. The more favorable frictional characteristics of the Au-MoS2 films are attributed to the effective film thickness and the high density packed columner zone which has a reduced effect on the fragmentation of the tapered crystallites during fracture.
Novel behaviors of anomalous Hall effect in TbFeCo ferrimagnetic thin films
NASA Astrophysics Data System (ADS)
Ando, Ryo; Komine, Takashi; Sato, Shiori; Kaneta, Shingo; Hara, Yoshiaki
2018-05-01
We investigate the temperature dependence and the thickness dependence of anomalous Hall effect (AHE) of TbFeCo ultra-thin films under high magnetic field. The sign change on temperature dependence of AHE in 20nm-thick TbFeCo film with rare-earth (RE) rich composition was observed. The AHE sign at low temperature is negative while it gradually becomes positive as the temperature increases. Moreover, the AHE sign for 5nm-thick TbFeCo film remains positive while that for 50nm-thick TbFeCo film remains negative at temperature in the range from 5 K to 400 K. The similar thickness dependence of AHE in TM-rich samples was also observed. From the mean-field approximation, the sign change temperature in AHE is related to the compensation temperature and the existence of interfacial region, which has the TM-rich composition and the weak anisotropy. Therefore, We clarified that the novel behavior of AHE sign changes in TbFeCo thin films with different thickness can be explained by the interfacial layer with weak anisotropy and two phase model.
NASA Technical Reports Server (NTRS)
Cusano, C.; Wedeven, L. D.
1981-01-01
The effects of artificially produced dents and grooves on the elastohydrodynamic (EHD) film thickness profile in a sliding point contact were investigated by means of optical interferometry. The defects, formed on the surface of a highly polished ball, were held stationary at various locations within and in the vicinity of the contact region while the disk was rotating. It is shown that the defects, having a geometry similar to what can be expected in practice, can dramatically change the film thickness which exists when no defects are present in or near the contact. This change in film thickness is mainly a function of the position of the defects in the inlet region, the geometry of the defects, the orientation of the defects in the case of grooves, and the depth of the defect relative to the central film thickness.
Wilson, Rachel L; Simion, Cristian Eugen; Blackman, Christopher S; Carmalt, Claire J; Stanoiu, Adelina; Di Maggio, Francesco; Covington, James A
2018-03-01
Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO₂ and inferred for TiO₂. In this paper, TiO₂ thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO₂ films were exposed to different concentrations of CO, CH₄, NO₂, NH₃ and SO₂ to evaluate their gas sensitivities. These experiments showed that the TiO₂ film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH₄ and NH₃ exposure indicated typical n -type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.
Dynamic response of film thickness in spiral-groove face seals
NASA Technical Reports Server (NTRS)
Dirusso, E.
1985-01-01
Tests were performed on an inward- and an outward-pumping spiral-groove face seal to experimentally determine the film thickness response to seal seat motions and to gain insight into the effect of secondary seal friction on film thickness behavior. Film thickness, seal seat axial motion, seal frictional torque, and film axial load were recorded as functions of time. The experiments revealed that for sinusoidal axial oscillations of the seal seat, the primary ring followed the seal seat motion very well. For a skewed seal seat, however, the primary ring did not follow the seal seat motion, and load-carrying capacity was degraded. Secondary seal friction was varied over a wide range to determine its effect on film thickness dynamics. The seals were tested with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed ranged from 7000 to 20,000 rpm. Seal tangential velocity ranged from 34 to 98 m/sec (113 to 323 ft/sec).
Huang, Changchun; Wen, Gangyao; Li, Jingdan; Wu, Tao; Wang, Lina; Xue, Feifei; Li, Hongfei; Shi, Tongfei
2016-09-15
Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films (<20nm thick) were mainly investigated by atomic force microscopy. Surface chemical analysis of the ultrathin films annealed for different times were performed using X-ray photoelectron spectroscopy and contact angle measurement. With the annealing of acetone vapor, dewetting of the films with different thicknesses occur via the spinodal dewetting and the nucleation and growth mechanisms, respectively. The PS-b-PMMA films rupture into droplets which first coalesce into large ones to reduce the surface free energy. Then the large droplets rupture into small ones to increase the contact area between PMMA blocks and acetone molecules resulting from ultimate migration of PMMA blocks to droplet surface, which is a novel dewetting process observed in spin-coated films for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Parro, Rocco J.; Scardelletti, Maximilian C.; Varaljay, Nicholas C.; Zimmerman, Sloan; Zorman, Christian A.
2008-10-01
This paper reports an effort to develop amorphous silicon carbide (a-SiC) films for use in shunt capacitor RF MEMS microbridge-based switches. The films were deposited using methane and silane as the precursor gases. Switches were fabricated using 500 nm and 300 nm-thick a-SiC films to form the microbridges. Switches made from metallized 500 nm-thick SiC films exhibited favorable mechanical performance but poor RF performance. In contrast, switches made from metallized 300 nm-thick SiC films exhibited excellent RF performance but poor mechanical performance. Load-deflection testing of unmetallized and metallized bulk micromachined SiC membranes indicates that the metal layers have a small effect on the Young's modulus of the 500 nm and 300 nm-thick SiC MEMS. As for residual stress, the metal layers have a modest effect on the 500 nm-thick structures, but a significant affect on the residual stress in the 300 nm-thick structures.
NASA Astrophysics Data System (ADS)
Leuterio, Giselle Lou D.; Pajarito, Bryan B.; Domingo, Carla Marie C.; Lim, Anna Patricia G.
2016-05-01
Functional, lightweight, strong and cheap plastic bags incorporated with pro-oxidants undergo accelerated degradation under exposure to heat and oxygen. This work investigated the effect of colorant and film thickness on thermal aging characteristics of commercial oxo-biodegradable plastic bag films at 70 °C. Degradation is monitored through changes in infrared absorption, weight, and tensile properties of thermally aged films. The presence of carbonyl band in infrared spectrum after 672 h of thermal aging supports the degradation behavior of exposed films. Results show that incorporation of colorant and increasing thickness exhibit low maximum weight uptake. Titanium dioxide as white colorant in films lowers the susceptibility of films to oxygen uptake but enhances physical degradation. Higher amount of pro-oxidant loading also contributes to faster degradation. Opaque films are characterized by low tensile strength and high elastic modulus. Decreasing the thickness contributes to lower tensile strength of films. Thermally aged films with colorant and low thickness promote enhanced degradation.
Effects of lattice deformation on magnetic properties of electron-doped La0.8Hf0.2MnO3 thin films
NASA Astrophysics Data System (ADS)
Wu, Z. P.; Jiang, Y. C.; Gao, J.
2013-05-01
The lattice deformation effects on electric and magnetic properties of electron-doped La0.8Hf0.2MnO3 (LHMO) thin films have been systematically investigated. LHMO films with various thicknesses (15 nm, 40 nm, and 80 nm) were grown on (001) SrTiO3 and (001) LaAlO3 substrates, which induces in-plane tensile and compressive biaxial stress, respectively. The metal-insulator phase transition temperature (TP) and magnetoresistance (MR) effect show a strong dependence on film thickness. TP increases with a decrease in thickness and is enhanced as the lattice strain rises, regardless of whether it is tensile or compressive. The maximum MR ratio is suppressed by reduction of the film thickness. These anomalous phenomena may be attributed to the competition between the strain induced modification of the Mn-O bond length and the eg orbital stability.
Non-contacting Measurement of Oil Film Thickness Between Loaded Metallic Gear Teeth
NASA Astrophysics Data System (ADS)
Cox, Daniel B.; Ceccio, Steven L.; Dowling, David R.
2013-11-01
The mechanical power transmission efficiency of gears is depends on the lubrication condition between gear teeth. While the lubrication levels can be generally predicted, an effective in-situ non-contacting measurement of oil film thicknesses between loaded metallic gear teeth has proved elusive. This study explores a novel oil film thickness measurement technique based on optical fluence, the light energy transmitted between loaded gear teeth. A gear testing apparatus that allowed independent control of gear rotation rate, load torque, and oil flow was designed and built. Film thickness measurements made with 5-inch-pitch-diameter 60-tooth spur gears ranged from 0.3 to 10.2 mil. These results are compared with film thickness measurements made in an earlier investigation (MacConochie and Cameron, 1960), as well as with predictions from two film thickness models: a simple two-dimensional squeezed oil film and the industry-accepted model as described by the American Gear Manufacturers Association (AGMA 925, 2003). In each case, the measured film thicknesses were larger than the predicted thicknesses, though these discrepancies might be attributed to the specifics the experiments and to challenges associated with calibrating the fluence measurements. [Sponsored by General Electric].
NASA Astrophysics Data System (ADS)
Chauhan, Shakti Singh
Metallic interconnects and circuitry has been experiencing excessive deformation beyond their elastic limits in many applications, ranging from micro-electromechanical systems (MEMS) to flexible electronics. These broad applications are creating needs to understand the extent of strength and ductility of freestanding metallic films at scales approaching the micron and sub micron range. This work aims to elucidate the effects of microstructural constraint as well as geometric dimensional constraint on the strength and ductility of freestanding Cu films under uniaxial tension. Two types of films are tested (i) high purity rolled films of 12.5-100microm thickness and average grain sizes of 11-47microm and (ii) electroplated films of 2-50 microm thickness and average grain sizes of 1.8-5microm. Several experimental tools including residual electrical resistivity measurements, surface strain measurements and surface roughness measurements are employed to highlight the underlying deformation mechanisms leading to the observed size effects. With respect to the strength of the specimens, we find that the nature and magnitude of thickness effects is very sensitive to the average grain size. In all cases, coupled thickness and grain size effects were observed. This study shows that this observed coupling, unique to the case of freestanding specimen, arises because the observed size effects are an outcome of the size dependence of two fundamental microstructural parameters i.e. volume fraction of surface grains and grain boundary area per unit specimen volume. For films having thickness and grain sizes greater than 5microm, thickness dependent weakening is observed for a constant grain size. Reducing thickness results in an increase in the volume fraction of grains exposed to the free surface as well as a reduction in the grain boundary area per unit specimen volume. The former effect leads to a reduction in the effective microstructural constraint on the intragranular dislocation activity in individual grains. This free surface related effect is the origin of a weakening contribution to the overall specimen strength with reducing thickness. For specimens with grain sizes ˜ O (10-50microm), this effect was found to be dominating i.e. reducing thickness resulted in reducing strength. A phenomenological model employing the flow strength of surface and bulk grains is proposed to model the observed trends. For films having thickness and grain sizes smaller than 5microm, size dependent strengthening is observed for a constant grain size. At this scale, grain boundary dislocations dominate. As a consequence, thickness effects arise because grain boundary dislocation source density per unit specimen volume reduces with reducing specimen thickness. This statistical reduction in dislocation source density leads to increasing specimen strength via source starvation strengthening. Our results show that such increasing specimen strength with reducing thickness, which has only been observed previously for nanocrystalline thin films, first appears at average grain size of ˜5microm or xx smaller. The measurements showed a characteristic length scale of about 5microm, which defines the size dependent strengthening or weakening of the film. With respect to the thickness effects on ductility, it was found that both thickness and average grain size affect ductility. While prominent thickness effects persist at larger grain sizes, for specimens with grain size approaching 1microm, the loss of strain hardening ability at such fine microstructures dominates and a limiting ductility of ˜2% is seen irrespective of the thickness. The observed thickness effects on ductility were investigated via surface roughness measurements that allow the characterization of initiation and evolution of deformation heterogeneities. It was found that thickness has a strong influence on the characteristic heterogeneity of deformation. At small specimen thicknesses, the deformation was found to be highly localized i.e. widely spaced regions showing substantial thickness reduction, hence increasing the vulnerability to the onset of plastic instabilities. At larger thicknesses, however, the increasing microstructural constraint delocalizes the strain and thereby precludes the early onset of instability, leading to enhanced ductility.
Nguyen, Minh D; Houwman, Evert P; Dekkers, Matthijn; Rijnders, Guus
2017-03-22
Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) films with (001) orientation were deposited on Pt(111)/Ti/SiO 2 /Si(100) substrates using pulsed laser deposition. Variation of the laser pulse rate during the deposition of the PZT films was found to play a key role in the control of the microstructure and to change strongly the piezoelectric response of the thin film. The film deposited at low pulse rate has a denser columnar microstructure, which improves the transverse piezoelectric coefficient (d 31f ) and ferroelectric remanent polarization (P r ), whereas the less densely packed columnar grains in the film deposited at high pulse rates give rise to a significantly higher longitudinal piezoelectric coefficient (d 33f ) value. The effect of film thickness on the ferroelectric and piezoelectric properties of the PZT films was also investigated. With increasing film thickness, the grain column diameter gradually increases, and also the average P r and d 33f values become larger. The largest piezoelectric coefficient of d 33f = 408 pm V -1 was found for a 4-μm film thickness. From a series of films in the thickness range 0.5-5 μm, the z-position dependence of the piezoelectric coefficient could be deduced. A local maximum value of 600 pm V -1 was deduced in the 3.5-4.5 μm section of the thickest films. The dependence of the film properties on film thickness is attributed to the decreasing effect of the clamping constraint imposed by the substrate and the increasing spatial separation between the grains with increasing film thickness.
2017-01-01
Pb(Zr0.52Ti0.48)O3 (PZT) films with (001) orientation were deposited on Pt(111)/Ti/SiO2/Si(100) substrates using pulsed laser deposition. Variation of the laser pulse rate during the deposition of the PZT films was found to play a key role in the control of the microstructure and to change strongly the piezoelectric response of the thin film. The film deposited at low pulse rate has a denser columnar microstructure, which improves the transverse piezoelectric coefficient (d31f) and ferroelectric remanent polarization (Pr), whereas the less densely packed columnar grains in the film deposited at high pulse rates give rise to a significantly higher longitudinal piezoelectric coefficient (d33f) value. The effect of film thickness on the ferroelectric and piezoelectric properties of the PZT films was also investigated. With increasing film thickness, the grain column diameter gradually increases, and also the average Pr and d33f values become larger. The largest piezoelectric coefficient of d33f = 408 pm V–1 was found for a 4-μm film thickness. From a series of films in the thickness range 0.5–5 μm, the z-position dependence of the piezoelectric coefficient could be deduced. A local maximum value of 600 pm V–1 was deduced in the 3.5–4.5 μm section of the thickest films. The dependence of the film properties on film thickness is attributed to the decreasing effect of the clamping constraint imposed by the substrate and the increasing spatial separation between the grains with increasing film thickness. PMID:28247756
NASA Astrophysics Data System (ADS)
Chen, Zhendong; Kong, Wenwen; Mi, Kui; Chen, Guilin; Zhang, Peng; Fan, Xiaolong; Gao, Cunxu; Xue, Desheng
2018-03-01
Epitaxial Co2FeAl films with the thickness varying from 26.4 nm to 4.6 nm were grown on MgO(001) substrates by molecular beam epitaxy. Spin rectification was adopted to study the dynamic magnetic properties of the Co2FeAl films, considering the reported advantages of this technique with high thickness-independent sensitivity on samples. At a fixed microwave frequency, the in-plane angular dependent resonance fields and their linewidths exhibit a superposition of a uniaxial and a fourfold anisotropy for all samples. The results reveal an anisotropic damping behavior of the films. Along in-plane different azimuths of the films, frequency-dependent resonance-field linewidths were investigated. The anisotropic effective damping of the films with the thickness varying from 26.4 nm to 4.6 nm was then analyzed, which is contributed from the two-magnon scattering.
NASA Astrophysics Data System (ADS)
Chang, R. C.; Li, T. C.; Lin, C. W.
2012-02-01
Various thickness metallic interlayers to improve the opto-electric and mechanical properties of aluminum-doped zinc oxide (AZO) thin films deposited on flexible polyethylene terephtalate (PET) substrates are studied. The effects of the interlayers on the resistance and transmittance of the AZO thin films are discussed. The result shows that the metallic interlayers effectively improve the electric resistance but reduce the optical transmittance of the AZO thin films. These phenomena become more obvious as the interlayer thickness increases. However, the AZO with an aluminum interlayer still behaves an acceptable transmittance. Moreover, mechanical tests indicate that the aluminum interlayer increases the hardness and modulus, and reduce the residual stress of the AZO thin films. In contrast, the silver and copper interlayers decrease the AZO's mechanical properties. Comparing to those without any interlayer, the results show that the best interlayer is the 6 nm thick aluminum film.
NASA Astrophysics Data System (ADS)
Davidson, Anthony, III; Kolagani, Rajeswari; Bacharova, Ellisaveta; Yong, Grace; Smolyaninova, Vera; Schaefer, David; Mundle, Rajeh
2007-03-01
Epitaxial thin films of CMR manganite materials have been known to show thickness dependent electrical and magnetic properties on lattice mismatched substrates. Below a critical thickness, insulator-metal transition is suppressed. These effects have been largely attributed to the role of bi-axial lattice mismatch strain. Our recent results of epitaxial thin films of La0.67Ca0.33MnO3 (LCMO) on two substrates with varying degrees of compressive lattice mismatch indicate that, in addition to the effect of lattice mismatch strain, the thickness dependence of the properties are influenced by other factors possibly related to the nature of the film substrate interface and defects such as twin boundaries. We have compared the properties of LCMO films on (100) oriented LaAlO3 and (001) oriented NdCaAlO4 both of which induce compressive bi-axial strain. Interestingly, the suppression of the insulator-metal transition is less in films on NCAO which has a larger lattice mismatch. We will present results correlating the electrical and magneto transport properties with the structure and morphology of the films.
NASA Astrophysics Data System (ADS)
Yaseen, Muhammad; Ren, Wei; Chen, Xiaofeng; Feng, Yujun; Shi, Peng; Wu, Xiaoqing
2018-02-01
Sol-gel-derived lead zirconate titanate (PZT) thin-film emitters with thickness up to 9.8 μm have been prepared on Pt/TiO2/SiO2/Si wafer via chemical solution deposition with/without polyvinylpyrrolidone (PVP) modification, and the relationship between the film thickness and electron emission investigated. Notable electron emission was observed on application of a trigger voltage of 120 V for PZT film with thickness of 1.1 μm. Increasing the film thickness decreased the threshold field to initiate electron emission for non-PVP-modified films. In contrast, the electron emission behavior of PVP-modified films did not show significant dependence on film thickness, probably due to their porous structure. The emission current increased with decreasing strip width and space between strips. Furthermore, it was observed that increasing the duration of the applied pulse increased the magnitude of the emission current. The stray field on the PZT film thickness was also calculated and found to increase with increasing ferroelectric sample thickness. The PZT emitters were found to be fatigue free up to 105 emission cycles. Saturated emission current of around 25 mA to 30 mA was achieved for the electrode pattern used in this work.
Microstructure and thermochromic properties of VOX-WOX-VOX ceramic thin films
NASA Astrophysics Data System (ADS)
Khamseh, S.; Araghi, H.; Ghahari, M.; Faghihi Sani, M. A.
2016-03-01
W-doped VO2 films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VOX-WOX-VOX ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO2 (M) and VO2 (B) was formed in VOX-WOX-VOX ceramic thin films. Tungsten content of VOX-WOX-VOX ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance ( R sq) of VOX-WOX-VOX ceramic thin films increased from 65 to 86 kΩ/sq. The VOX-WOX-VOX ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness.
Huang, Xinru; Roth, Connie B
2016-06-21
Recent studies have measured or predicted thickness-dependent shifts in density or specific volume of polymer films as a possible means of understanding changes in the glass transition temperature Tg(h) with decreasing film thickness with some experimental works claiming unrealistically large (25%-30%) increases in film density with decreasing thickness. Here we use ellipsometry to measure the temperature-dependent index of refraction of polystyrene (PS) films supported on silicon and investigate the validity of the commonly used Lorentz-Lorenz equation for inferring changes in density or specific volume from very thin films. We find that the density (specific volume) of these supported PS films does not vary by more than ±0.4% of the bulk value for film thicknesses above 30 nm, and that the small variations we do observe are uncorrelated with any free volume explanation for the Tg(h) decrease exhibited by these films. We conclude that the derivation of the Lorentz-Lorenz equation becomes invalid for very thin films as the film thickness approaches ∼20 nm, and that reports of large density changes greater than ±1% of bulk for films thinner than this likely suffer from breakdown in the validity of this equation or in the difficulties associated with accurately measuring the index of refraction of such thin films. For larger film thicknesses, we do observed small variations in the effective specific volume of the films of 0.4 ± 0.2%, outside of our experimental error. These shifts occur simultaneously in both the liquid and glassy regimes uniformly together starting at film thicknesses less than ∼120 nm but appear to be uncorrelated with Tg(h) decreases; possible causes for these variations are discussed.
Effect of pectin charge density on formation of multilayer films with chitosan.
Kamburova, Kamelia; Milkova, Viktoria; Petkanchin, Ivana; Radeva, Tsetska
2008-04-01
The effect of pectin charge density on the formation of multilayer films with chitosan (PEC/CHI) is studied by means of electro-optics. Pectins of low (21%) and high (71%) degrees of esterification, which are inversely proportional to the pectin charge density, are used to form films on colloidal beta-FeOOH particles at pH 4.0 when the CHI is fully ionized. We find that, after deposition of the first 3-4 layers, the film thickness increases linearly with the number of adsorbed layers. However, the increase in the film thickness is larger when the film is terminated with CHI. Irregular increase of the film thickness is more marked for the PEC with higher density of charge. Oscillation in the electrical polarizability of the film-coated particles with the number of deposited layers is also registered in the PEC/CHI films. The charge balance of the multilayers, calculated from electrical polarizability of the film-coated particles, is positive, with larger excess of positive charge within the film constructed from CHI and less charged PEC. This is attributed to the ability of CHI to diffuse into the film at each deposition step. Despite the CHI diffusion, the film thickness increases linearly due to the dissolution of unstable PEC/CHI complexes from the film surface.
NASA Astrophysics Data System (ADS)
Choudhary, Sumita; Narula, Rahul; Gangopadhyay, Subhashis
2018-05-01
Precise measurement of electrical sheet resistance and resistivity of metallic thin Cu films may play a significant role in temperature sensing by means of resistivity changes which can further act as a safety measure of various electronic devices during their operation. Four point probes resistivity measurement is a useful approach as it successfully excludes the contact resistance between the probes and film surface of the sample. Although, the resistivity of bulk samples at a particular temperature mostly depends on its materialistic property, however, it may significantly differ in the case of thin films, where the shape and thickness of the sample can significantly influence on it. Depending on the ratio of the film thickness to probe spacing, samples are usually classified in two segments such as (i) thick films or (ii) thin films. Accordingly, the geometric correction factors G can be related to the sample resistivity r, which has been calculated here for thin Cu films of thickness up to few 100 nm. In this study, various rectangular shapes of thin Cu films have been used to determine the shape induced geometric correction factors G. An expressions for G have been obtained as a function of film thickness t versus the probe spacing s. Using these expressions, the correction factors have been plotted separately for each cases as a function of (a) film thickness for fixed linear probe spacing and (b) probe distance from the edge of the film surface for particular thickness. Finally, we compare the experimental results of thin Cu films of various rectangular geometries with the theoretical reported results.
Effect of thickness on electrical properties of SILAR deposited SnS thin films
NASA Astrophysics Data System (ADS)
Akaltun, Yunus; Astam, Aykut; Cerhan, Asena; ćayir, Tuba
2016-03-01
Tin sulfide (SnS) thin films of different thickness were prepared on glass substrates by successive ionic layer adsorption and reaction (SILAR) method at room temperature using tin (II) chloride and sodium sulfide aqueous solutions. The thicknesses of the films were determined using spectroscopic ellipsometry measurements and found to be 47.2, 65.8, 111.0, and 128.7nm for 20, 25, 30 and 35 deposition cycles respectively. The electrical properties of the films were investigated using d.c. two-point probe method at room temperature and the results showed that the resistivity was found to decrease with increasing film thickness.
In situ measurements of thin films in bovine serum lubricated contacts using optical interferometry.
Vrbka, Martin; Křupka, Ivan; Hartl, Martin; Návrat, Tomáš; Gallo, Jiří; Galandáková, Adéla
2014-02-01
The aim of this study is to consider the relevance of in situ measurements of bovine serum film thickness in the optical test device that could be related to the function of the artificial hip joint. It is mainly focussed on the effect of the hydrophobicity or hydrophilicity of the transparent surface and the effect of its geometry. Film thickness measurements were performed using ball-on-disc and lens-on-disc configurations of optical test device as a function of time. Chromatic interferograms were recorded with a high-speed complementary metal-oxide semiconductor digital camera and evaluated with thin film colorimetric interferometry. It was clarified that a chromium layer covering the glass disc has a hydrophobic behaviour which supports the adsorption of proteins contained in the bovine serum solution, thereby a thicker lubricating film is formed. On the contrary, the protein film formation was not observed when the disc was covered with a silica layer having a hydrophilic behaviour. In this case, a very thin lubricating film was formed only due to the hydrodynamic effect. Metal and ceramic balls have no substantial effect on lubricant film formation although their contact surfaces have relatively different wettability. It was confirmed that conformity of contacting surfaces and kinematic conditions has fundamental effect on bovine serum film formation. In the ball-on-disc configuration, the lubricant film is formed predominantly due to protein aggregations, which pass through the contact zone and increase the film thickness. In the more conformal ball-on-lens configuration, the lubricant film is formed predominantly due to hydrodynamic effect, thereby the film thickness is kept constant during measurement.
NASA Astrophysics Data System (ADS)
Tripathi, Ravi P.; Zulfequar, M.; Khan, Shamshad A.
2018-04-01
Our aim is to study the thickness dependent effects on structure, electrical and optical properties of Se85In12Bi3 nanochalcogenide thin films. Bulk alloy of Se85In12Bi3 was synthesized by melt-quenching technique. The amorphous as well as glassy nature of Se85In12Bi3 chalcogenide was confirmed by non-isothermal Differential Scanning Calorimetry (DSC) measurements. The nanochalcogenide thin films of thickness 30, 60 and 90 nm were prepared on glass/Si wafer substrate using Physical Vapour Condensation Technique (PVCT). From XRD studies it was found that thin films have amorphous texture. The surface morphology and particle size of films were studied by Field Emission Scanning Electron Microscope (FESEM). From optical studies, different optical parameters were estimated for Se85In12Bi3 thin films at different thickness. It was found that the absorption coefficient (α) and extinction coefficient (k) increases with photon energy and decreases with film thickness. The optical absorption process followed the rule of indirect transitions and optical band gap were found to be increase with film thickness. The value of Urbach energy (Et) and steepness parameter (σ) were also calculated for different film thickness. For electrical studies, dc-conductivity measurement was done at different temperature and activation energy (ΔEc) were determined and found to be increase with film thickness.
NASA Astrophysics Data System (ADS)
Kumar, S.; Gerhardt, R. A.
2012-03-01
The effects of film thickness, electrode size and substrate thickness on the impedance parameters of alternating frequency dielectric measurements of insulating thin films deposited on conductive substrates were studied through parametric finite-element simulations. The quasi-static forms of Maxwell's electromagnetic equations in a time harmonic mode were solved using COMSOL Multiphysics® for several types of 2D models (linear and axisymmetric). The full 2D model deals with a configuration in which the impedance is measured between two surface electrodes on top of a film deposited on a conductive substrate. For the simplified 2D models, the conductive substrate is ignored and the two electrodes are placed on the top and bottom of the film. By comparing the full model and the simplified models, approximations and generalizations are deduced. For highly insulating films, such as the case of insulating SiO2 films on a conducting Si substrate, even the simplified models predict accurate capacitance values at all frequencies. However, the edge effects on the capacitance are found to be significant when the film thickness increases and/or the top electrode contact size decreases. The thickness of the substrate affects predominantly the resistive components of the dielectric response while having no significant effect on the capacitive components. Changing the electrode contact size or the film thickness determines the specific values of the measured resistance or capacitance while the material time constant remains the same, and thus this affects the frequency dependence that is able to be detected. This work highlights the importance of keeping in mind the film thickness and electrode contact size for the correct interpretation of the measured dielectric properties of micro/nanoscale structures that are often investigated using nanoscale capacitance measurements.
Keech, Ryan; Morandi, Carl; Wallace, Margeaux; ...
2017-04-11
Continued reduction in length scales associated with many ferroelectric film-based technologies is contingent on retaining the functional properties as the film thickness is reduced. Epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) thin films were studied over the thickness range of 100-350 nm for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO 3, while polycrystalline films with {001}-Lotgering factors >0.96 were grown on Pt/TiO 2/SiO 2/Si substrates via chemical solution deposition. Both film types exhibited similar relative permittivities of ~300 at highmore » fields at all measured thicknesses with highly crystalline electrode/dielectric interfaces. These results, with the DC-biased and temperature dependent dielectric characterization, suggest irreversible domain wall mobility is the major contributor to the overall dielectric response and its thickness dependence. In epitaxial films, the irreversible Rayleigh coefficients reduced 85% upon decreasing thickness from 350 to 100 nm. The temperature at which a peak in the relative permittivity is observed was the only measured small signal quantity which was more thickness dependent in polycrystalline than epitaxial films. This is attributed to the relaxor nature present in the films, potentially stabilized by defect concentrations, and/or chemical inhomogeneity. Finally, the effective interfacial layers are found to contribute to the measured thickness dependence in the longitudinal piezoelectric coefficient.« less
Hilfiker, James N.; Stadermann, Michael; Sun, Jianing; ...
2016-08-27
It is a well-known challenge to determine refractive index (n) from ultra-thin films where the thickness is less than about 10 nm. In this paper, we discovered an interesting exception to this issue while characterizing spectroscopic ellipsometry (SE) data from isotropic, free-standing polymer films. Ellipsometry analysis shows that both thickness and refractive index can be independently determined for free-standing films as thin as 5 nm. Simulations further confirm an orthogonal separation between thickness and index effects on the experimental SE data. Effects of angle of incidence and wavelength on the data and sensitivity are discussed. Finally, while others have demonstratedmore » methods to determine refractive index from ultra-thin films, our analysis provides the first results to demonstrate high-sensitivity to the refractive index from ultra-thin layers.« less
Mechanical properties of thin-film materials evaluated from amplitude-dependent internal friction
NASA Astrophysics Data System (ADS)
Nishino, Yoichi
1999-09-01
A method is presented to evaluate the mechanical properties of thin-film materials from measurements of the amplitude-dependent internal friction. According to the constitutive equation, the internal friction in the film can be determined separately from measured damping of the film/substrate composite. The internal friction in aluminum films is dependent on the strain amplitude that is approximately two orders of magnitude higher than that for bulk aluminum. On the basis of the microplasticity theory, the amplitude-dependent internal friction in the film can be converted into the plastic strain as a function of effective stress on dislocation motion. The mechanical responses thus obtained for aluminum films show that the plastic strain of the order of 10-9 increases nonlinearly with increasing stress. These curves tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of microplastic flow. The microflow stress at a constant level of the plastic strain varies inversely with the film thickness, provided the grain size is larger than the film thickness. The film thickness effect in the microplastic range can be well explained by the bowing of a dislocation segment whose ends are pinned at the film surface and at the film/substrate interface.
Franz-Keldysh effect in epitaxial ZnO thin films
NASA Astrophysics Data System (ADS)
Bridoux, G.; Villafuerte, M.; Ferreyra, J. M.; Guimpel, J.; Nieva, G.; Figueroa, C. A.; Straube, B.; Heluani, S. P.
2018-02-01
Photoconductance spectroscopy has been studied in epitaxial ZnO thin films with different thicknesses that range between 136 and 21 nm. We report a systematic decrease in photoconductivity and a red shift in band edge photoconductance spectra when the thickness is reduced. For thinner films, it is found that the effective energy gap value diminishes. By time dependent photoconductivity measurements, we found an enhanced contribution of the slow relaxation times for thicker films. These effects are interpreted in terms of a band-bending contribution where the Franz-Keldysh effect and the polarization of ZnO play a major role in thinner films.
Formation of solar cells based on Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) ferroelectric thick film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irzaman,, E-mail: irzaman@yahoo.com; Syafutra, H., E-mail: irzaman@yahoo.com; Arif, A., E-mail: irzaman@yahoo.com
2014-02-24
Growth of Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) 1 M thick films are conducted with variation of annealing hold time of 8 hours, 15 hours, 22 hours, and 29 hours at a constant temperature of 850 °C on p-type Si (100) substrate using sol-gel method then followed by spin coating process at 3000 rpm for 30 seconds. The BST thick film electrical conductivity is obtained to be 10{sup −5} to 10{sup −4} S/cm indicate that the BST thick film is classified as semiconductor material. The semiconductor energy band gap value of BST thick film based on annealing hold time of 8more » hours, 15 hours, 22 hours, and 29 hours are 2.58 eV, 3.15 eV, 3.2 eV and 2.62 eV, respectively. The I-V photovoltaic characterization shows that the BST thick film is potentially solar cell device, and in accordance to annealing hold time of 8 hours, 15 hours, 22 hours and 29 hours have respective solar cell energy conversion efficiencies of 0.343%, 0.399%, 0.469% and 0.374%, respectively. Optical spectroscopy shows that BST thick film solar cells with annealing hold time of 8 hours, 15 hours, and 22 hours absorb effectively light energy at wavelength of ≥ 700 nm. BST film samples with annealing hold time of 29 hours absorb effectively light energy at wavelength of ≤ 700 nm. The BST thick film refraction index is between 1.1 to 1.8 at light wavelength between ±370 to 870 nm.« less
Spin reorientations in Tb-Fe films grown on polyimide substrates
NASA Astrophysics Data System (ADS)
Maneesh, K. Sai; Arout Chelvane, J.; Talapatra, A.; Basumatary, Himalay; Mohanty, J.; Kamat, S. V.
2018-02-01
This paper reports the effect of film thickness and rapid thermal annealing on the spin reorientations in Tb-Fe films grown on flexible polyimide substrates. Magnetization studies indicated that the spins reorient from in-plane to out-of-plane direction with increase in film thicknesses. This was confirmed by magnetic force microscopy studies which showed weak featureless contrast for films deposited with lower thickness and a strong out-of-plane contrast for films grown with higher thicknesses. On subsequent rapid thermal annealing all the Tb-Fe films exhibited in-plane magnetic anisotropy. The results were explained based on competition between uniaxial and shape anisotropies, nature of residual stresses as well as nucleation of crystalline Fe phase in an amorphous Tb-Fe matrix on rapid thermal annealing.
Suppressing hillock formation in Si-supported pure Al films
NASA Astrophysics Data System (ADS)
Liu, N. Z.; Liu, Y.
2018-04-01
To suppress the hillock formation and hence improve the service performance of pure Al thin films deposited on Si substrate, dependence of hillock formation on film thickness and annealing temperature was systematically investigated. Experimental results revealed that the hillock volume increased linearly with both the film thickness and annealing temperature. While the evolution of hillock density with film thickness was complicated, strongly depending on the annealing temperature. It was evident that the hillock formation could be effectively suppressed at a critical annealing temperature especially in thinner thickness, similar to the previous findings in Mo/glass-supported pure Al films. These experimental evidences clearly demonstrated that the hillock formation should be controlled by the plastic deformation in the surrounding film, which was further rationalized by a micromechanics model.
NASA Astrophysics Data System (ADS)
Consonni, V.; Rey, G.; Roussel, H.; Bellet, D.
2012-02-01
Polycrystalline fluorine-doped SnO2 thin films have been grown by ultrasonic spray pyrolysis with a thickness varying in the range of 40 to 600 nm. A texture transition from ⟨110⟩ to ⟨100⟩ and ⟨301⟩ crystallographic orientations has experimentally been shown by x-ray diffraction measurements as film thickness is increased, showing that a process of abnormal grain growth has occurred. The texture effects are considered within a thermodynamic approach, in which the minimization of total free energy constitutes the driving force for grain growth. For very small film thickness, it is found that the ⟨110⟩ preferred orientation is due to surface energy minimization, as the (110) planes have the lowest surface energy in the rutile structure. In contrast, as film thickness is increased, the ⟨100⟩ and ⟨301⟩ crystallographic orientations are progressively predominant, owing to elastic strain energy minimization in which the anisotropic character is considered in the elastic biaxial modulus. A texture map is eventually determined, revealing the expected texture as a function of elastic strain and film thickness.
Zhao, Ye; Hao, Xihong; Zhang, Qi
2014-07-23
Antiferroelectric (AFE) thick (1 μm) films of Pb(1-3x/2)LaxZr0.85Ti0.15O3 (PLZT) with x = 0.08, 0.10, 0.12, and 0.14 were deposited on LaNiO3/Si (100) substrates by a sol-gel method. The dielectric properties, energy-storage performance, electrocaloric effect, and leakage current behavior were investigated in detail. With increasing La content, dielectric constant and saturated polarizations of the thick films were gradually decreased. A maximum recoverable energy-storage density of 38 J/cm(3) and efficiency of 71% were achieved in the thick films with x = 0.12 at room temperature. A large reversible adiabatic temperature change of ΔT = 25.0 °C was presented in the thick films with x = 0.08 at 127 °C at 990 kV/cm. Moreover, all the samples had a lower leakage current density below 10(-6) A/cm(2) at room temperature. These results indicated that the PLZT AFE thick films could be a potential candidate for applications in high energy-storage density capacitors and cooling devices.
Thermal hysteresis and electrocaloric effect in Ba1-xZrxTiO3
NASA Astrophysics Data System (ADS)
Zhang, Yingtang
2018-04-01
Samples of lead-free Ba(ZrxTi1-x)O3 bulk and thick film were fabricated using solid state reaction and tape - casting technique, respectively. A comprehensive investigation of dielectric, ferroelectric, and electrocaloric properties of these samples has been carried out. The results show that there is a dielectric relaxation behavior in the thick film Meantime, the "re-entrant relaxor behavior" and thermal hysteresis are observed in the bulk. Moreover, the electrocaloric effects are observed in the thick film and the bulk. The peak values of ΔTEC of the bulk and the thick film are 2.78 K and 0.37 K, respectively. This work is beneficial for realizing high efficiency and environmentally friendly cooling technology.
Effects of particle size distribution in thick film conductors
NASA Technical Reports Server (NTRS)
Vest, R. W.
1983-01-01
Studies of particle size distribution in thick film conductors are discussed. The distribution of particle sizes does have an effect on fired film density but the effect is not always positive. A proper distribution of sizes is necessary, and while the theoretical models can serve as guides to selecting this proper distribution, improved densities can be achieved by empirical variations from the predictions of the models.
Optical and structural properties of indium doped bismuth selenide thin films
NASA Astrophysics Data System (ADS)
Pavagadhi, Himanshu; Vyas, S. M.; Patel, Piyush; Patel, Vimal; Patel, Jaydev; Jani, M. P.
2015-08-01
In: Bi2Se3 crystals were grown by Bridgman method at a growth velocity of 0.5cm/h with temperature gradient of 650 C/cm in our laboratory. The thin films of In:Bi2se3 were grown on amorphous substrate (glass) at a room temperature under a pressure of 10-4Pa by thermal evaporation technique. Thin film were deposited at various thicknesses and optical absorption spectrum of such thin films, obtain in wave no. range 300 to 2600 cm-1. The optical energy gap calculated from this data were found to be inverse function of square of thickness, particularly for thickness about 1800 Å or less. This dependence is explained in terms of quantum size effect. For thicker films, the bandgap is found to be independent of film thickness. For the surface stud of the as grown thin film by using AFM, which shows continuous film with some step height and surface roughness found in terms of few nm and particle size varies with respect to thickness.
Cylinder wakes in flowing soap films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobieff, P.; Ecke, R.E.; Vorobieff, P.
1999-09-01
We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. [copyright] [ital 1999] [ital The American Physical Society
NASA Astrophysics Data System (ADS)
Witte, T.; Frigge, T.; Hafke, B.; Krenzer, B.; Horn-von Hoegen, M.
2017-06-01
We studied the phononic heat transport from ultrathin epitaxial Pb(111) films across the heterointerface into a Si(111) substrate by means of ultrafast electron diffraction. The thickness of the Pb films was varied from 15 to 4 monolayers. It was found that the thermal boundary conductance σTBC of the heterointerface is independent of the film thickness. We have no evidence for finite size effects: the continuum description of heat transport is still valid, even for the thinnest films of only 4 monolayer thickness.
Wilson, Rachel L.; Blackman, Christopher S.; Carmalt, Claire J.; Stanoiu, Adelina; Di Maggio, Francesco
2018-01-01
Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2. In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated. PMID:29494504
Measurement of Thicknesses of High-κ Gate-Dielectric Films on Silicon by Angle-Resolved XPS
NASA Astrophysics Data System (ADS)
Powell, Cedric; Smekal, Werner; Werner, Wolfgang
2006-03-01
We report on the use of a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) in measuring thicknesses of candidate high-κ gate-dielectric materials (HfO2, HfSiO4, ZrO2, and ZrSiO4) on silicon by angle-resolved XPS. For conventional measurements of film thicknesses, effective attenuation lengths (EALs) have been computed for these materials from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs are believed to be more accurate than similar EALs obtained from the transport approximation because realistic cross sections are used for both elastic and inelastic scattering in the film and substrate materials. We also present ``calibration curves'' showing calculated ratios of selected photoelectron intensities from thin films of HfO2 on Si with an intermediate SiO2 layer. These ratios provide a simple and convenient means of determining the thicknesses of SiO2 and HfO2 films for particular measurement conditions.
The Effects of Ultra Thin Films on Dynamic Wetting
NASA Astrophysics Data System (ADS)
Chen, Xia; Garoff, Stephen; Rame, Enrique
2002-11-01
Dynamic wetting, the displacement of one fluid by another immiscible fluid on a surface, controls many natural and technological phenomena, such as coating, printing, spray painting and lubricating. Particularly in coating and spraying applications, contact lines advance across pre-existing fluid films. Most previous work has focused on contact lines advancing across films sufficiently thick that they behave as simple Newtonian fluids. Ultrathin films, where the film thickness may impinge on fundamental length scales in the fluid, have received less attention. In this talk, we will discuss the effects of ultrathin polymer films on dynamic wetting. We measure the interface shape within microns of moving contact lines advancing across preexisting films and compare the measurements to existing models of viscous bending for interfaces advancing across dry surfaces and 'thick' (in the sense that they behave as liquids) films. In the experiments, we advance a contact line of 10-poise and 1-poise polydimethylsiloxane (silicone oil) across pre-coated films of the same fluid with thickness from a single chain thickness (approx. 10 A) through a couple of radii of gyration (100-200 A) to films so thick they are likely bulk in behavior (103 A). All films are physisorbed, i.e. they readily rinse from the surface. Thus, molecules in the film are not anchored to the surface and can move within the film if the hydrodynamics dictate such motion. For films of the thickness of a single chain (approx. 10 A), our experiments indicate that the advancing fluid behaves just as it would if it advanced over a dry surface. For the thicker films (103 A), we find behavior indicating that the molecules in the film are acting as a fluid with the bulk properties. In this regime, results for the two different fluids are identical when the experiments are performed at the same pre-existing film thickness and advancing capillary number, Ca. For film of thickness of a few radii of gyration (approx. 100-200 A), the behavior depends on Ca of the advancing meniscus. At low Ca, the viscous bending of the interface near the contact line does not behave as it would on a dry surface. It has a lower curvature than expected. However, at higher Ca, the viscous bending is described by the model for spreading over a dry surface. These results show that the fluid flow in the film does behave differently than bulk as the film thickness becomes comparable to molecular length scale. But even more intriguing is the unusual velocity dependence of that behavior where the film behaves more solid-like at higher contact line speeds. We will discuss these results in terms of the properties of confined polymer melts.
The Effects of Ultra Thin Films on Dynamic Wetting
NASA Technical Reports Server (NTRS)
Chen, Xia; Garoff, Stephen; Rame, Enrique
2002-01-01
Dynamic wetting, the displacement of one fluid by another immiscible fluid on a surface, controls many natural and technological phenomena, such as coating, printing, spray painting and lubricating. Particularly in coating and spraying applications, contact lines advance across pre-existing fluid films. Most previous work has focused on contact lines advancing across films sufficiently thick that they behave as simple Newtonian fluids. Ultrathin films, where the film thickness may impinge on fundamental length scales in the fluid, have received less attention. In this talk, we will discuss the effects of ultrathin polymer films on dynamic wetting. We measure the interface shape within microns of moving contact lines advancing across preexisting films and compare the measurements to existing models of viscous bending for interfaces advancing across dry surfaces and 'thick' (in the sense that they behave as liquids) films. In the experiments, we advance a contact line of 10-poise and 1-poise polydimethylsiloxane (silicone oil) across pre-coated films of the same fluid with thickness from a single chain thickness (approx. 10 A) through a couple of radii of gyration (100-200 A) to films so thick they are likely bulk in behavior (10(exp 3) A). All films are physisorbed, i.e. they readily rinse from the surface. Thus, molecules in the film are not anchored to the surface and can move within the film if the hydrodynamics dictate such motion. For films of the thickness of a single chain (approx. 10 A), our experiments indicate that the advancing fluid behaves just as it would if it advanced over a dry surface. For the thicker films (10(exp 3) A), we find behavior indicating that the molecules in the film are acting as a fluid with the bulk properties. In this regime, results for the two different fluids are identical when the experiments are performed at the same pre-existing film thickness and advancing capillary number, Ca. For film of thickness of a few radii of gyration (approx. 100-200 A), the behavior depends on Ca of the advancing meniscus. At low Ca, the viscous bending of the interface near the contact line does not behave as it would on a dry surface. It has a lower curvature than expected. However, at higher Ca, the viscous bending is described by the model for spreading over a dry surface. These results show that the fluid flow in the film does behave differently than bulk as the film thickness becomes comparable to molecular length scale. But even more intriguing is the unusual velocity dependence of that behavior where the film behaves more solid-like at higher contact line speeds. We will discuss these results in terms of the properties of confined polymer melts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X. J.; Zhao, D. G., E-mail: dgzhao@red.semi.ac.cn; Jiang, D. S.
2014-10-28
The significant effect of the thickness of Ni film on the performance of the Ohmic contact of Ni/Au to p-GaN is studied. The Ni/Au metal films with thickness of 15/50 nm on p-GaN led to better electrical characteristics, showing a lower specific contact resistivity after annealing in the presence of oxygen. Both the formation of a NiO layer and the evolution of metal structure on the sample surface and at the interface with p-GaN were checked by transmission electron microscopy and energy-dispersive x-ray spectroscopy. The experimental results indicate that a too thin Ni film cannot form enough NiO to decrease themore » barrier height and get Ohmic contact to p-GaN, while a too thick Ni film will transform into too thick NiO cover on the sample surface and thus will also deteriorate the electrical conductivity of sample.« less
Effect of ZrO2 film thickness on the photoelectric properties of mixed-cation perovskite solar cells
NASA Astrophysics Data System (ADS)
Li, Yanyan; Zhao, Li; Wei, Shoubin; Xiao, Meng; Dong, Binghai; Wan, Li; Wang, Shimin
2018-05-01
In this work, perovskite solar cells (PSCs) were fabricated in the ambient air, with a scaffold layer composed of TiO2/ZrO2 double layer as the mesoscopic layer and carbon as the counter electrode. The effect of ZrO2 thin film thickness on the photovoltaic performances of PSCs was also studied in detail. Results showed that the photoelectric properties of as-prepared PSCs largely depend on the thin film thickness due to a series of factors, including surface roughness, charge transport resistance, and electron-hole recombination rate. The power conversion efficiency of PSCs increased from 8.37% to 11.33% by varying the thin film thickness from 75 nm to 305 nm, and the optimal power conversion efficiency was realized up to the 11.33% with a thin film thickness of 167 nm. This research demonstrates a promising route for the high-efficiency and low-cost photovoltaic technology.
NASA Astrophysics Data System (ADS)
Zhang, Mi; Xu, Maji; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Li, Ming; Dai, Jiangnan; Chen, Changqing; He, Yunbin
2017-11-01
A series of a-plane SnO2 films with thickness between 2.5 nm and 1436 nm were grown epitaxially on c-sapphire by pulsed laser deposition (PLD), to allow a detailed probe into the structure evolution and optical band gap modulation of SnO2 with growing thickness. All films exhibit excellent out-of-plane ordering (lowest (200) rocking-curve half width ∼0.01°) with an orientation of SnO2(100) || Al2O3(0001), while three equivalent domains that are rotated by 120° with one another coexist in-plane with SnO2[010] || Al2O3 [11-20]. Initially the SnO2(100) film assumes a two-dimensional (2D) layer-by-layer growth mode with atomically smooth surface (minimum root-mean-square roughness of 0.183 nm), and endures compressive strain along both c and a axes as well as mild tensile strain along the b-axis. With increasing thickness, transition from the 2D to 3D island growth mode takes place, leading to formation of various defects to allow relief of the stress and thus relaxation of the film towards bulk SnO2. More interestingly, with increasing thickness from nm to μm, the SnO2 films present a non-monotonic V-shaped variation in the optical band gap energy. While the band gap of SnO2 films thinner than 6.1 nm increases rapidly with decreasing film thickness due to the quantum size effect, the band gap of thicker SnO2 films broadens almost linearly with increasing film thickness up to 374 nm, as a result of the strain effect. The present work sheds light on future design of SnO2 films with desired band gap for particular applications by thickness control and strain engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Ravi; Kaur, Davinder, E-mail: dkaurfph@iitr.ac.in
2016-05-06
In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with differentmore » deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.« less
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2016-07-01
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) films have been used for highly sensitive imaging devices. To study a-Se HARP films for a solid-state image sensor, current-voltage, lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films are investigated. Also, to clarify a suitable Te-doped a-Se layer thickness in the a-Se photoconductor, we considered the effects of Te-doped layer thickness on the lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films. The threshold field, at which avalanche multiplication occurs in the a-Se HARP targets, decreases when the Te-doped layer thickness increases. The lag of 0.4-µm-thick a-Se HARP targets with Te-doped layers is higher than that of the target without Te doping. The lag of the targets with Te-doped layers is caused by the electrons trapped in the Te-doped layers within the 0.4-µm-thick a-Se HARP films. From the results of the spectral response measurement of about 15 min, the 0.4-µm-thick a-Se HARP targets with Te-doped layers of 90 and 120 nm are observed to be unstable owing to the electrons trapped in the Te-doped a-Se layer. From the light-transfer characteristics of 0.4-µm-thick a-Se HARP targets, as the slope at the operating point of signal current-voltage characteristics in the avalanche mode increases, the γ of the a-Se HARP targets decreases. Considering the effects of dark current on the lag and spectral response characteristics, a Te-doped layer of 60 nm is suitable for 0.4-µm-thick a-Se HARP films.
Kim, S; Hewlett, S A; Roth, C B; Torkelson, J M
2009-09-01
Using ellipsometry, we characterized the nanoconfinement effect on the glass transition temperature (T (g)of supported polystyrene (PS) films employing two methods: the intersection of fits to the temperature (Tdependences of rubbery- and glassy-state thicknesses, and the transition mid-point between rubbery- and glassy-state expansivities. The results demonstrate a strong effect of thickness: T(g) (bulk) - T(g)(23 nm) = 10 degrees C. The T -range needed for accurate measurement increases significantly with decreasing thickness, an effect that arises from the broadening of the transition with confinement and a region below T (g) where expansivity slowly decreases with decreasing T . As determined from expansivities, the T (g) breadth triples in going from bulk films to a 21-nm-thick film; this broadening of the transition may be a more dramatic effect of confinement than the T (g) reduction itself. In contrast, there is little effect of confinement on the rubbery- and glassy-state expansivities. Compared with ellipsometry, T (g) 's from fluorescence agree well in bulk films but yield lower values in nanoconfined films: T (g)(bulk) - T (g)(23 nm) = 15( degrees ) C via fluorescence. This small difference in the T (g) confinement effect reflects differences in how fluorescence and ellipsometry report "average T (g) " with confinement. With decreasing nanoscale thickness, fluorescence may slightly overweight the contribution of the free-surface layer while ellipsometry may evenly weight or underweight its contribution.
NASA Astrophysics Data System (ADS)
Kim, S.; Hewlett, S. A.; Roth, C. B.; Torkelson, J. M.
2009-09-01
Using ellipsometry, we characterized the nanoconfinement effect on the glass transition temperature (T gof supported polystyrene (PS) films employing two methods: the intersection of fits to the temperature (Tdependences of rubbery- and glassy-state thicknesses, and the transition mid-point between rubbery- and glassy-state expansivities. The results demonstrate a strong effect of thickness: ensuremath Tg(bulk)-Tg(23{ nm})= 10 circ C. The T -range needed for accurate measurement increases significantly with decreasing thickness, an effect that arises from the broadening of the transition with confinement and a region below T g where expansivity slowly decreases with decreasing T . As determined from expansivities, the T g breadth triples in going from bulk films to a 21-nm-thick film; this broadening of the transition may be a more dramatic effect of confinement than the T g reduction itself. In contrast, there is little effect of confinement on the rubbery- and glassy-state expansivities. Compared with ellipsometry, T g ’s from fluorescence agree well in bulk films but yield lower values in nanoconfined films: T g(bulk) - T g(23 nm) = 15° C via fluorescence. This small difference in the T g confinement effect reflects differences in how fluorescence and ellipsometry report “average T g ” with confinement. With decreasing nanoscale thickness, fluorescence may slightly overweight the contribution of the free-surface layer while ellipsometry may evenly weight or underweight its contribution. in here
NASA Astrophysics Data System (ADS)
Kacel, T.; Guittoum, A.; Hemmous, M.; Dirican, E.; Öksüzoglu, R. M.; Azizi, A.; Laggoun, A.; Zergoug, M.
We have studied the effect of thickness on the structural, microstructural, electrical and magnetic properties of Ni films electrodeposited onto n-Si (100) substrates. A series of Ni films have been prepared for different potentials ranging from -1.6V to -2.6V. Rutherford backscattering spectrometry (RBS), X-ray diffraction (XRD), four point probe technique, atomic force microscopy (AFM) and vibrating sample magnetometry (VSM) have been used to investigate the physical properties of elaborated Ni thin films. From the analysis of RBS spectra, we have extracted the films thickness t (t ranges from 83nm to 422nm). We found that the Ni thickness, t (nm), linearly increases with the applied potential. The Ni thin films are polycrystalline and grow with the 〈111〉 texture. The lattice parameter a (Å) monotonously decreases with increasing thickness. However, a positive strain was noted indicating that all the samples are subjected to a tensile stress. The mean grain sizes D (nm) and the strain ɛhkl decrease with increasing thickness. The electrical resistivity ρ (μΩ.cm) increases with t for t less than 328nm. The diffusion at the grain boundaries may be the important factor in the electrical resistivity. From AFM images, we have shown that the Ni surface roughness decreases with increasing thickness. The coercive field HC, the squareness factor S, the saturation field HS and the effective anisotropy constant K1eff are investigated as a function of Ni thickness and grain sizes. The correlation between the magnetic and the structural properties is discussed.
Ghazzal, Mohamed Nawfal; Aubry, Eric; Chaoui, Nouari; Robert, Didier
2015-01-01
We investigate the effect of the thickness of the silicon nitride (SiN x ) diffusion barrier on the structural and photocatalytic efficiency of TiO2 films obtained with different processes. We show that the structural and photocatalytic efficiency of TiO2 films produced using soft chemistry (sol-gel) and physical methods (reactive sputtering) are affected differentially by the intercalating SiN x diffusion barrier. Increasing the thickness of the SiN x diffusion barrier induced a gradual decrease of the crystallite size of TiO2 films obtained by the sol-gel process. However, TiO2 obtained using the reactive sputtering method showed no dependence on the thickness of the SiN x barrier diffusion. The SiN x barrier diffusion showed a beneficial effect on the photocatalytic efficiency of TiO2 films regardless of the synthesis method used. The proposed mechanism leading to the improvement in the photocatalytic efficiency of the TiO2 films obtained by each process was discussed.
Thickness-dependent metal-to-insulator transition in epitaxial VO2 films
NASA Astrophysics Data System (ADS)
Zhi, Bowen; Gao, Guanyin; Tan, Xuelian; Chen, Pingfan; Wang, Lingfei; Jin, Shaowei; Wu, Wenbin
2014-12-01
The metal-to-insulator transition (MIT) of VO2 films with a thickness of 3-100 nm on TiO2(001) substrates has been investigated. When varying the film thickness from 10 to 100 nm, the MIT temperature was first kept at 290 K in the range of 10-14 nm, and then increased with thickness increasing due to the strain relaxation. The origin of the suppressed transition in VO2 films thinner than 6 nm was also investigated. When prolonging the in situ annealing time, the sharpness, amplitude and width of the transition for 4 nm thick films were all increased, suggesting improved crystallinity rather than Ti diffusion from the substrates. In addition, the MIT was suppressed when the VO2 films were covered by a TiO2 layer, indicating that the interface effect via the confinement of the dimerization of the V atoms should be the main reason.
Correlation of Gear Surface Fatigue Lives to Lambda Ratio (Specific Film Thickness)
NASA Technical Reports Server (NTRS)
Krantz, Timothy Lewis
2013-01-01
The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness being the ratio of lubricant film thickness to the composite surface roughness. Three studies done at NASA to investigate gearing pitting life are revisited in this work. All tests were done at a common load. In one study, ground gears were tested using a variety of lubricants that included a range of viscosities, and therefore the gears operated with differing film thicknesses. In a second and third study, the performance of gears with ground teeth and superfinished teeth were assessed. Thicker oil films provided longer lives as did improved surface finish. These datasets were combined into a common dataset using the concept of specific film thickness. This unique dataset of more 258 tests provides gear designers with some qualitative information to make gear design decisions.
Thickness-dependence of optical constants for Ta2O5 ultrathin films
NASA Astrophysics Data System (ADS)
Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao
2012-09-01
An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta2O5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.
Isothermal elastohydrodynamic lubrication of point contacts. 4: Starvation results
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1976-01-01
The influence of lubricant starvation on minimum film thickness was investigated by moving the inlet boundary closer to the contact center. The following expression was derived for the dimensionless inlet distance at the boundary between the fully flooded and starved conditions: m* = 1 + 3.06 ((R/b)(R/b)H) to the power 0.58, where R is the effective radius of curvature, b is the semiminor axis of the contact ellipse, and H is the central film thickness for fully flooded conditions. A corresponding expression was also given based on the minimum film thickness for fully flooded conditions. Therefore, for m m*, starvation occurs and, for m m*, a fully flooded condition exists. Two other expressions were also derived for the central and minimum film thicknesses for a starved condition. Contour plots of the pressure and the film thickness in and around the contact are shown for the fully flooded and starved lubricating conditions, from which the film thickness was observed to decrease substantially as starvation increases.
Yao, Manwen; Chen, Jianwen; Su, Zhen; Peng, Yong; Zou, Pei; Yao, Xi
2016-05-04
Dense and nonporous amorphous aluminum oxide (AmAO) film was deposited onto platinized silicon substrate by sol-gel and spin coating technology. The evaporated aluminum film was deposited onto the AmAO film as top electrode. The hydrated AmAO film was utilized as a solid electrolyte for anodic oxidation of the aluminum electrode (Al) film under high electric field. The hydrated AmAO film was a high efficiency electrolyte, where a 45 nm thick Al film was anodized completely on a 210 nm thick hydrated AmAO film. The current-voltage (I-V) characteristics and breakdown phenomena of a dry and hydrated 210 nm thick AmAO film with a 150 nm thick Al electrode pad were studied in this work. Breakdown voltage of the dry and hydrated 210 nm thick AmAO film were 85 ± 3 V (405 ± 14 MV m(-1)) and 160 ± 5 V (762 ± 24 MV m(-1)), respectively. The breakdown voltage of the hydrated AmAO film increased about twice, owing to the self-healing behavior (anodic oxidation reaction). As an intuitive phenomenon of the self-healing behavior, priority anodic oxidation phenomena was observed in a 210 nm thick hydrated AmAO film with a 65 nm thick Al electrode pad. The results suggested that self-healing behavior (anodic oxidation reaction) was occurring nearby the defect regions of the films during I-V test. It was an effective electrical self-healing method, which would be able to extend to many other simple and complex oxide dielectrics and various composite structures.
What is the copper thin film thickness effect on thermal properties of NiTi/Cu bi-layer?
NASA Astrophysics Data System (ADS)
Fazeli, Sara; Vahedpour, Morteza; Khatiboleslam Sadrnezhaad, Sayed
2017-02-01
Molecular dynamics (MD) simulation was used to study of thermal properties of NiTi/Cu. Embedded atom method (EAM) potentials for describing of inter-atomic interaction and Nose-Hoover thermostat and barostat are employed. The melting of the bi-layers was considered by studying the temperature dependence of the cohesive energy and mean square displacement. To highlight the differences between bi-layers with various copper layer thickness, the effect of copper film thickness on thermal properties containing the cohesive energy, melting point, isobaric heat capacity and latent heat of fusion was estimated. The results show that thermal properties of bi-layer systems are higher than that of their corresponding of pure NiTi. But, these properties of bi-layer systems approximately are independent of copper film thicknesses. The mean square displacement (MSD) results show that, the diffusion coefficients enhance upon increasing of copper film thickness in a linear performance.
Thermal conductivity model for nanoporous thin films
NASA Astrophysics Data System (ADS)
Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui
2018-03-01
Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.
Effect of Temperature on Film Thickness of Two Types of Commonly used Luting Cements.
Kumar, M Praveen; Priyadarshini, Reddy; Kumar, Yasangi M; Priya, K Shanthi; Chunchuvyshnavi, Chunchuvyshnavi; Yerrapragada, Harika
2017-12-01
The aim of this study is to evaluate the effect of temperature change on film thickness of both types of cements. Totally, 60 samples were prepared with 10 in each subgroup, thus comprising 30 in each group. Materials tested were glass ionomer cement (GIC) type I and zinc phosphate type I. Samples were manipulated with manufacturer's instructions and tested according to American Dental Association (ADA) guidelines. The mean values of film thickness were recorded for both groups I and II. In intragroup comparison of group 1, subgroup III (26.560 ± 0.489 urn) was found to have the highest film thickness followed by subgroup II (24.182 ± 0.576 urn) and the lowest in subgroup I (20.209 ± 0.493 urn). In intragroup comparison of group II, the film thickness recorded in subgroup III (25.215 ± 0.661 urn) was the highest followed by subgroup II (21.471 ± 0.771 urn) and the least in subgroup I (17.951 ± 0.654 urn; p < 0.01). In intergroup comparison of groups I and II, group II (21.545 ± 0.841) was found to have less film thickness than group I (23.650 ± 0.271). The results were found to be statistically significant (p < 0.01). Both zinc phosphate and GICs can be used satisfactorily for luting purpose. The temperature fluctuations have a direct influence on the film thickness. Zinc phosphate has less film thickness than GIC. Zinc phosphate should be preferred over GIC in clinical practice, and more stress should be given in mechanical preparation of crowns for better retentive quality of prosthesis.
NASA Astrophysics Data System (ADS)
Teh, Yen Chin; Saif, Ala'eddin A.; Azhar Zahid Jamal, Zul; Poopalan, Prabakaran
2017-11-01
Ba0.9Gd0.1TiO3 thin films have been fabricated on SiO2/Si and fused silica by sol-gel method. The films are prepared through a spin coating process and annealed at 900 °C to obtain crystallized films. The effect of film thickness on the microstructure and optical band gap has been investigated using X-ray diffractometer, atomic force microscope and ultraviolet-visible spectroscopy, respectively. XRD patterns confirm that the films crystallized with tetragonal phase perovskite structure. The films surface morphology is analysed through amplitude parameter analysis to find out that the grain size and surface roughness are increased with the increase of films thickness. The transmittance and absorbance spectra reveal that all films exhibit high absorption in UV region. The evaluated optical band gap is obtained in the range of 3.67 - 3.78 eV and is found to be decreased as the thickness increase.
What is the mechanism of soap film entrainment?
Saulnier, Laurie; Restagno, Frédéric; Delacotte, Jérôme; Langevin, Dominique; Rio, Emmanuelle
2011-11-15
Classical Frankel's law describes the formation of soap films and their evolution upon pulling, a model situation of film dynamics in foams (formation, rheology, and destabilization). With the purpose of relating film pulling to foam dynamics, we have built a new setup able to give an instantaneous measurement of film thickness, thus allowing us to determine film thickness profile during pulling. We found that only the lower part of the film is of uniform thickness and follows Frankel's law, provided the entrainment velocity is small. We show that this is due to confinement effects: there is not enough surfactant in the bulk to fully cover the newly created surfaces which results in immobile film surfaces. At large velocities, surfaces become mobile and then Frankel's law breaks down, leading to a faster drainage and thus to a nonstationary thickness at the bottom of the film. These findings should help in understanding the large dispersion of previous experimental data reported during the last 40 years and clarifying the pulling phenomenon of thin liquid films.
NASA Astrophysics Data System (ADS)
Asvini, V.; Saravanan, G.; Kalaiezhily, R. K.; Raja, M. Manivel; Ravichandran, K.
2018-04-01
Fe2CoSi based Heusler alloy thin films were deposited on Si (111) wafer (substrate) of varying thickness using ultra high vacuum DC magnetron sputtering. The structural behavior was observed and found to be hold the L21 structure. The deposited thin films were characterized magnetic properties using vibrating sample magnetometer; the result shows a very high saturated magnetization (Ms), lowest coercivity (Hc), high curie transition temperature (Tc) and low hysteresis loss. Thin film thickness of 75 nm Fe2CoSi sample maintained at substrate temperature 450°C shows the lowest coercivity (Hc=7 Oe). In general, Fe2CoSi Heusler alloys curie transition temperature is very high, due to strong exchange interaction between the Fe and Co atoms. The substrate temperature was kept constant at 450°C for varying thickness (e.g. 5, 20, 50, 75 and 100 nm) of thin film sample. The 75 nm thickness thin film sample shows well crystallanity and good magnetic properties, further squareness ratio in B-H loop increases with the increase in film thickness.
Finite-size versus interface-proximity effects in thin-film epitaxial SrTiO3
NASA Astrophysics Data System (ADS)
De Souza, R. A.; Gunkel, F.; Hoffmann-Eifert, S.; Dittmann, R.
2014-06-01
The equilibrium electrical conductivity of epitaxial SrTiO3 (STO) thin films was investigated as a function of temperature, 950≤ T/K ≤1100, and oxygen partial pressure, 10-23≤ pO2/bar ≤1. Compared with single-crystal STO, nanoscale thin-film STO exhibited with decreasing film thickness an increasingly enhanced electronic conductivity under highly reducing conditions, with a corresponding decrease in the activation enthalpy of conduction. This implies substantial modification of STO's point-defect thermodynamics for nanoscale film thicknesses. We argue, however, against such a finite-size effect and for an interface-proximity effect. Indeed, assuming trapping of oxygen vacancies at the STO surface and concomitant depletion of oxygen vacancies—and accumulation of electrons—in an equilibrium surface space-charge layer, we are able to predict quantitatively the conductivity as a function of temperature, oxygen partial pressure, and film thickness. Particularly complex behavior is predicted for ultrathin films that are consumed entirely by space charge.
NASA Astrophysics Data System (ADS)
Kenfack, S. C.; Fotue, A. J.; Fobasso, M. F. C.; Djomou, J.-R. D.; Tiotsop, M.; Ngouana, K. S. L.; Fai, L. C.
2017-12-01
We have studied the transition probability and decoherence time of levitating polaron in helium film thickness. By using a variational method of Pekar type, the ground and the first excited states of polaron are calculated above the liquid-helium film placed on the polar substrate. It is shown that the polaron transits from the ground to the excited state in the presence of an external electromagnetic field in the plane. We have seen that, in the helium film, the effects of the magnetic and electric fields on the polaron are opposite. It is also shown that the energy, transition probability and decoherence time of the polaron depend sensitively on the helium film thickness. We found that decoherence time decreases as a function of increasing electron-phonon coupling strength and the helium film thickness. It is seen that the film thickness can be considered as a new confinement in our system and can be adjusted in order to reduce decoherence.
Aslan, Kadir; Malyn, Stuart N.; Zhang, Yongxia; Geddes, Chris D.
2008-01-01
We report the effects of thermally annealing, non-, just-, and thick continuous silver films for their potential applications in metal-enhanced fluorescence, a near-field concept which can alter the free-space absorption and emissive properties of close-proximity fluorophores (excited states). We have chosen to anneal a noncontinuous particulate film 5 nm thick and two thicker continuous films, 15 and 25 nm thick, respectively. Our results show that the annealing of the 25 nm film has little effect on close-proximity fluorescence when coated with a monolayer of fluorophore-labeled protein. However, the 15 nm continuous film cracks upon annealing, producing large nanoparticles which are ideal for enhancing the fluorescence of close-proximity fluorophores that are indeed difficult to prepare by other wet-chemical deposition processes. The annealing of 5 nm noncontinuous particulate films (a control sample) has little influence on metal-enhanced fluorescence, as expected. PMID:19479004
Aslan, Kadir; Malyn, Stuart N; Zhang, Yongxia; Geddes, Chris D
2008-04-15
We report the effects of thermally annealing, non-, just-, and thick continuous silver films for their potential applications in metal-enhanced fluorescence, a near-field concept which can alter the free-space absorption and emissive properties of close-proximity fluorophores (excited states). We have chosen to anneal a noncontinuous particulate film 5 nm thick and two thicker continuous films, 15 and 25 nm thick, respectively. Our results show that the annealing of the 25 nm film has little effect on close-proximity fluorescence when coated with a monolayer of fluorophore-labeled protein. However, the 15 nm continuous film cracks upon annealing, producing large nanoparticles which are ideal for enhancing the fluorescence of close-proximity fluorophores that are indeed difficult to prepare by other wet-chemical deposition processes. The annealing of 5 nm noncontinuous particulate films (a control sample) has little influence on metal-enhanced fluorescence, as expected.
Thickness effect of Gd2Zr2O7 buffer layer on performance of YBa2Cu3O7-δ coated conductors
NASA Astrophysics Data System (ADS)
Qiu, Wenbin; Fan, Feng; Lu, Yuming; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Cai, Chuanbing
2014-12-01
Bilayer buffer architecture of Gd2Zr2O7 (GZO)/Y2O3 was prepared on the biaxially textured tape of Ni-5 at% W (NiW) by reactive sputtering deposition technique. The buffer layer of GZO films were deposited with different thicknesses on Y2O3 seeding layer with a given thickness of 20 nm. According to the results of φ-scan, the in-plane FWHMs of GZO films decreased and then reversed with increasing thickness of GZO, which corresponded with the in-plane FWHMs and superconducting properties of YBa2Cu3O7-δ (YBCO) films. Reflection High-Energy Electron Diffraction (RHEED) was carried out to examine the surface texture of GZO films and the deteriorated surface alignment was found for thicker films. The thickness effect of GZO on performance of YBCO is the coupling result of surface texture and blocking effect caused by thickness. With the balance of these two factors, the YBCO/GZO(120 nm)/Y2O3/NiW architecture exhibit relatively high performance with the transition temperature Tc of 92 K, a transition width ΔTc below 1 K, and a critical current density Jc of 0.65 MA/cm2.
Effect of chemical structure on film-forming properties of seed oils
USDA-ARS?s Scientific Manuscript database
The film thickness of seven seed oils and two petroleum-based oils of varying chemical structures, was investigated by the method of optical interferometry under pure rolling conditions, and various combinations of entrainment speed (u), load, and temperature. The measured film thickness (h measured...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Wug-Dong; Tanioka, Kenkichi
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) film has been used for highly sensitive imaging devices. To improve the spectral response of a-Se HARP photoconductive film at a long wavelength, the tellurium (Te) doping effect in an 8-μm-thick a-Se HARP film was investigated. The thickness of the Te-doped a-Se layer in the 8-μm-thick a-Se HARP films was varied from 60 to 120 nm. The signal current increases significantly due to the avalanche multiplication when the target voltage is increased over the threshold voltage. In the 8-μm-thick a-Se HARP film with a Te-doped layer, the spectral response at a longmore » wavelength was improved in comparison with the a-Se HARP film without a Te-doped layer. In addition, the increase of the lag in the 8-μm-thick a-Se HARP target with a Te-doped layer of 120 nm is caused by the photoconductive lag due to the electrons trapped in the Te-doped layer. Based on the current-voltage characteristics, spectral response, and lag characteristics of the 8-μm-thick a-Se HARP targets, the Te-doped layer thickness of 90 nm is suitable for the 8-μm-thick a-Se HARP film.« less
Film thickness for different regimes of fluid-film lubrication
NASA Technical Reports Server (NTRS)
Hamrock, B. J.
1980-01-01
Film thickness equations are provided for four fluid-film lubrication regimes found in elliptical contacts. These regimes are isoviscous-rigid; viscous-rigid; elastohydrodynamic lubrication of low-elastic-modulus materials (soft EHL), or isoviscous-elastic; and elastohydrodynamic lubrication of high-elastic-modulus materials (hard EHL), or viscous-elastic. The influence or lack of influence of elastic and viscous effects is the factor that distinguishes these regimes. The results are presented as a map of the lubrication regimes, with film thickness contours on a log-log grid of the viscosity and elasticity for three values of the ellipticity parameter.
Near-zero IR transmission of VO2 thin films deposited on Si substrate
NASA Astrophysics Data System (ADS)
Zhang, Chunzi; Koughia, Cyril; Li, Yuanshi; Cui, Xiaoyu; Ye, Fan; Shiri, Sheida; Sanayei, Mohsen; Wen, Shi-Jie; Yang, Qiaoqin; Kasap, Safa
2018-05-01
Vanadium dioxide (VO2) thin films of different thickness have been deposited on Si substrates by using DC magnetron sputtering. The effects of substrate pre-treatment by means of seeding (spin coating and ultrasonic bathing) and biasing on the structure and optical properties were investigated. Seeding results in a smaller grain size in the oxide film, whereas biasing results in square-textured crystals. VO2 thin films of 150 nm thick show a near-zero IR transmission in switched state. Especially, the 150 nm thick VO2 thin film with seeding treatment shows an enhanced switching efficiency.
[Research on the photoelectric conversion efficiency of grating antireflective layer solar cells].
Zhong, Hui; Gao, Yong-Yi; Zhou, Ren-Long; Zhou, Bing-ju; Tang, Li-qiang; Wu, Ling-xi; Li, Hong-jian
2011-07-01
A numerical investigation of the effect of grating antireflective layer structure on the photoelectric conversion efficiency of solar cells was carried out by the finite-difference time-domain method. The influence of grating shape, height and the metal film thickness coated on grating surface on energy storage was analyzed in detail. It was found that the comparison between unoptimized and optimized surface grating structure on solar cells shows that the optimization of surface by grating significantly increases the energy storage capability and greatly improves the efficiency, especially of the photoelectric conversion efficiency and energy storage of the triangle grating. As the film thickness increases, energy storage effect increases, while as the film thickness is too thick, energy storage effect becomes lower and lower.
Strong Effect of Azodye Layer Thickness on RM-Stabilized Photoalignment
2017-05-21
to thicker layers (~40 nm). Author Keywords photoalignment; azodye; reactive mesogen 1. Introduction Photoalignment of liquid crystals by azodye...Polymerizable azodyes[3] as well as passivation of the azodye film by spin-coating with a layer of reactive mesogen[4] are currently proposed solutions...thick alignment film rather than a ~40 nm thick alignment film ; cells with thin alignment layers are stable to exposure to polarized light for at
Molecular insight into nanoscale water films dewetting on modified silica surfaces.
Zhang, Jun; Li, Wen; Yan, Youguo; Wang, Yefei; Liu, Bing; Shen, Yue; Chen, Haixiang; Liu, Liang
2015-01-07
In this work, molecular dynamics simulations are adopted to investigate the microscopic dewetting mechanism of nanoscale water films on methylated silica surfaces. The simulation results show that the dewetting process is divided into two stages: the appearance of dry patches and the quick contraction of the water film. First, the appearance of dry patches is due to the fluctuation in the film thickness originating from capillary wave instability. Second, for the fast contraction of water film, the unsaturated electrostatic and hydrogen bond interactions among water molecules are the driving forces, which induce the quick contraction of the water film. Finally, the effect of film thickness on water films dewetting is studied. Research results suggest that upon increasing the water film thickness from 6 to 8 Å, the final dewetting patterns experience separate droplets and striation-shaped structures, respectively. But upon further increasing the water film thickness, the water film is stable and there are no dry patches. The microscopic dewetting behaviors of water films on methylated silica surfaces discussed here are helpful in understanding many phenomena in scientific and industrial processes better.
NASA Astrophysics Data System (ADS)
Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Akdogan, E. K.; Simon, W. K.; Safari, A.; Wang, J. Y.
2006-10-01
Polycrystalline Ba0.6Sr0.4TiO3 (BST) films grown on r-plane sapphire exhibit strong variation of in-plane strain over the thickness range of 25-400nm. At a critical thickness of ˜200nm, the films are strain relieved; in thinner films, the strain is tensile, while compressive strain was observed in the 400nm film. Microwave properties of the films were measured from 1to20GHz by the interdigital capacitor method. A capacitance tunability of 64% was observed in the 200nm film, while thinner films showed improved Q factor. These results demonstrate the possibility of incorporating frequency agile BST-based devices into the silicon on sapphire process.
Drop impact on thin liquid films using TIRM
NASA Astrophysics Data System (ADS)
Pack, Min; Ying Sun Team
2015-11-01
Drop impact on thin liquid films is relevant to a number of industrial processes such as pesticide spraying and repellent surface research such as self-cleaning applications. In this study, we systematically investigate the drop impact dynamics on thin liquid films on plain glass substrates by varying the film thickness, viscosity and impact velocity. High speed imaging is used to track the droplet morphology and trajectory over time as well as observing instability developments at high Weber number impacts. Moreover, the air layer between the drop and thin film upon drop impact is probed by total internal reflection microscopy (TIRM) where the grayscale intensity is used to measure the air layer thickness and spreading radius over time. For low We impact on thick films (We ~ 10), the effect of the air entrainment is pronounced where the adhesion of the droplet to the wall is delayed by the air depletion and liquid film drainage, whereas for high We impact (We >100) the air layer is no longer formed and instead, the drop contact with the wall is limited only to the film drainage for all film thicknesses. In addition, the maximum spreading radius of the droplet is analyzed for varying thin film thickness and viscosity.
Strain-relaxation and critical thickness of epitaxial La 1.85Sr 0.15CuO 4 films
Meyer, Tricia L; Jiang, Lu; Park, Sungkyun; ...
2015-12-08
We report the thickness-dependent strain-relaxation behavior and the associated impacts upon the superconductivity in epitaxial La 1.85Sr 0.15CuO 4 films grown on different substrates, which provide a range of strain. We have found that the critical thickness for the onset of superconductivity in La 1.85Sr 0.15CuO 4 films is associated with the finite thickness effect and epitaxial strain. In particular, thin films with tensile strain greater than ~0.25% revealed no superconductivity. We attribute this phenomenon to the inherent formation of oxygen vacancies that can be minimized via strain relaxation.
Elastohydrodynamic film thickness model for heavily loaded contacts
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Parker, R. J.; Zaretsky, E. V.
1973-01-01
An empirical elastohydrodynamic (EHD) film thickness formula for predicting the minimum film thickness occurring within heavily loaded contacts (maximum Hertz stresses above 150,000 psi) was developed. The formula was based upon X-ray film thickness measurements made with synthetic paraffinic, fluorocarbon, Type II ester and polyphenyl ether fluids covering a wide range of test conditions. Comparisons were made between predictions from an isothermal EHD theory and the test data. The deduced relationship was found to adequately reflect the high-load dependence exhibited by the measured data. The effects of contact geometry, material and lubricant properties on the form of the empirical model are also discussed.
Swift heavy-ions induced sputtering in BaF2 thin films
NASA Astrophysics Data System (ADS)
Pandey, Ratnesh K.; Kumar, Manvendra; Singh, Udai B.; Khan, Saif A.; Avasthi, D. K.; Pandey, Avinash C.
2013-11-01
In our present experiment a series of barium fluoride thin films of different thicknesses have been deposited by electron beam evaporation technique at room temperature on silicon substrates. The effect of film thickness on the electronic sputter yield of polycrystalline BaF2 thin films has been reported in the present work. Power law for sputtered species collected on catcher grids has also been reported for film of lowest thickness. Sputtering has been performed by 100 MeV Au+28 ions. Atomic force microscopy (AFM) has been done to check the surface morphology of pristine samples. Glancing angle X-ray diffraction (GAXRD) measurements show that the pristine films are polycrystalline in nature and the grain size increases with increase in film thickness. Rutherford backscattering spectrometry (RBS) of pristine as well as irradiated films was done to determine the areal concentration of Ba and F atoms in the films. A reduction in the sputter yield of BaF2 films with the increase in film thickness has been observed from RBS results. The thickness dependence sputtering is explained on the basis of thermal spike and the energy confinement of the ions in the smaller grains. Also transmission electron microscopy (TEM) of the catchers shows a size distribution of sputtered species with values of power law exponent 1/2 and 3/2 for two fluences 5 × 1011 and 1 × 1012 ions/cm2, respectively.
NASA Astrophysics Data System (ADS)
Jain, Pushkar; Juneja, Jasbir S.; Bhagwat, Vinay; Rymaszewski, Eugene J.; Lu, Toh-Ming; Cale, Timothy S.
2005-05-01
The effects of substrate heating on the stoichiometry and the electrical properties of pulsed dc reactively sputtered tantalum oxide films over a range of film thickness (0.14 to 5.4 μm) are discussed. The film stoichiometry, and hence the electrical properties, of tantalum oxide films; e.g., breakdown field, leakage current density, dielectric constant, and dielectric loss are compared for two different cases: (a) when no intentional substrate/film cooling is provided, and (b) when the substrate is water cooled during deposition. All other operating conditions are the same, and the film thickness is directly related to deposition time. The tantalum oxide films deposited on the water-cooled substrates are stoichiometric, and exhibit excellent electrical properties over the entire range of film thickness. ``Noncooled'' tantalum oxide films are stoichiometric up to ~1 μm film thickness, beyond that the deposited oxide is increasingly nonstoichiometric. The presence of partially oxidized Ta in thicker (>~1 μm) noncooled tantalum oxide films causes a lower breakdown field, higher leakage current density, higher apparent dielectric constant, and dielectric loss. The growth of nonstoichiometric tantalum oxide in thicker noncooled films is attributed to decreased surface oxygen concentration due to oxygen recombination and desorption at higher film temperatures (>~100 °C). The quantitative results presented reflect experience with a specific piece of equipment; however, the procedures presented can be used to characterize deposition processes in which film stoichiometry can change.
Effect of buoyancy on the motion of long bubbles in horizontal tubes
NASA Astrophysics Data System (ADS)
Atasi, Omer; Khodaparast, Sepideh; Scheid, Benoit; Stone, Howard A.
2017-09-01
As a confined long bubble translates along a horizontal liquid-filled tube, a thin film of liquid is formed on the tube wall. For negligible inertial and buoyancy effects, respectively, small Reynolds (Re) and Bond (Bo) numbers, the thickness of the liquid film depends only on the flow capillary number (Ca). However, buoyancy effects are no longer negligible as the diameter of the tube reaches millimeter length scales, which corresponds to finite values of Bo. We perform experiments and theoretical analysis for a long bubble in a horizontal tube to investigate the effect of Bond number (0.05
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Anjna, E-mail: anjna56@gmail.com; Thakur, Priya; Yadav, Kamlesh, E-mail: kamlesh.yadav001@gmail.com
2016-05-06
In this paper, poly (ethyl methacrylate) (PEMA) and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films for 2, 3, 4 and 5 minutes have been deposited by spray pyrolysis technique on indium tin oxide (ITO) coated substrate. The effect of thickness of the film on the morphological and optical properties of PEMA and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films are studied. The morphological and optical properties of pure PEMA and (PEMA){sub 0.85}/(ZnO){sub 0.15} nanocomposite films are compared. The field emission scanning electron microscopy (FESEM) shows that as the thickness of film increases, uniformity of films increases. It is found from UV-Visible spectra that themore » energy band gap decreases with increasing the deposition time and refractive index increases with increasing the thickness of the film. The band gap of the nanocomposites is found less than the pure polymer film and opposite trend is observed for refractive index. The optical absorption of PEMA/ZnO nanocomposite films is higher than pure PEMA film. The thickness of the nanocomposite film plays a significant role in the tunability of the optical properties.« less
Effects of Loading Frequency and Film Thickness on the Mechanical Behavior of Nanoscale TiN Film
NASA Astrophysics Data System (ADS)
Liu, Jin-na; Xu, Bin-shi; Wang, Hai-dou; Cui, Xiu-fang; Jin, Guo; Xing, Zhi-guo
2017-09-01
The mechanical properties of a nanoscale-thickness film material determine its reliability and service life. To achieve quantitative detection of film material mechanical performance based on nanoscale mechanical testing methods and to explore the influence of loading frequency of the cycle load on the fatigue test, a TiN film was prepared on monocrystalline silicon by magnetron sputtering. The microstructure of the nanoscale-thickness film material was characterized by using scanning electron microscopy and high-resolution transmission electron microscopy. The residual stress distribution of the thin film was obtained by using an electronic film stress tester. The hardness values and the fatigue behavior were measured by using a nanomechanical tester. Combined with finite element simulation, the paper analyzed the influence of the film thickness and loading frequency on the deformation, as well as the equivalent stress and strain. The results showed that the TiN film was a typical face-centered cubic structure with a large amount of amorphous. The residual compressive stress decreased gradually with increasing thin film thickness, and the influence of the substrate on the elastic modulus and hardness was also reduced. A greater load frequency would accelerate the dynamic fatigue damage that occurs in TiN films.
Polymer nanomechanics: Separating the size effect from the substrate effect in nanoindentation
NASA Astrophysics Data System (ADS)
Li, Le; Encarnacao, Lucas M.; Brown, Keith A.
2017-01-01
While the moduli of thin polymer films are known to deviate dramatically from their bulk values, there is not a consensus regarding the nature of this size effect. In particular, indenting experiments appear to contradict results from both buckling experiments and molecular dynamics calculations. In this letter, we present a combined computational and experimental method for measuring the modulus of nanoindented soft films on rigid substrates that reconciles this discrepancy. Through extensive finite element simulation, we determine a correction to the Hertzian contact model that separates the substrate effect from the thickness-dependent modulus of the film. Interestingly, this correction only depends upon a dimensionless film thickness and the Poisson ratio of the film. To experimentally test this approach, we prepared poly(methyl methacrylate), polystyrene, and parylene films with thicknesses ranging from 20 to 300 nm and studied these films using atomic force microscope-based nanoindenting. Strikingly, when experiments were interpreted using the computationally derived substrate correction, sub-70 nm films were found to be softer than bulk, in agreement with buckling experiments and molecular dynamics studies. This correction can serve as a general method for unambiguously determining the size effect of thin polymer films and ultimately lead to the ability to quantitatively image the mechanical properties of heterogeneous materials such as composites.
Experimental investigations of elastohydrodynamic lubrication
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1983-01-01
Various experimental studies of elastohydrodynamic lubrication have been reviewed. The various types of machines used in these investigations, such as the disc, two and four ball, crossed-cylinders, and crossed-axes rolling disc machine, are described. The measurement of the most important parameters, such as film shape, film thickness, pressure, temperature, and traction, is considered. Determination of the film thickness is generally the most important of these effects since it dictates the extent to which the asperities on opposing surfaces can come into contact and thus has a direct bearing on wear and fatigue failure of the contacting surfaces. Several different techniques for measuring film thickness have been described, including electrical resistance, capacitance, X-ray, optical interferometry, laser beam diffraction, strain gage, and spring dynamometer methods. An attempt has been made to describe the basic concepts and limitations of each of these techniques. These various methods have been used by individual researchers, but there is no universally acceptable technique for measuring elastohydrodynamic film thickness. Capacitance methods have provided most of the reliable data for nominal line or rectangular conjunctions, but optical interferometry has proved to be the most effective procedure for elliptical contacts. Optical interferometry has the great advantage that it reveals not only the film thickness, but also details of the film shape over the complete area of the conjunction.
NASA Astrophysics Data System (ADS)
Mundra, Manish K.
2005-03-01
It is well known that the glass transition temperatures, Tgs, of supported polystyrene (PS) films decrease dramatically with decreasing film thickness below 60-80 nm. However, a detailed understanding of the cause of this effect is lacking. We have investigated the impact of several parameters, including polymer molecular weight (MW), repeat unit structure, and the length scale of cooperatively rearranging regions in bulk. There is no significant effect of PS MW on the Tg-confinement effect over a range of 5,000 to 3,000,000 g/mol. In contrast, the strength of the Tg reduction and the onset of the confinement effect increase dramatically upon changing the polymer from PS to poly(4-tert-butylstyrene) (PTBS), with PTBS exhibiting a Tg reduction relative to bulk at a thickness of 300-400 nm. PTBS also shows a Tg reduction relative to bulk of 47 K in a 21-nm-thick film, more than twice that observed in a PS film of identical thickness. Characterization of the length scale of cooperatively rearranging regions has been done by differential scanning calorimetry but reveals at best a limited correlation with the confinement effect.
NASA Astrophysics Data System (ADS)
Chander, Subhash; Dhaka, M. S.
2016-10-01
The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.
NASA Astrophysics Data System (ADS)
Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.
2018-05-01
We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.
Chung, Jun Young; Douglas, Jack F; Stafford, Christopher M
2017-10-21
We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition T g by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and T g (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below T g , indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature-both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.
NASA Astrophysics Data System (ADS)
Chung, Jun Young; Douglas, Jack F.; Stafford, Christopher M.
2017-10-01
We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition Tg by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and Tg (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below Tg, indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature—both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.
Oil slick studies using photographic and multispectral scanner data.
NASA Technical Reports Server (NTRS)
Munday, J. C., Jr.; Macintyre, W. G.; Penney, M. E.; Oberholtzer, J. D.
1971-01-01
Field studies of spills of Nos. 6 (Bunker C), 4, and 2 fuel oils and menhaden fish oil in the southern Chesapeake Bay have been supplemented with aerial photographic and multispectral scanner data. Thin films showed best in ultraviolet and blue bands and thick films in the green. Color film was effective for all thicknesses. Thermal infrared imagery provided clear detection, but required field temperature and thickness data to distinguish thickness/emissivity variations from temperature variations. Slick spreading rates agree with the theory of Fay (1969); further study of spreading is in progress.
Confocal micro-Raman spectroscopy of black soap films
NASA Astrophysics Data System (ADS)
Lecourt, B.; Capelle, F.; Adamietz, F.; Malaplate, A.; Blaudez, D.; Kellay, H.; Turlet, J. M.
1998-01-01
Black soap films from aqueous solutions of sodium dodecyl sulphate are studied by micro-Raman confocal spectroscopy. At the end of the draining process films of different thicknesses are obtained depending on the experimental conditions: Working in a closed humidified chamber leads to common black films while, under evaporation or in the presence of electrolyte, Newton black films are observed. From the Raman spectra of these films, quantitative information is deduced about the conformational and lateral order of the aliphatic surfactant chains, as well as the thickness of the residual water layer. More accurate measurements of the thickness of these ultimate films have been carried out by transmission ellipsometry and their effective refractive index measured by Brewster angle reflectivity. The thinner films present higher molecular organization and their aqueous core exhibits unusual spectral features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melo, M.; Araújo, E. B., E-mail: eudes@dfq.feis.unesp.br; Shvartsman, V. V.
Polycrystalline lanthanum lead zirconate titanate (PLZT) thin films were deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates to study the effects of the thickness and grain size on their structural and piezoresponse properties at nanoscale. Thinner PLZT films show a slight (100)-orientation tendency that tends to random orientation for the thicker film, while microstrain and crystallite size increases almost linearly with increasing thickness. Piezoresponse force microscopy and autocorrelation function technique were used to demonstrate the existence of local self-polarization effect and to study the thickness dependence of correlation length. The obtained results ruled out the bulk mechanisms and suggest that Schottky barriersmore » near the film-substrate are likely responsible for a build-in electric field in the films. Larger correlation length evidence that this build-in field increases the number of coexisting polarization directions in larger grains leading to an alignment of macrodomains in thinner films.« less
NASA Astrophysics Data System (ADS)
Li, Shi-na; Ma, Rui-xin; Ma, Chun-hong; Li, Dong-ran; Xiao, Yu-qin; He, Liang-wei; Zhu, Hong-min
2013-05-01
Niobium-doped indium tin oxide (ITO:Nb) thin films are prepared on glass substrates with various film thicknesses by radio frequency (RF) magnetron sputtering from one piece of ceramic target material. The effects of thickness (60-360 nm) on the structural, electrical and optical properties of ITO: Nb films are investigated by means of X-ray diffraction (XRD), ultraviolet (UV)-visible spectroscopy, and electrical measurements. XRD patterns show the highly oriented (400) direction. The lowest resistivity of the films without any heat treatment is 3.1×10-4Ω·cm-1, and the resistivity decreases with the increase of substrate temperature. The highest Hall mobility and carrier concentration are 17.6 N·S and 1.36×1021 cm-3, respectively. Band gap energy of the films depends on substrate temperature, which varies from 3.48 eV to 3.62 eV.
NASA Astrophysics Data System (ADS)
Sedrpooshan, Mehran; Ahmadvand, Hossein; Ranjbar, Mehdi; Salamati, Hadi
2018-06-01
CoPd alloy thin films with different thicknesses and Co/Pd ratios have been deposited on Si (100) substrate by pulsed laser deposition (PLD). The magnetic properties were investigated by using the magneto-optical Kerr effect (MOKE) in both longitudinal and polar geometries. The results show that the films with thickness in the range of 6-24 nm, deposited at a low substrate temperature of 200 °C, are mostly magnetized in the plane of film. Higher deposition temperature forces the magnetic easy axis to orient in the perpendicular direction of the films.
Robust solder joint attachment of coaxial cable leads to piezoelectric ceramic electrodes.
Vianco, P T
1993-01-01
A technique was developed for the solder attachment of coaxial cable leads to silver-bearing thick-film electrodes on piezoelectric ceramics. Soldering the cable leads directly to the thick film caused bonds with low mechanical strength due to poor solder joint geometry. A barrier coating of 1.5 mum Cu/1.5 mum Ni/1.0 mum Sn deposited on the thick-film layer improved the strength of the solder joints by eliminating the adsorption of Ag from the thick film, which was responsible for the improper solder joint geometry. The procedure does not require special preparation of the electrode surface and is cost effective due to the use of nonprecious metal films and the batch processing capabilities of the electron beam deposition technique.
Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell
NASA Astrophysics Data System (ADS)
Zaki, A. A.; El-Amin, A. A.
2017-12-01
In this work Electrical and optical properties of silicon thin films with different thickness were measured. The thickness of the Si films varied from 100 to 800 μm. The optical properties of the cell were studied at different thickness. A maximum achievable current density (MACD) generated by a planar solar cell, was measured for different values of the cell thickness which was performed by using photovoltaic (PV) optics method. It was found that reducing the values of the cell thickness improves the open-circuit voltage (VOC) and the fill factor (FF) of the solar cell. The optical properties were measured for thin film Si (TF-Si) at different thickness by using the double beam UV-vis-NIR spectrophotometer in the wavelength range of 300-2000 nm. Some of optical parameters such as refractive index with dispersion relation, the dispersion energy, the oscillator energy, optical band gap energy were calculated by using the spectra for the TF-Si with different thickness.
Thickness dependent band gap of Bi{sub 2-x}Sb{sub x}Te{sub 3} (x = 0, 0.05, 0.1) thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, M. M.; Soni, P. H., E-mail: phsoni-msu@yahoo.com; Desai, C. F.
2016-05-23
Thin films of Bi{sub 2}Te{sub 3}(Sb) were prepared on alkali halide crystal substrates. Sb content and the film thickness were varied. Bi{sub 2}Te{sub 3} is a narrow gap semiconductor. Bi-Sb is a continuous solid solution of substitutional type and Sb therefore was used to test its effect on the band gap. The film thickness variation was also taken up. The infra-red absorption spectra were used in the wave number range 400 cm{sup −1} to 4000 cm{sup −1}. The band gap obtained from the absorption data was found to increase with decreasing thickness since the thickness range used was from 30more » nm to 170 nm. This is a range corresponding to nanostructures and hence quantum size effect was observed as expected. The band gap also exhibited Sb content dependence. The detail results are have been reported and explained.« less
NASA Astrophysics Data System (ADS)
Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Liakhov, Yuriy F.; Tomchuk, Anastasiya V.; Haftel, Michael; Pinchuk, Anatoliy O.
2017-10-01
Effects of plasmonic coupling between metal nanoparticles and thin metal films separated by thin dielectric film-spacers have been studied by means of light extinction in three-layer planar Au NPs monolayer/dielectric (shellac) film/Al film nanostructure. The influence of coupling on the spectral characteristics of the Au NPs SPR extinction peak has been analyzed with spacer thickness, varied from 3 to 200 nm. The main observed features are a strong red shift (160 nm), and non-monotonical behavior of the magnitude and width of Au NPs SPR, as the spacer thickness decreased. The appearance of an intensive gap mode peak was observed at a spacer thickness smaller than approximately 30 nm, caused by the hybridization of the Au NPs SPR mode and gap mode in the presence of the Al film. Additionally, the appreciable enhancement (5.6 times) of light extinction by the Au NPs monolayer in the presence of Al film has been observed. A certain value of dielectric spacer thickness (70 nm) exists at which such enhancement is maximal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070; Chi, Hang
2016-01-25
In this research, we report the enhanced thermoelectric power factor in topologically insulating thin films of Bi{sub 0.64}Sb{sub 1.36}Te{sub 3} with a thickness of 6–200 nm. Measurements of scanning tunneling spectroscopy and electronic transport show that the Fermi level lies close to the valence band edge, and that the topological surface state (TSS) is electron dominated. We find that the Seebeck coefficient of the 6 nm and 15 nm thick films is dominated by the valence band, while the TSS chiefly contributes to the electrical conductivity. In contrast, the electronic transport of the reference 200 nm thick film behaves similar to bulk thermoelectric materialsmore » with low carrier concentration, implying the effect of the TSS on the electronic transport is merely prominent in the thin region. The conductivity of the 6 nm and 15 nm thick film is obviously higher than that in the 200 nm thick film owing to the highly mobile TSS conduction channel. As a consequence of the enhanced electrical conductivity and the suppressed bipolar effect in transport properties for the 6 nm thick film, an impressive power factor of about 2.0 mW m{sup −1} K{sup −2} is achieved at room temperature for this film. Further investigations of the electronic transport properties of TSS and interactions between TSS and the bulk band might result in a further improved thermoelectric power factor in topologically insulating Bi{sub 0.64}Sb{sub 1.36}Te{sub 3} thin films.« less
NASA Astrophysics Data System (ADS)
Powell, C. J.; Smekal, W.; Werner, W. S. M.
2005-09-01
We describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA). This database provides data for the many parameters needed in quantitative Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). In addition, AES and XPS spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra. In this way, AES and XPS can provide more detailed characterization of multilayer thin-film materials. We report on the use of SESSA for determining the thicknesses of HfO2, ZrO2, HfSiO4, and ZrSiO4 films on Si by angle-resolved XPS. Practical effective attenuation lengths (EALs) have been computed from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs have been compared with similar values obtained from the NIST Electron Effective-Attenuation-Length Database (SRD 82). Generally good agreement was found between corresponding EAL values, but there were differences for film thicknesses less than the inelastic mean free path of the photoelectrons in the overlayer film. These differences are due to a simplifying approximation in the algorithm used to compute EALs in SRD 82. SESSA, with realistic cross sections for elastic and inelastic scattering in the film and substrate materials, is believed to provide more accurate EALs than SRD 82 for thin-film thickness measurements, particularly in applications where the film and substrate have different electron-scattering properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, C.J.; Smekal, W.; Werner, W.S.M.
2005-09-09
We describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA). This database provides data for the many parameters needed in quantitative Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). In addition, AES and XPS spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra. In this way, AES and XPS can provide more detailed characterization of multilayer thin-film materials. Wemore » report on the use of SESSA for determining the thicknesses of HfO2, ZrO2, HfSiO4, and ZrSiO4 films on Si by angle-resolved XPS. Practical effective attenuation lengths (EALs) have been computed from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs have been compared with similar values obtained from the NIST Electron Effective-Attenuation-Length Database (SRD 82). Generally good agreement was found between corresponding EAL values, but there were differences for film thicknesses less than the inelastic mean free path of the photoelectrons in the overlayer film. These differences are due to a simplifying approximation in the algorithm used to compute EALs in SRD 82. SESSA, with realistic cross sections for elastic and inelastic scattering in the film and substrate materials, is believed to provide more accurate EALs than SRD 82 for thin-film thickness measurements, particularly in applications where the film and substrate have different electron-scattering properties.« less
Real-Time Deposition Monitor for Ultrathin Conductive Films
NASA Technical Reports Server (NTRS)
Hines, Jacqueline
2011-01-01
A device has been developed that can be used for the real-time monitoring of ultrathin (2 or more) conductive films. The device responds in less than two microseconds, and can be used to monitor film depositions up to about 60 thick. Actual thickness monitoring capability will vary based on properties of the film being deposited. This is a single-use device, which, due to the very low device cost, can be disposable. Conventional quartz/crystal microbalance devices have proven inadequate to monitor the thickness of Pd films during deposition of ultrathin films for hydrogen sensor devices. When the deposited film is less than 100 , the QCM measurements are inadequate to allow monitoring of the ultrathin films being developed. Thus, an improved, high-sensitivity, real-time deposition monitor was needed to continue Pd film deposition development. The new deposition monitor utilizes a surface acoustic wave (SAW) device in a differential delay-line configuration to produce both a reference response and a response for the portion of the device on which the film is being deposited. Both responses are monitored simultaneously during deposition. The reference response remains unchanged, while the attenuation of the sensing path (where the film is being deposited) varies as the film thickness increases. This device utilizes the fact that on high-coupling piezoelectric substrates, the attenuation of an SAW undergoes a transition from low to very high, and back to low as the conductivity of a film on the device surface goes from nonconductive to highly conductive. Thus, the sensing path response starts with a low insertion loss, and as a conductive film is deposited, the film conductivity increases, causing the device insertion loss to increase dramatically (by up to 80 dB or more), and then with continued film thickness increases (and the corresponding conductivity increases), the device insertion loss goes back down to the low level at which it started. This provides a continuous, real-time monitoring of film deposition. For use with different films, the device would need to be calibrated to provide an understanding of how film thickness is related to film conductivity, as the device is responding primarily to conductivity effects (and not to mass loading effects) in this ultrathin film regime.
NASA Astrophysics Data System (ADS)
Kim, Kyung Joong; Lee, Seung Mi; Jang, Jong Shik; Moret, Mona
2012-02-01
The general equation Tove = L cos θ ln(Rexp/R0 + 1) for the thickness measurement of thin oxide films by X-ray photoelectron spectroscopy (XPS) was applied to a HfO2/SiO2/Si(1 0 0) as a thin hetero-oxide film system with an interfacial oxide layer. The contribution of the thick interfacial SiO2 layer to the thickness of the HfO2 overlayer was counterbalanced by multiplying the ratio between the intensity of Si4+ from a thick SiO2 film and that of Si0 from a Si(1 0 0) substrate to the intensity of Si4+ from the HfO2/SiO2/Si(1 0 0) film. With this approximation, the thickness levels of the HfO2 overlayers showed a small standard deviation of 0.03 nm in a series of HfO2 (2 nm)/SiO2 (2-6 nm)/Si(1 0 0) films. Mutual calibration with XPS and transmission electron microscopy (TEM) was used to verify the thickness of HfO2 overlayers in a series of HfO2 (1-4 nm)/SiO2 (3 nm)/Si(1 0 0) films. From the linear relation between the thickness values derived from XPS and TEM, the effective attenuation length of the photoelectrons and the thickness of the HfO2 overlayer could be determined.
Kinetics of sub-spinodal dewetting of thin films of thickness dependent viscosity.
Kotni, Tirumala Rao; Khanna, Rajesh; Sarkar, Jayati
2017-05-04
An alternative explanation of the time varying and very low growth exponents in dewetting of polymer films like polystyrene films is presented based on non-linear simulations. The kinetics of these films is explored within the framework of experimentally observed thickness dependent viscosity. These films exhibit sub-spinodal dewetting via formation of satellite holes in between primary dewetted holes under favorable conditions of excess intermolecular forces and film thicknesses. We find that conditions responsible for sub-spinodal dewetting concurrently lead to remarkable changes in the kinetics of dewetting of even primary holes. For example, the radius of the hole grows in time with a power-law growth exponent sequence of [Formula: see text], in contrast to the usual ∼4/5. This is due to the cumulative effect of reduced rim mobility due to thickness dependent viscosity and hindrance created by satellite holes.
Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui
2017-12-15
Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.
NASA Astrophysics Data System (ADS)
Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui
2017-12-01
Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.
Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yang; He, Qiming; Zhang, Fan
Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less
Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification
Zhou, Yang; He, Qiming; Zhang, Fan; ...
2017-08-14
Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less
NASA Astrophysics Data System (ADS)
Powell, C. J.; Jablonski, A.; Werner, W. S. M.; Smekal, W.
2005-01-01
We describe two NIST databases that can be used to characterize thin films from Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) measurements. First, the NIST Electron Effective-Attenuation-Length Database provides values of effective attenuation lengths (EALs) for user-specified materials and measurement conditions. The EALs differ from the corresponding inelastic mean free paths on account of elastic-scattering of the signal electrons. The database supplies "practical" EALs that can be used to determine overlayer-film thicknesses. Practical EALs are plotted as a function of film thickness, and an average value is shown for a user-selected thickness. The average practical EAL can be utilized as the "lambda parameter" to obtain film thicknesses from simple equations in which the effects of elastic-scattering are neglected. A single average practical EAL can generally be employed for a useful range of film thicknesses and for electron emission angles of up to about 60°. For larger emission angles, the practical EAL should be found for the particular conditions. Second, we describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to be released in 2004. This database provides data for many parameters needed in quantitative AES and XPS (e.g., excitation cross-sections, electron-scattering cross-sections, lineshapes, fluorescence yields, and backscattering factors). Relevant data for a user-specified experiment are automatically retrieved by a small expert system. In addition, Auger electron and photoelectron spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra, and thus, provide more detailed characterizations of multilayer thin-film materials. SESSA can also provide practical EALs, and we compare values provided by the NIST EAL database and SESSA for hafnium dioxide. Differences of up to 10% were found for film thicknesses less than 20 Å due to the use of different physical models in each database.
NASA Astrophysics Data System (ADS)
Gann, Eliot; Caironi, Mario; Noh, Yong-Young; Kim, Yun-Hi; McNeill, Christopher R.
The depth dependence of crystalline structure within thin films is critical for many technological applications, but has been impossible to measure directly using common techniques. In this work, by monitoring diffraction peak intensity and location and utilizing the highly angle-dependent waveguiding effects of X-rays near grazing incidence we quantitatively measure the thickness, roughness and orientation of stratified crystalline layers within thin films of a high-performance semiconducting polymer. In particular, this diffractive X-ray waveguiding reveals a self-organized 5-nm-thick crystalline surface layer with crystalline orientation orthogonal to the underlying 65-nm-thick layer. While demonstrated for an organic semiconductor film, this approach is applicable to any thin film material system where stratified crystalline structure and orientation can influence important interfacial processes such as charge injection and field-effect transport.
Thickness-modulated anisotropic ferromagnetism in Fe-doped epitaxial HfO2 thin films
NASA Astrophysics Data System (ADS)
Liu, Wenlong; Liu, Ming; Zhang, Ruyi; Ma, Rong; Wang, Hong
2017-10-01
Epitaxial tetragonal Fe-doped Hf0.95Fe0.05O2 (FHO) thin films with various thicknesses were deposited on (001)-oriented NdCaAlO4 (NCAO) substrates by using a pulsed laser deposition (PLD) system. The crystal structure and epitaxial nature of the FHO thin films were confirmed by typical x-ray diffraction (XRD) θ-2θ scan and reciprocal space mapping (RSM). The results indicate that two sets of lattice sites exist with two different crystal orientations [(001) and (100)] in the thicker FHO thin films. Further, the intensity of the (100) direction increases with the increase in thicknesses, which should have a significant effect on the anisotropic magnetization of the FHO thin films. Meanwhile, all the FHO thin films possess a tetragonal phase structure. An anisotropy behavior in magnetization has been observed in the FHO thin films. The anisotropic magnetization of the FHO thin films is slowly weakened as the thickness increases. Meanwhile, the saturation magnetization (Ms) of both in-plane and out-of-plane decreases with the increase in the thickness. The change in the anisotropic magnetization and Ms is attributed to the crystal lattice and the variation in the valence of Fe ions. These results indicate that the thickness-modulated anisotropic ferromagnetism of the tetragonal FHO epitaxial thin films is of potential use for the integration of metal-oxide semiconductors with spintronics.
A novel evaluation strategy for fatigue reliability of flexible nanoscale films
NASA Astrophysics Data System (ADS)
Zheng, Si-Xue; Luo, Xue-Mei; Wang, Dong; Zhang, Guang-Ping
2018-03-01
In order to evaluate fatigue reliability of nanoscale metal films on flexible substrates, here we proposed an effective evaluation way to obtain critical fatigue cracking strain based on the direct observation of fatigue damage sites through conventional dynamic bending testing technique. By this method, fatigue properties and damage behaviors of 930 nm-thick Au films and 600 nm-thick Mo-W multilayers with individual layer thickness 100 nm on flexible polyimide substrates were investigated. Coffin-Manson relationship between the fatigue life and the applied strain range was obtained for the Au films and Mo-W multilayers. The characterization of fatigue damage behaviors verifies the feasibility of this method, which seems easier and more effective comparing with the other testing methods.
The study of VOPc thin film transistors on modified substrates
NASA Astrophysics Data System (ADS)
Song, De; Xu, Qi; Cheng, Hongcang; Li, Bao-zeng; Shang, Yubin
2018-02-01
The vanadyl phthalocyanine (VOPc) organic thin film transistors (OTFTs) were fabricated on the various organosilane self-assembled monolayer (SAM) modified substrates. And the effect of the surface properties on the performance of these transistors was studied. The atomic force morphologies and X-ray diffraction (XRD) spectrums of vanadyl phthalocyanine films on different SAM-modified surfaces were studied. They reveal that the terminal functional groups of organosilane affect the growth of VOPc film and device performance. The VOPc film on octadecyltrichlorosilane (OTS) modified substrate has larger crystal size and effective crystal thickness than those on phenyltrichlorosilane (PTS), 1H,1H,2H,2H-Perfluorodec-yltrichlorosilane (FDTS) as well as non-modified substrate, which contributes the mobility of corresponding device several and several dozen times relative to other ones. The effective crystal thickness and crystal grain size of VOPc film on PTS is between that on OTS treated and that on non-modified substrate due to the stronger attractive force between VOPc and SiO2. The VOPc films' performance and effective crystal thickness on FDTS treated are worse than that on PTS due to the existents of attractive force between -CF3 and VOPc.
Influence of a surface film on the particles on the electrorheological response
NASA Astrophysics Data System (ADS)
Wu, C. W.; Conrad, H.
1997-01-01
A conduction model is developed for the dc electrorheological (ER) response of highly conducting particles (e.g., metal particles) suspended in a weakly conducting oil. The numerical analyses show that a surface film with some conductivity is desired, but not a completely insulating film as previously proposed. Increasing the film conductivity leads to an increase in the ER yield stress. However, too high a conductivity will give an unacceptable level of current density. The film should also have an intermediate thickness. A small thickness increases the possibility of electrical breakdown in the film; too large a thickness decreases the ER effect. Good agreement exists between the yield stress and the current density predicted by our model and those measured.
Goos-Hänchen effect on Si thin films with spherical and cylindrical pores
NASA Astrophysics Data System (ADS)
Olaya, Cherrie May; Garcia, Wilson O.; Hermosa, Nathaniel
2018-02-01
We examine the effects on the spatial and angular Goos-Hanchen (GH) beam shifts of spherical and cylindrical pores in a thin film. In our calculations, a p-polarized light is incident on a 1-μm thick porous silicon (Si) thin film on a Si substrate. The beam shifts are within the measurement range of usual optical detectors. Our results show that a technique based on GH shift can be used to determine the porosity and pore structure of thin films at a given thickness.
NASA Astrophysics Data System (ADS)
Zhu, Z.; Liu, F. R.; Wang, Z. M.; Fan, Z. K.; Liu, F.; Sun, N. X.
2015-04-01
A comparative study on crystallization characteristics of amorphous Ge2Sb2Te5 (GST) films induced by an ultraviolet pulse laser and isothermal annealing was carried out by using transmission electron microscopy (TEM) and Raman scattering. TEM observations showed that the mean grain size induced by a pulse laser was in the nanoscale. A more complete crystallization in the 50 nm thick GST film was obtained which was ascribed to the effect of thermal convection produced in a thinner GST film, however, when the film thickness was over 70 nm, no significant decrease in the mean grain size was found because of the effect of heating mode, where a surface heat source by the ultraviolet laser radiation caused a quick temperature drop. The body heating mode at the isothermal annealing condition made the mean grain size increase remarkably with the increase of film thickness, which could be up to the submicron scale, relative to the size of film thickness. The Raman spectrum analysis showed that a red shift was observed in laser induced Ge2Sb2Te5 films as compared to the isothermal annealing samples, which was caused by the resultant stress of the thermal stress and phase transformation stress.
Effects of fluorine contamination on spin-on dielectric thickness in semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Kim, Hyoung-ryeun; Hong, Soonsang; Kim, Samyoung; Oh, Changyeol; Hwang, Sung Min
2018-03-01
In the recent semiconductor industry, as the device shrinks, spin-on dielectric (SOD) has been adopted as a widely used material because of its excellent gap-fill, efficient throughput on mass production. SOD film must be uniformly thin, homogeneous and free of particle defects because it has been perfectly perserved after chemical-mechanical polishing (CMP) and etching process. Spin coating is one of the most common techniques for applying SOD thin films to substrates. In spin coating process, the film thickness and uniformity are strong function of the solution viscosity, the final spin speed and the surface properties. Especially, airborne molecular contaminants (AMCs), such as HF, HCl and NH3, are known to change to surface wetting characteristics. In this work, we study the SOD film thickness as a function of fluorine contamination on the wafer surface. To examine the effects of airborne molecular contamination, the wafers are directly exposed to HF fume followed by SOD coating. It appears that the film thickness decreases by higher contact angle on the wafer surface due to fluorine contamination. The thickness of the SOD film decreased with increasing fluorine contamination on the wafer surface. It means that the wafer surface with more hydrophobic property generates less hydrogen bonding with the functional group of Si-NH in polysilazane(PSZ)-SOD film. Therefore, the wetting properties of silicon wafer surfaces can be degraded by inorganic contamination in SOD coating process.
Effects of alignment layer thickness on the pretilt angle of liquid crystals
NASA Astrophysics Data System (ADS)
Son, Jong-Ho; Zin, Wang-Cheol
2010-12-01
Mixture solutions of vertical- and planar-aligning polyimide precursors were coated on bare glass. The concentrations of the solutions were varied to control the thicknesses of the films. The resulting blend films were baked to induce imidization and then rubbed. The thicknesses (t) of the blend film and of the pure vertical-alignment film affected their surface energies; the pretilt angle can be fully controlled in the range 5.5°≤Θ0≤87° by adjusting t. The surface energy of pure planar-alignment layers was independent of t.
Influence of Thickness on the Electrical Transport Properties of Exfoliated Bi2Te3 Ultrathin Films
NASA Astrophysics Data System (ADS)
Mo, D. L.; Wang, W. B.; Cai, Q.
2016-08-01
In this work, the mechanical exfoliation method has been utilized to fabricate Bi2Te3 ultrathin films. The thickness of the ultrathin films is revealed to be several tens of nanometers. Weak antilocalization effects and Shubnikov de Haas oscillations have been observed in the magneto-transport measurements on individual films with different thickness, and the two-dimensional surface conduction plays a dominant role. The Fermi level is found to be 81 meV above the Dirac point, and the carrier mobility can reach ~6030 cm2/(Vs) for the 10-nm film. When the film thickness decreases from 30 to 10 nm, the Fermi level will move 8 meV far from the bulk valence band. The coefficient α in the Hikami-Larkin-Nagaoka equation is shown to be ~0.5, manifesting that only the bottom surface of the Bi2Te3 ultrathin films takes part in transport conductions. These will pave the way for understanding thoroughly the surface transport properties of topological insulators.
Thickness Limit for Alignment of Block Copolymer Films Using Solvent Vapor Annealing with Shear
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Cavicchi, Kevin A.; Li, Ruipeng
The swelling and deswelling of a cross-linked polydimethylsiloxane (PDMS) pad adhered to a block copolymer (BCP) film during solvent vapor annealing (SVA) provides sufficient shear force to produce highly aligned domains over macroscopic dimensions in thin films. Here in this paper, we examine how far this alignment can propagate through the thickness of a BCP film to understand the limits for efficacy of the SVA-S (SVA with shear) process. Films of cylinder-forming polystyrene-block-polyisoprene-block-polystyrene (SIS) ranging from 100 nm to more than 100 μm are examined using the same processing conditions. The SIS surface in contact with the PDMS is alwaysmore » well-aligned, with Herman’s orientation parameter (S) exceeding 0.9 as determined from AFM micrographs, but the bottom surface in contact with the silicon wafer is not aligned for the thickest films. The average orientation through the film thickness was determined by transmission small-angle X-ray scattering (SAXS), with S decreasing gradually with increasing thickness for SIS films thinner than 24 μm, but S remains >0.8. S precipitously decreases for thicker films. A stop-etch-image approach allows the gradient in orientation through the thickness to be elucidated. The integration of this local orientation profile agrees with the average S obtained from SAXS. These results demonstrate the effective alignment of supported thick BCP films of order 10 μm, which could be useful for BCP coatings for optical applications.« less
Thickness Limit for Alignment of Block Copolymer Films Using Solvent Vapor Annealing with Shear
Zhang, Chao; Cavicchi, Kevin A.; Li, Ruipeng; ...
2018-05-23
The swelling and deswelling of a cross-linked polydimethylsiloxane (PDMS) pad adhered to a block copolymer (BCP) film during solvent vapor annealing (SVA) provides sufficient shear force to produce highly aligned domains over macroscopic dimensions in thin films. Here in this paper, we examine how far this alignment can propagate through the thickness of a BCP film to understand the limits for efficacy of the SVA-S (SVA with shear) process. Films of cylinder-forming polystyrene-block-polyisoprene-block-polystyrene (SIS) ranging from 100 nm to more than 100 μm are examined using the same processing conditions. The SIS surface in contact with the PDMS is alwaysmore » well-aligned, with Herman’s orientation parameter (S) exceeding 0.9 as determined from AFM micrographs, but the bottom surface in contact with the silicon wafer is not aligned for the thickest films. The average orientation through the film thickness was determined by transmission small-angle X-ray scattering (SAXS), with S decreasing gradually with increasing thickness for SIS films thinner than 24 μm, but S remains >0.8. S precipitously decreases for thicker films. A stop-etch-image approach allows the gradient in orientation through the thickness to be elucidated. The integration of this local orientation profile agrees with the average S obtained from SAXS. These results demonstrate the effective alignment of supported thick BCP films of order 10 μm, which could be useful for BCP coatings for optical applications.« less
DOT National Transportation Integrated Search
1975-03-01
The raw data and the initial curves for the study entitled, "An Evaluation of the Effects of Tread Depth, Pavement Texture, and Water Film Thickness on Skid Number-Speed Gradients" are so voluminous that they are included in the Supplement rather tha...
Effect of Nanotube Film Thickness on the Performance of Nanotube-Silicon Hybrid Solar Cells
Tune, Daniel D.; Shapter, Joseph G.
2013-01-01
The results of measurements on solar cells made from randomly aligned thin films of single walled carbon nanotubes (SWCNTs) on n-type monocrystalline silicon are presented. The films are made by vacuum filtration from aqueous TritonX-100 suspensions of large diameter arc-discharge SWCNTs. The dependence of the solar cell performance on the thickness of the SWCNT film is shown in detail, as is the variation in performance due to doping of the SWCNT film with SOCl2. PMID:28348358
Suppression of superconductivity in epitaxial MgB2 ultrathin films
NASA Astrophysics Data System (ADS)
Zhang, Chen; Wang, Yue; Wang, Da; Zhang, Yan; Liu, Zheng-Hao; Feng, Qing-Rong; Gan, Zi-Zhao
2013-07-01
MgB2 ultrathin films have potential to make sensitive superconducting devices such as superconducting single-photon detectors working at relatively high temperatures. We have grown epitaxial MgB2 films in thicknesses ranging from about 40 nm to 6 nm by using the hybrid physical-chemical vapor deposition method and performed electrical transport measurements to study the thickness dependence of the superconducting critical temperature Tc. With reducing film thickness d, although a weak depression of the Tc has been observed, which could be attributed to an increase of disorder (interband impurity scattering) in the film, the Tc retains close to the bulk value of MgB2 (39 K), being about 35 K in the film of 6 nm thick. We show that this result, beneficial to the application of MgB2 ultrathin films and in accordance with recent theoretical calculations, is in contrast to previous findings in MgB2 films prepared by other methods such as co-evaporation and molecular-beam epitaxy, where a severe Tc suppression has been observed with Tc about one third of the bulk value in films of ˜5 nm thick. We discuss this apparent discrepancy in experiments and suggest that, towards the ultrathin limit, the different degrees of Tc suppression displayed in currently obtained MgB2 films by various techniques may arise from the different levels of disorder present in the film or different extents of proximity effect at the film surface or film-substrate interface.
Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Ghamdi, Attieh A.; Abdel-wahab, M. Sh., E-mail: mshabaan90@yahoo.com; Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef
2016-03-15
Highlights: • Synthesis of nanocrystalline NiO thin films with different thicknesses using DC magnetron sputtering technique. • Effect of film thickness and particle size on photo-catalytic degradation of methyl green dye under UV light was studied. • The deposited NiO thin films are efficient, stable and possess high photo-catalytic activity upon reuse. - Abstract: Physical deposition of nanocrystalline nickel oxide (NiO) thin films with different thickness 30, 50 and 80 nm have been done on glass substrate by DC magnetron sputtering technique and varying the deposition time from 600, 900 to 1200 s. The results of surface morphology and opticalmore » characterization of these films obtained using different characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), photoluminescence (PL) and UV–vis spectrophotometry provide important information like formation of distinct nanostructures in different films and its effect on their optical band gap which has decreased from 3.74 to 3.37 eV as the film thickness increases. Most importantly these films have shown very high stability and a specialty to be recycled without much loss of their photo-catalytic activity, when tested as photo-catalysts for the degradation of methyl green dye (MG) from the wastewater under the exposure of 18 W energy of UV lamp.« less
Microstructure of a base metal thick film system. [Glass frit with base metal oxide addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mentley, D.E.
1976-06-01
A base metal thick film conductor system using glass frits with base metal oxide additions was investigated as metallization for hybrid microcircuits. Application of previous work on wetting and chemical bonding was made to this system. The observation of changes in the properties of the thick film was made by photomicrographs of screened samples and sheet resistivity measurements. In addition to the chemical and wetting properties, the effect of glass frit particle size on conductivity was also analyzed. The base metal oxide addition was found to produce a more consistent thick film conductor at low volume percentages of metal bymore » inhibiting the formation of low melting redox reaction products.« less
Thickness and microstructure effects in the optical and electrical properties of silver thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Guowen, E-mail: gding@intermolecular.com; Clavero, César; Schweigert, Daniel
The optical and electrical response of metal thin films approaching thicknesses in the range of the electron mean free path is highly affected by electronic scattering with the interfaces and defects. Here, we present a theoretical and experimental study on how thickness and microstructure affect the properties of Ag thin films. We are able to successfully model the electrical resistivity and IR optical response using a thickness dependent electronic scattering time. Remarkably, the product of electronic scattering time and resistivity remains constant regardless of the thickness (τx ρ = C), with a value of 59 ± 2 μΩ cm ⋅more » fs for Ag films in the investigated range from 3 to 74 nm. Our findings enable us to develop a theoretically framework that allows calculating the optical response of metal thin films in the IR by using their measured thickness and resistivity. An excellent agreement is found between experimental measurements and predicted values. This study also shows the theoretical lower limit for emissivity in Ag thin films according to their microstructure and thickness. Application of the model presented here will allow rapid characterization of the IR optical response of metal thin films, with important application in a broad spectrum of fundamental and industrial applications, including optical coatings, low-emissivity windows and semiconductor industry.« less
Gas film disturbance characteristics analysis of high-speed and high-pressure dry gas seal
NASA Astrophysics Data System (ADS)
Chen, Yuan; Jiang, Jinbo; Peng, Xudong
2016-08-01
The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS.
Controlling the optical parameters of self-assembled silver films with wetting layers and annealing
NASA Astrophysics Data System (ADS)
Ciesielski, Arkadiusz; Skowronski, Lukasz; Trzcinski, Marek; Szoplik, Tomasz
2017-11-01
We investigated the influence of presence of Ni and Ge wetting layers as well as annealing on the permittivity of Ag films with thicknesses of 20, 35 and 65 nm. Most of the research on thin silver films deals with very small (<20 nm) or relatively large (≥50 nm) thicknesses. We studied the transition region (around 30 nm) from charge percolation pathways to fully continuous films and compared the values of optical parameters among silver layers with at least one fixed attribute (thickness, wetting and capping material, post-process annealing). Our study, based on atomic force microscopy, ellipsometric and X-ray photoelectron spectroscopy measurements, shows that utilizing a wetting layer is comparable to increasing the thickness of the silver film. Both operations decrease the roughness-to-thickness ratio, thus decreasing the scattering losses and both narrow the Lorentz-shaped interband transition peak. However, while increasing silver thickness increases absorption on the free carriers, the use of wetting layers influences the self-assembled internal structure of silver films in such a way, that the free carrier absorption decreases. Wetting layers also introduce additional contributions from effects like segregation or diffusion, which evolve in time and due to annealing.
NASA Astrophysics Data System (ADS)
Apostol, Irina; Mahajan, Amit; Monty, Claude J. A.; Venkata Saravanan, K.
2015-12-01
A novel combination of solar physical vapor deposition (SPVD) and electrophoretic deposition (EPD) that was developed to grow MgTiO3 nanostructured thick films is presented. Obtaining nanostructured MgTiO3 thick films, which can replace bulk ceramic components, a major trend in electronic industry, is the main objective of this work. The advantage of SPVD is direct synthesis of nanopowders, while EPD is simple, fast and inexpensive technique for preparing thick films. SPVD technique was developed at CNRS-PROMES Laboratory, Odeillo-Font Romeu, France, while the EPD was performed at University of Aveiro - DeMAC/CICECO, Portugal. The nanopowders with an average crystallite size of about 30 nm prepared by SPVD were dispersed in 50 ml of acetone in basic media with addition of triethanolamine. The obtained well-dispersed and stable suspensions were used for carrying out EPD on 25 μm thick platinum foils. After deposition, films with thickness of about 22-25 μm were sintered in air for 15 min at 800, 900 and 1000 °C. The structural and microstructural characterization of the sintered thick films was carried out using XRD and SEM, respectively. The thickness of the sintered samples were about 18-20 μm, which was determined by cross-sectional SEM. Films sintered at 900 °C exhibit a dielectric constant, ɛr ∼18.3 and dielectric loss, tan δ ∼0.0012 at 1 MHz. The effects of processing techniques (SPVD and EPD) on the structure, microstructure and dielectric properties are reported in detail. The obtained results indicate that the thick films obtained in the present study can be promising for low loss materials for microwave and millimeter wave applications.
Matthews, Mike B; Kearns, Stuart L; Buse, Ben
2018-04-01
The accuracy to which Cu and Al coatings can be determined, and the effect this has on the quantification of the substrate, is investigated. Cu and Al coatings of nominally 5, 10, 15, and 20 nm were sputter coated onto polished Bi using two configurations of coater: One with the film thickness monitor (FTM) sensor colocated with the samples, and one where the sensor is located to one side. The FTM thicknesses are compared against those calculated from measured Cu Lα and Al Kα k-ratios using PENEPMA, GMRFilm, and DTSA-II. Selected samples were also cross-sectioned using focused ion beam. Both systems produced repeatable coatings, the thickest coating being approximately four times the thinnest coating. The side-located FTM sensor indicated thicknesses less than half those of the software modeled results, propagating on to 70% errors in substrate quantification at 5 kV. The colocated FTM sensor produced errors in film thickness and substrate quantification of 10-20%. Over the range of film thicknesses and accelerating voltages modeled both the substrate and coating k-ratios can be approximated by linear trends as functions of film thickness. The Al films were found to have a reduced density of ~2 g/cm2.
Study of thickness dependent sputtering in gold thin films by swift heavy ion irradiation
NASA Astrophysics Data System (ADS)
Dash, P.; Sahoo, P. K.; Solanki, V.; Singh, U. B.; Avasthi, D. K.; Mishra, N. C.
2015-12-01
Gold thin films of varying thickness (10-100 nm) grown on silica substrates by e-beam evaporation method were irradiated by 120 MeV Au ions at 3 × 1012 and 1 × 1013 ions cm-2 fluences. Irradiation induced modifications of these films were probed by glancing angle X-ray diffraction (GAXRD), atomic force microscopy (AFM), Rutherford backscattering spectrometry (RBS) and surface enhanced Raman scattering (SERS). Irradiation didn't affect the structure, the lattice parameter or the crystallite size, but modified the texturing of grains from [1 1 1] to [2 2 0]. RBS indicated thickness dependent sputtering on irradiation. The sputtering yield was found to decrease with increasing thickness. AFM indicated increase of roughness with increasing irradiation fluence for films of all thickness. In agreement with the AFM observation, the gold nanostructures on the surface of 20 nm thick film were found to increase the SERS signal of acridine orange dye attached to these structures. The SERS peaks were amplified by many fold with increasing ion fluence. The effect of 120 MeV Au ion irradiation on the grain texture, surface morphology and SERS activity in addition to the thickness dependent sputtering in gold thin films are explained by the thermal spike model of ion-matter interaction.
A molecular dynamics analysis of ion irradiation of ultrathin amorphous carbon films
NASA Astrophysics Data System (ADS)
Qi, J.; Komvopoulos, K.
2016-09-01
Molecular dynamics (MD) simulations provide insight into nanoscale problems where continuum description breaks down, such as the modeling of ultrathin films. Amorphous carbon (a-C) films are commonly used as protective overcoats in various contemporary technologies, including microelectromechanical systems, bio-implantable devices, optical lenses, and hard-disk drives. In all of these technologies, the protective a-C film must be continuous and very thin. For example, to achieve high storage densities (e.g., on the order of 1 Tb/in.2) in magnetic recording, the thickness of the a-C film used to protect the magnetic media and the recording head against mechanical wear and corrosion must be 2-3 nm. Inert ion irradiation is an effective post-deposition method for reducing the film thickness, while preserving the mechanical and chemical characteristics. In this study, MD simulations of Ar+ ion irradiated a-C films were performed to elucidate the effects of the ion incidence angle and ion kinetic energy on the film thickness and structure. The MD results reveal that the film etching rate exhibits a strong dependence on the ion kinetic energy and ion incidence angle, with a maximum etching rate corresponding to an ion incidence angle of ˜20°. It is also shown that Ar+ ion irradiation mainly affects the structure of the upper half of the ultrathin a-C film and that carbon atom hybridization is a strong function of the ion kinetic energy and ion incidence angle. The results of this study elucidate the effects of important ion irradiation parameters on the structure and thickness of ultrathin films and provide fundamental insight into the physics of dry etching.
The Effect of Carrier Properties on the Ballistic Processing of Sn-0.7 Cu Thick Films
NASA Astrophysics Data System (ADS)
Hille, David M.
The need for metallic films has increased since the creation of electronic components. The continued miniaturization of systems and components has led to a greater demand for both thick and thin films, especially in the technology field. Computers, hand held devices, and solar cells are a few of the multitudes of uses for these films. This thesis investigates a novel additive manufacturing process known as Ballistic Manufacturing (BM), invented at the Advanced Materials Processing Lab (AMPL) at San Diego State University. Lead free solder (Tin (Sn)-0.7%Copper (Cu)) was chosen as the testing material due to its low melting temperature. The effects of varying thermal conductivity via the change in carrier material type, the effect of raising substrate temperature, and surface finish differences were investigated. An increase in thermal conductivity resulted in an increase in film thickness and decrease in cell size. As substrate temperature was raised, film thickness decreased, while cell size decreased. Surface finish provided a proof of concept to the transfer of substrate features to the resultant film surface. Evaluation of dendritic microstructures led to relative cooling rates reflective of changes in parameters. The mechanical behavior was also investigated using tensile tests to determine stress-stain relationships and measure elastic modulus. With the current work of this thesis, and previous work by Cavero and Stewart, Ballistic Manufacturing is proven to be an alternative method in the production of metallic films.
NASA Astrophysics Data System (ADS)
Dunklin, Jeremy R.; Bodinger, Carter; Forcherio, Gregory T.; Keith Roper, D.
2017-01-01
Plasmonic nanoparticles embedded in polymer films enhance optoelectronic properties of photovoltaics, sensors, and interconnects. This work examined optical extinction of polymer films containing randomly dispersed gold nanoparticles (AuNP) with negligible Rayleigh scattering cross-sections at particle separations and film thicknesses less than (sub-) to greater than (super-) the localized surface plasmon resonant (LSPR) wavelength, λLSPR. Optical extinction followed opposite trends in sub- and superwavelength films on a per nanoparticle basis. In ˜70-nm-thick polyvinylpyrrolidone films containing 16 nm AuNP, measured resonant extinction per particle decreased as particle separation decreased from ˜130 to 76 nm, consistent with trends from Maxwell Garnett effective medium theory and coupled dipole approximation. In ˜1-mm-thick polydimethylsiloxane films containing 16-nm AuNP, resonant extinction per particle plateaued at particle separations ≥λLSPR, then increased as particle separation radius decreased from ˜514 to 408 nm. Contributions from isolated particles, interparticle interactions and heterogeneities in sub- and super-λLSPR films containing AuNP at sub-λLSPR separations were examined. Characterizing optoplasmonics of thin polymer films embedded with plasmonic NP supports rational development of optoelectronic, biomedical, and catalytic activity using these nanocomposites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putri, W. B. K.; Tran, D. H.; Kang, B., E-mail: bwkang@chungbuk.ac.kr
2014-03-07
Extended X-ray absorption fine structure (EXAFS) spectroscopy is a powerful method to investigate the local structure of thin films. Here, we have studied EXAFS of MgB{sub 2} films grown on SiC buffer layers. Crystalline SiC buffer layers with different thickness of 70, 100, and 130 nm were deposited on the Al{sub 2}O{sub 3} (0001) substrates by using a pulsed laser deposition method, and then MgB{sub 2} films were grown on the SiC buffer layer by using a hybrid physical-chemical vapor deposition technique. Transition temperature of MgB{sub 2} film decreased with increasing thickness of SiC buffer layer. However, the T{sub c} droppingmore » went no farther than 100 nm-thick-SiC. This uncommon behavior of transition temperature is likely to be created from electron-phonon interaction in MgB{sub 2} films, which is believed to be related to the ordering of MgB{sub 2} atomic bonds, especially in the ordering of Mg–Mg bonds. Analysis from Mg K-edge EXAFS measurements showed interesting ordering behavior of MgB{sub 2} films. It is noticeable that the ordering of Mg–B bonds is found to decrease monotonically with the increase in SiC thickness of the MgB{sub 2} films, while the opposite happens with the ordering in Mg–Mg bonds. Based on these results, crystalline SiC buffer layers in MgB{sub 2} films seemingly have evident effects on the alteration of the local structure of the MgB{sub 2} film.« less
Characterization of casein and poly-L-arginine multilayer films.
Szyk-Warszyńska, Lilianna; Kilan, Katarzyna; Socha, Robert P
2014-06-01
Thin films containing casein appear to be a promising material for coatings used in the medical area to promote biomineralization. α- and β-casein and poly-L-arginine multilayer films were formed by the layer-by layer technique and their thickness and mass were analyzed by ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D). (PLArg/casein) films deposited in 0.15M NaCl exhibit fast (exponential-like) growth of the film thickness with the number of layers. The resulting films were c.a. 10 times thicker than obtained for poly-L-arginine and natural polyanions. We investigated the effect of the type of casein used for the film formation, finding that films with α-casein were slightly thicker than ones with β-casein. The effect of polyethylene imine anchoring layer on the thickness and mass of adsorbed films was similar as for linear polyelectrolyte pairs. Thickness of "wet" films was c.a. two times larger than measured after drying that suggests their large hydration. The analysis of the mass of films during their post-treatment with the solutions of various ionic strength and pH provided the information concerning films stability. Films remain stable in the neutral and weakly basic conditions that includes HEPES buffer, which is widely used in cell culture and biomedical experiments. At the conditions of high ionic strength films swell but their swelling is reversible. Films containing caseins as polyanion appear to be more elastic and the same time more viscous than one formed with polyelectrolyte pairs. XPS elemental analysis confirmed binding of calcium ions by the casein embedded in the multilayers. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Klimchitskaya, G. L.; Mostepanenko, V. M.
2018-06-01
The analytic expressions for the maximum and minimum reflectances of optical films coated with gapped graphene are derived in the application region of the Dirac model taking into account multiple reflections. The respective film thicknesses are also found. In so doing the film material is described by the frequency-dependent index of refraction and graphene by the polarization tensor defined along the real frequency axis. The developed formalism is illustrated by an example of the graphene-coated film made of amorphous silica. Numerical computations of the maximum and minimum reflectances and respective film thicknesses are performed at room temperature in two frequency regions belonging to the near-infrared and far-infrared domains. It is shown that in the far-infrared domain the graphene coating has a profound effect on the values of maximum reflectance and respective film thickness leading to a relative increase in their values by up to 65% and 50%, respectively. The maximum transmittance of a graphene-coated film of appropriately chosen thickness is shown to exceed 90%. Possible applications of the obtained results are discussed.
NASA Astrophysics Data System (ADS)
Inoue, Rintaro; Kanaya, Toshiji; Yamada, Takeshi; Shibata, Kaoru; Fukao, Koji
2018-01-01
In this study, we investigate the α process of a polystyrene thin film using inelastic neutron scattering (INS), dielectric relaxation spectroscopy (DRS), and thermal expansion spectroscopy (TES). The DRS and TES measurements exhibited a decrease in glass transition temperature (Tg) with film thickness. On the other hand, an increase in Tg was observed in INS studies. In order to interpret this contradiction, we investigated the temperature dependence of the peak frequency (fm) of the α process probed by DRS and TES. The experiments revealed an increase in the peak frequency (fm) with decreasing film thickness in the frequency region. This observation is consistent with the observed decrease in Tg with thickness. Interestingly, the increase in Tg with film thickness was confirmed by fitting the temperature dependence measurements of the peak frequency with the Vogel-Fulcher-Tammann equation, within the frequency region probed by INS. The discrepancy between INS and DRS or TES descriptions of the α process is likely to be attributed to a decrease in the apparent activation energy with film thickness and reduced mobility, due to the impenetrable wall effect.
Cr2O3-modified ZnO thick film resistors as LPG sensors.
Patil, D R; Patil, L A
2009-02-15
Thick films of pure ZnO were obtained by screen-printing technique. Surface functionalized ZnO thick films by Cr(2)O(3) were obtained by dipping pure ZnO thick films into 0.01M aqueous solution of chromium trioxide (CrO(3)). The dipped films were fired at 500 degrees C for 30 min. Upon firing, the CrO(3) would reduce to Cr(2)O(3). Cr(2)O(3)-activated (0.47 mass%) ZnO thick films resulted in LPG sensor. Upon exposure to 100 ppm LPG, the barrier height between Cr(2)O(3) and ZnO grains decreases markedly, leading to a drastic decrease in resistance. The sensor was found to sense LPG at 350 degrees C and no cross sensitivity was observed to other hazardous, polluting and inflammable gases. The quick response ( approximately 18s) and fast recovery ( approximately 42s) are the main features of this sensor. The effects of microstructures and dopant concentrations on the gas sensing performance of the sensor were studied and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilfiker, James N.; Stadermann, Michael; Sun, Jianing
It is a well-known challenge to determine refractive index (n) from ultra-thin films where the thickness is less than about 10 nm. In this paper, we discovered an interesting exception to this issue while characterizing spectroscopic ellipsometry (SE) data from isotropic, free-standing polymer films. Ellipsometry analysis shows that both thickness and refractive index can be independently determined for free-standing films as thin as 5 nm. Simulations further confirm an orthogonal separation between thickness and index effects on the experimental SE data. Effects of angle of incidence and wavelength on the data and sensitivity are discussed. Finally, while others have demonstratedmore » methods to determine refractive index from ultra-thin films, our analysis provides the first results to demonstrate high-sensitivity to the refractive index from ultra-thin layers.« less
NASA Astrophysics Data System (ADS)
Sato, Daiki; Ohdaira, Keisuke
2018-04-01
We succeed in the crystallization of hydrogenated amorphous silicon (a-Si:H) films by flash lamp annealing (FLA) at a low fluence by intentionally creating starting points for the trigger of explosive crystallization (EC). We confirm that a partly thick a-Si part can induce the crystallization of a-Si films. A periodic wavy structure is observed on the surface of polycrystalline silicon (poly-Si) on and near the thick parts, which is a clear indication of the emergence of EC. Creating partly thick a-Si parts can thus be effective for the control of the starting point of crystallization by FLA and can realize the crystallization of a-Si with high reproducibility. We also compare the effects of creating thick parts at the center and along the edge of the substrates, and a thick part along the edge of the substrates leads to the initiation of crystallization at a lower fluence.
Exchange anisotropy pinning of a standing spin-wave mode
NASA Astrophysics Data System (ADS)
Magaraggia, R.; Kennewell, K.; Kostylev, M.; Stamps, R. L.; Ali, M.; Greig, D.; Hickey, B. J.; Marrows, C. H.
2011-02-01
Standing spin waves in a thin film are used as sensitive probes of interface pinning induced by an antiferromagnet through exchange anisotropy. Using coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin-wave thickness mode in Ni80Fe20/Ir25Mn75 exchange-biased bilayers was studied for a range of Ir25Mn75 thicknesses. We show that pinning of the standing mode can be used to amplify, relative to the fundamental resonance, frequency shifts associated with exchange bias. The shifts provide a unique “fingerprint” of the exchange bias and can be interpreted in terms of an effective ferromagnetic film thickness and ferromagnet-antiferromagnet interface anisotropy. Thermal effects are studied for ultrathin antiferromagnetic Ir25Mn75 thicknesses, and the onset of bias is correlated with changes in the pinning fields. The pinning strength magnitude is found to grow with cooling of the sample, while the effective ferromagnetic film thickness simultaneously decreases. These results suggest that exchange bias involves some deformation of magnetic order in the interface region.
NASA Astrophysics Data System (ADS)
Chaluvadi, S. K.; Perna, P.; Ajejas, F.; Camarero, J.; Pautrat, A.; Flament, S.; Méchin, L.
2017-10-01
We investigate the in-plane magnetic anisotropy in La0.67Sr0.33MnO3 thin films grown on SrTiO3 (001) substrate using angular dependent room temperature Vectorial Magneto-Optical Kerr Magnetometry. The experimental data reveals that the magnetic anisotropy symmetry landscape significantly changes depending upon the strain and thickness. At low film thickness (12 and 25 nm) the dominant uniaxial anisotropy is due to interface effects, step edges due to mis-cut angle of SrTiO3 substrate. At intermediate thickness, the magnetic anisotropy presents a competition between magnetocrystalline (biaxial) and substrate step induced (uniaxial) anisotropy. Depending upon their relative strengths, a profound biaxial or uniaxial or mixed anisotropy is favoured. Above the critical thickness, magnetocrystalline anisotropy dominates all other effects and shows a biaxial anisotropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Shweta, E-mail: shwetaverma@rrcat.gov.in; Rao, B. T.; Detty, A. P.
We studied localized surface plasmon resonances (LSPR) at different compositions, substrate temperatures, and mass thicknesses of Ag-Au alloy nanoparticle films grown by sequential pulsed laser deposition. The LSPRs were pronounced at all compositions of the films grown at high substrate temperature of about 300 °C as compared to those grown at room temperature. The alloy formation and composition of the films were determined using X-ray photoelectron and energy dispersive spectroscopy. Films' mass thickness and compositional uniformity along the thickness were determined using X-ray reflectometry and secondary ion mass spectroscopy. Atomic force microscopic analysis revealed the formation of densely packed nanoparticles ofmore » increasing size with the number of laser ablation pulses. The LSPR wavelength red shifted with increasing either Au percentage or film mass thickness and corresponding LSPR tuning was obtained in the range of 450 to 690 nm. The alloy dielectric functions obtained from three different models were compared and the optical responses of the nanoparticle films were calculated from modified Yamaguchi effective medium theory. The tuning of LSPR was found to be due to combined effect of change in intrinsic and extrinsic parameters mainly the composition, morphology, particle-particle, and particle-substrate interactions.« less
NASA Astrophysics Data System (ADS)
Lichtensteiger, Céline; Dawber, Matthew; Stucki, Nicolas; Triscone, Jean-Marc; Hoffman, Jason; Yau, Jeng-Bang; Ahn, Charles H.; Despont, Laurent; Aebi, Philipp
2007-01-01
Finite size effects in ferroelectric thin films have been probed in a series of epitaxial perovskite c-axis oriented PbTiO3 films grown on thin La0.67Sr0.33MnO3 epitaxial electrodes. The film thickness ranges from 480 down to 28Å (seven unit cells). The evolution of the film tetragonality c /a, studied using high resolution x-ray diffraction measurements, shows first a decrease of c /a with decreasing film thickness followed by a recovery of c /a at small thicknesses. This recovery is accompanied by a change from a monodomain to a polydomain configuration of the polarization, as directly demonstrated by piezoresponse atomic force microscopy measurements.
Microstructural and wear properties of sputtered carbides and silicides
NASA Technical Reports Server (NTRS)
Spalvins, T.
1977-01-01
Sputtered Cr3C2, Cr3Si2, and MoSi2 wear-resistant films (0.05 to 3.5 microns thick) were deposited on metal and glass surfaces. Electron transmission, electron diffraction, and scanning electron microscopy were used to determine the microstructural appearance. Strong adherence was obtained with these sputtered films. Internal stresses and defect crystallographic growth structures of various configurations within the film have progressively more undesirable effects for film thicknesses greater than 1.5 microns. Sliding contact and rolling element bearing tests were performed with these sputtered films. Bearings sputtered with a duplex coating (0.1-micron-thick undercoating of Cr3Si2 and subsequently 0.6-micron coating of MoS2) produced marked improvement over straight MoS2 films.
NASA Astrophysics Data System (ADS)
Zhu, Zhi-Xiang; Ruangchalermwong, C.; Li, Jing-Feng
2008-09-01
Tetragonal Nb-doped Pb(Zr0.3Ti0.7)O3 (PNZT) films with a lead oxide seeding layer were deposited on the Pt(111)/Ti/SiO2/Si(100) substrates by sol-gel processing. The as-grown PNZT films with thicknesses ranging from about 0.08 to 0.78 μm show highly a-axis preferential orientation, and their ferroelectric and piezoelectric properties improved with increasing film thickness. Due to the combined effects of Nb doping and a-axis texturing as well as reduced substrate constraint, a high d33 constant up to 196 pm/V was obtained for PNZT film at 0.78 μm in addition to a large remnant polarization of 69 μC/cm2. This well a-axis-oriented PNZT films on platinized Si with a high piezoresponse are suitable for the fabrication of microelectromechanical devices.
Effect of heat treatment on properties of HfO2 film deposited by ion-beam sputtering
NASA Astrophysics Data System (ADS)
Liu, Huasong; Jiang, Yugang; Wang, Lishuan; Li, Shida; Yang, Xiao; Jiang, Chenghui; Liu, Dandan; Ji, Yiqin; Zhang, Feng; Chen, Deying
2017-11-01
The effects of atmosphere heat treatment on optical, stress, and microstructure properties of an HfO2 film deposited by ion-beam sputtering were systematically researched. The relationships among annealing temperature and refractive index, extinction coefficient, physical thickness, forbidden-band width, tape trailer width, Urbach energy, crystal phase structure, and stress were assessed. The results showed that 400 °C is the transformation point, and the microstructure of the HfO2 film changed from an amorphous into mixed-phase structure. Multistage phonons appeared on the HfO2 film, and the trends of the refractive index, extinction coefficient, forbidden-band width change, and Urbach energy shifted from decrease to increase. With the elevation of the annealing temperature, the film thickness increased monotonously, the compressive stress gradually turned to tensile stress, and the transformation temperature point for the stress was between 200 °C and 300 °C. Therefore, the change in the stress is the primary cause for the shifts in thin-film thickness.
Duangdee, Chatnapa; Tangpukdee, Noppadon; Krudsood, Srivicha; Wilairatana, Polrat
2012-04-01
To determine the frequency of malaria parasite detection from the buffy coat blood films by using capillary tube in falciparum malaria patients with negative conventional thick films. Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study. The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases, Bangkok, Thailand for 28 day. Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia, then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film. The first negative conventional thick films were compared with buffy coat thick films for parasite identification. Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients (27.8%) with asexual forms of Plasmodium falciparum. The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8% of patients whose conventional thick films show negative parasitemia.
Non-imaging ray-tracing for sputtering simulation with apodization
NASA Astrophysics Data System (ADS)
Ou, Chung-Jen
2018-04-01
Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.
Non-imaging ray-tracing for sputtering simulation with apodization
NASA Astrophysics Data System (ADS)
Ou, Chung-Jen
2018-06-01
Although apodization patterns have been adopted for the analysis of sputtering sources, the analytical solutions for the film thickness equations are yet limited to only simple conditions. Empirical formulations for thin film sputtering lacking the flexibility in dealing with multi-substrate conditions, a suitable cost-effective procedure is required to estimate the film thickness distribution. This study reports a cross-discipline simulation program, which is based on discrete particle Monte-Carlo methods and has been successfully applied to a non-imaging design to solve problems associated with sputtering uniformity. Robustness of the present method is first proved by comparing it with a typical analytical solution. Further, this report also investigates the overall all effects cause by the sizes of the deposited substrate, such that the determination of the distance between the target surface and the apodization index can be complete. This verifies the capability of the proposed method for solving the sputtering film thickness problems. The benefit is that an optical thin film engineer can, using the same optical software, design a specific optical component and consider the possible coating qualities with thickness tolerance, during the design stage.
Nano confinement effects on dynamic and viscoelastic properties of Selenium Films
NASA Astrophysics Data System (ADS)
Yoon, Heedong; McKenna, Gregory
2015-03-01
In current study, we use a novel nano bubble inflation technique to study nano confinement effects on the dynamic and viscoelastic properties of physical vapor deposited Selenium films. Film thicknesses ranged from 60 to 260 nm. Creep experiments were performed for the temperatures ranging from Tg,macroscopic-14 °C to Tg,\\ macroscopic + 19 °C. Time temperature superposition and time thickness superposition were applied to create reduced creep curves, and those were compared with macroscopic data [J. Non-Cryst. Solids. 2002, 307, 790-801]. The results showed that the time temperature superposition was applicable in the glassy relaxation regime to the steady-state plateau regime. However in the long time response of the creep compliance, time thickness superposition failed due to the thickness dependence on the steady-state plateau. It was observed that the steady state compliance increased with film thickness. The thickness dependence on the plateau stiffening followed a power law of DPlateau ~ h2.46, which is greater than observed in organic polymers where the exponents observed range from 0.83 to 2.0 [Macromolecules. 2012, 45 (5), 2453-2459]. National Science Foundation Grant No. CHE 1112416 and John R. Bradford Endowment at Texas Tech
NASA Astrophysics Data System (ADS)
Anjum, Safia; Rafique, M. S.; Khaleeq-ur-Rahaman, M.; Siraj, K.; Usman, Arslan; Ahsan, A.; Naseem, S.; Khan, K.
2011-06-01
Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 and Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films with different concentrations of Mn and Zr have been deposited on single crystal n-Si (400) at room temperature (RT) by pulse laser deposition technique (PLD). The films have been deposited under two conditions: (i) with the applied external magnetic field across the propagation of the plume (ii) without applied external magnetic field ( B=0). XRD results show the films have spinel cubic structure when deposited in the presence of magnetic field. SEM and AFM observations clearly show the effect of external applied magnetic field on the growth of films in terms of small particle size, improved uniformity and lower r.m.s. roughness. Thin films deposited under the influence of external magnetic field exhibit higher magnetization as measured by the VSM. The optical band gap energy Eg, refractive index n, reflection, absorption and the thickness of the thin films were measured by spectroscopy ellipsometer. The reflection of Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films is higher than Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 thin films due to the greater concentration of Zr. The thicknesses of the thin films under the influence of external magnetic field are larger than the films grown without field for both samples. The optical band gap energy Eg decreases with increasing film thickness. The films with external magnetic field are found highly absorbing in nature due to the larger film thickness.
Method of accurate thickness measurement of boron carbide coating on copper foil
Lacy, Jeffrey L.; Regmi, Murari
2017-11-07
A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.
Increased magnetic damping in ultrathin films of Co2FeAl with perpendicular anisotropy
NASA Astrophysics Data System (ADS)
Takahashi, Y. K.; Miura, Y.; Choi, R.; Ohkubo, T.; Wen, Z. C.; Ishioka, K.; Mandal, R.; Medapalli, R.; Sukegawa, H.; Mitani, S.; Fullerton, E. E.; Hono, K.
2017-06-01
We estimated the magnetic damping constant α of Co2FeAl (CFA) Heusler alloy films of different thicknesses with an MgO capping layer by means of time-resolved magneto-optical Kerr effect and ferromagnetic resonance measurements. CFA films with thicknesses of 1.2 nm and below exhibited perpendicular magnetic anisotropy arising from the presence of the interface with MgO. While α increased gradually with decreasing CFA film thickness down to 1.2 nm, it was increased substantially when the thickness was reduced further to 1.0 nm. Based on the microstructure analyses and first-principles calculations, we attributed the origin of the large α in the ultrathin CFA film primarily to the Al deficiency in the CFA layer, which caused an increase in the density of states and thereby in the scatterings of their spins.
Finite size effects in phase transformation kinetics in thin films and surface layers
NASA Astrophysics Data System (ADS)
Trofimov, Vladimir I.; Trofimov, Ilya V.; Kim, Jong-Il
2004-02-01
In studies of phase transformation kinetics in thin films, e.g. crystallization of amorphous films, until recent time is widely used familiar Kolmogorov-Johnson-Mehl-Avrami (KJMA) statistical model of crystallization despite it is applicable only to an infinite medium. In this paper a model of transformation kinetics in thin films based on a concept of the survival probability for randomly chosen point during transformation process is presented. Two model versions: volume induced transformation (VIT) when the second-phase grains nucleate over a whole film volume and surface induced transformation (SIT) when they form on an interface with two nucleation mode: instantaneous nucleation at transformation onset and continuous one during all the process are studied. At VIT-process due to the finite film thickness effects the transformation profile has a maximum in a film middle, whereas that of the grains population reaches a minimum inhere, the grains density is always higher than in a volume material, and the thinner film the slower it transforms. The transformation kinetics in a thin film obeys a generalized KJMA equation with parameters depending on a film thickness and in limiting cases of extremely thin and thick film it reduces to classical KJMA equation for 2D- and 3D-system, respectively.
The behaviour of lubricated EHD contacts subjected to vibrations
NASA Astrophysics Data System (ADS)
Zhang, X.; Glovnea, R. P.
2017-02-01
Machine components containing contacts working in elastohydrodynamic (EHD) conditions are often subjected to vibrations. These may be originated from the mechanism or machine the contact is part of, the surrounding environment and within the contact itself. The influence of vibrations upon the behaviour of elastohydrodynamic films has been studied experimentally in a number of papers, but a comprehensive study of the effect of the parameters of the oscillatory motion upon the film thickness has not been carried out yet. In this study the authors evaluate the effect of the frequency of the oscillatory motion upon the EHD film thickness. Optical interferometry is used to measure lubricant film thickness in a ball-on-flat disc arrangement. A high - speed camera records the interferometric images for later analysis and conversion into film thickness maps. The disc runs at a constant angular velocity while the ball is driven by the traction forces developed in the EHD film. In steady state conditions, this would ensure pure rolling conditions, however in the present investigation the ball is subjected to harmonic vibrations in a direction perpendicular to the plane of the film. The contact under study is lubricated by basic oils and the temperature is kept at a constant value of 60°C. The aim of this paper is to understand how vibrations influence the lubricant film formation.
Electron mobility enhancement in epitaxial multilayer Si-Si/1-x/Ge/x/ alloy films on /100/Si
NASA Technical Reports Server (NTRS)
Manasevit, H. M.; Gergis, I. S.; Jones, A. B.
1982-01-01
Enhanced Hall-effect mobilities have been measured in epitaxial (100)-oriented multilayer n-type Si/Si(1-x)Ge(x) films grown on single-crystal Si substrates by chemical vapor deposition. Mobilities from 20 to 40% higher than that of epitaxial Si layers and about 100% higher than that of epitaxial SiGe layers on Si were measured for the doping range 8 x 10 to the 15th to 10 to the 17th/cu cm. No mobility enhancement was observed in multilayer p-type (100) films and n-type (111)-oriented films. Experimental studies included the effects upon film properties of layer composition, total film thickness, doping concentrations, layer thickness, and growth temperature.
Strain-induced optical band gap variation of SnO 2 films
Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas
2016-06-29
In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO 2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO 2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the mainmore » origin of the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO 2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.« less
Thickness dependent optical and electrical properties of CdSe thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, A., E-mail: anuradha.purohit34@gmail.com; Chander, S.; Nehra, S. P.
2016-05-06
The effect of thickness on the optical and electrical properties of CdSe thin films is investigated in this paper. The films of thickness 445 nm, 631 nm and 810 nm were deposited on glass and ITO coated glass substrates using thermal evaporation technique. The deposited thin films were thermally annealed in air atmosphere at temperature 100°C and were subjected to UV-Vis spectrophotometer and source meter for optical and electrical analysis respectively. The absorption coefficient is observed to increase with photon energy and found maximum in higher photon energy region. The extinction coefficient and refractive index are also calculated. The electrical analysis shows thatmore » the electrical resistivity is observed to be decreased with thickness.« less
NASA Astrophysics Data System (ADS)
William, R. V.; Sivaprakash, P.; Marikani, A.; Reddy, V. Raghavendra; Arumugam, S.
2018-02-01
We present here the experimental results of BiFe0.75Cr0.25O3 (BFCO) thin film deposited by sol-gel spin coating technique directly on Pt(111)/Ti/SiO2/Si substrate at different thicknesses. The crystal structure of BFCO has been investigated using X-ray diffraction which acts as a double perovskite structure with high crystallinity obtained at 400 °C. Further microscopic studies such as scanning electron microscope (SEM) with EDAX, transmission electron microscope (TEM) were also used in identifying the grain size and particle distribution over Pt (111) substrate. Atomic force microscopy (AFM) on the films at a different thickness (- 80 to - 250 nm) reveals that the surface roughness and other amplitude parameters increases with the increase in thickness signifying an increase of grain size with thickness. Increase in grain size and substrate clamping effect between the BFCO film and the substrate induces change in ferroelectric polarization and dielectric properties in relation to thickness effect. Similarly, decrease in magnetization from 9.241 emu/cm3 (- 80 nm) to 5.7791 emu/cm3 (- 250 nm) is attributed to the formation of anti-sites and anti-phase boundaries in the films. In addition, temperature dependence of magnetization reveals ferromagnetic super-exchange interaction of BFCO which is unlike the spin structure of antiferromagnetic BiFeO3.
Investigation of the effect of different carbon film thickness on the exhaust valve
NASA Astrophysics Data System (ADS)
Karamangil, M. I.; Avci, A.; Bilal, H.
2008-03-01
Valves working under different loads and temperatures are the mostly forced engine elements. In an internal combustion engine, pressures and temperatures affecting on the valves vary with fuel type and the combustion characteristics of the fuel. Consequently, valves are exposed to different dynamic and thermal stress. In this study, stress distributions and temperature profiles on exhaust valve are obtained depending on different carbon film thickness. It is concluded that heat losses and valve temperatures decrease and valve surfaces are exposed to less thermal shocks with increasing carbon film thickness.
Surface and magnetic characteristics of Ni-Mn-Ga/Si (100) thin film
NASA Astrophysics Data System (ADS)
Kumar, S. Vinodh; Raja, M. Manivel; Pandi, R. Senthur; Pandyan, R. Kodi; Mahendran, M.
2016-05-01
Polycrystalline Ni-Mn-Ga thin films have been deposited on Si (100) substrate with different film thickness. The influence of film thickness on the phase structure and magnetic domain of the films has been examined by scanning electron microscope, atomic force microscopy and magnetic force microscopy. Analysis of structural parameters indicates that the film at lower thickness exhibits the coexistence of both austenite and martensite phase, whereas at higher thickness L12 cubic non magnetic phase is noticed. The grains size and the surface roughness increase along with the film thickness and attain the maximum of 45 nm and 34.96 nm, respectively. At lower film thickness, the magnetic stripe domain is found like maze pattern with dark and bright images, while at higher thickness the absence of stripe domains is observed. The magnetic results reveal that the films strongly depend on their phase structure and microstructure which influence by the film thickness.
Interfacial and topological effects on the glass transition in free-standing polystyrene films
NASA Astrophysics Data System (ADS)
Lyulin, Alexey V.; Balabaev, Nikolay K.; Baljon, Arlette R. C.; Mendoza, Gerardo; Frank, Curtis W.; Yoon, Do Y.
2017-05-01
United-atom molecular-dynamics computer simulations of atactic polystyrene (PS) were performed for the bulk and free-standing films of 2 nm-20 nm thickness, for both linear and cyclic polymers comprised of 80 monomers. Simulated volumetric glass-transition temperatures (Tg) show a strong dependence on the film thickness below 10 nm. The glass-transition temperature of linear PS is 13% lower than that of the bulk for 2.5 nm-thick films, as compared to less than 1% lower for 20 nm films. Our studies reveal that the fraction of the chain-end groups is larger in the interfacial layer with its outermost region approximately 1 nm below the surface than it is in the bulk. The enhanced population of the end groups is expected to result in a more mobile interfacial layer and the consequent dependence of Tg on the film thickness. In addition, the simulations show an enrichment of backbone aliphatic carbons and concomitant deficit of phenyl aromatic carbons in the interfacial film layer. This deficit would weaken the strong phenyl-phenyl aromatic (π -π ) interactions and, hence, lead to a lower film-averaged Tg in thin films, as compared to the bulk sample. To investigate the relative importance of the two possible mechanisms (increased chain ends at the surface or weakened π -π interactions in the interfacial region), the data for linear PS are compared with those for cyclic PS. For the cyclic PS, the reduction of the glass-transition temperature is also significant in thin films, albeit not as much as for linear PS. Moreover, the deficit of phenyl carbons in the film interface is comparable to that observed for linear PS. Therefore, chain-end effects alone cannot explain the observed pronounced Tg dependence on the thickness of thin PS films; the weakened phenyl-phenyl interactions in the interfacial region seems to be an important cause as well.
NASA Astrophysics Data System (ADS)
Sadoh, Taizoh; Kai, Yuki; Matsumura, Ryo; Moto, Kenta; Miyao, Masanobu
2016-12-01
To realize the advanced thin-film transistors (TFTs), high-carrier-mobility semiconductor films on insulator structures should be fabricated with low-temperature processing conditions (≤500 °C). To achieve this, we investigated the solid-phase crystallization of amorphous-GeSn films on insulating substrates under a wide range of Sn concentrations (0%-20%), film thicknesses (30-500 nm), and annealing temperatures (380-500 °C). Our results reveal that a Sn concentration close to the solid solubility of Sn in Ge (˜2%) is effective in increasing the grain-size of poly-GeSn. In addition, we discovered that the carrier mobility depends on the film thickness, where the mobilities are determined by the counterbalance between two different carrier scattering mechanisms. Here, vacancy-related defects dominate the carrier scattering near the insulating substrates (≤˜120 nm), and grain-size determined by bulk nucleation dominates the grain-boundary scattering of thick films (≥˜200 nm). Consequently, we obtained the maximum mobilities in samples with a Sn concentration of 2% and a film thickness of 200 nm. The effect of increasing the grain-size of poly-GeSn by lowering the annealing temperature was also clarified. By combining these results, a very high carrier mobility of 320 cm2/Vs was obtained at a low temperature of 380 °C. This mobility is about 2.5 times as high as previously reported data for Ge and GeSn films grown at low temperatures (≤500 °C). Our technique therefore opens up the possibility of high-speed TFTs for use in the next generation of electronics.
Lubrication of rigid ellipsida solids
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1982-01-01
The influence of geometry on the isothermal hydrodynamic film separating two rigid solids was investigated. The minimum film thickness is derived for fully flooded conjunctions by using the Reynolds boundary conditions. It was found that the minimum film thickness had the same speed, viscosity, and load dependence as Kapitza' classical solution. However, the incorporation of Reynolds boundary conditions resulted in an additional geometry effect. Solutions using the parabolic film approximation are compared by using the exact expression for the film in the analysis. Contour plots are known that indicate in detail the pressure developed between the solids.
Microstructural and wear properties of sputtered carbides and silicides
NASA Technical Reports Server (NTRS)
Spalvins, T.
1977-01-01
Sputtered Cr3C2, Cr3Si2, and MoSi2 wear-resistant films (0.05 to 3.5 microns thick) were deposited on metal and glass surfaces. Electron transmission, electron diffraction, and scanning electron microscopy were used to determine the microstructural appearance. Strong adherence was obtained with these sputtered films. Internal stresses and defect crystallographic growth structures of various configurations within the film have progressively more undesirable effects for film thicknesses greater than 1.5 microns. Sliding contact and rolling-element bearing tests were also performed with these sputtered films.
The effect of TiO2 thin film thickness on self-cleaning glass properties
NASA Astrophysics Data System (ADS)
Mufti, Nandang; Laila, Ifa K. R.; Hartatiek; Fuad, Abdulloh
2017-05-01
TiO2 is one of semiconductor materials which are widely used as photocatalyst in the form of a thin film. The TiO2 thin film is prepared by using the spin coating sol-gel method. The researcher prepared TiO2 thin film with 3 coating variations and X-Ray Diffraction characterization, UV-Vis Spectrophotometer, Electron Microscopy Scanning, and examined its hydrophilic and anti-fogging properties. The result of X-Ray Diffraction showed that the phase formed is the anatase on 101crystal field. The Electron Microscopy Scanning images showed that TiO2 thin films had a homogeneous surface with the particle sizes as big as 235 nm, 179 nm, and 137 nm. The thickness of each thin film was 2.06μm, 3.33μm, and 5.20μm. The characterization of UV-Vis Spectrophotometer showed that the greatest absorption to the wavelength of visible light was in the thin film’s thickness of 3 coatings with the band-gap determined by using 3.30 eV, 3.33 eV, and 3.33 eV Plot Tuoc. These results indicated that the rate of absorption would be increased by increasing the thickness of film. The increasing thickness of the thin film makes the film hydrophilic able to be used as an anti-fogging substance.
Effects of channel thickness on oxide thin film transistor with double-stacked channel layer
NASA Astrophysics Data System (ADS)
Lee, Kimoon; Kim, Yong-Hoon; Yoon, Sung-Min; Kim, Jiwan; Oh, Min Suk
2017-11-01
To improve the field effect mobility and control the threshold voltage ( V th ) of oxide thin film transistors (TFTs), we fabricated the oxide TFTs with double-stacked channel layers which consist of thick Zn-Sn-O (ZTO) and very thin In-Zn-O (IZO) layers. We investigated the effects of the thickness of thin conductive layer and the conductivity of thick layer on oxide TFTs with doublestacked channel layer. When we changed the thickness of thin conductive IZO channel layer, the resistivity values were changed. This resistivity of thin channel layer affected on the saturation field effect mobility and the off current of TFTs. In case of the thick ZTO channel layer which was deposited by sputtering in Ar: O2 = 10: 1, the device showed better performances than that which was deposited in Ar: O2 = 1: 1. Our TFTs showed high mobility ( μ FE ) of 40.7 cm2/Vs and V th of 4.3 V. We assumed that high mobility and the controlled V th were caused by thin conductive IZO layer and thick stable ZTO layer. Therefore, this double-stacked channel structure can be very promising way to improve the electrical characteristics of various oxide thin film transistors.
Characteristic morphological and frictional changes in sputtered MoS/sub 2 films
NASA Technical Reports Server (NTRS)
Spalvins, T.
1984-01-01
Three microstructural growth stages of sputtered MoS2 films were identified with respect to film thickness: (1) ridge formation during nucleation, (2) an equiaxed transition zone, and (3) a columnar-fiber-like structure. Each of these growth stages are characterized in terms of microcrystallite size, shape, and orientation. The effective lubricating film thickness is established in terms of the microstructural growth stages during sliding experiments. The film has a tendency to break up within the columnar zone. Actual lubrication is performed by the remaining film which is 0.18 to 0.22 microns thick. Also a visual screening is proposed to evaluate the integrity of the as-sputtered MoS2 film. The lubricating properties are identified with respect to optical changes before and after wiping. The orientation of the microcrystallites are responsible for the optical reflective changes observed.
Thin Semiconductor/Metal Films For Infrared Devices
NASA Technical Reports Server (NTRS)
Lamb, James L.; Nagendra, Channamallappa L.
1995-01-01
Spectral responses of absorbers and reflectors tailored. Thin cermet films composites of metals and semiconductors undergoing development for use as broadband infrared reflectors and absorbers. Development extends concepts of semiconductor and dielectric films used as interference filters for infrared light and visible light. Composite films offer advantages over semiconductor films. Addition of metal particles contributes additional thermal conductivity, reducing thermal gradients and associated thermal stresses, with resultant enhancements of thermal stability. Because values of n in composite films made large, same optical effects achieved with lesser thicknesses. By decreasing thicknesses of films, one not only decreases weights but also contributes further to reductions of thermal stresses.
NASA Astrophysics Data System (ADS)
Seel, Kevin; Reddemann, Manuel A.; Kneer, Reinhold
2018-03-01
Although the interaction of automotive sprays with thin films is of high technical relevance for IC engine applications, fundamental knowledge about underlying physical mechanisms is still limited. This work presents a systematic study of the influence of the film's initial thickness—homogeneously spread over a flat wall before the initial spray impingement—on film surface structures and thickness after the interaction. For this purpose, interferometric film thickness measurements and complementary high-speed visualizations are used. By gradually increasing the initial film thickness on a micrometer scale, a shift from a regime of liquid deposition (increasing film thickness with respect to initial film thickness) to a regime of liquid removal (decreasing film thickness with respect to initial film thickness) is observed at the stagnation zone of the impinging spray. This transition is accompanied by the formation of radially propagating surface waves, transporting liquid away from the stagnation zone. Wavelengths and amplitudes of the surface waves are increased with increasing initial film thickness.
Specimen-thickness effects on transmission Kikuchi patterns in the scanning electron microscope.
Rice, K P; Keller, R R; Stoykovich, M P
2014-06-01
We report the effects of varying specimen thickness on the generation of transmission Kikuchi patterns in the scanning electron microscope. Diffraction patterns sufficient for automated indexing were observed from films spanning nearly three orders of magnitude in thickness in several materials, from 5 nm of hafnium dioxide to 3 μm of aluminum, corresponding to a mass-thickness range of ~5 to 810 μg cm(-2) . The scattering events that are most likely to be detected in transmission are shown to be very near the exit surface of the films. The energies, spatial distribution and trajectories of the electrons that are transmitted through the film and are collected by the detector are predicted using Monte Carlo simulations. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers
NASA Astrophysics Data System (ADS)
Best, James P.; Michler, Johann; Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Maeder, Xavier; Röse, Silvana; Oberst, Vanessa; Liu, Jinxuan; Walheim, Stefan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert; Wöll, Christof
2015-09-01
Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (EITO ≈ 96.7 GPa, EHKUST-1 ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.
NASA Astrophysics Data System (ADS)
Kim, S. I.; Gurevich, A.; Song, X.; Li, X.; Zhang, W.; Kodenkandath, T.; Rupich, M. W.; Holesinger, T. G.; Larbalestier, D. C.
2006-09-01
We report on the thickness dependence of the superconducting characteristics including critical current Ic, critical current density Jc, transition temperature Tc, irreversibility field Hirr, bulk pinning force plot Fp(H), and normal state resistivity curve ρ(T) measured after successive ion milling of ~1 µm thick high-Ic YBa2Cu3O7-x films made by an ex situ metal-organic deposition process on Ni-W rolling-assisted biaxially textured substrates (RABiTSTM). In contrast to many recent data, mostly on in situ pulsed laser deposition (PLD) films, which show strong depression of Jc with increasing film thickness t, our films exhibit only a weak dependence of Jc on t. The two better textured samples had full cross-section average Jc,avg (77 K, 0 T) ~4 MA cm-2 near the buffer layer interface and ~3 MA cm-2 at full thickness, despite significant current blocking due to ~30% porosity in the film. Taking account of the thickness dependence of the porosity, we estimate that the local, vortex-pinning current density is essentially independent of thickness, while accounting for the additional current-blocking effects of grain boundaries leads to local, vortex-pinning Jc values well above 5 MA cm-2. Such high local Jc values are produced by strong three-dimensional vortex pinning which subdivides vortex lines into weakly coupled segments much shorter than the film thickness.
Determining confounding sensitivities in eddy current thin film measurements
NASA Astrophysics Data System (ADS)
Gros, Ethan; Udpa, Lalita; Smith, James A.; Wachs, Katelyn
2017-02-01
Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done by using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs in the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It was the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy-current testing was performed using a commercially available, hand-held eddy-current probe (ETA3.3H spring-loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe was sent to a hand-held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring-loaded eddy probe was at measuring film thickness under varying experimental conditions. This research studied the effects of a number of factors such as i) conductivity, ii) edge effect, iii) surface finish of base material and iv) cable condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horita, Susumu; Kaki, Hirokazu; Nishioka, Kensuke
2007-07-01
Amorphous Si films of 60 and 10 nm thick on glass substrates were irradiated by a linearly polarized Nd:YAG pulse laser with the wavelength {lambda}=532 nm at the incident angle {theta}{sub i}=0. The surface of the irradiated 60-nm-thick film had both periodic ridges perpendicular to the electric field vector E and aperiodic ridges roughly parallel to E, where the spatial period of the periodic ridges was almost {lambda}. From the continuous 10-nm-thick film, the separate rectangular Si islands were formed with a periodic distance of {lambda}, with the edges parallel or perpendicular to E. When {theta}{sub i} was increased frommore » normal incidence of the s-polarized beam for a 60-nm-thick film, the aperiodic ridges were reduced while the periodic ridges were still formed. For a 10-nm-thick film, the Si stripes were formed perpendicular to E, using the s-polarized beam at {theta}{sub i}=12 deg. In order to investigate the mechanisms of the surface modifications of, in particular, aperiodic ridges, islands, and stripes, we improved the previous theoretical model of the periodic distribution of the beam energy density (periodic E-D) generated by irradiation of the linearly polarized laser beam, taking account of the multireflection effect in the Si film which is semitransparent for {lambda}. Further, the calculated E-D was corrected with respect to the thermal diffusion in the irradiated Si film. The calculation results show that the two-dimensional E-D consists of a constant or a dc term and a sinusoidal or an ac term which contains various spatial periods. The multireflection effect strongly influences the amplitude and phase of every ac term, which means that the amplitude and phase depend on the film thickness. The thermal diffusion during the heating of the irradiated film greatly reduces the amplitudes of the ac terms with periods below the thermal diffusion length. The theoretical calculation showed that, by increasing {theta}{sub i}, the temperature distribution in the irradiated Si film was changed from two-dimensional toward one-dimensional, which can explain the above experimental results reasonably.« less
Size effects on the thermal conductivity of amorphous silicon thin films
Thomas Edwin Beechem; Braun, Jeffrey L.; Baker, Christopher H.; ...
2016-04-01
In this study, we investigate thickness-limited size effects on the thermal conductivity of amorphous silicon thin films ranging from 3 to 1636 nm grown via sputter deposition. While exhibiting a constant value up to ~100 nm, the thermal conductivity increases with film thickness thereafter. The thickness dependence we demonstrate is ascribed to boundary scattering of long wavelength vibrations and an interplay between the energy transfer associated with propagating modes (propagons) and nonpropagating modes (diffusons). A crossover from propagon to diffuson modes is deduced to occur at a frequency of ~1.8 THz via simple analytical arguments. These results provide empirical evidencemore » of size effects on the thermal conductivity of amorphous silicon and systematic experimental insight into the nature of vibrational thermal transport in amorphous solids.« less
Surface and magnetic characteristics of Ni-Mn-Ga/Si (100) thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S. Vinodh; Pandyan, R. Kodi; Mahendran, M., E-mail: manickam-mahendran@tce.edu, E-mail: perialangulam@gmail.com
2016-05-23
Polycrystalline Ni-Mn-Ga thin films have been deposited on Si (100) substrate with different film thickness. The influence of film thickness on the phase structure and magnetic domain of the films has been examined by scanning electron microscope, atomic force microscopy and magnetic force microscopy. Analysis of structural parameters indicates that the film at lower thickness exhibits the coexistence of both austenite and martensite phase, whereas at higher thickness L1{sub 2} cubic non magnetic phase is noticed. The grains size and the surface roughness increase along with the film thickness and attain the maximum of 45 nm and 34.96 nm, respectively.more » At lower film thickness, the magnetic stripe domain is found like maze pattern with dark and bright images, while at higher thickness the absence of stripe domains is observed. The magnetic results reveal that the films strongly depend on their phase structure and microstructure which influence by the film thickness.« less
NASA Technical Reports Server (NTRS)
Chian, C. T.
1986-01-01
Investigations were conducted on the 64-meter antenna hydrostatic bearing oil film thickness under a variety of loads and elastic moduli. These parametric studies used a NASTRAN pedestal structural model to determine the deflections under the hydrostatic bearing pad. The deflections formed the input for a computer program to determine the hydrostratic bearing oil film thickness. For the future 64-meter to 70-meter antenna extension and for the 2.2-meter (86-in.) haunch concrete replacement cases, the program predicted safe oil film thickness (greater than 0.13 mm (0.005 in.) at the corners of the pad). The effects of varying moduli of elasticity for different sections of the pedestal and the film height under stressed runner conditions were also studied.
NASA Technical Reports Server (NTRS)
Chian, C. T.; Schonfeld, D.
1984-01-01
Investigations are conducted on the 64-meter antenna hydrostatic bearing oil film thickness under a variety of loads and elastic moduli. These parametric studies use a NASTRAN pedestal structural model to determine the deflections under the hydrostatic bearing pad. The deflections form the input for a computer program to determine the hydrostatic bearing oil film thickness. For the future 64-meter to 70-meter antenna extension and for the 2.2-meter (86-in.) haunch concrete replacement cases, safe oil film thickness (greater than 0.13 mm (0.005 in.) at the corners of the pad) are predicted. The effects of varying moduli of elasticity for different sections of the pedestal and the film height under distressed runner conditions are also studied.
Gravity Effects in Condensing and Evaporating Films
NASA Technical Reports Server (NTRS)
Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.
2004-01-01
A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.
Synthesis and characterization of thick PZT films via sol-gel dip coating method
NASA Astrophysics Data System (ADS)
Shakeri, Amid; Abdizadeh, Hossein; Golobostanfard, Mohammad Reza
2014-09-01
Thick films of lead zirconate titanate (PZT) offer possibilities for micro-electro-mechanical systems such as high frequency ultrasonic transducers. In this paper, crack-free thick films of PZT have been prepared up to 45 μm thickness via modified sol-gel dip coating method. In this procedure, acetic acid-alcoholic based sol is used by applying diethanolamine (DEA) and deionized water as additives. The effects of DEA and water on the crystal structure and surface morphology of the films are investigated. The mechanisms of acetic acid and DEA complexations are introduced by using FTIR spectrometer which illustrates suitable substitution of complexing agents with alkoxide groups. DEA/(Ti + Zr) = 0.5 or water/(Ti + Zr) = 0.5 are determined as the optimum molar ratio of additives, which lead to the formation of almost pure perovskite phase with the tetragonal lattice parameters of ct = 4.16 Ǻ and at = 4.02 Ǻ and a distortion of 2%. Values of remanent polarization and dielectric constant of 7.8 μC cm-2 and 1630 were obtained for 45 μm thick films, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, S. K.; Misra, D.; Agrawal, D. C.
2011-01-01
Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less
Cost effective flat plate photovoltaic modules using light trapping
NASA Technical Reports Server (NTRS)
Bain, C. N.; Gordon, B. A.; Knasel, T. M.; Malinowski, R. L.
1981-01-01
Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.
Rezaee, Mohammad; Cloutier, Pierre; Bass, Andrew D.; Michaud, Marc; Hunting, Darel J.; Sanche, Léon
2013-01-01
Cross sections (CSs) for the interaction of low-energy electrons (LEE) with condensed macromolecules are essential parameters for accurate modeling of radiation-induced molecular decomposition and chemical synthesis. Electron irradiation of dry nanometer-scale macromolecular solid films has often been employed to measure CSs and other quantitative parameters for LEE interactions. Since such films have thicknesses comparable with electron thermalization distances, energy deposition varies throughout the film. Moreover, charge accumulation occurring inside the films shields a proportion of the macromolecules from electron irradiation. Such effects complicate the quantitative comparison of the CSs obtained in films of different thicknesses and limit the applicability of such measurements. Here, we develop a simple mathematical model, termed the molecular survival model, that employs a CS for a particular damage process together with an attenuation length related to the total CS, to investigate how a measured CS might be expected to vary with experimental conditions. As a case study, we measure the absolute CS for the formation of DNA strand breaks (SBs) by electron irradiation at 10 and 100 eV of lyophilized plasmid DNA films with thicknesses between 10 and 30 nm. The measurements are shown to depend strongly on the thickness and charging condition of the nanometer-scale films. Such behaviors are in accord with the model and support its validity. Via this analysis, the CS obtained for SB damage is nearly independent of film thickness and charging effects. In principle, this model can be adapted to provide absolute CSs for electron-induced damage or reactions occurring in other molecular solids across a wider range of experimental conditions. PMID:23030950
NASA Astrophysics Data System (ADS)
Egusa, Shigenori; Iwasawa, Naozumi
1995-11-01
A specially prepared paint made up of lead zirconate titanate (PZT) ceramic powder and epoxy resin was coated on an aluminum plate and was cured at room temperature, thus forming the paint film of 25-300 μm thickness with a PZT volume fraction of 53%. The paint film was then poled at room temperature, and the poling behavior was determined by measuring the piezoelectric activity as a function of poling field. The poling behavior shows that the piezoelectric activity obtained at a given poling field increases with an increase in the film thickness from 25 to 300 μm. The current-voltage characteristic of the paint film, on the other hand, shows that the increase in the film thickness leads not only to an increase in the magnitude of the current density at a given electric field but also to an increase in the critical electric field at which the transition from the ohmic to space-charge-limited conduction takes place. This fact indicates that the amount of the space charge of electrons injected into the paint film decreases as the film thickness increases. Furthermore, comparison of the current-voltage characteristic of the paint film with that of a pure epoxy film reveals that the space charge is accumulated largely at the interface between the PZT and epoxy phases in the paint film. On the basis of this finding, a model is developed for the poling behavior of the paint film by taking into account a possible effect of the space-charge accumulation and a broad distribution of the electric field in the PZT phase. This model is shown to give an excellent fit to the experimental data of the piezoelectric activity obtained here as a function of poling field and film thickness.
Modification of structure and magnetic anisotropy of epitaxial CoFe₂O₄ films by hydrogen reduction
Chen, Aiping; Poudyal, Narayan; Xiong, Jie; ...
2015-03-16
Heteroepitaxial CoFe₂O₄ (CFO) thin films with different thicknesses were deposited on MgO (001) substrates. The as-deposited CFO films show a clear switching of magnetic anisotropy with increasing film thickness. The thinner films (<100 nm) show a perpendicular magnetic anisotropy due to the out-of-plane compressive strain. The thicker films exhibit an in-plane easy axis owing to the dominating shape anisotropy effect. The magnetostriction coefficient of CFO films is estimated to be λ[001] =-188 × 10⁻⁶. Metallic CoFe₂ films were obtained by annealing the as-deposited CFO films in forming gas (Ar 93% + H₂ 7%) at 450 °C. XRD shows that CoFe₂more » films are textured out-of-plane and aligned in-plane, owing to lattice matching between CoFe₂ and MgO substrate. TEM results indicate that as-deposited films are continuous while the annealed films exhibit a nanopore mushroom structure. The magnetic anisotropy of CoFe₂ films is dominated by the shape effect. The results demonstrate that hydrogen reduction can be effectively used to modify microstructures and physical properties of complex metal oxide materials.« less
Zhang, Sijia; Gu, Bin; Zhang, Hongbin; Feng, Xi-Qiao; Pan, Rongying; Alamusi; Hu, Ning
2016-03-01
The propagation of Love waves in the structure consisting of a nanosized piezoelectric film and a semi-infinite elastic substrate is investigated in the present paper with the consideration of surface effects. In our analysis, surface effects are taken into account in terms of the surface elasticity theory and the electrically-shorted conditions are adopted on the free surface of the piezoelectric film and the interface between the film and the substrate. This work focuses on the new features in the dispersion relations of different modes due to surface effects. It is found that with the existence of surface effects, the frequency dispersion of Love waves shows the distinct dependence on the thickness and the surface constants when the film thickness reduces to nanometers. In general, phase velocities of all dispersion modes increase with the decrease of the film thickness and the increase of the surface constants. However, surface effects play different functions in the frequency dispersions of different modes, especially for the first mode dispersion. Moreover, different forms of Love waves are observed in the first mode dispersion, depending on the presence of the surface effects on the surface and the interface. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rinnerbauer, V.; Schmidegg, K.; Hohage, M.; Sun, L. D.; Flores-Camacho, J. M.; Zeppenfeld, P.
2009-06-01
We have used reflectance difference spectroscopy (RDS) and its extension, azimuth-dependent RDS (ADRDS), to study the properties of sputtered and evaporated nickel films on biaxially oriented poly(ethylene terephtalate) (PET) films in a roll to roll web-coating process. From the full set of ADRDS spectra we extract and analyze both the intrinsic RDS spectra and the azimuthal orientation of the effective optical anisotropy of the samples. From the latter, contributions to the RDS spectra arising from the nickel layer and the PET substrate with different orientations of the optical eigenaxes can be inferred. We find an attenuation of the characteristic RDS signal of the PET substrate with increasing nickel film thickness which is in good agreement with the theoretical prediction. For film thicknesses above 20 nm another contribution to the RDS signal attributed to the optical anisotropy of the deposited nickel layers can be observed. Its strength depends on the deposition method, and is considerably larger for evaporated films than for sputtered ones. With increasing nickel film thickness, the azimuthal orientation of the sample anisotropy changes from the initial value of the PET substrate by about 20° toward the machine direction of the foil. We demonstrate that RDS is also a valuable tool for inline monitoring in the roll to roll process, as the attenuation of the RDS signal, under proper consideration of the orientation of the effective anisotropy, is a function of the film thickness and characteristic for the deposited material.
Effect of sputtered titanium interlayers on the properties of nanocrystalline diamond films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Cuiping, E-mail: licp226@126.com, E-mail: limingji@163.com; Li, Mingji, E-mail: licp226@126.com, E-mail: limingji@163.com; Wu, Xiaoguo
2016-04-07
Ti interlayers with different thicknesses were sputtered on Si substrates and then ultrasonically seeded in a diamond powder suspension. Nanocrystalline diamond (NCD) films were deposited using a dc arc plasma jet chemical vapor deposition system on the seeded Ti/Si substrates. Atomic force microscopy and scanning electron microscopy tests showed that the roughness of the prepared Ti interlayer increased with increasing thickness. The effects of Ti interlayers with various thicknesses on the properties of NCD films were investigated. The results show nucleation, growth, and microstructure of the NCD films are strongly influenced by the Ti interlayers. The addition of a Timore » interlayer between the Si substrate and the NCD films can significantly enhance the nucleation rate and reduce the surface roughness of the NCD. The NCD film on a 120 nm Ti interlayer possesses the fastest nucleation rate and the smoothest surface. Raman spectra of the NCD films show trans-polyacetylene relevant peaks reduce with increasing Ti interlayer thickness, which can owe to the improvement of crystalline at grain boundaries. Furthermore, nanoindentation measurement results show that the NCD film on a 120 nm Ti interlayer displays a higher hardness and elastic modulus. High resolution transmission electron microscopy images of a cross-section show that C atoms diffuse into the Ti layer and Si substrate and form TiC and SiC hard phases, which can explain the enhancement of mechanical properties of NCD.« less
Thickness Measurement, Rate Control And Automation In Thin Film Coating Technology
NASA Astrophysics Data System (ADS)
Pulker, H. K.
1983-11-01
There are many processes known for fabricating thin films/1, 2.Among them the group of physical vapor deposition processes comprising evaporation, sputtering and ion plating has received special attention.Especially evaporation but also the other PVD techniques are widely used to deposit various single and multilayer coatings for optical and electrical thin film applications/3,4/.A large number of parameters is important in obtaining the required film properties in a reproducible manner when depositing thin films by such processes.Amongst the many are the film thickness, the condensation rate,the substrate temperature,as well as the qualitative and the quantitative composition of the residual gas of primary importance.First of all the film thickness is a dimension which enters in practically all equations used to characterize a thin film. However,when discussing film thickness,definitions are required since there one has to distinguish between various types of thicknesses e.g.geometrical thickness,mass thickness and optical thickness.The geometrical thickness,often also called physical thickness,is defined as the step height between the substrate surface and the film surface.This step height multiplied by the refractive index of the film is termed the optical thickness and is expressed generally in integer multiples of fractional parts of a desired wavelength.The mass thickness finally is defined as the film mass per unit area obtained by weighing.Knowing the density and the optical data of a thin film its mass thickness can be converted into the corresponding geometrical as well as optical thickness.However,with ultrathin films ranging between a few and several atomic or molecular "layers"the concept of a film thickness may become senseless since often no closed film exists of such minor deposits.Although film thickness is a length,the measurement of it can,obviously,not be accomplished with conventional methods for length determinations but requires special methods.The great efforts made to overcome this problem led to a remarkable number of different,often highly sophisticated film thickness measuring methods reviewed in various articles such ase.g./5,6/.With some of the methods,it is possible to carry out measurement under vacuum during and after the film formation other determinations have to be undertaken outside the deposition chamber only after the film has been produced.Many of the methods cannot be employed for all film substances,and there are varying limits as regards the range of thickness and measuring accuracy.Furthermore, with these methods the film to be measured is often specially prepared or dissolved during measurement and therefore becomes useless for additional investigations or applications.If only those methods which can be employed during the film deposition are considered,then the very large number of methods is considerably reduced.Insitu measurements,however,are highly desired since many basic investigations and practically all industrial applications require a precise knowledge of thefilm thickness at any instant to enable termination of the deposition process at the predetermined right moment.Apartfrom few exceptions in practical film deposition only optical measuring units andmass determination monitors are used.
Thermally generated metals for plasmonic coloring and surface-enhanced Raman sensing
NASA Astrophysics Data System (ADS)
Huang, Zhenping; Chen, Jian; Liu, Guiqiang; Wang, Yan; Liu, Yi; Tang, Li; Liu, Zhengqi
2018-03-01
Spectral coloring glass and its application on the surface-enhanced Raman scattering are demonstrated experimentally via a simple and moderate heat-treating of the top ultrathin gold film to create discrete nanoparticles, which can produce localized surface plasmon resonances and strong plasmonic near-field coupling effects. Ultrathin metal films with a wide range of thicknesses are investigated by different heat-treatment processes. The annealed metal films have been demonstrated with a series of spectral coloring responses. Moreover, the microscopy images of the metal film structures confirm the formation of distinct geometry features in these operation procedures. Densely packed nanoparticles are observed for the ultrathin metal film with the single-digit level of thickness. With increasing the film thickness over 10 nm, metallic clusters and porous morphologies can be obtained. Importantly, the metallic resonators can provide enhanced Raman scattering with the detection limit down to 10 - 7 molL - 1 of Rhodamine 6G molecules due to the excitation of plasmon resonances and strong near-field coupling effects. These features hold great potential for large-scale and low-cost production of colored glass and Raman substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirigian, Stephen; Schweizer, Kenneth S.
Here, we employ the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory of activated relaxation to study several questions in free standing thin films of glass-forming molecular and polymer liquids. The influence of non-universal chemical aspects on dynamical confinement effects is found to be relatively weak, but with the caveat that for the systems examined, the bulk ECNLE polymer theory does not predict widely varying fragilities. Allowing the film model to have a realistic vapor interfacial width significantly enhances the reduction of the film-averaged glass transition temperature, T g, in a manner that depends on whether a dynamic or pseudo-thermodynamic averagingmore » of the spatial mobility gradient is adopted. The nature of film thickness effects on the spatial profiles of the alpha relaxation time and elastic modulus is studied under non-isothermal conditions and contrasted with the corresponding isothermal behavior. Modest differences are found if a film-thickness dependent T g is defined in a dynamical manner. But, adopting a pseudo-thermodynamic measure of T g leads to a qualitatively new form of the alpha relaxation time gradient where highly mobile layers near the film surface coexist with strongly vitrified regions in the film interior. Consequently, the film-averaged shear modulus can increase with decreasing film thickness, despite the T g reduction and presence of a mobile surface layer. Such a behavior stands in qualitative contrast to the predicted mechanical softening under isothermal conditions. Spatial gradients of the elastic modulus are studied as a function of temperature, film thickness, probing frequency, and experimental protocol, and a rich behavior is found.« less
Mirigian, Stephen; Schweizer, Kenneth S.
2017-02-02
Here, we employ the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory of activated relaxation to study several questions in free standing thin films of glass-forming molecular and polymer liquids. The influence of non-universal chemical aspects on dynamical confinement effects is found to be relatively weak, but with the caveat that for the systems examined, the bulk ECNLE polymer theory does not predict widely varying fragilities. Allowing the film model to have a realistic vapor interfacial width significantly enhances the reduction of the film-averaged glass transition temperature, T g, in a manner that depends on whether a dynamic or pseudo-thermodynamic averagingmore » of the spatial mobility gradient is adopted. The nature of film thickness effects on the spatial profiles of the alpha relaxation time and elastic modulus is studied under non-isothermal conditions and contrasted with the corresponding isothermal behavior. Modest differences are found if a film-thickness dependent T g is defined in a dynamical manner. But, adopting a pseudo-thermodynamic measure of T g leads to a qualitatively new form of the alpha relaxation time gradient where highly mobile layers near the film surface coexist with strongly vitrified regions in the film interior. Consequently, the film-averaged shear modulus can increase with decreasing film thickness, despite the T g reduction and presence of a mobile surface layer. Such a behavior stands in qualitative contrast to the predicted mechanical softening under isothermal conditions. Spatial gradients of the elastic modulus are studied as a function of temperature, film thickness, probing frequency, and experimental protocol, and a rich behavior is found.« less
NASA Astrophysics Data System (ADS)
Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.
2009-02-01
Ba0.7Sr0.3TiO3 (BST) thick films with thickness up to 1 μm were deposited on Pt-coated silicon substrates by ion beam sputtering, followed by an annealing treatment. It is demonstrated that pure well-crystallized perovskite phase could be obtained in thick BST films by a low temperature process (535 °C). The BST thick films show highly tunable dielectric properties with tunability (at 800 kV/cm) up to 51.0% and 66.2%, respectively, for the 0.5 and 1 μm thick films. The relationship between strains and dielectric properties was systematically investigated in the thick films. The results suggest that a comparatively larger tensile thermal in-plane strain (0.15%) leads to the degradation in dielectric properties of the 0.5 μm thick film; besides, strong defect-related inhomogeneous strains (˜0.3%) make the dielectric peaks smearing and broadening in the thick films, which, however, preferably results in high figure-of-merit factors over a wide operating temperature range. Moreover, the leakage current behavior in the BST thick films was found to be dominated by the space-charge-limited-current mechanism, irrespective of the film thickness.
Oxygen diffusion and edema with modern scleral rigid gas permeable contact lenses.
Compañ, Vicente; Oliveira, Cristina; Aguilella-Arzo, Marcel; Mollá, Sergio; Peixoto-de-Matos, Sofia C; González-Méijome, José M
2014-09-04
We defined the theoretical oxygen tension behind modern scleral contact lenses (CLs) made of different rigid gas permeable (RGP) materials, assuming different thickness of the tear layer behind the lens. A second goal was to show clinically the effect of the postlens tear film on corneal swelling. We simulated the partial pressure of oxygen across the cornea behind scleral CLs made of different lens materials (oxygen permeability Dk, 75-200 barrer) and different thickness (Tav, 100-300 μm). Postlens tear film thicknesses (Tpost-tear) ranging from 150 to 350 μm were considered. Eight healthy subjects were fitted randomly with a scleral lens with a thin and a thick postlens tear layer in two different sessions for a period of 3 hours under open-eye conditions. The CLs with less than 125 barrer of Dk and a thickness over 200 μm depleted the oxygen availability at the lens-cornea interface below 55 mm Hg for a postlens tear film of 150 μm. For a postlens tear film thickness of 350 μm, no combination of material or lens thickness will meet the criteria of 55 mm Hg. Our clinical measures of corneal edema showed that this was significantly higher (P < 0.001, Wilcoxon signed ranks test) with the thicker compared to the thinner Tpost-tear (mean ± SD, 1.66 ± 1.12 vs. 4.27 ± 1.19%). Scleral RGP CLs must be comprised of at least 125 barrer of oxygen permeability and up to 200 μm thick to avoid hypoxic effects even under open eye conditions. Postlens tear film layer should be below 150 μm to avoid clinically significant edema. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Polypeptide multilayer films on colloidal particles: an in situ electro-optical study.
Radeva, Tsetska; Kamburova, Kamelia
2007-04-15
The buildup of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) multilayers on beta-FeOOH colloidal particles was investigated by means of electro-optics and electrophoresis. The films were built at different (acidic) pH in the absence of salt. We found that the thickness of the film grows linearly when the fully charged PLL (at pH 5.5) is combined with almost fully charged PGA (at pH 6.5), with a thickness of about 2 nm per single layer. When the fully charged PLL is combined with weakly charged PGA (at pH 4.5), the film thickness increases exponentially with the number of deposited layers. The thickness of the exponentially growing film increases to 300 nm after deposition of 16 layers. The exponential film growth is attributed to the ability of the PLL to diffuse "in" and "out" of the film bulk at each deposition step. The variation in the electrical polarizability of the film-coated particles was also monitored as a function of the number of adsorbed layers. The result reveals that the PLL chains, which can diffuse into the film bulk, have no measurable contribution to the electro-optical effect of the films terminated with PLL. It is only due to the polarization of counterions of the PLL adsorbed on the film surface.
Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behler, Anna; Department of Physics, Institute for Solid State Physics, Dresden University of Technology, 01062 Dresden; Teichert, Niclas
2013-12-15
A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni{sub 50}Mn{sub 32}Sn{sub 18} thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.
Unidirectional magnetoresistance in magnetic thin films with non-uniform thickness
NASA Astrophysics Data System (ADS)
Jia, M. W.; Zhou, C.; Zeng, F. L.; Wu, Y. Z.
2018-05-01
The magnetoresistance (MR) of Co film and Co/Pt bilayers was studied systematically as a function of Co and Pt thickness at room temperature. In the samples with the wedge shape, we found the unidirectional MR which has the characteristics of R (Mz )≠R (-Mz ) with the magnetization normal to the film. The measured unidirectional MR is attributed to the differential anomalous Hall resistance due to the thickness difference at the electrodes for the longitudinal resistance measurements. The unidirectional MR effect in the Co/Pt bilayers can be greatly suppressed by a non-magnetic Cu inserting layer.
NASA Astrophysics Data System (ADS)
Hattori, Junichi; Fukuda, Koichi; Ikegami, Tsutomu; Ota, Hiroyuki; Migita, Shinji; Asai, Hidehiro; Toriumi, Akira
2018-04-01
We study the effects of fringing electric fields on the behavior of negative-capacitance (NC) field-effect transistors (FETs) with a silicon-on-insulator body and a gate stack consisting of an oxide film, an internal metal film, a ferroelectric film, and a gate electrode using our own device simulator that can properly handle the complicated relationship between the polarization and the electric field in ferroelectric materials. The behaviors of such NC FETs and the corresponding metal-oxide-semiconductor (MOS) FETs are simulated and compared with each other to evaluate the effects of the NC of the ferroelectric film. Then, the fringing field effects are evaluated by comparing the NC effects in NC FETs with and without gate spacers. The fringing field between the gate stack, especially the internal metal film, and the source/drain region induces more charges at the interface of the film with the ferroelectric film. Accordingly, the function of the NC to modulate the gate voltage and the resulting function to improve the subthreshold swing are enhanced. We also investigate the relationships of these fringing field effects to the drain voltage and four design parameters of NC FETs, i.e., gate length, gate spacer permittivity, internal metal film thickness, and oxide film thickness.
Estimation of structural film viscosity based on the bubble rise method in a nanofluid.
Cho, Heon Ki; Nikolov, Alex D; Wasan, Darsh T
2018-04-15
When a single bubble moves at a very low capillary number (10 -7 ) through a liquid with dispersed nanoparticles (nanofluid) inside a vertical tube/capillary, a film is formed between the bubble surface and the tube wall and the nanoparticles self-layer inside the confined film. We measured the film thickness using reflected light interferometry. We calculated the film structural energy isotherm vs. the film thickness from the film-meniscus contact angle measurements using the reflected light interferometric method. Based on the experimental measurement of the film thickness and the calculated values of the film structural energy barrier, we estimated the structural film viscosity vs. the film thickness using the Frenkel approach. Because of the nanoparticle film self-layering phenomenon, we observed a gradual increase in the film viscosity with the decreasing film thickness. However, we observed a significant increase in the film viscosity accompanied by a step-wise decrease in the bubble velocity when the film thickness decreased from 3 to 2 particle layers due to the structural transition in the film. Copyright © 2018 Elsevier Inc. All rights reserved.
Process effects resulting from an increased BARC thickness
NASA Astrophysics Data System (ADS)
Eakin, Ronald J.; Detweiler, Shangting F.; Stagaman, Gregory J.; Tesauro, Mark R.; Spak, Mark A.; Dammel, Ralph R.
1997-07-01
Process improvements attributed to the use of bottom anti- reflective coatings (B.A.R.C.s) are well documented. As our experience with these materials improves, so does our understanding of additional optimization. Recent supplier experiments suggest an increase in the thickness of AZR BARLiTM (bottom anti-reflective layer i-line) solution to reduce photoresist swing curve ratios. Also, changes in thin film stack on common substrates can adversely affect the degree of photoresist reflective notching. It is therefore of extreme importance to determine optimum thickness(es) of a B.A.R.C. material to ensure maximum process potential. We document several process effects in the conversion of a SRAM test device (0.38 - 0.45 micrometers) from a 650 angstrom to a 2000 angstrom BARLiTM film thickness using conventional i-line photolithography. Critical dimension (CD) uniformity and depth of focus (DOF) are evaluated. Defect density between the two processes are compared before and after etch employing optical metrology and electrical test structures. Sensitivity of overlay as a function of BARLiTM film thickness is investigated as well.
Analysis of starvation effects on hydrodynamic lubrication in nonconforming contacts
NASA Technical Reports Server (NTRS)
Brewe, D. E.; Hamrock, B. J.
1981-01-01
The effects of lubricant starvation on minimum film thickness, under conditions of a hydrodynamic point contact, are determined by numerical methods where: (1) starvation is effected by varying the fluid inlet level; (2) the Reynolds boundary conditions are applied at the cavitation boundary; and (3) zero pressure is stipulated at the meniscus or inlet boundary. Seventy-four cases were used to numerically determine a minimum-film-thickness equation, as a function of the ratio of dimensionless load to dimensionless speed for varying degrees of starvation. A film reduction factor was in turn determined as a function of the fluid inlet level, and a starved, fully-flooded boundary was defined along with an expression determining the onset of starvation. It is found that as the degree of starvation increases, the minimum film thickness decreases gradually until the fluid inlet becomes critical. The changes in the inlet pressure buildup due to changing the available lubricant supply are presented in the form of three-dimensional isometric plots.
NASA Astrophysics Data System (ADS)
Cheng, Junfeng; Chen, Zhiru; Zhou, Jiaqi; Cao, Zheng; Wu, Dun; Liu, Chunlin; Pu, Hongting
2018-05-01
The effects of layer thickness on the compatibility between polycarbonate (PC) and polystyrene (PS) and physical properties of PC/PS multilayered film via nanolayer coextrusion are studied. The morphology of multilayered structure is observed using a scanning electron microscope. This multilayered structure may have a negative impact on the transparency, but it can improve the water resistance and heat resistance of film. To characterize the compatibility between PC and PS, differential scanning calorimetry is used to measure the glass transition temperature. The compatibility is found to be improved with the decrease of layer thickness. Therefore, the viscosity of multilayered film is also reduced with the decrease of layer thickness. In addition, the multilayered structure can improve the tensile strength with the increase of layer numbers. Because of the complete and continuous layer structure of PC, the PC/PS multilayered film can retain its mechanical strength at the temperature above Tg of PS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolper, Thomas J.; He, Yifeng; Delferro, Massimiliano
2016-08-11
This study investigates the rheological properties, elastohydrodynamic (EHD) film-forming capability, and friction coefficients of low molecular mass poly-alpha-olefin (PAO) base stocks with varying contents of high molecular mass olefin copolymers (OCPs) to assess their shear stability and their potential for energy-efficient lubrication. Several PAO-OCP mixtures were blended in order to examine the relationship between their additive content and tribological performance. Gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the molecular masses and structures, respectively. Density, viscosity, EHD film thickness, and friction were measured at 303 K, 348 K, and 398 K. Film thickness andmore » friction were studied at entrainment speeds relevant to the boundary, mixed, and full-film lubrication regimes. The PAO-OCP mixtures underwent temporary shear-thinning resulting in decreases in film thickness and hydrodynamic friction. These results demonstrate that the shear characteristics of PAO-OCP mixtures can be tuned with the OCP content and provide insight into the effects of additives on EHD characteristics.« less
NASA Astrophysics Data System (ADS)
Nishiuchi, Kenichi; Yamada, Noboru; Kawahara, Katsumi; Kojima, Rie
2007-11-01
Reduction of the film thickness of phase-change film and the adoption of GeN- or ZrO2-based dielectric films are both effective in achieving good thermal stability in phase-change optical disks. It was experimentally confirmed that, at a heating rate of 10 °C/min, the crystallization temperature Tx of the Ge2Sb2Te5 amorphous film when sandwiched by ZnS-SiO2 films markedly increases from 162 to 197 °C, while the thickness of the Ge2Sb2Te5 film decreases from 10 to 3 nm. Tx also slightly increases when ZnS-SiO2 films are substituted for GeN-based films (from 162 to 165 °C) and ZrO2-based films (from 162 to 167 °C). At the same time, the activation energy of crystallization is 2.4 eV for both GeN- and ZrO2-based films, and is higher than 2.2 eV for ZnS-SiO2 films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, T.; Kumar, M.; Som, T., E-mail: tsom@iopb.res.in
2015-09-14
Al-doped ZnO (AZO) thin films of thicknesses 5,10, 15, 20, and 30 nm were deposited on 500 eV argon ion-beam fabricated nanoscale self-organized rippled-Si substrates at room temperature and are compared with similar films deposited on pristine-Si substrates (without ripples). It is observed that morphology of self-organized AZO films is driven by the underlying substrate morphology. For instance, for pristine-Si substrates, a granular morphology evolves for all AZO films. On the other hand, for rippled-Si substrates, morphologies having chain-like arrangement (anisotropic in nature) are observed up to a thickness of 20 nm, while a granular morphology evolves (isotropic in nature) for 30 nm-thick film.more » Photoluminescence studies reveal that excitonic peaks corresponding to 5–15 nm-thick AZO films, grown on rippled-Si templates, show a blue shift of 8 nm and 3 nm, respectively, whereas the peak shift is negligible for 20-nm thick film (with respect to their pristine counter parts). The observed blue shifts are substantiated by diffuse reflectance study and attributed to quantum confinement effect, associated with the size of the AZO grains and their spatial arrangements driven by the anisotropic morphology of underlying rippled-Si templates. The present findings will be useful for making tunable AZO-based light-emitting devices.« less
Piezoviscous effects in nonconformal contacts lubricated hydrodynamically
NASA Technical Reports Server (NTRS)
Jeng, Y. R.; Hamrock, B. J.; Brewe, D. E.
1985-01-01
The analysis is concerned with the piezoviscous-rigid regime of lubrication for the general case of elliptical contacts. In this regime several formulas of the lubricant film thickness have been proposed by Hamrock and Dowson, by Dowson et al., and more recently by Houpert. However, either they do not include the load parameter W, which has a strong effect on film thickness, or they overestimate the film thickness by using the Barus formula for pressure-viscosity characteristics. The Roelands formula was used for the pressure-viscosity relationship. The effects of the dimensionless load, speed, and materials parameters, the radius ratio, and the lubricant entrainment direction were investigated. The dimensionless load parameter was varied over a range of one order of magnitude. The dimensionless speed parameter was varied by 5.6 times the lowest value. Conditions corresponding to the use of solid materials of steel, bronze, and silicon nitride and lubricants of paraffinic and naphthenic mineral oil were considered in obtaining the exponent in the dimensionless materials parameter. The radius ratio was varied from 0.2 to 64 (a configuration approaching a line contact). Forty-one cases were used in obtaining a minimum film thickness formula. Contour plots indicate in detail the pressure developed between the contacting solids.
Piezoviscous effects in nonconformal contacts lubricated hydrodynamically
NASA Technical Reports Server (NTRS)
Jeng, Yeau-Ren; Hamrock, Bernard J.; Brewe, David E.
1987-01-01
The analysis is concerned with the piezoviscous-rigid regime of lubrication for the general case of elliptical contacts. In this regime several formulas of the lubricant film thickness have been proposed by Hamrock and Dowson, by Dowson et al., and more recently by Houpert. However, either they do not include the load parameter W, which has a strong effect on film thickness, or they overestimate the film thickness by using the Barus formula for pressure-viscosity characteristics. The Roelands formula was used for the pressure-viscosity relationship. The effects of the dimensionless load, speed, and materials parameters, the radius ratio, and the lubricant entrainment direction were investigated. The dimensionless load parameter was varied over a range of one order of magnitude. The dimensionless speed parameter was varied by 5.6 times the lowest value. Conditions corresponding to the use of solid materials of steel, bronze, and silicon nitride and lubricants of paraffinic and naphthenic mineral oil were considered in obtaining the exponent in the dimensionless materials parameter. The radius ratio was varied from 0.2 to 64 (a configuration approaching a line contact). Forty-one cases were used in obtaining a minimum film thickness formula. Contour plots indicate in detail the pressure developed between the contacting solids.
NASA Astrophysics Data System (ADS)
Ramana, E. Venkata; Ferreira, N. M.; Mahajan, A.; Ferro, Marta C.; Figueiras, F.; Graça, M. P. F.; Valente, M. A.
2018-02-01
In this work, we have fabricated lead-free piezoelectric Ba0.85Ca0.15Ti0.9Zr0.1O3 thick films by the electrophoretic deposition (EPD) followed by a continuous-wave CO2 laser annealing and demonstrated the effect of laser energy on the quality of the final product. Thick films annealed under optimized conditions, 50 W/15 min, show a controlled microstructure/density compared to those derived from higher laser power/annealing time/conventional sintering. The increase in laser power above this limit affects the grain growth kinetics and results in the compositional heterogeneities. From the results of Raman spectra, it was found that the film annealed under optimized conditions has a high degree of crystallinity and tetragonality, while the increase in laser fluence results in the growth of A1g mode. The controlled composition and microstructure, thus has resulted in the improved ferroelectricity with a remanent polarization 12 μC/cm2, on par with the bulk or larger than the films grown by the chemical solution deposition techniques. From the piezoresponse studies, we found that the film annealed at 75 W/5 min has weak ferroelectric nature with no switchable ferroelectric domains compared to those under optimized conditions. Subtle differences in phase transition temperatures and drop in ferroelectric polarization, for films annealed conventionally or at higher laser fluence, are related to porosity or site defects as well as compositional heterogeneities. Our study demonstrates that the combination of EPD and laser annealing is an effective way to achieve high quality piezoelectric thick films with a controlled composition, useful for energy harvesting applications.
NASA Astrophysics Data System (ADS)
Li, Zhi-Yue; Yang, Hao-Zhi; Chen, Sheng-Chi; Lu, Ying-Bo; Xin, Yan-Qing; Yang, Tian-Lin; Sun, Hui
2018-05-01
Nitrogen-doped indium tin zinc oxide (ITZO:N) thin film transistors (TFTs) were deposited on SiO2 (200 nm)/p-Si〈1 0 0〉 substrates by RF magnetron sputtering at room temperature. The structural, chemical compositions, surface morphology, optical and electrical properties as a function of the active layer thickness were investigated. As the active layer thickness increases, Zn content decreases and In content increases gradually. Meanwhile, Sn content is almost unchanged. When the thickness of the active layer is more than 45 nm, the ITZO:N films become crystallized and present a crystal orientation along InN(0 0 2) plan. No matter what the thickness is, ITZO:N films always display a high transmittance above 80% in the visible region. Their optical band gaps fluctuate between 3.4 eV and 3.62 eV. Due to the dominance of low interface trap density and high carrier concentration, ITZO:N TFT shows enhanced electrical properties as the active layer thickness is 35 nm. Its field-effect mobility, on/off radio and sub-threshold swing are 17.53 cm2 V‑1 · s‑1, 106 and 0.36 V/dec, respectively. These results indicate that the suitable thickness of the active layer can enhance the quality of ITZO:N films and decrease the defects density of ITZO:N TFT. Thus, the properties of ITZO:N TFT can be optimized by adjusting the thickness of the active layer.
Structural and morphological modifications of polymer thin film in the presence of nonsolvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talukdar, Hrishikesh, E-mail: hiasst@yahoo.in; Kundu, Sarathi
Thin films of sodium poly(acrylic acid) salt (Na-PAA) have been investigated to obtain the modification of the out-of-plane structure and surface morphology in the presence of toluene which is considered as nonsolvent for Na-PAA. X-ray reflectivity analysis show that the out-of-plane thickness of the Na-PAA film increases if the film is kept for longer time inside the toluene. For the thicker film the effect of toluene is more pronounced than the thinner one. Surface morphology obtained from the atomic force microscopy shows that the top surface becomes relatively rough after the dipping of the Na-PAA film inside toluene. Although toluenemore » is nonsolvent for Na-PAA molecules, however, the effect of restructuring of the nanometer-thick polymer film cannot be ignored. The reason for such structural modification has been proposed.« less
Dissociative adsorption of water on Au/MgO/Ag(001) from first principles calculations
NASA Astrophysics Data System (ADS)
Nevalaita, J.; Häkkinen, H.; Honkala, K.
2015-10-01
The molecular and dissociative adsorption of water on a Ag-supported 1 ML, 2 ML and 3 ML-a six atomic layer-thick MgO films with a single Au adatom is investigated using density functional theory calculations. The obtained results are compared to a bulk MgO(001) surface with an Au atom. On thin films the negatively charged Au strengthens the binding of the polar water molecule due to the attractive Au-H interaction. The adsorption energy trends of OH and H with respect to the film thickness depend on an adsorption site. In the case OH or H binds atop Au on MgO/Ag(001), the adsorption becomes more exothermic with the increasing film thickness, while the reverse trend is seen when the adsorption takes place on bare MgO/Ag(001). This behavior can be explained by different bonding mechanisms identified with the Bader analysis. Interestingly, we find that the rumpling of the MgO film and the MgO-Ag interface distance correlate with the charge transfer over the thin film and the interface charge, respectively. Moreover, we employ a modified Born-Haber-cycle to analyze the effect of film thickness to the adsorption energy of isolated Au and OH species on MgO/Ag(001). The analysis shows that the attractive Coulomb interaction between the negatively charged adsorbate and the positive MgO-Ag-interface does not completely account for the weaker binding with increasing film thickness. The redox energy associated with the charge transfer from the interface to the adsorbate is more exothermic with the increasing film thickness and partly compensates the decrease in the attractive Coulomb interaction.
Low temperature aluminum nitride thin films for sensory applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarar, E.; Zamponi, C.; Piorra, A.
2016-07-15
A low-temperature sputter deposition process for the synthesis of aluminum nitride (AlN) thin films that is attractive for applications with a limited temperature budget is presented. Influence of the reactive gas concentration, plasma treatment of the nucleation surface and film thickness on the microstructural, piezoelectric and dielectric properties of AlN is investigated. An improved crystal quality with respect to the increased film thickness was observed; where full width at half maximum (FWHM) of the AlN films decreased from 2.88 ± 0.16° down to 1.25 ± 0.07° and the effective longitudinal piezoelectric coefficient (d{sub 33,f}) increased from 2.30 ± 0.32 pm/Vmore » up to 5.57 ± 0.34 pm/V for film thicknesses in the range of 30 nm to 2 μm. Dielectric loss angle (tan δ) decreased from 0.626% ± 0.005% to 0.025% ± 0.011% for the same thickness range. The average relative permittivity (ε{sub r}) was calculated as 10.4 ± 0.05. An almost constant transversal piezoelectric coefficient (|e{sub 31,f}|) of 1.39 ± 0.01 C/m{sup 2} was measured for samples in the range of 0.5 μm to 2 μm. Transmission electron microscopy (TEM) investigations performed on thin (100 nm) and thick (1.6 μm) films revealed an (002) oriented AlN nucleation and growth starting directly from the AlN-Pt interface independent of the film thickness and exhibit comparable quality with the state-of-the-art AlN thin films sputtered at much higher substrate temperatures.« less
NASA Astrophysics Data System (ADS)
Abbas, K.; Alaie, S.; Ghasemi Baboly, M.; Elahi, M. M. M.; Anjum, D. H.; Chaieb, S.; Leseman, Z. C.
2016-01-01
The mechanical behavior of polycrystalline Pt thin films is reported for thicknesses of 75 nm, 100 nm, 250 nm, and 400 nm. These thicknesses correspond to transitions between nanocrystalline grain morphology types as found in TEM studies. Thinner samples display a brittle behavior, but as thickness increases the grain morphology evolves, leading to a ductile behavior. During evolution of the morphology, dramatic differences in elastic moduli (105-160 GPa) and strengths (560-1700 MPa) are recorded and explained by the variable morphology. This work suggests that in addition to the in-plane grain size of thin films, the transitions in cross-sectional morphologies of the Pt films significantly affect their mechanical behavior.
Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers
NASA Astrophysics Data System (ADS)
Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.
2016-09-01
In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X. H.; Defaye, E.; Aied, M.
2009-02-15
Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) thick films with thickness up to 1 {mu}m were deposited on Pt-coated silicon substrates by ion beam sputtering, followed by an annealing treatment. It is demonstrated that pure well-crystallized perovskite phase could be obtained in thick BST films by a low temperature process (535 deg. C). The BST thick films show highly tunable dielectric properties with tunability (at 800 kV/cm) up to 51.0% and 66.2%, respectively, for the 0.5 and 1 {mu}m thick films. The relationship between strains and dielectric properties was systematically investigated in the thick films. The results suggest that a comparatively largermore » tensile thermal in-plane strain (0.15%) leads to the degradation in dielectric properties of the 0.5 {mu}m thick film; besides, strong defect-related inhomogeneous strains ({approx}0.3%) make the dielectric peaks smearing and broadening in the thick films, which, however, preferably results in high figure-of-merit factors over a wide operating temperature range. Moreover, the leakage current behavior in the BST thick films was found to be dominated by the space-charge-limited-current mechanism, irrespective of the film thickness.« less
Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method
NASA Astrophysics Data System (ADS)
Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.
Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang
2017-01-01
In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development. PMID:28796155
Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang
2017-08-10
In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development.
Defect-driven flexochemical coupling in thin ferroelectric films
NASA Astrophysics Data System (ADS)
Eliseev, Eugene A.; Vorotiahin, Ivan S.; Fomichov, Yevhen M.; Glinchuk, Maya D.; Kalinin, Sergei V.; Genenko, Yuri A.; Morozovska, Anna N.
2018-01-01
Using the Landau-Ginzburg-Devonshire theory, we considered the impact of the flexoelectrochemical coupling on the size effects in polar properties and phase transitions of thin ferroelectric films with a layer of elastic defects. We investigated a typical case, when defects fill a thin layer below the top film surface with a constant concentration creating an additional gradient of elastic fields. The defective surface of the film is not covered with an electrode, but instead with an ultrathin layer of ambient screening charges, characterized by a surface screening length. Obtained results revealed an unexpectedly strong effect of the joint action of Vegard stresses and flexoelectric effect (shortly flexochemical coupling) on the ferroelectric transition temperature, distribution of the spontaneous polarization and elastic fields, domain wall structure and period in thin PbTi O3 films containing a layer of elastic defects. A nontrivial result is the persistence of ferroelectricity at film thicknesses below 4 nm, temperatures lower than 350 K, and relatively high surface screening length (˜0.1 nm ) . The origin of this phenomenon is the flexoelectric coupling leading to the rebuilding of the domain structure in the film (namely the cross-over from c-domain stripes to a-type closure domains) when its thickness decreases below 4 nm. The ferroelectricity persistence is facilitated by negative Vegard effect. For positive Vegard effect, thicker films exhibit the appearance of pronounced maxima on the thickness dependence of the transition temperature, whose position and height can be controlled by the defect type and concentration. The revealed features may have important implications for miniaturization of ferroelectric-based devices.
Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, James P., E-mail: james.best@empa.ch, E-mail: engelbert.redel@kit.edu, E-mail: christof.woell@kit.edu; Michler, Johann; Maeder, Xavier
2015-09-07
Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (E{sub ITO} ≈ 96.7 GPa, E{sub HKUST−1} ≈ 22.0 GPa).more » For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.« less
Conduction mechanism change with transport oxide layer thickness in oxide hetero-interface diode
NASA Astrophysics Data System (ADS)
Nam, Bu-il; Park, Jong Seo; Lim, Keon-Hee; Ahn, Yong-keon; Lee, Jinwon; Park, Jun-woo; Cho, Nam-Kwang; Lee, Donggun; Lee, Han-Bo-Ram; Kim, Youn Sang
2017-07-01
An effective and facile strategy is proposed to demonstrate an engineered oxide hetero-interface of a thin film diode with a high current density and low operating voltage. The electrical characteristics of an oxide hetero-interface thin film diode are governed by two theoretical models: the space charge-limited current model and the Fowler-Nordheim (F-N) tunneling model. Interestingly, the dominant mechanism strongly depends on the insulator thickness, and the mechanism change occurs at a critical thickness. This paper shows that conduction mechanisms of oxide hetero-interface thin film diodes depend on thicknesses of transport oxide layers and that current densities of these can be exponentially increased through quantum tunneling in the diodes with the thicknesses less than 10 nm. These oxide hetero-interface diodes have great potential for low-powered transparent nanoscale applications.
Structural and optical properties of CuS thin films deposited by Thermal co-evaporation
NASA Astrophysics Data System (ADS)
Sahoo, A. K.; Mohanta, P.; Bhattacharyya, A. S.
2015-02-01
Copper sulfide (CuS) thin films with thickness 100, 150 and 200 nm have been deposited on glass substrates by thermal co-evaporation of Copper and Sulphur. The effect of CuS film thickness on the structural and optical properties have investigated and discussed. Structural and optical investigations of the films were carried out by X-ray diffraction, atomic force microscopy, high-resolution transmission electron microscopy and UV spectroscopy. XRD and selected area electron diffraction conforms that polycrystalline in nature with hexagonal crystal structure. AFM studies revealed a smooth surface morphology with root mean-square roughness values increases from 24 nm to 42 nm as the film thickness increase from 100 nm to 200 nm. AFM image showed that grain size increases with thickness of film increases and good agreement with the calculated from full width half maximum of the X-ray diffraction peak using Scherrer's formula and Williamson-Hall plot. The absorbance of the thin films were absorbed decreases with wavelength through UV-visible regions but showed a increasing in the near-infrared regions. The reflectance spectra also showed lower reflectance peak (25% to 32%) in visible region and high reflectance peak (49 % to 54 %) in near-infrared region. These high absorbance films made them for photo-thermal conversion of solar energy.
NASA Astrophysics Data System (ADS)
Gifford, Erika; Wang, Z.; Ramachandran, S.; Heflin, J. R.
2007-09-01
Ionic self-assembled multilayers (ISAMs) adsorbed on long period fiber gratings (LPGs) can serve as an inexpensive, robust, portable, biosensor platform. The ISAM technique is a layer-by-layer deposition technique that creates thin films on the nanoscale level. The combination of ISAMs with LPGs yields exceptional sensitivity of the optical fiber transmission spectrum. We have shown theoretically that the resonant wavelength shift for a thin-film coated LPG can be caused by the variation of the film's refractive index and/or the variation of the thickness of the film. We have experimentally demonstrated that the deposition of nm-thick ISAM films on LPGs induces shifts in the resonant wavelength of > 1.6 nm per nm of thin film. It has also been shown that the sensitivity of the LPG to the thickness of the ISAM film increases with increased film thickness. We have further demonstrated that ISAM-coated LPGs can function effectively as biosensors by using the biotin-streptavidin system and by using the Bacillus anthracis (Anthrax) antibody- PA (Protective Antigen) system. Experiments have been successfully performed in both air and solution, which illustrates the versatility of the biosensor. The results confirm that ISAM-LPGs yield a reusable, thermally-stable, and robust platform for designing and building efficient optical biosensors.
The effect of wet film thickness on VOC emissions from a finishing varnish.
Lee, Shun-Cheng; Kwok, Ngai-Hong; Guo, Hai; Hung, Wing-Tat
2003-01-20
Finishing varnishes, a typical type of oil-based varnishes, are widely used to shine metal, wood trim and cabinet surfaces in Hong Kong. The influence of wet film thickness on volatile organic compound (VOC) emissions from a finishing varnish was studied in an environmental test chamber. The varnish was applied on an aluminium foil with three different wet film thickness (35.2, 69.9 and 107.3 microm). The experimental conditions were 25.0 degrees C, 50.0% relative humidity (RH) with an air exchange rate of 0.5 h(-1). The concentrations of the major VOCs were monitored for the first 10 h. The air samples were collected by canisters and analysed by gas chromatography/mass selective detector (GC/MSD). Six major VOCs including toluene, chlorobenzene, ethylbenzene, m,p-xylene, o-xylene and 1,3,5-trimethylbenzene were identified and quantified. Marked differences were observed for three different film thicknesses. VOC concentrations increased rapidly during the first few hours and then decreased as the emission rates declined. The thicker the wet film, the higher the VOC emissions. A model expression included an exponentially decreasing emission rate of varnish film. The concentration and time data measured in the chamber were used to determine the parameters of empirical emission rate model. The present work confirmed that the film thickness of varnish influenced markedly the concentrations and emissions of VOCs. Copyright 2002 Elsevier Science B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manouchehrian, M.; Larijani, M.M., E-mail: mmojtahedfr@yahooo.com; Elahi, S.M.
Highlights: • Tellurium thin films were prepared by thermal evaporation technique. • Tellurium thin films showed excellent gas-sensing properties to H{sub 2}S at room temperature. • Tellurium showed a remarkably enhanced response to H{sub 2}S gas under UV irradiation. • The reason of the enhanced response by UV irradiation was discussed. - Abstract: In this research, tellurium thin films were investigated for use as hydrogen sulfide gas sensors. To this end, a tellurium thin film has been deposited on Al{sub 2}O{sub 3} substrates by thermal evaporation, and the influence of thickness on the sensitivity of the tellurium thin film formore » measuring H{sub 2}S gas is studied. XRD patterns indicate that as the thickness increases, the crystallization improves. Observing the images obtained by SEM, it is seen that the grain size increases as the thickness increases. Studying the effect of thickness on H{sub 2}S gas measurement, it became obvious that as the thickness increases, the sensitivity decreases and the response and recovery times increase. To improve the response and recovery times of the tellurium thin film for measuring H{sub 2}S gas, the influence of UV radiation while measuring H{sub 2}S gas was also investigated. The results indicate that the response and recovery times strongly decrease using UV radiation.« less
NASA Astrophysics Data System (ADS)
Noack, Timo B.; Musiienko-Shmarova, Halyna Yu; Langner, Thomas; Heussner, Frank; Lauer, Viktor; Heinz, Björn; Bozhko, Dmytro A.; Vasyuchka, Vitaliy I.; Pomyalov, Anna; L’vov, Victor S.; Hillebrands, Burkard; Serga, Alexander A.
2018-06-01
We studied the transient behavior of the spin current generated by the longitudinal spin Seebeck effect (LSSE) in a set of platinum-coated yttrium iron garnet (YIG) films of different thicknesses. The LSSE was induced by means of pulsed microwave heating of the Pt layer and the spin currents were measured electrically using the inverse spin Hall effect in the same layer. We demonstrate that the time evolution of the LSSE is determined by the evolution of the thermal gradient triggering the flux of thermal magnons in the vicinity of the YIG/Pt interface. These magnons move ballistically within the YIG film with a constant group velocity, while their number decays exponentially within an effective propagation length. The ballistic flight of the magnons with energies above 20 K is a result of their almost linear dispersion law, similar to that of acoustic phonons. By fitting the time-dependent LSSE signal for different film thicknesses varying by almost an order of magnitude, we found that the effective propagation length is practically independent of the YIG film thickness. We consider this fact as strong support of a ballistic transport scenario—the ballistic propagation of quasi-acoustic magnons in room temperature YIG.
Microphase separation in thin films of lamellar forming polydisperse di-block copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.
Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less
Microphase separation in thin films of lamellar forming polydisperse di-block copolymers
Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.; ...
2015-02-03
Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less
Microphase separation in thin films of lamellar forming polydisperse di-block copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.
Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this work, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d6 azlactone) (PVDMA-d6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate-monomer and monomer-monomer interactions on the microphase segregation are studied using SCFT. The theoretical study reveals thatmore » in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d6 di-block copolymer deposited on silicon substrates. Finally, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less
Thick Films: Electronic Applications. (Latest citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning the design, development, fabrication, and evaluation of thick film electronic devices. Thick film solar cells, thick films for radiation conduction, deposition processes, conductive inks are among the topics discussed. Applications in military and civilian avionics are examined.
Overlay degradation induced by film stress
NASA Astrophysics Data System (ADS)
Huang, Chi-hao; Liu, Yu-Lin; Luo, Shing-Ann; Yang, Mars; Yang, Elvis; Hung, Yung-Tai; Luoh, Tuung; Yang, T. H.; Chen, K. C.
2017-03-01
The semiconductor industry has continually sought the approaches to produce memory devices with increased memory cells per memory die. One way to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories is 3D stacked flash cell array. In constructing 3D NAND flash memories, increasing the number of stacked layers to build more memory cell number per unit area necessitates many high-aspect-ratio etching processes accordingly the incorporation of thick and unique etching hard-mask scheme has been indispensable. However, the ever increasingly thick requirement on etching hard-mask has made the hard-mask film stress control extremely important for maintaining good process qualities. The residual film stress alters the wafer shape consequently several process impacts have been readily observed across wafer, such as wafer chucking error on scanner, film peeling, materials coating and baking defects, critical dimension (CD) non-uniformity and overlay degradation. This work investigates the overlay and residual order performance indicator (ROPI) degradation coupling with increasingly thick advanced patterning film (APF) etching hard-mask. Various APF films deposited by plasma enhanced chemical vapor deposition (PECVD) method under different deposition temperatures, chemicals combinations, radio frequency powers and chamber pressures were carried out. And -342MPa to +80MPa film stress with different film thicknesses were generated for the overlay performance study. The results revealed the overlay degradation doesn't directly correlate with convex or concave wafer shapes but the magnitude of residual APF film stress, while increasing the APF thickness will worsen the overlay performance and ROPI strongly. High-stress APF film was also observed to enhance the scanner chucking difference and lead to more serious wafer to wafer overlay variation. To reduce the overlay degradation from ever increasingly thick APF etching hard-mask, optimizing the film stress of APF is the most effective way and high order overlay compensation is also helpful.
NASA Astrophysics Data System (ADS)
Poeloengasih, Crescentiana D.; Pranoto, Yudi; Hayati, Septi Nur; Hernawan, Rosyida, Vita T.; Prasetyo, Dwi J.; Jatmiko, Tri H.; Apriyana, Wuri; Suwanto, Andri
2016-02-01
The present work explores the physicochemical characteristics of sugar palm starch film for a potential hard capsule purpose. Sugar palm (Arenga pinnata) starch films were plasticized with glycerol or sorbitol in various concentrations (30% up to 50% w/w starch). Their effects on physicochemical properties of the films were investigated. The results showed that sugar palm starch was successfully developed as the main material of film using casting method. Incorporation of both glycerol or sorbitol affected the properties of films in different ways. It was found that thickness and solubility increased as plasticizer concentration increased, whereas retraction ratio, swelling degree and swelling thickness decreased with the increased plasticizer concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalavagunta, C; Lin, M; Snider, J
Purpose: To quantify the factors leading to thermoplastic mask bolus-associated-increased skin dose in head and neck IMRT/VMAT using EBT2 film. Methods: EBT2 film placed beneath a dual layer 3-point ORFIT head, neck and shoulder mask was used to test the effect of mask thickness, beam modulation, air gap, and beam obliquity on bolus effect. Mask thickness was varied based on the distribution of 1.6mm Orfilight layer on top of 2 mm Efficast layer. Beam modulation was varied by irradiating the film with an open field (no beam modulation) and a step and shoot field (beam modulation). Air gap between maskmore » and film was varied from 0 to 5mm. Beam obliquity was varied by irradiating the film at gantry angles of 0°, 35°, and 70°.Finally, film strips placed on a Rando phantom under an Orfit mask, in regions of expected high dose, were irradiated using 5 IMRT and 5 VMAT plans with various modulation levels (modulation factor 2 to 5) and the results were compared with those obtained placing OSLDs at the same locations. Results: An 18–34% increase in mask bolus effect was observed for three factors where the effect of beam obliquity ≥ beam modulation > mask thickness. No increase in mask bolus effect was observed for change in air gap. A 6–13% increase in dose due to mask bolus effect was observed on film strips. Conclusion: This work underlines the role of beam obliquity and beam modulation combined with thermoplastic mask thickness in increasing mask bolus-associated skin dose in head and neck IMRT/VMAT. One possible method of dose reduction, based on knowledge gained from this work, is inclusion of skin as an avoidance structure in treatment planning. Another approach is to design a mask with the least amount of thermoplastic material necessary for immobilization.« less
NASA Astrophysics Data System (ADS)
Rabbi, Kazi Fazle; Tamim, Saiful Islam; Faisal, A. H. M.; Mukut, K. M.; Hasan, Mohammad Nasim
2017-06-01
This study is a molecular dynamics investigation of phase change phenomena i.e. boiling of thin liquid films subjected to rapid linear heating at the boundary. The purpose of this study is to understand the phase change heat transfer phenomena at nano scale level. In the simulation, a thin film of liquid argon over a platinum surface has been considered. The simulation domain herein is a three-phase system consisting of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system is brought to an equilibrium state at 90 K and then the temperature of the bottom wall is increased to a higher temperature (250K) within a finite time interval. Four different liquid argon film thicknesses have been considered (3 nm, 4 nm, 5 nm and 6 nm) in this study. The boundary heating rate (40×109 K/s) is kept constant in all these cases. Variation in system temperature, pressure, net evaporation number, spatial number density of the argon region with time for different film thickness have been demonstrated and analyzed. The present study indicates that the pattern of phase transition may be significantly different (i.e. evaporation or explosive boiling) depending on the liquid film thickness. Among the four cases considered in the present study, explosive boiling has been observed only for the liquid films of 5nm and 6nm thickness, while for the other cases, evaporation take place.
Chemically synthesis and characterization of MnS thin films by SILAR method
NASA Astrophysics Data System (ADS)
Yıldırım, M. Ali; Yıldırım, Sümeyra Tuna; Cavanmirza, İlke; Ateş, Aytunç
2016-03-01
MnS thin films were synthesized on glass substrates using SILAR method. The film thickness effect on structural, morphological, optical and electrical properties of the films was investigated. The X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) studies showed that all the films exhibited polycrystalline nature with β-MnS structure and were covered well on glass substrates. The bandgap and resistivity values of the films decreased from 3.39 eV to 2.92 eV and from 11.84 × 106 to 2.21 × 105 Ω-cm as the film thickness increased from 180 to 350 nm, respectively. The refractive index (n) and dielectric constants (ɛo, ɛ∞) values were calculated.
Impact resistance performance of diamond film on a curved molybdenum substrate
NASA Astrophysics Data System (ADS)
Chen, Yang; Gou, Li
2017-08-01
Diamond films with different thicknesses were deposited on flat and curved molybdenum substrate by the microwave plasma chemical vapour deposition (MPCVD) method. Scanning electronic microscopy, atomic force microscopy and Raman spectroscopy were employed to characterise the morphology, the surface roughness and the composition of the films, respectively. A NanoTest system was used for hardness, elastic modulus and nanoimpact tests. The curved surface and ductility of the molybdenum substrate allow large deformation for the thinner films. The substrate has less effect on impact for the thicker film, the deformation of which is mainly determined by the film composition. Under a load of 50 mN and 75 cycles, less deformation occurred for the 22 μm thick film on the curved molybdenum substrate.
Temperature-assisted morphological transition in CuPc thin films
NASA Astrophysics Data System (ADS)
Bae, Yu Jeong; Pham, Thi Kim Hang; Kim, Tae Hee
2016-05-01
Ex-situ and in-situ morphological analyses were performed for Cu-phthalocyanine (CuPc) organic semiconductor films by using atomic force microscopy (AFM) and reflection high-energy electron diffraction (RHEED). The focus was the effects of post-annealing on the structural characteristics of CuPc films grown on MgO(001) layers by using an ultra-high-vacuum thermal evaporator. Sphere-to-nanofibril and 2-D to 3-D morphological transitions were observed with increasing CuPc thickness beyond 3 nm. The surface morphology and the crystallinity were drastically improved after an additional cooling of the post-annealed CuPc films thinner than 3 nm. Our results highlight that molecular orientation and structural ordering can be effectively controlled by using different temperature treatments and a proper combination of material, film thickness, and substrate.
Mishima, T; Kao, K C
1982-03-15
New laser interferometry has been developed, based on the principle that a 2-D fringe pattern can be produced by interference of spatially coherent light beams. To avoid the effect of reflection from the back surface of the substrate, the Brewster angle of incidence is adopted; to suppress the effect of diffraction, a lens or a lens system is used. This laser interferometry is an efficient nondestructive technique for the determination of thickness distributions or uniformities of low absorbing films on transparent substrates over a large area without involving laborious computations. The limitation of spatial resolution, thickness resolution, and visibility of fringes is fully analyzed.
Role of Thickness Confinement on Relaxations of the Fast Component in a Miscible A/B Blend
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Peter; Sharma, Ravi P.; Dong, Ban Xuan
Spatial compositional heterogeneity strongly influences the dynamics of the A and B components of bulk miscible blends. Its effects are especially apparent in mixtures, such as poly(vinyl methyl ether) (PVME)/polystyrene (PS), where there exist significant disparities between the component glass transition temperatures (Tgs) and relaxation times. The relaxation processes characterized by distinct temperature dependencies and relaxation rates manifest different local compositional environments for temperatures above and below the glass transition temperature of the miscible blend. This same behavior is shown to exist in miscible PS/PVME films as thin as 100 nm. Moreover, in thin films, the characteristic segmental relaxation timesmore » t of the PVME component of miscible PVME/PS blends confined between aluminum (Al) substrates decrease with increasing molecular weight M of the PS component. These relaxation rates are film thickness dependent, in films up to a few hundred nanometers in thickness. This is in remarkable contrast to homopolymer films, where thickness confinement effects are apparent only on length scales on the order of nanometers. These surprisingly large length scales and M dependence are associated with the preferential interfacial enrichment - wetting layer formation - of the PVME component at the external Al interfaces, which alters the local spatial blend composition within the interior of the film. The implications are that the dynamics of miscible thin film blends are dictated in part by component Tg differences, disparities in component relaxation rates, component-substrate interactions, and chain lengths (entropy of mixing).« less
Synthesis and characterization study of n-Bi2O3/p-Si heterojunction dependence on thickness
NASA Astrophysics Data System (ADS)
Al-Maiyaly, Bushra K. H.; Hussein, Bushra H.; Salih, Ayad A.; Shaban, Auday H.; Mahdi, Shatha H.; Khudayer, Iman H.
2018-05-01
In this work, Bi2O3 was deposited as a thin film of different thickness (400, 500, and 600 ±20 nm) by using thermal oxidation at 573 K with ambient oxygen of evaporated bismuth (Bi) thin films in a vacuum on glass substrate and on Si wafer to produce n-Bi2O3/p-Si heterojunction. The effect of thickness on the structural, electrical, surface and optical properties of Bi2O3 thin films was studied. XRD analysis reveals that all the as deposited Bi2O3 films show polycrystalline tetragonal structure, with preferential orientation in the (201) direction, without any change in structure due to increase of film thickness. AFM and SEM images are used to investigate the influences of film thickness on surface properties. The optical measurement were taken for the wave length range (400-1100) nm showed that the nature of the optical transition has been direct allowed with average band gap energies varies in the range of (2.9-2.25) eV with change thickness parameter. The extent and nature of transmittance, absorbance, reflectance and optimized band gap of the material assure to utilize it for photovoltaic applications. Hall measurements showed that all the films are n-type. The electrical properties of n-Bi2O3/p-Si heterojunction (HJ) were obtained by I-V (dark and illuminated) and C-V measurement at frequency (10 MHz) at different thickness. The ideality factor saturation current density, depletion width, built-in potential and carrier concentration are characterized under different thickness. The results show these HJ were of abrupt type. The photovoltaic measurements short-circuit current density, open-circuit voltage, fill factor and efficiencies are determined for all samples. Finally thermal oxidation allowed fabrication n-Bi2O3/p-Si heterojunction with different thickness for solar cell application.
NASA Astrophysics Data System (ADS)
Kim, Seul-Gi; Hu, Qicheng; Nam, Ki-Bong; Kim, Mun Ja; Yoo, Ji-Beom
2018-04-01
Large-scale graphitic thin film with high thickness uniformity needs to be developed for industrial applications. Graphitic films with thicknesses ranging from 3 to 20 nm have rarely been reported, and achieving the thickness uniformity in that range is a challenging task. In this study, a process for growing 20 nm-thick graphite films on Ni with improved thickness uniformity is demonstrated and compared with the conventional growth process. In the film grown by the process, the surface roughness and coverage were improved and no wrinkles were observed. Observations of the film structure reveal the reasons for the improvements and growth mechanisms.
Versatile technique for assessing thickness of 2D layered materials by XPS
NASA Astrophysics Data System (ADS)
Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C.; Fisher, Timothy S.; Voevodin, Andrey A.
2018-03-01
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.
Versatile technique for assessing thickness of 2D layered materials by XPS
Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; ...
2018-02-07
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) andmore » the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Furthermore, after XPS analysis, exactly the same sample can undergo further processing or utilization.« less
Versatile technique for assessing thickness of 2D layered materials by XPS.
Zemlyanov, Dmitry Y; Jespersen, Michael; Zakharov, Dmitry N; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C; Fisher, Timothy S; Voevodin, Andrey A
2018-03-16
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.
Versatile technique for assessing thickness of 2D layered materials by XPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) andmore » the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Furthermore, after XPS analysis, exactly the same sample can undergo further processing or utilization.« less
zhang, Bangmin; Chen, Jingsheng; Venkatesan, T.; ...
2016-01-28
In this study, the Mn K edge X-ray absorption near edge structure (XANES) of Pr 0.67Sr 0.33MnO 3 films with different thicknesses on (001) LaAlO 3 substrate were measured, and the effects of strain relaxation on film properties were investigated. The films experienced in-plane compressive strain and out-of-plane tensile strain. Strain relaxation evolved with the film thickness. In the polarization dependent XANES measurements, the in-plane (parallel) and out-of-plane (perpendicular) XANES spectrocopies were anisotropic with different absorption energy E r. The resonance energy Er along two directions shifted towards each other with increasing film thickness. Based on the X-ray diffraction results,more » it was suggested that the strain relaxation weakened the difference of the local environment and probability of electronic charge transfer (between Mn 3d and O 2p orbitals) along the in-plane and out-of-plane directions, which was responsible for the change of E r. XANES is a useful tool to probe the electronic structures, of which the effects on magnetic properties with the strain relaxation was also been studied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zayarnyi, D A; Ionin, A A; Kudryashov, S I
Specific features of ablation of a thin silver film with a 1-μm-thick layer of a highly transparent photoresist and the same film without a photoresist layer under single tightly focused femtosecond laser pulses in the visible range (515 nm) are experimentally investigated. Interference effects of internal modification of the photoresist layer, its spallation ablation from the film surface and formation of through hollow submicron channels in the resist without its spallation but with ablation of the silver film lying under the resist are found and discussed. (extreme light fields and their applications)
Computational Study of In-Plane Phonon Transport in Si Thin Films
Wang, Xinjiang; Huang, Baoling
2014-01-01
We have systematically investigated the in-plane thermal transport in Si thin films using an approach based on the first-principles calculations and lattice dynamics. The effects of phonon mode depletion induced by the phonon confinement and the corresponding variation in interphonon scattering, which may be important for the thermal conductivities of ultra-thin films but are often neglected in precedent studies, are considered in this study. The in-plane thermal conductivities of Si thin films with different thicknesses have been predicted over a temperature range from 80 K to 800 K and excellent agreements with experimental results are found. The validities of adopting the bulk phonon properties and gray approximation of surface specularity in thin film studies have been clarified. It is found that in ultra-thin films, while the phonon depletion will reduce the thermal conductivity of Si thin films, its effect is largely offset by the reduction in the interphonon scattering rate. The contributions of different phonon modes to the thermal transport and isotope effects in Si films with different thicknesses under various temperatures are also analyzed. PMID:25228061
Effect of nanoconfinement on the sputter yield in ultrathin polymeric films: Experiments and model
NASA Astrophysics Data System (ADS)
Cristaudo, Vanina; Poleunis, Claude; Delcorte, Arnaud
2018-06-01
This fundamental contribution on secondary ion mass spectrometry (SIMS) polymer depth-profiling by large argon clusters investigates the dependence of the sputter yield volume (Y) on the thickness (d) of ultrathin films as a function of the substrate nature, i.e. hard vs soft. For this purpose, thin films of polystyrene (PS) oligomers (∼4,000 amu) are spin-coated, respectively, onto silicon and poly (methyl methacrylate) supports and, then, bombarded by 10 keV Ar3000+ ions. The investigated thickness ranges from 15 to 230 nm. Additionally, the influence of the polymer molecular weight on Y(d) for PS thin films on Si is explored. The sputtering efficiency is found to be strongly dependent on the overlayer thickness, only in the case of the silicon substrate. A simple phenomenological model is proposed for the description of the thickness influence on the sputtering yield. Molecular dynamics (MD) simulations conducted on amorphous films of polyethylene-like oligomers of increasing thickness (from 2 to 20 nm), under comparable cluster bombardment conditions, predict a significant increase of the sputtering yield for ultrathin layers on hard substrates, induced by energy confinement in the polymer, and support our phenomenological model.
Probing the effects of defects on ferroelectricity in ferroelectric thin films
NASA Astrophysics Data System (ADS)
Zhu, Lin
Ferroelectric materials have been intensively studied due to their interesting properties such as piezoelectricity, ferroelectricity including spontaneous polarization, remnant polarization, hysteresis loop, and etc. In this study, effects of defects, thickness, and temperature on ferroelectric stability, hysteresis loop, and phase transition in ferroelectric thin films have been investigated using molecular dynamics simulations with first-principles effective Hamiltonian. Various types of defects are considered including oxygen vacancy, hydrogen contamination, and dead layer. We first study the effects of oxygen vacancy on ferroelectricity in PbTiO3 (PTO) thin films. An oxygen vacancy has been modeled as a +2q charged point defect which generates local strain and electrostatic fields. Atomic displacements induced by an oxygen vacancy were obtained by first-principles calculations and the corresponding strain field was fitted with elastic continuum model of a point defect. The obtained local strain and electrostatic fields are the inputs to the molecular dynamics (MD) simulations. We limited the oxygen vacancies in the interfacial layers between the film and electrodes. Oxygen vacancies reduce the spontaneous polarization and significantly increase the critical thickness below which the spontaneous polarization disappears. With the presence of oxygen vacancy only at one interface layer, PTO film exhibits asymmetric hysteresis loop which is consistent with experimental observations about the imprint effect. In the heating-up and cooling-down processes, oxygen vacancies weaken the phase transitions, but contribute tension along the thickness direction at high temperature. First-principles calculations are performed to determine the possible position, formation energy, and mobility of the interstitial hydrogen atom, and the calculated results are used as inputs to MD simulations in a large system. The hydrogen atom is able to move within one unit cell with small energy barriers. The energy difference between a hydrogen contaminated PTO and a pure PTO is considered as an energy penalty term induced by hydrogen contamination. Then, the effective Hamiltonian with the energy penalty is employed in MD simulations to investigate the effects of hydrogen contamination on the ferroelectric responses of PTO films. The hysteresis loops are presented and analyzed for PTO films with various concentrations of hydrogen impurities and thicknesses. Hydrogen contamination reduces the remnant polarization, especially for thin films. As the concentration of hydrogen impurities increases, the critical thickness increases. By analyzing the vertical cross section snapshots, it has been found that the hydrogen impurities near interfaces affect the polarization throughout the entire PTO film. To study the effect of the dead layer (depolarization field), the soft modes in the top and bottom layers are constrained to be zero, which gives rise to the reduced polarization and increased critical thickness. Negative capacitance is a new and hot topic, which was recently observed by experiment. It is a transient effect that correlated with depolarization field. Some preliminary results and application of negative capacitance are discussed.
Thermo-Optical Properties of Thin-Film TiO2–Al2O3 Bilayers Fabricated by Atomic Layer Deposition
Ali, Rizwan; Saleem, Muhammad Rizwan; Pääkkönen, Pertti; Honkanen, Seppo
2015-01-01
We investigate the optical and thermo-optical properties of amorphous TiO2–Al2O3 thin-film bilayers fabricated by atomic layer deposition (ALD). Seven samples of TiO2–Al2O3 bilayers are fabricated by growing Al2O3 films of different thicknesses on the surface of TiO2 films of constant thickness (100 nm). Temperature-induced changes in the optical refractive indices of these thin-film bilayers are measured by a variable angle spectroscopic ellipsometer VASE®. The optical data and the thermo-optic coefficients of the films are retrieved and calculated by applying the Cauchy model and the linear fitting regression algorithm, in order to evaluate the surface porosity model of TiO2 films. The effects of TiO2 surface defects on the films’ thermo-optic properties are reduced and modified by depositing ultra-thin ALD-Al2O3 diffusion barrier layers. Increasing the ALD-Al2O3 thickness from 20 nm to 30 nm results in a sign change of the thermo-optic coefficient of the ALD-TiO2. The thermo-optic coefficients of the 100 nm-thick ALD-TiO2 film and 30 nm-thick ALD-Al2O3 film in a bilayer are (0.048 ± 0.134) × 10−4 °C−1 and (0.680 ± 0.313) × 10−4 °C−1, respectively, at a temperature T = 62 °C.
Rotary seal with enhanced lubrication and contaminant flushing
Dietle, Lannie L.
2000-01-01
A resilient, ring shaped interference-type hydrodynamic rotary seal having waves on the lubricant side which provide increased film thickness and flushing action by creating contact pressure induced angulated restrictions formed by abrupt restrictive diverters. The angulated restrictions are defined by projecting ridges, corners at the trailing edge of the waves, or simply by use of a converging shape at the trailing edge of the waves which is more abrupt than the gently converging hydrodynamic inlet shape at the leading edge of the waves. The abrupt restrictive diverter performs two functions; a restricting function and a diverting function. The angulated restrictions cause a local film thickness restriction which produces a damming effect preventing a portion of the lubricant from leaking out of the dynamic sealing interface at the trailing edge of the wave, and results in a much thicker lubricant film thickness under the waves. This contributes to more film thickness in the remainder of the dynamic sealing interface toward the environment because film thickness tends to decay gradually rather than abruptly due to the relative stiffness of the seal material. Because of the angle of the abrupt restrictive diverter relative to the relative rotation direction, in conjunction with the restriction or damming effect, a strong diverting action is produced which pumps lubricant across the dynamic sealing interface toward the environment. The lubricant diversion is caused by the component of the rotational velocity tangent to the abrupt restrictive diverter. The component of rotational velocity normal to the abrupt restrictive diverter causes a portion of the lubricant film to be pumped past the abrupt restrictive diverter, thereby assuring adequate lubrication thereof.
Tong, Yujin; Zhao, Yanbao; Li, Na; Ma, Yunsheng; Osawa, Masatoshi; Davies, Paul B; Ye, Shen
2010-07-21
In this paper, the results of the modeling calculations carried out for predicting the interference effects expected in the sum frequency generation (SFG) spectra of a specific thin-layer system, described in the accompanying paper, are tested by comparing them with the experimental spectra obtained for a real thin-layer film comprising an organic monolayer/variable thickness dielectric layer/gold substrate. In this system, two contributions to the SFG spectra arise, a resonant contribution from the organic film and a nonresonant contribution from the gold substrate. The modeling calculations are in excellent agreement with the experimental spectra over a wide range of thicknesses and for different polarization combinations. The introduction of another resonant monolayer adjacent to the gold substrate and with the molecules having a reverse orientation has a significant affect on the spectral shapes which is predicted. If a dielectric substrate such as CaF(2) is used instead of a gold substrate, only the spectral intensities vary with the film thickness but not the spectral shapes. The counterpropagating beam geometry will change both the thickness dependent spectral shapes and the intensity of different vibrational modes in comparison with a copropagating geometry. The influences of these experimental factors, i.e., the molecular orientational structure in the thin film, the nature of the substrate, and the selected incident beam geometry, on the experimental SFG spectra are quantitatively predicted by the calculations. The thickness effects on the signals from a SFG active monolayer contained in a thin liquid-layer cell of the type frequently used for in situ electrochemical measurements is also discussed. The modeling calculation is also valid for application to other thin-film systems comprising more than two resonant SFG active interfaces by appropriate choice of optical geometries and relevant optical properties.
NASA Astrophysics Data System (ADS)
Hua, Lei; Liu, Jian-hua; Li, Song-mei; Yu, Mei; Wang, Lei; Cui, Yong-xin
2015-03-01
The effects of insoluble eutectic Si particles on the growth of anodic oxide films on ZL114A aluminum alloy substrates were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The anodic oxidation was performed at 25°C and a constant voltage of 15 V in a solution containing 50 g/L sulfuric acid and 10 g/L adipic acid. The thickness of the formed anodic oxidation film was approximately 7.13 μm. The interpore distance and the diameters of the major pores in the porous layer of the film were within the approximate ranges of 10-20 nm and 5-10 nm, respectively. Insoluble eutectic Si particles strongly influenced the morphology of the anodic oxidation films. The anodic oxidation films exhibited minimal defects and a uniform thickness on the ZL114A substrates; in contrast, when the front of the oxide oxidation films encountered eutectic Si particles, defects such as pits and non-uniform thickness were observed, and pits were observed in the films.
Geometry and starvation effects in hydrodynamic lubrication
NASA Technical Reports Server (NTRS)
Brewe, D.; Hamrock, B. J.
1982-01-01
Numerical methods were used to detemine the effects of lubricant starvation on the minimum film thickness under conditions of a hydrodynamic point contact. Starvation was effected by varying the fluid inlet level. The Reynolds boundary conditions were applied at the cavitation boundary and zero pressure was stipulated at the meniscus or inlet boundary. A minimum film thickness equation as a function of both the ratio of dimensionless load to dimensionless speed and inlet supply level was determined. By comparing the film generated under the starved inlet condition with the film generated from the fully flooded inlet, an expression for the film reduction factor was obtained. Based on this factor a starvation threshold was defined as well as a critically starved inlet. The changes in the inlet pressure buildup due to changing the available lubricant supply are presented in the form of three dimensional isometric plots and also in the form of contour plots.
Formation of ultrathin Ni germanides: solid-phase reaction, morphology and texture
NASA Astrophysics Data System (ADS)
van Stiphout, K.; Geenen, F. A.; De Schutter, B.; Santos, N. M.; Miranda, S. M. C.; Joly, V.; Detavernier, C.; Pereira, L. M. C.; Temst, K.; Vantomme, A.
2017-11-01
The solid-phase reaction of ultrathin (⩽10 nm) Ni films with different Ge substrates (single-crystalline (1 0 0), polycrystalline, and amorphous) was studied. As thickness goes down, thin film texture becomes a dominant factor in both the film’s phase formation and morphological evolution. As a consequence, certain metastable microstructures are epitaxially stabilized on crystalline substrates, such as the ɛ-Ni5Ge3 phase or a strained NiGe crystal structure on the single-crystalline substrates. Similarly, the destabilizing effect of axiotaxial texture on the film’s morphology becomes more pronounced as film thicknesses become smaller. These effects are contrasted by the evolution of germanide films on amorphous substrates, on which neither epitaxy nor axiotaxy can form, i.e. none of the (de)stabilizing effects of texture are observed. The crystallization of such amorphous substrates however, drives the film breakup.
Geometry and starvation effects in hydrodynamic lubrication
NASA Technical Reports Server (NTRS)
Brewe, D. E.; Hamrock, B. J.
1982-01-01
Numerical methods were used to determine the effects of lubricant starvation on the minimum film thickness under conditions of a hydrodynamic point contact. Starvation was effected by varying the fluid inlet level. The Reynolds boundary conditions were applied at the cavitation boundary and zero pressure was stipulated at the meniscus or inlet boundary. A minimum-film-thickness equation as a function of both the ratio of dimensionless load to dimensionless speed and inlet supply level was determined. By comparing the film generated under the starved inlet condition with the film generated from the fully flooded inlet, an expression for the film reduction factor was obtained. Based on this factor a starvation threshold was defined as well as a critically starved inlet. The changes in the inlet pressure buildup due to changing the available lubricant supply are presented in the form of three dimensional isometric plots and also in the form of contour plots.
Characterization of corn starch-based edible film incorporated with nutmeg oil nanoemulsion
NASA Astrophysics Data System (ADS)
Aisyah, Y.; Irwanda, L. P.; Haryani, S.; Safriani, N.
2018-05-01
This study aimed to formulate corn starch-based edible films by varying concentrations of nutmeg oil nanoemulsion and glycerol. Furthermore, the resulted edible film was characterized by its mechanical properties and antibacterial activity. The edible films were made using corn starch, nutmeg oil nanoemulsion, and glycerol. Concentrations of nutmeg oil nanoemulsion were 1%, 2%, and 3%, and glycerol were 10%, 20%, and 30%. Results indicated that the increase of nutmeg oil nanoemulsion concentration could increase the film thickness. However, the nutmeg oil had no effect on the film tensile strength and elongation. Glycerol had no effect on the film tensile strength. The best treatment of the corn starch-based film was obtained by adding 1% of nutmeg oil and 30% of glycerol, yielding a tensile strength of 18.73 Kgf/mm2, elongation of 69.44% and thickness of 0.0840. The addition of 1% nutmeg oil nanoemulsion has been able to inhibit the growth of two types of the bacteria tested (Staphylococcus aureus and Escherichia coli).
NASA Astrophysics Data System (ADS)
Beck, Sophie; Sclauzero, Gabriele; Chopra, Uday; Ederer, Claude
2018-02-01
We use density functional theory plus dynamical mean-field theory (DFT+DMFT) to study multiple control parameters for tuning the metal-insulator transition (MIT) in CaVO3 thin films. We focus on separating the effects resulting from substrate-induced epitaxial strain from those related to the reduced thickness of the film. We show that tensile epitaxial strain of around 3%-4% is sufficient to induce a transition to a paramagnetic Mott-insulating phase. This corresponds to the level of strain that could be achieved on a SrTiO3 substrate. Using free-standing slab models, we then demonstrate that reduced film thickness can also cause a MIT in CaVO3, however, only for thicknesses of less than 4 perovskite units. Our calculations indicate that the MIT in such ultrathin films results mainly from a surface-induced crystal-field splitting between the t2 g orbitals, favoring the formation of an orbitally polarized Mott insulator. This surface-induced crystal-field splitting is of the same type as the one resulting from tensile epitaxial strain, and thus the two effects can also cooperate. Furthermore, our calculations confirm an enhancement of correlation effects at the film surface, resulting in a reduced quasiparticle spectral weight in the outermost layer, whereas bulklike properties are recovered within only a few layers away from the surface.
NASA Astrophysics Data System (ADS)
Li, Yi-Shao; Wu, Chun-Yi; Chou, Chia-Hsin; Liao, Chan-Yu; Chuang, Kai-Chi; Luo, Jun-Dao; Li, Wei-Shuo; Cheng, Huang-Chung
2018-06-01
A tetraethyl-orthosilicate (TEOS) capping oxide was deposited by low-pressure chemical vapor deposition (LPCVD) on a 200-nm-thick amorphous Si (a-Si) film as a heat reservoir to improve the crystallinity and surface roughness of polycrystalline silicon (poly-Si) formed by continuous-wave laser crystallization (CLC). The effects of four thicknesses of the capping oxide layer to satisfy an antireflection condition, namely, 90, 270, 450, and 630 nm, were investigated. The largest poly-Si grain size of 2.5 × 20 µm2 could be achieved using a capping oxide layer with an optimal thickness of 450 nm. Moreover, poly-Si nanorod (NR) thin-film transistors (TFTs) fabricated using the aforementioned technique exhibited a superior electron field-effect mobility of 1093.3 cm2 V‑1 s‑1 and an on/off current ratio of 2.53 × 109.
Morphological study of electrophoretically deposited TiO2 film for DSSC application
NASA Astrophysics Data System (ADS)
Patel, Alkesh B.; Patel, K. D.; Soni, S. S.; Sonigara, K. K.
2018-05-01
In the immerging field of eco-friendly and low cost photovoltaic devices, dye sensitized solar cell (DSSC) [1] has been investigated as promising alternative to the conventional silicon-based solar cells. In the DSSC device, photoanode is crucial component that take charge of holding sensitizer on it and inject the electrons from the sensitizer to current collector. Nanoporous TiO2 is the most relevant candidate for the preparation of photoanode in DSSCs. Surface properties, morphology, porosity and thickness of TiO2 film as well as preparation technique determine the performance of device. In the present work we have report the study of an effect of nanoporous anatase titanium dioxide (TiO2) film thickness on DSSC performance. Photoanode TiO2 (P25) film was deposited on conducting substrate by electrophoresis technique (EPD) and film thickness was controlled during deposition by applying different current density for a constant time interval. Thickness and surface morphology of prepared films was studied by SEM and transmittance analysis. The same set of photoanode was utilized in DSSC devices using metal free organic dye sensitizer to evaluate the photovoltaic performance. Devices were characterized through Current-Voltage (I-V) characteristic, electrochemical impedance spectroscopy (EIS) and open circuit voltage decay curves. Dependency of device performance corresponding to TiO2 film thickness is investigated through the lifetime kinetics of electron charge transfer mechanism trough impedance fitting. It is concluded that appropriate thickness along with uniformity and porosity are required to align the dye molecules to respond efficiently the incident light photons.
Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit.
Xi, Peng; Li, Yan; Ge, Xiaojin; Liu, Dandan; Miao, Mingsan
2018-05-01
Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value ( P < 0.01, P < 0.05); high, medium and low doses of nano-silver hydrogel coating film group significantly decreased skin irritation, infection integral value ( P < 0.01, P < 0.05); high, medium and low doses of nano-silver hydrogel coating film significantly reduced film rabbits' scalded skin crusting time ( P < 0.01), significantly shortened the rabbit skin burns from the scab time ( P < 0.01), and significantly improved the treatment of skin diseases in rabbits scald model change ( P < 0.01, P < 0.05). The nano-silver hydrogel coating film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing.
The Effects of Film Thickness and Evaporation Rate on Si-Cu Thin Films for Lithium Ion Batteries.
Polat, B Deniz; Keles, Ozgul
2015-12-01
The reversible cyclability of Si based composite anodes is greatly improved by optimizing the atomic ratio of Si/Cu, the thickness and the evaporation rates of films fabricated by electron beam deposition method. The galvanostatic test results show that 500 nm thick flim, having 10%at. Cu-90%at. Si, deposited with a moderate evaporation rate (10 and 0.9 Å/s for Si and Cu respectively) delivers 2642.37 mAh g(-1) as the first discharge capacity with 76% Coulombic efficiency. 99% of its initial capacity is retained after 20 cycles. The electron conductive pathway and high mechanical tolerance induced by Cu atoms, the low electrical resistivity of the film due to Cu3Si particles, and the homogeneously distributed nano-sized/amorphous particles in the composite thin film could explain this outstanding electrochemical performance of the anode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simoes, A.Z.; Riccardi, C.S.; Cavalcante, L.S.
The film thickness dependence on the ferroelectric properties of lanthanum modified bismuth titanate Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} was investigated. Films with thicknesses ranging from 230 to 404 nm were grown on platinum-coated silicon substrates by the polymeric precursor method. The internal strain is strongly influenced by the film thickness. The morphology of the film changes as the number of layers increases indicating a thickness dependent grain size. The leakage current, remanent polarization and drive voltage were also affected by the film thickness.
Superconductivity devices: Commercial use of space
NASA Technical Reports Server (NTRS)
Haertling, Gene; Hsi, Chi-Shiung; Li, Guang
1992-01-01
High T sub C superconducting thick film were prepared by a screen printing process. Y-based (YBa2Cu3O(7-x) superconducting thick film were printed on 211/Al2O3, SNT/Al2O3, and YSZ substrates. Because of poor adhesion of the superconductor thick films to 211/Al2O3 and SNT/Al2O3 substrates, relatively low T sub C and J sub C values were obtained from the films printed on these substrates. Critical temperatures (T sub C) of YBa2Cu3O(7-x) thick films deposited on 211/Al2O3 and SNT/Al2O3 substrates were about 80 K. The critical current densities (J sub C) of these films were less than 2 A/sq cm. Higher T sub C and J sub C YBa2Cu3O(7-x) thick films were printed on YSZ substrates. A YBa2Cu3O(7-x) thick film with T sub C=86.4 and J sub C= 50.4 A/sq cm was prepared by printing the film on YSZ substrate and firing at 990 C for 10 minutes. Multiple-lead samples were also prepared on the YSZ substrates. The multiple-lead samples showed lower T sub C and/or J sub C values than those of the plain samples. The electrical properties of YBa2Cu3O(7-x) thick films were determined by the microstructures of the films. The YBa2Cu3O(7-x) thick films printed on the YSZ substrates, which had the best properties among the films printed on the three different kinds of substrates, had the highest density and the best particle interconnection. The YBa2Cu3O(7-x) thick films with preferred orientation in (001) direction were obtained on the YSZ substrates. Cracks, which retard the properties of the films, were found from the films deposited on the YSZ substrates. Currently, a MSZ (Magnesium Stabilized Zirconia) substrate, which had higher thermal expansion coefficient than the YSZ substrate, is used as substrate for the YBa2Cu3O(7-x) thick film in order to eliminate the cracks on the film. Bi-based superconductor thick films were printed on polycrystalline MgO and YSZ substrates. Interactions between BSCCO thick films and the YSZ substrates were observed. Various buffer layer materials were applied onto the substrates in order to avoid the interactions between the BSCCO thick films and the ZrO2-based substrates. So far, a BSCCO printed on MgO substrate with T Sub C=89K was obtained. The J sub C of the film was lower than 0.1 A/sq cm by reason of poor interconnectivity of the BSCCO particles.
Wang, Kaishi; Zhang, Fangzhou; Bordia, Rajendra K
2018-03-27
The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young's modulus, on the in-plane stress distribution have also been investigated. 'Thickness-averaged In-plane Stress' (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.
Zhang, Fangzhou; Bordia, Rajendra K.
2018-01-01
The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates. PMID:29584647
Influence of substrate and film thickness on polymer LIPSS formation
NASA Astrophysics Data System (ADS)
Cui, Jing; Nogales, Aurora; Ezquerra, Tiberio A.; Rebollar, Esther
2017-02-01
Here we focus on the influence of both, substrate and film thickness on polymer Laser Induced Periodic Surface Structures (LIPSS) formation in polymer films. For this aim a morphological description of ripples structures generated on spin-coated polystyrene (PS) films by a linearly polarized laser beam with a wavelength of 266 nm is presented. The influence of different parameters on the quality and characteristics of the formed laser-induced periodic surface structures (LIPSS) was investigated. We found that well-ordered LIPSS are formed either on PS films thinner than 200 nm or thicker than 400 nm supported on silicon substrates as well as on thicker free standing films. However less-ordered ripples are formed on silicon supported films with intermediate thicknesses in the range of 200-380 nm. The effect of the thermal and optical properties of the substrate on the quality of LIPSS was analyzed. Differences observed in the fluence and number of pulses needed for the onset of surface morphological modifications is explained considering two main effects which are: (1) The temperature increase on polymer surface induced by the action of cumulative laser irradiation and (2) The differences in thermal conductivity between the polymer and the substrate which strongly affect the heat dissipation generated by irradiation.
Near-failure detonation behavior of vapor-deposited hexanitrostilbene (HNS) films
NASA Astrophysics Data System (ADS)
Knepper, Robert; Wixom, Ryan R.; Marquez, Michael P.; Tappan, Alexander S.
2017-01-01
Hexanitrostilbene (HNS) films were deposited onto polycarbonate substrates using vacuum thermal sublimation. The deposition conditions were varied in order to alter porosity in the films, and the resulting microstructures were quantified by analyzing ion-polished cross-sections using scanning electron microscopy. The effects of these changes in microstructure on detonation velocity and the critical thickness needed to sustain detonation were determined. The polycarbonate substrates also acted as recording plates for detonation experiments, and films near the critical thickness displayed distinct patterns in the dent tracks that indicate instabilities in the detonation front when approaching failure conditions.
Origin of thickness dependence of structural phase transition temperatures in BiFeO 3 thin films
Yang, Yongsoo; Beekman, Christianne; Siemons, Wolter; ...
2016-03-28
In this study, two structural phase transitions are investigated in highly strained BiFeO 3 thin films grown on LaAlO 3 substrates, as a function of film thickness and temperature via synchrotron x-ray diffraction. Both transition temperatures (upon heating: monoclinic MC to monoclinic MA, and MA to tetragonal) decrease as the film becomes thinner. The existence of an interface layer at the film-substrate interface, deduced from half-order peak intensities, contributes to this behavior only for the thinnest samples; at larger thicknesses (above a few nanometers) the temperature dependence can be understood in terms of electrostatic considerations akin to size effects inmore » ferroelectric phase transitions, but observed here for structural phase transitions within the ferroelectric phase and related to the rearrangement rather than the formation of domains. For ultra-thin films, the tetragonal structure is stable at all investigated temperatures (down to 30 K).« less
Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi
2013-04-01
The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.
Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films
NASA Astrophysics Data System (ADS)
Sharma, Vivek; Zhang, Yiran; Yilixiati, Subinuer
Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freely standing thin films. We distinguish nanoscopic rims, mesas and craters, and follow their emergence and growth. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), these topological features involve discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm. These non-flat features result from oscillatory, periodic, supramolecular structural forces that arise in confined fluids, and arise due to complex coupling of hydrodynamic and thermodynamic effects at the nanoscale.
NASA Astrophysics Data System (ADS)
Cao, Zhiqiang; Zhang, Xin
2004-10-01
The structural relaxation of plasma-enhanced chemical-vapor-deposited (PECVD) silane-based silicon oxide films during thermal cycling and annealing has been studied using wafer curvature measurements. These measurements, which determine stress in the amorphous silicon oxide films, are sensitive to both plastic deformation and density changes. A quantitative case study of such changes has been done based upon the experimental results. A microstructure-based mechanism elucidates seams as a source of density change and voids as a source of plastic deformation, accompanied by a viscous flow. This theory was then used to explain a series of experimental results that are related to thermal cycling as well as annealing of PECVD silicon oxide films including stress hysteresis generation and reduction and coefficient of thermal-expansion changes. In particular, the thickness effect was examined; PECVD silicon oxide films with a thickness varying from 1to40μm were studied, as certain demanding applications in microelectromechanical systems require such thick films serving as heat/electrical insulation layers.
Optoelectronic properties and depth profile of charge transport in nanocrystal films
NASA Astrophysics Data System (ADS)
Aigner, Willi; Bienek, Oliver; Desta, Derese; Wiggers, Hartmut; Stutzmann, Martin; Pereira, Rui N.
2017-07-01
We investigate the charge transport in nanocrystal (NC) films using field effect transistors (FETs) of silicon NCs. By studying films with various thicknesses in the dark and under illumination with photons with different penetration depths (UV and red light), we are able to predictably change the spatial distribution of charge carriers across the films' profile. The experimental data are compared with photoinduced charge carrier generation rates computed using finite-difference time-domain (FDTD) simulations complemented with optical measurements. This enables us to understand the optoelectronic properties of NC films and the depth profile dependence of the charge transport properties. From electrical measurements, we extract the total (bulk) photoinduced charge carrier densities (nphoto) and the photoinduced charge carrier densities in the FETs channel (nphoto*). We observe that the values of nphoto and their dependence on film thickness are similar for UV and red light illumination, whereas a significant difference is observed for the values of nphoto*. The dependencies of nphoto and nphoto* on film thickness and illumination wavelength are compared with data from FDTD simulations. Combining experimental data and simulation results, we find that charge carriers in the top rough surface of the films cannot contribute to the macroscopic charge transport. Moreover, we conclude that below the top rough surface of NC films, the efficiency of charge transport, including the charge carrier mobility, is homogeneous across the film thickness. Our work shows that the use of NC films as photoactive layers in applications requiring harvesting of strongly absorbed photons such as photodetectors and photovoltaics demands a very rigorous control over the films' roughness.
Herodotou, Stephania; Treharne, Robert E.; Durose, Ken; Tatlock, Gordon J.; Potter, Richard J.
2015-01-01
Transparent conducting oxides (TCOs), with high optical transparency (≥85%) and low electrical resistivity (10−4 Ω·cm) are used in a wide variety of commercial devices. There is growing interest in replacing conventional TCOs such as indium tin oxide with lower cost, earth abundant materials. In the current study, we dope Zr into thin ZnO films grown by atomic layer deposition (ALD) to target properties of an efficient TCO. The effects of doping (0–10 at.% Zr) were investigated for ~100 nm thick films and the effect of thickness on the properties was investigated for 50–250 nm thick films. The addition of Zr4+ ions acting as electron donors showed reduced resistivity (1.44 × 10−3 Ω·cm), increased carrier density (3.81 × 1020 cm−3), and increased optical gap (3.5 eV) with 4.8 at.% doping. The increase of film thickness to 250 nm reduced the electron carrier/photon scattering leading to a further reduction of resistivity to 7.5 × 10−4 Ω·cm and an average optical transparency in the visible/near infrared (IR) range up to 91%. The improved n-type properties of ZnO: Zr films are promising for TCO applications after reaching the targets for high carrier density (>1020 cm−3), low resistivity in the order of 10−4 Ω·cm and high optical transparency (≥85%). PMID:28793633
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaolin; Zhang, Le; Hao, Xihong, E-mail: xhhao@imust.cn
2015-05-15
Highlights: • High-quality PMN-PT 90/10 RFE thin films were prepared by RF magnetron sputtering. • The maximum discharged density of 31.3 J/cm{sup 3} was obtained in the 750-nm-thick film. • PMN-PT RFE films might be a promising material for energy-storage application. - Abstract: 0.9Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.1PbTiO{sub 3} (PMN-PT 90/10) relaxor ferroelectric thin films with different thicknesses were deposited on the LaNiO{sub 3}/Si (100) by the radio-frequency (RF) magnetron sputtering technique. The effects of thickness and deposition temperature on the microstructure, dielectric properties and the energy-storage performance of the thin films were investigated in detail. X-ray diffraction spectra indicated thatmore » the thin films had crystallized into a pure perovskite phase with a (100)-preferred orientation after annealed at 700 °C. Moreover, all the PMN-PT 90/10 thin films showed the uniform and crack-free surface microstructure. As a result, a larger recoverable energy density of 31.3 J/cm{sup 3} was achieved in the 750-nm-thick film under 2640 kV/cm at room temperature. Thus, PMN-PT 90/10 relaxor thin films are the promising candidate for energy-storage capacitor application.« less
Yuan, Zhongcheng; Yang, Yingguo; Wu, Zhongwei; Bai, Sai; Xu, Weidong; Song, Tao; Gao, Xingyu; Gao, Feng; Sun, Baoquan
2016-12-21
Device performance of organometal halide perovskite solar cells significantly depends on the quality and thickness of perovskite absorber films. However, conventional deposition methods often generate pinholes within ∼300 nm-thick perovskite films, which are detrimental to the large area device manufacture. Here we demonstrated a simple solvent retarding process to deposit uniform pinhole free perovskite films with thicknesses up to ∼800 nm. Solvent evaporation during the retarding process facilitated the components separation in the mixed halide perovskite precursors, and hence the final films exhibited pinhole free morphology and large grain sizes. In addition, the increased precursor concentration after solvent-retarding process led to thick perovskite films. Based on the uniform and thick perovskite films prepared by this convenient process, a champion device efficiency up to 16.8% was achieved. We believe that this simple deposition procedure for high quality perovskite films around micrometer thickness has a great potential in the application of large area perovskite solar cells and other optoelectronic devices.
2013-01-01
GdBa2Cu3O7 − δ (GdBCO) films with different thicknesses from 200 to 2,100 nm are deposited on CeO2/yttria-stabilized zirconia (YSZ)/CeO2-buffered Ni-W substrates by radio-frequency magnetron sputtering. Both the X-ray diffraction and scanning electron microscopy analyses reveal that the a-axis grains appear at the upper layers of the films when the thickness reaches to 1,030 nm. The X-ray photoelectron spectroscopy measurement implies that the oxygen content is insufficient in upper layers beyond 1,030 nm for a thicker film. The Williamson-Hall method is used to observe the variation of film stress with increasing thickness of our films. It is found that the highest residual stresses exist in the thinnest film, while the lowest residual stresses exist in the 1,030-nm-thick film. With further increasing film thickness, the film residual stresses increase again. However, the critical current (Ic) of the GdBCO film first shows a nearly linear increase and then shows a more slowly enhancing to a final stagnation as film thickness increases from 200 to 1,030 nm and then to 2,100 nm. It is concluded that the roughness and stress are not the main reasons which cause the slow or no increase in Ic. Also, the thickness dependency of GdBa2Cu3O7 − δ films on the Ic is attributed to three main factors: a-axis grains, gaps between a-axis grains, and oxygen deficiency for the upper layers of a thick film. PMID:23816137
NASA Astrophysics Data System (ADS)
Jin, Zhenghe; Kumar, Raj; Hunte, Frank; Narayan, Jay; Kim, Ki Wook; North Carolina State University Team
Bi2SexTe3-x topological insulator thin films were grown on Al2O3 (0001) substrate by pulsed laser deposition (PLD). XRD and other structural characterization measurements confirm the growth of the textured Bi2SexTe3-x thin films on Al2O3 substrate. The magneto-transport properties of thick and thin Þlms were investigated to study the effect of thickness on the topological insulator properties of the Bi2SexTe3 - x films. A pronounced semiconducting behavior with a highly insulating ground state was observed in the resistivity vs. temperature data. The presence of the weak anti-localization (WAL) effect with a sharp cusp in the magnetoresistance measurements confirms the 2-D surface transport originating from the TSS in Bi2SexTe3-x TI films. A high fraction of surface transport is observed in the Bi2SexTe3-x TI thin films which decreases in Bi2SexTe3-x TI thick films. The Cosine (θ) dependence of the WAL effect supports the observation of a high proportion of 2-D surface state contribution to overall transport properties of the Bi2SexTe3-x TI thin films. Our results show promise that high quality Bi2SexTe3-x TI thin films with significant surface transport can be grown by PLD method to exploit the exotic properties of the surface transport in future generation spintronic devices. This work was supported, in part, by National Science Foundation ECCS-1306400 and FAME.
Magnetic properties influenced by interfaces in ultrathin Co/Ge(1 0 0) and Co/Ge(1 1 1) films
NASA Astrophysics Data System (ADS)
Tsay, J. S.; Yao, Y. D.; Cheng, W. C.; Tseng, T. K.; Wang, K. C.; Yang, C. S.
2003-10-01
Magnetic properties influenced by interfaces in ultrathin Co/Ge(1 0 0) and Co/Ge(1 1 1) films with thickness below 28 monolayers (ML) have been studied using the surface magneto-optic Kerr effect (SMOKE) technique. In both systems, the nonferromagnetic layer, as an interface between Co and Ge, plays an important role during annealing. In general, ultrathin Co films with fixed total thickness but fabricated at different temperatures on the same substrate, their Kerr hysteresis loops disappear roughly at the same temperature. This suggests that the thickness of the interfacial layer could inversely prevent the diffusion between Co and Ge substrate. From the annealing studies for both systems with total film thickness of 28 monolayers, we have found that Kerr signal disappears at 375 K for Co/Ge(1 1 1) and 425 K for Co/Ge(1 0 0) films. This suggests that Co/Ge(1 1 1) films possess a lower thermal stability than that of the Co/Ge(1 0 0) films. Our experimental data could be explained by different interfacial condition between Ge(1 0 0) and Ge(1 1 1), the different onset of interdiffusion, and the surface structure condition of Ge(1 0 0) and Ge(1 1 1).
Water drop impact onto oil covered solid surfaces
NASA Astrophysics Data System (ADS)
Chen, Ningli; Chen, Huanchen; Amirfazli, Alidad
2016-11-01
Droplet impact onto an oily surface can be encountered routinely in industrial applications; e.g., in spray cooling. It is not clear from literature what impact an oil film may have on the impact process. In this work, water drop impact onto both hydrophobic (glass) and hydrophilic (OTS) substrates which were covered by oil films (silicone) of different thickness (5um-50um) and viscosity (5cst-100cst) were performed. The effects of drop impact velocity, film thickness, and viscosity of the oil film and wettability of the substrate were studied. Our results show that when the film viscosity and impact velocity is low, the water drop deformed into the usual disk shape after impact, and rebounded from the surface. Such rebound phenomena disappears, when the viscosity of oil becomes very large. With the increase of the impact velocity, crown and splashing appears in the spreading phase. The crown and splashing behavior appears more easily with the increase of film thickness and decrease of its viscosity. It was also found that the substrate wettability can only affect the impact process in cases which drop has a large Webber number (We = 594), and the film's viscosity and thickness are small. This work was support by National Natural Science Foundation of China and the Project Number is 51506084.
Optical constants of SrF 2 thin films in the 25-780-eV spectral range
Rodriguez-de Marcos, Luis; Larraguert, Juan I.; Aznarez, Jose A.; ...
2013-04-08
The transmittance and the optical constants of SrF 2 thin films, a candidate material for multilayer coatings operating in the extreme ultraviolet and soft x-rays, have been determined in the spectral range of 25–780 eV, in most of which no experimental data were previously available. SrF 2 films of various thicknesses were deposited by evaporation onto room-temperature, thin Al support films, and their transmittance was measured with synchrotron radiation. The transmittance as a function of film thickness was used to calculate the extinction coefficient k at each photon energy. A decrease in density with increasing SrF 2 film thickness wasmore » observed. In the calculation of k, this effect was circumvented by fitting the transmittance versus the product of thickness and density. The real part of the refractive index of SrF 2 films was calculated from k with Kramers-Krönig analysis, for which the measured spectral range was extended both to lower and to higher photon energies with data in the literature combined with interpolations and extrapolations. In conclusion, with the application of f- and inertial sum rules, the consistency of the compiled data was found to be excellent.« less
O'Brien, Daniel B; Massari, Aaron M
2015-01-14
In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.
Effect of surface oxidation on emissivity properties of pure aluminum in the near infrared region
NASA Astrophysics Data System (ADS)
Zhang, Kaihua; Yu, Kun; Liu, Yufang; Zhao, Yuejin
2017-08-01
Emissivity is a basic thermo physical property of materials and determines the precision of radiation thermometry. The aim of this paper is to study the effect of surface oxidation on the infrared emissivity properties of pure aluminum. The emissivity data presented in this study covers the spectral range between 0.8 and 2.2 µm and temperatures from 473 to 873 K. The samples with different oxidation time were prepared under a controlled environment. The morphology and composition of the samples were characterized by metallographic microscope and XRD techniques before and after oxidation. The thickness of oxide film with different oxidation time was accurately measured by spectroscopic ellipsometer and a parabolic growth was found. In addition, the interference model of an oxidized metal substrate is established to explain the influence of the oxide film thickness on the emissivity. The thickness of oxide film when the interference effect occurs was calculated according to the interference model. The data shows that the maximum value measured was less than the thickness value at the first order constructive interference. Neither peaks nor valleys were observed in emissivity measurements with different oxidation time at 873 K, which could be related to the thin oxide film on sample surface.
Superconducting properties of nano-sized SiO2 added YBCO thick film on Ag substrate
NASA Astrophysics Data System (ADS)
Almessiere, Munirah Abdullah; Al-Otaibi, Amal lafy; Azzouz, Faten Ben
2017-10-01
The microstructure and the flux pinning capability of SiO2-added YBa2Cu3Oy thick films on Ag substrates were investigated. A series of YBa2Cu3Oy thick films with small amounts (0-0.5 wt%) of nano-sized SiO2 particles (12 nm) was prepared. The thicknesses of the prepared thick films was approximately 100 µm. Phase analysis by x-ray diffraction and microstructure examination by scanning electron microscopy were performed and the critical current density dependence on the applied magnetic field Jc(H) and electrical resistivity ρ(T) were investigated. The magnetic field and temperature dependence of the critical current density (Jc) was calculated from magnetization measurements using Bean's critical state model. The results showed that the addition of a small amount (≤0.02 wt%) of SiO2 was effective in enhancing the critical current densities in the applied magnetic field. The sample with 0.01 wt% of added SiO2 exhibited a superconducting characteristics under an applied magnetic field for a temperature ranging from 10 to 77 K.
NASA Astrophysics Data System (ADS)
Qin, Chuan; Chen, Shuhan; Cai, Yunjiao; Kandaz, Fatih; Ji, Yi
2017-10-01
Spin accumulation generated by the anomalous Hall effect (AHE) in mesoscopic ferromagnetic N i81F e19 (permalloy, Py) films is detected electrically by a nonlocal method. The reciprocal phenomenon, the inverse spin Hall effect (ISHE), can also be generated and detected all electrically in the same structure. For accurate quantitative analysis, a series of nonlocal AHE/ISHE structures and supplementary structures are fabricated on each sample substrate to account for statistical variations and to accurately determine all essential physical parameters in situ. By exploring Py thicknesses of 4, 8, and 12 nm, the Py spin diffusion length λPy is found to be much shorter than the film thicknesses. The product of λPy and the Py spin Hall angle αSH is determined to be independent of thickness and resistivity: αSHλPy=(0.066 ±0.009 ) nm at 5 K and (0.041 ±0.010 )nm at 295 K. These values are comparable to those obtained from mesoscopic Pt films.
Characterization of casein and poly-l-arginine multilayer films
NASA Astrophysics Data System (ADS)
Szyk-Warszyńska, Lilianna; Kilan, Katarzyna; Socha, Robert P.
2014-06-01
Thin films containing casein appear to be a promising material for coatings used in the medical area to promote biomineralization. alfa- and beta-casein and poly-L-arginine multilayer films were formed by the layer-by layer technique and their thickness and mass were analyzed by ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D). We investigated the effect of the type of casein used for the film formation and of the polyethyleneimine anchoring layer on the thickness and mass of adsorbed films. The analysis of the mass of films during their post-treatment with the solutions of various ionic strength and pH provided the information concerning films stability, while the XPS elemental analysis confirmed binding of calcium ions by the casein embedded in the multilayers.
García-Rodríguez, Rodrigo; Villanueva-Cab, Julio; Anta, Juan A.; Oskam, Gerko
2016-01-01
The influence of the thickness of the nanostructured, mesoporous TiO2 film on several parameters determining the performance of a dye-sensitized solar cell is investigated both experimentally and theoretically. We pay special attention to the effect of the exchange current density in the dark, and we compare the values obtained by steady state measurements with values extracted from small perturbation techniques. We also evaluate the influence of exchange current density, the solar cell ideality factor, and the effective absorption coefficient of the cell on the optimal film thickness. The results show that the exchange current density in the dark is proportional to the TiO2 film thickness, however, the effective absorption coefficient is the parameter that ultimately defines the ideal thickness. We illustrate the importance of the exchange current density in the dark on the determination of the current–voltage characteristics and we show how an important improvement of the cell performance can be achieved by decreasing values of the total series resistance and the exchange current density in the dark. PMID:28787833
Molecular beam epitaxy of large-area SnSe2 with monolayer thickness fluctuation
NASA Astrophysics Data System (ADS)
Park, Young Woon; Jerng, Sahng-Kyoon; Jeon, Jae Ho; Roy, Sanjib Baran; Akbar, Kamran; Kim, Jeong; Sim, Yumin; Seong, Maeng-Je; Kim, Jung Hwa; Lee, Zonghoon; Kim, Minju; Yi, Yeonjin; Kim, Jinwoo; Noh, Do Young; Chun, Seung-Hyun
2017-03-01
The interest in layered materials is largely based on the expectation that they will be beneficial for a variety of applications, from low-power-consuming, wearable electronics to energy harvesting. However, the properties of layered materials are highly dependent on thickness, and the difficulty of controlling thickness over a large area has been a bottleneck for commercial applications. Here, we report layer-by-layer growth of SnSe2, a layered semiconducting material, via van der Waals epitaxy. The films were fabricated on insulating mica substrates with substrate temperatures in the range of 210 °C-370 °C. The surface consists of a mixture of N and (N ± 1) layers, showing that the thickness of the film can be defined with monolayer accuracy (±0.6 nm). High-resolution transmission electron microscopy reveals a polycrystalline film with a grain size of ˜100 nm and clear Moiré patterns from overlapped grains with similar thickness. We also report field effect mobility values of 3.7 cm2 V-1 s-1 and 6.7 cm2 V-1 s-1 for 11 and 22 nm thick SnSe2, respectively. SnSe2 films with customizable thickness can provide valuable platforms for industry and academic researchers to fully exploit the potential of layered materials.
Progress in thin-film silicon solar cells based on photonic-crystal structures
NASA Astrophysics Data System (ADS)
Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu
2018-06-01
We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.
Ryu, Jungho; Han, Guifang; Lee, Jong-Pil; Lim, Dong-Soo; Park, Yun-Soo; Jeong, Dae-Yong
2013-05-01
Spinel structured highly dense NiMn2O4-based (NMO) negative temperature coefficient (NTC) thermistor thick films were fabricated by aerosol-deposition at room temperature. To enhance the thermistor B constant, which represents the temperature sensitivity of the NMO thermistor material, Co and Co-Fe doping was applied. In the case of single element doping of Co, 5 mol% doped NMO showed a high B constant of over 5000 K, while undoped NMO showed -4000 K. By doping Fe to the 5 mol% Co doped NMO, the B constant was more enhanced at over 5600 K. The aging effect on the NTC characteristics of Co doped and Fe-Co co-doped NMO thick film showed very stable resistivity-time characteristics because of the highly dense microstructure.
The application of the barrier-type anodic oxidation method to thickness testing of aluminum films
NASA Astrophysics Data System (ADS)
Chen, Jianwen; Yao, Manwen; Xiao, Ruihua; Yang, Pengfei; Hu, Baofu; Yao, Xi
2014-09-01
The thickness of the active metal oxide film formed from a barrier-type anodizing process is directly proportional to its formation voltage. The thickness of the consumed portion of the metal film is also corresponding to the formation voltage. This principle can be applied to the thickness test of the metal films. If the metal film is growing on a dielectric substrate, when the metal film is exhausted in an anodizing process, because of the high electrical resistance of the formed oxide film, a sudden increase of the recorded voltage during the anodizing process would occur. Then, the thickness of the metal film can be determined from this voltage. As an example, aluminum films are tested and discussed in this work. This method is quite simple and is easy to perform with high precision.
Magnetoelastic Properties of Magnetic Thin Films Using the Magnetooptic Kerr Effect
NASA Astrophysics Data System (ADS)
Mayo, Elizabeth; Lederman, David
1998-03-01
The magnetoelastic properties of Co and Fe thin films were measured using the magnetooptic Kerr effect (MOKE). Films were grown via magnetron sputtering on thin mica substrates. Magnetization loops were measured using MOKE with the magnetic field along different in-plane directions. Subsequently, the samples were mounted on a cylindrical sample holder, which imposed a well-defined strain to the film. This caused the magnetization loops to change dramatically due to the magnetoelastic coefficient of the thin film materials. The effects of the surface roughness and film thickness will also be discussed.
Shear rheological characterization of motor oils
NASA Technical Reports Server (NTRS)
Bair, Scott; Winer, Ward O.
1988-01-01
Measurements of high pressure viscosity, traction coefficient, and EHD film thickness were performed on twelve commercial automotive engine oils, a reference oil, two unformulated base oils and two unformated base oil and polymer blends. An effective high shear rate inlet viscosity was calculated from film thickness and pressure viscosity coefficient. The difference between measured and effective viscosity is a function of the polymer type and concentration. Traction measurements did not discriminate mileage formulated oils from those not so designated.
System for measuring film thickness
Batishko, Charles R.; Kirihara, Leslie J.; Peters, Timothy J.; Rasmussen, Donald E.
1990-01-01
A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirigian, Stephen, E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com
2015-12-28
We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made formore » how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.« less
Mirigian, Stephen; Schweizer, Kenneth S
2015-12-28
We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.
C-axis orientated AlN films deposited using deep oscillation magnetron sputtering
NASA Astrophysics Data System (ADS)
Lin, Jianliang; Chistyakov, Roman
2017-02-01
Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevapuram, Nikhila; Mitra, Indranil; Sridhar, Shyam
Thin films of lamellar poly(styrene-b-methyl methacrylate) (PS-PMMA) block copolymers are widely investigated for surface patterning. These materials can generate dense arrays of nanoscale lines when the lamellar domains are oriented perpendicular to the substrate. To stabilize this preferred domain orientation, we tuned the substrate surface energy using oxidation of hydrophobic silane coatings. This simple approach is effective for a broad range of PS-PMMA film thicknesses when the oxidation time is optimized, which demonstrates that the substrate coating is energetically neutral with respect to PS and PMMA segments. The lamellar films are characterized by high densities of defects that exhibit amore » strong dependence on film thickness: in-plane topological defects disrupt the lateral order in ultrathin films, while lamellar domains in thick films can bend and tilt to large misorientation angles. As a result, the types and densities of these defects are similar to those observed with other classes of neutral substrate coatings, such as random copolymer brushes, which demonstrates that oxidized silanes can be used to control PS-PMMA self assembly in thin films.« less
Ordering of lamellar block copolymers on oxidized silane coatings
Mahadevapuram, Nikhila; Mitra, Indranil; Sridhar, Shyam; ...
2016-01-02
Thin films of lamellar poly(styrene-b-methyl methacrylate) (PS-PMMA) block copolymers are widely investigated for surface patterning. These materials can generate dense arrays of nanoscale lines when the lamellar domains are oriented perpendicular to the substrate. To stabilize this preferred domain orientation, we tuned the substrate surface energy using oxidation of hydrophobic silane coatings. This simple approach is effective for a broad range of PS-PMMA film thicknesses when the oxidation time is optimized, which demonstrates that the substrate coating is energetically neutral with respect to PS and PMMA segments. The lamellar films are characterized by high densities of defects that exhibit amore » strong dependence on film thickness: in-plane topological defects disrupt the lateral order in ultrathin films, while lamellar domains in thick films can bend and tilt to large misorientation angles. As a result, the types and densities of these defects are similar to those observed with other classes of neutral substrate coatings, such as random copolymer brushes, which demonstrates that oxidized silanes can be used to control PS-PMMA self assembly in thin films.« less
Sensitive determination of the Young's modulus of thin films by polymeric microcantilevers
NASA Astrophysics Data System (ADS)
Colombi, Paolo; Bergese, Paolo; Bontempi, Elza; Borgese, Laura; Federici, Stefania; Sylvest Keller, Stephan; Boisen, Anja; Eleonora Depero, Laura
2013-12-01
A method for the highly sensitive determination of the Young's modulus of TiO2 thin films exploiting the resonant frequency shift of a SU-8 polymer microcantilever (MC) is presented. Amorphous TiO2 films with different thickness ranging from 10 to 125 nm were grown at low temperature (90 °C) with subnanometer thickness resolution on SU-8 MC arrays by means of atomic layer deposition. The resonant frequencies of the MCs were measured before and after coating and the elastic moduli of the films were determined by a theoretical model developed for this purpose. The Young's modulus of thicker TiO2 films (>75 nm) was estimated to be about 110 GPa, this value being consistent with the value of amorphous TiO2. On the other hand we observed a marked decrease of the Young's modulus for TiO2 films with a thickness below 50 nm. This behavior was found not to be related to a decrease of the film mass density, but to surface effects according to theoretical predictions on size-dependent mechanical properties of nano- and microstructures.
Kaewprachu, Pimonpan; Osako, Kazufumi; Benjakul, Soottawat; Rawdkuen, Saroat
2016-04-01
The effect of protein concentrations on the properties of fish myofibrillar protein film (FMP) were investigated and compared with commercial wrap film (polyvinyl chloride; PVC). FMP (2 %, w/v) showed the highest mechanical properties [tensile strength: 4.38 MPa and elongation at break: 133.05 %], and water vapor permeability [2.81 × 10(-10) g m(-1) s(-1) Pa(-1)]. FMP contained high molecular weight cross-links, resulting in complex film network, as indicated by lower film solubility (19-22 %) and protein solubility (0.6-1.3 %). FMP showed excellent barrier properties to UV light at the wavelength of 200-280 nm. FMP had the thickness [0.007-0.032 mm], color attributes and transparency similar to PVC film [thickness: 0.010 mm]. Therefore, protein concentration majority influenced the properties of develop FMP. The protein content of 1 % (w/v) had potential to be developed the biodegradable film with comparable properties to the commercial wrap film.
Droplet size effects on film drainage between droplet and substrate.
Steinhaus, Benjamin; Spicer, Patrick T; Shen, Amy Q
2006-06-06
When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.
Strain relaxation in nm-thick Cu and Cu-alloy films bonded to a rigid substrate
NASA Astrophysics Data System (ADS)
Herrmann, Ashley Ann Elizabeth
In the wide scope of modern technology, nm-thick metallic films are increasingly used as lubrication layers, optical coatings, plating seeds, diffusion barriers, adhesion layers, metal contacts, reaction catalyzers, etc. A prominent example is the use of nm-thick Cu films as electroplating seed layers in the manufacturing of integrated circuits (ICs). These high density circuits are linked by on-chip copper interconnects, which are manufactured by filling Cu into narrow trenches by electroplating. The Cu fill by electroplating requires a thin Cu seed deposited onto high-aspect-ratio trenches. In modern ICs, these trenches are approaching 10 nm or less in width, and the seed layers less than 1 nm in thickness. Since nm-thick Cu seed layers are prone to agglomeration or delamination, achieving uniform, stable and highly-conductive ultra-thin seeds has become a major manufacturing challenge. A fundamental understanding of the strain behavior and thermal stability of nm-thick metal films adhered to a rigid substrate is thus critically needed. In this study, we focus on understanding the deformation modes of nm-thick Cu and Cu-alloy films bonded to a rigid Si substrate and under compressive stress. The strengthening of Cu films through alloying is also studied. In-situ transport measurements are used to monitor the deformation of such films as they are heated from room temperature to 400 °C. Ex-situ AFM is then used to help characterize the mode of strain relaxation. The relaxation modes are known to be sensitive to the wetting and adhesive properties of the film-substrate interface. We use four different liners (Ta, Ru, Mo and Co), interposed between the film and substrate to provide a wide range of interfacial properties to study their effect on the film's thermal stability. Our measurements indicate that when the film/liner interfacial energy is low, grain growth is the dominant relaxation mechanism. As the interface energy increases, grain growth is suppressed, and the strain is relaxed through hillock/island formation instead. The kinetics-limiting parameters for these relaxation modes are identified and used to simulate their kinetics, and a deformation map is then constructed to delineate the conditions under which each mode would prevail. Such a deformation map would prove useful when one seeks to optimize the thermal stability or other mechanical properties in any ultra-thin film system.
Flow visualization of discrete hole film cooling for gas turbine applications
NASA Technical Reports Server (NTRS)
Colladay, R. S.; Russell, L. M.
1975-01-01
Film injection from discrete holes in a three row staggered array with 5-diameter spacing is studied. The boundary layer thickness-to-hole diameter ratio and Reynolds number are typical of gas turbine film cooling applications. Two different injection locations are studied to evaluate the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air are obtained by photographing neutrally buoyant helium filled soap bubbles which follow the flow field. The bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their origin. Visualization of surface temperature patterns obtained from infrared photographs of a similar film cooled surface are also included.
NASA Astrophysics Data System (ADS)
Shinbo, Kazunari; Uno, Akihiro; Hirakawa, Ryo; Baba, Akira; Ohdaira, Yasuo; Kato, Keizo; Kaneko, Futao
2013-05-01
In this study, we fabricated a novel quartz-crystal-microbalance (QCM)/optical-waveguide hybrid sensor. An in situ observation of a lead phthalocyanine (PbPc) thin-film deposition was conducted during vacuum evaporation, and the effectiveness of the sensor was demonstrated. The film thickness was obtained from the QCM frequency, and the optical absorption of the film was observed by optical waveguide spectroscopy using part of the QCM substrate without the electrode. The film absorption depends on the polarization direction, substrate temperature and deposition rate, owing to aggregate formation. The thickness dependence of the absorption property was also investigated.
Research on the thickness control method of workbench oil film based on theoretical model
NASA Astrophysics Data System (ADS)
Pei, Tang; Lin, Lin; Liu, Ge; Yu, Liping; Xu, Zhen; Zhao, Di
2018-06-01
To improve the thickness adjustability of the workbench oil film, we designed a software system to control the thickness of oil film based on the Siemens 840dsl CNC system and set up an experimental platform. A regulation scheme of oil film thickness based on theoretical model is proposed, the accuracy and feasibility of which is proved by experiment results. It's verified that the method mentioned above can meet the demands of workbench oil film thickness control, the experiment is simple and efficient with high control precision. Reliable theory support is supplied for the development of workbench oil film active control system as well.
Effect of Indium nano-sandwiching on the structural and optical performance of ZnSe films
NASA Astrophysics Data System (ADS)
Al Garni, S. E.; Qasrawi, A. F.
In the current study, we attempted to explore the effects of the Indium nanosandwiching on the mechanical and optical properties of the physically evaporated ZnSe thin films by means of X-ray diffractions and ultraviolet spectrophotometry techniques. While the thickness of each layer of ZnSe was fixed at 1.0 μm, the thickness of the nanosandwiched Indium thin films was varied in the range of 25-100 nm. It was observed that the as grown ZnSe films exhibits cubic and hexagonal nature of crystallization as those of the ZnSe powders before the film deposition. The cubic phases weighs ∼70% of the structure. The analysis of this phases revealed that there is a systematic variation process presented by the decreasing of; the lattice constant, compressing strain, stress, stacking faults and dislocation intensity and increasing grain size resulted from increasing the Indium layer thickness in the range of 50-100 nm. In addition, the nanosandwiching of Indium between two layers of ZnSe is observed to enhance the absorbability of the ZnSe. Particularly, at incident photon energy of 2.38 eV the absorbability of the ZnSe films which are sandwiched with 100 nm Indium is increased by 13.8 times. Moreover, increasing the thickness of the Indium layer shrinks the optical energy band gap. These systematic variations in mechanical and optical properties are assigned to the better recrystallization process that is associated with Indium insertion which in turn allows total internal energy redistribution in the ZnSe films through the enlargement of grains.
Graphene based resonance structure to enhance the optical pressure between two planar surfaces.
Hassanzadeh, Abdollah; Azami, Darya
2015-12-28
To enhance the optical pressure on a thin dielectric sample, a resonance structure using graphene layers coated over a metal film on a high index prism sputtered with MgF2 was theoretically analyzed. The number of graphene layers and the thicknesses of metal and MgF2 films were optimized to achieve the highest optical pressure on the sample. Effects of three different types of metals on the optical pressure were investigated numerically. In addition, simulations were carried out for samples with various thicknesses. Our numerical results show that the optical pressure increased by more than five orders of magnitude compared to the conventional metal-film-base resonance structure. The highest optical pressure was obtained for 10 layers of graphene deposited on 29-nm thick Au film and 650 nm thickness of MgF2 at 633nm wavelength, The proposed graphene based resonance structure can open new possibilities for optical tweezers, nanomechnical devices and surface plasmon based sensing and imaging techniques.
Properties of thin silver films with different thickness
NASA Astrophysics Data System (ADS)
Zhao, Pei; Su, Weitao; Wang, Reng; Xu, Xiaofeng; Zhang, Fengshan
2009-01-01
In order to investigate optical properties of silver films with different film thickness, multilayer composed of thin silver film sandwiched between ZnS films are sputtered on the float glass. The crystal structures, optical and electrical properties of films are characterized by various techniques, such as X-ray diffraction (XRD), spectrum analysis, etc. The optical constants of thin silver film are calculated by fitting the transmittance ( T) and reflectance ( R) spectrum of the multilayer. Electrical and optical properties of silver films thinner than 6.2 nm exhibit sharp change. However, variation becomes slow as film thickness is larger than 6.2 nm. The experimental results indicate that 6.2 nm is the optimum thickness for properties of silver.
Magnetoelectric effect in Cr2O3 thin films
NASA Astrophysics Data System (ADS)
He, Xi; Wang, Yi; Sahoo, Sarbeswar; Binek, Christian
2008-03-01
Magnetoelectric materials experienced a recent revival as promising components of novel spintronic devices [1, 2, 3]. Since the magnetoelectric (ME) effect is relativistically small in traditional antiferromagnetic compounds like Cr2O3 (max. αzz 4ps/m ) and also cross- coupling between ferroic order parameters is typically small in the modern multiferroics, it is a challenge to electrically induce sufficient magnetization required for the envisioned device applications. A straightforward approach is to increase the electric field at constant voltage by reducing the thickness of the ME material to thin films of a few nm. Since magnetism is known to be affected by geometrical confinement thickness dependence of the ME effect in thin film Cr2O3 is expected. We grow (111) textured Cr2O3 films with various thicknesses below 500 nm and study the ME effect for various ME annealing conditions as a function of temperature with the help of Kerr-magnetometry. [1] P. Borisov et al. Phys. Rev. Lett. 94, 117203 (2005). [2] Ch. Binek, B.Doudin, J. Phys. Condens. Matter 17, L39 (2005). [3] R. Ramesh and Nicola A. Spaldin 2007 Nature Materials 6 21.
Epitaxially influenced boundary layer model for size effect in thin metallic films
NASA Astrophysics Data System (ADS)
Bažant, Zdeněk P.; Guo, Zaoyang; Espinosa, Horacio D.; Zhu, Yong; Peng, Bei
2005-04-01
It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films.
NASA Astrophysics Data System (ADS)
Gopalan, Sundararaman; Ramesh, Sivaramakrishnan; Dutta, Shibesh; Virajit Garbhapu, Venkata
2018-02-01
It is well known that Hf-based dielectrics have replaced the traditional SiO2 and SiON as gate dielectric materials for conventional CMOS devices. By using thicker high-k materials such as HfO2 rather than ultra-thin SiO2, we can bring down leakage current densities in MOS devices to acceptable levels. HfO2 is also one of the potential candidates as a blocking dielectric for Flash memory applications for the same reason. In this study, effects of substrate heating and oxygen flow rate while depositing HfO2 thin films using CVD and effects of post deposition annealing on the physical and electrical characteristics of HfO2 thin films are presented. It was observed that substrate heating during deposition helps improve the density and electrical characteristics of the films. At higher substrate temperature, Vfb moved closer to zero and also resulted in significant reduction in hysteresis. Higher O2 flow rates may improve capacitance, but also results in slightly higher leakage. The effect of PDA depended on film thickness and O2 PDA improved characteristics only for thick films. For thinner films forming gas anneal resulted in better electrical characteristics.
Measurement of oil film thickness for application to elastomeric Stirling engine rod seals
NASA Technical Reports Server (NTRS)
Krauter, A. I.
1981-01-01
The rod seal in the Stirling engine has the function of separating high pressure gas from low or ambient pressure oil. An experimental apparatus was designed to measure the oil film thickness distribution for an elastomeric seal in a reciprocating application. Tests were conducted on commercial elastomeric seals having a 76 mm rod and a 3.8 mm axial width. Test conditions included 70 and 90 seal durometers, a sliding velocity of 0.8 m/sec, and a zero pressure gradient across the seal. An acrylic cylinder and a typical synthetic base automotive lubricant were used. The experimental results showed that the effect of seal hardness on the oil film thickness is considerable. A comparison between analytical and experimental oil film profiles for an elastomeric seal during relatively high speed reciprocating motion showed an overall qualitative agreement.
Magnetic properties of Pr-Fe-B thick-film magnets deposited on Si substrates with glass buffer layer
NASA Astrophysics Data System (ADS)
Nakano, M.; Kurosaki, A.; Kondo, H.; Shimizu, D.; Yamaguchi, Y.; Yamashita, A.; Yanai, T.; Fukunaga, H.
2018-05-01
In order to improve the magnetic properties of PLD-made Pr-Fe-B thick-film magnets deposited on Si substrates, an adoption of a glass buffer layer was carried out. The glass layer could be fabricated under the deposition rate of approximately 70 μm/h on a Si substrate using a Nd-YAG pulse laser in the vacuum atmosphere. The use of the layer enabled us to reduce the Pr content without a mechanical destruction and enhance (BH)max value by approximately 20 kJ/m3 compared with the average value of non-buffer layered Pr-Fe-B films with almost the same thickness. It is also considered that the layer is also effective to apply a micro magnetization to the films deposited on Si ones.
Effects of the PPy layer thickness on Co-PPy composite films
NASA Astrophysics Data System (ADS)
Haciismailoglu, Murside
2015-11-01
Co-PPy composite films were electrodeposited on ITO substrate from two different solutions potentiostatically. Firstly, the PPy layers with the thicknesses changing from 20 to 5000 nm were produced on ITO. Then Co was electrodeposited on these PPy/ITO substrates with a charge density of 1000 mC cm-2. The electrochemical properties were investigated by the current density-time transients and the variation of the elapsed time for the Co deposition depending on the PPy layer thickness. X-ray photoelectron (XPS) spectra indicated the presence of both Co metal and its oxides on the surface. The weak reflections of the Co3O4, CoO and hcp Co were detected by the X-ray diffraction (XRD) technique. According to scanning electron microscopy (SEM) images, the thickness of the PPy layer strongly affects the Co nucleation. The composite films with the PPy layer thinner than 200 nm and thicker than 2000 nm have an isotropic magnetic behavior due to the symmetrical crystal field. The composite films with the PPy layer thicknesses between 200 and 2000 nm have an anisotropic magnetic behavior attributable to the deterioration of this symmetrical crystal field by the PPy bubbles on the surface. All films are hard magnetic material, since the coercivities are larger than 125 Oe.
NASA Astrophysics Data System (ADS)
Wiendartun, Syarif, Dani Gustaman
2010-10-01
Fabrication of CuFe2O4 thick film ceramics utilizing Fe2O3 derived from yarosite using screen printing technique for NTC thermistor has been carried out. Effect of thickness variation due to different size of screen (screen 225; 300 and 375 mesh) has been studied. X-ray diffraction analyses (XRD) was done to know crystal structure and phases formation. SEM analyses was carried out to know microstructure of the films. Electrical properties characterization was done through measurement of electrical resistance at various temperatures (room temperature to 100° C). The XRD data showed that the films crystalize in tetragonal spinel. The SEM images showed that the screen with the smaller of the hole size, made the grain size was bigger. Electrical data showed that the larger the screen different size thickness variation (mesh), the larger the resistance, thermistor constant and sensitivity. From the electrical characteristics data, it was known that the electrical characteristics of the CuFe2O4 thick film ceramics followed the NTC characteristic. The value of B and RRT of the produced CuFe2O4 ceramics namely B = 3241-3484 K and RRT = 25.6-87.0 M Ohm, fitted market requirement.
Tsai, Song-Ling; Liu, Yi-Kai; Pan, Heng; Liu, Chien-Hung; Lee, Ming-Tsang
2016-01-08
The Laser Direct Synthesis and Patterning (LDSP) technology has advantages in terms of processing time and cost compared to nanomaterials-based laser additive microfabrication processes. In LDSP, a scanning laser on the substrate surface induces chemical reactions in the reactive liquid solution and selectively deposits target material in a preselected pattern on the substrate. In this study, we experimentally investigated the effect of the processing parameters and type and concentration of the additive solvent on the properties and growth rate of the resulting metal film fabricated by this LDSP technology. It was shown that reactive metal ion solutions with substantial viscosity yield metal films with superior physical properties. A numerical analysis was also carried out the first time to investigate the coupled opto-thermo-fluidic transport phenomena and the effects on the metal film growth rate. To complete the simulation, the optical properties of the LDSP deposited metal film with a variety of thicknesses were measured. The characteristics of the temperature field and the thermally induced flow associated with the moving heat source are discussed. It was shown that the processing temperature range of the LDSP is from 330 to 390 K. A semi-empirical model for estimating the metal film growth rate using this process was developed based on these results. From the experimental and numerical results, it is seen that, owing to the increased reflectivity of the silver film as its thickness increases, the growth rate decreases gradually from about 40 nm at initial to 10 nm per laser scan after ten scans. This self-controlling effect of LDSP process controls the thickness and improves the uniformity of the fabricated metal film. The growth rate and resulting thickness of the metal film can also be regulated by adjustment of the processing parameters, and thus can be utilized for controllable additive nano/microfabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, D.; Devkota, J.; Ruiz, A.
2014-09-28
A systematic study of the effect of depositing CoFe₂O₄ (CFO) films of various thicknesses (d = 0–600 nm) on the giant magneto-impedance (GMI) response of a soft ferromagnetic amorphous ribbon Co₆₅Fe₄Ni₂Si₁₅B₁₄ has been performed. The CFO films were grown on the amorphous ribbons by the pulsed laser deposition technique. X-ray diffraction and transmission electron microscopy revealed a structural variation of the CFO film from amorphous to polycrystalline as the thickness of the CFO film exceeded a critical value of 300 nm. Atomic force microscopy evidenced the increase in surface roughness of the CFO film as the thickness of the CFOmore » film was increased. These changes in the crystallinity and morphology of the CFO film were found to have a distinct impact on the GMI response of the ribbon. Relative to the bare ribbon, coating of amorphous CFO films significantly enhanced the GMI response of the ribbon, while polycrystalline CFO films decreased it considerably. The maximum GMI response was achieved near the onset of the structural transition of the CFO film. These findings are of practical importance in developing high-sensitivity magnetic sensors.« less
Kinetic model for thin film stress including the effect of grain growth
NASA Astrophysics Data System (ADS)
Chason, Eric; Engwall, A. M.; Rao, Z.; Nishimura, T.
2018-05-01
Residual stress during thin film deposition is affected by the evolution of the microstructure. This can occur because subsurface grain growth directly induces stress in the film and because changing the grain size at the surface affects the stress in new layers as they are deposited. We describe a new model for stress evolution that includes both of these effects. It is used to explain stress in films that grow with extensive grain growth (referred to as zone II) so that the grain size changes throughout the thickness of the layer as the film grows. Equations are derived for different cases of high or low atomic mobility where different assumptions are used to describe the diffusion of atoms that are incorporated into the grain boundary. The model is applied to measurements of stress and grain growth in evaporated Ni films. A single set of model parameters is able to explain stress evolution in films grown at multiple temperatures and growth rates. The model explains why the slope of the curvature measurements changes continuously with thickness and attributes it to the effect of grain size on new layers deposited on the film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. Lanning; J. Arps
2004-04-01
Extending upon development efforts last quarter to produce ''free-standing'', copper and palladium alloy films, the goal this quarter has been to produce pinhole-free, Pd-Cu alloy films up to 5 x 5 inches in area (1-3 microns thick) using both magnetron sputtering and e-beam evaporation on PVA (Solublon) and polystyrene backing materials. A set of experiments were conducted to assess processing methods/solutions chemistry for removing the polymer backing material from the Pd-Cu film. For all of the alloy films produced to this point, we were unable to produce pinhole-free films on plastic although we were able to produce free-standing Pd-Cu filmsmore » at less than 0.5 microns thick with minimal intrinsic stress. Subsequently, to evaluate gas permeation and leakage across the films, two films were sandwiched together on top of a porous Monel support disc (25 mm in diameter) and then tested in a leak test apparatus. Using two Cu films (10 micron thickness total) in the sandwich configuration, leak rates were about 20% of the background leak rate.« less
Peng, Song; Liu, Zhiguo; Sun, Tianxi; Wang, Guangfu; Ma, Yongzhong; Ding, Xunliang
2014-08-01
Confocal micro X-ray fluorescence (CM-XRF) with quasi-monochromatic excitation based on polycapillary X-ray optics was used to measure the thickness of multi-ply films. The relative errors of measuring an Fe film with a thickness of 16.3 μm and a Cu film with a thickness of 24.5 μm were 7.3% and 0.4%, respectively. The non-destructive and in-situ measurement of the thickness and uniformity of multi-ply films of Cu, Fe and Ni on a silicon surface was performed. CM-XRF was convenient in in-situ and elementally resolved analysis of the thickness of multi-ply films without a cumbersome theoretical correction model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Peng; Shi, Shengbin; Wang, Hang; Qiu, Fanglong; Wang, Yuxi; Tang, Yumin; Feng, Jian-Rui; Guo, Han; Cheng, Xing; Guo, Xugang
2018-06-27
High-performance polymer solar cells (PSCs) with thick active layers are essential for large-scale production. Polymer semiconductors exhibiting a temperature-dependent aggregation property offer great advantages toward this purpose. In this study, three difluorobenzoxadiazole (ffBX)-based donor polymers, PffBX-T, PffBX-TT, and PffBX-DTT, were synthesized, which contain thiophene (T), thieno[3,2- b]thiophene (TT), and dithieno[3,2- b:2',3'- d]thiophene (DTT) as the π-spacers, respectively. Temperature-dependent absorption spectra reveal that the aggregation strength increases in the order of PffBX-T, PffBX-TT, and PffBX-DTT as the π-spacer becomes larger. PffBX-TT with the intermediate aggregation strength enables well-controlled disorder-order transition in the casting process of blend film, thus leading to the best film morphology and the highest performance in PSCs. Thick-film PSCs with an average power conversion efficiency (PCE) of 8.91% and the maximum value of 9.10% are achieved using PffBX-TT:PC 71 BM active layer with a thickness of 250 nm. The neat film of PffBX-TT also shows a high hole mobility of 1.09 cm 2 V -1 s -1 in organic thin-film transistors. When PffBX-DTT and PffBX-T are incorporated into PSCs utilizing PC 71 BM acceptor, the average PCE decreases to 6.54 and 1.33%, respectively. The performance drop mainly comes from reduced short-circuit current, as a result of nonoptimal blend film morphology caused by a less well-controlled film formation process. A similar trend was also observed in nonfullerene type thick-film PSCs using IT-4F as the electron acceptor. These results show the significance of polymer aggregation strength tuning toward optimal bulk heterojunction film morphology using ffBX-based polymer model system. The study demonstrates that adjusting π-spacer is an effective method, in combination with other important approaches such as alkyl chain optimization, to generate high-performance thick-film PSCs which are critical for practical applications.
Exploring ways to control the properties of polymer thin films
NASA Astrophysics Data System (ADS)
Clough, Andrew R.
Understanding the causes of deviations from bulk-like properties observed in polymer thin films is of interest both from a fundamental standpoint and in order to tailor the properties of polymer thin films used by industry as coatings and in the production of microelectronic devices. As thicknesses are decreased below 100 nm, interfacial effects start to become important. In addition, a confinement effect occurs when the film thickness becomes comparable to the unperturbed size of the polymer chain. In this thesis, we modify polymer films in a controllable way in order to study how some of these properties may be related and potentially adjusted. One of these properties is the glass transition temperature, which is seen to vary with the film thickness for films thinner than 100 nm. While there appears to be a consensus that the variation is attributable to the interactions the polymer has with the film interfaces, important questions concerning how the observed changes may affect the onset of large scale, liquid-like motions in the films have been seldom investigated. We modify the substrate interface with grafted polymer chains, which is known to instill interfacial slippage, to investigate the relation, if any, between the glass transition temperature and large scale chain motions in the films. As another part of the effort to find ways to control the properties of polymer films, we study the effect of swelling films with solvents of different qualities. Studies have shown that modifying the solvent quality used when preparing films by spin-coating, in which solvent from a polymer solution is rapidly removed to form thin uniform films, can affect some properties by modifying the degree of inter-chain entanglement in the film. As it is often difficult to spin-coat films when the solvent is poor, we investigate whether solvent swelling can also be used to modify this entanglement. We find that solvent swelling is able to modify the degree of entanglement in the films. Most importantly, swelling with a poor solvent allows us to reduce the degree of inter-chain entanglement, bringing the film further from equilibrium.
High-throughput measurement of polymer film thickness using optical dyes
NASA Astrophysics Data System (ADS)
Grunlan, Jaime C.; Mehrabi, Ali R.; Ly, Tien
2005-01-01
Optical dyes were added to polymer solutions in an effort to create a technique for high-throughput screening of dry polymer film thickness. Arrays of polystyrene films, cast from a toluene solution, containing methyl red or solvent green were used to demonstrate the feasibility of this technique. Measurements of the peak visible absorbance of each film were converted to thickness using the Beer-Lambert relationship. These absorbance-based thickness calculations agreed within 10% of thickness measured using a micrometer for polystyrene films that were 10-50 µm. At these thicknesses it is believed that the absorbance values are actually more accurate. At least for this solvent-based system, thickness was shown to be accurately measured in a high-throughput manner that could potentially be applied to other equivalent systems. Similar water-based films made with poly(sodium 4-styrenesulfonate) dyed with malachite green oxalate or congo red did not show the same level of agreement with the micrometer measurements. Extensive phase separation between polymer and dye resulted in inflated absorbance values and calculated thickness that was often more than 25% greater than that measured with the micrometer. Only at thicknesses below 15 µm could reasonable accuracy be achieved for the water-based films.
Gas Permeation in Thin Glassy Polymer Films
NASA Astrophysics Data System (ADS)
Paul, Donald
2011-03-01
The development of asymmetric and composite membranes with very thin dense ``skins'' needed to achieve high gas fluxes enabled the commercial use of membranes for molecular level separations. It has been generally assumed that these thin skins, with thicknesses of the order of 100 nm, have the same permeation characteristics as films with thicknesses of 25 microns or more. Thick films are easily made in the laboratory and have been used extensively for measuring permeation characteristics to evaluate the potential of new polymers for membrane applications. There is now evidence that this assumption can be in very significant error, and use of thick film data to select membrane materials or predict performance should be done with caution. This presentation will summarize our work on preparing films of glassy polymers as thin as 20 nm and characterizing their behavior by gas permeation, ellipsometry and positron annihilation lifetime spectroscopy. Some of the most important polymers used commercially as gas separation membranes, i.e., Matrimid polyimide, polysulfone (PSF) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), have been made into well-defined thin films in our laboratories by spin casting techniques and their properties studied using the techniques we have developed. These thin films densify (or physically age) much faster than thicker films, and, as result, the permeability decreases, sometimes by several-fold over weeks or months for thin films. This means that the properties of these thin films can be very different from bulk films. The techniques, interpretations and implications of these observations will be discussed. In a broader sense, gas permeation measurements can be a powerful way of developing a better understanding of the effects of polymer chain confinement and/or surface mobility on the behavior of thin films.
Pickwell, Andrew J; Dorey, Robert A; Mba, David
2011-09-01
Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.
Development of an all-metal thick film cost effective metallization system for solar cells
NASA Technical Reports Server (NTRS)
Ross, B.; Parker, J.
1983-01-01
Improved thick film solar cell contacts for the high volume production of low cost silicon solar arrays are needed. All metal screenable pastes made from economical base metals and suitable for application to low to high conductivity silicon were examined. Silver fluoride containing copper pastes and fluorocarbon containing copper pastes were discussed. The effect of hydrogen on the adhesion of metals to silicon was investigated. A cost analysis of various paste materials is provided.
NASA Astrophysics Data System (ADS)
Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna
2017-11-01
Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.
NASA Astrophysics Data System (ADS)
Shin, Dongkyun; Hong, Ki-Young; Park, Jongwoon
2017-12-01
Due to capillary rise, organic thin films fabricated by solution coating exhibit the concave thickness profile. It is found that the thickness and emission uniformities within pixels vary depending sensitively on the pre-drying treatment that has been done before hard bake. We investigate its effect on the film quality by varying the temperature, time, pressure, fluid flow-related solute concentration, and evaporation-related solvent. To this end, we carry out spin coatings of a non-aqueous poly(N-vinylcarbazole) (PVK) for a hole transporting blanket layer. With a low-boiling-point (BP) organic solvent, the pre-drying makes no significant impact on the thickness profiles. With a high-BP organic solvent, the PVK films pre-dried in a vacuum for a sufficient time exhibit very uniform light emission in the central region, but non-emission phenomenon near the perimeter of pixels. It is addressed that such a non-emission phenomenon can be suppressed to some extent by decreasing the vacuum pressure. However, the rapid evaporation by heat conduction during the pre-drying degrades the thickness uniformity due to a rapid microflow of solute from the edge to the center. No further enhancement in the thickness uniformity is obtained by varying the solute concentration and using a mixture of low- and high-BP solvents.
Study on film resistivity of Energy Conversion Components for MEMS Initiating Explosive Device
NASA Astrophysics Data System (ADS)
Ren, Wei; Zhang, Bin; Zhao, Yulong; Chu, Enyi; Yin, Ming; Li, Hui; Wang, Kexuan
2018-03-01
Resistivity of Plane-film Energy Conversion Components is a key parameter to influence its resistance and explosive performance, and also it has important relations with the preparation of thin film technology, scale, structure and etc. In order to improve the design of Energy Conversion Components for MEMS Initiating Explosive Device, and reduce the design deviation of Energy Conversion Components in microscale, guarantee the design resistance and ignition performance of MEMS Initiating Explosive Device, this paper theoretically analyzed the influence factors of film resistivity in microscale, through the preparation of Al film and Ni-Cr film at different thickness with micro/nano, then obtain the film resistivity parameter of the typical metal under different thickness, and reveals the effect rule of the scale to the resistivity in microscale, at the same time we obtain the corresponding inflection point data.
Minimum film thickness in elliptical contacts for different regimes of fluid-film lubrication
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1978-01-01
The film-parameter equations are provided for four fluid-film lubrication regimes found in elliptical contacts. These regimes are isoviscous-rigid; viscous-rigid; elastohydrodynamic of low-elastic-modulus materials, or isoviscous-elastic; and elastohydrodynamic, or viscous-elastic. The influence or lack of influence of elastic and viscous effects is the factor that distinguishes these regimes. The film-parameter equations for the respective regimes come from earlier theoretical studies by the authors on elastohydrodynamic and hydrodynamic lubrication of elliptical conjunctions. These equations are restated and the results are presented as a map of the lubrication regimes, with film-thickness contours on a log-log grid of the viscosity and elasticity parameters for five values of the ellipticity parameter. The results present a complete theoretical film-parameter solution for elliptical contacts in the four lubrication regimes.
Determining the refractive index and thickness of thin films from prism coupler measurements
NASA Technical Reports Server (NTRS)
Kirsch, S. T.
1981-01-01
A simple method of determining thin film parameters from mode indices measured using a prism coupler is described. The problem is reduced to doing two least squares straight line fits through measured mode indices vs effective mode number. The slope and y intercept of the line are simply related to the thickness and refractive index of film, respectively. The approach takes into account the correlation between as well as the uncertainty in the individual measurements from all sources of error to give precise error tolerances on the best fit values. Due to the precision of the tolerances, anisotropic films can be identified and characterized.
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Ji, Jialin; Tao, Chunxian; Zhang, Dawei
2016-10-01
Au/ZnO/Ag sandwich structure films were fabricated by DC magnetron sputter at room temperature. The tunability of the surface plasmon resonance wavelength was realized by varying the thickness of ZnO thin film. The effects of ZnO layer on the optical properties of Au/ZnO/Au thin films were investigated by optical absorption and Raman scattering measurements. It has been found that both the surface plasmon resonance frequency and SERS can be controlled by adjusting the thickness of ZnO layer due to the coupling of metal and semiconductor.
Measurements of material properties for solar cells. [aluminum film and KAPTON
NASA Technical Reports Server (NTRS)
Castle, J. G., Jr.
1978-01-01
Measurements on two candidate materials for space flight are reported. The observed optical transmittance of aluminum films vapor deposited on fused quartz showed anomalously high transmittance thru 400 A and 600 A and showed an effective skin depth of 110 A in the latter part of the 1000 A thickness. KAPTON films are shown by their optical transmission spectra to have an energy gap for electron excitation of approximately 2.5 eV, which value depends on the thickness as manufactured. The resistance of KAPTON film to ionizing radiation is described by their optical spectra and their electron spin resonance spectra.
NASA Astrophysics Data System (ADS)
Park, Donghyun; Shin, Soo Jin; Oh, Tae Sung
2018-01-01
Thin Au films with thickness of 150 nm could be reversibly stretched up to 30% elongation on polydimethylsiloxane (PDMS) substrate with 150-nm-thick Parylene C deposited as intermediate layer instead of a Cr adhesion layer. Prestretching of the Parylene-deposited PDMS was effective to suppress the resistance increase of Au films during their tensile elongation. While the resistance change rate Δ R/ R 0 of the Au film at 30% elongation was 11 without prestretching of the Parylene-deposited PDMS, it was substantially suppressed to 0.4 with 30% prestretching of the Parylene-deposited PDMS.
NASA Astrophysics Data System (ADS)
Hwan Lee, Seok; Park, Mi-ae; Yoh, Jack J.; Song, Hyelynn; Yun Jang, Eui; Hyup Kim, Yong; Kang, Sungchan; Seop Yoon, Yong
2012-12-01
We demonstrate that reduced graphene oxide (rGO) coated thin aluminum film is an effective optoacoustic transmitter for generating high pressure and high frequency ultrasound previously unattainable by other techniques. The rGO layer of different thickness is deposited between a 100 nm-thick aluminum film and a glass substrate. Under a pulsed laser excitation, the transmitter generates enhanced optoacoustic pressure of 64 times the aluminum-alone transmitter. A promising optoacoustic wave generation is possible by optimizing thermoelasticity of metal film and thermal conductivity of rGO in the proposed transmitter for laser-induced ultrasound applications.
An experimental study on particle effects in liquid sheets
NASA Astrophysics Data System (ADS)
Sauret, Alban; Troger, Anthony; Jop, Pierre
2017-06-01
Many industrial processes, such as surface coating or liquid transport in tubes, involve liquid sheets or thin films of suspensions. In these situations, the thickness of the liquid film becomes comparable to the particle size, which leads to unexpected dynamics. In addition, the classical constitutive rheological law for suspensions cannot be applied as the continuum approximation is no longer valid. Here, we consider experimentally a transient particle-laden liquid sheet that expands radially. We characterize the influence of the particles on the shape of the liquid film and the atomization process. We highlight that the presence of particles modifies the thickness and stability of the liquid sheet. Our study suggests that the influence of particles through capillary effects can modify significantly the dynamics of processes that involve suspensions and particles confined in liquid films.
The effect of TiO2 phase on the surface plasmon resonance of silver thin film
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Jing, Ming; Tao, Chunxian; Zhang, Dawei
2016-10-01
A series of silver films with various thicknesses were deposited on TiO2 covered silica substrates by magnetron sputtering at room temperature. The effects of TiO2 phase on the structure, optical properties and surface plasmon resonance of silver thin films were investigated by x-ray diffraction, optical absorption and Raman scattering measurements, respectively. By adjusting the silver layer thickness, the resonance wavelength shows a redshift, which is due to a change in the electromagnetic field coupling strength from the localized surface plasmons excited between the silver thin film and TiO2 layer. Raman scattering measurement results showed that optical absorption plays an important role in surface plasmon enhancement, which is also related to different crystal phase.
NASA Astrophysics Data System (ADS)
Pedersen, K.; Kristensen, T. B.; Pedersen, T. G.; Morgen, P.; Li, Z.; Hoffmann, S. V.
2002-05-01
Thin noble metal films (Ag, Au and Cu) on Si (111) have been investigated by optical second-harmonic generation (SHG) in combination with synchrotron radiation photoemission spectroscopy. The valence band spectra of Ag films show a quantization of the sp-band in the 4-eV energy range from the Fermi level down to the onset of the d-bands. For Cu and Au the corresponding energy range is much narrower and quantization effects are less visible. Quantization effects in SHG are observed as oscillations in the signal as a function of film thickness. The oscillations are strongest for Ag and less pronounced for Cu, in agreement with valence band photoemission spectra. In the case of Au, a reacted layer floating on top of the Au film masks the observation of quantum well levels by photoemission. However, SHG shows a well-developed quantization of levels in the Au film below the reacted layer. For Ag films, the relation between film thickness and photon energy of the SHG resonances indicates different types of resonances, some of which involve both quantum well and substrate states.
van der Waals interaction between a moving nano-cylinder and a liquid thin film.
Ledesma-Alonso, René; Raphaël, Elie; Salez, Thomas; Tordjeman, Philippe; Legendre, Dominique
2017-05-24
We study the static and dynamic interaction between a horizontal cylindrical nano-probe and a thin liquid film. The effects of the physical and geometrical parameters, with a special focus on the film thickness, the probe speed, and the distance between the probe and the free surface are analyzed. Deformation profiles have been computed numerically from a Reynolds lubrication equation, coupled to a modified Young-Laplace equation, which takes into account the probe/liquid and the liquid/substrate non-retarded van der Waals interactions. We have found that the film thickness and the probe speed have a significant effect on the threshold separation distance below which the jump-to-contact instability is triggered. These results encourage the use of horizontal cylindrical nano-probes to scan thin liquid films, in order to determine either the physical or geometrical properties of the latter, through the measurement of interaction forces.
Viscous bursting of suspended films
NASA Astrophysics Data System (ADS)
Debrégeas, G.; Martin, P.; Brochard-Wyart, F.
1995-11-01
Soap films break up by an inertial process. We present here the first observations on freely suspended films of long-chain polymers, where viscous effects are dominant and no surfactant is present. A hole is nucleated at time 0 and grows up to a radius R(t) at time t. A surprising feature is that the liquid from the hole is not collected into a rim (as it is in soap films): The liquid spreads out without any significant change of the film thickness. The radius R(t) grows exponentially with time, R~exp(t/τ) [while in soap films R(t) is linear]. The rise time τ~ηe/2γ where η is viscosity, e is thickness (in the micron range), and γ is surface tension. A simple model is developed to explain this growth law.
[Abnormal of tear lipid layer and recent advances in clinical study of dry eye].
Xiao, Xin-Ye; Liu, Zu-Guo
2012-03-01
Dry eye is a common disease in the ophthalmological clinic, which is related to the dysfunction of tear film. The tear film is composed of lipid layer, aqueous layer and mucin layer (or lipid layer, aqueous/mucin layer). The lipid of the outmost layer derived from Meibomian gland and distributed on the tear film after blinking can decrease the evaporation and stabilize the tear film. The thickness, quality, and distribution of lipid layer are impaired in many dry eye patients, hence restoring the physiological function of lipid layer may be crucial for the treatment of this kind of dry eye. The lipid artificial tears manifest great effects on increasing lipid layer thickness, stabilizing tear film, improving Meibomian gland dysfunction, and promoting tear film distribution.
Structural and Electromagnetic Properties of Ni-Mn-Ga Thin Films Deposited on Si Substrates
NASA Astrophysics Data System (ADS)
Pereira, M. J.; Lourenço, A. A. C. S.; Amaral, V. S.
2014-07-01
Ni2MnGa thin films raise great interest due to their properties, which provide them with strong potential for technological applications. Ni2MnGa thin films were prepared by r.f. sputtering deposition on Si substrates at low temperature (400 ºC). Film thicknesses in the range 10-120 nm were obtained. A study of the structural, magnetic and electrical properties of the films is presented. We find that the deposited films show some degree of crystallinity, with coexisting cubic and tetragonal structural phases, the first one being preponderant over the latter, particularly in the thinner films. The films possess soft magnetic properties and their coercivity is thickness dependent in the range 15-200 Oe at 300K. Electrical resistivity measurements signal the structural transition and suggest the occurrence of avalanche and return-point memory effects, in temperature cycling through the magnetic/structural transition range.
InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties
NASA Astrophysics Data System (ADS)
Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo
2015-03-01
InxGa1-xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm-3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.
Anomalous Hall effect scaling in ferromagnetic thin films
NASA Astrophysics Data System (ADS)
Grigoryan, Vahram L.; Xiao, Jiang; Wang, Xuhui; Xia, Ke
2017-10-01
We propose a scaling law for anomalous Hall effect in ferromagnetic thin films. Our approach distinguishes multiple scattering sources, namely, bulk impurity, phonon for Hall resistivity, and most importantly the rough surface contribution to longitudinal resistivity. In stark contrast to earlier laws that rely on temperature- and thickness-dependent fitting coefficients, this scaling law fits the recent experimental data excellently with constant parameters that are independent of temperature and film thickness, strongly indicating that this law captures the underlying physical processes. Based on a few data points, this scaling law can even fit all experimental data in full temperature and thickness range. We apply this law to interpret the experimental data for Fe, Co, and Ni and conclude that (i) the phonon-induced skew scattering is unimportant as expected; (ii) contribution from the impurity-induced skew scattering is negative; (iii) the intrinsic (extrinsic) mechanism dominates in Fe (Co), and both the extrinsic and intrinsic contributions are important in Ni.
Effect of film thickness on localized surface plasmon enhanced chemical sensor
NASA Astrophysics Data System (ADS)
Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng
2014-05-01
A highly-sensitive, reliable, simple and inexpensive chemical detection and identification platform is demonstrated. The sensing technique is based on localized surface plasmon enhanced Raman scattering measurements from gold-coated highly-ordered symmetric nanoporous ceramic membranes fabricated from anodic aluminum oxide. To investigate the effects of the thickness of the sputter-coated gold films on the sensitivity of sensor, and optimize the performance of the substrates, the geometry of the nanopores and the film thicknesses are varied in the range of 30 nm to 120 nm. To characterize the sensing technique and the detection limits, surface enhanced Raman scatterings of low concentrations of a standard chemical adsorbed on the gold coated substrates are collected and analyzed. The morphology of the proposed substrates is characterized by atomic force microscopy and the optical properties including transmittance, reflectance and absorbance of each substrate are also investigated.
Estimation of appropriate lubricating film thickness in ceramic-on-ceramic hip prostheses
NASA Astrophysics Data System (ADS)
Tauviqirrahman, M.; Muchammad, Bayuseno, A. P.; Ismail, R.; Saputra, E.; Jamari, J.
2016-04-01
Artificial hip prostheses, consisting of femoral head and acetabular cup are widely used and have affected the lives of many people.However, the primary issue associated with the long term performance of hip prostheses is loosening induced by excessive wear during daily activity. Therefore, an effective lubrication is necessary to significantly decrease the wear. To help understand the lubricating performance of such typical hip joint prostheses, in the present paper a hydrodynamic lubrication model based on Reynolds equationwas introduced. The material pairs of ceramic acetabular cup against ceramic femoral head was investegated.The main aim of this study is to investigate of the effect of loading on the formation of lubricating film thickness.The model of a ball-in-socket configuration was considered assuming that the cup was stationary while the ball was to rotate at a steady angular velocityvarying loads.Based on simulation result, it was found that to promote fluid film lubrication and prevent the contacting components leading to wear, the film thickness of lubricant should be determined carefully based on the load applied. This finding may have useful implication in predicting the failure of lubricating synovial fluid film and wear generation in hip prostheses.
Development of high J c Bi2223/Ag thick film materials prepared by heat treatment under low P O2
NASA Astrophysics Data System (ADS)
Takeda, Y.; Shimoyama, J.; Motoki, T.; Nakamura, S.; Nakashima, T.; Kobayashi, S.; Kato, T.
2018-07-01
In general, a dense and c-axis grain-oriented microstructure is desirable in order to achieve the high critical current properties of Bi2223 polycrystalline materials. On the other hand, our recent studies have shown that precise control of the chemical compositions of Bi2223 is also effective for the enhancement of intergrain J c. In this study, the development of Bi2223 thick film materials with high critical current properties was attempted by controlling both the microstructure and the chemical compositions. A high intergrain J c of ∼8 kA cm‑2 at 77 K of a film with ∼40 μm t was achieved by increasing the Pb substitution level for the Bi site and controlling the nonstoichiometric chemical compositions. Furthermore, it was revealed that an increase in the thickness enabled us to obtain high I c films suitable for practical applications. In contrast, there are still issues, especially in controlling the grain alignment at the inner part of the film, which suggests that the J c properties of thick film materials could be further improved by forming a more ideal microstructure, as realized in the Bi2223 filaments of multi-filamentary Ag-sheathed tapes.
An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun
2015-10-01
Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.
NASA Astrophysics Data System (ADS)
Mane, A. A.; Moholkar, A. V.
2017-09-01
The nanocrystalline V2O5 thin films with different thicknesses have been grown onto the glass substrates using chemical spray pyrolysis (CSP) deposition method. The XRD study shows that the films exhibit an orthorhombic crystal structure. The narrow scan X-ray photoelectron spectrum of V-2p core level doublet gives the binding energy difference of 7.3 eV, indicating that the V5+ oxidation state of vanadium. The FE-SEM micrographs show the formation of nanorods-like morphology. The AFM micrographs show the high surface area to volume ratio of nanocrystalline V2O5 thin films. The optical study gives the band gap energy values of 2.41 eV, 2.44 eV, 2.47 eV and 2.38 eV for V2O5 thin films deposited with the thicknesses of 423 nm, 559 nm, 694 nm and 730 nm, respectively. The V2O5 film of thickness 559 nm shows the NO2 gas response of 41% for 100 ppm concentration at operating temperature of 200 °C with response and recovery times of 20 s and 150 s, respectively. Further, it shows the rapid response and reproducibility towards 10 ppm NO2 gas concentration at 200 °C. Finally, NO2 gas sensing mechanism based on chemisorption process is discussed.
NASA Astrophysics Data System (ADS)
Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Harsha, Cirandur Sri; Reddy, V. Rajagopal; Lee, Sung-Nam; Won, Jonghan; Choi, Chel-Jong
2018-02-01
Effects of the thickness of copper phthalocyanine (CuPc) film (2, 5, 10, 15, 20, 30 and 40 nm) on the surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction have been investigated. The optical band gap of CuPc film was increased with increase in the thickness of the CuPc film. The electrical properties of the Au/n-Si Schottky junction and Au/CuPc/n-Si heterojunctions were characterized by current-voltage ( I-V) and capacitance-voltage ( C-V) measurements. The barrier height, ideality factor and series resistance were estimated based on the I-V, Cheung's and Norde's methods. The barrier heights increased with increasing CuPc interlayer thickness up to 15 nm and remained constant for thickness above 20 nm, associated with the incapability of the generated carriers to reach the interface. The discrepancy in the barrier heights obtained from I-V and C-V measurements indicates the presence of barrier inhomogeneity at the interface as evidenced by higher ideality factor values. It can be concluded that the electrical properties of Au/n-Si Schottky junction can be significantly altered with the variation of CuPc thickness as interlayer.
NASA Astrophysics Data System (ADS)
Kibirev, I. A.; Matetskiy, A. V.; Zotov, A. V.; Saranin, A. A.
2018-05-01
Using molecular beam epitaxy, InSe films of thicknesses from one to six quadruple layers were grown on Si(111). The surface morphology and structure of the InSe films were monitored using reflection high-energy electron diffraction and scanning tunneling microscopy observations. Angle resolved photoemission experiments revealed that the bulk-like parabolic shape of the valence band of InSe/Si(111) changes for the so-called "Mexican hat" shape when the thickness of the InSe film reduces to one and two quadruple layers. The observed effect is in a qualitative agreement with the reported calculation results on the free-standing InSe films. However, in the InSe/Si(111) system, the features used to characterize the Mexican hat dispersion appear to be more pronounced, which makes the one- and two-quadruple InSe layers on Si(111) promising candidates as thermoelectric materials.
Optical resonance analysis of reflected long period fiber gratings with metal film overlay
NASA Astrophysics Data System (ADS)
Zhang, Guiju; Cao, Bing; Wang, Chinua; Zhao, Minfu
2008-11-01
We present the experimental results of a novel single-ended reflecting surface plasma resonance (SPR) based long period fiber grating (LPFG) sensor. A long period fiber grating sensing device is properly designed and fabricated with a pulsed CO2 laser writing system. Different nm-thick thin metal films are deposited on the fiber cladding and the fiber end facet for the excitation of surface plasma waves (SPWs) and the reflection of the transmission spectrum of the LPFG with doubled interaction between metal-dielectric interfaces of the fiber to enhance the SPW of the all-fiber SPR-LPFG sensing system. Different thin metal films with different thicknesses are investigated. The effect of the excited SPW transmission along the fiber cladding-metal interface with silver and aluminum films is observed. It is found that different thicknesses of the metal overlay show different resonant behaviors in terms of resonance peak situation, bandwidth and energy loss. Within a certain range, thinner metal film shows narrower bandwidth and deeper peak loss.
NASA Astrophysics Data System (ADS)
Yoon, Heedong; McKenna, Gregory B.
2016-05-01
Here, we report results from an investigation of nano-scale size or confinement effects on the glass transition and viscoelastic properties of physical vapor deposited selenium films. The viscoelastic response of freely standing Se films was determined using a biaxial membrane inflation or bubble inflation method [P. A. O'Connell and G. B. McKenna, Science 307, 1760-1763 (2005)] on films having thicknesses from 60 to 267 nm and over temperatures ranging from Tg, macroscopic - 15 °C to Tg, macroscopic + 21 °C. Time-temperature superposition and time-thickness superposition were found to hold for the films in the segmental dispersion. The responses are compared with macroscopic creep and recoverable creep compliance data for selenium [K. M. Bernatz et al., J. Non-Cryst. Solids 307, 790-801 (2002)]. The time-temperature shift factors for the thin films show weaker temperature dependence than seen in the macroscopic behavior, being near to Arrhenius-like in their temperature dependence. Furthermore, the Se films exhibit a "rubbery-like" stiffening that increases as film thickness decreases similar to prior observations [P. A. O'Connell et al., Macromolecules 45(5), 2453-2459 (2012)] for organic polymers. In spite of the differences from the macroscopic behavior in the temperature dependence of the viscoelastic response, virtually no change in Tg as determined from the thickness dependence of the retardation time defining Tg was observed in the bubble inflation creep experiments to thicknesses as small as 60 nm. We also find that the observed rubbery stiffening is consistent with the postulate of K. L. Ngai et al. [J. Polym. Sci., Part B: Polym. Phys. 51(3), 214-224 (2013)] that it should correlate with the change of the macroscopic segmental relaxation.
Analysis of starvation effects on hydrodynamic lubrication in nonconforming contacts
NASA Technical Reports Server (NTRS)
Brewe, D. E.; Hamrock, B. J.
1981-01-01
Numerical methods were used to determine the effects of lubricant starvation on the minimum film thickness under conditions of a hydrodynamic point contact. Starvation was effected by varying the fluid inlet level. The Reynolds boundary conditions were applied at the cavitation boundary and zero pressure was stipulated at the meniscus or inlet boundary. A minimum-fill-thickness equation as a function of both the ratio of dimensionless load to dimensionless speed and inlet supply level was determined. By comparing the film generated under the starved inlet condition with the film generated from the fully flooded inlet, an expression for the film reduction factor was obtained. Based on this factor a starvation threshold was defined as well as a critically starved inlet. The changes in the inlet pressure buildup due to changing the available lubricant supply are presented in the form of three dimensional isometric plots and also in the form of contour plots.
[The diagnosis of malaria by the thick film and the QBC: a comparative study of both technics].
Cabezos, J; Bada, J L
1993-06-12
The diagnosis of paludism is important because of the severity of the clinical picture caused by Plasmodium falciparum, the increasing number of travellers to endemic zones and the emigration from these zones. A comparative study of the QBC techniques (staining with acridin orange and observation with ultraviolet light) and the thick film with Giemsa staining was carried out. The QBC and thick film were performed parallelly for 17 months in a total of 623 samples pertaining to subjects from endemic zones of paludism (emigrants, immigrants and travellers). Of the 623 samples studied 49 were positive for paludism by both techniques. Ten were positive with only the thick film and six were positive only with QBC. The sensitivity of QBC versus thick film was 83% and specificity 98.9%. The time used to determine diagnosis with the QBC technique ranged from 6 to 12 minutes from withdrawal of the sample, while with the thick film the time spent was more than 2 hours. The cases positive by thick film and negative with QBC corresponded to patients with very low parasitation. The intensity of parasitation was difficult to determine quantitatively by QBC. Although the QBC technique has the advantage of speed it is inexact with respect to the quantification of parasitemia. Moreover, it is less sensitive than the thick film in patient with very low parasitations and cannot thus substitute the thick film.
Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank
2017-09-25
Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.
NASA Astrophysics Data System (ADS)
Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.
2018-04-01
TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.
NASA Astrophysics Data System (ADS)
Motallebzadeh, A.; Yagci, M. B.; Bedir, E.; Aksoy, C. B.; Canadinc, D.
2018-06-01
TiTaHfNbZr high-entropy alloy (HEA) thin films with thicknesses of about 750 and 1500 nm were deposited on NiTi substrates by RF magnetron sputtering using TiTaHfNbZr equimolar targets. The thorough experimental analysis on microstructure and mechanical properties of deposited films revealed that the TiTaHfNbZr films exhibited amorphous and cauliflower-like structure, where grain size and surface roughness increased concomitant with film thickness. More importantly, the current findings demonstrate that the TiTaHfNbZr HEA films with mechanical properties of the same order as those of the NiTi substrate constitute promising biomedical coatings effective in preventing Ni release.
NASA Astrophysics Data System (ADS)
Wang, P. P.; Xu, C.; Fu, E. G.; Du, J. L.; Gao, Y.; Wang, X. J.; Qiu, Y. H.
2018-05-01
Sputtering-deposited Cu/V multilayer films with the individual layer thickness varying from 2.5 nm to 100 nm were irradiated by 1 MeV helium (He) ion at the fluence of 6 ×1016 ions ·cm-2 at room temperature. The resistivity of Cu/V multilayer films after ion irradiation was evaluated as a function of individual layer thickness at 300 K and compared with their resistivity before ion irradiation. The results show that the resistivity change before and after ion irradiation is largely determined by the interface structure, grain boundary and radiation induced defects. A model amended based on the model used in describing the resistivity of as-deposited Cu/V multilayer films was proposed to describe the resistivity of ion irradiated Cu/V multilayer films by considering the point defects induced by ion irradiation, the effect of interface absorption on defects and the effect of interface microstructure in the multilayer films.
NASA Astrophysics Data System (ADS)
Catros, Sylvain; Guillotin, Bertrand; Bačáková, Markéta; Fricain, Jean-Christophe; Guillemot, Fabien
2011-04-01
Biofabrication of three dimensional tissues by Laser-Assisted Bioprinting (LAB) implies to develop specific strategies for assembling the extracellular matrix (ECM) and cells. Possible strategies consist in (i) printing cells onto or in the depth of ECM layer and/or (ii) printing bioinks containing both cells and ECM-like printable biomaterial. The aim of this article was to evaluate combinatorial effects of laser pulse energy, ECM thickness and viscosity of the bioink on cell viability. A LAB workstation was used to print Ea.hy926 endothelial cells onto a quartz substrate covered with a film of ECM mimicking Matrigel™. Hence, effect of laser energy, Matrigel™ film thickness and bioink viscosity was addressed for different experimental conditions (8-24 μJ, 20-100 μm and 40-110 mPa s, respectively). Cell viability was assessed by live/dead assay performed 24 h post-printing. Results show that increasing the laser energy tends to augment the cell mortality while increasing the thickness of the Matrigel™ film and the viscosity of the bioink support cell viability. Hence, critical printing parameters influencing high cell viability have been related to the cell landing conditions and more specifically to the intensity of the cell impacts occurring at the air-ECM interface and at the ECM-glass interface.
NASA Astrophysics Data System (ADS)
Trindade, I. G.; Leitão, D.; Fermento, R.; Pogorelev, Y.; Sousa, J. B.
2009-08-01
In-situ electrical resistance measurements were performed to obtain the scattering characteristics of very thin polycrystalline metal transition magnetic alloys grown by ion beam deposition (IBD) on specific underlayers. The experimental curves show size effects at small film thicknesses and important differences between Co 85Fe 15 and Ni 81Fe 19 thin layers grown on identical underlayers of Ta70 Å/Ru13 Å. The largest difference was observed in Ni 81Fe 19 films grown on underlayers of amorphous Ta70 Å. The experimental curves of electrical resistivity/conductivity variation with layer thickness were well fit within the Mayadas and Shatzkes (M-S) model, assuming specific formulations for grain growth with layer thickness.
Magnetization pinning in conducting films demonstrated using broadband ferromagnetic resonance
NASA Astrophysics Data System (ADS)
Kostylev, M.; Stashkevich, A. A.; Adeyeye, A. O.; Shakespeare, C.; Kostylev, N.; Ross, N.; Kennewell, K.; Magaraggia, R.; Roussigné, Y.; Stamps, R. L.
2010-11-01
The broadband microstrip ferromagnetic resonance (FMR), cavity FMR, and Brillouin light scattering spectroscopy techniques have been applied for detection and characterization of a magnetic inhomogeneity in a film sample. In the case of a 100 nm thick permalloy film, an additional magnetically depleted top sublayer has been detected due to pinning effect it produces on the magnetization in the bulk of the film. The pinning results in appearance of an exchange standing spin wave mode in the broadband FMR absorption spectrum, whose amplitudes are different depending on whether the film or the film substrate faces the microstrip transducer. Comparison of the experimental amplitudes for this mode with results of our theory for both film placements revealed that the depleted layer is located at the film surface facing away from the film substrate. Subsequent broadband FMR characterization of a large number of other presumably single-layer films with thicknesses in the range 30-100 nm showed the same result.
Improved epitaxial texture of thick YBa2Cu3O7-δ/GdBa2Cu3O7-δ films with periodic stress releasing
NASA Astrophysics Data System (ADS)
Lin, Jianxin; Yang, Wentao; Gu, Zhaohui; Shu, Gangqiang; Li, Minjuan; Sang, Lina; Guo, Yanqun; Liu, Zhiyong; Cai, Chuanbing
2015-04-01
Thick high-Tc superconducting films consisting of a YBa2Cu3O7-δ/GdBa2Cu3O7-δ periodic architecture are developed on oxid-buffered Hastelloy tapes using a pulsed laser deposition process. It is revealed that multilayer intermittent structures for superconducting layers are effective to avoid the presence of a-axis grains and microcracks that occur with increasing thickness, which are frequently observed in monolayer films of REBa2Cu3O7-δ (RE = Y, Gd, or other rare earths), such grains and cracks being the significant challenge for obtaining high critical current in coated conductors. Presently, the thicknesses of multilayer films vary from 0.5 μm to 3 μm and, based on the SEM images and x-ray φ-scans, hardly show the influences on the microstructures and grain orientation of the c-axis. Also, the characteristic Raman spectrum patterns and their shifting with increasing the thickness of YBCO/GdBCO imply that the superior texture is obtained due to the evolution of stress dominated by the compressive stress rather than tensile stress.
NASA Astrophysics Data System (ADS)
Abe, Masanori; Nakagawa, Hidenobu; Gomi, Manabu; Nomura, Shoichiro
1982-01-01
The film thickness allowance and the waveguide length in a 3-layer (substrate/film/air) magneto-optical unidirectional TE-TM mode converter which utilizes the intrinsic birefringence in an anisotropic material are calculated at λ0{=}1.55 μm. The film material should be gyrotropic in order to make the waveguide length short, and the film thickness allowance is relaxed by reducing the ratio of the dielectric constant of the film to that of the substrate. When the waveguide is made of an isotropic gyrotropic film of YIG deposited on an anisotropic substrate (which may be gyrotropic or not), the restriction on the film thickness can in practice be removed, but this requires precise control of the dielectric constant of the film and the substrate instead.
Lai, Yiu Wai; Krause, Michael; Savan, Alan; Thienhaus, Sigurd; Koukourakis, Nektarios; Hofmann, Martin R; Ludwig, Alfred
2011-10-01
A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.
Wang, Zhihong; Lau, Gih Keong; Zhu, Weiguang; Chao, Chen
2006-01-01
This paper presents both theoretical and numerical analyses of the piezoelectric and dielectric responses of a highly idealized film-on-substrate system, namely, a polarized ferroelectric film perfectly bonded to an elastic silicon substrate. It shows that both effective dielectric and piezoelectric properties of the films change with the size and configuration of the test capacitor. There exists a critical electrode size that is smaller than the diameter of the commonly used substrate. The effective film properties converge to their respective constrained values as capacitor size increases to the critical size. If capacitor size is smaller than the critical size, the surface displacement at the top electrode deviates from the net thickness change in response to an applied voltage because the film is deformable at the film/substrate interface. The constrained properties of the films depend only on those of bulk ferroelectrics but are independent of film thickness and substrate properties. The finding of the critical capacitor size together with analytical expressions of the constrained properties makes it possible to realize consistent measurement of piezoelectric and dielectric properties of films. A surface scanning technique is recommended to measure the profile of piezoresponses of the film so that the constrained properties of the film can be identified accurately.
Determining Confounding Sensitivities In Eddy Current Thin Film Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gros, Ethan; Udpa, Lalita; Smith, James A.
Determining Confounding Sensitivities In Eddy Current Thin Film Measurements Ethan Gros, Lalita Udpa, Electrical Engineering, Michigan State University, East Lansing MI 48824 James A. Smith, Experiment Analysis, Idaho National Laboratory, Idaho Falls ID 83415 Eddy current (EC) techniques are widely used in industry to measure the thickness of non-conductive films on a metal substrate. This is done using a system whereby a coil carrying a high-frequency alternating current is used to create an alternating magnetic field at the surface of the instrument's probe. When the probe is brought near a conductive surface, the alternating magnetic field will induce ECs inmore » the conductor. The substrate characteristics and the distance of the probe from the substrate (the coating thickness) affect the magnitude of the ECs. The induced currents load the probe coil affecting the terminal impedance of the coil. The measured probe impedance is related to the lift off between coil and conductor as well as conductivity of the test sample. For a known conductivity sample, the probe impedance can be converted into an equivalent film thickness value. The EC measurement can be confounded by a number of measurement parameters. It is the goal of this research to determine which physical properties of the measurement set-up and sample can adversely affect the thickness measurement. The eddy current testing is performed using a commercially available, hand held eddy current probe (ETA3.3H spring loaded eddy probe running at 8 MHz) that comes with a stand to hold the probe. The stand holds the probe and adjusts the probe on the z-axis to help position the probe in the correct area as well as make precise measurements. The signal from the probe is sent to a hand held readout, where the results are recorded directly in terms of liftoff or film thickness. Understanding the effect of certain factors on the measurements of film thickness, will help to evaluate how accurate the ETA3.3H spring loaded eddy probe is at measuring film thickness under varying experimental conditions. This research will study the effects of a number of factors such as i) calibration, ii) conductivity, iii) edge effect, iv) surface finish of base material and v) cable condition and compare with the long term reproducibility of a standard measurement. This work was performed with support from the Department of Energy under the United States National Nuclear Security Administration (NNSA) at the Idaho National Laboratory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haidar, M., E-mail: mohammad.haidar@Physics.gu.se; Ranjbar, M.; Balinsky, M.
The magnetodynamical properties of nanometer-thick yttrium iron garnet films are studied using ferromagnetic resonance as a function of temperature. The films were grown on gadolinium gallium garnet substrates by pulsed laser deposition. First, we found that the damping coefficient increases as the temperature increases for different film thicknesses. Second, we found two different dependencies of the damping on film thickness: at room temperature, the damping coefficient increases as the film thickness decreases, while at T = 8 K, we find the damping to depend only weakly on the thickness. We attribute this behavior to an enhancement of the relaxation of the magnetization bymore » impurities or defects at the surfaces.« less
Thickness-dependent appearance of ferromagnetism in Pd(100) ultrathin films
NASA Astrophysics Data System (ADS)
Sakuragi, S.; Sakai, T.; Urata, S.; Aihara, S.; Shinto, A.; Kageshima, H.; Sawada, M.; Namatame, H.; Taniguchi, M.; Sato, T.
2014-08-01
We report the appearance of ferromagnetism in thin films of Pd(100), which depends on film thickness in the range of 3-5 nm on SrTiO3(100) substrates. X-ray magnetic circular dichroism measurement shows the intrinsic nature of ferromagnetism in Pd(100) films. The spontaneous magnetization in Pd(100) films, corresponding to is 0.61μB/atom, is comparable to Ni, and it changes in an oscillatory manner depending on film thickness, where the period quantitatively agrees with the theoretical prediction based on the two-dimensional quantum well in the film. This indicates that the discrete electronic states in the quantum well shift to Fermi energy to satisfy the condition for ferromagnetism (Stoner criterion) at a specific film thickness.
Effect of periocular humidity on the tear film lipid layer.
Korb, D R; Greiner, J V; Glonek, T; Esbah, R; Finnemore, V M; Whalen, A C
1996-03-01
The purpose of this study was to determine the relationship between the tear film and humidity by examining whether alterations in periocular humidity influence the thickness of the tear film lipid layer. Thirteen dry eye subjects presenting with a baseline lipid layer thickness of < or = 60 nm were fitted with modified swim goggles in which the right eye (OD) was exposed to conditions of high humidity and the left eye (OS) remained exposed to ambient room conditions. The lipid layer was monitored over a 60-min time course with goggles on and for an additional 60 min following goggle removal. The OD lipid layer increased significantly in thickness within 5 min of exposure to conditions of high humidity (p < 0.0001), reaching a maximum increase of 66.4 nm after 15 min of goggle wear (p < 0.0001). This maximum increase to a lipid layer thickness of 120.5 nm was maintained at the 30- and 60-min goggle time points. No significant change was detected OS. Following goggle removal, OD values declined but remained significantly elevated over the OS lipid layer thickness throughout the 60-min postgoggle period. Moderate to total relief of dry eye symptoms was reported during goggle wear and generally persisted at a reduced level for 1-3 h following goggle removal. Increased periocular humidity results in an increase in tear film lipid layer thickness, possibly by providing an environment that is more conducive to the spreading of meibomian lipid and its incorporation into the tear film.
Microscopic image processing systems for measuring nonuniform film thickness profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, A.H.; Plawsky, J.L.; DasGupta, S.
1994-01-01
In very thin liquid films. transport processes are controlled by the temperature and the interfacial intermolecular force field which is a function of the film thickness profile and interfacial properties. The film thickness profile and interfacial properties can be measured most efficiently using a microscopic image processing system. IPS, to record the intensity pattern of the reflected light from the film. There are two types of IPS: an image analyzing interferometer (IAI) and/or an image scanning ellipsometer (ISE). The ISE is a novel technique to measure the two dimensional thickness profile of a nonuniform, thin film, from 1 nm upmore » to several {mu}m, in a steady state as well as in a transient state. It is a full field imaging technique which can study every point on the surface simultaneously with high spatial resolution and thickness sensitivity, i.e., it can measure and map the 2-D film thickness profile. Using the ISE, the transient thickness profile of a draining thin liquid film was measured and modeled. The interfacial conditions were determined in situ by measuring the Hamaker constant. The ISE and IAI systems are compared.« less
NASA Astrophysics Data System (ADS)
Pryds, N.; Toftmann, B.; Bilde-Sørensen, J. B.; Schou, J.; Linderoth, S.
2006-04-01
Films of yttria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive X-ray spectrometry in a scanning electron microscope (SEM) with use of a method similar to one described by Bishop and Poole. The attenuation of the electron-induced X-rays from the Si wafer by the film was monitored at a number of points along a diameter and the thickness was determined by Monte Carlo simulations of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine the thickness of a large film, i.e. up to diameters of 125 mm, in a relatively short time, without destroying the substrate, without the need of a standard sample and without the need of a flat substrate. We have also demonstrated that by controlling the deposition parameters large-area YSZ films with uniform thickness can be produced.
NASA Astrophysics Data System (ADS)
Ozkan, Cengiz Sinan
Strained layer semiconductor structures provide possibilities for novel electronic devices. When a semiconductor layer is deposited epitaxially onto a single crystal substrate with the same structure but a slightly different lattice parameter, the semiconductor layer grows commensurately with a misfit strain that can be accommodated elastically below a critical thickness. When the critical thickness is exceeded, the elastic strain energy builds up to a point where it becomes energetically favorable to form misfit dislocations. In addition, in the absence of a capping layer, Sisb{1-x}Gesb{x} films exhibit surface roughening via surface diffusion under the effect of a compressive stress which is caused by a lattice mismatch. Surface roughening takes place in the form of ridges aligned along {<}100{>} or {<}110{>} directions depending on the film thickness and the rate of strain relief. Recent work has shown that surface roughening makes a very significant contribution to strain relaxation in heteroepitaxial thin films. At sharp valley regions on the surface, amplified local stresses can cause further defect nucleation and propagation, such as stacking faults and 90sp° dislocations. In addition, capping layers with suitable thickness will surpress surface roughening and keep most of the strain in the film. We study surface roughening and defect formation by conducting controlled annealing experiments on initially flat and defect free films grown by LPCVD in a hydrogen ambient. We study films with both subcritical and supercritical thicknesses. In addition, we compare the relaxation behaviour of capped and uncapped films where surface roughening was inhibited in films with a capping layer. TEM and AFM studies were conducted to study the morphology and microstructure of these films. X-ray diffraction measurements were made to determine the amount of strain relaxation in these films. Further studies of surface roughening on heteroepitaxial films under a positive biaxial stress have shown that, morphological evolution occurs regardless of the sign of stress in the film. Finally, we have studied surface roughening processes in real time by conducting in-situ TEM experiments. We have observed that the kinetics of roughening depend strongly on the annealing ambient.
Zhang, Lu; Alfano, Joy; Race, Doran; Davé, Rajesh N
2018-05-30
In spite of significant recent interest in polymeric films containing poorly water-soluble drugs, dissolution mechanism of thicker films has not been investigated. Consequently, release mechanisms of poorly water-soluble drugs from thicker hydroxypropyl methylcellulose (HPMC) films are investigated, including assessing thickness above which they exhibit zero-order drug release. Micronized, surface modified particles of griseofulvin, a model drug of BSC class II, were incorporated into aqueous slurry-cast films of different thicknesses (100, 500, 1000, 1500 and 2000 μm). Films 1000 μm and thicker were formed by either stacking two or more layers of ~500 μm, or forming a monolithic thick film. Compared to monolithic thick films, stacked films required simpler manufacturing process (easier casting, short drying time) and resulted in better critical quality attributes (appearance, uniformity of thickness and drug per unit area). Both the film forming approaches exhibited similar release profiles and followed the semi-empirical power law. As thickness increased from 100 μm to 2000 μm, the release mechanism changed from Fickian diffusion to zero-order release for films ≥1000 μm. The diffusional power law exponent, n, achieved value of 1, confirming zero-order release, whereas the percentage drug release varied linearly with sample surface area, and sample thickness due to fixed sample diameter. Thus, multi-layer hydrophilic polymer aqueous slurry-cast thick films containing poorly water-soluble drug particles provide a convenient dosage form capable of zero-order drug release with release time modulated through number of layers. Copyright © 2018 Elsevier B.V. All rights reserved.
Exciton and core-level electron confinement effects in transparent ZnO thin films
Mosquera, Adolfo A.; Horwat, David; Rashkovskiy, Alexandr; Kovalev, Anatoly; Miska, Patrice; Wainstein, Dmitry; Albella, Jose M.; Endrino, Jose L.
2013-01-01
The excitonic light emission of ZnO films have been investigated by means of photoluminescence measurements in ultraviolet-visible region. Exciton confinement effects have been observed in thin ZnO coatings with thickness below 20 nm. This is enhanced by a rise of the intensity and a blue shift of the photoluminescence peak after extraction of the adsorbed species upon annealing in air. It is found experimentally that the free exciton energy (determined by the photoluminescence peak) is inversely proportional to the square of the thickness while core-level binding energy is inversely proportional to the thickness. These findings correlate very well with the theory of kinetic and potential confinements.
New possibilities for tuning ultrathin cobalt film magnetic properties by a noble metal overlayer.
Kisielewski, M; Maziewski, A; Tekielak, M; Wawro, A; Baczewski, L T
2002-08-19
Complementary multiscale magneto-optical studies based on the polar Kerr effect are carried out on an ultrathin cobalt wedge covered with a silver wedge and subsequently with the Au thick layer. A few monolayers of Ag are found to have a substantial effect on magnetic anisotropy, the coercivity field, and Kerr rotation. The silver overlayer thickness-driven magnetic reorientation from easy axis to easy plane generates a new type of 90 degrees magnetic wall for cobalt thicknesses between 1.3 and 1.8 nm. The tuning of the wall width in a wide range is possible. Tailoring of the overlayer structure can be used for ultrathin film magnetic patterning.
Thickness-dependent enhancement of damping in C o2FeAl /β -Ta thin films
NASA Astrophysics Data System (ADS)
Akansel, Serkan; Kumar, Ankit; Behera, Nilamani; Husain, Sajid; Brucas, Rimantas; Chaudhary, Sujeet; Svedlindh, Peter
2018-04-01
In the present work C o2FeAl (CFA) thin films were deposited by ion beam sputtering on Si (100) substrates at the optimized deposition temperature of 300 °C. A series of CFA films with different thicknesses (tCFA), 8, 10, 12, 14, 16, 18, and 20 nm, were prepared and all samples were capped with a 5-nm-thick β-Ta layer. The thickness-dependent static and dynamic properties of the films were studied by SQUID magnetometry, in-plane as well as out-of-plane broadband vector network analyzer-ferromagnetic resonance (FMR) measurements, and angle-dependent cavity FMR measurements. The saturation magnetization and the coercive field were found to be weakly thickness dependent and lie in the range 900-950 kA/m and 0.53-0.87 kA/m, respectively. The effective damping parameter (αeff) extracted from in-plane and out-of-plane FMR results reveals a 1/tCFA dependence, the values for the in-plane αeff being larger due to two-magnon scattering (TMS). The origin of the αeff thickness dependence is spin pumping into the nonmagnetic β-Ta layer and in the case of the in-plane αeff, also a thickness-dependent TMS contribution. From the out-of-plane FMR results, it was possible to disentangle the different contributions to αeff and to the extract values for the intrinsic Gilbert damping (αG) and the effective spin-mixing conductance (geff↑↓) of the CFA/ β-Ta interface, yielding αG=(1.1 ±0.2 ) ×10-3 and geff↑↓=(2.90 ±0.10 ) ×1019m-2 .
Thickness-dependent electron–lattice equilibration in laser-excited thin bismuth films
Sokolowski-Tinten, K.; Li, R. K.; Reid, A. H.; ...
2015-11-19
Electron–phonon coupling processes determine electronic transport properties of materials and are responsible for the transfer of electronic excess energy to the lattice. With decreasing device dimensions an understanding of these processes in nanoscale materials is becoming increasingly important. We use time-resolved electron diffraction to directly study energy relaxation in thin bismuth films after optical excitation. Precise measurements of the transient Debye–Waller-effect for various film thicknesses and over an extended range of excitation fluences allow to separate different contributions to the incoherent lattice response. While phonon softening in the electronically excited state is responsible for an immediate increase of the r.m.s.more » atomic displacement within a few hundred fs, 'ordinary' electron–phonon coupling leads to subsequent heating of the material on a few ps time-scale. Moreover, the data reveal distinct changes in the energy transfer dynamics which becomes faster for stronger excitation and smaller film thickness, respectively. The latter effect is attributed to a cross-interfacial coupling of excited electrons to phonons in the substrate.« less
Effect of Growth Parameters on SnO2 Nanowires Growth by Electron Beam Evaporation Method
NASA Astrophysics Data System (ADS)
Rakesh Kumar, R.; Manjula, Y.; Narasimha Rao, K.
2018-02-01
Tin oxide (SnO2) nanowires were synthesized via catalyst assisted VLS growth mechanism by the electron beam evaporation method at a growth temperature of 450 °C. The effects of growth parameters such as evaporation rate of Tin, catalyst film thickness, and different types of substrates on the growth of SnO2 nanowires were studied. Nanowires (NWs) growth was completely seized at higher tin evaporation rates due to the inability of the catalyst particle to initiate the NWs growth. Nanowires diameters were able to tune with catalyst film thickness. Nanowires growth was completely absent at higher catalyst film thickness due to agglomeration of the catalyst film. Optimum growth parameters for SnO2 NWs were presented. Nanocomposites such as Zinc oxide - SnO2, Graphene oxide sheets- SnO2 and Graphene nanosheets-SnO2 were able to synthesize at a lower substrate temperature of 450 °C. These nanocompsoites will be useful in enhancing the capacity of Li-ion batteries, the gas sensing response and also useful in increasing the photo catalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Y., E-mail: yuta-n@mech.kumamoto-u.ac.jp; Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611; Tsusu, K.
2014-06-15
Here, we sought to develop a cell culture surface conversion technique that would not damage living cells. An alginate thin film, formed on a glass plate by spin coating of sodium alginate solution and dipping into calcium chloride solution, was used to inhibit adhesion of cells. The film could be removed by ethylenediaminetetraacetate (EDTA) at any time during cell culture, permitting observation of cellular responses to conversion of the culture surface in real time. Additionally, we demonstrated the validity of the alginate thin film coating method and the performance of the film. The thickness of the alginate thin film wasmore » controlled by varying the rotation speed during spin coating. Moreover, the alginate thin film completely inhibited the adhesion of cultured cells to the culture surface, irrespective of the thickness of the film. When the alginate thin film was removed from the culture surface by EDTA, the cultured cells adhered to the culture surface, and their morphology changed. Finally, we achieved effective differentiation of C2C12 myoblasts into myotube cells by cell culture on the convertible culture surface, demonstrating the utility of our novel technique.« less
NASA Technical Reports Server (NTRS)
Huang, C. J.; Yeager, E.; Ogrady, W. E.
1975-01-01
The effects were studied of anions and cations on hydrogen chemisorption and anodic oxide film formation on Pt by linear sweep voltammetry, and on oxygen generation on Pt by potentiostatic overpotential measurement. The hydrogen chemisorption and anodic oxide film formation regions are greatly influenced by anion adsorption. In acids, the strongly bound hydrogen occurs at more cathodic potential when chloride and sulfate are present. Sulfate affects the initial phase of oxide film formation by produced fine structure while chloride retards the oxide-film formation. In alkaline solutions, both strongly and weakly bound hydrogen are influenced by iodide, cyanide, and barium and calcium cations. These ions also influence the oxide film formation. Factors considered to explain these effects are discussed. The Tafel slope for oxygen generation was found to be independent on the oxide thickness and the presence of cations or anions. The catalytic activity indicated by the exchange current density was observed decreasing with increasing oxide layer thickness, only a minor dependence on the addition of certain cations and anions was found.
High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke
2014-07-21
Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5 nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36 s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductivemore » graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.« less
NASA Astrophysics Data System (ADS)
Yang, Jijun; Zhang, Feifei; Wan, Qiang; Lu, Chenyang; Peng, Mingjing; Liao, Jiali; Yang, Yuanyou; Wang, Lumin; Liu, Ning
2016-12-01
Reactive gas pulse (RGP) sputtering approach was used to prepare TiN thin films through periodically changing the N2/Ar gas flow ratio. The obtained RGPsbnd TiN film possessed a hybrid architecture containing compositionally graded and multilayered structures, composed of hcp Ti-phase and fcc TiN-phase sublayers. Meanwhile, the RGP-TiN film exhibited a composition-oscillation along the film thickness direction, where the Ti-phase sublayer had a compositional gradient and the TiN-phase retained a constant stoichiometric ratio of Ti:N ≈ 1. The film modulation ratio λ (the thicknesses ratio of the Ti and TiN-phase sublayer) can be effectively tuned by controlling the undulation behavior of the N2 partial flow rate. Detailed analysis showed that this hybrid structure originated from a periodic transition of the film growth mode during the reactive sputtering process.
Lee, Sang Heon
2013-05-01
BiSrCaCuO superconductor thick films were prepared at several curing temperatures, and their electro-physical properties were determined to find an optimum fabrication conditions. Critical temperatures of the superconductors were decreased with increasing melting temperature, which was related to the amount of equilibrium phases of the superconducting materials with temperature. The critical temperature of BiSrCaCuO bulk and thick film superconductors were 107 K and 96 K, respectively. The variation of susceptibility of the superconductor thick film formed at 950 degrees C had multi-step-type curve for 70 G externally applied field, whereas, a superconductor thick film formed at 885 degrees C had a single step-type curve like a bulk BiSrCaCuO ceramic superconductor in the temperature-susceptibility curves. A partial melting at 865 degrees C is one of optimum conditions for making a superconductor thick film with a relatively homogeneous phase.
NASA Astrophysics Data System (ADS)
Sudheer, Mondal, Puspen; Rai, V. N.; Srivastava, A. K.
2017-07-01
The growth and solid-state dewetting behavior of Au thin films (0.7 to 8.4 nm) deposited on the formvar film (substrate) by sputtering technique have been studied using transmission electron microscopy. The size and number density of the Au nanoparticles (NPs) change with an increase in the film thickness (0.7 to 2.8 nm). Nearly spherical Au NPs are obtained for <3 nm thickness films whereas percolated nanostructures are observed for ≥3 nm thickness films as a consequence of the interfacial interaction of Au and formvar film. The covered area fraction (CAF) increases from ˜13 to 75 % with the change in film thickness from 0.7 to 8.4 nm. In-situ annealing of ≤3 nm film produces comparatively bigger size and better sphericity Au NPs along with their narrow distributions, whereas just percolated film produces broad distribution in size having spherical as well as elongated Au NPs. The films with thickness ≤3 nm show excellent thermal stability. The films having thickness >6 nm show capability to be used as an irreversible temperature sensor with a sensitivity of ˜0.1 CAF/°C. It is observed that annealing affects the crystallinity of the Au grains in the films. The electron diffraction measurement also shows annealing induced morphological evolution in the percolated Au thin films (≥3 nm) during solid-state dewetting and recrystallization of the grains.
Hybridization effects on wave packet dynamics in topological insulator thin films.
Yar, Abdullah; Naeem, Muhammad; Khan, Safi Ullah; Sabeeh, Kashif
2017-11-22
Theoretical study of electron wave packet dynamics in topological insulator (TI) thin films is presented. We have investigated real space trajectories and spin dynamics of electron wave packets in TI thin films. Our focus is on the role of hybridization between the electronic states of the two surfaces. This allows us to access the crossover regime of a thick film with no hybridization to a thin film with finite hybridization. We show that the electron wave packet undergoes side-jump motion in addition to zitterbewegung. The oscillation frequency of zitterbewegung can be tuned by the strength of hybridization, which in turn can be tuned by the thickness of the film. We find that the spin expectations also exhibit zitterbewegung tunable by hybridization. We also show that it is possible to obtain persistent zitterbewegung, oscillations which do not decay, in both the real space trajectories as well as spin dynamics. The zitterbewegung oscillation frequency in TI thin films falls in a parameter regime where it might be possible to observe these effects using present day experimental techniques.
Wrinkling and folding of nanotube-polymer bilayers
NASA Astrophysics Data System (ADS)
Semler, Matthew R.; Harris, John M.; Hobbie, Erik K.
2014-07-01
The influence of a polymer capping layer on the deformation of purified single-wall carbon nanotube (SWCNT) networks is analyzed through the wrinkling of compressed SWCNT-polymer bilayers on polydimethylsiloxane. The films exhibit both wrinkling and folding under compression and we extract the elastoplastic response using conventional two-plate buckling schemes. The formation of a diffuse interpenetrating nanotube-polymer interface has a dramatic effect on the nanotube layer modulus for both metallic and semiconducting species. In contrast to the usual percolation exhibited by the pure SWCNT films, the capped films show a crossover from "composite" behavior (the modulus of the SWCNT film is enhanced by the polymer) to "plasticized" behavior (the modulus of the SWCNT film is reduced by the polymer) as the SWCNT film thickness increases. For almost all thicknesses, however, the polymer enhances the yield strain of the nanotube network. Conductivity measurements on identical films suggest that the polymer has a modest effect on charge transport, which we interpret as a strain-induced polymer penetration of interfacial nanotube contacts. We use scaling, Flory-Huggins theory, and independently determined nanotube-nanotube and nanotube-polymer Hamaker constants to model the response.
Tear film measurement by optical reflectometry technique
Lu, Hui; Wang, Michael R.; Wang, Jianhua; Shen, Meixiao
2014-01-01
Abstract. Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle. PMID:24500519
NASA Technical Reports Server (NTRS)
VanKeuls, F. W.; Mueller, C. H.; Miranda, F. A.; Romanofsky, R. R.; Canedy, C. L.; Aggarwal, S.; Venkatesan, T.; Ramesh, R.; Horwitz, S.; Chang, W.
1999-01-01
We report on measurements taken on over twenty Ku-band coupled microstrip phase shifters (CMPS) using thin ferroelectric films of Ba(x)Sr(1-x)TiO3. This CMPS design is a recent innovation designed to take advantage of the high tunability and tolerate the high dielectric constant of ferroelectric films at Ku- and K-band frequencies. These devices are envisioned as a component in low-cost steerable beam phased area antennas, Comparisons are made between devices with differing film thickness, annealed vs unannealed, Mn-doped vs. undoped, and also substrates of LaAlO3 and MgO. A comparison between the CMPS structure and a CPW phase shifter was also made oil the same ferroelectric film.
Frequency Invariability of (Pb,La)(Zr,Ti)O₃ Antiferroelectric Thick-Film Micro-Cantilevers.
An, Kun; Jin, Xuechen; Meng, Jiang; Li, Xiao; Ren, Yifeng
2018-05-13
Micro-electromechanical systems comprising antiferroelectric layers can offer both actuation and transduction to integrated technologies. Micro-cantilevers based on the (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ (PLZT) antiferroelectric thick film are fabricated by the micro-nano manufacturing process, to utilize the effect of phase transition induced strain and sharp phase switch of antiferroelectric materials. When micro-cantilevers made of antiferroelectric thick films were driven by sweep voltages, there were two resonant peaks corresponding to the natural frequency shift from 27.8 to 27.0 kHz, before and after phase transition. This is the compensation principle for the PLZT micro-cantilever to tune the natural frequency by the amplitude modulation of driving voltage, rather than of frequency modulation. Considering the natural frequency shift about 0.8 kHz and the frequency tuning ability about 156 Hz/V before the phase transition, this can compensate the frequency shift caused by increasing temperature by tuning only the amplitude of driving voltage, when the ultrasonic micro-transducer made of antiferroelectric thick films works for such a long period. Therefore, antiferroelectric thick films with hetero-structures incorporated into PLZT micro-cantilevers not only require a lower driving voltage (no more than 40 V) than rival bulk piezoelectric ceramics, but also exhibit better performance of frequency invariability, based on the amplitude modulation.
Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki
2014-04-07
Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidthsmore » shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.« less
NASA Astrophysics Data System (ADS)
Tonny, Kaniz Naila; Rafique, Rosaleena; Sharmin, Afrina; Bashar, Muhammad Shahriar; Mahmood, Zahid Hasan
2018-06-01
Al doped ZnO (AZO) films are fabricated by using sol-gel spin coating method and changes in electrical, optical and structural properties due to variation in film thickness is studied. AZO films provide c-axis orientation along the (002) plane and peak sharpness increased with film thickness is evident from XRD analysis. Conductivity (σ) of AZO films has increased from 2.34 (Siemens/cm) to 20156.27 (Siemens/cm) whereas sheet resistance (Rsh) decreases from 606300 (ohms/sq.) to 2.08 (ohm/sq.) with increase of film thickness from 296 nm to 1030 nm. Optical transmittance (T%) of AZO films is decreased from around 82% to 62% in the visible region. And grain size (D) of AZO thin films has been found to increase from 19.59 nm to 25.25 nm with increase of film thickness. Figure of Merit is also calculated for prepared sample of AZO. Among these four sample of AZO thin films, L-15 sample (having thickness in 895 nm) has provided highest figure of merit which is 5.49*10^-4 (Ω-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isfahani, RN; Moghaddam, S
An experimental study on absorption characteristics of water vapor into a thin lithium bromide (LiBr) solution flow is presented. The LiBr solution flow is constrained between a superhydrophobic vapor permeable wall and a solid surface that removes the heat of absorption. As opposed to conventional falling film absorbers, in this configuration, the solution film thickness and velocity can be controlled independently to enhance the absorption rate. The effects of water vapor pressure, cooling surface temperature, solution film thickness, and solution flow velocity on the absorption rate are studied. An absorption rate of approximately 0.006 kg/m(2) s was measured at amore » LiBr solution channel thickness and flow velocity of 100 mu m and 5 mm/s, respectively. The absorption rate increased linearly with the water vapor driving potential at the test conditions of this study. It was demonstrated that decreasing the solution film thickness and increasing the solution velocity enhance the absorption rate. The high absorption rate and the inherently compact form of the proposed,absorber facilitate development of compact small-scale waste heat or solar-thermal driven cooling systems. Published by Elsevier Ltd.« less
NASA Astrophysics Data System (ADS)
Scott, Ethan A.; Gaskins, John T.; King, Sean W.; Hopkins, Patrick E.
2018-05-01
The need for increased control of layer thickness and uniformity as device dimensions shrink has spurred increased use of atomic layer deposition (ALD) for thin film growth. The ability to deposit high dielectric constant (high-k) films via ALD has allowed for their widespread use in a swath of optical, optoelectronic, and electronic devices, including integration into CMOS compatible platforms. As the thickness of these dielectric layers is reduced, the interfacial thermal resistance can dictate the overall thermal resistance of the material stack compared to the resistance due to the finite dielectric layer thickness. Time domain thermoreflectance is used to interrogate both the thermal conductivity and the thermal boundary resistance of aluminum oxide, hafnium oxide, and titanium oxide films on silicon. We calculate a representative design map of effective thermal resistances, including those of the dielectric layers and boundary resistances, as a function of dielectric layer thickness, which will be of great importance in predicting the thermal resistances of current and future devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Bolin; Chen, Yajie, E-mail: y.chen@neu.edu; Gillette, Scott
2014-02-17
Thick barium hexaferrite Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (i.e., Zn{sub 2}Y) films having thicknesses of ∼100 μm were epitaxially grown on MgO (111) substrates using an environmentally benign ferrite-salt mixture by vaporizing the salt. X-ray diffraction pole figure analyses showed (00l) crystallographic alignment with little in plane dispersion confirming epitaxial growth. Saturation magnetization, 4πM{sub s}, was measured for as-grown films to be 2.51 ± 0.1 kG with an out of plane magnetic anisotropy field H{sub A} of 8.9 ± 0.1 kOe. Ferromagnetic resonance linewidth, as the peak-to-peak power absorption derivative at 9.6 GHz, was measured to be 62 Oe. These properties demonstrate a rapid, convenient, cost-effective, and nontoxic methodmore » of growing high quality thick crystalline ferrite films which could be used widely for microwave device applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uribe, Fernando; Vianco, Paul Thomas; Zender, Gary L.
A study was performed that examined the microstructure and mechanical properties of 63Sn-37Pb (wt.%, Sn-Pb) solder joints made to thick film layers on low-temperature co-fired (LTCC) substrates. The thick film layers were combinations of the Dupont{trademark} 4596 (Au-Pt-Pd) conductor and Dupont{trademark} 5742 (Au) conductor, the latter having been deposited between the 4596 layer and LTCC substrate. Single (1x) and triple (3x) thicknesses of the 4596 layer were evaluated. Three footprint sizes were evaluated of the 5742 thick film. The solder joints exhibited excellent solderability of both the copper (Cu) lead and thick film surface. In all test sample configurations, themore » 5742 thick film prevented side wall cracking of the vias. The pull strengths were in the range of 3.4-4.0 lbs, which were only slightly lower than historical values for alumina (Al{sub 2}O{sub 3}) substrates. General (qualitative) observations: (a) The pull strength was maximized when the total number of thick film layers was between two and three. Fewer that two layers did not develop as strong of a bond at the thick film/LTCC interface; more than three layers and of increased footprint area, developed higher residual stresses at the thick film/LTCC interface and in the underlying LTCC material that weakened the joint. (b) Minimizing the area of the weaker 4596/LTCC interface (e.g., larger 5742 area) improved pull strength. Specific observations: (a) In the presence of vias and the need for the 3x 4596 thick film, the preferred 4596:5742 ratio was 1.0:0.5. (b) For those LTCC components that require the 3x 4596 layer, but do not have vias, it is preferred to refrain from using the 5742 layer. (c) In the absence of vias, the highest strength was realized with a 1x thick 5742 layer, a 1x thick 4596 layer, and a footprint ratio of 1.0:1.0.« less
Droplet-air collision dynamics: Evolution of the film thickness
NASA Astrophysics Data System (ADS)
Opfer, L.; Roisman, I. V.; Venzmer, J.; Klostermann, M.; Tropea, C.
2014-01-01
This study is devoted to the experimental and theoretical investigation of aerodynamic drop breakup phenomena. We show that the phenomena of drop impact onto a rigid wall, drop binary collisions, and aerodynamic drop deformation are similar if the correct scaling is applied. Then we use observations of the deforming drop to estimate the evolution of the film thickness of the bag, the value that determines the size of the fine child drops produced by bag breakup. This prediction of film thickness, based on film kinematics, is validated for the initial stage by direct drop thickness measurements and at the latest stage by the data obtained from the velocity of hole expansion in the film. It is shown that the film thickness correlates well with the dimensionless position of the bag apex.
Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F
2012-08-01
Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.
Wang, Jian -Jun; Wang, Yi; Ihlefeld, Jon F.; ...
2016-04-06
Effective thermal conductivity as a function of domain structure is studied by solving the heat conduction equation using a spectral iterative perturbation algorithm in materials with inhomogeneous thermal conductivity distribution. Using this proposed algorithm, the experimentally measured effective thermal conductivities of domain-engineered {001} p-BiFeO 3 thin films are quantitatively reproduced. In conjunction with two other testing examples, this proposed algorithm is proven to be an efficient tool for interpreting the relationship between the effective thermal conductivity and micro-/domain-structures. By combining this algorithm with the phase-field model of ferroelectric thin films, the effective thermal conductivity for PbZr 1-xTi xO 3 filmsmore » under different composition, thickness, strain, and working conditions is predicted. It is shown that the chemical composition, misfit strain, film thickness, film orientation, and a Piezoresponse Force Microscopy tip can be used to engineer the domain structures and tune the effective thermal conductivity. Furthermore, we expect our findings will stimulate future theoretical, experimental and engineering efforts on developing devices based on the tunable effective thermal conductivity in ferroelectric nanostructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jian -Jun; Wang, Yi; Ihlefeld, Jon F.
Effective thermal conductivity as a function of domain structure is studied by solving the heat conduction equation using a spectral iterative perturbation algorithm in materials with inhomogeneous thermal conductivity distribution. Using this proposed algorithm, the experimentally measured effective thermal conductivities of domain-engineered {001} p-BiFeO 3 thin films are quantitatively reproduced. In conjunction with two other testing examples, this proposed algorithm is proven to be an efficient tool for interpreting the relationship between the effective thermal conductivity and micro-/domain-structures. By combining this algorithm with the phase-field model of ferroelectric thin films, the effective thermal conductivity for PbZr 1-xTi xO 3 filmsmore » under different composition, thickness, strain, and working conditions is predicted. It is shown that the chemical composition, misfit strain, film thickness, film orientation, and a Piezoresponse Force Microscopy tip can be used to engineer the domain structures and tune the effective thermal conductivity. Furthermore, we expect our findings will stimulate future theoretical, experimental and engineering efforts on developing devices based on the tunable effective thermal conductivity in ferroelectric nanostructures.« less
Impact of substrate on structure and electrical properties in lead-based ferroelectric thin films
NASA Astrophysics Data System (ADS)
Valanoor, Nagarajan Venkatasubramanian
Current trends in semiconductor technology demand that ferroelectric materials be used in thin film form, rather than bulk, for integration and scaling purposes. An inevitable consequence of integration is substrate induced constraint and stress. Sources of this stress are the lattice and thermal mismatch between film and substrate, structural phase transformation which leads to spontaneous strains, and dislocation cores at the film substrate interface. In addition to classical stress relaxation mechanisms all highly tetragonal ferroelectrics relax internal stress via formation of polydomain (90° domains and not 180° domains) structures below the phase transformation, which brings about a change in the microstructure of the film. Hence it is possible to control the resultant microstructure by controlling the degree of polydomain relaxation. Obviously this affects the electrical and electro-mechanical properties and in turn the device performance. The goal of this research is to study this structure-property relationship of ferroelectric thin films where in the structure has been systematically modified by changing the substrate-induced effect. To investigate the effect of the substrate, epitaxial films of PbZr 0.2Ti0.8O3 were grown by pulsed laser deposition (PLD). Epitaxial films reduce the complexities introduced grain boundaries and multiple domain orientations. By systematically changing the thickness the spontaneous strain or c/a ratio can be varied. As a consequence polydomain formation varies as a function of film thickness. Thus this is an effective yet simple method to fully understand the impact of stress on structure-property inter-relationships. The theoretical background for these experiments is first laid out by a thermodynamic analysis of the polydomain formation. It leads to the construction of a domain stability map and indicates a presence of a critical thickness for polydomain formation. This is followed by an investigation of the impact of polydomain formation on quasi-static and dynamic polarization switching. To correlate the material microstructure to switching, an activation field, alpha, is introduced. It is shown theoretically that alpha ∝ (c/a-1)3.5 and a good experimental fit can be obtained. However it is observed that polydomain formation does not impact the electromechanical and dielectric response significantly. It is shown experimentally and theoretically that stress-induced polarization varies only by 10%. Therefore to study the impact of in plane stresses induced by substrate on piezoelectric and dielectric response we chose a "soft" relaxor ferroelectric (RFE) wherein the Curie temperature is close to room temperature. In this case even a small application of stress can change the properties significantly. The relaxor composition chosen was PbMg1/3Nb 2/3O3(90%)-PbTiO3(10%). By systematically changing the substrate and the thickness, stresses in the film the electromechanical constants is varied. High-resolution electron microscopy revealed a distinct change in the microstructure as a function of thickness, and a probable answer as to why thin films show inferior properties compared to bulk materials is proposed. The last part of this thesis focuses on the effect of micro stresses. Two examples are demonstrated where the mechanical forces of interaction between the film and substrate are manipulated on a very local scale. We show that by inducing stresses at local regions one can induce polydomains in film thinner than previously calculated critical thickness, while by removing constraint at local regions we can enhance the d33 co-efficient to values higher than those shown by bulk ceramics.
Confinement effects in premelting dynamics
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John
2017-11-01
We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films studied in a wide variety of materials using a power law and we examine the consequent evolution of the elastic wall. We treat (i) a range of interactions that are known to underlie interfacial premelting and (ii) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at larger temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.
Confinement effects in premelting dynamics
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John S.
2017-11-01
We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films, studied in a wide variety of materials, using a power law and we examine the consequent evolution of the confining elastic wall. We treat (1) a range of interactions that are known to underlie interfacial premelting and (2) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at higher temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.
NASA Astrophysics Data System (ADS)
Dong, Guobo; Zhang, Ming; Wang, Mei; Li, Yingzi; Gao, Fangyuan; Yan, Hui; Diao, Xungang
2014-07-01
CuAlO2 films with different thickness were prepared by the radio frequency magnetron sputtering technique. The structural, electrical and optical properties of CuAlO2 were studied by X-ray diffraction, atomic force microscope, UV-Vis double-beam spectrophotometer and Hall measurements. The results indicate that the single phase hexagonal CuAlO2 is formed and the average grain size of CuAlO2 films increases with increasing film thickness. The results also exhibit that the lowering of bandgap and the increase of electrical conductivity of CuAlO2 films with the increase of their thickness, which are attributed to the improvement of the grain size and the anisotropic electrical property. According to the electrical and optical properties, the biggest figure of merit is achieved for the CuAlO2 film with the appropriate thickness of 165 nm.
Film thickness measurement for spiral groove and Rayleigh step lift pad self-acting face seals
NASA Technical Reports Server (NTRS)
Dirusso, E.
1982-01-01
One Rayleigh step lift pad and three spiral groove self-acting face seal configurations were tested to measure film thickness and frictional torque as a function of shaft speed. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17,000 rpm. The measured film thickness was compared with theoretical data from mathematical models. The mathematical models overpredicted the measured film thickness at the lower speeds of the test speed range and underpredicted the measured film thickness at the higher speeds of the test speed range.
Exciton-dominated dielectric function of atomically thin MoS 2 films
Yu, Yiling; Yu, Yifei; Cai, Yongqing; ...
2015-11-24
We systematically measure the dielectric function of atomically thin MoS 2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS 2 films and its contribution to the dielectricmore » function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS 2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.« less
Ryu, Jeongjae; No, Kwangsoo; Kim, Yeontae; Park, Eugene; Hong, Seungbum
2016-01-01
In this study, we investigated the deposition kinetics of polyvinylidene fluoride copolymerized with trifluoroethylene (P(VDF-TrFE)) particles on stainless steel substrates during the electrophoretic deposition (EPD) process. The effect of applied voltage and deposition time on the structure and ferroelectric property of the P(VDF-TrFE) films was studied in detail. A method of repeated EPD and heat treatment above melting point were employed to fabricate crack-free P(VDF-TrFE) thick films. This method enabled us to fabricate P(VDF-TrFE) films with variable thicknesses. The morphology of the obtained films was investigated by scanning electron microscopy (SEM), and the formation of β-phase was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. P(VDF-TrFE) films prepared with various thicknesses showed remnant polarization (Pr) of around 4 μC/cm2. To demonstrate the applicability of our processing recipe to complex structures, we fabricated a spring-type energy harvester by depositing P(VDF-TrFE) films on stainless steel springs using EPD process. Our preliminary results show that an electrophoretic deposition can be applied to produce high-quality P(VDF-TrFE) films on planar as well as three-dimensional (3-D) substrates. PMID:27805008
Ryu, Jeongjae; No, Kwangsoo; Kim, Yeontae; ...
2016-11-02
In this paper, we investigated the deposition kinetics of polyvinylidene fluoride copolymerized with trifluoroethylene (P(VDF-TrFE)) particles on stainless steel substrates during the electrophoretic deposition (EPD) process. The effect of applied voltage and deposition time on the structure and ferroelectric property of the P(VDF-TrFE) films was studied in detail. A method of repeated EPD and heat treatment above melting point were employed to fabricate crack-free P(VDF-TrFE) thick films. This method enabled us to fabricate P(VDF-TrFE) films with variable thicknesses. The morphology of the obtained films was investigated by scanning electron microscopy (SEM), and the formation of β-phase was confirmed by X-raymore » diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. P(VDF-TrFE) films prepared with various thicknesses showed remnant polarization (P r) of around 4 μC/cm 2. To demonstrate the applicability of our processing recipe to complex structures, we fabricated a spring-type energy harvester by depositing P(VDF-TrFE) films on stainless steel springs using EPD process. Our preliminary results show that an electrophoretic deposition can be applied to produce high-quality P(VDF-TrFE) films on planar as well as three-dimensional (3-D) substrates.« less
Interfacial charge-induced polarization switching in Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} bi-layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yu Jin; Park, Min Hyuk; Jeon, Woojin
2015-12-14
Detailed polarization switching behavior of an Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization–voltage (P-V) results. Amorphous AO films with various thicknesses (2–10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ∼3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasingmore » AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ∼±0.1 Cm{sup −2} and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ∼±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.« less
Dimensional scaling of perovskite ferroelectric thin films
NASA Astrophysics Data System (ADS)
Keech, Ryan R.
Dimensional size reduction has been the cornerstone of the exponential improvement in silicon based logic devices for decades. However, fundamental limits in the device physics were reached ˜2003, halting further reductions in clock speed without significant penalties in power consumption. This has motivated the research into next generation transistors and switching devices to reinstate the scaling laws for clock speed. This dissertation aims to support the scaling of devices that are based on ferroelectricity and piezoelectricity and to provide a roadmap for the corresponding materials performance. First, a scalable growth process to obtain highly {001}-oriented lead magnesium niobate - lead titanate (PMN-PT) thin films was developed, motivated by the high piezoelectric responses observed in bulk single crystals. It was found that deposition of a 2-3 nm thick PbO buffer layer on {111} Pt thin film bottom electrodes, prior to chemical solution deposition of PMN-PT reduces the driving force for Pb diffusion from the PMN-PT to the bottom electrode, and facilitates nucleation of {001}-oriented perovskite grains. Energy dispersive spectroscopy demonstrated that up to 10% of the Pb from a PMN-PT precursor solution may diffuse into the bottom electrode. PMN-PT grains with a mixed {101}/{111} orientation in a matrix of Pb-deficient pyrochlore phase were then promoted near the interface. When this is prevented, phase pure films with {001} orientation with Lotgering factors of 0.98-1.0, can be achieved. The resulting films of only 300 nm in thickness exhibit longitudinal effective d33,f coefficients of ˜90 pm/V and strain values of ˜1% prior to breakdown. 300 nm thick epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) blanket thin films were studied for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO3, while polycrystalline films with {001}-Lotgering factors >0.96 were grown on Pt/TiO2/SiO2/Si substrates via chemical solution deposition. It was found that both film types exhibited similar, thickness-independent high-field epsilonr of ˜300 with highly crystalline electrode/dielectric interfaces. The dielectric data suggest that irreversible domain wall motion is the major contributor to the overall dielectric response and its thickness dependence. In epitaxial films the irreversible Rayleigh coefficients reduced 85% upon decreasing thickness from 350 to 100 nm. Tmax was the only measured small signal quantity which was more thickness dependent in polycrystalline than epitaxial films. This was attributed to the relaxor nature present in the films, potentially stabilized by defect concentrations, and/or chemical inhomogeneity. The effective interfacial layers are found to contribute to the measured thickness dependence in d33,f measured by X-ray diffraction. Finally, high field piezoelectric characterization revealed a field-induced rhombohedral to tetragonal phase transition in epitaxial films. While the mechanisms causing thickness dependence are mostly understood, the functional properties of blanket PMN-PT films remain about an order of magnitude lower than what is achieved in constraint-free bulk single crystals. These property reductions are attributed to substrate clamping, and the process of declamping via lateral subdivision was studied in 300-350 nm thick, {001} oriented 70PMN-30PT films on Si substrates. In the clamped state, the films exhibit relative permittivity near 1500 and loss tangents of approximately 0.01. The films showed slim hysteresis loops with remanent polarizations of about 8 muC/cm2 and breakdown fields over 1500 kV/cm. Using optical and electron beam lithography combined with reactive ion etching, the PMN-PT films were systematically patterned down to lateral feature sizes of 200 nm in spatial scale with nearly vertical sidewalls. Upon lateral scaling, which produced partially declamped films, there was an increase in both small and large signal dielectric properties, including a doubling of the relative permittivity in structures with width-to-thickness aspect ratios of 0.7. In addition, declamping resulted in a counterclockwise rotation of the hysteresis loops, increasing the remanent polarization to 13.5 muC/cm2. Rayleigh analysis, Preisach modeling, and the relative permittivity as a function of temperature also indicated changes in the domain wall motion and intrinsic response of the laterally scaled PMN-PT. The longitudinal piezoelectric coefficient, d33,f, was interrogated as a function of position across the patterned structures by finite element modeling, piezoresponse force microscopy, and nanoprobe synchrotron X-ray diffraction. It was found that d33,f increased from the clamped value of 40-50 pm/V to ˜160 pm/V at the free sidewall under 200 kV/cm excitation. The sidewalls partially declamped the piezoelectric response 500-600 nm into the patterned structure, raising the piezoelectric response at the center of features with lateral dimensions less than 1 mum (3:1 width to thickness aspect ratio). The normalized data from all three characterization techniques are in excellent agreement, with quantitative differences providing insight to the field dependence of the piezoelectric coefficient and its declamping behavior.
Integrated thick-film nanostructures based on spinel ceramics
2014-01-01
Integrated temperature-humidity-sensitive thick-film structures based on spinel-type semiconducting ceramics of different chemical compositions and magnesium aluminate ceramics were prepared and studied. It is shown that temperature-sensitive thick-film structures possess good electrophysical characteristics in the region from 298 to 358 K. The change of electrical resistance in integrated thick-film structures is 1 order, but these elements are stable in time and can be successfully used for sensor applications. PMID:24670141
Influence of tantalum underlayer on magnetization dynamics in Ni{sub 81}Fe{sub 19} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Jae Hyun; Deorani, Praveen; Yoon, Jungbum
2015-07-13
The effect of tantalum (Ta) underlayer is investigated in Ni{sub 81}Fe{sub 19} thin films for magnetization dynamics. The damping parameters extracted from spin wave measurements increase systematically with increasing Ta thickness, whereas the damping parameters from ferromagnetic resonance measurements are found to be weakly dependent on the Ta thickness. The difference is attributed to propagating properties of spin wave and short spin diffusion length in Ta. The group velocity of spin waves is found to be constant for different Ta thicknesses, and nonreciprocity of spin waves is not affected by the Ta thickness. The experimental observations are supported by micromagneticmore » simulations.« less
Confinement effects on thin polymer films
NASA Astrophysics Data System (ADS)
Dalnoki-Veress, Karoly J. T.
We present the results of four projects investigating the effects of confinement on polymeric systems. The first study dealt with polymer blends that are quenched using a spincoating technique rather than a temperature quench. The mass fraction of two blends was varied to determine the effect of the substrate-blend interface on the thin film phase separation morphology. Quantitative measurements of the morphology on three different substrates revealed significant differences in the phase separation morphology as a result of the different wetting properties of the polymer blend on the substrates. The second project dealt with the effect of mechanical confinement on the phase separation of polymer blend thin films. We measured the phase separation morphology of polystyrene/poly (methyl methacrylate) (PS/PMMA) blend films of thickness h on a silicon oxide (SiOx) substrate with a SiOx capping layer. A novel phase separation morphology was observed for small capping layer thicknesses L as well as a transition from lateral to lamellar morphology as L is increased. A simple model is presented which explains the observed lateral morphology, and the morphology transition, in terms of a balance between the free energy increase associated with forming the interfaces between PS-rich and PMMA-rich domains, and the free energy increase associated with the elastic bending of the SiOx capping layer. Direct control of the amplitude and period of the deformation is achieved by varying h and L. Reasonable agreement is obtained between the predicted amplitude of the rippling of the film surface and that measured directly using atomic force microscopy. For temperatures greater than the glass transition temperature Tg, thin freely-standing polymer films are unstable to the formation of holes. In the third project, we have studied the formation and growth of two types of holes: those which form spontaneously when the films are heated above Tg, and those purposely nucleated using a heated scanning tunneling microscope tip. For both types of holes, we observe exponential growth of the hole radius, corresponding to the viscous regime of hole formation, and a decrease in the film viscosity with decreasing film thickness h for h < 250 nm. In the last project the thermal stability of freely-standing films was enhanced by symmetrically confining the films between thin layers of silicon oxide to form SiOx/PS/SiOx trilayer films. Aggressive annealing of the films produced a novel morphology consisting of long, parallel domains with a well-defined periodicity. A simple model is presented which describes the scaling behavior of the morphology. We discuss the direct control of the morphology through manipulation of the individual film thicknesses and the long-range Van der Waals or dispersion interactions.
Percolation effect in thick film superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sali, R.; Harsanyi, G.
1994-12-31
A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density atmore » the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.« less
NASA Technical Reports Server (NTRS)
Sali, Robert; Harsanyi, Gabor
1995-01-01
A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to the T(sub c) and advantageous current density properties the base of the past was chosen to be of Bi(Pb)SrCaCu) system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density -at the boiling temperature of the liquid He- was between 200 - 300 A/sq cm. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency ans the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.
Thin-film thickness measurement method based on the reflection interference spectrum
NASA Astrophysics Data System (ADS)
Jiang, Li Na; Feng, Gao; Shu, Zhang
2012-09-01
A method is introduced to measure the thin-film thickness, refractive index and other optical constants. When a beam of white light shines on the surface of the sample film, the reflected lights of the upper and the lower surface of the thin-film will interfere with each other and reflectivity of the film will fluctuate with light wavelength. The reflection interference spectrum is analyzed with software according to the database, while the thickness and refractive index of the thin-film is measured.
In situ stress evolution during magnetron sputtering of transition metal nitride thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abadias, G.; Guerin, Ph.
2008-09-15
Stress evolution during reactive magnetron sputtering of TiN, ZrN, and TiZrN layers was studied using real-time wafer curvature measurements. The presence of stress gradients is revealed, as the result of two kinetically competing stress generation mechanisms: atomic peening effect, inducing compressive stress, and void formation, leading to a tensile stress regime predominant at higher film thickness. No stress relaxation is detected during growth interrupt in both regimes. A change from compressive to tensile stress is evidenced with increasing film thickness, Ti content, sputtering pressure, and decreasing bias voltage.
Defect design of insulation systems for photovoltaic modules
NASA Technical Reports Server (NTRS)
Mon, G. R.
1981-01-01
A defect-design approach to sizing electrical insulation systems for terrestrial photovoltaic modules is presented. It consists of gathering voltage-breakdown statistics on various thicknesses of candidate insulation films where, for a designated voltage, module failure probabilities for enumerated thickness and number-of-layer film combinations are calculated. Cost analysis then selects the most economical insulation system. A manufacturing yield problem is solved to exemplify the technique. Results for unaged Mylar suggest using fewer layers of thicker films. Defect design incorporates effects of flaws in optimal insulation system selection, and obviates choosing a tolerable failure rate, since the optimization process accomplishes that. Exposure to weathering and voltage stress reduces the voltage-withstanding capability of module insulation films. Defect design, applied to aged polyester films, promises to yield reliable, cost-optimal insulation systems.
Characteristics of a thick film ethanol gas sensor made of mechanically treated LaFeO3 powder
NASA Astrophysics Data System (ADS)
Suhendi, Endi; Witra, Hasanah, Lilik; Syarif, Dani Gustaman
2017-05-01
In this work, fabrication of LaFeO3 thick film ceramics for ethanol gas sensor made of mechanically treated (milling) powder was studied. The thick films were fabricated using screen printing technique from LaFeO3 powder treated by HEM (High Energy Milling). The films were baked at 800°C for one hour and analyzed using XRD and SEM. Sensitivity of the films was studied by measuring resistance of them at various temperatures in a chamber containing air with and without ethanol gas. Data of XRD showed that the thick film crystalizes in orthorombic structure with space group of Pn*a. SEM data showed that the films consisted of small grains with grain size of about 225 nm. According to the electrical data, the LaFeO3 thick films that produced in this work could be applied as ethanol gas with operating temperature of about 275°C.
Subtractive fabrication of ferroelectric thin films with precisely controlled thickness
NASA Astrophysics Data System (ADS)
Ievlev, Anton V.; Chyasnavichyus, Marius; Leonard, Donovan N.; Agar, Joshua C.; Velarde, Gabriel A.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro; Ovchinnikova, Olga S.
2018-04-01
The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.
Subtractive fabrication of ferroelectric thin films with precisely controlled thickness.
Ievlev, Anton V; Chyasnavichyus, Marius; Leonard, Donovan N; Agar, Joshua C; Velarde, Gabriel A; Martin, Lane W; Kalinin, Sergei V; Maksymovych, Petro; Ovchinnikova, Olga S
2018-04-02
The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.
Subtractive fabrication of ferroelectric thin films with precisely controlled thickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ievlev, Anton; Chyasnavichyus, Marius; Leonard, Donovan N.
The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy tomore » a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Lastly, our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.« less
Subtractive fabrication of ferroelectric thin films with precisely controlled thickness
Ievlev, Anton; Chyasnavichyus, Marius; Leonard, Donovan N.; ...
2018-02-22
The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy tomore » a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Lastly, our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stachiv, Ivo, E-mail: stachiv@fzu.cz; Institute of Physics, Czech Academy of Sciences, Prague; Kuo, Chih-Yun
2016-04-15
Measurement of ultrathin film thickness and its basic properties can be highly challenging and time consuming due to necessity of using several very sophisticated devices. Here, we report an easy accessible resonant based method capable to simultaneously determinate the residual stress, elastic modulus, density and thickness of ultrathin film coated on doubly clamped micro-/nanobeam. We show that a general dependency of the resonant frequencies on the axial load is also valid for in-plane vibrations, and the one depends only on the considered vibrational mode. As a result, we found that the film elastic modulus, density and thickness can be evaluatedmore » from two measured in-plane and out-plane fundamental resonant frequencies of micro-/nanobeam with and without film under different prestress forces. Whereas, the residual stress can be determined from two out-plane (in-plane) measured consecutive resonant frequencies of beam with film under different prestress forces without necessity of knowing film and substrate properties and dimensions. Moreover, we also reveal that the common uncertainties in force (and thickness) determination have a negligible (and minor) impact on the determined film properties. The application potential of the present method is illustrated on the beam made of silicon and SiO{sub 2} with deposited 20 nm thick AlN and 40 nm thick Au thin films, respectively.« less
Bobbitt, Jonathan M.; Mendivelso-Pérez, Deyny; Smith, Emily A.
2016-11-03
A scanning angle (SA) Raman spectroscopy method was developed to simultaneously measure the chemical composition and thickness of waveguide mixed polymer films with varying fractional compositions. In order to test the method, six films of polystyrene-block-poly(methyl methacrylate), some mixed with poly(methyl methacrylate) homopolymer (PS-b-PMMA:PMMA), and two films of poly(2-vinylnapthalene)-block-poly(methyl methacrylate) (P2VN-b-PMMA) were prepared. The film thickness ranged from 495 to 971 nm. The chemical composition and thickness of PS-b-PMMA:PMMA films was varied by the addition of the PMMA homopolymer and annealing the films in toluene. SA Raman peak amplitude ratios (1001 cm -1 for PS, 812 cm -1 for PMMA,more » and 1388 cm -1 for P2VN) were used to calculate the refractive index of the polymer film, an input parameter in calculations of the sum square electric field (SSEF). The film thickness was determined by SSEF models of the experimental Raman amplitudes versus the incident angle of light. The average film thickness determined by the developed SA Raman spectroscopy method was within 5% of the value determined by optical profilometry. In conclusion, SA Raman spectroscopy will be useful for in situ label-free analyses of mixed polymer waveguide films.« less
Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit.
Löptien, P; Zhou, L; Khajetoorians, A A; Wiebe, J; Wiesendanger, R
2014-10-22
The thickness dependence of the superconducting energy gap ΔLa of double hexagonally close packed (dhcp) lanthanum islands grown on W(110) is studied by scanning tunneling spectroscopy, from the bulk to the thin-film limit. Superconductivity is suppressed by the boundary conditions for the superconducting wavefunction on the surface and W/La interface, leading to a linear decrease of the critical temperature Tc as a function of the inverse film thickness. For the thick, bulk-like films, ΔLa and Tc are 40% larger compared to the literature values of dhcp La as measured by other techniques. This finding is reconciled by examining the effects of surface contamination as probed by modifications of the surface state, suggesting that the large Tc originates in the superior purity of the samples investigated here.
Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit
NASA Astrophysics Data System (ADS)
Löptien, P.; Zhou, L.; Khajetoorians, A. A.; Wiebe, J.; Wiesendanger, R.
2014-10-01
The thickness dependence of the superconducting energy gap ΔLa of double hexagonally close packed (dhcp) lanthanum islands grown on W(110) is studied by scanning tunneling spectroscopy, from the bulk to the thin-film limit. Superconductivity is suppressed by the boundary conditions for the superconducting wavefunction on the surface and W/La interface, leading to a linear decrease of the critical temperature Tc as a function of the inverse film thickness. For the thick, bulk-like films, ΔLa and Tc are 40% larger compared to the literature values of dhcp La as measured by other techniques. This finding is reconciled by examining the effects of surface contamination as probed by modifications of the surface state, suggesting that the large Tc originates in the superior purity of the samples investigated here.
NASA Astrophysics Data System (ADS)
Cao Van, Phuoc; Surabhi, Srivathsava; Dongquoc, Viet; Kuchi, Rambabu; Yoon, Soon-Gil; Jeong, Jong-Ryul
2018-03-01
We report high-quality yttrium-iron-garnet (YIG; Y3Fe5O12) ultrathin films grown on {111} gadolinium-gallium-garnet (GGG; Gd3Ga5O12) substrates using RF sputtering deposition on an off-stoichiometric target and optimized thermal treatments. We measured a narrow peak-to-peak ferromagnetic resonance linewidth (ΔH) whose minimum value was 1.9 Oe at 9.43 GHz for a 60-nm-thick YIG film. This value is comparable to the most recently published value for a YIG thin film grown by pulsed laser deposition. The temperature dependence of the ΔH was investigated systematically, the optimal annealing condition for our growing condition was 875 °C. Structural analysis revealed that surface roughness and crystallinity played an important role in the observed ΔH broadening. Furthermore, the thickness dependence of the ΔH, which indicated that 60 nm thickness was optimal to obtain narrow ΔH YIG films, was also investigated. The thickness dependence of ΔH was understood on the basis of contributions of surface-associated magnon scattering and magnetic inhomogeneities to the ΔH broadening. Other techniques such as transmission electron microscopy, scanning electron microscopy, and X-ray diffraction were used to study the crystalline structure of the YIG films. The high quality of the films in terms of their magnetic properties was expressed through a very low coercivity and high saturation magnetization measured using a vibration sample magnetometer.
NASA Astrophysics Data System (ADS)
Choi, C.; Baek, Y.; Lee, B. M.; Kim, K. H.; Rim, Y. S.
2017-12-01
We report solution-processed, amorphous indium-gallium-zinc-oxide-based (a-IGZO-based) thin-film transistors (TFTs). Our proposed solution-processed a-IGZO films, using a simple spin-coating method, were formed through nitrate ligand-based metal complexes, and they were annealed at low temperature (250 °C) to achieve high-quality oxide films and devices. We investigated solution-processed a-IGZO TFTs with various thicknesses, ranging from 4 to 16 nm. The 4 nm-thick TFT films had smooth morphology and high-density, and they exhibited excellent performance, i.e. a high saturation mobility of 7.73 ± 0.44 cm2 V-1 s-1, a sub-threshold swing of 0.27 V dec-1, an on/off ratio of ~108, and a low threshold voltage of 3.10 ± 0.30 V. However, the performance of the TFTs degraded as the film thickness was increased. We further performed positive and negative bias stress tests to examine their electrical stability, and it was noted that the operating behavior of the devices was highly stable. Despite a small number of free charges, the high performance of the ultrathin a-IGZO TFTs was attributed to the small effect of the thickness of the channel, low bulk resistance, the quality of the a-IGZO/SiO2 interface, and high film density.
The Hall Effect in Hydrided Rare Earth Films
NASA Astrophysics Data System (ADS)
Koon, D. W.; Azofeifa, D. E.; Clark, N.
We describe two new techniques for measuring the Hall effect in capped rare earth films during hydriding. In one, we simultaneously measure resistivity and the Hall coefficient for a rare earth film covered with four different thicknesses of Pd, recovering the charge transport quantities for both materials. In the second technique, we replace Pd with Mn as the covering layer. We will present results from both techniques.
Spin-wave wavelength down-conversion at thickness steps
NASA Astrophysics Data System (ADS)
Stigloher, Johannes; Taniguchi, Takuya; Madami, Marco; Decker, Martin; Körner, Helmut S.; Moriyama, Takahiro; Gubbiotti, Gianluca; Ono, Teruo; Back, Christian H.
2018-05-01
We report a systematic experimental study on the refraction and reflection of magnetostatic spin-waves at a thickness step between two Permalloy films of different thickness. The transmitted spin-waves for the transition from a thick film to a thin film have a higher wave vector compared to the incoming waves. Consequently, such systems may find use as passive wavelength transformers in magnonic networks. We investigate the spin-wave transmission behavior by studying the influence of the external magnetic field, incident angle, and thickness ratio of the films using time-resolved scanning Kerr microscopy and micro-focused Brillouin light scattering.
Study on cavitation effect of mechanical seals with laser-textured porous surface
NASA Astrophysics Data System (ADS)
Liu, T.; Chen, H. l.; Liu, Y. H.; Wang, Q.; Liu, Z. B.; Hou, D. H.
2012-11-01
Study on the mechanisms underlying generation of hydrodynamic pressure effect associated with laser-textured porous surface on mechanical seal, is the key to seal and lubricant properties. The theory model of mechanical seals with laser-textured porous surface (LES-MS) based on cavitation model was established. The LST-MS was calculated and analyzed by using Fluent software with full cavitation model and non-cavitation model and film thickness was predicted by the dynamic mesh technique. The results indicate that the effect of hydrodynamic pressure and cavitation are the important reasons to generate liquid film opening force on LST-MS; Cavitation effect can enhance hydrodynamic pressure effect of LST-MS; The thickness of liquid film could be well predicted with the method of dynamic mesh technique on Fluent and it becomes larger as the increasing of shaft speed and the decreasing of pressure.
Brown, Emery; Ma, Chunrui; Acharya, Jagaran; Ma, Beihai; Wu, Judy; Li, Jun
2014-12-24
The energy storage properties of Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ∼1200. Cyclic I-V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). The results show that, as the film thickness increases, the material transits from a linear dielectric to nonlinear relaxor-ferroelectric. While the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ∼80% to ∼30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.
Brown, Emery; Ma, Chunrui; Acharya, Jagaran; ...
2014-12-24
The energy storage properties of Pb 0.92La 0.08Zr 0.52Ti 0.48O 3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ~1200. Cyclic I–V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). Our results show that, as the film thickness increases, the material transits from a linearmore » dielectric to nonlinear relaxor-ferroelectric. And while the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ~80% to ~30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.« less
NASA Astrophysics Data System (ADS)
Bogdanovich, M. P.
1996-10-01
We have grown films of magnesium, lithium, zinc, and nickel-zinc ferrites, varying in thickness from 0.5 to 8 μm on polycrystalline sapphiresubstrates by coating the surface of the substrate with an aqueous nitric acid solution of salts of the elements which compose the ferrite. The lattice parameter of the ferrite film increases with the film thickness and becomes constant at thicknesses greater than 8 μm. We have determined the ratio of the theoretical strength limit to the macroscopic one in the film based on the change in the interplanar distance d 220 and the lattice parameter calculated from it, under the assumption that the change Δa(h)=a ∞=a(h) results from macroscopic stresses in the film. This ratio shows that when h=1 μm the microstresses in the film are an order of magnitude smaller than the theoretical strength limit. At larger film thicknesses this macroscopic stress becomes even lower, and at the external surface of thick films it goes completely to zero.
Substrate spacing and thin-film yield in chemical bath deposition of semiconductor thin films
NASA Astrophysics Data System (ADS)
Arias-Carbajal Reádigos, A.; García, V. M.; Gomezdaza, O.; Campos, J.; Nair, M. T. S.; Nair, P. K.
2000-11-01
Thin-film yield in the chemical bath deposition technique is studied as a function of separation between substrates in batch production. Based on a mathematical model, it is proposed and experimentally verified in the case of CdS thin films that the film thickness reaches an asymptotic maximum with increase in substrate separation. It is shown that at a separation less than 1 mm between substrates the yield, i.e. percentage in moles of a soluble cadmium salt deposited as a thin film of CdS, can exceed 50%. This behaviour is explained on the basis of the existence of a critical layer of solution near the substrate, within which the relevant ionic species have a higher probability of interacting with the thin-film layer than of contributing to precipitate formation. The critical layer depends on the solution composition and the temperature of the bath as well as the duration of deposition. An effective value for the critical layer thickness has been defined as half the substrate separation at which 90% of the maximum film thickness for the particular bath composition, bath temperature and duration of deposition is obtained. In the case of CdS thin films studied as an example, the critical layer is found to extend from 0.5 to 2.5 mm from the substrate surface, depending on the deposition conditions.
NASA Astrophysics Data System (ADS)
Wang, Ximei; Zhu, Liqun; Li, Weiping; Liu, Huicong; Li, Yihong
2009-03-01
Anodic films have been prepared on the AZ91D magnesium alloys in 1 mol/L Na 2SiO 3 with 10 vol.% silica sol addition under the constant voltage of 60 V at room temperature by half-wave and full-wave power sources. The weight of the anodic films has been scaled by analytical balance, and the thickness has been measured by eddy current instrument. The surface morphologies, chemical composition and structure of the anodic films have been characterized by scanning electron microscopy (SEM), energy dispersion spectrometry (EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the thickness and weight of the anodic films formed by the two power sources both increase with the anodizing time, and the films anodized by full-wave power source grow faster than that by half-wave one. Furthermore, we have fitted polynomial to the scattered data of the weight and thickness in a least-squares sense with MATLAB, which could express the growth process of the anodic films sufficiently. The full-wave power source is inclined to accelerate the growth of the anodic films, and the half-wave one is mainly contributed to the uniformity and fineness of the films. The anodic film consists of crystalline Mg 2SiO 4 and amorphous SiO 2.
NASA Astrophysics Data System (ADS)
Loka, Chadrasekhar; Lee, Kee-Sun
2017-09-01
The dielectric-metal-dielectric tri-layer films have attracted much attention by virtue of their low-cost and high quality device performance as a transparent conductive electrode. Here, we report the deposition of Cr doped Ag films sandwiched between thin TiO2 layers and investigation on the surface microstructure, optical and electrical properties depending on the thickness of the Ag(Cr). The activation energy (1.18 eV) for grain growth of Ag was calculated from the Arrhenius plot using the law Dn -D0n = kt , which was comparable to the bulk diffusion of Ag. This result indicated the grain growth of Ag was effectively retarded by the Cr addition, which was presumed to related with blocking the surface and grain boundary diffusion due to Cr segregation. Based on thermal stability of Cr added Ag film, we deposited TiO2/Ag(Cr)/TiO2 (TAT) multilayer thin films and with a 10 nm thick Ag(Cr), the TAT films showed high optical transmittance in the visible region (94.2%), low electrical resistivity (8.66 × 10-5 Ω cm), and hence the high figure of merit 57.15 × 10-3 Ω-1 was achieved. The high transmittance of the TAT film was believed to be attributed to the low optical loss due to a reduction in the Ag layer thickness, the surface plasmon effect, and the electron scattering reduced by the Ag layer with a low electrical resistivity.
Method for fabrication of crack-free ceramic dielectric films
Ma, Beihai; Narayanan, Manoj; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan
2016-05-31
The invention provides a process for forming crack-free dielectric films on a substrate. The process comprises the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. The process provides a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.
Method for fabrication of crack-free ceramic dielectric films
Ma, Beihai; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan; Narayanan, Manoj
2014-02-11
The invention provides a process for forming crack-free dielectric films on a substrate. The process comprise the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. Also provided was a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.
NASA Technical Reports Server (NTRS)
Chorey, C. M.; Bhasin, K. B.; Warner, J. D.; Josefowicz, J. Y.; Rensch, D. B.
1991-01-01
Microstrip transmission lines in the form of ring resonators were fabricated from a number of in-situ grown laser ablated films and post-annealed co-sputtered YBa2Cu3O(7-x) films. The properties of these resonators were measured at 35 GHz and the observed performance is examined in light of the critical temperature (Tc) and film thickness, and also the film morphology, which is different for the two deposition techniques. It is found that Tc is a major indicator of the film performance for each growth type, with film thickness becoming important as it decreases towards 1000 A. It is also found that the films with a mixed grain orientation (both a-axis and c-axis oriented grains) have poorer microwave properties as compared with the primarily c-axis oriented material. This is probably due to the significant number of grain boundaries between the different crystallites, which may act as superconducting weak links and contribute to the surface resistance.
NASA Technical Reports Server (NTRS)
Chorey, C. M.; Bhasin, K. B.; Warner, J. D.; Josefowicz, J. Y.; Rensch, D. B.; Nieh, C. W.
1990-01-01
Microstrip transmission lines in the form of ring resonators were fabricated from a number of in-situ grown laser ablated films and post-annealed co-sputtered YBa2Cu3O(7-x) films. The properties of these resonators were measured at 35 GHz and the observed performance is examined in light of the critical temperature (Tc) and film thickness and also the film morphology which is different for the two deposition techniques. It is found that Tc is a major indicator of the film performance for each growth type with film thickness becoming important as it decreases towards 100 A. It is also found that the films with a mixed grain orientation (both a axis and c axis oriented grains) have poorer microwave properties as compared with the primarily c axis oriented material. This is probably due to the significant number of grain boundaries between the different crystallites, which may act as superconducting weak links and contribute to the surface resistance.
Perumal, Veeradasan; Hashim, Uda; Gopinath, Subash C. B.; Haarindraprasad, R.; Liu, Wei-Wen; Poopalan, P.; Balakrishnan, S. R.; Thivina, V.; Ruslinda, A. R.
2015-01-01
The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5–10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications. PMID:26694656
Perumal, Veeradasan; Hashim, Uda; Gopinath, Subash C B; Haarindraprasad, R; Liu, Wei-Wen; Poopalan, P; Balakrishnan, S R; Thivina, V; Ruslinda, A R
2015-01-01
The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.
The effect of viscoelasticity on the stability of a pulmonary airway liquid layer
NASA Astrophysics Data System (ADS)
Halpern, David; Fujioka, Hideki; Grotberg, James B.
2010-01-01
The lungs consist of a network of bifurcating airways that are lined with a thin liquid film. This film is a bilayer consisting of a mucus layer on top of a periciliary fluid layer. Mucus is a non-Newtonian fluid possessing viscoelastic characteristics. Surface tension induces flows within the layer, which may cause the lung's airways to close due to liquid plug formation if the liquid film is sufficiently thick. The stability of the liquid layer is also influenced by the viscoelastic nature of the liquid, which is modeled using the Oldroyd-B constitutive equation or as a Jeffreys fluid. To examine the role of mucus alone, a single layer of a viscoelastic fluid is considered. A system of nonlinear evolution equations is derived using lubrication theory for the film thickness and the film flow rate. A uniform film is initially perturbed and a normal mode analysis is carried out that shows that the growth rate g for a viscoelastic layer is larger than for a Newtonian fluid with the same viscosity. Closure occurs if the minimum core radius, Rmin(t), reaches zero within one breath. Solutions of the nonlinear evolution equations reveal that Rmin normally decreases to zero faster with increasing relaxation time parameter, the Weissenberg number We. For small values of the dimensionless film thickness parameter ɛ, the closure time, tc, increases slightly with We, while for moderate values of ɛ, ranging from 14% to 18% of the tube radius, tc decreases rapidly with We provided the solvent viscosity is sufficiently small. Viscoelasticity was found to have little effect for ɛ >0.18, indicating the strong influence of surface tension. The film thickness parameter ɛ and the Weissenberg number We also have a significant effect on the maximum shear stress on tube wall, max(τw), and thus, potentially, an impact on cell damage. Max(τw) increases with ɛ for fixed We, and it decreases with increasing We for small We provided the solvent viscosity parameter is sufficiently small. For large ɛ ≈0.2, there is no significant difference between the Newtonian flow case and the large We cases.
Ellipsometric measurement of liquid film thickness
NASA Technical Reports Server (NTRS)
Chang, Ki Joon; Frazier, D. O.
1989-01-01
The immediate objective of this research is to measure liquid film thickness from the two equilibrium phases of a monotectic system in order to estimate the film pressure of each phase. Thus liquid film thicknesses on the inside walls of the prism cell above the liquid level have been measured elliposmetrically for the monotectic system of succinonitrile and water. The thickness varies with temperature and composition of each plane. The preliminary results from both layers at 60 deg angle of incidence show nearly uniform thickness from about 21 to 23 C. The thickness increases with temperature but near 30 C the film appears foggy and scatters the laser beam. As the temperature of the cell is raised beyond room temperature it becomes increasingly difficult to equalize the temperature inside and outside the cell. The fogging may also be an indication that solution, not pure water, is adsorbed onto the substrate. Nevertheless, preliminary results suggest that ellipsometric measurement is feasible and necessary to measure more accurately and rapidly the film thickness and to improve thermal control of the prism walls.
The influence of nanoscopically thin silver films on bacterial viability and attachment.
Ivanova, Elena P; Hasan, Jafar; Truong, Vi Khanh; Wang, James Y; Raveggi, Massimo; Fluke, Christopher; Crawford, Russell J
2011-08-01
The physicochemical and bactericidal properties of thin silver films have been analysed. Silver films of 3 and 150 nm thicknesses were fabricated using a magnetron sputtering thin-film deposition system. X-ray photoelectron and energy dispersive X-ray spectroscopy and atomic force microscopy analyses confirmed that the resulting surfaces were homogeneous, and that silver was the most abundant element present on both surfaces, being 45 and 53 at.% on the 3- and 150-nm films, respectively. Inductively coupled plasma time of flight mass spectroscopy (ICP-TOF-MS) was used to measure the concentration of silver ions released from these films. Concentrations of 0.9 and 5.2 ppb were detected for the 3- and 150-nm films, respectively. The surface wettability of the films remained nearly identical for both film thicknesses, displaying a static water contact angle of 95°, while the surface free energy of the 150-nm film was found to be slightly greater than that of the 3-nm film, being 28.8 and 23.9 mN m(-1), respectively. The two silver film thicknesses exhibited statistically significant differences in surface topographic profiles on the nanoscopic scale, with R (a), R (q) and R (max) values of 1.4, 1.8 and 15.4 nm for the 3-nm film and 0.8, 1.2 and 10.7 nm for the 150-nm film over a 5 × 5 μm scanning area. Confocal scanning laser microscopy and scanning electron microscopy revealed that the bactericidal activity of the 3-nm silver film was not significant, whereas the nanoscopically smoother 150-nm silver film exhibited appreciable bactericidal activity towards Pseudomonas aeruginosa ATCC 9027 cells and Staphylococcus aureus CIP 65.8 cells, obtaining up to 75% and 27% sterilisation effect, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Kyle J.; Glynos, Emmanouil; Maroulas, Serafeim-Dionysios
Incorporating nanoparticles (NPs) within a polymer host to create polymer nanocomposites (PNCs) while having the effect of increasing the functionality (e.g., sensing, energy conversion) of these materials influences other properties. One challenge is to understand the effects of nanoparticles on the viscosity of nanoscale thick polymer films. A new mechanism that contributes to an enhancement of the viscosity of nanoscale thick polymer/nanoparticle films is identified. We show that while the viscosities of neat homopolymer poly(2-vinylpyridine) (P2VP) films as thin as 50 nm remained the same as the bulk, polymer/nanoparticle films containing P2VP brush-coated gold NPs, spaced 50 nm apart, exhibitedmore » unprecedented increases in viscosities of over an order of magnitude. For thicker films or more widely separated NPs, the chain dynamics and viscosities were comparable to the bulk values. These results - NP proximities and suppression of their dynamics - suggest a new mechanism by which the viscosities of polymeric liquids could be controlled for nanoscale applications.« less
Quartz Microbalance Study of 400-angstrom Thick Films near the lambda Point
NASA Technical Reports Server (NTRS)
Chan, Moses H. W.
2003-01-01
In a recent measurement we observed the thinning of an adsorbed helium film induced by the confinement of critical fluctuations a few millikelvin below the lambda point. A capacitor set-up was used to measure this Casimir effect. In this poster we will present our measurement of an adsorbed helium film of 400 angstroms near the lambda point with a quartz microbalance. For films this thick, we must take into account the non-linear dynamics of the shear waves in the fluid. In spite of the added complications, we were able to confirm the thinning of the film due to the Casimir effect and the onset of the superfluid transition. In addition, we observe a sharp anomaly at the bulk lambda point, most likely related to critical dissipation of the first sound. This work is carried out in collaboration with Rafael Garcia, Stephen Jordon and John Lazzaretti. This work is funded by NASA's Office of Biological and Physical Research under grant.
Chen, Zhifeng; Yan, Yong; Li, Shufa; Xu, Xiaoguang; Jiang, Yong; Lai, Tianshu
2017-01-01
Spin-wave dynamics in full-Heusler Co2FeAl0.5Si0.5 films are studied using all-optical pump-probe magneto-optical polar Kerr spectroscopy. Backward volume magnetostatic spin-wave (BVMSW) mode is observed in films with thickness ranging from 20 to 100 nm besides perpendicular standing spin-wave (PSSW) mode, and found to be excited more efficiently than the PSSW mode. The field dependence of the effective Gilbert damping parameter appears especial extrinsic origin. The relationship between the lifetime and the group velocity of BVMSW mode is revealed. The frequency of BVMSW mode does not obviously depend on the film thickness, but the lifetime and the effective damping appear to do so. The simultaneous excitation of BVMSW and PSSW in Heusler alloy films as well as the characterization of their dynamic behaviors may be of interest for magnonic and spintronic applications. PMID:28195160
Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation
NASA Astrophysics Data System (ADS)
Jin, Kuijuan; Wang, Jiesu; Gu, Junxing; L03 Group in Institute of Physics, Chinese Academy of Sciences Team
BiFeO3 thin films have drawn much attention due to its potential applications for novel magnetoelectric devices and fundamental physics in magnetoelectric coupling. However, the structural evolution of BiFeO3 films with thickness remains controversial. Here we use an optical second-harmonic generation technique to explore the phase-related symmetry evolution of BiFeO3 thin films with the variation of thickness. The crystalline structures for 60 and 180-nm-thick BiFeO3 thin films were characterized by high-resolution X-ray diffractometry reciprocal space mapping and the local piezoelectric response for 60-nm-thick BiFeO3 thin films was characterized by piezoresponse force microscopy. The present results show that the symmetry of BiFeO3 thin films with a thickness below 60 nm belongs to the point group 4mm. We conclude that the disappearance of fourfold rotational symmetry in SHG s-out pattern implies for the appearance of R-phase. The fact that the thinner the film is, the closer to 1 the tensor element ratio χ31/ χ15 tends, indicates an increase of symmetry with the decrease of thickness for BiFeO3 thin films. email: kjjin@iphy.ac.cn
Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation.
Wang, Jie-Su; Jin, Kui-Juan; Guo, Hai-Zhong; Gu, Jun-Xing; Wan, Qian; He, Xu; Li, Xiao-Long; Xu, Xiu-Lai; Yang, Guo-Zhen
2016-12-01
BiFeO 3 thin films have drawn much attention due to its potential applications for novel magnetoelectric devices and fundamental physics in magnetoelectric coupling. However, the structural evolution of BiFeO 3 films with thickness remains controversial. Here we use an optical second-harmonic generation technique to explore the phase-related symmetry evolution of BiFeO 3 thin films with the variation of thickness. The crystalline structures for 60 and 180-nm-thick BiFeO 3 thin films were characterized by high-resolution X-ray diffractometry reciprocal space mapping and the local piezoelectric response for 60-nm-thick BiFeO 3 thin films was characterized by piezoresponse force microscopy. The present results show that the symmetry of BiFeO 3 thin films with a thickness below 60 nm belongs to the point group 4 mm. We conclude that the disappearance of fourfold rotational symmetry in SHG s-out pattern implies for the appearance of R-phase. The fact that the thinner the film is, the closer to 1 the tensor element ratio χ 31 /χ 15 tends, indicates an increase of symmetry with the decrease of thickness for BiFeO 3 thin films.
Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation
Wang, Jie-su; Jin, Kui-juan; Guo, Hai-zhong; Gu, Jun-xing; Wan, Qian; He, Xu; Li, Xiao-long; Xu, Xiu-lai; Yang, Guo-zhen
2016-01-01
BiFeO3 thin films have drawn much attention due to its potential applications for novel magnetoelectric devices and fundamental physics in magnetoelectric coupling. However, the structural evolution of BiFeO3 films with thickness remains controversial. Here we use an optical second-harmonic generation technique to explore the phase-related symmetry evolution of BiFeO3 thin films with the variation of thickness. The crystalline structures for 60 and 180-nm-thick BiFeO3 thin films were characterized by high-resolution X-ray diffractometry reciprocal space mapping and the local piezoelectric response for 60-nm-thick BiFeO3 thin films was characterized by piezoresponse force microscopy. The present results show that the symmetry of BiFeO3 thin films with a thickness below 60 nm belongs to the point group 4 mm. We conclude that the disappearance of fourfold rotational symmetry in SHG s-out pattern implies for the appearance of R-phase. The fact that the thinner the film is, the closer to 1 the tensor element ratio χ31/χ15 tends, indicates an increase of symmetry with the decrease of thickness for BiFeO3 thin films. PMID:27905565
Screen printed Y and Bi-based superconductors
NASA Technical Reports Server (NTRS)
Haertling, Gene H.; Hsi, Chi-Shiung
1992-01-01
High T(sub c) superconducting thick film was prepared by screen printing process. Y-based (YBa2Cu3O(7 - x)) superconducting thick films were printed on 211/Al2O3, SNT/Al2O3, and YSZ substrates. Because of poor adhesion of the superconducting thick films to 211/Al2O3 and SNT/Al2O3 substrates, relatively low T(sub c) and J(sub c) values were obtained from the films printed on these substrates. Critical temperatures of YBa2Cu3O(7 - x) thick films deposited on 211/Al2O3 and SNT/Al2O3 substrates were about 80 K. The critical current densities of these films were less than 2 A/cm(exp 2). Higher T(sub c) and J(sub c) films were printed on the YSZ substrates; T(sub c) = 86.4 K and J(sub c) = 50.4 A/cm(exp 2). Multiple lead samples were also prepared on the YSZ substrates. These showed lower T(sub c) and J(sub c) values than plain samples. The heat treatment conditions of the multiple lead samples are still under investigation. Bi-based superconductor thick films have been obtained so far. Improving the superconducting properties of the BSCCO screen printed thick films will be emphasized in future work.
NASA Astrophysics Data System (ADS)
Xing, Yanxia; Xu, Fuming; Cheung, King Tai; Sun, Qing-feng; Wang, Jian; Yao, Yugui
2018-04-01
Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological insulator (MTI) thin films fabricated on magnetically doped {({{Bi}},{{Sb}})}2{{{Te}}}3. In an MTI thin film with the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the non-equilibrium Green's function and Landauer–Büttiker formalism, we numerically study the influence of magnetic disorders on QAHE in an MTI thin film modeled by a three-dimensional tight-binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is protected even in the presence of magnetic disorders as long as the z-component of magnetic moment of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the dissipation of the chiral edge states and enhance the quality of QAHE in MTI films. In addition, the effect of magnetic disorders depends very much on the film thickness, and the optimal influence is achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems, not present in two-dimensional systems.
Electrical resistivity of CuAlMo thin films grown at room temperature by dc magnetron sputtering
NASA Astrophysics Data System (ADS)
Birkett, Martin; Penlington, Roger
2016-07-01
We report on the thickness dependence of electrical resistivity of CuAlMo films grown by dc magnetron sputtering on glass substrates at room temperature. The electrical resistance of the films was monitored in situ during their growth in the thickness range 10-1000 nm. By theoretically modelling the evolution of resistivity during growth we were able to gain an insight into the dominant electrical conduction mechanisms with increasing film thickness. For thicknesses in the range 10-25 nm the electrical resistivity is found to be a function of the film surface roughness and is well described by Namba’s model. For thicknesses of 25-40 nm the experimental data was most accurately fitted using the Mayadas and Shatkes model which accounts for grain boundary scattering of the conduction electrons. Beyond 40 nm, the thickness of the film was found to be the controlling factor and the Fuchs-Sonheimer (FS) model was used to fit the experimental data, with diffuse scattering of the conduction electrons at the two film surfaces. By combining the Fuchs and Namba (FN) models a suitable correlation between theoretical and experimental resistivity can be achieved across the full CuAlMo film thickness range of 10-1000 nm. The irreversibility of resistance for films of thickness >200 nm, which demonstrated bulk conductivity, was measured to be less than 0.03% following subjection to temperature cycles of -55 and +125 °C and the temperature co-efficient of resistance was less than ±15 ppm °C-1.
NASA Astrophysics Data System (ADS)
Minkov, D. A.; Gavrilov, G. M.; Moreno, J. M. D.; Vazquez, C. G.; Marquez, E.
2017-03-01
The accuracy of the popular graphical method of Swanepoel (SGM) for the characterization of a thin film on a substrate specimen from its interference transmittance spectrum depends on the subjective choice of four characterization parameters: the slope of the graph, the order number for the longest wavelength extremum, and the two numbers of the extrema used for the calculation approximations of the average film thickness. Here, an error metric is introduced for estimating the accuracy of SGM characterization. An algorithm is proposed for the optimization of SGM, named the OGM algorithm, based on the minimization of this error metric. Its execution provides optimized values of the four characterization parameters, and the respective computation of the most accurate film characteristics achievable within the framework of SGM. Moreover, substrate absorption is accounted for, unlike in the classical SGM, which is beneficial when using modern UV/visible/NIR spectrophotometers due to the relatively larger amount of absorption in the commonly used glass substrates for wavelengths above 1700 nm. A significant increase in the accuracy of the film characteristics is obtained employing the OGM algorithm compared to the SGM algorithm for two model specimens. Such improvements in accuracy increase with increasing film absorption. The results of the film characterization by the OGM algorithm are presented for two specimens containing RF-magnetron-sputtered a-Si films with disparate film thicknesses. The computed average film thicknesses are within 1.1% of the respective film thicknesses measured by SEM for both films. Achieving such high film characterization accuracy is particularly significant for the film with a computed average thickness of 3934 nm, since we are not aware of any other film with such a large thickness that has been characterized by SGM.
Micropatterning of TiO2 thin films by MOCVD and study of their growth tendency.
Hwang, Ki-Hwan; Kang, Byung-Chang; Jung, Duk Young; Kim, Youn Jea; Boo, Jin-Hyo
2015-03-23
In this work, we studied the growth tendency of TiO2 thin films deposited on a narrow-stripe area (<10 μm). TiO2 thin films were selectively deposited on OTS patterned Si(100) substrates by MOCVD. The experimental data showed that the film growth tendency was divided into two behaviors above and below a line patterning width of 4 μm. The relationship between the film thickness and the deposited area was obtained as a function of f(x) = a[1 - e((-bx))]c. To find the tendency of the deposition rate of the TiO2 thin films onto the various linewidth areas, the relationship between the thickness of the TiO2 thin film and deposited linewidth was also studied. The thickness of the deposited TiO2 films was measured from the alpha-step profile analyses and cross-sectional SEM images. At the same time, a computer simulation was carried out to reveal the relationship between the TiO2 film thickness and deposited line width. The theoretical results suggest that the mass (velocity) flux in flow direction is directly affected to the film thickness.
Effect of temperature on the anodizing process of aluminum alloy AA 5052
NASA Astrophysics Data System (ADS)
Theohari, S.; Kontogeorgou, Ch.
2013-11-01
The effect of temperature (10-40 °C) during the anodizing process of AA 5052 for 40 min in 175 g/L sulfuric acid solution at constant voltage (15 V) was studied in comparison with pure aluminum. The incorporated magnesium species in the barrier layer result in the further increase of the minimum current density passed during anodizing, as the temperature increases, by about 42% up to 30 °C and then by 12% up to 40 °C. Then during the anodizing process for 40 min a blocking effect on oxide film growth was gradually observed as the temperature increased until 30 °C. The results of EDAX analysis on thick films reveal that the mean amount of the magnesium species inside the film is about 50-70% less than that in the bulk alloy, while it is higher at certain locations adjacent to the film surface at 30 °C. The increase of anodizing temperature does not influence the porosity of thin films (formed for short times) on pure aluminum, while it reduces it on the alloy. At 40 °C the above mentioned blocking effects disappear. It means that the presence of magnesium species causes an impediment to the effect of temperature on iss, on the film thickness and on the porosity of thin films, only under conditions where film growth takes place without significant loss of the anodizing charge to side reactions.