Sample records for filter array construction

  1. Micromachined Radio Frequency (RF) Switches and Tunable Capacitors for Higher Performance Secure Communications Systems

    DTIC Science & Technology

    2003-04-01

    range filters implemented with traditional semiconductor varactor diodes can require complex series-parallel circuit constructions to achieve sufficient...filter slice of the AIU and the varactor array modules are shown in Fig. 6.2. The complexity of the varactor array is clearly apparent. Further, it is...38 Fig. 6.2: Schematic of F-22 AIU UHF tracking filter, 2-pole filter, and varactor diode assembly

  2. Color filter array pattern identification using variance of color difference image

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Jun; Jeon, Jong Ju; Eom, Il Kyu

    2017-07-01

    A color filter array is placed on the image sensor of a digital camera to acquire color images. Each pixel uses only one color, since the image sensor can measure only one color per pixel. Therefore, empty pixels are filled using an interpolation process called demosaicing. The original and the interpolated pixels have different statistical characteristics. If the image is modified by manipulation or forgery, the color filter array pattern is altered. This pattern change can be a clue for image forgery detection. However, most forgery detection algorithms have the disadvantage of assuming the color filter array pattern. We present an identification method of the color filter array pattern. Initially, the local mean is eliminated to remove the background effect. Subsequently, the color difference block is constructed to emphasize the difference between the original pixel and the interpolated pixel. The variance measure of the color difference image is proposed as a means of estimating the color filter array configuration. The experimental results show that the proposed method is effective in identifying the color filter array pattern. Compared with conventional methods, our method provides superior performance.

  3. Spatio-spectral color filter array design for optimal image recovery.

    PubMed

    Hirakawa, Keigo; Wolfe, Patrick J

    2008-10-01

    In digital imaging applications, data are typically obtained via a spatial subsampling procedure implemented as a color filter array-a physical construction whereby only a single color value is measured at each pixel location. Owing to the growing ubiquity of color imaging and display devices, much recent work has focused on the implications of such arrays for subsequent digital processing, including in particular the canonical demosaicking task of reconstructing a full color image from spatially subsampled and incomplete color data acquired under a particular choice of array pattern. In contrast to the majority of the demosaicking literature, we consider here the problem of color filter array design and its implications for spatial reconstruction quality. We pose this problem formally as one of simultaneously maximizing the spectral radii of luminance and chrominance channels subject to perfect reconstruction, and-after proving sub-optimality of a wide class of existing array patterns-provide a constructive method for its solution that yields robust, new panchromatic designs implementable as subtractive colors. Empirical evaluations on multiple color image test sets support our theoretical results, and indicate the potential of these patterns to increase spatial resolution for fixed sensor size, and to contribute to improved reconstruction fidelity as well as significantly reduced hardware complexity.

  4. A robust spatial filtering technique for multisource localization and geoacoustic inversion.

    PubMed

    Stotts, S A

    2005-07-01

    Geoacoustic inversion and source localization using beamformed data from a ship of opportunity has been demonstrated with a bottom-mounted array. An alternative approach, which lies within a class referred to as spatial filtering, transforms element level data into beam data, applies a bearing filter, and transforms back to element level data prior to performing inversions. Automation of this filtering approach is facilitated for broadband applications by restricting the inverse transform to the degrees of freedom of the array, i.e., the effective number of elements, for frequencies near or below the design frequency. A procedure is described for nonuniformly spaced elements that guarantees filter stability well above the design frequency. Monitoring energy conservation with respect to filter output confirms filter stability. Filter performance with both uniformly spaced and nonuniformly spaced array elements is discussed. Vertical (range and depth) and horizontal (range and bearing) ambiguity surfaces are constructed to examine filter performance. Examples that demonstrate this filtering technique with both synthetic data and real data are presented along with comparisons to inversion results using beamformed data. Examinations of cost functions calculated within a simulated annealing algorithm reveal the efficacy of the approach.

  5. Variable optical filters for earth-observation imaging minispectrometers

    NASA Astrophysics Data System (ADS)

    Piegari, A.; Bulir, J.; Krasilnikova, A.; Dami, M.; Harnisch, B.

    2017-11-01

    Small-dimension, low-mass spectrometers are useful for both Earth observation and planetary missions. A very compact multi-spectral mini-spectrometer that contains no moving parts, can be constructed combining a graded-thickness filter, having a spatially variable narrow-band transmission, to a CCD array detector. The peak wavelength of the transmission filter is moving along one direction of the filter surface, such that each line of a two-dimensional array detector, equipped with this filter, will detect radiation in a different pass band. The spectrum of interest for image spectrometry of the Earth surface is very wide, 400-1000nm. This requirement along with the need of a very small dimension, makes this filter very difficult to manufacture. Preliminary results on metal-dielectric wedge filters, with a gradient of the transmission peak wavelength equal to 60nm/mm, are reported.

  6. Compact Focal Plane Assembly for Planetary Science

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Aslam, Shahid; Huang, Wei-Chung; Steptoe-Jackson, Rosalind

    2013-01-01

    A compact radiometric focal plane assembly (FPA) has been designed in which the filters are individually co-registered over compact thermopile pixels. This allows for construction of an ultralightweight and compact radiometric instrument. The FPA also incorporates micromachined baffles in order to mitigate crosstalk and low-pass filter windows in order to eliminate high-frequency radiation. Compact metal mesh bandpass filters were fabricated for the far infrared (FIR) spectral range (17 to 100 microns), a game-changing technology for future planetary FIR instruments. This fabrication approach allows the dimensions of individual metal mesh filters to be tailored with better than 10- micron precision. In contrast, conventional compact filters employed in recent missions and in near-term instruments consist of large filter sheets manually cut into much smaller pieces, which is a much less precise and much more labor-intensive, expensive, and difficult process. Filter performance was validated by integrating them with thermopile arrays. Demonstration of the FPA will require the integration of two technologies. The first technology is compact, lightweight, robust against cryogenic thermal cycling, and radiation-hard micromachined bandpass filters. They consist of a copper mesh supported on a deep reactive ion-etched silicon frame. This design architecture is advantageous when constructing a lightweight and compact instrument because (1) the frame acts like a jig and facilitates filter integration with the FPA, (2) the frame can be designed so as to maximize the FPA field of view, (3) the frame can be simultaneously used as a baffle for mitigating crosstalk, and (4) micron-scale alignment features can be patterned so as to permit high-precision filter stacking and, consequently, increase the filter bandwidth and sharpen the out-of-band rolloff. The second technology consists of leveraging, from another project, compact and lightweight Bi0.87Sb0.13/Sb arrayed thermopiles. These detectors consist of 30-layer thermopiles deposited in series upon a silicon nitride membrane. At 300 K, the thermopile arrays are highly linear over many orders of magnitude of incident IR power, and have a reported specific detectivity that exceeds the requirements imposed on future mission concepts. The bandpass filter array board is integrated with a thermopile array board by mounting both boards on a machined aluminum jig.

  7. Status of a Novel 4-Band Submm/mm Camera for the Caltech Submillimeter Observatory

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid; Day, P.; Glenn, J.; Golwala, S.; Kumar, S.; LeDuc, H. G.; Mazin, B.; Nguyen, H. T.; Schlaerth, J.; Vaillancourt, J. E.; Vayonakis, A.; Zmuidzinas, J.

    2007-12-01

    Submillimeter observations are important to the understanding of galaxy formation and evolution. Determination of the spectral energy distribution in the millimeter and submillimeter regimes allows important and powerful diagnostics. To this end, we are undertaking the construction of a 4-band (750, 850, 1100, 1300 microns) 8-arcminute field of view camera for the Caltech Submillimeter Observatory. The focal plane will make use of three novel technologies: photolithographic phased array antennae, on-chip band-pass filters, and microwave kinetic inductance detectors (MKID). The phased array antenna design obviates beam-defining feed horns. On-chip band-pass filters eliminate band-defining metal-mesh filters. Together, the antennae and filters enable each spatial pixel to observe in all four bands simultaneously. MKIDs are highly multiplexable background-limited photon detectors. Readout of the MKID array will be done with software-defined radio (See poster by Max-Moerbeck et al.). This camera will provide an order-of-magnitude larger mapping speed than existing instruments and will be comparable to SCUBA 2 in terms of the detection rate for dusty sources, but complementary to SCUBA 2 in terms of wavelength coverage. We present results from an engineering run with a demonstration array, the baseline design for the science array, and the status of instrument design, construction, and testing. We anticipate the camera will be available at the CSO in 2010. This work has been supported by NASA ROSES APRA grants NNG06GG16G and NNG06GC71G, the NASA JPL Research and Technology Development Program, and the Gordon and Betty Moore Foundation.

  8. Spatial arrangement of color filter array for multispectral image acquisition

    NASA Astrophysics Data System (ADS)

    Shrestha, Raju; Hardeberg, Jon Y.; Khan, Rahat

    2011-03-01

    In the past few years there has been a significant volume of research work carried out in the field of multispectral image acquisition. The focus of most of these has been to facilitate a type of multispectral image acquisition systems that usually requires multiple subsequent shots (e.g. systems based on filter wheels, liquid crystal tunable filters, or active lighting). Recently, an alternative approach for one-shot multispectral image acquisition has been proposed; based on an extension of the color filter array (CFA) standard to produce more than three channels. We can thus introduce the concept of multispectral color filter array (MCFA). But this field has not been much explored, particularly little focus has been given in developing systems which focuses on the reconstruction of scene spectral reflectance. In this paper, we have explored how the spatial arrangement of multispectral color filter array affects the acquisition accuracy with the construction of MCFAs of different sizes. We have simulated acquisitions of several spectral scenes using different number of filters/channels, and compared the results with those obtained by the conventional regular MCFA arrangement, evaluating the precision of the reconstructed scene spectral reflectance in terms of spectral RMS error, and colorimetric ▵E*ab color differences. It has been found that the precision and the the quality of the reconstructed images are significantly influenced by the spatial arrangement of the MCFA and the effect will be more and more prominent with the increase in the number of channels. We believe that MCFA-based systems can be a viable alternative for affordable acquisition of multispectral color images, in particular for applications where spatial resolution can be traded off for spectral resolution. We have shown that the spatial arrangement of the array is an important design issue.

  9. Impact imaging of aircraft composite structure based on a model-independent spatial-wavenumber filter.

    PubMed

    Qiu, Lei; Liu, Bin; Yuan, Shenfang; Su, Zhongqing

    2016-01-01

    The spatial-wavenumber filtering technique is an effective approach to distinguish the propagating direction and wave mode of Lamb wave in spatial-wavenumber domain. Therefore, it has been gradually studied for damage evaluation in recent years. But for on-line impact monitoring in practical application, the main problem is how to realize the spatial-wavenumber filtering of impact signal when the wavenumber of high spatial resolution cannot be measured or the accurate wavenumber curve cannot be modeled. In this paper, a new model-independent spatial-wavenumber filter based impact imaging method is proposed. In this method, a 2D cross-shaped array constructed by two linear piezoelectric (PZT) sensor arrays is used to acquire impact signal on-line. The continuous complex Shannon wavelet transform is adopted to extract the frequency narrowband signals from the frequency wideband impact response signals of the PZT sensors. A model-independent spatial-wavenumber filter is designed based on the spatial-wavenumber filtering technique. Based on the designed filter, a wavenumber searching and best match mechanism is proposed to implement the spatial-wavenumber filtering of the frequency narrowband signals without modeling, which can be used to obtain a wavenumber-time image of the impact relative to a linear PZT sensor array. By using the two wavenumber-time images of the 2D cross-shaped array, the impact direction can be estimated without blind angle. The impact distance relative to the 2D cross-shaped array can be calculated by using the difference of time-of-flight between the frequency narrowband signals of two different central frequencies and the corresponding group velocities. The validations performed on a carbon fiber composite laminate plate and an aircraft composite oil tank show a good impact localization accuracy of the model-independent spatial-wavenumber filter based impact imaging method. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. 2D array transducers for real-time 3D ultrasound guidance of interventional devices

    NASA Astrophysics Data System (ADS)

    Light, Edward D.; Smith, Stephen W.

    2009-02-01

    We describe catheter ring arrays for real-time 3D ultrasound guidance of devices such as vascular grafts, heart valves and vena cava filters. We have constructed several prototypes operating at 5 MHz and consisting of 54 elements using the W.L. Gore & Associates, Inc. micro-miniature ribbon cables. We have recently constructed a new transducer using a braided wiring technology from Precision Interconnect. This transducer consists of 54 elements at 4.8 MHz with pitch of 0.20 mm and typical -6 dB bandwidth of 22%. In all cases, the transducer and wiring assembly were integrated with an 11 French catheter of a Cook Medical deployment device for vena cava filters. Preliminary in vivo and in vitro testing is ongoing including simultaneous 3D ultrasound and x-ray fluoroscopy.

  11. Arrays of Miniature Microphones for Aeroacoustic Testing

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Sealey, Bradley S.; Bartram, Scott M.; Zuckewar, Allan J.; Comeaux, Toby; Adams, James K.

    2007-01-01

    A phased-array system comprised of custom-made and commercially available microelectromechanical system (MEMS) silicon microphones and custom ancillary hardware has been developed for use in aeroacoustic testing in hard-walled and acoustically treated wind tunnels. Recent advances in the areas of multi-channel signal processing and beam forming have driven the construction of phased arrays containing ever-greater numbers of microphones. Traditional obstacles to this trend have been posed by (1) the high costs of conventional condenser microphones, associated cabling, and support electronics and (2) the difficulty of mounting conventional microphones in the precise locations required for high-density arrays. The present development overcomes these obstacles. One of the hallmarks of the new system is a series of fabricated platforms on which multiple microphones can be mounted. These mounting platforms, consisting of flexible polyimide circuit-board material (see left side of figure), include all the necessary microphone power and signal interconnects. A single bus line connects all microphones to a common power supply, while the signal lines terminate in one or more data buses on the sides of the circuit board. To minimize cross talk between array channels, ground lines are interposed as shields between all the data bus signal lines. The MEMS microphones are electrically connected to the boards via solder pads that are built into the printed wiring. These flexible circuit boards share many characteristics with their traditional rigid counterparts, but can be manufactured much thinner, as small as 0.1 millimeter, and much lighter with boards weighing as much as 75 percent less than traditional rigid ones. For a typical hard-walled wind-tunnel installation, the flexible printed-circuit board is bonded to the tunnel wall and covered with a face sheet that contains precise cutouts for the microphones. Once the face sheet is mounted, a smooth surface is established over the entire array due to the flush mounting of all microphones (see right side of figure). The face sheet is made from a continuous glass-woven-fabric base impregnated with an epoxy resin binder. This material offers a combination of high mechanical strength and low dielectric loss, making it suitable for withstanding the harsh test section environment present in many wind tunnels, while at the same time protecting the underlying polyimide board. Customized signal-conditioning hardware consisting of line drivers and antialiasing filters are coupled with the array. The line drivers are constructed using low-supply-current, high-gain-bandwidth operational amplifiers designed to transmit the microphone signals several dozen feet from the array to external acquisition hardware. The anti-alias filters consist of individual Chebyshev low-pass filters (one for each microphone channel) housed on small printed-circuit boards mounted on one or more motherboards. The mother/daughter board design results in a modular system, which is easy to debug and service and which enables the filter characteristics to be changed by swapping daughter boards with ones containing different filter parameters. The filter outputs are passed to commercially- available acquisition hardware to digitize and store the conditioned microphone signals. Wind-tunnel testing of the new MEMS microphone polyimide mounting system shows that the array performance is comparable to that of traditional arrays, but with significantly less cost of construction.

  12. Computer designed compensation filters for use in radiation therapy. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, R. Jr.

    1982-12-01

    A computer program was written in the MUMPS language to design filters for use in cancer radiotherapy. The filter corrects for patient surface irregularities and allows homogeneous dose distribution with depth in the patient. The program does not correct for variations in the density of the patient. The program uses data available from the software in Computerized Medical Systems Inc.'s Radiation Treatment Planning package. External contours of General Electric CAT scans are made using the RTP software. The program uses the data from these external contours in designing the compensation filters. The program is written to process from 3 tomore » 31, 1cm thick, CAT scan slices. The output from the program can be in one of two different forms. The first option will drive the probe of a CMS Water Phantom in three dimensions as if it were the bit of a routing machine. Thus a routing machine constructed to run from the same output that drives the Water Phantom probe would produce a three dimensional filter mold. The second option is a listing of thicknesses for an array of aluminum blocks to filter the radiation. The size of the filter array is 10 in. by 10 in. The Printronix printer provides an array of blocks 1/2 in. by 1/2 in. with the thickness in millimeters printed inside each block.« less

  13. Information-Efficient Spectral Imaging Sensor With Tdi

    DOEpatents

    Rienstra, Jeffrey L.; Gentry, Stephen M.; Sweatt, William C.

    2004-01-13

    A programmable optical filter for use in multispectral and hyperspectral imaging employing variable gain time delay and integrate arrays. A telescope focuses an image of a scene onto at least one TDI array that is covered by a multispectral filter that passes separate bandwidths of light onto the rows in the TDI array. The variable gain feature of the TDI array allows individual rows of pixels to be attenuated individually. The attenuations are functions of the magnitudes of the positive and negative components of a spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. This system provides for a very efficient determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.

  14. Reception of Multiple Telemetry Signals via One Dish Antenna

    NASA Technical Reports Server (NTRS)

    Mukai, Ryan; Vilnrotter, Victor

    2010-01-01

    A microwave aeronautical-telemetry receiver system includes an antenna comprising a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal dish reflector that is nominally aimed at a single aircraft or at multiple aircraft flying in formation. Through digital processing of the signals received by the seven feed horns, the system implements a method of enhanced cancellation of interference, such that it becomes possible to receive telemetry signals in the same frequency channel simultaneously from either or both of two aircraft at slightly different angular positions within the field of view of the antenna, even in the presence of multipath propagation. The present system is an advanced version of the system described in Spatio- Temporal Equalizer for a Receiving-Antenna Feed Array NPO-43077, NASA Tech Briefs, Vol. 34, No. 2 (February 2010), page 32. To recapitulate: The radio-frequency telemetry signals received by the seven elements of the array are digitized, converted to complex baseband form, and sent to a spatio-temporal equalizer that consists mostly of a bank of seven adaptive finite-impulse-response (FIR) filters (one for each element in the array) plus a unit that sums the outputs of the filters. The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank affords better multipath suppression performance than is achievable by means of temporal equalization alone. The FIR filter bank adapts itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of frequency-selective multipath propagation like that commonly found at flight-test ranges. The combination of the array and the filter bank makes it possible to constructively add multipath incoming signals to the corresponding directly arriving signals, thereby enabling reductions in telemetry bit-error rates.

  15. Kilopixel Pop-Up Bolometer Arrays for the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Wollack, E.; Henry, R.; Moseley, S. H.; Niemack, M.; Staggs, S.; Page, L.; Doriese, R.; Hilton, G. c.; Irwin, K. D.

    2007-01-01

    The recently deployed Atacama Cosmology Telescope (ACT) anticipates first light on its kilopixel array of close-packed transition-edge-sensor bolometers in November of 2007. The instrument will represent a full implementation of the next-generation, large format arrays for millimeter wave astronomy that use superconducting electronics and detectors. Achieving the practical construction of such an array is a significant step toward producing advanced detector arrays for future SOFIA instruments. We review the design considerations for the detector array produced for the ACT instrument. The first light imager consists of 32 separately instrumented 32-channel pop-up bolometer arrays (to create a 32x32 filled array of mm-wave sensors). Each array is instrumented with a 32-channel bias resistor array, Nyquist filter array, and time-division SQUID multiplexer. Each component needed to be produced in relatively large quantities with suitable uniformity to meet tolerances for array operation. An optical design was chosen to maximize absorption at the focal plane while mitigating reflections and stray light. The pop-up geometry (previously implemented with semiconducting detectors and readout on the SHARC II and HAWC instruments) enabled straightforward interface of the superconducting bias and readout circuit with the 2D array of superconducting bolometers. The array construction program balanced fabrication challenges with assembly challenges to deliver the instrument in a timely fashion. We present some of the results of the array build and characterization of its performance.

  16. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2013-09-08

    Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an arraymore » of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.« less

  17. Filter arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and themore » second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.« less

  18. Experimental Demonstration of Adaptive Infrared Multispectral Imaging Using Plasmonic Filter Array (Postprint)

    DTIC Science & Technology

    2016-10-10

    AFRL-RX-WP-JA-2017-0189 EXPERIMENTAL DEMONSTRATION OF ADAPTIVE INFRARED MULTISPECTRAL IMAGING USING PLASMONIC FILTER ARRAY...March 2016 – 23 May 2016 4. TITLE AND SUBTITLE EXPERIMENTAL DEMONSTRATION OF ADAPTIVE INFRARED MULTISPECTRAL IMAGING USING PLASMONIC FILTER ARRAY...experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios

  19. Integrated filter and detector array for spectral imaging

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C. (Inventor)

    1992-01-01

    A spectral imaging system having an integrated filter and photodetector array is disclosed. The filter has narrow transmission bands which vary in frequency along the photodetector array. The frequency variation of the transmission bands is matched to, and aligned with, the frequency variation of a received spectral image. The filter is deposited directly on the photodetector array by a low temperature deposition process. By depositing the filter directly on the photodetector array, permanent alignment is achieved for all temperatures, spectral crosstalk is substantially eliminated, and a high signal to noise ratio is achieved.

  20. Cryogenic bolometric systems

    NASA Astrophysics Data System (ADS)

    Kangas, Miikka Matias

    The big bang, early galaxy formation, the interstellar medium, and high z galaxy cluster evolution are all science objectives that are studied in the far infrared (FIR). The cosmological parameters that describe the universe are encoded in anisotropies in the Cosmic Microwave Background (CMB), and can be extracted from precision subdegree angular resolution FIR maps. Cryogenic bolometers are well suited for these science objectives, and are evolving rapidly today. A cryogenic bolometric system is made up of a few building blocks, which can be modularized or integrated depending on the maturity of the scientific field they are used for. Integration of systems increases with the maturity of the technology. The basic building blocks are the bolometer, the cryogenics, the dewar, the optics, the filters, and electronics. The electronics can be further subdivided into room temperature back-end and cryogenic front-end electronics. The electronics are often partly integrated into the dewar. The dewar is part of the support structure, and only the subkelvin portion the dewar is referred to as cryogenics here. Each of these can be a sophisticated engineering feat on their own, and this dissertation revolves around the development of several of these elements. The microfabrication sequence for a free standing micromesh detector was developed. Polarization preserving photometer optics and filters were constructed and tested. A test dewar mechanical and optical structure was created to test single pixel photometers prior to mounting in the flight dewar. A modular flight dewar capable of holding an array of photometers and adaptable to a number of different cryogenics schemes and detector arrays was engineered and constructed. A zero gravity dilution refrigerator coil was constructed and tested. A corrugated platelet array concept was designed and tested. Metal mesh filter design and fabrication techniques were developed. Kevlar isolator structures were improved to work in subkelvin dewars, and detector modules that mounted the bolometer chips to the photometer tubes were created. These subsystems underwent testing to compare the predicted behavior and actual performance.

  1. A tunable Fabry-Perot filter (λ/18) based on all-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Ao, Tianhong; Xu, Xiangdong; Gu, Yu; Jiang, Yadong; Li, Xinrong; Lian, Yuxiang; Wang, Fu

    2018-05-01

    A tunable Fabry-Perot filter composed of two separated all-dielectric metamaterials is proposed and numerically investigated. Different from metallic metamaterials reflectors, the all-dielectric metamaterials are constructed by high-permittivity TiO2 cylinder arrays and exhibit high reflection in a broadband of 2.49-3.08 THz. The high reflection is attributed to the first and second Mie resonances, by which the all-dielectric metamaterials can serve as reflectors in the Fabry-Perot filter. Both the results from phase analysis method and CST simulations reveal that the resonant frequency of the as-proposed filter appears at 2.78 THz, responding to a cavity with λ/18 wavelength thickness. Particularly, the resonant frequency can be adjusted by changing the cavity thickness. This work provides a feasible approach to design low-loss terahertz filters with a thin air cavity.

  2. Laser Micromachining Fabrication of THz Components

    NASA Technical Reports Server (NTRS)

    DrouetdAubigny, C.; Walker, C.; Jones, B.; Groppi, C.; Papapolymerou, J.; Tavenier, C.

    2001-01-01

    Laser micromachining techniques can be used to fabricate high-quality waveguide structures and quasi-optical components to micrometer accuracies. Successful GHz designs can be directly scaled to THz frequencies. We expect this promising technology to allow the construction of the first fully integrated THz heterodyne imaging arrays. At the University of Arizona, construction of the first laser micromachining system designed for THz waveguide components fabrication has been completed. Once tested and characterized our system will be used to construct prototype THz lx4 focal plane mixer arrays, magic tees, AR coated silicon lenses, local oscillator source phase gratings, filters and more. Our system can micro-machine structures down to a few microns accuracy and up to 6 inches across in a short time. This paper discusses the design and performance of our micromachining system, and illustrates the type, range and performance of components this exciting new technology will make accessible to the THz community.

  3. Fabrication and characterization of multi-stopband Fabry-Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology

    NASA Astrophysics Data System (ADS)

    Shen, Yannan; Istock, André; Zaman, Anik; Woidt, Carsten; Hillmer, Hartmut

    2018-05-01

    Miniaturization of optical spectrometers can be achieved by Fabry-Pérot (FP) filter arrays. Each FP filter consists of two parallel highly reflecting mirrors and a resonance cavity in between. Originating from different individual cavity heights, each filter transmits a narrow spectral band (transmission line) with different wavelengths. Considering the fabrication efficiency, plasma enhanced chemical vapor deposition (PECVD) technology is applied to implement the high-optical-quality distributed Bragg reflectors (DBRs), while substrate conformal imprint lithography (one type of nanoimprint technology) is utilized to achieve the multiple cavities in just a single step. The FP filter array fabricated by nanoimprint combined with corresponding detector array builds a so-called "nanospectrometer". However, the silicon nitride and silicon dioxide stacks deposited by PECVD result in a limited stopband width of DBR (i.e., < 100 nm), which then limits the sensing range of filter arrays. However, an extension of the spectral range of filter arrays is desired and the topic of this investigation. In this work, multiple DBRs with different central wavelengths (λ c) are structured, deposited, and combined on a single substrate to enlarge the entire stopband. Cavity arrays are successfully aligned and imprinted over such terrace like surface in a single step. With this method, small chip size of filter arrays can be preserved, and the fabrication procedure of multiple resonance cavities is kept efficient as well. The detecting range of filter arrays is increased from roughly 50 nm with single DBR to 163 nm with three different DBRs.

  4. Low loss jammed-array wideband sawtooth filter based on a finite reflection virtually imaged array

    NASA Astrophysics Data System (ADS)

    Tan, Zhongwei; Cao, Dandan; Ding, Zhichao

    2018-03-01

    An edge filter is a potential technology in the fiber Bragg grating interrogation that has the advantages of fast response speed and suitability for dynamic measurement. To build a low loss, wideband jammed-array wideband sawtooth (JAWS) filter, a finite reflection virtually imaged array (FRVIA) is proposed and demonstrated. FRVIA is different from the virtually imaged phased array in that it has a low reflective front end. This change will lead to many differences in the device's performance in output optical intensity distribution, spectral resolution, output aperture, and tolerance of the manufacture errors. A low loss, wideband JAWS filter based on an FRVIA can provide an edge filter for each channel, respectively.

  5. Adaptation of commercial microscopes for advanced imaging applications

    NASA Astrophysics Data System (ADS)

    Brideau, Craig; Poon, Kelvin; Stys, Peter

    2015-03-01

    Today's commercially available microscopes offer a wide array of options to accommodate common imaging experiments. Occasionally, an experimental goal will require an unusual light source, filter, or even irregular sample that is not compatible with existing equipment. In these situations the ability to modify an existing microscopy platform with custom accessories can greatly extend its utility and allow for experiments not possible with stock equipment. Light source conditioning/manipulation such as polarization, beam diameter or even custom source filtering can easily be added with bulk components. Custom and after-market detectors can be added to external ports using optical construction hardware and adapters. This paper will present various examples of modifications carried out on commercial microscopes to address both atypical imaging modalities and research needs. Violet and near-ultraviolet source adaptation, custom detection filtering, and laser beam conditioning and control modifications will be demonstrated. The availability of basic `building block' parts will be discussed with respect to user safety, construction strategies, and ease of use.

  6. Deferred slanted-edge analysis: a unified approach to spatial frequency response measurement on distorted images and color filter array subsets.

    PubMed

    van den Bergh, F

    2018-03-01

    The slanted-edge method of spatial frequency response (SFR) measurement is usually applied to grayscale images under the assumption that any distortion of the expected straight edge is negligible. By decoupling the edge orientation and position estimation step from the edge spread function construction step, it is shown in this paper that the slanted-edge method can be extended to allow it to be applied to images suffering from significant geometric distortion, such as produced by equiangular fisheye lenses. This same decoupling also allows the slanted-edge method to be applied directly to Bayer-mosaicked images so that the SFR of the color filter array subsets can be measured directly without the unwanted influence of demosaicking artifacts. Numerical simulation results are presented to demonstrate the efficacy of the proposed deferred slanted-edge method in relation to existing methods.

  7. LANL robotics site overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beugelsdijk, T.J.

    1990-11-01

    This paper reports on robotics applications at the Los Alamos National Laboratory. The topics of the paper include the ROBOCAL project to assay all nuclear materials entering and leaving the process floor at the Los Alamos Plutonium Facility, the isotope detector fabrication project, a plutonium dissolution robotic system, a safeguards waste automated measurement instrument, and DNA filter array construction. This report consists of overheads only.

  8. Ultrasound Transducer and System for Real-Time Simultaneous Therapy and Diagnosis for Noninvasive Surgery of Prostate Tissue

    PubMed Central

    Jeong, Jong Seob; Chang, Jin Ho; Shung, K. Kirk

    2009-01-01

    For noninvasive treatment of prostate tissue using high intensity focused ultrasound (HIFU), this paper proposes a design of an integrated multi-functional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6 MHz array in the center row for imaging and two 4 MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA was verifeid. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured −6 dB and −20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be −48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded −6dB and −20dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be −40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy. PMID:19811994

  9. Ultrasound transducer and system for real-time simultaneous therapy and diagnosis for noninvasive surgery of prostate tissue.

    PubMed

    Jeong, Jong Seob; Chang, Jin Ho; Shung, K Kirk

    2009-09-01

    For noninvasive treatment of prostate tissue using high-intensity focused ultrasound this paper proposes a design of an integrated multifunctional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6-MHz array in the center row for imaging and two 4-MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center-row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, we verified whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured -6 dB and -20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be -48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded -6 dB and -20 dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be -40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy.

  10. Efficient color display using low-absorption in-pixel color filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2000-01-01

    A display system having a non-absorbing and reflective color filtering array and a reflector to improve light utilization efficiency. One implementation of the color filtering array uses a surface plasmon filter having two symmetric metal-dielectric interfaces coupled with each other to produce a transmission optical wave at a surface plasmon resonance wavelength at one interface from a p-polarized input beam on the other interface. Another implementation of the color filtering array uses a metal-film interference filter having two dielectric layers and three metallic films.

  11. Parallel Processing of Large Scale Microphone Arrays for Sound Capture

    NASA Astrophysics Data System (ADS)

    Jan, Ea-Ee.

    1995-01-01

    Performance of microphone sound pick up is degraded by deleterious properties of the acoustic environment, such as multipath distortion (reverberation) and ambient noise. The degradation becomes more prominent in a teleconferencing environment in which the microphone is positioned far away from the speaker. Besides, the ideal teleconference should feel as easy and natural as face-to-face communication with another person. This suggests hands-free sound capture with no tether or encumbrance by hand-held or body-worn sound equipment. Microphone arrays for this application represent an appropriate approach. This research develops new microphone array and signal processing techniques for high quality hands-free sound capture in noisy, reverberant enclosures. The new techniques combine matched-filtering of individual sensors and parallel processing to provide acute spatial volume selectivity which is capable of mitigating the deleterious effects of noise interference and multipath distortion. The new method outperforms traditional delay-and-sum beamformers which provide only directional spatial selectivity. The research additionally explores truncated matched-filtering and random distribution of transducers to reduce complexity and improve sound capture quality. All designs are first established by computer simulation of array performance in reverberant enclosures. The simulation is achieved by a room model which can efficiently calculate the acoustic multipath in a rectangular enclosure up to a prescribed order of images. It also calculates the incident angle of the arriving signal. Experimental arrays were constructed and their performance was measured in real rooms. Real room data were collected in a hard-walled laboratory and a controllable variable acoustics enclosure of similar size, approximately 6 x 6 x 3 m. An extensive speech database was also collected in these two enclosures for future research on microphone arrays. The simulation results are shown to be consistent with the real room data. Localization of sound sources has been explored using cross-power spectrum time delay estimation and has been evaluated using real room data under slightly, moderately and highly reverberant conditions. To improve the accuracy and reliability of the source localization, an outlier detector that removes incorrect time delay estimation has been invented. To provide speaker selectivity for microphone array systems, a hands-free speaker identification system has been studied. A recently invented feature using selected spectrum information outperforms traditional recognition methods. Measured results demonstrate the capabilities of speaker selectivity from a matched-filtered array. In addition, simulation utilities, including matched -filtering processing of the array and hands-free speaker identification, have been implemented on the massively -parallel nCube super-computer. This parallel computation highlights the requirements for real-time processing of array signals.

  12. Construct and Compare Gene Coexpression Networks with DAPfinder and DAPview.

    PubMed

    Skinner, Jeff; Kotliarov, Yuri; Varma, Sudhir; Mine, Karina L; Yambartsev, Anatoly; Simon, Richard; Huyen, Yentram; Morgun, Andrey

    2011-07-14

    DAPfinder and DAPview are novel BRB-ArrayTools plug-ins to construct gene coexpression networks and identify significant differences in pairwise gene-gene coexpression between two phenotypes. Each significant difference in gene-gene association represents a Differentially Associated Pair (DAP). Our tools include several choices of filtering methods, gene-gene association metrics, statistical testing methods and multiple comparison adjustments. Network results are easily displayed in Cytoscape. Analyses of glioma experiments and microarray simulations demonstrate the utility of these tools. DAPfinder is a new friendly-user tool for reconstruction and comparison of biological networks.

  13. Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking

    NASA Technical Reports Server (NTRS)

    Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)

    2009-01-01

    A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,

  14. Angle- and polarization-insensitive, small area, subtractive color filters via a-Si nanopillar arrays (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fountaine, Katherine T.; Ito, Mikinori; Pala, Ragip; Atwater, Harry A.

    2016-09-01

    Spectrally-selective nanophotonic and plasmonic structures enjoy widespread interest for application as color filters in imaging devices, due to their potential advantages over traditional organic dyes and pigments. Organic dyes are straightforward to implement with predictable optical performance at large pixel size, but suffer from inherent optical cross-talk and stability (UV, thermal, humidity) issues and also exhibit increasingly unpredictable performance as pixel size approaches dye molecule size. Nanophotonic and plasmonic color filters are more robust, but often have polarization- and angle-dependent optical response and/or require large-range periodicity. Herein, we report on design and fabrication of polarization- and angle-insensitive CYM color filters based on a-Si nanopillar arrays as small as 1um2, supported by experiment, simulation, and analytic theory. Analytic waveguide and Mie theories explain the color filtering mechanism- efficient coupling into and interband transition-mediated attenuation of waveguide-like modes—and also guided the FDTD simulation-based optimization of nanopillar array dimensions. The designed a-Si nanopillar arrays were fabricated using e-beam lithography and reactive ion etching; and were subsequently optically characterized, revealing the predicted polarization- and angle-insensitive (±40°) subtractive filter responses. Cyan, yellow, and magenta color filters have each been demonstrated. The effects of nanopillar array size and inter-array spacing were investigated both experimentally and theoretically to probe the issues of ever-shrinking pixel sizes and cross-talk, respectively. Results demonstrate that these nanopillar arrays maintain their performance down to 1um2 pixel sizes with no inter-array spacing. These concepts and results along with color-processed images taken with a fabricated color filter array will be presented and discussed.

  15. A method of incident angle estimation for high resolution spectral recovery in filter-array-based spectrometers

    NASA Astrophysics Data System (ADS)

    Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No

    2017-02-01

    In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.

  16. Performance of the QWIP Focal Plane Arrays for NASA's Landsat Data Continuity Mission

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Waczynski, A.; La, A.; Sundaram, M.; Costard, E.; Jhabvala, C.; Kan, E.; Kahle, D.; Foltz, R.; hide

    2011-01-01

    The focal plane assembly for the Thermal Infrared Sensor (TIRS) instrument on NASA's Landsat Data Continuity Mission (LDCM) consists of three 512 x 640 GaAs Quantum Well Infrared Photodetector (QWIP) arrays. The three arrays are precisely mounted and aligned on a silicon carrier substrate to provide a continuous viewing swath of 1850 pixels in two spectral bands defined by filters placed in close proximity to the detector surfaces. The QWIP arrays are hybridized to Indigo ISC9803 readout integrated circuits (ROICs). QWIP arrays were evaluated from four laboratories; QmagiQ, (Nashua, NH), Army Research Laboratory, (Adelphi, MD}, NASA/ Goddard Space Flight Center, (Greenbelt, MD) and Thales, (Palaiseau, France). All were found to be suitable. The final discriminating parameter was the spectral uniformity of individual pixels relative to each other. The performance of the QWIP arrays and the fully assembled, NASA flight-qualified, focal plane assembly will be reviewed. An overview of the focal plane assembly including the construction and test requirements of the focal plane will also be described.

  17. Multispectral interference filter arrays with compensation of angular dependence or extended spectral range.

    PubMed

    Frey, Laurent; Masarotto, Lilian; Armand, Marilyn; Charles, Marie-Lyne; Lartigue, Olivier

    2015-05-04

    Thin film Fabry-Perot filter arrays with high selectivity can be realized with a single patterning step, generating a spatial modulation of the effective refractive index in the optical cavity. In this paper, we investigate the ability of this technology to address two applications in the field of image sensors. First, the spectral tuning may be used to compensate the blue-shift of the filters in oblique incidence, provided the filter array is located in an image plane of an optical system with higher field of view than aperture angle. The technique is analyzed for various types of filters and experimental evidence is shown with copper-dielectric infrared filters. Then, we propose a design of a multispectral filter array with an extended spectral range spanning the visible and near-infrared range, using a single set of materials and realizable on a single substrate.

  18. Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar.

    PubMed

    Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le

    2016-09-09

    Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar's estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method.

  19. A Retina-Like Dual Band Organic Photosensor Array for Filter-Free Near-Infrared-to-Memory Operations.

    PubMed

    Wang, Hanlin; Liu, Hongtao; Zhao, Qiang; Ni, Zhenjie; Zou, Ye; Yang, Jie; Wang, Lifeng; Sun, Yanqiu; Guo, Yunlong; Hu, Wenping; Liu, Yunqi

    2017-08-01

    Human eyes use retina photoreceptor cells to absorb and distinguish photons from different wavelengths to construct an image. Mimicry of such a process and extension of its spectral response into the near-infrared (NIR) is indispensable for night surveillance, retinal prosthetics, and medical imaging applications. Currently, NIR organic photosensors demand optical filters to reduce visible interference, thus making filter-free and anti-visible NIR imaging a challenging task. To solve this limitation, a filter-free and conformal, retina-inspired NIR organic photosensor is presented. Featuring an integration of photosensing and floating-gate memory modules, the device possesses an acute color distinguishing capability. In general, the retina-like photosensor transduces NIR (850 nm) into nonvolatile memory and acts as a dynamic photoswitch under green light (550 nm). In doing this, a filter-free but color-distinguishing photosensor is demonstrated that selectively converts NIR optical signals into nonvolatile memory. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Compressive spectral testbed imaging system based on thin-film color-patterned filter arrays.

    PubMed

    Rueda, Hoover; Arguello, Henry; Arce, Gonzalo R

    2016-11-20

    Compressive spectral imaging systems can reliably capture multispectral data using far fewer measurements than traditional scanning techniques. In this paper, a thin-film patterned filter array-based compressive spectral imager is demonstrated, including its optical design and implementation. The use of a patterned filter array entails a single-step three-dimensional spatial-spectral coding on the input data cube, which provides higher flexibility on the selection of voxels being multiplexed on the sensor. The patterned filter array is designed and fabricated with micrometer pitch size thin films, referred to as pixelated filters, with three different wavelengths. The performance of the system is evaluated in terms of references measured by a commercially available spectrometer and the visual quality of the reconstructed images. Different distributions of the pixelated filters, including random and optimized structures, are explored.

  1. Numerical simulation of terahertz transmission of bilayer metallic meshes with different thickness of substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Gaohui; Zhao, Guozhong; Zhang, Shengbo

    2012-12-01

    The terahertz transmission characteristics of bilayer metallic meshes are studied based on the finite difference time domain method. The bilayer well-shaped grid, the array of complementary square metallic pill and the cross wire-hole array were investigated. The results show that the bilayer well-shaped grid achieves a high-pass of filter function, while the bilayer array of complementary square metallic pill achieves a low-pass of filter function, the bilayer cross wire-hole array achieves a band-pass of filter function. Between two metallic microstructures, the medium need to be deposited. Obviously, medium thicknesses have an influence on the terahertz transmission characteristics of metallic microstructures. Simulation results show that with increasing the thicknesses of the medium the cut-off frequency of high-pass filter and low-pass filter move to low frequency. But the bilayer cross wire-hole array possesses two transmission peaks which display competition effect.

  2. Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures

    DOE PAGES

    Horie, Yu; Arbabi, Amir; Arbabi, Ehsan; ...

    2016-05-19

    Here, we propose and experimentally demonstrate a planar array of optical bandpass filters composed of low loss dielectric metasurface layers sandwiched between two distributed Bragg reflectors (DBRs). The two DBRs form a Fabry-Perot resonator whose center wavelength is controlled by the design of the transmissive metasurface layer which functions as a phase shifting element. We demonstrate an array of bandpass filters with spatially varying center wavelengths covering a wide range of operation wavelengths of 250nm around λ = 1550nm (Δλ/λ = 16%). The center wavelengths of each filter are independently controlled only by changing the in-plane geometry of the sandwichedmore » metasurfaces, and the experimentally measured quality factors are larger than 700. The demonstrated filter array can be directly integrated on top of photodetector arrays to realize on-chip high-resolution spectrometers with free-space coupling.« less

  3. Noninvasive photoacoustic detecting intraocular foreign bodies with an annular transducer array.

    PubMed

    Yang, Diwu; Zeng, Lvming; Pan, Changning; Zhao, Xuehui; Ji, Xuanrong

    2013-01-14

    We present a fast photoacoustic imaging system based on an annular transducer array for detection of intraocular foreign bodies. An eight-channel data acquisition system is applied to capture the photoacoustic signals using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experimental models of intraocular metal and glass foreign bodies were constructed on ex vivo pig's eyes and clear photoacoustic images of intraocular foreign bodies were obtained. Experimental results demonstrate the photoacoustic imaging system holds the potential for in clinic detecting the intraocular foreign bodies.

  4. Jammed-array wideband sawtooth filter.

    PubMed

    Tan, Zhongwei; Wang, Chao; Goda, Keisuke; Malik, Omer; Jalali, Bahram

    2011-11-21

    We present an all-optical passive low-cost spectral filter that exhibits a high-resolution periodic sawtooth spectral pattern without the need for active optoelectronic components. The principle of the filter is the partial masking of a phased array of virtual light sources with multiply jammed diffraction orders. We utilize the filter's periodic linear map between frequency and intensity to demonstrate fast sensitive interrogation of fiber Bragg grating sensor arrays and ultrahigh-frequency electrical sawtooth waveform generation. © 2011 Optical Society of America

  5. Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar

    PubMed Central

    Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le

    2016-01-01

    Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar’s estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method. PMID:27618058

  6. Self-limiting filters for band-selective interferer rejection or cognitive receiver protection

    DOEpatents

    Nordquist, Christopher; Scott, Sean Michael; Custer, Joyce Olsen; Leonhardt, Darin; Jordan, Tyler Scott; Rodenbeck, Christopher T.; Clem, Paul G.; Hunker, Jeff; Wolfley, Steven L.

    2017-03-07

    The present invention related to self-limiting filters, arrays of such filters, and methods thereof. In particular embodiments, the filters include a metal transition film (e.g., a VO.sub.2 film) capable of undergoing a phase transition that modifies the film's resistivity. Arrays of such filters could allow for band-selective interferer rejection, while permitting transmission of non-interferer signals.

  7. High Dynamic Range Spectral Imaging Pipeline For Multispectral Filter Array Cameras.

    PubMed

    Lapray, Pierre-Jean; Thomas, Jean-Baptiste; Gouton, Pierre

    2017-06-03

    Spectral filter arrays imaging exhibits a strong similarity with color filter arrays. This permits us to embed this technology in practical vision systems with little adaptation of the existing solutions. In this communication, we define an imaging pipeline that permits high dynamic range (HDR)-spectral imaging, which is extended from color filter arrays. We propose an implementation of this pipeline on a prototype sensor and evaluate the quality of our implementation results on real data with objective metrics and visual examples. We demonstrate that we reduce noise, and, in particular we solve the problem of noise generated by the lack of energy balance. Data are provided to the community in an image database for further research.

  8. Colorization-Based RGB-White Color Interpolation using Color Filter Array with Randomly Sampled Pattern

    PubMed Central

    Oh, Paul; Lee, Sukho; Kang, Moon Gi

    2017-01-01

    Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method. PMID:28657602

  9. Colorization-Based RGB-White Color Interpolation using Color Filter Array with Randomly Sampled Pattern.

    PubMed

    Oh, Paul; Lee, Sukho; Kang, Moon Gi

    2017-06-28

    Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method.

  10. Assessment of the Capability of the NGDS Prototype to Replace the JBAIDS for Environmental Sample Analysis

    DTIC Science & Technology

    2016-11-01

    FilmArray system. 15. SUBJECT TERMS BioFire FilmArray system Dry Filter Unit (DFU) Joint Biological...collectors, such as the Dry Filter Unit (DFU). The FilmArray system showed enormous potential to rapidly screen samples for a wide range of biological...specific focus on the efficient implementation of environmental detectors and collectors, such as Dry Filter Units (DFUs). The JUPITR ATD members

  11. The data acquisition system for the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Aslanides, E.; Aubert, J.-J.; Barbarito, E.; Basa, S.; Battaglieri, M.; Becherini, Y.; Bellotti, R.; Beltramelli, J.; Bertin, V.; Bigi, A.; Billault, M.; Blaes, R.; de Botton, N.; Bouwhuis, M. C.; Bradbury, S. M.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Busto, J.; Cafagna, F.; Caillat, L.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Cartwright, S. L.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chauchot, P.; Chiarusi, T.; Circella, M.; Colnard, C.; Compère, C.; Coniglione, R.; Cottini, N.; Coyle, P.; Cuneo, S.; Cussatlegras, A.-S.; Damy, G.; van Dantzig, R.; de Marzo, C.; Dekeyser, I.; Delagnes, E.; Denans, D.; Deschamps, A.; Dessages-Ardellier, F.; Destelle, J.-J.; Dinkespieler, B.; Distefano, C.; Donzaud, C.; Drogou, J.-F.; Druillole, F.; Durand, D.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Feinstein, F.; Ferry, S.; Festy, D.; Fiorello, C.; Flaminio, V.; Galeotti, S.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Gojak, C.; Goret, Ph.; Graf, K.; Hallewell, G.; Harakeh, M. N.; Hartmann, B.; Heijboer, A.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hoffman, C.; Hogenbirk, J.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jouvenot, F.; Kalantar-Nayestanaki, N.; Kappes, A.; Karg, T.; Karkar, S.; Katz, U.; Keller, P.; Kok, H.; Kooijman, P.; Kopper, C.; Korolkova, E. V.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Kudryavstev, V. A.; Lachartre, D.; Lafoux, H.; Lagier, P.; Lahmann, R.; Lamanna, G.; Lamare, P.; Languillat, J. C.; Laschinsky, H.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Legou, T.; Lim, G.; Lo Nigro, L.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazéas, F.; Mazure, A.; McMillan, J. E.; Megna, R.; Melissas, M.; Migneco, E.; Milovanovic, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Niess, V.; Olivetto, C.; Ostasch, R.; Palanque-Delabrouille, N.; Payre, P.; Peek, H.; Petta, C.; Piattelli, P.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Pradier, T.; Racca, C.; Randazzo, N.; van Randwijk, J.; Real, D.; van Rens, B.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca, V.; Roda, C.; Rolin, J. F.; Romita, M.; Rose, H. J.; Rostovtsev, A.; Roux, J.; Ruppi, M.; Russo, G. V.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schuller, J.-P.; Shanidze, R.; Sokalski, I.; Spona, T.; Spurio, M.; van der Steenhoven, G.; Stolarczyk, T.; Streeb, K.; Stubert, D.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Terreni, G.; Thompson, L. F.; Valdy, P.; Valente, V.; Vallage, B.; Venekamp, G.; Verlaat, B.; Vernin, P.; de Vita, R.; de Vries, G.; van Wijk, R.; de Witt Huberts, P.; Wobbe, G.; de Wolf, E.; Yao, A.-F.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2007-01-01

    The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.

  12. Color filter array design based on a human visual model

    NASA Astrophysics Data System (ADS)

    Parmar, Manu; Reeves, Stanley J.

    2004-05-01

    To reduce cost and complexity associated with registering multiple color sensors, most consumer digital color cameras employ a single sensor. A mosaic of color filters is overlaid on a sensor array such that only one color channel is sampled per pixel location. The missing color values must be reconstructed from available data before the image is displayed. The quality of the reconstructed image depends fundamentally on the array pattern and the reconstruction technique. We present a design method for color filter array patterns that use red, green, and blue color channels in an RGB array. A model of the human visual response for luminance and opponent chrominance channels is used to characterize the perceptual error between a fully sampled and a reconstructed sparsely-sampled image. Demosaicking is accomplished using Wiener reconstruction. To ensure that the error criterion reflects perceptual effects, reconstruction is done in a perceptually uniform color space. A sequential backward selection algorithm is used to optimize the error criterion to obtain the sampling arrangement. Two different types of array patterns are designed: non-periodic and periodic arrays. The resulting array patterns outperform commonly used color filter arrays in terms of the error criterion.

  13. Blending of phased array data

    NASA Astrophysics Data System (ADS)

    Duijster, Arno; van Groenestijn, Gert-Jan; van Neer, Paul; Blacquière, Gerrit; Volker, Arno

    2018-04-01

    The use of phased arrays is growing in the non-destructive testing industry and the trend is towards large 2D arrays, but due to limitations, it is currently not possible to record the signals from all elements, resulting in aliased data. In the past, we have presented a data interpolation scheme `beyond spatial aliasing' to overcome this aliasing. In this paper, we present a different approach: blending and deblending of data. On the hardware side, groups of receivers are blended (grouped) in only a few transmit/recording channels. This allows for transmission and recording with all elements, in a shorter acquisition time and with less channels. On the data processing side, this blended data is deblended (separated) by transforming it to a different domain and applying an iterative filtering and thresholding. Two different filtering methods are compared: f-k filtering and wavefield extrapolation filtering. The deblending and filtering methods are demonstrated on simulated experimental data. The wavefield extrapolation filtering proves to outperform f-k filtering. The wavefield extrapolation method can deal with groups of up to 24 receivers, in a phased array of 48 × 48 elements.

  14. System and method for 100% moisture and basis weight measurement of moving paper

    DOEpatents

    Hernandez, Jose E.; Koo, Jackson C.

    2002-01-01

    A system for characterizing a set of properties for a moving substance are disclosed. The system includes: a first near-infrared linear array; a second near-infrared linear array; a first filter transparent to a first absorption wavelength emitted by the moving substance and juxtaposed between the substance and the first array; a second filter blocking the first absorption wavelength emitted by the moving substance and juxtaposed between the substance and the second array; and a computational device for characterizing data from the arrays into information on a property of the substance. The method includes the steps of: filtering out a first absorption wavelength emitted by a substance; monitoring the first absorption wavelength with a first near-infrared linear array; blocking the first wavelength from reaching a second near-infrared linear array; and characterizing data from the arrays into information on a property of the substance.

  15. A Low-Voltage and High Uniformity Nano-Electro-Mechanical System Tunable Color Filter Based on Subwavelength Grating

    NASA Astrophysics Data System (ADS)

    Honma, Hiroaki; Takahashi, Kazuhiro; Ishida, Makoto; Sawada, Kazuaki

    2012-11-01

    This paper reports on the construction of a nano-electro-mechanical system (NEMS) tunable color filter based on a subwavelength grating with high color uniformity and a low drive voltage. We recently proposed a ground-voltage-ground (GVG)-type tunable color filter with a parallel-plate actuator with three pairs of electrodes to decrease the crosstalk due to the electrostatic attractive force between each pair of actuators. Our finite element method (FEM) simulation results indicate that the drive voltage is decreased by 10 V, as compared to that of the previously reported GV type. The proposed structure was fabricated using a silicon-on-insulator (SOI) wafer. The color tuning capability of the device was demonstrated by applying a drive voltage of 6.7 V. The reflected light intensity was decreased by 34% at a wavelength of 680 nm. Color uniformity was also obtained in the filter area by reducing the variation of the displacement on the one-dimensional actuator arrays.

  16. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter.

    PubMed

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-10-12

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  17. Low-loss interference filter arrays made by plasma-assisted reactive magnetron sputtering (PARMS) for high-performance multispectral imaging

    NASA Astrophysics Data System (ADS)

    Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas

    2016-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.

  18. Tactile surface classification for limbed robots using a pressure sensitive robot skin.

    PubMed

    Shill, Jacob J; Collins, Emmanuel G; Coyle, Eric; Clark, Jonathan

    2015-02-02

    This paper describes an approach to terrain identification based on pressure images generated through direct surface contact using a robot skin constructed around a high-resolution pressure sensing array. Terrain signatures for classification are formulated from the magnitude frequency responses of the pressure images. The initial experimental results for statically obtained images show that the approach yields classification accuracies [Formula: see text]. The methodology is extended to accommodate the dynamic pressure images anticipated when a robot is walking or running. Experiments with a one-legged hopping robot yield similar identification accuracies [Formula: see text]. In addition, the accuracies are independent with respect to changing robot dynamics (i.e., when using different leg gaits). The paper further shows that the high-resolution capabilities of the sensor enables similarly textured surfaces to be distinguished. A correcting filter is developed to accommodate for failures or faults that inevitably occur within the sensing array with continued use. Experimental results show using the correcting filter can extend the effective operational lifespan of a high-resolution sensing array over 6x in the presence of sensor damage. The results presented suggest this methodology can be extended to autonomous field robots, providing a robot with crucial information about the environment that can be used to aid stable and efficient mobility over rough and varying terrains.

  19. Two-Dimensional Planar Lightwave Circuit Integrated Spatial Filter Array and Method of Use Thereof

    NASA Technical Reports Server (NTRS)

    Dimov, Fedor (Inventor); Ai, Jun (Inventor)

    2015-01-01

    A large coherent two-dimensional (2D) spatial filter array (SFA), 30 by 30 or larger, is produced by coupling a 2D planar lightwave circuit (PLC) array with a pair of lenslet arrays at the input and output side. The 2D PLC array is produced by stacking a plurality of chips, each chip with a plural number of straight PLC waveguides. A pupil array is coated onto the focal plane of the lenslet array. The PLC waveguides are produced by deposition of a plural number of silica layers on the silicon wafer, followed by photolithography and reactive ion etching (RIE) processes. A plural number of mode filters are included in the silica-on-silicon waveguide such that the PLC waveguide is transparent to the fundamental mode but higher order modes are attenuated by 40 dB or more.

  20. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    PubMed Central

    Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu

    2017-01-01

    In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection. PMID:29023385

  1. Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array.

    PubMed

    Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J; Urbas, Augustine

    2016-10-10

    In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed "algorithmic spectrometry". We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme.

  2. Compact Micromachined Infrared Bandpass Filters for Planetary Spectroscopy

    NASA Technical Reports Server (NTRS)

    Merrell, Willie C., II; Aslam, Shahid; Brown, Ari D.; Chervenak, James A.; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward

    2011-01-01

    The future needs of space based observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high radiation and low temperature environments. Here we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 micrometers and report good agreement between the modeled and measured response. We present a technique of using common micromachining processes for semiconductor fabrication to make compact, free standing resonant metal mesh filter arrays with silicon support frames. The process can accommodate multiple detector array architectures and the silicon frame provides lightweight mechanical support with low form factor. We also present a conceptual hybridization of the filters with a detector array.

  3. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Fuerstenau, Stephen D. (Inventor); Yee, Karl Y. (Inventor); Chutjian, Ara (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  4. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Rice, John T. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  5. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y. (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Rice, John T. (Inventor); Chutjian, Ara (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  6. The Experience of Implementation of Innovative Technology of Quarry Waste Water Purifying in Kuzbass Open Pit

    NASA Astrophysics Data System (ADS)

    Lesin, Yu V.; Hellmer, M. C.

    2016-08-01

    Among all industries in Kuzbass (Western Siberia, Russia) the coal industry provides the most environmental threat. However, the construction of new and maintenance of existing open pit mines do not often correspond to the tasks of improving the environmental safety of surface mining. So the article describes the use of innovative quarry waste water purifying technology implemented in Kuzbass open pit mine «Shestaki». This technology is based on using artificial filter arrays made of overburden rock.

  7. An apparatus to measure water optical attenuation length for LHAASO-MD

    NASA Astrophysics Data System (ADS)

    Li, Cong; Xiao, Gang; Feng, Shaohui; Wang, Lingyu; Li, Xiurong; Zuo, Xiong; Cheng, Ning; Wang, Hui; Gao, Bo; Duan, Zhihao; Liu, Jia; He, Huihai; Saeed, Mohsin; Lhaaso Collaboration

    2018-06-01

    The large high altitude air shower observatory (LHAASO) is being constructed at 4400 m a.s.l. in Daocheng, Sichuan Province, aiming to reveal the secrets of cosmic rays origin. And it has the largest surface muon detector array in the world. Due to the needs of calibration and construction of muon detector, we developed a water optical attenuation measurement device using an 8 m long water tank. The results are presented for filtered water at wavelength of 405 nm, which proves this apparatus can reach an accuracy of about 20% at 100 m. This apparatus has not only a high precision measurement of water attenuation length up to 100 m but is also very convenient to be used, which is crucial for water optical properties study during LHAASO detector construction.

  8. Control, Filtering and Prediction for Phased Arrays in Directed Energy Systems

    DTIC Science & Technology

    2016-04-30

    adaptive optics. 15. SUBJECT TERMS control, filtering, prediction, system identification, adaptive optics, laser beam pointing, target tracking, phase... laser beam control; furthermore, wavefront sensors are plagued by the difficulty of maintaining the required alignment and focusing in dynamic mission...developed new methods for filtering, prediction and system identification in adaptive optics for high energy laser systems including phased arrays. The

  9. Automated Handling of Garments for Pressing

    DTIC Science & Technology

    1991-09-30

    Parallel Algorithms for 2D Kalman Filtering ................................. 47 DJ. Potter and M.P. Cline Hash Table and Sorted Array: A Case Study of... Kalman Filtering on the Connection Machine ............................ 55 MA. Palis and D.K. Krecker Parallel Sorting of Large Arrays on the MasPar...ALGORITHM’VS FOR SEAM SENSING. .. .. .. ... ... .... ..... 24 6.1 KarelTW Algorithms .. .. ... ... ... ... .... ... ...... 24 6.1.1 Image Filtering

  10. Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array

    PubMed Central

    Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J.; Urbas, Augustine

    2016-01-01

    In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed “algorithmic spectrometry”. We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme. PMID:27721506

  11. A novel concept of dielectrophoretic engine oil filter

    NASA Astrophysics Data System (ADS)

    Khusid, Boris; Shen, Yueyang; Elele, Ezinwa

    2011-11-01

    A novel concept of an alternating current (AC) dielectrophoretic filter with a three-dimensional electrode array is presented. A filter is constructed by winding into layers around the core tube two sheets of woven metal wire-mesh with several sheets of woven insulating wire-mesh sandwiched in between. Contrary to conventional dielectrophoretic devices, the proposed design of electrodes generates a high-gradient field over a large working volume by applying several hundred volts at a standard frequency of 60 Hz. The operating principle of filtration is based on our recently developed method of AC dielectrophoretic gating for microfluidics. The filtration efficiency is expressed in terms of two non-dimensional parameters which describe the combined influence of the particle polarizability and size, the oil viscosity and flow rate, and the field gradient on the particle captivity. The proof-of-concept is tested by measuring the single-pass performance of two filters on positively polarized particles dispersed in engine oil: spherical glass beads, fused aluminum oxide powder, and silicon metal powder, all smaller than the mesh opening. The results obtained provide critical design guidelines for the development of a filter based on the retention capability of challenge particles. The work was supported in part by ONR and NSF.

  12. The Development of A Chip-Scale Spectrometer for In Situ Characterization of Solar System Surfaces

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Voelz, David; Cho, Sang-Yeon; Pelzman, Charles

    2017-10-01

    We discuss the development of a plasmonic spectrometer for in situ characterization of solar system surface and subsurface environments. The two goals of this project are to (1) quantitatively demonstrate that a plasmonic spectrometer can be used to rapidly acquire high signal-to-noise spectra between 0.5 - 1.0 microns at a spectral resolution suitable for unambiguous detection of spectral features indicative of volatiles and characteristic surface mineralogies, and (2) demonstrate that this class of spectrometer can be used in conjunction with optical fibers to access subsurface materials and vertically map the geochemistry and mineralogy of subsurface layers, thereby demonstrating that a plasmonic spectrometer is feasible in a low-mass, low-power, compact configuration. Our prototype spectrometer is comprised of a broadband lamp/source, a fiber optic system to illuminate the sample surface and collect the reflected light, a mosaic filter element based on plasmon resonance, and a focal plane array (FPA) detector. Our work thus far has been divided into two primary areas: (i) the development of the plasmon filter element and (ii) the construction of a testbed to explore the source, fiber system and focal plane array components of the system. We discuss our preliminary design studies of the plasmonic nanostructure prototypes to optimize the full-width half-maximum of the filter, and our fiber illumination and signal collection system.

  13. Gigabit Digital Filter Bank: Digital Backend Subsystem in the VERA Data-Acquisition System

    NASA Astrophysics Data System (ADS)

    Iguchi, Satoru; Kkurayama, Tomoharu; Kawaguchi, Noriyuki; Kawakami, Kazuyuki

    2005-02-01

    The VERA terminal is a new data-acquisition system developed for the VERA project, which is a project to construct a new Japanese VLBI array dedicated to make a 3-D map of our Milky Way Galaxy in terms of high-precision astrometry. New technology, a gigabit digital filter, was introduced in the development. The importance and advantages of a digital filter for radio astronomy have been studied as follows: (1) the digital filter can realize a variety of observation modes and maintain compatibility with different data-acquisition systems (Kiuchi et al. 1997 and Iguchi et al. 2000a), (2) the folding noise occurring in the sampling process can be reduced by combination with a higher-order sampling technique (Iguchi, Kawaguchi 2002), (3) and an ideal sharp cut-off bandedge and a flat amplitude/phase responses are approached by using a large number of taps available to use LSI of a large number of logic cells (Iguchi et al. 2000a). We developed the custom Finite Impulse Response filter chips and manufactured the Gigabit Digital Filter Banks (GDFBs) as a digital backend subsystem in the VERA terminal. In this paper, the design and development of the GDFB are presented in detail, and the performances and demonstrations of the developed GDFB are shown.

  14. Multichannel signal enhancement

    DOEpatents

    Lewis, Paul S.

    1990-01-01

    A mixed adaptive filter is formulated for the signal processing problem where desired a priori signal information is not available. The formulation generates a least squares problem which enables the filter output to be calculated directly from an input data matrix. In one embodiment, a folded processor array enables bidirectional data flow to solve the recursive problem by back substitution without global communications. In another embodiment, a balanced processor array solves the recursive problem by forward elimination through the array. In a particular application to magnetoencephalography, the mixed adaptive filter enables an evoked response to an auditory stimulus to be identified from only a single trial.

  15. Stacked, Filtered Multi-Channel X-Ray Diode Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacNeil, Lawrence P.; Dutra, Eric C.; Raphaelian, Mark

    2015-08-01

    This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilitiesmore » to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.« less

  16. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Moseley, S. Harvey; Rostem, Karwan; hide

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization of the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 145 mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device multiplexer readout. We describe the design, development, and performance of PIPER bolometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  17. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; hide

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  18. Radar wideband digital beamforming based on time delay and phase compensation

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Jiang, Defu

    2018-07-01

    In conventional phased array radars, analogue time delay devices and phase shifters have been used for wideband beamforming. These methods suffer from insertion losses, gain mismatches and delay variations, and they occupy a large chip area. To solve these problems, a compact architecture of digital array antennas based on subarrays was considered. In this study, the receiving beam patterns of wideband linear frequency modulation (LFM) signals were constructed by applying analogue stretch processing via mixing with delayed reference signals at the subarray level. Subsequently, narrowband digital time delaying and phase compensation of the tone signals were implemented with reduced arithmetic complexity. Due to the differences in amplitudes, phases and time delays between channels, severe performance degradation of the beam patterns occurred without corrections. To achieve good beamforming performance, array calibration was performed in each channel to adjust the amplitude, frequency and phase of the tone signal. Using a field-programmable gate array, wideband LFM signals and finite impulse response filters with continuously adjustable time delays were implemented in a polyphase structure. Simulations and experiments verified the feasibility and effectiveness of the proposed digital beamformer.

  19. Conceptual design of the early implementation of the NEutron Detector Array (NEDA) with AGATA

    NASA Astrophysics Data System (ADS)

    Hüyük, Tayfun; Di Nitto, Antonio; Jaworski, Grzegorz; Gadea, Andrés; Javier Valiente-Dobón, José; Nyberg, Johan; Palacz, Marcin; Söderström, Pär-Anders; Jose Aliaga-Varea, Ramon; de Angelis, Giacomo; Ataç, Ayşe; Collado, Javier; Domingo-Pardo, Cesar; Egea, Francisco Javier; Erduran, Nizamettin; Ertürk, Sefa; de France, Gilles; Gadea, Rafael; González, Vicente; Herrero-Bosch, Vicente; Kaşkaş, Ayşe; Modamio, Victor; Moszynski, Marek; Sanchis, Enrique; Triossi, Andrea; Wadsworth, Robert

    2016-03-01

    The NEutron Detector Array (NEDA) project aims at the construction of a new high-efficiency compact neutron detector array to be coupled with large γ-ray arrays such as AGATA. The application of NEDA ranges from its use as selective neutron multiplicity filter for fusion-evaporation reaction to a large solid angle neutron tagging device. In the present work, possible configurations for the NEDA coupled with the Neutron Wall for the early implementation with AGATA has been simulated, using Monte Carlo techniques, in order to evaluate their performance figures. The goal of this early NEDA implementation is to improve, with respect to previous instruments, efficiency and capability to select multiplicity for fusion-evaporation reaction channels in which 1, 2 or 3 neutrons are emitted. Each NEDA detector unit has the shape of a regular hexagonal prism with a volume of about 3.23l and it is filled with the EJ301 liquid scintillator, that presents good neutron- γ discrimination properties. The simulations have been performed using a fusion-evaporation event generator that has been validated with a set of experimental data obtained in the 58Ni + 56Fe reaction measured with the Neutron Wall detector array.

  20. High resolution on-chip optical filter array based on double subwavelength grating reflectors

    DOE PAGES

    Horie, Yu; Arbabi, Amir; Han, Seunghoon; ...

    2015-11-05

    An optical filter array consisting of vertical narrow-band Fabry-Pèrot (FP) resonators formed by two highly reflective high contrast subwavelength grating mirrors is reported. The filters are designed to cover a wide range of operation wavelengths ( Δλ/λ=5%) just by changing the in-plane grating parameters while the device thickness is maintained constant. In conclusion, operation in the telecom band with transmission efficiencies greater than 40% and quality factors greater than 1,000 are measured experimentally for filters fabricated on the same substrate.

  1. High resolution on-chip optical filter array based on double subwavelength grating reflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horie, Yu; Arbabi, Amir; Han, Seunghoon

    An optical filter array consisting of vertical narrow-band Fabry-Pèrot (FP) resonators formed by two highly reflective high contrast subwavelength grating mirrors is reported. The filters are designed to cover a wide range of operation wavelengths ( Δλ/λ=5%) just by changing the in-plane grating parameters while the device thickness is maintained constant. In conclusion, operation in the telecom band with transmission efficiencies greater than 40% and quality factors greater than 1,000 are measured experimentally for filters fabricated on the same substrate.

  2. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters.

    PubMed

    Haig, Sarah-Jane; Quince, Christopher; Davies, Robert L; Dorea, Caetano C; Collins, Gavin

    2014-09-15

    Previous laboratory-scale studies to characterise the functional microbial ecology of slow sand filters have suffered from methodological limitations that could compromise their relevance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters (L-SSFs) can replicate the microbial community and water quality production of industrially operated full-scale slow sand filters (I-SSFs), eight cylindrical L-SSFs were constructed and were used to treat water from the same source as the I-SSFs. Half of the L-SSFs sand beds were composed of sterilized sand (sterile) from the industrial filters and the other half with sand taken directly from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the microbial community and water quality parameters sampled and analysed weekly. To characterize the microbial community phyla-specific qPCR assays and 454 pyrosequencing of the 16S rRNA gene were used in conjunction with an array of statistical techniques. The results demonstrate that it is possible to mimic both the water quality production and the structure of the microbial community of full-scale filters in the laboratory - at all levels of taxonomic classification except OTU - thus allowing comparison of LSSF experiments with full-scale units. Further, it was found that the sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age of the filters and the depth of sand samples were all significant factors in explaining observed differences in the structure of the microbial consortia. This study is the first to the authors' knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the water quality and microbial consortia of full-scale slow sand filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Repeatable electrical measurement instrumentation for use in the accelerated stress testing of thin film solar cells

    NASA Technical Reports Server (NTRS)

    Davis, C. W.; Lathrop, J. W.

    1985-01-01

    Attention is given to the construction, calibration, and performance of a repeatable measurement system for use in conjunction with the accelerated stress testing of a-Si:H cells. A filtered diode array is utilized to approximate the spectral response of any type of solar cell in discrete portions of the spectrum. It is noted that in order to achieve the necessary degree of overall repeatability, it is necessary to pay particular attention to methods of contacting and positioning the cells.

  4. A microspectrometer based on subwavelength metal nanohole array

    NASA Astrophysics Data System (ADS)

    Cui, Jun; Xia, Liangping; Yang, Zheng; Yin, Lu; Zheng, Guoxing; Yin, Shaoyun; Du, Chunlei

    2014-11-01

    Catering to the active demand of the miniaturization of spectrometers, a simple microspectrometer with small size and light weight is presented in this paper. The presented microspectrometer is a typical filter-based spectrometer using the extraordinary optical transmission property of subwavelength metal hole array structure. Different subwavelength metal nanohole arrays are designed to work as different filter units obtained by changing the lattice parameters. By processing the filter spectra with a unique algorithm based on sparse representation, the proposed spectrometer is demonstrated to have the capability of high spectral resolution and accuracy. Benefit for the thin filmed feature, the microspectrometer is expected to find its application in integrated optical systems.

  5. Star sensing for an earth imaging sensor

    NASA Technical Reports Server (NTRS)

    Ellis, Kenneth K. (Inventor); Griffith, Paul C. (Inventor)

    2012-01-01

    A star sensor includes (a) a scan mirror for scanning at least one star; (b) a detector array, coupled to the scan mirror, for detecting the one star; and (c) a processor, coupled to the detector array. The processor includes a first filter configured to reduce noise spikes in the detected one star, and provide a detection mask of filtered data. Also included is a second filter configured to reduce non-contiguous samples in the detection mask. A centroid calculator is included to determine a location of the one star, after the first and second filtering. The first filter includes a median filter, followed by an averaging filter, both configured to filter the one star in an along-scan direction of the scan mirror. The first filter includes another median filter, which is configured to filter the detected one star in the cross-scan direction of the scan mirror. An adder is included to subtract (a) output data from the other median filter from (b) output data from the averaging filter and provide filtered star data to the second filter.

  6. Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2014-04-23

    The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatialmore » resolution of meso-scale clustering heterogeneities is sacrificed.« less

  7. Optoelectronic image scanning with high spatial resolution and reconstruction fidelity

    NASA Astrophysics Data System (ADS)

    Craubner, Siegfried I.

    2002-02-01

    In imaging systems the detector arrays deliver at the output time-discrete signals, where the spatial frequencies of the object scene are mapped into the electrical signal frequencies. Since the spatial frequency spectrum cannot be bandlimited by the front optics, the usual detector arrays perform a spatial undersampling and as a consequence aliasing occurs. A means to partially suppress the backfolded alias band is bandwidth limitation in the reconstruction low-pass, at the price of resolution loss. By utilizing a bilinear detector array in a pushbroom-type scanner, undersampling and aliasing can be overcome. For modeling the perception, the theory of discrete systems and multirate digital filter banks is applied, where aliasing cancellation and perfect reconstruction play an important role. The discrete transfer function of a bilinear array can be imbedded into the scheme of a second-order filter bank. The detector arrays already build the analysis bank and the overall filter bank is completed with the synthesis bank, for which stabilized inverse filters are proposed, to compensate for the low-pass characteristics and to approximate perfect reconstruction. The synthesis filter branch can be realized in a so-called `direct form,' or the `polyphase form,' where the latter is an expenditure-optimal solution, which gives advantages when implemented in a signal processor. This paper attempts to introduce well-established concepts of the theory of multirate filter banks into the analysis of scanning imagers, which is applicable in a much broader sense than for the problems addressed here. To the author's knowledge this is also a novelty.

  8. VizieR Online Data Catalog: Ccompact group galaxies UV and IR SFR (Lenkic+, 2016)

    NASA Astrophysics Data System (ADS)

    Lenkic, L.; Tzanavaris, P.; Gallagher, S. C.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Fedotov, K.; Charlton, J.; Hornschemeier, A. E.; Durrell, P. R.; Gronwall, C.

    2017-07-01

    The sample of CGs studied here is the same sample studied by Walker et al. (2012AJ....143...69W) of 49 CGs: 33 Hickson Compact Groups and 16 Redshift Survey Compact Groups (RSCGs). The RSCG catalogue of 89 CGs was constructed by Barton et al. (1996AJ....112..871B). The data used in this study originated from 'fill-in' observations with UVOT's three UV filters (uvw2, uvm2, uvw1) as well as the bluest optical filter (u). All UV data (PI: Tzanavaris) were downloaded from the Swift archive. The Spitzer Infrared Array Camera images for our sample of CGs are archival data presented by Walker et al. (2012AJ....143...69W) Spitzer MIPS (24um) data were obtained from the Spitzer Heritage Archive. (4 data files).

  9. Study of one- and two-dimensional filtering and deconvolution algorithms for a streaming array computer

    NASA Technical Reports Server (NTRS)

    Ioup, G. E.

    1985-01-01

    Appendix 5 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer includes a resume of the professional background of the Principal Investigator on the project, lists of this publications and research papers, graduate thesis supervised, and grants received.

  10. The IMPACT Common Module - A Low Cost, Reconfigurable Building Block for Next Generation Phased Arrays

    DTIC Science & Technology

    2016-03-31

    The SiGe receiver has two stages of programmable RF filtering and one stage of IF filtering. Each filter can be tuned in center frequency and...distribution unlimited. transmit, with an IF to RF upconversion chain that is split to programmable phase shifters and VGAs at each output port. Figure 2...These are optimized to run on medium grade Field Programmable Gate Arrays (FPGAs), such as the Altera Arria 10, and represent a few of the many

  11. Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Chieh; Huang, Li; Nogan, John; Chen, Hou-Tong

    2018-05-01

    We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importance for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.

  12. Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun-Chieh; Huang, Li; Nogan, John

    We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importancemore » for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.« less

  13. Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures

    DOE PAGES

    Chang, Chun-Chieh; Huang, Li; Nogan, John; ...

    2018-02-01

    We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importancemore » for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.« less

  14. Computational Design of Tunable UV-Vis-IR Filters Based on Silver Nanoparticle Arrays

    NASA Astrophysics Data System (ADS)

    Waters, Michael; Shi, Guangsha; Kioupakis, Emmanouil

    We propose design strategies to develop selective optical filters in the UV-Vis-IR spectrum using the surface plasmon response of silver nanoparticle arrays. Our finite-difference time-domain simulations allow us to rapidly evaluate many nanostructures comprising simple geometries while varying their shape, height, width, and spacing. Our results allow us to identify trends in the filtering spectra as well as the relative amount of absorption and reflection. Optical filtering with nanoparticles is applicable to any transparent substrate and can be easily adapted to existing manufacturing processes while keeping the total cost of materials low. This work was supported by Guardian Industries Corp.

  15. Planar waveguide integrated spatial filter array

    NASA Astrophysics Data System (ADS)

    Ai, Jun; Dimov, Fedor; Lyon, Richard; Rakuljic, Neven; Griffo, Chris; Xia, Xiaowei; Arik, Engin

    2013-09-01

    An innovative integrated spatial filter array (iSFA) was developed for the nulling interferometer for the detection of earth-like planets and life beyond our solar system. The coherent iSFA comprised a 2D planar lightwave circuit (PLC) array coupled with a pair of 2D lenslet arrays in a hexagonal grid to achieve the optimum fill factor and throughput. The silica-on-silicon waveguide mode field diameter and numerical aperture (NA) were designed to match with the Airy disc and NA of the microlens for optimum coupling. The lenslet array was coated with a chromium pinhole array at the focal plane to pass the single-mode waveguide but attenuate the higher modes. We assembled a 32 by 30 array by stacking 32 chips that were produced by photolithography from a 6-in. silicon wafer. Each chip has 30 planar waveguides. The PLC array is inherently polarization-maintaining (PM) and requires much less alignment in contrast to a fiber array, where each PM fiber must be placed individually and oriented correctly. The PLC array offers better scalability than the fiber bundle array for large arrays of over 1,000 waveguides.

  16. Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array

    NASA Technical Reports Server (NTRS)

    Mukai, Ryan; Lee, Dennis; Vilnrotter, Victor

    2010-01-01

    A spatio-temporal equalizer has been conceived as an improved means of suppressing multipath effects in the reception of aeronautical telemetry signals, and may be adaptable to radar and aeronautical communication applications as well. This equalizer would be an integral part of a system that would also include a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal antenna that would be nominally aimed at or near the aircraft that would be the source of the signal that one seeks to receive (see Figure 1). This spatio-temporal equalizer would consist mostly of a bank of seven adaptive finite-impulse-response (FIR) filters one for each element in the array - and the outputs of the filters would be summed (see Figure 2). The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank would afford better multipath-suppression performance than is achievable by means of temporal equalization alone. The seven-element feed array would supplant the single feed horn used in a conventional paraboloidal ground telemetry-receiving antenna. The radio-frequency telemetry signals re ceiv ed by the seven elements of the array would be digitized, converted to complex baseband form, and sent to the FIR filter bank, which would adapt itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of multipath of the type found at many flight test ranges.

  17. Stray light correction of array spectroradiometer measurement in ultraviolet

    NASA Astrophysics Data System (ADS)

    Wu, Zhifeng; Dai, Caihong; Wang, Yanfei; Li, Ling

    2018-02-01

    For most of the array spectroradiometer, stray light is significant in UV band. Stray light correction of a UV array spectroradiometer is investigated using optical filters. If a group of filters with continuous bandpass are chosen, stray light contribution due to all the bands can be obtained using a numerical algorithm. The array spectroradiometer with the stray light corrected is used to measure the spectral irradiance of several UV lamps. The measurement results are compared to a double monochromator spectroradiometer. When xenon lamp is the array spectroradiometer calibration lamp, after stray light correction, the difference can be improved from nearly 10% to 2.0% in UVC band. When tungsten lamp is the calibration lamp, the difference can be improved from around 90% to less than 20%.

  18. Integrated focal plane arrays for millimeter-wave astronomy

    NASA Astrophysics Data System (ADS)

    Bock, James J.; Goldin, Alexey; Hunt, Cynthia; Lange, Andrew E.; Leduc, Henry G.; Day, Peter K.; Vayonakis, Anastasios; Zmuidzinas, Jonas

    2002-02-01

    We are developing focal plane arrays of bolometric detectors for sub-millimeter and millimeter-wave astrophysics. We propose a flexible array architecture using arrays of slot antennae coupled via low-loss superconducting Nb transmission line to microstrip filters and antenna-coupled bolometers. By combining imaging and filtering functions with transmission line, we are able to realize unique structures such as a multi-band polarimeter and a planar, dispersive spectrometer. Micro-strip bolometers have significantly smaller active volume than standard detectors with extended absorbers, and can realize higher sensitivity and speed of response. The integrated array has natural immunity to stray radiation or spectral leaks, and minimizes the suspended mass operating at 0.1-0.3 K. We also discuss future space-borne spectroscopy and polarimetry applications. .

  19. Characterization of transformation related genes in oral cancer cells.

    PubMed

    Chang, D D; Park, N H; Denny, C T; Nelson, S F; Pe, M

    1998-04-16

    A cDNA representational difference analysis (cDNA-RDA) and an arrayed filter technique were used to characterize transformation-related genes in oral cancer. From an initial comparison of normal oral epithelial cells and a human papilloma virus (HPV)-immortalized oral epithelial cell line, we obtained 384 differentially expressed gene fragments and arrayed them on a filter. Two hundred and twelve redundant clones were identified by three rounds of back hybridization. Sequence analysis of the remaining clones revealed 99 unique clones corresponding to 69 genes. The expression of these transformation related gene fragments in three nontumorigenic HPV-immortalized oral epithelial cell lines and three oral cancer cell lines were simultaneously monitored using a cDNA array hybridization. Although there was a considerable cell line-to-cell line variability in the expression of these clones, a reliable prediction of their expression could be made from the cDNA array hybridization. Our study demonstrates the utility of combining cDNA-RDA and arrayed filters in high-throughput gene expression difference analysis. The differentially expressed genes identified in this study should be informative in studying oral epithelial cell carcinogenesis.

  20. InP-based compact transversal filter for monolithically integrated light source array.

    PubMed

    Ueda, Yuta; Fujisawa, Takeshi; Takahata, Kiyoto; Kohtoku, Masaki; Ishii, Hiroyuki

    2014-04-07

    We developed an InP-based 4x1 transversal filter (TF) with multi-mode interference couplers (MMIs) as a compact wavelength multiplexer (MUX) 1700 μm x 400 μm in size. Furthermore, we converted the MMI-based TF to a reflection type to obtain an ultra-compact MUX of only 900 μm x 50 μm. These MUXs are made with a simple fabrication process and show a satisfactory wavelength filtering operation as MUXs of monolithically integrated light source arrays, for example, for 100G bit Ethernet.

  1. Radiated emissions comparison of seven-stage modal filter constructions for Ethernet 100Base-T network protection

    NASA Astrophysics Data System (ADS)

    Khazhibekov, R. R.; Zabolotsky, A. M.

    2018-05-01

    The authors consider Ethernet protection devices based on modal filtering. Radiated emission measurement results for three modal filter constructions are presented. It is shown that the improved construction of a non-resistive filter has lower emission levels than the original one.

  2. Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays

    DOE PAGES

    Marrs, R. E.; Widmann, K.; Brown, G. V.; ...

    2015-10-29

    Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums.more » If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Here, examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.« less

  3. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Brennen, Reid A. (Inventor); Hecht, Michael (Inventor); Wiberg, Dean (Inventor); Orient, Otto (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  4. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Hecht, Michael (Inventor); Wiberg, Dean (Inventor); Orient, Otto (Inventor); Brennen, Reid A. (Inventor); Chutjian, Ara (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and aligrnent for use in a final quadrupole mass spectrometer device.

  5. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor); Hecht, Michael (Inventor); Chutjian, Ara (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  6. Low SWaP multispectral sensors using dichroic filter arrays

    NASA Astrophysics Data System (ADS)

    Dougherty, John; Varghese, Ron

    2015-06-01

    The benefits of multispectral imaging are well established in a variety of applications including remote sensing, authentication, satellite and aerial surveillance, machine vision, biomedical, and other scientific and industrial uses. However, many of the potential solutions require more compact, robust, and cost-effective cameras to realize these benefits. The next generation of multispectral sensors and cameras needs to deliver improvements in size, weight, power, portability, and spectral band customization to support widespread deployment for a variety of purpose-built aerial, unmanned, and scientific applications. A novel implementation uses micro-patterning of dichroic filters1 into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. This approach can be implemented across a variety of wavelength ranges and on a variety of detector types including linear, area, silicon, and InGaAs. This dichroic filter array approach can also reduce payloads and increase range for unmanned systems, with the capability to support both handheld and autonomous systems. Recent examples and results of 4 band RGB + NIR dichroic filter arrays in multispectral cameras are discussed. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and scalable production.

  7. Active pixel sensors with substantially planarized color filtering elements

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor)

    1999-01-01

    A semiconductor imaging system preferably having an active pixel sensor array compatible with a CMOS fabrication process. Color-filtering elements such as polymer filters and wavelength-converting phosphors can be integrated with the image sensor.

  8. Volterra model of the parametric array loudspeaker operating at ultrasonic frequencies.

    PubMed

    Shi, Chuang; Kajikawa, Yoshinobu

    2016-11-01

    The parametric array loudspeaker (PAL) is an application of the parametric acoustic array in air, which can be applied to transmit a narrow audio beam from an ultrasonic emitter. However, nonlinear distortion is very perceptible in the audio beam. Modulation methods to reduce the nonlinear distortion are available for on-axis far-field applications. For other applications, preprocessing techniques are wanting. In order to develop a preprocessing technique with general applicability to a wide range of operating conditions, the Volterra filter is investigated as a nonlinear model of the PAL in this paper. Limitations of the standard audio-to-audio Volterra filter are elaborated. An improved ultrasound-to-ultrasound Volterra filter is proposed and empirically demonstrated to be a more generic Volterra model of the PAL.

  9. The Detection of Radiated Modes from Ducted Fan Engines

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Nark, Douglas M.; Thomas, Russell H.

    2001-01-01

    The bypass duct of an aircraft engine is a low-pass filter allowing some spinning modes to radiate outside the duct. The knowledge of the radiated modes can help in noise reduction, as well as the diagnosis of noise generation mechanisms inside the duct. We propose a nonintrusive technique using a circular microphone array outside the engine measuring the complex noise spectrum on an arc of a circle. The array is placed at various axial distances from the inlet or the exhaust of the engine. Using a model of noise radiation from the duct, an overdetermined system of linear equations is constructed for the complex amplitudes of the radial modes for a fixed circumferential mode. This system of linear equations is generally singular, indicating that the problem is illposed. Tikhonov regularization is employed to solve this system of equations for the unknown amplitudes of the radiated modes. An application of our mode detection technique using measured acoustic data from a circular microphone array is presented. We show that this technique can reliably detect radiated modes with the possible exception of modes very close to cut-off.

  10. Adaptive Wiener filter super-resolution of color filter array images.

    PubMed

    Karch, Barry K; Hardie, Russell C

    2013-08-12

    Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.

  11. Synergistic enhancement of cellulase pairs linked by consensus ankyrin repeats: Determination of the roles of spacing, orientation, and enzyme identity.

    PubMed

    Cunha, Eva S; Hatem, Christine L; Barrick, Doug

    2016-08-01

    Biomass deconstruction to small simple sugars is a potential approach to biofuels production; however, the highly recalcitrant nature of biomass limits the economic viability of this approach. Thus, research on efficient biomass degradation is necessary to achieve large-scale production of biofuels. Enhancement of cellulolytic activity by increasing synergism between cellulase enzymes holds promise in achieving high-yield biofuels production. Here we have inserted cellulase pairs from extremophiles into hyperstable α-helical consensus ankyrin repeat domain scaffolds. Such chimeric constructs allowed us to optimize arrays of enzyme pairs against a variety of cellulolytic substrates. We found that endocellulolytic domains CelA (CA) and Cel12A (C12A) act synergistically in the context of ankyrin repeats, with both three and four repeat spacing. The extent of synergy differs for different substrates. Also, having C12A N-terminal to CA provides greater synergy than the reverse construct, especially against filter paper. In contrast, we do not see synergy for these enzymes in tandem with CelK (CK) catalytic domain, a larger exocellulase, demonstrating the importance of enzyme identity in synergistic enhancement. Furthermore, we found endocellulases CelD and CA with three repeat spacing to act synergistically against filter paper. Importantly, connecting CA and C12A with a disordered linker of similar contour length shows no synergistic enhancement, indicating that synergism results from connecting these domains with folded ankyrin repeats. These results show that ankyrin arrays can be used to vary spacing and orientation between enzymes, helping to design and optimize artificial cellulosomes, providing a novel architecture for synergistic enhancement of enzymatic cellulose degradation. Proteins 2016; 84:1043-1054. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Synergistic enhancement of cellulase pairs linked by consensus ankyrin repeats: determination of the roles of spacing, orientation and enzyme identity

    PubMed Central

    Cunha, Eva S.; Hatem, Christine L.; Barrick, Doug

    2017-01-01

    Biomass deconstruction to small simple sugars is a potential approach to biofuels production, however the highly recalcitrant nature of biomass limits the economic viability of this approach. Thus, research on efficient biomass degradation is necessary to achieve large-scale production of biofuels. Enhancement of cellulolytic activity by increasing synergism between cellulase enzymes holds promise in achieving high-yield biofuels production. Here we have inserted cellulase pairs from extremophiles into hyper-stable α-helical consensus ankyrin repeat domain scaffolds. Such chimeric constructs allowed us to optimize arrays of enzyme pairs against a variety of cellulolytic substrates. We found that endocellulolytic domains CelA (CA) and Cel12A (C12A) act synergistically in the context of ankyrin repeats, with both three and four repeat spacing. The extent of synergy differs for different substrates. Also, having C12A N-terminal to CA provides greater synergy than the reverse construct, especially against filter paper. In contrast, we do not see synergy for these enzymes in tandem with CelK (CK) catalytic domain, a larger exocellulase, demonstrating the importance of enzyme identity in synergistic enhancement. Furthermore, we found endocellulases CelD and CA with three repeat spacing to act synergistically against filter paper. Importantly, connecting CA and C12A with a disordered linker of similar contour length, shows no synergistic enhancement, indicating that synergism results from connecting these domains with folded ankyrin repeats. These results show that ankyrin arrays can be used to vary spacing and orientation between enzymes, helping to design and optimize artificial cellulosomes, providing a novel architecture for synergistic enhancement of enzymatic cellulose degradation. PMID:27071357

  13. Digital processing of radiographic images

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  14. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters.

    PubMed

    Yu, Yan; Chen, Qin; Wen, Long; Hu, Xin; Zhang, Hui-Fang

    2015-08-24

    Imaging resolution of complementary metal oxide semiconductor (CMOS) image sensor (CIS) keeps increasing to approximately 7k × 4k. As a result, the pixel size shrinks down to sub-2μm, which greatly increases the spatial optical crosstalk. Recently, plasmonic color filter was proposed as an alternative to conventional colorant pigmented ones. However, there is little work on its size effect and the spatial optical crosstalk in a model of CIS. By numerical simulation, we investigate the size effect of nanocross array plasmonic color filters and analyze the spatial optical crosstalk of each pixel in a Bayer array of a CIS with a pixel size of 1μm. It is found that the small pixel size deteriorates the filtering performance of nanocross color filters and induces substantial spatial color crosstalk. By integrating the plasmonic filters in the low Metal layer in standard CMOS process, the crosstalk reduces significantly, which is compatible to pigmented filters in a state-of-the-art backside illumination CIS.

  15. Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings.

    PubMed

    Pastor, Daniel; Ortega, Beatriz; Capmany, José; Sales, Salvador; Martinez, Alfonso; Muñoz, Pascual

    2003-10-01

    We have experimentally demonstrated a new optical signal processor based on the use of arrayed waveguide gratings. The structure exploits the concept of spectral slicing combined with the use of an optical dispersive medium. The approach presents increased flexibility from previous slicing-based structures in terms of tunability, reconfiguration, and apodization of the samples or coefficients of the transversal optical filter.

  16. Highly uniform residual layers for arrays of 3D nanoimprinted cavities in Fabry-Pérot-filter-array-based nanospectrometers

    NASA Astrophysics Data System (ADS)

    Memon, Imran; Shen, Yannan; Khan, Abdullah; Woidt, Carsten; Hillmer, Hartmut

    2016-04-01

    Miniaturized optical spectrometers can be implemented by an array of Fabry-Pérot (FP) filters. FP filters are composed of two highly reflecting parallel mirrors and a resonance cavity. Each filter transmits a small spectral band (filter line) depending on its individual cavity height. The optical nanospectrometer, a miniaturized FP-based spectrometer, implements 3D NanoImprint technology for the fabrication of multiple FP filter cavities in a single process step. However, it is challenging to avoid the dependency of residual layer (RL) thickness on the shape of the printed patterns in NanoImprint. Since in a nanospectrometer the filter cavities vary in height between neighboring FP filters and, thus, the volume of each cavity varies causing that the RL varies slightly or noticeably between different filters. This is one of the few disadvantages of NanoImprint using soft templates such as substrate conformal imprint lithography which is used in this paper. The advantages of large area soft templates can be revealed substantially if the problem of laterally inhomogeneous RLs can be avoided or reduced considerably. In the case of the nanospectrometer, non-uniform RLs lead to random variations in the designed cavity heights resulting in the shift of desired filter lines. To achieve highly uniform RLs, we report a volume-equalized template design with the lateral distribution of 64 different cavity heights into several units with each unit comprising four cavity heights. The average volume of each unit is kept constant to obtain uniform filling of imprint material per unit area. The imprint results, based on the volume-equalized template, demonstrate highly uniform RLs of 110 nm thickness.

  17. PLZT Electrooptic Ceramic Photonic Devices for Surface-Normal Operation in Trenches Cut Across Arrays of Optical Fiber

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Katsuhiko

    2005-03-01

    Simple Pb_1-x La_x(Zr_y Ti_z)_1-x/4 O3 (PLZT) electrooptic ceramic photonic device arrays for surface-normal operation have been developed for application to polarization-controller arrays and Fabry-Pérot tunable filter arrays. These arrays are inserted in trenches cut across fiber arrays. Each element of the arrayed structure corresponds to one optical beam and takes the form of a cell. Each sidewall of the cell (width: 50-80 μm) is coated to form an electrode. The arrays have 16 elements at a pitch of 250 μm. The phase modulator has about 1 dB of loss and a half-wavelength voltage of 120 V. A cascade of two PLZT phase modulators (thickness: 300 μm), with each attached to a polyimide lambda/2 plate (thickness:15 μm), is capable of converting an arbitrary polarization to the transverse-electric (TE) or transverse-magnetic (TM) polarization. The response time is 1 μs. The Fabry-Pérot tunable filters have a thickness of 50 μm . The front and back surfaces of each cell are coated by 99%-reflective mirror. The free spectral range (FSR) of the filters is about 10 nm, tunable range is about 10 nm, loss is 2.2 dB, and finesse is 150. The tuning speed of these devices is high, taking only 1 μs.

  18. Geometrically tunable Fabry-Perot filters based on reflection phase shift of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Shi, Zhendong; Cheng, Xin; Peng, Xiang; Zhang, Hui

    2016-03-01

    We propose tunable Fabry-Perot filters constituted by double high contrast gratings (HCGs) arrays with different periods acting as reflectors separated by a fixed short cavity, based on high reflectivity and the variety reflection phase shift of HCG array which realize dynamic regulation of the filtering condition. Single optimized HCG obtains the reflectivity of higher than 99% in a grating period ranging from 0.68μm to 0.8μm across a bandwidth of 30nm near the 1.55μm wavelength. The filters can achieve the full width at half maximum (FWHM) of spectral line of less than 0.15nm, and the linear relationship of peak wavelengths and grating periods is established. The simulation results indicate a potential new approach to design a tunable narrowband transmission filter.

  19. Multispectral Filter Arrays: Recent Advances and Practical Implementation

    PubMed Central

    Lapray, Pierre-Jean; Wang, Xingbo; Thomas, Jean-Baptiste; Gouton, Pierre

    2014-01-01

    Thanks to some technical progress in interferencefilter design based on different technologies, we can finally successfully implement the concept of multispectral filter array-based sensors. This article provides the relevant state-of-the-art for multispectral imaging systems and presents the characteristics of the elements of our multispectral sensor as a case study. The spectral characteristics are based on two different spatial arrangements that distribute eight different bandpass filters in the visible and near-infrared area of the spectrum. We demonstrate that the system is viable and evaluate its performance through sensor spectral simulation. PMID:25407904

  20. Calibration of the Multi-Spectral Solar Telescope Array multilayer mirrors and XUV filters

    NASA Technical Reports Server (NTRS)

    Allen, Maxwell J.; Willis, Thomas D.; Kankelborg, Charles C.; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; Deforest, Craig E.; Jackson, Lisa; Lindblom, Joakim; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.

    1993-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. Extensive measurements have recently been carried out on the multilayer telescopes and thin film filters at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of the MSSTA instruments. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpass changes with time and experimental potassium bromide and tellurium filters.

  1. Fourier Spectral Filter Array for Optimal Multispectral Imaging.

    PubMed

    Jia, Jie; Barnard, Kenneth J; Hirakawa, Keigo

    2016-04-01

    Limitations to existing multispectral imaging modalities include speed, cost, range, spatial resolution, and application-specific system designs that lack versatility of the hyperspectral imaging modalities. In this paper, we propose a novel general-purpose single-shot passive multispectral imaging modality. Central to this design is a new type of spectral filter array (SFA) based not on the notion of spatially multiplexing narrowband filters, but instead aimed at enabling single-shot Fourier transform spectroscopy. We refer to this new SFA pattern as Fourier SFA, and we prove that this design solves the problem of optimally sampling the hyperspectral image data.

  2. Chromatic Modulator for High Resolution CCD or APS Devices

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor); Hull, Anthony B. (Inventor)

    2003-01-01

    A system for providing high-resolution color separation in electronic imaging. Comb drives controllably oscillate a red-green-blue (RGB) color strip filter system (or otherwise) over an electronic imaging system such as a charge-coupled device (CCD) or active pixel sensor (APS). The color filter is modulated over the imaging array at a rate three or more times the frame rate of the imaging array. In so doing, the underlying active imaging elements are then able to detect separate color-separated images, which are then combined to provide a color-accurate frame which is then recorded as the representation of the recorded image. High pixel resolution is maintained. Registration is obtained between the color strip filter and the underlying imaging array through the use of electrostatic comb drives in conjunction with a spring suspension system.

  3. On-chip broadband spectral filtering using planar double high-contrast grating reflectors

    NASA Astrophysics Data System (ADS)

    Horie, Yu; Arbabi, Amir; Faraon, Andrei

    2015-02-01

    We propose a broadband free-space on-chip spectrometer based on an array of integrated narrowband filters consisting of Fabry-Perot resonators formed by two high-contrast grating (HCG) based reflectors separated by a low-index thin layer with a fixed cavity thickness. Using numerical simulations, broadband tunability of resonance wavelengths was achieved only by changing the in-plane grating parameters such as period or duty cycle of HCGs while the substrate geometry was kept fixed. Experimentally, the HCG reflectors were fabricated on silicon on insulator (SOI) substrates and high reflectivity was measured, fabrication process for the proposed double HCG-based narrowband filter array was developed. The filtering function that can be spanned over a wide range of wavelengths was measured.

  4. Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles

    NASA Astrophysics Data System (ADS)

    Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang

    2018-01-01

    Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.

  5. Next generation miniature simultaneous multi-hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Gupta, Neelam

    2014-03-01

    The concept for a hyperspectral imaging system using a Fabry-Perot tunable filter (FPTF) array that is fabricated using "miniature optical electrical mechanical system" (MOEMS) technology. [1] Using an array of FPTF as an approach to hyperspectral imaging relaxes wavelength tuning requirements considerably because of the reduced portion of the spectrum that is covered by each element in the array. In this paper, Pacific Advanced Technology and ARL present the results of a concept design and performed analysis of a MOEMS based tunable Fabry-Perot array (FPTF) to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. The concept design was developed with support of an Army SBIR Phase I program The Fabry-Perot tunable MOEMS filter array was combined with a miniature optics array and a focal plane array of 1024 x 1024 pixels to produce 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information in each frame of the camera, thus enabling the implementation of spectral-temporal-spatial algorithms in real-time to provide high sensitivity for the detection of weak signals in a high clutter background environment with low sensitivity to camera motion. The challenge in the design was the independent actuation of each Fabry Perot element in the array allowing for individual tuning. An additional challenge was the need to maximize the fill factor to improve the spatial coverage with minimal dead space. This paper will only address the concept design and analysis of the Fabry-Perot tunable filter array. A previous paper presented at SPIE DSS in 2012 explained the design of the optical array.

  6. Roll Angle Estimation Using Thermopiles for a Flight Controlled Mortar

    DTIC Science & Technology

    2012-06-01

    Using Xilinx’s System generator, the entire design was implemented at a relatively high level within Malab’s Simulink. This allowed VHDL code to...thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA). These results demonstrate the...accurately estimated by processing the thermopile data with a Recursive Least Squares (RLS) filter implemented on a field programmable gate array (FPGA

  7. Depth estimation using a lightfield camera

    NASA Astrophysics Data System (ADS)

    Roper, Carissa

    The latest innovation to camera design has come in the form of the lightfield, or plenoptic, camera that captures 4-D radiance data rather than just the 2-D scene image via microlens arrays. With the spatial and angular light ray data now recorded on the camera sensor, it is feasible to construct algorithms that can estimate depth of field in different portions of a given scene. There are limitations to the precision due to hardware structure and the sheer number of scene variations that can occur. In this thesis, the potential of digital image analysis and spatial filtering to extract depth information is tested on the commercially available plenoptic camera.

  8. Arrays of Carbon Nanotubes as RF Filters in Waveguides

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel; Hunt, Brian; Hoenk, Michael; Noca, Flavio; Xu, Jimmy

    2003-01-01

    Brushlike arrays of carbon nanotubes embedded in microstrip waveguides provide highly efficient (high-Q) mechanical resonators that will enable ultraminiature radio-frequency (RF) integrated circuits. In its basic form, this invention is an RF filter based on a carbon nanotube array embedded in a microstrip (or coplanar) waveguide, as shown in Figure 1. In addition, arrays of these nanotube-based RF filters can be used as an RF filter bank. Applications of this new nanotube array device include a variety of communications and signal-processing technologies. High-Q resonators are essential for stable, low-noise communications, and radar applications. Mechanical oscillators can exhibit orders of magnitude higher Qs than electronic resonant circuits, which are limited by resistive losses. This has motivated the development of a variety of mechanical resonators, including bulk acoustic wave (BAW) resonators, surface acoustic wave (SAW) resonators, and Si and SiC micromachined resonators (known as microelectromechanical systems or MEMS). There is also a strong push to extend the resonant frequencies of these oscillators into the GHz regime of state-of-the-art electronics. Unfortunately, the BAW and SAW devices tend to be large and are not easily integrated into electronic circuits. MEMS structures have been integrated into circuits, but efforts to extend MEMS resonant frequencies into the GHz regime have been difficult because of scaling problems with the capacitively-coupled drive and readout. In contrast, the proposed devices would be much smaller and hence could be more readily incorporated into advanced RF (more specifically, microwave) integrated circuits.

  9. Filters for Submillimeter Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1986-01-01

    New manufacturing process produces filters strong, yet have small, precise dimensions and smooth surface finish essential for dichroic filtering at submillimeter wavelengths. Many filters, each one essentially wafer containing fine metal grid made at same time. Stacked square wires plated, fused, and etched to form arrays of holes. Grid of nickel and tin held in brass ring. Wall thickness, thickness of filter (hole depth) and lateral hole dimensions all depend upon operating frequency and filter characteristics.

  10. Implementation of the Phase Difference Trace Function for a Circular Array.

    DTIC Science & Technology

    1980-06-01

    15 B. HICROPHONES............... ... .. ..... ....... 16 C. PREAMPLIFIER /FILTER ................. o....... 16 D. PHASE SHIFrER...Photgraphs ......................... 31 5. Microphone Specifications ........................... 32 6. Preamplifier /Filter Schematic...33 7. Preamplifier /Filter Printel Cir-cait Board ........... 34 8. Phase Shifter Schemitic ............................. 35 9. Phase Shifter Print.l

  11. Polarization-tuned Dynamic Color Filters Incorporating a Dielectric-loaded Aluminum Nanowire Array

    PubMed Central

    Raj Shrestha, Vivek; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2015-01-01

    Nanostructured spectral filters enabling dynamic color-tuning are saliently attractive for implementing ultra-compact color displays and imaging devices. Realization of polarization-induced dynamic color-tuning via one-dimensional periodic nanostructures is highly challenging due to the absence of plasmonic resonances for transverse-electric polarization. Here we demonstrate highly efficient dynamic subtractive color filters incorporating a dielectric-loaded aluminum nanowire array, providing a continuum of customized color according to the incident polarization. Dynamic color filtering was realized relying on selective suppression in transmission spectra via plasmonic resonance at a metal-dielectric interface and guided-mode resonance for a metal-clad dielectric waveguide, each occurring at their characteristic wavelengths for transverse-magnetic and electric polarizations, respectively. A broad palette of colors, including cyan, magenta, and yellow, has been attained with high transmission beyond 80%, by tailoring the period of the nanowire array and the incident polarization. Thanks to low cost, high durability, and mass producibility of the aluminum adopted for the proposed devices, they are anticipated to be diversely applied to color displays, holographic imaging, information encoding, and anti-counterfeiting. PMID:26211625

  12. Multi-Spectral Solar Telescope Array. IV - The soft X-ray and extreme ultraviolet filters

    NASA Technical Reports Server (NTRS)

    Lindblom, Joakim F.; O'Neal, Ray H.; Walker, Arthur B. C., Jr.; Powell, Forbes R.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1991-01-01

    NASA's Multi-Spectral Solar Telescope Array uses various combinations of thin foil filters composed of Al, C, Te, Be, Mo, Rh, and phthalocyanine to achieve the requisite radiation-rejection characteristics. Such rejection is demanded by the presence of strong EUV radiation at longer wavelengths where the specular reflectivity of multilayer mirrors can cause 'contamination' of the image in the narrow band defined by the Bragg condition.

  13. Polarized fluorescence for skin cancer diagnostic with a multi-aperture camera

    NASA Astrophysics Data System (ADS)

    Kandimalla, Haripriya; Ramella-Roman, Jessica C.

    2008-02-01

    Polarized fluorescence has shown some promising results in assessment of skin cancer margins. Researchers have used tetracycline and cross polarization imaging for nonmelanoma skin cancer demarcation as well as investigating endogenous skin polarized fluorescence. In this paper we present a new instrument for polarized fluorescence imaging, able to calculate the full fluorescence Stokes vector in one snapshot. The core of our system is a multi-aperture camera constructed with a two by two lenslet array. Three of the lenses have polarizing elements in front of them, oriented at 0°, + 45°and 90° with respect to light source polarization. A flash lamp combined with a polarizer parallel to the source-camera-sample plane and a UV filter is used as an excitation source. A blue filter in front of the camera system is used to collect only the fluorescent emission of interest and filter out the incident light. In-vitro tests of endogenous and exogenous polarized fluorescence on collagen rich material like bovine tendon were performed and Stokes vector of polarized fluorescence calculated. The system has the advantage of eliminating moving artifacts with the collection of different polarization states and stoke vector in a single snap shot.

  14. Compact optical filter for dual-wavelength fluorescence-spectrometry based on enhanced transmission through metallic nano-slit array

    NASA Astrophysics Data System (ADS)

    Hu, X.; Zhan, L.; Xia, Y.

    2009-03-01

    A novel optical filter based on enhanced transmission through metallic nano-slit is proposed for dual-wavelength fluorescence-spectrometry. A special structure, sampled-period slit array, is utilized to meet the requirement of dual-wavelength transmission in this system. Structure parameters on the transmission property are analyzed by means of Fourier transformation. With the features both to enhance the fluorescence generation and to enhance light transmission, in addition with the feasibility for miniaturization, integration on one chip, and mass production, the proposed filters are promising for the realization of dual-wavelength fluorescence-spectrometry in micro-total-analysis-system.

  15. Axion searches with microwave filters: the RADES project

    NASA Astrophysics Data System (ADS)

    Álvarez Melcón, Alejandro; Arguedas Cuendis, Sergio; Cogollos, Cristian; Díaz-Morcillo, Alejandro; Döbrich, Babette; Gallego, Juan Daniel; Gimeno, Benito; Irastorza, Igor G.; José Lozano-Guerrero, Antonio; Malbrunot, Chloé; Navarro, Pablo; Peña Garay, Carlos; Redondo, Javier; Vafeiadis, Theodoros; Wuensch, Walter

    2018-05-01

    We propose, design and construct a variant of the conventional axion haloscope concept that could be competitive in the search for dark matter axions of masses in the decade 10–100 μeV. Theses masses are located somewhat above the mass range in which existing experiments have reached sensitivity to benchmark QCD axion models. Our haloscope consists of an array of small microwave cavities connected by rectangular irises, in an arrangement commonly used in radio-frequency filters. The size of the unit cavity determines the main resonant frequency, while the possibility to connect a large number of cavities allows to reach large detection volumes. We develop the theoretical framework of the detection concept, and present design prescriptions to optimize detection capabilities. We describe the design and realization of a first small-scale prototype of this concept, called Relic Axion Detector Exploratory Setup (RADES). It consists of a copper-coated stainless steel five-cavities microwave filter with the detecting mode operating at around 8.4 GHz. This structure has been electromagnetically characterized at 2 K and 298 K, and it is now placed in ultra-high vacuum in one of the twin-bores of the 9 T CAST dipole magnet at CERN. We describe the data acquisition system developed for relic axion detection, and present preliminary results of the electromagnetic properties of the microwave filter, which show the potential of filters to reach QCD axion window sensitivity at X-band frequencies.

  16. Single laser beam of spatial coherence from an array of GaAs lasers - Free-running mode

    NASA Technical Reports Server (NTRS)

    Philipp-Rutz, E. M.

    1975-01-01

    Spatially coherent radiation from a monolithic array of three GaAs lasers in a free-running mode is reported. The lasers, with their mirror faces antireflection coated, are operated in an external optical cavity built of spherical lenses and plane mirrors. The spatially coherent-beam formation makes use of the Fourier-transformation property of the internal lenses. Transverse mode control is accomplished by a spatial filter. The optical cavity is similar to that used for the phase-controlled mode of spatially coherent-beam formation; only the spatial filters are different. In the far field (when restored by an external lens), the intensities of the lasers in the array are concentrated in a single laser beam of spatial coherence, without any grating lobes. The far-field distribution of the laser array in the free-running mode differs significantly from the interference pattern of the phase-controlled mode. The modulation characteristics of the optical waveforms of the two modes are also quite different because modulation is related to the interaction of the spatial filter with the longitudinal modes of the laser array within the optical cavity. The modulation of the optical waveform of the free-running mode is nonperiodic, confirming that the fluctuations of the optical fields of the lasers are random.

  17. Design of thin-film filters for resolution improvements in filter-array based spectrometers using DSP

    NASA Astrophysics Data System (ADS)

    Lee, Woong-Bi; Kim, Cheolsun; Ju, Gun Wu; Lee, Yong Tak; Lee, Heung-No

    2016-05-01

    Miniature spectrometers have been widely developed in various academic and industrial applications such as bio-medical, chemical and environmental engineering. As a family of spectrometers, optical filter-array based spectrometers fabricated using CMOS or Nano technology provide miniaturization, superior portability and cost effectiveness. In filterarray based spectrometers, the resolution which represents the ability how closely resolve two neighboring spectra, depends on the number of filters and the characteristics of the transmission functions (TFs) of the filters. In practice, due to the small-size and low-cost fabrication, the number of filters is limited and the shape of the TF of each filter is nonideal. As a development of modern digital signal processing (DSP), the spectrometers are equipped with DSP algorithms not only to alleviate distortions due to unexpected noise or interferences among filters but also reconstruct the original signal spectrum. For a high-resolution spectrum reconstruction by the DSP, the TFs of the filters need to be sufficiently uncorrelated with each other. In this paper, we present a design of optical thin-film filters which have the uncorrelated TFs. Each filter consists of multiple layers of high- and low-refractive index materials deposited on a substrate. The proposed design helps the DSP algorithm to improve resolution with a small number of filters. We demonstrate that a resolution of 5 nm within a range from 500 nm to 1100 nm can be achieved with only 64 filters.

  18. Structural Color Filters Enabled by a Dielectric Metasurface Incorporating Hydrogenated Amorphous Silicon Nanodisks.

    PubMed

    Park, Chul-Soon; Shrestha, Vivek Raj; Yue, Wenjing; Gao, Song; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2017-05-31

    It is advantageous to construct a dielectric metasurface in silicon due to its compatibility with cost-effective, mature processes for complementary metal-oxide-semiconductor devices. However, high-quality crystalline-silicon films are difficult to grow on foreign substrates. In this work, we propose and realize highly efficient structural color filters based on a dielectric metasurface exploiting hydrogenated amorphous silicon (a-Si:H), known to be lossy in the visible regime. The metasurface is comprised of an array of a-Si:H nanodisks embedded in a polymer, providing a homogeneously planarized surface that is crucial for practical applications. The a-Si:H nanodisk element is deemed to individually support an electric dipole (ED) and magnetic dipole (MD) resonance via Mie scattering, thereby leading to wavelength-dependent filtering characteristics. The ED and MD can be precisely identified by observing the resonant field profiles with the assistance of finite-difference time-domain simulations. The completed color filters provide a high transmission of around 90% in the off-resonance band longer than their resonant wavelengths, exhibiting vivid subtractive colors. A wide range of colors can be facilitated by tuning the resonance by adjusting the structural parameters like the period and diameter of the a-Si:H nanodisk. The proposed devices will be actively utilized to implement color displays, imaging devices, and photorealistic color printing.

  19. Computer-aided design of nano-filter construction using DNA self-assembly

    NASA Astrophysics Data System (ADS)

    Mohammadzadegan, Reza; Mohabatkar, Hassan

    2007-01-01

    Computer-aided design plays a fundamental role in both top-down and bottom-up nano-system fabrication. This paper presents a bottom-up nano-filter patterning process based on DNA self-assembly. In this study we designed a new method to construct fully designed nano-filters with the pores between 5 nm and 9 nm in diameter. Our calculations illustrated that by constructing such a nano-filter we would be able to separate many molecules.

  20. Recent progress in InP/polymer-based devices for telecom and data center applications

    NASA Astrophysics Data System (ADS)

    Kleinert, Moritz; Zhang, Ziyang; de Felipe, David; Zawadzki, Crispin; Maese Novo, Alejandro; Brinker, Walter; Möhrle, Martin; Keil, Norbert

    2015-02-01

    Recent progress on polymer-based photonic devices and hybrid photonic integration technology using InP-based active components is presented. High performance thermo-optic components, including compact polymer variable optical attenuators and switches are powerful tools to regulate and control the light flow in the optical backbone. Polymer arrayed waveguide gratings integrated with InP laser and detector arrays function as low-cost optical line terminals (OLTs) in the WDM-PON network. External cavity tunable lasers combined with C/L band thinfilm filter, on-chip U-groove and 45° mirrors construct a compact, bi-directional and color-less optical network unit (ONU). A tunable laser integrated with VOAs, TFEs and two 90° hybrids builds the optical front-end of a colorless, dual-polarization coherent receiver. Multicore polymer waveguides and multi-step 45°mirrors are demonstrated as bridging devices between the spatialdivision- multiplexing transmission technology using multi-core fibers and the conventional PLCbased photonic platforms, appealing to the fast development of dense 3D photonic integration.

  1. A new multifunction acousto-optic signal processor

    NASA Technical Reports Server (NTRS)

    Berg, N. J.; Casseday, M. W.; Filipov, A. N.; Pellegrino, J. M.

    1984-01-01

    An acousto-optic architecture for simultaneously obtaining time integration correlation and high-speed power spectrum analysis was constructed using commercially available TeO2 modulators and photodiode detector-arrays. The correlator section of the processor uses coherent interferometry to attain maximum bandwidth and dynamic range while achieving a time-bandwidth product of 1 million. Two correllator outputs are achieved in this system configuration. One is optically filtered and magnified 2 : 1 to decrease the spatial frequency to a level where a 25-MHz bandwidth may be sampled by a 62-mm array with elements on 25-micro centers. The other output is magnified by a factor of 10 such that the center 4 microseconds of information is available for estimation of time-difference-of-arrival to within 10 ns. The Bragg cell spectrum-analyzer section, which also has two outputs, resolves a 25-MHz instantaneous bandwidth to 25 kHz and can determine discrete-frequency reception time to within 15 microseconds. A microprocessor combines spectrum analysis information with that obtained from the correlator.

  2. Modified linear predictive coding approach for moving target tracking by Doppler radar

    NASA Astrophysics Data System (ADS)

    Ding, Yipeng; Lin, Xiaoyi; Sun, Ke-Hui; Xu, Xue-Mei; Liu, Xi-Yao

    2016-07-01

    Doppler radar is a cost-effective tool for moving target tracking, which can support a large range of civilian and military applications. A modified linear predictive coding (LPC) approach is proposed to increase the target localization accuracy of the Doppler radar. Based on the time-frequency analysis of the received echo, the proposed approach first real-time estimates the noise statistical parameters and constructs an adaptive filter to intelligently suppress the noise interference. Then, a linear predictive model is applied to extend the available data, which can help improve the resolution of the target localization result. Compared with the traditional LPC method, which empirically decides the extension data length, the proposed approach develops an error array to evaluate the prediction accuracy and thus, adjust the optimum extension data length intelligently. Finally, the prediction error array is superimposed with the predictor output to correct the prediction error. A series of experiments are conducted to illustrate the validity and performance of the proposed techniques.

  3. Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator.

    PubMed

    Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J

    2005-01-01

    We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.

  4. Visible and shortwave infrared focal planes for remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.

    1984-01-01

    The development of solid-state sensor technology for multispectral linear array (MLA) instruments is described. A buttable four-spectral-band linear-format CCD and a buttable two-spectral band linear-format short-wave IR CCD have been designed, and first samples have been demonstrated. In addition, first-sample four-band interference filters have been fabricated, and hybrid packaging technology is being developed. Based on this development work, the design and construction of focal planes for a Shuttle sortie MLA instrument have begun. This work involves a visible and near-IR focal plane with 2048 pixels x 4 spectral bands and a short-wave IR focal plane with 1024 pixels x 2 spectral bands.

  5. Near-Field Noise Source Localization in the Presence of Interference

    NASA Astrophysics Data System (ADS)

    Liang, Guolong; Han, Bo

    In order to suppress the influence of interference sources on the noise source localization in the near field, the near-field broadband source localization in the presence of interference is studied. Oblique projection is constructed with the array measurements and the steering manifold of interference sources, which is used to filter the interference signals out. 2D-MUSIC algorithm is utilized to deal with the data in each frequency, and then the results of each frequency are averaged to achieve the positioning of the broadband noise sources. The simulations show that this method suppresses the interference sources effectively and is capable of locating the source which is in the same direction with the interference source.

  6. All-dielectric band stop filter at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Yin, Shan; Chen, Lin

    2018-01-01

    We design all-dielectric band stop filters with silicon subwavelength rod and block arrays at terahertz frequencies. Supporting magnetic dipole resonances originated from the Mia resonance, the all-dielectric filters can modulate the working band by simply varying the structural geometry, while eliminating the ohmic loss induced by the traditional metallic metamaterials and uninvolved with the complicated mechanism. The nature of the resonance in the silicon arrays is clarified, which is attributed to the destructive interference between the directly transmitted waves and the waves emitted from the magnetic dipole resonances, and the resonance frequency is determined by the dielectric structure. By particularly designing the geometrical parameters, the profile of the transmission spectrum can be tailored, and the step-like band edge can be obtained. The all-dielectric filters can realize 93% modulation of the transmission within 0.04 THz, and maintain the bandwidth of 0.05 THz. This work provides a method to develop THz functional devices, such as filters, switches and sensors.

  7. Reduced-Drift Virtual Gyro from an Array of Low-Cost Gyros.

    PubMed

    Vaccaro, Richard J; Zaki, Ahmed S

    2017-02-11

    A Kalman filter approach for combining the outputs of an array of high-drift gyros to obtain a virtual lower-drift gyro has been known in the literature for more than a decade. The success of this approach depends on the correlations of the random drift components of the individual gyros. However, no method of estimating these correlations has appeared in the literature. This paper presents an algorithm for obtaining the statistical model for an array of gyros, including the cross-correlations of the individual random drift components. In order to obtain this model, a new statistic, called the "Allan covariance" between two gyros, is introduced. The gyro array model can be used to obtain the Kalman filter-based (KFB) virtual gyro. Instead, we consider a virtual gyro obtained by taking a linear combination of individual gyro outputs. The gyro array model is used to calculate the optimal coefficients, as well as to derive a formula for the drift of the resulting virtual gyro. The drift formula for the optimal linear combination (OLC) virtual gyro is identical to that previously derived for the KFB virtual gyro. Thus, a Kalman filter is not necessary to obtain a minimum drift virtual gyro. The theoretical results of this paper are demonstrated using simulated as well as experimental data. In experimental results with a 28-gyro array, the OLC virtual gyro has a drift spectral density 40 times smaller than that obtained by taking the average of the gyro signals.

  8. On the acoustic radiation modes of compact regular polyhedral arrays of independent loudspeakers.

    PubMed

    Pasqual, Alexander Mattioli; Martin, Vincent

    2011-09-01

    Compact spherical loudspeaker arrays can be used to provide control over their directivity pattern. Usually, this is made by adjusting the gains of preprogrammed spatial filters corresponding to a finite set of spherical harmonics, or to the acoustic radiation modes of the loudspeaker array. Unlike the former, the latter are closely related to the radiation efficiency of the source and span the subspace of the directivities it can produce. However, the radiation modes depend on frequency for arbitrary distributions of transducers on the sphere, which yields complex directivity filters. This work focuses on the most common loudspeaker array configurations, those following the regular shape of the Platonic solids. It is shown that the radiation modes of these sources are frequency independent, and simple algebraic expressions are derived for their radiation efficiencies. In addition, since such modes are vibration patterns driven by electrical signals, the transduction mechanism of compact multichannel sources is also investigated, which is an important issue, especially if the transducers interact inside a shared cabinet. For Platonic solid loudspeakers, it is shown that the common enclosure does not lead to directivity filters that depend on frequency. © 2011 Acoustical Society of America

  9. Wave analysis of a plenoptic system and its applications

    NASA Astrophysics Data System (ADS)

    Shroff, Sapna A.; Berkner, Kathrin

    2013-03-01

    Traditional imaging systems directly image a 2D object plane on to the sensor. Plenoptic imaging systems contain a lenslet array at the conventional image plane and a sensor at the back focal plane of the lenslet array. In this configuration the data captured at the sensor is not a direct image of the object. Each lenslet effectively images the aperture of the main imaging lens at the sensor. Therefore the sensor data retains angular light-field information which can be used for a posteriori digital computation of multi-angle images and axially refocused images. If a filter array, containing spectral filters or neutral density or polarization filters, is placed at the pupil aperture of the main imaging lens, then each lenslet images the filters on to the sensor. This enables the digital separation of multiple filter modalities giving single snapshot, multi-modal images. Due to the diversity of potential applications of plenoptic systems, their investigation is increasing. As the application space moves towards microscopes and other complex systems, and as pixel sizes become smaller, the consideration of diffraction effects in these systems becomes increasingly important. We discuss a plenoptic system and its wave propagation analysis for both coherent and incoherent imaging. We simulate a system response using our analysis and discuss various applications of the system response pertaining to plenoptic system design, implementation and calibration.

  10. Enchanced interference cancellation and telemetry reception in multipath environments with a single paraboic dish antenna using a focal plane array

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A. (Inventor); Mukai, Ryan (Inventor)

    2011-01-01

    An Advanced Focal Plane Array ("AFPA") for parabolic dish antennas that exploits spatial diversity to achieve better channel equalization performance in the presence of multipath (better than temporal equalization alone), and which is capable of receiving from two or more sources within a field-of-view in the presence of multipath. The AFPA uses a focal plane array of receiving elements plus a spatio-temporal filter that keeps information on the adaptive FIR filter weights, relative amplitudes and phases of the incoming signals, and which employs an Interference Cancelling Constant Modulus Algorithm (IC-CMA) that resolves multiple telemetry streams simultaneously from the respective aero-nautical platforms. This data is sent to an angle estimator to calculate the target's angular position, and then on to Kalman filters FOR smoothing and time series prediction. The resulting velocity and acceleration estimates from the time series data are sent to an antenna control unit (ACU) to be used for pointing control.

  11. Frequency-selective surfaces for infrared imaging

    NASA Astrophysics Data System (ADS)

    Lesmanne, Emeline; Boulard, François; Espiau Delamaestre, Roch; Bisotto, Sylvette; Badano, Giacomo

    2017-09-01

    Bayer filter arrays are commonly added to visible detectors to achieve multicolor sensitivity. To extend this approach to the infrared range, we present frequency selective surfaces that work in the mid-infrared range (MWIR). They are easily integrated in the device fabrication process and are based on a simple operating principle. They consist of a thin metallic sheet perforated with apertures filled with a high-index dielectric material. Each aperture behaves as a separate resonator. Its size determines the transmission wavelength λ. Using an original approach based on the temporal coupled mode theory, we show that metallic loss is negligible in the infrared range, as long as the filter bandwidth is large enough (typically <λ/10). We develop closed-form expressions for the radiative and dissipative loss rates and show that the transmission of the filter depends solely on their ratio. We present a prototype infrared detector functionalized with one such array of filters and characterize it by electro-optical measurements.

  12. Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters

    NASA Astrophysics Data System (ADS)

    Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook

    2018-01-01

    Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.

  13. A neighbor pixel communication filtering structure for Dynamic Vision Sensors

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Liu, Shiqi; Lu, Hehui; Zhang, Zilong

    2017-02-01

    For Dynamic Vision Sensors (DVS), thermal noise and junction leakage current induced Background Activity (BA) is the major cause of the deterioration of images quality. Inspired by the smoothing filtering principle of horizontal cells in vertebrate retina, A DVS pixel with Neighbor Pixel Communication (NPC) filtering structure is proposed to solve this issue. The NPC structure is designed to judge the validity of pixel's activity through the communication between its 4 adjacent pixels. The pixel's outputs will be suppressed if its activities are determined not real. The proposed pixel's area is 23.76×24.71μm2 and only 3ns output latency is introduced. In order to validate the effectiveness of the structure, a 5×5 pixel array has been implemented in SMIC 0.13μm CIS process. 3 test cases of array's behavioral model show that the NPC-DVS have an ability of filtering the BA.

  14. Transition from a spectrum filter to a polarizer in a metallic nano-slit array

    PubMed Central

    Zhou, Jing; Guo, L. Jay

    2014-01-01

    The transition from a spectrum filter (resonant transmission) to a polarizer (broadband transmission) for TM polarized light is observed in a metallic nano-slit array as period is decreased. A theoretical model is developed and shows that the spectrum filter behavior is caused by the coupled slit/grating resonance. With decreasing period, the slit resonance is decoupled from the grating resonance, which then dominates the transmission spectrum and broadens the transmission peak. With further reducing period, the slit resonance diminishes and the peak spectrum transforms to a broadband transmission. This effect is the basis for the operation of wire grid polarizers. The transition is explained by the change of the impedance to the incoming wave. PMID:24402443

  15. Transition from a spectrum filter to a polarizer in a metallic nano-slit array.

    PubMed

    Zhou, Jing; Guo, L Jay

    2014-01-09

    The transition from a spectrum filter (resonant transmission) to a polarizer (broadband transmission) for TM polarized light is observed in a metallic nano-slit array as period is decreased. A theoretical model is developed and shows that the spectrum filter behavior is caused by the coupled slit/grating resonance. With decreasing period, the slit resonance is decoupled from the grating resonance, which then dominates the transmission spectrum and broadens the transmission peak. With further reducing period, the slit resonance diminishes and the peak spectrum transforms to a broadband transmission. This effect is the basis for the operation of wire grid polarizers. The transition is explained by the change of the impedance to the incoming wave.

  16. Transition from a spectrum filter to a polarizer in a metallic nano-slit array

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Guo, L. Jay

    2014-01-01

    The transition from a spectrum filter (resonant transmission) to a polarizer (broadband transmission) for TM polarized light is observed in a metallic nano-slit array as period is decreased. A theoretical model is developed and shows that the spectrum filter behavior is caused by the coupled slit/grating resonance. With decreasing period, the slit resonance is decoupled from the grating resonance, which then dominates the transmission spectrum and broadens the transmission peak. With further reducing period, the slit resonance diminishes and the peak spectrum transforms to a broadband transmission. This effect is the basis for the operation of wire grid polarizers. The transition is explained by the change of the impedance to the incoming wave.

  17. Highly efficient color filter array using resonant Si3N4 gratings.

    PubMed

    Uddin, Mohammad Jalal; Magnusson, Robert

    2013-05-20

    We demonstrate the design and fabrication of a highly efficient guided-mode resonant color filter array. The device is designed using numerical methods based on rigorous coupled-wave analysis and is patterned using UV-laser interferometric lithography. It consists of a 60-nm-thick subwavelength silicon nitride grating along with a 105-nm-thick homogeneous silicon nitride waveguide on a glass substrate. The fabricated device exhibits blue, green, and red color response for grating periods of 274, 327, and 369 nm, respectively. The pixels have a spectral bandwidth of ~12 nm with efficiencies of 94%, 96%, and 99% at the center wavelength of blue, green, and red color filter, respectively. These are higher efficiencies than reported in the literature previously.

  18. A New Pipelined Systolic Array-Based Architecture for Matrix Inversion in FPGAs with Kalman Filter Case Study

    NASA Astrophysics Data System (ADS)

    Bigdeli, Abbas; Biglari-Abhari, Morteza; Salcic, Zoran; Tin Lai, Yat

    2006-12-01

    A new pipelined systolic array-based (PSA) architecture for matrix inversion is proposed. The pipelined systolic array (PSA) architecture is suitable for FPGA implementations as it efficiently uses available resources of an FPGA. It is scalable for different matrix size and as such allows employing parameterisation that makes it suitable for customisation for application-specific needs. This new architecture has an advantage of[InlineEquation not available: see fulltext.] processing element complexity, compared to the[InlineEquation not available: see fulltext.] in other systolic array structures, where the size of the input matrix is given by[InlineEquation not available: see fulltext.]. The use of the PSA architecture for Kalman filter as an implementation example, which requires different structures for different number of states, is illustrated. The resulting precision error is analysed and shown to be negligible.

  19. Simultaneous processing of photographic and accelerator array data from sled impact experiment

    NASA Astrophysics Data System (ADS)

    Ash, M. E.

    1982-12-01

    A Quaternion-Kalman filter model is derived to simultaneously analyze accelerometer array and photographic data from sled impact experiments. Formulas are given for the quaternion representation of rotations, the propagation of dynamical states and their partial derivatives, the observables and their partial derivatives, and the Kalman filter update of the state given the observables. The observables are accelerometer and tachometer velocity data of the sled relative to the track, linear accelerometer array and photographic data of the subject relative to the sled, and ideal angular accelerometer data. The quaternion constraints enter through perfect constraint observations and normalization after a state update. Lateral and fore-aft impact tests are analyzed with FORTRAN IV software written using the formulas of this report.

  20. A survey of the state of the art and focused research in range systems, task 2

    NASA Technical Reports Server (NTRS)

    Yao, K.

    1986-01-01

    Contract generated publications are compiled which describe the research activities for the reporting period. Study topics include: equivalent configurations of systolic arrays; least squares estimation algorithms with systolic array architectures; modeling and equilization of nonlinear bandlimited satellite channels; and least squares estimation and Kalman filtering by systolic arrays.

  1. Integrated photocatalytic filtration array for indoor air quality control.

    PubMed

    Denny, Frans; Permana, Eric; Scott, Jason; Wang, Jing; Pui, David Y H; Amal, Rose

    2010-07-15

    Photocatalytic and filtration technologies were integrated to develop a hybrid system capable of removing and oxidizing organic pollutants from an air stream. A fluidized bed aerosol generator (FBAG) was adapted to prepare TiO(2)-loaded ventilation filters for the photodegradation of gas phase ethanol. Compared to a manually loaded filter, the ethanol photodegradation rate constant for the FBAG coated filter increased by 361%. Additionally, the presence of the photogenerated intermediate product, acetaldehyde, was reduced and the time for mineralization to CO(2) was accelerated. These improvements were attributed to the FBAG system providing a more uniform distribution of TiO(2) particles across the filter surface leading to greater accessibility by the UV light. A dual-UV-lamp system, as opposed to a single-lamp system, enhanced photocatalytic filter performance demonstrating the importance of high light irradiance and light distribution across the filter surface. Substituting the blacklight blue lamps with a UV-light-emitting-diode (UV-LED) array led to further improvement as well as suppressed the electrical energy per order (EE/O) by a factor of 6. These improvements derived from the more uniform distribution of light irradiance as well as the higher efficiency of UV-LEDs in converting electrical energy to photons.

  2. Ground Calibration of the Astro-H (Hitomi) Soft X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Boyce, K. R.; Brown, G. V.; Chiao, Meng P.; Fujimoto, R. J.; Haas, D.; Den Herder, J. W.; Ishisaki, Y.; Kelley, R. L.; hide

    2016-01-01

    The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0.3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.

  3. Low light CMOS contact imager with an integrated poly-acrylic emission filter for fluorescence detection.

    PubMed

    Dattner, Yonathan; Yadid-Pecht, Orly

    2010-01-01

    This study presents the fabrication of a low cost poly-acrylic acid (PAA) based emission filter integrated with a low light CMOS contact imager for fluorescence detection. The process involves the use of PAA as an adhesive for the emission filter. The poly-acrylic solution was chosen due its optical transparent properties, adhesive properties, miscibility with polar protic solvents and most importantly its bio-compatibility with a biological environment. The emission filter, also known as an absorption filter, involves dissolving an absorbing specimen in a polar protic solvent and mixing it with the PAA to uniformly bond the absorbing specimen and harden the filter. The PAA is optically transparent in solid form and therefore does not contribute to the absorbance of light in the visible spectrum. Many combinations of absorbing specimen and polar protic solvents can be derived, yielding different filter characteristics in different parts of the spectrum. We report a specific combination as a first example of implementation of our technology. The filter reported has excitation in the green spectrum and emission in the red spectrum, utilizing the increased quantum efficiency of the photo sensitive sensor array. The thickness of the filter (20 μm) was chosen by calculating the desired SNR using Beer-Lambert's law for liquids, Quantum Yield of the fluorophore and the Quantum Efficiency of the sensor array. The filters promising characteristics make it suitable for low light fluorescence detection. The filter was integrated with a fully functional low noise, low light CMOS contact imager and experimental results using fluorescence polystyrene micro-spheres are presented.

  4. An ANSERLIN array for mobile satellite applications

    NASA Technical Reports Server (NTRS)

    Colomb, F. Y.; Kunkee, D. B.; Mayes, P. E.; Smith, D. W.; Jamnejad, V.

    1990-01-01

    Design, analysis, construction, and test of linear arrays of ANSERLIN (annular sector, radiating line) elements are reported and discussed. Due to feeding simplicity and easy construction as well as good CP performance, a planar array composed of a number of such linear arrays each producing a shaped beam tilted in elevation, is a good candidate as a vehicle-mounted mechanically steered antenna for mobile satellite applications. A single level construction technique was developed that makes this type of array very cost competitive with other low-profile arrays. An asymmetric 19.5 inch long four-element array was fabricated and tested with reasonable performance. A smaller five-element symmetric array (16 inch long) was also designed and tested capable of operating in either sense of circular polarization. Efforts were made to successfully reduce this effect.

  5. Making Carbon-Nanotube Arrays Using Block Copolymers: Part 2

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael

    2004-01-01

    Some changes have been incorporated into a proposed method of manufacturing regular arrays of precisely sized, shaped, positioned, and oriented carbon nanotubes. Such arrays could be useful as mechanical resonators for signal filters and oscillators, and as electrophoretic filters for use in biochemical assays. A prior version of the method was described in Block Copolymers as Templates for Arrays of Carbon Nanotubes, (NPO-30240), NASA Tech Briefs, Vol. 27, No. 4 (April 2003), page 56. To recapitulate from that article: As in other previously reported methods, carbon nanotubes would be formed by decomposition of carbon-containing gases over nanometer-sized catalytic metal particles that had been deposited on suitable substrates. Unlike in other previously reported methods, the catalytic metal particles would not be so randomly and densely distributed as to give rise to thick, irregular mats of nanotubes with a variety of lengths, diameters, and orientations. Instead, in order to obtain regular arrays of spaced-apart carbon nanotubes as nearly identical as possible, the catalytic metal particles would be formed in predetermined regular patterns with precise spacings. The regularity of the arrays would be ensured by the use of nanostructured templates made of block copolymers.

  6. Discrete tuning concept for fiber-integrated lasers based on tailored FBG arrays and a theta cavity layout.

    PubMed

    Tiess, Tobias; Becker, Martin; Rothhardt, Manfred; Bartelt, Hartmut; Jäger, Matthias

    2017-03-15

    We demonstrate a novel tuning concept for pulsed fiber-integrated lasers with a fiber Bragg grating (FBG) array as a discrete and tailored spectral filter, as well as a modified laser design. Based on a theta cavity layout, the structural delay lines originating from the FBG array are balanced, enabling a constant repetition rate and stable pulse properties over the full tuning range. The emission wavelength is electrically tuned with respect to the filter properties based on an adapted temporal gating scheme using an acousto-optic modulator. This concept has been investigated with an Yb-doped fiber laser, demonstrating excellent emission properties with high signal contrast (>35  dB) and narrow linewidth (<150  pm) over a tuning range of 25 nm.

  7. Implementation issues of the nearfield equivalent source imaging microphone array

    NASA Astrophysics Data System (ADS)

    Bai, Mingsian R.; Lin, Jia-Hong; Tseng, Chih-Wen

    2011-01-01

    This paper revisits a nearfield microphone array technique termed nearfield equivalent source imaging (NESI) proposed previously. In particular, various issues concerning the implementation of the NESI algorithm are examined. The NESI can be implemented in both the time domain and the frequency domain. Acoustical variables including sound pressure, particle velocity, active intensity and sound power are calculated by using multichannel inverse filters. Issues concerning sensor deployment are also investigated for the nearfield array. The uniform array outperformed a random array previously optimized for far-field imaging, which contradicts the conventional wisdom in far-field arrays. For applications in which only a patch array with scarce sensors is available, a virtual microphone approach is employed to ameliorate edge effects using extrapolation and to improve imaging resolution using interpolation. To enhance the processing efficiency of the time-domain NESI, an eigensystem realization algorithm (ERA) is developed. Several filtering methods are compared in terms of computational complexity. Significant saving on computations can be achieved using ERA and the frequency-domain NESI, as compared to the traditional method. The NESI technique was also experimentally validated using practical sources including a 125 cc scooter and a wooden box model with a loudspeaker fitted inside. The NESI technique proved effective in identifying broadband and non-stationary sources produced by the sources.

  8. Design, fabrication, and characterization of Fresnel lens array with spatial filtering for passive infrared motion sensors

    NASA Astrophysics Data System (ADS)

    Cirino, Giuseppe A.; Barcellos, Robson; Morato, Spero P.; Bereczki, Allan; Neto, Luiz G.

    2006-09-01

    A cubic-phase distribution is applied in the design, fabrication and characterization of inexpensive Fresnel lens arrays for passive infrared motion sensors. The resulting lens array produces a point spread function (PSF) capable of distinguish the presence of humans from pets by the employment of the so-called wavefront coding method. The cubic phase distribution used in the design can also reduce the optical aberrations present in the system. This aberration control allows a high tolerance in the fabrication of the lenses and in the alignment errors of the sensor. In order to proof the principle, a lens was manufactured on amorphous hydrogenated carbon thin film, by well-known micro fabrication process steps. The optical results demonstrates that the optical power falling onto the detector surface is attenuated for targets that present a mass that is horizontally distributed in space (e.g. pets) while the optical power is enhanced for targets that present a mass vertically distributed in space (e.g. humans). Then a mould on steel was fabricated by laser engraving, allowing large-scale production of the lens array in polymeric material. A polymeric lens was injected and its optical transmittance was characterized by Fourier Transform Infrared Spectrometry technique, which has shown an adequate optical transmittance in the 8-14 μm wavelength range. Finally the performance of the sensor was measured in a climate-controlled test laboratory constructed for this purpose. The results show that the sensor operates normally with a human target, with a 12 meter detection zone and within an angle of 100 degrees. On the other hand, when a small pet runs through a total of 22 different trajectories no sensor trips are observed. The novelty of this work is the fact that the so-called pet immunity function was implemented in a purely optical filtering. As a result, this approach allows the reduction of some hardware parts as well as decreasing the software complexity, once the information about the intruder is optically processed before it is transduced by the pyroelectric sensor.

  9. Scene-based nonuniformity correction for focal plane arrays by the method of the inverse covariance form.

    PubMed

    Torres, Sergio N; Pezoa, Jorge E; Hayat, Majeed M

    2003-10-10

    What is to our knowledge a new scene-based algorithm for nonuniformity correction in infrared focal-plane array sensors has been developed. The technique is based on the inverse covariance form of the Kalman filter (KF), which has been reported previously and used in estimating the gain and bias of each detector in the array from scene data. The gain and the bias of each detector in the focal-plane array are assumed constant within a given sequence of frames, corresponding to a certain time and operational conditions, but they are allowed to randomly drift from one sequence to another following a discrete-time Gauss-Markov process. The inverse covariance form filter estimates the gain and the bias of each detector in the focal-plane array and optimally updates them as they drift in time. The estimation is performed with considerably higher computational efficiency than the equivalent KF. The ability of the algorithm in compensating for fixed-pattern noise in infrared imagery and in reducing the computational complexity is demonstrated by use of both simulated and real data.

  10. Discovery of 100K SNP array and its utilization in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencing (NGS) enable us to identify thousands of single nucleotide polymorphisms (SNPs) marker for genotyping and fingerprinting. However, the process requires very precise bioinformatics analysis and filtering process. High throughput SNP array with predefined genomic location co...

  11. Filter-fluorescer measurement of low-voltage simulator x-ray energy spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, G.T.; Craven, R.E.

    X-ray energy spectra of the Maxwell Laboratories MBS and Physics International Pulserad 737 were measured using an eight-channel filter-fluorescer array. The PHOSCAT computer code was used to calculate channel response functions, and the UFO code to unfold spectrum.

  12. Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes.

    PubMed

    Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M

    2018-04-12

    Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods.

  13. Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes

    PubMed Central

    Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M.

    2018-01-01

    Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods. PMID:29649114

  14. Field programmable analog array based on current differencing transconductance amplifiers and its application to high-order filter

    NASA Astrophysics Data System (ADS)

    He, Haizhen; Luo, Rongming; Hu, Zhenhua; Wen, Lei

    2017-07-01

    A current-mode field programmable analog array(FPAA) is presented in this paper. The proposed FPAA consists of 9 configurable analog blocks(CABs) which are based on current differencing transconductance amplifiers (CDTA) and trans-impedance amplifier (TIA). The proposed CABs interconnect through global lines. These global lines contain some bridge switches, which used to reduce the parasitic capacitance effectively. High-order current-mode low-pass and band-pass filter with transmission zeros based on the simulation of general passive RLC ladder prototypes is proposed and mapped into the FPAA structure in order to demonstrate the versatility of the FPAA. These filters exhibit good performance on bandwidth. Filter's cutoff frequency can be tuned from 1.2MHz to 40MHz.The proposed FPAA is simulated in a standard Charted 0.18μm CMOS process with +/-1.2V power supply to confirm the presented theory, and the results have good agreement with the theoretical analysis.

  15. Direct DC 10 V comparison between two programmable Josephson voltage standards made of niobium nitride (NbN)-based and niobium (Nb)-based Josephson junctions

    NASA Astrophysics Data System (ADS)

    Solve, S.; Chayramy, R.; Maruyama, M.; Urano, C.; Kaneko, N.-H.; Rüfenacht, A.

    2018-04-01

    BIPM’s new transportable programmable Josephson voltage standard (PJVS) has been used for an on-site comparison at the National Metrology Institute of Japan (NMIJ) and the National Institute of Advanced Industrial Science and Technology (AIST) (NMIJ/AIST, hereafter called just NMIJ unless otherwise noted). This is the first time that an array of niobium-based Josephson junctions with amorphous niobium silicon Nb x Si1-x barriers, developed by the National Institute of Standards and Technology4 (NIST), has been directly compared to an array of niobium nitride (NbN)-based junctions (developed by the NMIJ in collaboration with the Nanoelectronics Research Institute (NeRI), AIST). Nominally identical voltages produced by both systems agreed within 5 parts in 1012 (0.05 nV at 10 V) with a combined relative uncertainty of 7.9  ×  10-11 (0.79 nV). The low side of the NMIJ apparatus is, by design, referred to the ground potential. An analysis of the systematic errors due to the leakage current to ground was conducted for this ground configuration. The influence of a multi-stage low-pass filter installed at the output measurement leads of the NMIJ primary standard was also investigated. The number of capacitances in parallel in the filter and their insulation resistance have a direct impact on the amplitude of the systematic voltage error introduced by the leakage current, even if the current does not necessarily return to ground. The filtering of the output of the PJVS voltage leads has the positive consequence of protecting the array from external sources of noise. Current noise, when coupled to the array, reduces the width or current range of the quantized voltage steps. The voltage error induced by the leakage current in the filter is an order of magnitude larger than the voltage error in the absence of all filtering, even though the current range of steps is significantly decreased without filtering.

  16. Waterproof stretchable optoelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, John A.; Kim, Rak-Hwan; Kim, Dae-Hyeong

    Described herein are flexible and stretchable LED arrays and methods utilizing flexible and stretchable LED arrays. Assembly of flexible LED arrays alongside flexible plasmonic crystals is useful for construction of fluid monitors, permitting sensitive detection of fluid refractive index and composition. Co-integration of flexible LED arrays with flexible photodetector arrays is useful for construction of flexible proximity sensors. Application of stretchable LED arrays onto flexible threads as light emitting sutures provides novel means for performing radiation therapy on wounds.

  17. Performance of an on-chip superconducting circulator for quantum microwave systems

    NASA Astrophysics Data System (ADS)

    Chapman, Benjamin; Rosenthal, Eric; Moores, Bradley; Kerckhoff, Joseph; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; LalumíEre, Kevin; Blais, Alexandre; Lehnert, K. W.

    Microwave circulators enforce a single propagation direction for signals in an electrical network. Unfortunately, commercial circulators are bulky, lossy, and cannot be integrated close to superconducting circuits because they require strong ( kOe) magnetic fields produced by permanent magnets. Here we report on the performance of an on-chip, active circulator for superconducting microwave circuits, which uses no permanent magnets. Non-reciprocity is achieved by actively modulating reactive elements around 100 MHz, giving roughly a factor of 50 in the separation between signal and control frequencies, which facilitates filtering. The circulator's active components are dynamically tunable inductors constructed with arrays of dc-SQUIDs in series. Array inductance is tuned by varying the magnetic flux through the SQUIDs with fields weaker than 1 Oe. Although the instantaneous bandwidth of the device is narrow, the operation frequency is tunable between 4 and 8 GHz. This presentation will describe the device's theory of operation and compare its measured performance to design goals. This work is supported by the ARO under contract W911NF-14-1-0079 and the National Science Foundation under Grant Number 1125844.

  18. A Quasi-Experimental Study Analyzing the Effectiveness of Portable High-Efficiency Particulate Absorption Filters in Preventing Infections in Hematology Patients during Construction

    PubMed Central

    Özen, Mehmet; Yılmaz, Gülden; Coşkun, Belgin; Topçuoğlu, Pervin; Öztürk, Bengi; Gündüz, Mehmet; Atilla, Erden; Arslan, Önder; Özcan, Muhit; Demirer, Taner; İlhan, Osman; Konuk, Nahide; Balık, İsmail; Gürman, Günhan; Akan, Hamdi

    2016-01-01

    Objective: The increased risk of infection for patients caused by construction and renovation near hematology inpatient clinics is a major concern. The use of high-efficiency particulate absorption (HEPA) filters can reduce the risk of infection. However, there is no standard protocol indicating the use of HEPA filters for patients with hematological malignancies, except for those who have undergone allogeneic hematopoietic stem cell transplantation. This quasi-experimental study was designed to measure the efficacy of HEPA filters in preventing infections during construction. Materials and Methods: Portable HEPA filters were placed in the rooms of patients undergoing treatment for hematological malignancies because of large-scale construction taking place near the hematology clinic. The rates of infection during the 6 months before and after the installation of the portable HEPA filters were compared. A total of 413 patients were treated during this 1-year period. Results: There were no significant differences in the antifungal prophylaxis and treatment regimens between the groups. The rates of infections, clinically documented infections, and invasive fungal infections decreased in all of the patients following the installation of the HEPA filters. When analyzed separately, the rates of invasive fungal infections were similar before and after the installation of HEPA filters in patients who had no neutropenia or long neutropenia duration. HEPA filters were significantly protective against infection when installed in the rooms of patients with acute lymphocytic leukemia, patients who were undergoing consolidation treatment, and patients who were neutropenic for 1-14 days. Conclusion: Despite the advent of construction and the summer season, during which environmental Aspergillus contamination is more prevalent, no patient or patient subgroup experienced an increase in fungal infections following the installation of HEPA filters. The protective effect of HEPA filters against infection was more pronounced in patients with acute lymphocytic leukemia, patients undergoing consolidation therapy, and patients with moderate neutropenia. PMID:26376622

  19. A Quasi-Experimental Study Analyzing the Effectiveness of Portable High-Efficiency Particulate Absorption Filters in Preventing Infections in Hematology Patients during Construction.

    PubMed

    Özen, Mehmet; Yılmaz, Gülden; Coşkun, Belgin; Topçuoğlu, Pervin; Öztürk, Bengi; Gündüz, Mehmet; Atilla, Erden; Arslan, Önder; Özcan, Muhit; Demirer, Taner; İlhan, Osman; Konuk, Nahide; Balık, İsmail; Gürman, Günhan; Akan, Hamdi

    2016-03-05

    The increased risk of infection for patients caused by construction and renovation near hematology inpatient clinics is a major concern. The use of high-efficiency particulate absorption (HEPA) filters can reduce the risk of infection. However, there is no standard protocol indicating the use of HEPA filters for patients with hematological malignancies, except for those who have undergone allogeneic hematopoietic stem cell transplantation. This quasi-experimental study was designed to measure the efficacy of HEPA filters in preventing infections during construction. Portable HEPA filters were placed in the rooms of patients undergoing treatment for hematological malignancies because of large-scale construction taking place near the hematology clinic. The rates of infection during the 6 months before and after the installation of the portable HEPA filters were compared. A total of 413 patients were treated during this 1-year period. There were no significant differences in the antifungal prophylaxis and treatment regimens between the groups. The rates of infections, clinically documented infections, and invasive fungal infections decreased in all of the patients following the installation of the HEPA filters. When analyzed separately, the rates of invasive fungal infections were similar before and after the installation of HEPA filters in patients who had no neutropenia or long neutropenia duration. HEPA filters were significantly protective against infection when installed in the rooms of patients with acute lymphocytic leukemia, patients who were undergoing consolidation treatment, and patients who were neutropenic for 1-14 days. Despite the advent of construction and the summer season, during which environmental Aspergillus contamination is more prevalent, no patient or patient subgroup experienced an increase in fungal infections following the installation of HEPA filters. The protective effect of HEPA filters against infection was more pronounced in patients with acute lymphocytic leukemia, patients undergoing consolidation therapy, and patients with moderate neutropenia.

  20. Updating the OMERACT filter: implications of filter 2.0 to select outcome instruments through assessment of "truth": content, face, and construct validity.

    PubMed

    Tugwell, Peter; Boers, Maarten; D'Agostino, Maria-Antonietta; Beaton, Dorcas; Boonen, Annelies; Bingham, Clifton O; Choy, Ernest; Conaghan, Philip G; Dougados, Maxime; Duarte, Catia; Furst, Daniel E; Guillemin, Francis; Gossec, Laure; Heiberg, Turid; van der Heijde, Désirée M; Hewlett, Sarah; Kirwan, John R; Kvien, Tore K; Landewé, Robert B; Mease, Philip J; Østergaard, Mikkel; Simon, Lee; Singh, Jasvinder A; Strand, Vibeke; Wells, George

    2014-05-01

    The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter requires that criteria be met to demonstrate that the outcome instrument meets the criteria for content, face, and construct validity. Discussion groups critically reviewed a variety of ways in which case studies of current OMERACT Working Groups complied with the Truth component of the Filter and what issues remained to be resolved. The case studies showed that there is broad agreement on criteria for meeting the Truth criteria through demonstration of content, face, and construct validity; however, several issues were identified that the Filter Working Group will need to address. These issues will require resolution to reach consensus on how Truth will be assessed for the proposed Filter 2.0 framework, for instruments to be endorsed by OMERACT.

  1. Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings.

    PubMed

    Xu, Fang; Poon, Andrew W

    2008-06-09

    We report silicon cross-connect filters using microring resonator coupled multimode-interference (MMI) based waveguide crossings. Our experiments reveal that the MMI-based cross-connect filters impose lower crosstalk at the crossing than the conventional cross-connect filters using plain crossings, while offering a nearly symmetric resonance line shape in the drop-port transmission. As a proof-of-concept for cross-connection applications, we demonstrate on a silicon-on-insulator substrate (i) a 4-channel 1 x 4 linear-cascaded MMI-based cross-connect filter, and (ii) a 2-channel 2 x 2 array-cascaded MMI-based cross-connect filter.

  2. A class of least-squares filtering and identification algorithms with systolic array architectures

    NASA Technical Reports Server (NTRS)

    Kalson, Seth Z.; Yao, Kung

    1991-01-01

    A unified approach is presented for deriving a large class of new and previously known time- and order-recursive least-squares algorithms with systolic array architectures, suitable for high-throughput-rate and VLSI implementations of space-time filtering and system identification problems. The geometrical derivation given is unique in that no assumption is made concerning the rank of the sample data correlation matrix. This method utilizes and extends the concept of oblique projections, as used previously in the derivations of the least-squares lattice algorithms. Exponentially weighted least-squares criteria are considered for both sliding and growing memory.

  3. Phased Antenna Array for Global Navigation Satellite System Signals

    NASA Technical Reports Server (NTRS)

    Turbiner, Dmitry (Inventor)

    2015-01-01

    Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.

  4. The Design, Implementation, and Performance of the Astro-H SXS Aperture Assembly and Blocking Filters

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Arsenovic, Petar; Ayers, Travis; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Fujimoto, Ryuichi; Kazeva, John D.; Kelley, Richard L.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The properties that make the SXS array a powerful x-ray spectrometer also make it sensitive to photons from the entire electromagnetic band, and particles as well. If characterized as a bolometer, it would have a noise equivalent power (NEP) of less than 4x10(exp -18) W/(Hz)0.5(exp 0.5). Thus it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. Additionally, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. Both of these needs are addressed by a series of five thin-film radiation-blocking filters, anchored to the nested temperature stages, that block long-wavelength radiation while minimizing x-ray attenuation. The aperture assembly is a system of barriers, baffles, filter carriers, and filter mounts that supports the filters and inhibits their potential contamination. The three outer filters also have been equipped with thermometers and heaters for decontamination. We present the requirements, design, implementation, and performance of the SXS aperture assembly and blocking filters.

  5. Design, implementation, and performance of the Astro-H soft x-ray spectrometer aperture assembly and blocking filters

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline A.; Adams, Joseph S.; Arsenovic, Petar; Ayers, Travis; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Fujimoto, Ryuichi; Kazeva, John D.; Kripps, Kari L.; Lairson, Bruce M.; Leutenegger, Maurice A.; Lopez, Heidi C.; McCammon, Dan; McGuinness, Daniel S.; Mitsuda, Kazuhisa; Moseley, Samuel J.; Porter, F. Scott; Schweiss, Andrea N.; Takei, Yoh; Thorpe, Rosemary Schmidt; Watanabe, Tomomi; Yamasaki, Noriko Y.; Yoshida, Seiji

    2018-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV. The properties that made the SXS array a powerful x-ray spectrometer also made it sensitive to photons from the entire electromagnetic band as well as particles. If characterized as a bolometer, it would have had a noise equivalent power of <4 × 10 ? 18 W / (Hz)0.5. Thus, it was imperative to shield the detector from thermal radiation from the instrument and optical and UV photons from the sky. In addition, it was necessary to shield the coldest stages of the instrument from the thermal radiation emanating from the warmer stages. These needs were addressed by a series of five thin-film radiation-blocking filters, anchored to the nested temperature stages, that blocked long-wavelength radiation while minimizing x-ray attenuation. The aperture assembly was a system of barriers, baffles, filter carriers, and filter mounts that supported the filters and inhibited their potential contamination. The three outer filters also had been equipped with thermometers and heaters for decontamination. We present the requirements, design, implementation, and performance of the SXS aperture assembly and blocking filters.

  6. Looking into Generator Room, showing electromagnetic pulse (EMP) filter boxes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking into Generator Room, showing electromagnetic pulse (EMP) filter boxes mounted above door - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Power Plant, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  7. Highly Concentrated Seed-Mediated Synthesis of Monodispersed Gold Nanorods (Postprint)

    DTIC Science & Technology

    2017-07-17

    imaging, therapeutics and sensors, to large area coatings, filters , and optical attenuators. Development of the latter technologies has been hindered by...sensors, to large area coatings, filters , and optical attenuators. Development of the latter technologies has been hindered by the lack of cost-effective...challenges the utilization of Au-NRs in a diverse array of technologies, ranging from therapeutics, imaging and sensors, to large area coatings, filters and

  8. Selection of optimal spectral sensitivity functions for color filter arrays.

    PubMed

    Parmar, Manu; Reeves, Stanley J

    2010-12-01

    A color image meant for human consumption can be appropriately displayed only if at least three distinct color channels are present. Typical digital cameras acquire three-color images with only one sensor. A color filter array (CFA) is placed on the sensor such that only one color is sampled at a particular spatial location. This sparsely sampled signal is then reconstructed to form a color image with information about all three colors at each location. In this paper, we show that the wavelength sensitivity functions of the CFA color filters affect both the color reproduction ability and the spatial reconstruction quality of recovered images. We present a method to select perceptually optimal color filter sensitivity functions based upon a unified spatial-chromatic sampling framework. A cost function independent of particular scenes is defined that expresses the error between a scene viewed by the human visual system and the reconstructed image that represents the scene. A constrained minimization of the cost function is used to obtain optimal values of color-filter sensitivity functions for several periodic CFAs. The sensitivity functions are shown to perform better than typical RGB and CMY color filters in terms of both the s-CIELAB ∆E error metric and a qualitative assessment.

  9. Advanced RF and microwave functions based on an integrated optical frequency comb source.

    PubMed

    Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2018-02-05

    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

  10. Superresolution with the focused plenoptic camera

    NASA Astrophysics Data System (ADS)

    Georgiev, Todor; Chunev, Georgi; Lumsdaine, Andrew

    2011-03-01

    Digital images from a CCD or CMOS sensor with a color filter array must undergo a demosaicing process to combine the separate color samples into a single color image. This interpolation process can interfere with the subsequent superresolution process. Plenoptic superresolution, which relies on precise sub-pixel sampling across captured microimages, is particularly sensitive to such resampling of the raw data. In this paper we present an approach for superresolving plenoptic images that takes place at the time of demosaicing the raw color image data. Our approach exploits the interleaving provided by typical color filter arrays (e.g., Bayer filter) to further refine plenoptic sub-pixel sampling. Our rendering algorithm treats the color channels in a plenoptic image separately, which improves final superresolution by a factor of two. With appropriate plenoptic capture we show the theoretical possibility for rendering final images at full sensor resolution.

  11. Suppression of ITI by array head reading and 2D-equalization

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Suzuto, R.; Osawa, H.; Okamoto, Y.; Kanai, Y.; Muraoka, H.

    2017-05-01

    Two-dimensional magnetic recording (TDMR) by shingled magnetic recording (SMR) draws attention as a next generation technology to increase the recording density in hard disk drive (HDD). It is shown that the two-dimensional finite impulse response (2D-FIR) filter provides gain the reproducing waveforms from an array head with 3 readers in the TDMR under a specification of 4 Tbit/inch.2 We evaluate the effect of the intertrack interference (ITI) reduction by 2D-FIR using the correlation between the real FIR filter output and the partial response class-I (PR1) signal corresponding to recording sequence by the computer simulation. The results show that the 2D-FIR filter is effective to mitigate ITI and improves the signal-to-noise ratio at the discriminate point by about 0.6 dB.

  12. 77 FR 17456 - Buy American Exception Under the American Recovery and Reinvestment Act of 2009

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ...,000.00 to Adon Construction for the construction of a 120kw photovoltaic solar array system to be built in eight 15kw sub-arrays at NIST's WWVH radio station in Kauai, HI. The objective of the solar... Recovery Act), for inverters necessary for the construction of a solar array system at NIST's WWVH radio...

  13. SU-E-T-460: Impact of the LINAC Repetition Rate On a High-Resolution Liquid Ionization Chamber Array for Patient-Specific QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S; Driewer, J; Zheng, D

    2015-06-15

    Purpose: The purpose of this study is to investigate the LINAC repetition-rate (dose-rate) dependence of OCTAVIUS 1000SRS liquid ionization chamber (LIC) array for patient specific QA of SRT plans delivered with flattening-filter-free (FFF) beams. Methods: 1) The repetition-rate dependence of 1000SRS was measured in a phantom constructed with 5-cm solid water above and below the array for build-up and backscatter. A 0.3cc calibrated ion chamber was also placed along the central axis 2.3cm below the center chamber of the array for normalizing LINAC output fluctuation. The signals from the center chamber of the array under different repetition rates in themore » range of 400–2400 MU/min for 6xFFF and 10xFFF beams on a Varian TrueBeamSTx LINAC, normalized by the independent chamber readings, were analyzed for the array response dependence on repetition rates. 2) Twelve Step-and-shoot IMRS QA plans (6xFFF and 10xFFF) were delivered to the array under different repetition rates for analysis and comparison. 3) The absolute doses measured by the center chamber were compared to measurements using an independent ionization chamber with the identical setup, taken as the gold standard. 4) The correction factors based on the actual delivery repetition rate were applied to the measurements, and the results were compared again to the gold standard. Results: 1) The 1000SRS array exhibited repetition-rate dependence for FFF beams, up to 5% for 6xFFF and 10% for 10xFFF; 2) The array showed clinically-acceptable repetition-rate dependence for regular flattened beams; 3) This repetition-rate dependence significantly affected the measurement accuracy, thereby affecting IMRS QA results; 4) By applying an empirical repetition-rate correction, the corrected measurements agreed better with the gold standard ion chamber measurements. Conclusion: OCTAVIUS 1000SRS LIC array exhibited considerable repetition-rate dependence for FFF beams, which will affect the accuracy of the absolute QA measurements, especially for IMRS plans with the step-and-shoot technique.« less

  14. Labeled RFS-Based Track-Before-Detect for Multiple Maneuvering Targets in the Infrared Focal Plane Array.

    PubMed

    Li, Miao; Li, Jun; Zhou, Yiyu

    2015-12-08

    The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts-MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing.

  15. Labeled RFS-Based Track-Before-Detect for Multiple Maneuvering Targets in the Infrared Focal Plane Array

    PubMed Central

    Li, Miao; Li, Jun; Zhou, Yiyu

    2015-01-01

    The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts—MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing. PMID:26670234

  16. The Least Mean Squares Adaptive FIR Filter for Narrow-Band RFI Suppression in Radio Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Szadkowski, Zbigniew; Głas, Dariusz

    2017-06-01

    Radio emission from the extensive air showers (EASs), initiated by ultrahigh-energy cosmic rays, was theoretically suggested over 50 years ago. However, due to technical limitations, successful collection of sufficient statistics can take several years. Nowadays, this detection technique is used in many experiments consisting in studying EAS. One of them is the Auger Engineering Radio Array (AERA), located within the Pierre Auger Observatory. AERA focuses on the radio emission, generated by the electromagnetic part of the shower, mainly in geomagnetic and charge excess processes. The frequency band observed by AERA radio stations is 30-80 MHz. Thus, the frequency range is contaminated by human-made and narrow-band radio frequency interferences (RFIs). Suppression of contaminations is very important to lower the rate of spurious triggers. There are two kinds of digital filters used in AERA radio stations to suppress these contaminations: the fast Fourier transform median filter and four narrow-band IIR-notch filters. Both filters have worked successfully in the field for many years. An adaptive filter based on a least mean squares (LMS) algorithm is a relatively simple finite impulse response (FIR) filter, which can be an alternative for currently used filters. Simulations in MATLAB are very promising and show that the LMS filter can be very efficient in suppressing RFI and only slightly distorts radio signals. The LMS algorithm was implemented into a Cyclone V field programmable gate array for testing the stability, RFI suppression efficiency, and adaptation time to new conditions. First results show that the FIR filter based on the LMS algorithm can be successfully implemented and used in real AERA radio stations.

  17. Reflection color filters of the three primary colors with wide viewing angles using common-thickness silicon subwavelength gratings.

    PubMed

    Kanamori, Yoshiaki; Ozaki, Toshikazu; Hane, Kazuhiro

    2014-10-20

    We fabricated reflection color filters of the three primary colors with wide viewing angles using silicon two-dimensional subwavelength gratings on the same quartz substrate. The grating periods were 400, 340, and 300 nm for red, green, and blue filters, respectively. All of the color filters had the same grating thickness of 100 nm, which enabled simple fabrication of a color filter array. Reflected colors from the red, green, and blue filters under s-polarized white-light irradiation appeared in the respective colors at incident angles from 0 to 50°. By rigorous coupled-wave analysis, the dimensions of each color filter were designed, and the calculated reflectivity was compared with the measured reflectivity.

  18. Large area projection liquid-crystal video display system with inherent grid pattern optically removed

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor)

    1992-01-01

    A relatively small and low-cost system is provided for projecting a large and bright television image onto a screen. A miniature liquid crystal array is driven by video circuitry to produce a pattern of transparencies in the array corresponding to a television image. Light is directed against the rear surface of the array to illuminate it, while a projection lens lies in front of the array to project the image of the array onto a large screen. Grid lines in the liquid crystal array are eliminated by a spacial filter which comprises a negative of the Fourier transform of the grid.

  19. Efficient Processing of Acoustic Signals for High Rate Information Transmission over Sparse Underwater Channels

    DTIC Science & Technology

    2016-09-02

    the fractionally-spaced channel estimators and the short feedforward equalizer filters . Receiver algorithm is applied to real data transmitted at 10...multichannel decision-feedback equalizer (DFE)[1]. This receiver consists of a bank of adaptive feedforwad filters , one per array element, followed by a...decision-feedback filter . It has been implemented in the prototype high-rate acoustic modem developed at the Woods Hole Oceanographic Institution, and

  20. A filter-mediated communication model for design collaboration in building construction.

    PubMed

    Lee, Jaewook; Jeong, Yongwook; Oh, Minho; Hong, Seung Wan

    2014-01-01

    Multidisciplinary collaboration is an important aspect of modern engineering activities, arising from the growing complexity of artifacts whose design and construction require knowledge and skills that exceed the capacities of any one professional. However, current collaboration in the architecture, engineering, and construction industries often fails due to lack of shared understanding between different participants and limitations of their supporting tools. To achieve a high level of shared understanding, this study proposes a filter-mediated communication model. In the proposed model, participants retain their own data in the form most appropriate for their needs with domain-specific filters that transform the neutral representations into semantically rich ones, as needed by the participants. Conversely, the filters can translate semantically rich, domain-specific data into a neutral representation that can be accessed by other domain-specific filters. To validate the feasibility of the proposed model, we computationally implement the filter mechanism and apply it to a hypothetical test case. The result acknowledges that the filter mechanism can let the participants know ahead of time what will be the implications of their proposed actions, as seen from other participants' points of view.

  1. The Detection and Photometric Redshift Determination of Distant Galaxies using SIRTF's Infrared Array Camera

    NASA Technical Reports Server (NTRS)

    Simpson, C.; Eisenhardt, P.

    1998-01-01

    We investigate the ability of the Space Infrared Telescope Facility's Infrared Array Camera to detect distant (z3) galaxies and measure their photometric redshifts. Our analysis shows that changing the original long wavelength filter specifications provides significant improvements in performance in this and other areas.

  2. Multispectral Linear Array detector technology

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.

    1984-01-01

    The Multispectral Linear Array (MLA) program sponsored by NASA has the aim to extend space-based remote sensor capabilities. The technology development effort involves the realization of very large, all-solid-state, pushbroom focal planes. The pushbroom, staring focal planes will contain thousands of detectors with the objective to provide two orders of magnitude improvement in detector dwell time compared to present Landsat mechanically scanned systems. Attenton is given to visible and near-infrared sensor development, the shortwave infrared sensor, aspects of filter technology development, the packaging concept, and questions of system performance. First-sample, four-band interference filters have been fabricated successfully, and a hybrid packaging technology is being developed.

  3. Effect of interpolation on parameters extracted from seating interface pressure arrays.

    PubMed

    Wininger, Michael; Crane, Barbara

    2014-01-01

    Interpolation is a common data processing step in the study of interface pressure data collected at the wheelchair seating interface. However, there has been no focused study on the effect of interpolation on features extracted from these pressure maps, nor on whether these parameters are sensitive to the manner in which the interpolation is implemented. Here, two different interpolation paradigms, bilinear versus bicubic spline, are tested for their influence on parameters extracted from pressure array data and compared against a conventional low-pass filtering operation. Additionally, analysis of the effect of tandem filtering and interpolation, as well as the interpolation degree (interpolating to 2, 4, and 8 times sampling density), was undertaken. The following recommendations are made regarding approaches that minimized distortion of features extracted from the pressure maps: (1) filter prior to interpolate (strong effect); (2) use of cubic interpolation versus linear (slight effect); and (3) nominal difference between interpolation orders of 2, 4, and 8 times (negligible effect). We invite other investigators to perform similar benchmark analyses on their own data in the interest of establishing a community consensus of best practices in pressure array data processing.

  4. Demosaicking algorithm for the Kodak-RGBW color filter array

    NASA Astrophysics Data System (ADS)

    Rafinazari, M.; Dubois, E.

    2015-01-01

    Digital cameras capture images through different Color Filter Arrays and then reconstruct the full color image. Each CFA pixel only captures one primary color component; the other primary components will be estimated using information from neighboring pixels. During the demosaicking algorithm, the two unknown color components will be estimated at each pixel location. Most of the demosaicking algorithms use the RGB Bayer CFA pattern with Red, Green and Blue filters. The least-Squares Luma-Chroma demultiplexing method is a state of the art demosaicking method for the Bayer CFA. In this paper we develop a new demosaicking algorithm using the Kodak-RGBW CFA. This particular CFA reduces noise and improves the quality of the reconstructed images by adding white pixels. We have applied non-adaptive and adaptive demosaicking method using the Kodak-RGBW CFA on the standard Kodak image dataset and the results have been compared with previous work.

  5. An Integrated Optimal Estimation Approach to Spitzer Space Telescope Focal Plane Survey

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.; Brugarolas, Paul B.; Boussalis, D.

    2004-01-01

    This paper discusses an accurate and efficient method for focal plane survey that was used for the Spitzer Space Telescope. The approach is based on using a high-order 37-state Instrument Pointing Frame (IPF) Kalman filter that combines both engineering parameters and science parameters into a single filter formulation. In this approach, engineering parameters such as pointing alignments, thermomechanical drift and gyro drifts are estimated along with science parameters such as plate scales and optical distortions. This integrated approach has many advantages compared to estimating the engineering and science parameters separately. The resulting focal plane survey approach is applicable to a diverse range of science instruments such as imaging cameras, spectroscopy slits, and scanning-type arrays alike. The paper will summarize results from applying the IPF Kalman Filter to calibrating the Spitzer Space Telescope focal plane, containing the MIPS, IRAC, and the IRS science Instrument arrays.

  6. Multi-function all optical packet switch by periodic wavelength arrangement in an arrayed waveguide grating and wideband optical filters.

    PubMed

    Feng, Kai-Ming; Wu, Chung-Yu; Wen, Yu-Hsiang

    2012-01-16

    By utilizing the cyclic filtering function of an NxN arrayed waveguide grating (AWG), we propose and experimentally demonstrate a novel multi-function all optical packet switching (OPS) architecture by applying a periodical wavelength arrangement between the AWG in the optical routing/buffering unit and a set of wideband optical filters in the switched output ports to achieve the desired routing and buffering functions. The proposed OPS employs only one tunable wavelength converter at the input port to convert the input wavelength to a designated wavelength which reduces the number of active optical components and thus the complexity of the traffic control is simplified in the OPS. With the proposed OPS architecture, multiple optical packet switching functions, including arbitrary packet switching and buffering, first-in-first-out (FIFO) packet multiplexing, packet demultiplexing and packet add/drop multiplexing, have been successfully demonstrated.

  7. A simple method for the construction of small format tissue arrays

    PubMed Central

    Hidalgo, A; Piña, P; Guerrero, G; Lazos, M; Salcedo, M

    2003-01-01

    Tissue arrays can evaluate molecular targets in high numbers of samples in parallel. Array construction presents technical difficulties and tissue arrayers are expensive, particularly for small and medium sized laboratories. This report describes a method for the construction of 36 sample arrays using widely available materials. A blunted 16 gauge needle for bone marrow aspiration was used to extract paraffin wax cylinders and manually define a 6 × 6 matrix on a blank paraffin wax block. Tissue cores from 36 paraffin wax embedded premalignant lesions and invasive cervical carcinomas were injected into the matrix using a 14 gauge needle. This tissue array was sectioned using a standard microtome and used for the immunodetection of CD44 variant 9 and interleukin 18 with satisfactory results. This method can be applied in any laboratory, without the need of specialised equipment, offering a good alternative for the wider application of tissue arrays. PMID:12560397

  8. Using focused plenoptic cameras for rich image capture.

    PubMed

    Georgiev, T; Lumsdaine, A; Chunev, G

    2011-01-01

    This approach uses a focused plenoptic camera to capture the plenoptic function's rich "non 3D" structure. It employs two techniques. The first simultaneously captures multiple exposures (or other aspects) based on a microlens array having an interleaved set of different filters. The second places multiple filters at the main lens aperture.

  9. Advanced texture filtering: a versatile framework for reconstructing multi-dimensional image data on heterogeneous architectures

    NASA Astrophysics Data System (ADS)

    Zellmann, Stefan; Percan, Yvonne; Lang, Ulrich

    2015-01-01

    Reconstruction of 2-d image primitives or of 3-d volumetric primitives is one of the most common operations performed by the rendering components of modern visualization systems. Because this operation is often aided by GPUs, reconstruction is typically restricted to first-order interpolation. With the advent of in situ visualization, the assumption that rendering algorithms are in general executed on GPUs is however no longer adequate. We thus propose a framework that provides versatile texture filtering capabilities: up to third-order reconstruction using various types of cubic filtering and interpolation primitives; cache-optimized algorithms that integrate seamlessly with GPGPU rendering or with software rendering that was optimized for cache-friendly "Structure of Array" (SoA) access patterns; a memory management layer (MML) that gracefully hides the complexities of extra data copies necessary for memory access optimizations such as swizzling, for rendering on GPGPUs, or for reconstruction schemes that rely on pre-filtered data arrays. We prove the effectiveness of our software architecture by integrating it into and validating it using the open source direct volume rendering (DVR) software DeskVOX.

  10. An astronomy camera for low background applications in the 1. 0 to 2. 5. mu. m spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaki, S.A.; Bailey, G.C.; Hagood, R.W.

    1989-02-01

    A short wavelength (1.0-2.5 ..mu..m) 128 x 128 focal plane array forms the heart of this low background astronomy camera system. The camera is designed to accept either a 128 x 128 HgCdTe array for the 1-2.5 ..mu..m spectral region or an InSb array for the 3-5 ..mu..m spectral region. A cryogenic folded optical system is utilized to control excess stray light along with a cold eight-position filter wheel for spectral filtering. The camera head and electronics will also accept a 256 x 256 focal plane. Engineering evaluation of the complete system is complete along with two engineering runs atmore » the JPL Table Mountain Observatory. System design, engineering performance, and sample imagery are presented in this paper.« less

  11. Application of small-signal modeling and measurement techniques to the stability analysis of an integrated switching-mode power system. [onboard Dynamics Explorer Satellite

    NASA Technical Reports Server (NTRS)

    Wong, R. C.; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.

    1980-01-01

    Small-signal modeling techniques are used in a system stability analysis of a breadboard version of a complete functional electrical power system. The system consists of a regulated switching dc-to-dc converter, a solar-cell-array simulator, a solar-array EMI filter, battery chargers and linear shunt regulators. Loss mechanisms in the converter power stage, including switching-time effects in the semiconductor elements, are incorporated into the modeling procedure to provide an accurate representation of the system without requiring frequency-domain measurements to determine the damping factor. The small-signal system model is validated by the use of special measurement techniques which are adapted to the poor signal-to-noise ratio encountered in switching-mode systems. The complete electrical power system with the solar-array EMI filter is shown to be stable over the intended range of operation.

  12. Development of low optical cross talk filters for VIIRS (JPSS)

    NASA Astrophysics Data System (ADS)

    Murgai, Vijay; Hendry, Derek; Downing, Kevin; Carbone, David; Potter, John

    2016-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on Suomi National Polar-orbiting Partnership (S-NPP) satellite launched on October 28, 2011 into a polar orbit of 824 km nominal altitude and the JPSS sensors currently being built and integrated. VIIRS collects radiometric and imagery data of the Earth's atmosphere, oceans, and land surfaces in 22 spectral bands spanning the visible and infrared spectrum from 0.4 to 12.5 μm. Interference filters assembled in `butcher-block' arrays mounted adjacent to focal plane arrays provide spectral definition. Out-of-band signal and out-of-band optical cross-talk was observed for bands in the 0.4 to 1 μm range in testing of VIIRS for S-NPP. Optical cross-talk is in-band or out-of-band light incident on an adjacent filter or adjacent region of the same filter reaching the detector. Out-of-band optical cross-talk results in spectral and spatial `impurities' in the signal and consequent errors in the calculated environmental parameters such as ocean color that rely on combinations of signals from more than one band. This paper presents results of characterization, specification, and coating process improvements that enabled production of filters with significantly reduced out of band light for Joint Polar Satellite System (JPSS) J1 and subsequent sensors. Total transmission and scatter measurements at a wavelength within the pass band can successfully characterize filter performance prior to dicing and assembling filters into butcher block assemblies. Coating and process development demonstrated performance on test samples followed by production of filters for J1 and J2. Results for J1 and J2 filters are presented.

  13. Phased array inspection of large size forged steel parts

    NASA Astrophysics Data System (ADS)

    Dupont-Marillia, Frederic; Jahazi, Mohammad; Belanger, Pierre

    2018-04-01

    High strength forged steel requires uncompromising quality to warrant advance performance for numerous critical applications. Ultrasonic inspection is commonly used in nondestructive testing to detect cracks and other defects. In steel blocks of relatively small dimensions (at least two directions not exceeding a few centimetres), phased array inspection is a trusted method to generate images of the inside of the blocks and therefore identify and size defects. However, casting of large size forged ingots introduces changes of mechanical parameters such as grain size, the Young's modulus, the Poisson's ratio, and the chemical composition. These heterogeneities affect the wave propagation, and consequently, the reliability of ultrasonic inspection and the imaging capabilities for these blocks. In this context, a custom phased array transducer designed for a 40-ton bainitic forged ingot was investigated. Following a previous study that provided local mechanical parameters for a similar block, two-dimensional simulations were made to compute the optimal transducer parameters including the pitch, width and number of elements. It appeared that depending on the number of elements, backwall reconstruction can generate high amplitude artefacts. Indeed, the large dimensions of the simulated block introduce numerous constructive interferences from backwall reflections which may lead to important artefacts. To increase image quality, the reconstruction algorithm was adapted and promising results were observed and compared with the scattering cone filter method available in the CIVA software.

  14. Block Copolymers as Templates for Arrays of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael; Hunt, Brian

    2003-01-01

    A method of manufacturing regular arrays of precisely sized, shaped, positioned, and oriented carbon nanotubes has been proposed. Arrays of carbon nanotubes could prove useful in such diverse applications as communications (especially for filtering of signals), biotechnology (for sequencing of DNA and separation of chemicals), and micro- and nanoelectronics (as field emitters and as signal transducers and processors). The method is expected to be suitable for implementation in standard semiconductor-device fabrication facilities.

  15. Image science team

    NASA Technical Reports Server (NTRS)

    Ando, K.

    1982-01-01

    A substantial technology base of solid state pushbroom sensors exists and is in the process of further evolution at both GSFC and JPL. Technologies being developed relate to short wave infrared (SWIR) detector arrays; HgCdTe hybrid detector arrays; InSb linear and area arrays; passive coolers; spectral beam splitters; the deposition of spectral filters on detector arrays; and the functional design of the shuttle/space platform imaging spectrometer (SIS) system. Spatial and spectral characteristics of field, aircraft and space multispectral sensors are summaried. The status, field of view, and resolution of foreign land observing systems are included.

  16. Demosaicking for full motion video 9-band SWIR sensor

    NASA Astrophysics Data System (ADS)

    Kanaev, Andrey V.; Rawhouser, Marjorie; Kutteruf, Mary R.; Yetzbacher, Michael K.; DePrenger, Michael J.; Novak, Kyle M.; Miller, Corey A.; Miller, Christopher W.

    2014-05-01

    Short wave infrared (SWIR) spectral imaging systems are vital for Intelligence, Surveillance, and Reconnaissance (ISR) applications because of their abilities to autonomously detect targets and classify materials. Typically the spectral imagers are incapable of providing Full Motion Video (FMV) because of their reliance on line scanning. We enable FMV capability for a SWIR multi-spectral camera by creating a repeating pattern of 3x3 spectral filters on a staring focal plane array (FPA). In this paper we present the imagery from an FMV SWIR camera with nine discrete bands and discuss image processing algorithms necessary for its operation. The main task of image processing in this case is demosaicking of the spectral bands i.e. reconstructing full spectral images with original FPA resolution from spatially subsampled and incomplete spectral data acquired with the choice of filter array pattern. To the best of author's knowledge, the demosaicking algorithms for nine or more equally sampled bands have not been reported before. Moreover all existing algorithms developed for demosaicking visible color filter arrays with less than nine colors assume either certain relationship between the visible colors, which are not valid for SWIR imaging, or presence of one color band with higher sampling rate compared to the rest of the bands, which does not conform to our spectral filter pattern. We will discuss and present results for two novel approaches to demosaicking: interpolation using multi-band edge information and application of multi-frame super-resolution to a single frame resolution enhancement of multi-spectral spatially multiplexed images.

  17. Reconfigurable Gabor Filter For Fingerprint Recognition Using FPGA Verilog

    NASA Astrophysics Data System (ADS)

    Rosshidi, H. T.; Hadi, A. R.

    2009-06-01

    This paper present the implementations of Gabor filter for fingerprint recognition using Verilog HDL. This work demonstrates the application of Gabor Filter technique to enhance the fingerprint image. The incoming signal in form of image pixel will be filter out or convolute by the Gabor filter to define the ridge and valley regions of fingerprint. This is done with the application of a real time convolve based on Field Programmable Gate Array (FPGA) to perform the convolution operation. The main characteristic of the proposed approach are the usage of memory to store the incoming image pixel and the coefficient of the Gabor filter before the convolution matrix take place. The result was the signal convoluted with the Gabor coefficient.

  18. Ultrasonic Imaging in Solids Using Wave Mode Beamforming.

    PubMed

    di Scalea, Francesco Lanza; Sternini, Simone; Nguyen, Thompson Vu

    2017-03-01

    This paper discusses some improvements to ultrasonic synthetic imaging in solids with primary applications to nondestructive testing of materials and structures. Specifically, the study proposes new adaptive weights applied to the beamforming array that are based on the physics of the propagating waves, specifically the displacement structure of the propagating longitudinal (L) mode and shear (S) mode that are naturally coexisting in a solid. The wave mode structures can be combined with the wave geometrical spreading to better filter the array (in a matched filter approach) and improve its focusing ability compared to static array weights. This paper also proposes compounding, or summing, images obtained from the different wave modes to further improve the array gain without increasing its physical aperture. The wave mode compounding can be performed either incoherently or coherently, in analogy with compounding multiple frequencies or multiple excitations. Numerical simulations and experimental testing demonstrate the potential improvements obtainable by the wave structure adaptive weights compared to either static weights in conventional delay-and-sum focusing, or adaptive weights based on geometrical spreading alone in minimum-variance distortionless response focusing.

  19. Cutaneous sensory nerve as a substitute for auditory nerve in solving deaf-mutes’ hearing problem: an innovation in multi-channel-array skin-hearing technology

    PubMed Central

    Li, Jianwen; Li, Yan; Zhang, Ming; Ma, Weifang; Ma, Xuezong

    2014-01-01

    The current use of hearing aids and artificial cochleas for deaf-mute individuals depends on their auditory nerve. Skin-hearing technology, a patented system developed by our group, uses a cutaneous sensory nerve to substitute for the auditory nerve to help deaf-mutes to hear sound. This paper introduces a new solution, multi-channel-array skin-hearing technology, to solve the problem of speech discrimination. Based on the filtering principle of hair cells, external voice signals at different frequencies are converted to current signals at corresponding frequencies using electronic multi-channel bandpass filtering technology. Different positions on the skin can be stimulated by the electrode array, allowing the perception and discrimination of external speech signals to be determined by the skin response to the current signals. Through voice frequency analysis, the frequency range of the band-pass filter can also be determined. These findings demonstrate that the sensory nerves in the skin can help to transfer the voice signal and to distinguish the speech signal, suggesting that the skin sensory nerves are good candidates for the replacement of the auditory nerve in addressing deaf-mutes’ hearing problems. Scientific hearing experiments can be more safely performed on the skin. Compared with the artificial cochlea, multi-channel-array skin-hearing aids have lower operation risk in use, are cheaper and are more easily popularized. PMID:25317171

  20. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection

    PubMed Central

    Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan

    2016-01-01

    A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2′-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%. PMID:27941636

  1. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection.

    PubMed

    Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan

    2016-12-08

    A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  2. Passive radiofrequency shimming in the thighs at 3 Tesla using high permittivity materials and body coil receive uniformity correction.

    PubMed

    Brink, Wyger M; Versluis, Maarten J; Peeters, Johannes M; Börnert, Peter; Webb, Andrew G

    2016-12-01

    To explore the effects of high permittivity dielectric pads on the transmit and receive characteristics of a 3 Tesla body coil centered at the thighs, and their implications on image uniformity in receive array applications. Transmit and receive profiles of the body coil with and without dielectric pads were simulated and measured in healthy volunteers. Parallel imaging was performed using sensitivity encoding (SENSE) with and without pads. An intensity correction filter was constructed from the measured receive profile of the body coil. Measured and simulated data show that the dielectric pads improve the transmit homogeneity of the body coil in the thighs, but decrease its receive homogeneity, which propagates into reconstruction algorithms in which the body coil is used as a reference. However, by correcting for the body coil reception profile this effect can be mitigated. Combining high permittivity dielectric pads with an appropriate body coil receive sensitivity filter improves the image uniformity substantially compared with the situation without pads. Magn Reson Med 76:1951-1956, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  3. A consideration on physical tuning for acoustical coloration in recording studio

    NASA Astrophysics Data System (ADS)

    Shimizu, Yasushi

    2003-04-01

    Coloration due to particular architectural shapes and dimension or less surface absorption has been mentioned as an acoustical defect in recording studio. Generally interference among early reflected sounds arriving within 10 ms in delay after the direct sound produces coloration by comb filter effect over mid- and high-frequency sounds. In addition, less absorbed room resonance modes also have been well known as a major component for coloration in low-frequency sounds. Small size in dimension with recording studio, however, creates difficulty in characterization associated with wave acoustics behavior, that make acoustical optimization more difficult than that of concert hall acoustics. There still remains difficulty in evaluating amount of coloration as well as predicting its acoustical characteristics in acoustical modeling and in other words acoustical tuning technique during construction is regarded as important to optimize acoustics appropriately to the function of recording studio. This paper presents a example of coloration by comb filtering effect and less damped room modes in typical post-processing recording studio. And acoustical design and measurement technique will be presented for adjusting timbre due to coloration based on psycho-acoustical performance with binaural hearing and room resonance control with line array resonator adjusted to the particular room modes considered.

  4. A Filter-Mediated Communication Model for Design Collaboration in Building Construction

    PubMed Central

    Oh, Minho

    2014-01-01

    Multidisciplinary collaboration is an important aspect of modern engineering activities, arising from the growing complexity of artifacts whose design and construction require knowledge and skills that exceed the capacities of any one professional. However, current collaboration in the architecture, engineering, and construction industries often fails due to lack of shared understanding between different participants and limitations of their supporting tools. To achieve a high level of shared understanding, this study proposes a filter-mediated communication model. In the proposed model, participants retain their own data in the form most appropriate for their needs with domain-specific filters that transform the neutral representations into semantically rich ones, as needed by the participants. Conversely, the filters can translate semantically rich, domain-specific data into a neutral representation that can be accessed by other domain-specific filters. To validate the feasibility of the proposed model, we computationally implement the filter mechanism and apply it to a hypothetical test case. The result acknowledges that the filter mechanism can let the participants know ahead of time what will be the implications of their proposed actions, as seen from other participants' points of view. PMID:25309958

  5. Experimental Investigation of a Direct-drive Hall Thruster and Solar Array System at Power Levels up to 10 kW

    NASA Technical Reports Server (NTRS)

    Snyder, John S.; Brophy, John R.; Hofer, Richard R.; Goebel, Dan M.; Katz, Ira

    2012-01-01

    As NASA considers future exploration missions, high-power solar-electric propulsion (SEP) plays a prominent role in achieving many mission goals. Studies of high-power SEP systems (i.e. tens to hundreds of kilowatts) suggest that significant mass savings may be realized by implementing a direct-drive power system, so NASA recently established the National Direct-Drive Testbed to examine technical issues identified by previous investigations. The testbed includes a 12-kW solar array and power control station designed to power single and multiple Hall thrusters over a wide range of voltages and currents. In this paper, single Hall thruster operation directly from solar array output at discharge voltages of 200 to 450 V and discharge powers of 1 to 10 kW is reported. Hall thruster control and operation is shown to be simple and no different than for operation on conventional power supplies. Thruster and power system electrical oscillations were investigated over a large range of operating conditions and with different filter capacitances. Thruster oscillations were the same as for conventional power supplies, did not adversely affect solar array operation, and were independent of filter capacitance from 8 to 80 ?F. Solar array current and voltage oscillations were very small compared to their mean values and showed a modest dependence on capacitor size. No instabilities or anomalous behavior were observed in the thruster or power system at any operating condition investigated, including near and at the array peak power point. Thruster startup using the anode propellant flow as the power 'switch' was shown to be simple and reliable with system transients mitigated by the proper selection of filter capacitance size. Shutdown via cutoff of propellant flow was also demonstrated. A simple electrical circuit model was developed and is shown to have good agreement with the experimental data.

  6. Technical Report Series on Global Modeling and Data Assimilation. Volume 16; Filtering Techniques on a Stretched Grid General Circulation Model

    NASA Technical Reports Server (NTRS)

    Takacs, Lawrence L.; Sawyer, William; Suarez, Max J. (Editor); Fox-Rabinowitz, Michael S.

    1999-01-01

    This report documents the techniques used to filter quantities on a stretched grid general circulation model. Standard high-latitude filtering techniques (e.g., using an FFT (Fast Fourier Transformations) to decompose and filter unstable harmonics at selected latitudes) applied on a stretched grid are shown to produce significant distortions of the prognostic state when used to control instabilities near the pole. A new filtering technique is developed which accurately accounts for the non-uniform grid by computing the eigenvectors and eigenfrequencies associated with the stretching. A filter function, constructed to selectively damp those modes whose associated eigenfrequencies exceed some critical value, is used to construct a set of grid-spaced weights which are shown to effectively filter without distortion. Both offline and GCM (General Circulation Model) experiments are shown using the new filtering technique. Finally, a brief examination is also made on the impact of applying the Shapiro filter on the stretched grid.

  7. Experimental demonstration of passive coherent combining of fiber lasers by phase contrast filtering.

    PubMed

    Jeux, François; Desfarges-Berthelemot, Agnès; Kermène, Vincent; Barthelemy, Alain

    2012-12-17

    We report experiments on a new laser architecture involving phase contrast filtering to coherently combine an array of fiber lasers. We demonstrate that the new technique yields a more stable phase-locking than standard methods using only amplitude filtering. A spectral analysis of the output beams shows that the new scheme generates more resonant frequencies common to the coupled lasers. This property can enhance the combining efficiency when the number of lasers to be coupled is large.

  8. A System for Compressive Spectral and Polarization Imaging at Short Wave Infrared (SWIR) Wavelengths

    DTIC Science & Technology

    2017-10-18

    2016). H. Rueda, H. Arguello and G. R. Arce, “DMD-based implementation of patterned optical filter arrays for compressive spectral imaging”, Journal...3)  a  set  of   optical   filters  which   allow   to   discriminate   spectrally   the   coded   and   sheared...system   that   includes   objective   lens,   spatial   light   modulator,   dispersive   element,   optical   filters

  9. Pixelated coatings and advanced IR coatings

    NASA Astrophysics Data System (ADS)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  10. Large size MOEMS Fabry-Perot interferometer filter for focal plane array hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chee, J.; Hwu, J.; Kim, T. S.; Kubby, J.; Velicu, S.; Gupta, N.

    2015-02-01

    Focal plane array (FPA) technology is mature and is widely used for imaging applications. However, FPAs have broadband responses which limit their ability to provide high performance in hyperspectral applications such as detection of buried explosives, and identifying the presence of explosive chemicals and their concentrations. EPIR is currently developing Micro-Opto-Electro-Mechanical System (MOEMS) Fabry-Perot interferometer filter (FPF) devices for FPAs. In this paper, we present our approach to MOEMS FPF design and fabrication that will meet the size requirements for large format FPA hyperspectral imaging. We also report the performance of our FPF resonance cavity, capable of up to 3 μm change gap in tens of nanometer increments.

  11. Thin conformal antenna array for microwave power conversions

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M. (Inventor)

    1978-01-01

    A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.

  12. Intra-Inversion Filtering for Use of Magnetic Fields to Locate and Characterize Magnetic Dipoles for Unexploded Ordnance (UXO) Cleanup

    DTIC Science & Technology

    2007-02-26

    IIGE Intra-Inversion Gradient Estimation JPG Jefferson Proving Ground (Indiana); www.jpgbrac.com MTADS Multi- sensor Towed Array Detection...wherein the Statement of Need sought development of algorithms to exploit data from current state-of-the-art geophysical sensors and advanced sensors ...profile direction using an array of magnetometers as in the Multi- sensor Towed Array Detection System (MTADS). In most instances, such data may be

  13. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.

    PubMed

    Chockalingam, Sriram; Aluru, Maneesha; Aluru, Srinivas

    2016-09-19

    Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp.

  14. Investigation of the use of uniaxial comb-shaped Galfenol patches for a guided wave-based magnetostrictive phased array sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Byungseok; Pines, Darryll J.

    2018-05-01

    This paper investigates the use of uniaxial comb-shaped Fe-Ga alloy (Galfenol) patches in the development of a Magnetostrictive Phased Array Sensor (MPAS) for the Guided Wave (GW) damage inspection technique. The MPAS consists of six highly-textured Galfenol patches with a <100> preferred orientation and a Hexagonal Magnetic Circuit Device (HMCD). The Galfenol patches individually aligned to distinct azimuthal directions were permanently attached to a thin aluminum plate specimen. The detachable HMCD encloses a biasing magnet and six sensing coils with unique directional sensing preferences, equivalent to the specific orientation of the discrete Galfenol patches. The preliminary experimental tests validated that the GW sensing performance and directional sensitivity of the Galfenol-based sensor were significantly improved by the magnetic shape anisotropy effect on the fabrication of uniaxial comb fingers to a Galfenol disc patch. We employed a series of uniaxial comb-shaped Galfenol patches to form an MPAS with a hexagonal sensor configuration, uniformly arranged within a diameter of 1". The Galfenol MPAS was utilized to identify structural damage simulated by loosening joint bolts used to fasten the plate specimen to a frame structure. We compared the damage detection results of the MPAS with those of a PZT Phased Array Sensor (PPAS) collocated to the back surface of the plate. The directional filtering characteristic of the Galfenol MPAS led to acquiring less complicated GW signals than the PPAS using omnidirectional PZT discs. However, due to the detection limit of the standard hexagonal patterned array, the two array sensors apparently identified only the loosened bolts located along one of the preferred orientations of the array configuration. The use of the fixed number of the Galfenol patches for the MPAS construction constrained the capability of sensing point multiplication of the HMCD by altering its rotational orientation, resulting in such damage detection limitation of the MPAS.

  15. True-time-delay photonic beamformer for an L-band phased array radar

    NASA Astrophysics Data System (ADS)

    Zmuda, Henry; Toughlian, Edward N.; Payson, Paul M.; Malowicki, John E.

    1995-10-01

    The problem of obtaining a true-time-delay photonic beamformer has recently been a topic of great interest. Many interesting and novel approaches to this problem have been studied. This paper examines the design, construction, and testing of a dynamic optical processor for the control of a 20-element phased array antenna operating at L-band (1.2-1.4 GHz). The approach taken here has several distinct advantages. The actual optical control is accomplished with a class of spatial light modulator known as a segmented mirror device (SMD). This allows for the possibility of controlling an extremely large number (tens of thousands) of antenna elements using integrated circuit technology. The SMD technology is driven by the HDTV and laser printer markets so ultimate cost reduction as well as technological improvements are expected. Optical splitting is efficiently accomplished using a diffractive optical element. This again has the potential for use in antenna array systems with a large number of radiating elements. The actual time delay is achieved using a single acousto-optic device for all the array elements. Acousto-optic device technologies offer sufficient delay as needed for a time steered array. The topological configuration is an optical heterodyne system, hence high, potentially millimeter wave center frequencies are possible by mixing two lasers of slightly differing frequencies. Finally, the entire system is spatially integrated into a 3D glass substrate. The integrated system provides the ruggedness needed in most applications and essentially eliminates the drift problems associated with free space optical systems. Though the system is presently being configured as a beamformer, it has the ability to operate as a general photonic signal processing element in an adaptive (reconfigurable) transversal frequency filter configuration. Such systems are widely applicable in jammer/noise canceling systems, broadband ISDN, and for spread spectrum secure communications. This paper also serves as an update of work-in-progress at the Rome Laboratory Photonics Center Optical Beamforming Lab. The multi-faceted aspects of the design and construction of this state-of-the-art beamforming project will be discussed. Experimental results which demonstrate the performance of the system to-date with regard to both maximum delay and resolution over a broad bandwidth are presented.

  16. Wavelength-tunable filter utilizing non-cyclic arrayed waveguide grating to create colorless, directionless, contentionless ROADMs

    NASA Astrophysics Data System (ADS)

    Niwa, Masaki; Takashina, Shoichi; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi; Watanabe, Toshio

    2015-01-01

    With the continuous increase in Internet traffic, reconfigurable optical add-drop multiplexers (ROADMs) have been widely adopted in the core and metro core networks. Current ROADMs, however, allow only static operation. To realize future dynamic optical-network services, and to minimize any human intervention in network operation, the optical signal add/drop part should have colorless/directionless/contentionless (C/D/C) capabilities. This is possible with matrix switches or a combination of splitter-switches and optical tunable filters. The scale of the matrix switch increases with the square of the number of supported channels, and hence, the matrix-switch-based architecture is not suitable for creating future large-scale ROADMs. In contrast, the numbers of splitter ports, switches, and tunable filters increase linearly with the number of supported channels, and hence the tunable-filter-based architecture will support all future traffic. So far, we have succeeded in fabricating a compact tunable filter that consists of multi-stage cyclic arrayed-waveguide gratings (AWGs) and switches by using planar-lightwave-circuit (PLC) technologies. However, this multistage configuration suffers from large insertion loss and filter narrowing. Moreover, power-consuming temperature control is necessary since it is difficult to make cyclic AWGs athermal. We propose here novel tunable-filter architecture that sandwiches a single-stage non-cyclic athermal AWG having flatter-topped passbands between small-scale switches. With this configuration, the optical tunable filter attains low insertion loss, large passband bandwidths, low power consumption, compactness, and high cost-effectiveness. A prototype is monolithically fabricated with PLC technologies and its excellent performance is experimentally confirmed utilizing 80-channel 30-GBaud dual-polarization quadrature phase-shift-keying (QPSK) signals.

  17. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-06-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  18. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  19. Active phase correction of high resolution silicon photonic arrayed waveguide gratings

    DOE PAGES

    Gehl, M.; Trotter, D.; Starbuck, A.; ...

    2017-03-10

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Thus, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. We present the design and fabrication of compact siliconmore » photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm 2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. In addition, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.« less

  20. Active phase correction of high resolution silicon photonic arrayed waveguide gratings.

    PubMed

    Gehl, M; Trotter, D; Starbuck, A; Pomerene, A; Lentine, A L; DeRose, C

    2017-03-20

    Arrayed waveguide gratings provide flexible spectral filtering functionality for integrated photonic applications. Achieving narrow channel spacing requires long optical path lengths which can greatly increase the footprint of devices. High index contrast waveguides, such as those fabricated in silicon-on-insulator wafers, allow tight waveguide bends which can be used to create much more compact designs. Both the long optical path lengths and the high index contrast contribute to significant optical phase error as light propagates through the device. Therefore, silicon photonic arrayed waveguide gratings require active or passive phase correction following fabrication. Here we present the design and fabrication of compact silicon photonic arrayed waveguide gratings with channel spacings of 50, 10 and 1 GHz. The largest device, with 11 channels of 1 GHz spacing, has a footprint of only 1.1 cm2. Using integrated thermo-optic phase shifters, the phase error is actively corrected. We present two methods of phase error correction and demonstrate state-of-the-art cross-talk performance for high index contrast arrayed waveguide gratings. As a demonstration of possible applications, we perform RF channelization with 1 GHz resolution. Additionally, we generate unique spectral filters by applying non-zero phase offsets calculated by the Gerchberg Saxton algorithm.

  1. System and method for cognitive processing for data fusion

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Duong, Vu A. (Inventor)

    2012-01-01

    A system and method for cognitive processing of sensor data. A processor array receiving analog sensor data and having programmable interconnects, multiplication weights, and filters provides for adaptive learning in real-time. A static random access memory contains the programmable data for the processor array and the stored data is modified to provide for adaptive learning.

  2. Robust manipulation of light using topologically protected plasmonic modes.

    PubMed

    Liu, Chenxu; Gurudev Dutt, M V; Pekker, David

    2018-02-05

    We propose using a topological plasmonic crystal structure composed of an array of nearly parallel nanowires with unequal spacing for manipulating light. In the paraxial approximation, the Helmholtz equation that describes the propagation of light along the nanowires maps onto the Schrödinger equation of the Su-Schrieffer-Heeger (SSH) model. Using a full three-dimensional finite difference time domain solution of the Maxwell equations, we verify the existence of topological defect modes, with sub-wavelength localization, bound to domain walls of the plasmonic crystal. We show that by manipulating domain walls we can construct spatial mode filters that couple bulk modes to topological defect modes, and topological beam-splitters that couple two topological defect modes. Finally, we show that the structures are tolerant to fabrication errors with an inverse length-scale smaller than the topological band gap.

  3. IMPROVED BIOSAND METHODOLOGIES FOR SUSTAINABLE CLEAN WATER SOLUTIONS IN NORTHERN HONDURAS

    EPA Science Inventory

    Both aspects of the project will lead to improved construction and operation of biosand filters in Honduras.  The Hondurans who have taken on the challenge of constructing and distributing biosand filters appreciate the support and expertise that can be provided in imp...

  4. An Observatory to Enhance the Preparation of Future California Teachers

    NASA Astrophysics Data System (ADS)

    Connolly, L.; Lederer, S.

    2004-12-01

    With a major grant from the W. M. Keck Foundation, California State University, San Bernardino is establishing a state-of-the-art teaching astronomical observatory. The Observatory will be fundamental to an innovative undergraduate physics and astronomy curriculum for Physics and Liberal Studies majors and will be integrated into our General Education program. The critical need for a research and educational observatory is linked to changes in California's Science Competencies for teacher certification. Development of the Observatory will also complement a new infusion of NASA funding and equipment support for our growing astronomy education programs and the University's established Strategic Plan for excellence in education and teacher preparation. The Observatory will consist of two domed towers. One tower will house a 20" Ritchey-Chretien telescope equipped with a CCD camera in conjunction with either UBVRI broadband filters or a spectrometer for evening laboratories and student research projects. The second tower will house the university's existing 12" Schmidt-Cassegrain optical telescope coupled with a CCD camera and an array of filters. A small aperture solar telescope will be attached to the 12" for observing solar prominences while a milar filter can be attached to the 12" for sunspot viewing. We have been very fortunate to receive a challenge grant of \\600,000 from the W. M. Keck Foundation to equip the two domed towers; we continue to seek a further \\800,000 to meet our construction needs. Funding also provided by the California State University, San Bernardino.

  5. Robust estimation of event-related potentials via particle filter.

    PubMed

    Fukami, Tadanori; Watanabe, Jun; Ishikawa, Fumito

    2016-03-01

    In clinical examinations and brain-computer interface (BCI) research, a short electroencephalogram (EEG) measurement time is ideal. The use of event-related potentials (ERPs) relies on both estimation accuracy and processing time. We tested a particle filter that uses a large number of particles to construct a probability distribution. We constructed a simple model for recording EEG comprising three components: ERPs approximated via a trend model, background waves constructed via an autoregressive model, and noise. We evaluated the performance of the particle filter based on mean squared error (MSE), P300 peak amplitude, and latency. We then compared our filter with the Kalman filter and a conventional simple averaging method. To confirm the efficacy of the filter, we used it to estimate ERP elicited by a P300 BCI speller. A 400-particle filter produced the best MSE. We found that the merit of the filter increased when the original waveform already had a low signal-to-noise ratio (SNR) (i.e., the power ratio between ERP and background EEG). We calculated the amount of averaging necessary after applying a particle filter that produced a result equivalent to that associated with conventional averaging, and determined that the particle filter yielded a maximum 42.8% reduction in measurement time. The particle filter performed better than both the Kalman filter and conventional averaging for a low SNR in terms of both MSE and P300 peak amplitude and latency. For EEG data produced by the P300 speller, we were able to use our filter to obtain ERP waveforms that were stable compared with averages produced by a conventional averaging method, irrespective of the amount of averaging. We confirmed that particle filters are efficacious in reducing the measurement time required during simulations with a low SNR. Additionally, particle filters can perform robust ERP estimation for EEG data produced via a P300 speller. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Analog 65/130 nm CMOS 5 GHz Sub-Arrays with ROACH-2 FPGA Beamformers for Hybrid Aperture-Array Receivers

    DTIC Science & Technology

    2017-03-20

    sub-array, which is based on all-pass filters (APFs) is realized using 130 nm CMOS technology. Approximate- discrete Fourier transform (a-DFT...fixed beams are directed at known directions [9]. The proposed approximate- discrete Fourier transform (a-DFT) based multi-beamformer [9] yields L...to digital conversion daughter board. occurs in the discrete time domain (in ROACH-2 FPGA platform) following signal digitization (see Figs. 1(d) and

  7. Universal Network Access System

    DTIC Science & Technology

    2003-11-01

    128 Figure 37 The detail of the SCM TX , (LO; local oscillator, LPF; Low-pass filter, AMP; Amplifier, BPF ...with UNAS, ( BPF : band-pass filter, BM Rx; Burst Mode receiver, AWGR; Arrayed waveguide grating router, FBG; Fiber Bragg Grating, TL; Tunable Laser...protocols. Standard specifications and RFCs will be used as guidelines for implementation. Table 1 UNAS Serial I/O Formats Protocol Implement1

  8. Imaging the Lower Crust and Moho Beneath Long Beach, CA Using Autocorrelations

    NASA Astrophysics Data System (ADS)

    Clayton, R. W.

    2017-12-01

    Three-dimensional images of the lower crust and Moho in a 10x10 km region beneath Long Beach, CA are constructed from autocorrelations of ambient noise. The results show the Moho at a depth of 15 km at the coast and dipping at 45 degrees inland to a depth of 25 km. The shape of the Moho interface is irregular in both the coast perpendicular and parallel directions. The lower crust appears as a zone of enhanced reflectivity with numerous small-scale structures. The autocorrelations are constructed from virtual source gathers that were computed from the dense Long Beach array that were used in the Lin et al (2013) study. All near zero-offset traces within a 200 m disk are stacked to produce a single autocorrelation at that point. The stack typically is over 50-60 traces. To convert the auto correlation to reflectivity as in Claerbout (1968), the noise source autocorrelation, which is estimated as the average of all autocorrelations is subtracted from each trace. The subsurface image is then constructed with a 0.1-2 Hz filter and AGC scaling. The main features of the image are confirmed with broadband receiver functions from the LASSIE survey (Ma et al, 2016). The use of stacked autocorrelations extends ambient noise into the lower crust.

  9. CLAES blocker filter rejection requirements. [Cryogenic Limb Array Etalon Spectrometer

    NASA Technical Reports Server (NTRS)

    James, T. C.; Kumer, J. B.; Roche, A. E.; Sterritt, L. W.; Uplinger, W. G.

    1986-01-01

    Some details of the calculations of out-of-band spectral rejection requirements for the CLAES blocker filters are described. For a particular blocker centered within an etalon bandpass, the signal to be expected when a particular etalon transmission peak is centered at the central wavelength of the blocker filter is calculated. This signal is compared with the total signal arising from all other transmission peaks within the etalon bandpass and all of the radiation from the entire spectrum outside of the etalon bandpass. The results for a few of the blocker filters are listed, and the design goals are compared with theoretical design results.

  10. Contact CMOS imaging of gaseous oxygen sensor array

    PubMed Central

    Daivasagaya, Daisy S.; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C.; Chodavarapu, Vamsy P.; Bright, Frank V.

    2014-01-01

    We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3]2+) encapsulated within sol–gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors. PMID:24493909

  11. Contact CMOS imaging of gaseous oxygen sensor array.

    PubMed

    Daivasagaya, Daisy S; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-10-01

    We describe a compact luminescent gaseous oxygen (O 2 ) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O 2 -sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp) 3 ] 2+ ) encapsulated within sol-gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors.

  12. Stacked, filtered multi-channel X-ray diode array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacNeil, Lawrence; Dutra, Eric; Raphaelian, Mark

    2015-08-01

    There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustnessmore » and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.« less

  13. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking †

    PubMed Central

    Kiku, Daisuke; Okutomi, Masatoshi

    2017-01-01

    Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking. PMID:29194407

  14. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking.

    PubMed

    Monno, Yusuke; Kiku, Daisuke; Tanaka, Masayuki; Okutomi, Masatoshi

    2017-12-01

    Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking.

  15. Modelling and restoration of ultrasonic phased-array B-scan images.

    PubMed

    Ardouin, J P; Venetsanopoulos, A N

    1985-10-01

    A model is presented for the radio-frequency image produced by a B-scan (pulse-echo) ultrasound imaging system using a phased-array transducer. This type of scanner is widely used for real-time heart imaging. The model allows for dynamic focusing as well as an acoustic lens focusing the beam in the elevation plane. A result of the model is an expression to compute the space-variant point spread function (PSF) of the system. This is made possible by the use of a combination of Fresnel and Fraunhoffer approximations which are valid in the range of interest for practical applications. The PSF is used to design restoration filters in order to improve image resolution. The filters are then applied to experimental images of wires.

  16. Construction of high frame rate images with Fourier transform

    NASA Astrophysics Data System (ADS)

    Peng, Hu; Lu, Jian-Yu

    2002-05-01

    Traditionally, images are constructed with a delay-and-sum method that adjusts the phases of received signals (echoes) scattered from the same point in space so that they are summed in phase. Recently, the relationship between the delay-and-sum method and the Fourier transform is investigated [Jian-yu Lu, Anjun Liu, and Hu Peng, ``High frame rate and delay-and-sum imaging methods,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control (submitted)]. In this study, a generic Fourier transform method is developed. Two-dimensional (2-D) or three-dimensional (3-D) high frame rate images can be constructed using the Fourier transform with a single transmission of an ultrasound pulse from an array as long as the transmission field of the array is known. To verify our theory, computer simulations have been performed with a linear array, a 2-D array, a convex curved array, and a spherical 2-D array. The simulation results are consistent with our theory. [Work supported in part by Grant 5RO1 HL60301 from NIH.

  17. One-pot synthesis of NiO/Mn2O3 nanoflake arrays and their application in electrochemical biosensing

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Cui, Jiewu; Luo, Lan; Zhang, Jingcheng; Wang, Yan; Qin, Yongqiang; Zhang, Yong; Shu, Xia; Lv, Jun; Wu, Yucheng

    2017-11-01

    The exploration of novel nanomaterials employed as substrate to construct glucose biosensors is still of significance in the field of clinical diagnosis. In this work, NiO/Mn2O3 nanoflake arrays were synthesized by hydrothermal approach in combination with calcination process. As-prepared NiO/Mn2O3 nanoflake arrays were utilized to construct electrochemical biosensors for glucose detection. NiO/Mn2O3 nanoflake arrays were investigated systematically by scanning electron microscopy (SEM), X-ray diffractionmeter (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy, the formation mechanism of NiO/Mn2O3 nanoflake arrays was proposed. As-prepared glucose biosensors based on NiO/Mn2O3 nanoflake arrays were characterized by cyclic voltammgrams and chronoamperometry. The results indicated that glucose biosensors based on optimized NiO/Mn2O3 nanoflake arrays exhibited a high sensitivity of 167.0 μA mM-1 Cm-2 and good anti-interference ability, suggesting the NiO/Mn2O3 nanoflake arrays are an attractive substrate for the construction of oxidase-based biosensors.

  18. Far infrared filters for a rocket-borne radiometer.

    PubMed

    Romero, H V; Gursky, J; Blair, A G

    1972-04-01

    Low pass far infrared radiation filters with cutoff frequencies in the spectral region of 10-25 cm(-1) were required for a rocket-borne radiometer experiment. The paper describes the theory, fabrication, and laboratory transmission measurements of prototype grid filters investigated in a study prior to the construction of flight filters. Characteristics of the final flight filters are also presented.

  19. Design, construction and operation of a new filter approach for treatment of surface waters in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Frankel, R. J.

    1981-05-01

    A simple, inexpensive, and efficient method of water treatment for rural communities in Southeast Asia was developed using local materials as filter media. The filter utilizes coconut fiber and burnt rice husks in a two-stage filtering process designed as a gravityfed system without the need for backwashing, and eliminates in most cases the need of any chemicals. The first-stage filter with coconut fiber acts essentially as a substitute for the coagulation and sedimentation phases of conventional water-treatment plants. The second-stage filter, using burnt rice husks, is similar to slow sand filtration with the additional benefits of taste, color and odor removals through the absorption properties of the activated carbon in the medium. This paper reports on the design, construction costs, and operating results of several village size units in Thailand and in the Philippines.

  20. Bacterial carbon utilization in vertical subsurface flow constructed wetlands.

    PubMed

    Tietz, Alexandra; Langergraber, Günter; Watzinger, Andrea; Haberl, Raimund; Kirschner, Alexander K T

    2008-03-01

    Subsurface vertical flow constructed wetlands with intermittent loading are considered as state of the art and can comply with stringent effluent requirements. It is usually assumed that microbial activity in the filter body of constructed wetlands, responsible for the removal of carbon and nitrogen, relies mainly on bacterially mediated transformations. However, little quantitative information is available on the distribution of bacterial biomass and production in the "black-box" constructed wetland. The spatial distribution of bacterial carbon utilization, based on bacterial (14)C-leucine incorporation measurements, was investigated for the filter body of planted and unplanted indoor pilot-scale constructed wetlands, as well as for a planted outdoor constructed wetland. A simple mass-balance approach was applied to explain the bacterially catalysed organic matter degradation in this system by comparing estimated bacterial carbon utilization rates with simultaneously measured carbon reduction values. The pilot-scale constructed wetlands proved to be a suitable model system for investigating microbial carbon utilization in constructed wetlands. Under an ideal operating mode, the bulk of bacterial productivity occurred within the first 10cm of the filter body. Plants seemed to have no significant influence on productivity and biomass of bacteria, as well as on wastewater total organic carbon removal.

  1. Multi-Beam Radio Frequency (RF) Aperture Arrays Using Multiplierless Approximate Fast Fourier Transform (FFT)

    DTIC Science & Technology

    2017-08-01

    filtering, correlation and radio- astronomy . In this report approximate transforms that closely follow the DFT have been studied and found. The approximate...communications, data networks, sensor networks, cognitive radio, radar and beamforming, imaging, filtering, correlation and radio- astronomy . FFTs efficiently...public release; distribution is unlimited. 4.3 Digital Hardware and Design Architectures Collaboration for Astronomy Signal Processing and Electronics

  2. A new technique to transfer metallic nanoscale patterns to small and non-planar surfaces: Application to a fiber optic device for surface enhanced Raman scattering detection

    NASA Astrophysics Data System (ADS)

    Smythe, Elizabeth Jennings

    This thesis focuses on the development of a bidirectional fiber optic probe for the detection of surface enhanced Raman scattering (SERS). One facet of this fiber-based probe featured an array of coupled optical antennas, which we designed to enhance the Raman signal of nearby analytes. When this array interacted with an analyte, it generated SERS signals specific to the chemical composition of the sample; some of these SERS signals coupled back into the fiber. We used the other facet of the probe to input light into the fiber and collect the SERS signals that coupled into the probe. In this dissertation, the development of the probe is broken into three sections: (i) characterization of antenna arrays, (ii) fabrication of the probe, and (iii) device measurements. In the first section we present a comprehensive study of metallic antenna arrays. We carried out this study to determine the effects of antenna geometry, spacing, and composition on the surface plasmon resonance (SPR) of a coupled antenna array; the wavelength range and strength of the SPR are functions of the shape and interactions of the antennas. The SPR of the array ultimately amplified the Raman signal of analytes and produced a measurable SERS signal, thus determination of the optimal array geometries for SERS generation was an important first step in the development of the SERS fiber probe. We then introduce a new technique developed to fabricate the SERS fiber probes. This technique involves transferring antenna arrays (created by standard lithographic methods) from a large silicon substrate to a fiber facet. We developed this fabrication technique to bypass many of the limitations presented by previously developed methods for patterning unconventional substrates (i.e. small and/or non-planar substrates), such as focused ion-beam milling and soft lithography. In the third section of this thesis, we present SERS measurements taken with the fiber probe. We constructed a measurement system to couple light into the probe and filter out background noise; this allowed simultaneous detection of multiple chemicals. Antenna array enhancement factor (EF) calculations are shown; these allowed us to determine that the probe efficiently collected SERS signals.

  3. Treatment of table olive washing water using trickling filters, constructed wetlands and electrooxidation.

    PubMed

    Tatoulis, Triantafyllos; Stefanakis, Alexandros; Frontistis, Zacharias; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Mantzavinos, Dionissios; Vayenas, Dimitrios V

    2017-01-01

    The production of table olives is a significant economic activity in Mediterranean countries. Table olive processing generates large volumes of rinsing water that are characterized by high organic matter and phenol contents. Due to these characteristics, a combination of more than one technology is imperative to ensure efficient treatment with low operational cost. Previously, biological filters were combined with electrooxidation to treat table olive washing water. Although this combination was successful in reducing pollutant loads, its cost could be further reduced. Constructed wetlands could be an eligible treatment method for integrated table olive washing water treatment as they have proved tolerant to high organic matter and phenol loads. Two pilot-scale horizontal subsurface constructed wetlands, one planted and one unplanted, were combined with a biological filter and electrooxidation over a boron-doped diamond anode to treat table olive washing water. In the biological filter inlet, chemical oxygen demand (COD) concentrations ranged from 5500 to 15,000 mg/L, while mean COD influent concentration in the constructed wetlands was 2800 mg/L. The wetlands proved to be an efficient intermediate treatment stage, since COD removal levels for the planted unit reached 99 % (mean 70 %), while the unplanted unit presented removal rates of around 65 %. Moreover, the concentration of phenols in the effluent was typically below 100 mg/L. The integrated trickling filter-constructed wetland-electrooxidation treatment system examined here could mineralize and decolorize table olive washing water and fully remove its phenolic content.

  4. High voltage solar cell power generating system for regulated solar array development

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Hoffman, A. C.

    1973-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kw), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2560 series-connected cells. Each light source consists of twenty 500 watt tungsten iodide lamps providing plus or minus 5 per cent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water cooled plate, a vacuum hold-down system, and air flushing.

  5. Design of surface acoustic wave filters for the multiplex transmission system of multilevel inverter circuits

    NASA Astrophysics Data System (ADS)

    Kubo, Keita; Kanai, Nanae; Kobayashi, Fumiya; Goka, Shigeyoshi; Wada, Keiji; Kakio, Shoji

    2017-07-01

    We designed surface acoustic wave (SAW) filters for a multiplex transmission system of multilevel inverter circuits, and applied them to a single-phase three-level inverter. To reduce the transmission delay time of the SAW filters, a four-channel SAW filter array was fabricated and its characteristics were measured. The delay time of the SAW filters was <350 ns, and the delay time difference was reduced to ≤184 ns, less than half that previously reported. The SAW filters withstood up to 990 V, which is sufficient for the inverters used in most domestic appliances. A single-phase three-level inverter with the fabricated SAW filters worked with a total delay time shorter than our target delay time of 2.5 µs. The delay time difference of the proposed system was 0.26 µs, which is sufficient for preventing the inverter circuit from short-circuiting. The SAW filters controlled a multilevel inverter system with simple signal wiring and high dielectric withstanding voltages.

  6. Laser tweezer actuated microphotonic array devices for high resolution imaging and analysis in chip-based biosystems

    NASA Astrophysics Data System (ADS)

    Birkbeck, Aaron L.

    A new technology is developed that functionally integrates arrays of lasers and micro-optics into microfluidic systems for the purpose of imaging, analyzing, and manipulating objects and biological cells. In general, the devices and technologies emerging from this area either lack functionality through the reliance on mechanical systems or provide a serial-based, time consuming approach. As compared to the current state of art, our all-optical design methodology has several distinguishing features, such as parallelism, high efficiency, low power, auto-alignment, and high yield fabrication methods, which all contribute to minimizing the cost of the integration process. The potential use of vertical cavity surface emitting lasers (VCSELs) for the creation of two-dimensional arrays of laser optical tweezers that perform independently controlled, parallel capture, and transport of large numbers of individual objects and biological cells is investigated. One of the primary biological applications for which VCSEL array sourced laser optical tweezers are considered is the formation of engineered tissues through the manipulation and spatial arrangement of different types of cells in a co-culture. Creating devices that combine laser optical tweezers with select micro-optical components permits optical imaging and analysis functions to take place inside the microfluidic channel. One such device is a micro-optical spatial filter whose motion and alignment is controlled using a laser optical tweezer. Unlike conventional spatial filter systems, our device utilizes a refractive optical element that is directly incorporated onto the lithographically patterned spatial filter. This allows the micro-optical spatial filter to automatically align itself in three-dimensions to the focal point of the microscope objective, where it then filters out the higher frequency additive noise components present in the laser beam. As a means of performing high resolution imaging in the microfluidic channel, we developed a novel technique that integrates the capacity of a laser tweezer to optically trap and manipulate objects in three-dimensions with the resolution-enhanced imaging capabilities of a solid immersion lens (SIL). In our design, the SIL is a free-floating device whose imaging beam, motion control and alignment is provided by a laser optical tweezer, which allows the microfluidic SIL to image in areas that are inaccessible to traditional solid immersion microscopes.

  7. GNSS Space-Time Interference Mitigation and Attitude Determination in the Presence of Interference Signals

    PubMed Central

    Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard

    2015-01-01

    The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios. PMID:26016909

  8. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum.

    PubMed

    Yasuma, Fumihito; Mitsunaga, Tomoo; Iso, Daisuke; Nayar, Shree K

    2010-09-01

    We propose the concept of a generalized assorted pixel (GAP) camera, which enables the user to capture a single image of a scene and, after the fact, control the tradeoff between spatial resolution, dynamic range and spectral detail. The GAP camera uses a complex array (or mosaic) of color filters. A major problem with using such an array is that the captured image is severely under-sampled for at least some of the filter types. This leads to reconstructed images with strong aliasing. We make four contributions in this paper: 1) we present a comprehensive optimization method to arrive at the spatial and spectral layout of the color filter array of a GAP camera. 2) We develop a novel algorithm for reconstructing the under-sampled channels of the image while minimizing aliasing artifacts. 3) We demonstrate how the user can capture a single image and then control the tradeoff of spatial resolution to generate a variety of images, including monochrome, high dynamic range (HDR) monochrome, RGB, HDR RGB, and multispectral images. 4) Finally, the performance of our GAP camera has been verified using extensive simulations that use multispectral images of real world scenes. A large database of these multispectral images has been made available at http://www1.cs.columbia.edu/CAVE/projects/gap_camera/ for use by the research community.

  9. GNSS space-time interference mitigation and attitude determination in the presence of interference signals.

    PubMed

    Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard

    2015-05-26

    The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios.

  10. Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit.

    PubMed

    Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping

    2006-05-29

    Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.

  11. Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit

    NASA Astrophysics Data System (ADS)

    Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping

    2006-05-01

    Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.

  12. Enhanced performance of a filter-sensor system.

    PubMed

    Sasaki, Isao; Josowicz, Mira; Janata, Jirí; Glezer, Ari

    2006-06-01

    In this paper are addressed two important, but seemingly unrelated issues: long term performance of a gas sensing array and performance of an air purification unit. It is shown that when considered together, the system can be regarded as a "smart filter". The enhancement is achieved by periodic differential sampling and measurement of the "upstream" and "downstream" gases of a filter. The correctly functioning filter supplies the "zero gas" from the downstream for the continuous sensor baseline correction. A key element in this scheme is the synthetic jet that delivers well-defined pulses of the two gases. The deterioration of the performance of the "smart filter" can be diagnosed from the response pattern of the sensor. The approach has been demonstrated on removal/sensing of ammonia gas from air.

  13. Zooplankton Distribution in Four Western Norwegian Fjords

    NASA Astrophysics Data System (ADS)

    Gorsky, G.; Flood, P. R.; Youngbluth, M.; Picheral, M.; Grisoni, J.-M.

    2000-01-01

    A multi-instrumental array constructed in the Laboratoire d'Ecologie du Plancton Marin in Villefranche sur mer, France, named the Underwater Video Profiler (UVP), was used to investigate the vertical distribution of zooplankton in four western Norwegian fjords in the summer 1996. Six distinct zoological groups were monitored. The fauna included: (a) small crustaceans (mainly copepods), (b) ctenophores (mainly lobates), (c) siphonophores (mainly physonects), (d) a scyphomedusa Periphylla periphylla, (e) chaetognaths and (f) appendicularians. The use of the non-disturbing video technique demonstrated that the distribution of large zooplankton is heterogeneous vertically and geographically. Furthermore, the abundance of non-migrating filter feeders in the deep basins of the fjords indicates that there is enough food (living and non-living particulate organic matter) to support their dietary needs. This adaptation may be considered as a strategy for survival in fjords. Specifically, living in dark, deep water reduces visual predation and population loss encountered in the upper layer due to advective processes.

  14. A source-synchronous filter for uncorrelated receiver traces from a swept-frequency seismic source

    DOE PAGES

    Lord, Neal; Wang, Herbert; Fratta, Dante

    2016-09-01

    We have developed a novel algorithm to reduce noise in signals obtained from swept-frequency sources by removing out-of-band external noise sources and distortion caused from unwanted harmonics. The algorithm is designed to condition nonstationary signals for which traditional frequency-domain methods for removing noise have been less effective. The source synchronous filter (SSF) is a time-varying narrow band filter, which is synchronized with the frequency of the source signal at all times. Because the bandwidth of the filter needs to account for the source-to-receiver propagation delay and the sweep rate, SSF works best with slow sweep rates and moveout-adjusted waveforms tomore » compensate for source-receiver delays. The SSF algorithm was applied to data collected during a field test at the University of California Santa Barbara’s Garner Valley downhole array site in Southern California. At the site, a 45 kN shaker was mounted on top of a one-story structure and swept from 0 to 10 Hz and back over 60 s (producing useful seismic waves greater than 1.6 Hz). The seismic data were captured with small accelerometer and geophone arrays and with a distributed acoustic sensing array, which is a fiber-optic-based technique for the monitoring of elastic waves. The result of the application of SSF on the field data is a set of undistorted and uncorrelated traces that can be used in different applications, such as measuring phase velocities of surface waves or applying convolution operations with the encoder source function to obtain traveltimes. Lastly, the results from the SSF were used with a visual phase alignment tool to facilitate developing dispersion curves and as a prefilter to improve the interpretation of the data.« less

  15. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure.

    PubMed

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-05-11

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.

  16. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure

    PubMed Central

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-01-01

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures. PMID:28772879

  17. A source-synchronous filter for uncorrelated receiver traces from a swept-frequency seismic source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, Neal; Wang, Herbert; Fratta, Dante

    We have developed a novel algorithm to reduce noise in signals obtained from swept-frequency sources by removing out-of-band external noise sources and distortion caused from unwanted harmonics. The algorithm is designed to condition nonstationary signals for which traditional frequency-domain methods for removing noise have been less effective. The source synchronous filter (SSF) is a time-varying narrow band filter, which is synchronized with the frequency of the source signal at all times. Because the bandwidth of the filter needs to account for the source-to-receiver propagation delay and the sweep rate, SSF works best with slow sweep rates and moveout-adjusted waveforms tomore » compensate for source-receiver delays. The SSF algorithm was applied to data collected during a field test at the University of California Santa Barbara’s Garner Valley downhole array site in Southern California. At the site, a 45 kN shaker was mounted on top of a one-story structure and swept from 0 to 10 Hz and back over 60 s (producing useful seismic waves greater than 1.6 Hz). The seismic data were captured with small accelerometer and geophone arrays and with a distributed acoustic sensing array, which is a fiber-optic-based technique for the monitoring of elastic waves. The result of the application of SSF on the field data is a set of undistorted and uncorrelated traces that can be used in different applications, such as measuring phase velocities of surface waves or applying convolution operations with the encoder source function to obtain traveltimes. Lastly, the results from the SSF were used with a visual phase alignment tool to facilitate developing dispersion curves and as a prefilter to improve the interpretation of the data.« less

  18. Wavenumber-domain separation of rail contribution to pass-by noise

    NASA Astrophysics Data System (ADS)

    Zea, Elias; Manzari, Luca; Squicciarini, Giacomo; Feng, Leping; Thompson, David; Arteaga, Ines Lopez

    2017-11-01

    In order to counteract the problem of railway noise and its environmental impact, passing trains in Europe must be tested in accordance to a noise legislation that demands the quantification of the noise generated by the vehicle alone. However, for frequencies between about 500 Hz and 1600 Hz, it has been found that a significant part of the measured noise is generated by the rail, which behaves like a distributed source and radiates plane waves as a result of the contact with the train's wheels. Thus the need arises for separating the rail contribution to the pass-by noise in that particular frequency range. To this end, the present paper introduces a wavenumber-domain filtering technique, referred to as wave signature extraction, which requires a line microphone array parallel to the rail, and two accelerometers on the rail in the vertical and lateral direction. The novel contributions of this research are: (i) the introduction and application of wavenumber (or plane-wave) filters to pass-by data measured with a microphone array located in the near-field of the rail, and (ii) the design of such filters without prior information of the structural properties of the rail. The latter is achieved by recording the array pressure, as well as the rail vibrations with the accelerometers, before and after the train pass-by. The performance of the proposed method is investigated with a set of pass-by measurements performed in Germany. The results seem to be promising when compared to reference data from TWINS, and the largest discrepancies occur above 1600 Hz and are attributed to plane waves radiated by the rail that so far have not been accounted for in the design of the filters.

  19. Photon collider: a four-channel autoguider solution

    NASA Astrophysics Data System (ADS)

    Hygelund, John C.; Haynes, Rachel; Burleson, Ben; Fulton, Benjamin J.

    2010-07-01

    The "Photon Collider" uses a compact array of four off axis autoguider cameras positioned with independent filtering and focus. The photon collider is two way symmetric and robustly mounted with the off axis light crossing the science field which allows the compact single frame construction to have extremely small relative deflections between guide and science CCDs. The photon collider provides four independent guiding signals with a total of 15 square arc minutes of sky coverage. These signals allow for simultaneous altitude, azimuth, field rotation and focus guiding. Guide cameras read out without exposure overhead increasing the tracking cadence. The independent focus allows the photon collider to maintain in focus guide stars when the main science camera is taking defocused exposures as well as track for telescope focus changes. Independent filters allow auto guiding in the science camera wavelength bandpass. The four cameras are controlled with a custom web services interface from a single Linux based industrial PC, and the autoguider mechanism and telemetry is built around a uCLinux based Analog Devices BlackFin embedded microprocessor. Off axis light is corrected with a custom meniscus correcting lens. Guide CCDs are cooled with ethylene glycol with an advanced leak detection system. The photon collider was built for use on Las Cumbres Observatory's 2 meter Faulks telescopes and currently used to guide the alt-az mount.

  20. Generalized enhanced suffix array construction in external memory.

    PubMed

    Louza, Felipe A; Telles, Guilherme P; Hoffmann, Steve; Ciferri, Cristina D A

    2017-01-01

    Suffix arrays, augmented by additional data structures, allow solving efficiently many string processing problems. The external memory construction of the generalized suffix array for a string collection is a fundamental task when the size of the input collection or the data structure exceeds the available internal memory. In this article we present and analyze [Formula: see text] [introduced in CPM (External memory generalized suffix and [Formula: see text] arrays construction. In: Proceedings of CPM. pp 201-10, 2013)], the first external memory algorithm to construct generalized suffix arrays augmented with the longest common prefix array for a string collection. Our algorithm relies on a combination of buffers, induced sorting and a heap to avoid direct string comparisons. We performed experiments that covered different aspects of our algorithm, including running time, efficiency, external memory access, internal phases and the influence of different optimization strategies. On real datasets of size up to 24 GB and using 2 GB of internal memory, [Formula: see text] showed a competitive performance when compared to [Formula: see text] and [Formula: see text], which are efficient algorithms for a single string according to the related literature. We also show the effect of disk caching managed by the operating system on our algorithm. The proposed algorithm was validated through performance tests using real datasets from different domains, in various combinations, and showed a competitive performance. Our algorithm can also construct the generalized Burrows-Wheeler transform of a string collection with no additional cost except by the output time.

  1. Cryogenic infrared filter made of alumina for use at millimeter wavelength.

    PubMed

    Inoue, Yuki; Matsumura, Tomotake; Hazumi, Masashi; Lee, Adrian T; Okamura, Takahiro; Suzuki, Aritoki; Tomaru, Takayuki; Yamaguchi, Hiroshi

    2014-03-20

    We propose a high-thermal-conductivity infrared filter using alumina for millimeter-wave detection systems. We constructed a prototype two-layer antireflection-coated alumina filter with a diameter of 100 mm and a thickness of 2 mm and characterized its thermal and optical properties. The transmittance of this filter at 95 and 150 GHz is 97% and 95%, respectively, while the estimated 3 dB cut-off frequency is at 450 GHz. The high thermal conductivity of alumina minimizes thermal gradients. We measure a differential temperature of only 0.21 K between the center and the edge of the filter when it is mounted on a thermal anchor of 77 K. We also constructed a thermal model based on the prototype filter and analyzed the scalability of the filter diameter. We conclude that the temperature increase at the center of the alumina IR filter is less than 6 K, even with a large diameter of 500 mm, when the temperature at the edge of the filter is 50 K. This is suitable for an application to a large-throughput next-generation cosmic-microwave-background polarization experiment such as POLARBEAR-2.

  2. Receiver Function Imaging of Crust and Uppermost Mantle Structure beneath the Japan Islands -Inclusion of Hi-net Data-

    NASA Astrophysics Data System (ADS)

    Yamauchi, M.; Hirahara, K.; Shibutani, T.

    2001-12-01

    We are examining a large number of teleseismic waveforms observed at stations closely distributed over the Japan Islands to construct body-wave waveform tomography data for determining 3-D crust and upper mantle structure including velocity discontinuities. As one of preparatory studies toward this final goal, we are executing array analyses of Receiver Functions (RF). RF analyses of J-array data ( 32 broad band stations and 269 short period stations ) and Freesia data ( 15 broad band stations ), whose stations are closely distributed, have provided us with new information on the structure including velocity discontinuities beneath the Japan Islands (Tada et al, 2001). In their study, for crustal imaging, RFs transformed from time to depth domain after SVD filtering ( Chevrot and Giardin, 2000 ) are projected onto 2-D profiles, which show average values for cells within +/- 50km from each cross section. However, this cell size does not satisfy our demand to draw the detailed image beneath the Japan Islands. In addition, J-array short period RFs available for the analyses are limited because of high frequency noises. In this research, Hi-net data (short period), whose stations are far more closely distributed, are newly included into our data. We make RF image with α =3 of short period J-array data and Hi-net data for events observed during a period from September, 2000 to July, 2001 with the magnitudes larger than 5.5. The total number of the stations with their average spacing of 10km is about 800 (J-array; 270, Hi-net; 500), which enables to reduce the cell size to +/- 20km at most. We show a new 3-D RF image of the crust and the uppermost mantle, whose best spatial resolution is reaching less than 5km. Therefore we can obtain much more detailed 3-D RF image beneath the whole Japan Islands.

  3. Strategies on solar observation of Atacama Large Millimeter/submillimeter Array (ALMA) band-1 receiver

    NASA Astrophysics Data System (ADS)

    Chiong, Chau-Ching; Chiang, Po-Han; Hwang, Yuh-Jing; Huang, Yau-De

    2016-07-01

    ALMA covering 35-950 GHz is the largest existing telescope array in the world. Among the 10 receiver bands, Band-1, which covers 35-50 GHz, is the lowest. Due to its small dimension and its time-variant frequency-dependent gain characteristics, current solar filter located above the cryostat cannot be applied to Band-1 for solar observation. Here we thus adopt new strategies to fulfill the goals. Thanks to the flexible dc biasing scheme of the HEMT-based amplifier in Band-1 front-end, bias adjustment of the cryogenic low noise amplifier is investigated to accomplish solar observation without using solar filter. Large power handling range can be achieved by the de-tuning bias technique with little degradation in system performance.

  4. Ultra compact triplexing filters based on SOI nanowire AWGs

    NASA Astrophysics Data System (ADS)

    Jiashun, Zhang; Junming, An; Lei, Zhao; Shijiao, Song; Liangliang, Wang; Jianguang, Li; Hongjie, Wang; Yuanda, Wu; Xiongwei, Hu

    2011-04-01

    An ultra compact triplexing filter was designed based on a silicon on insulator (SOI) nanowire arrayed waveguide grating (AWG) for fiber-to-the-home FTTH. The simulation results revealed that the design performed well in the sense of having a good triplexing function. The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching. The experimental results showed that the crosstalk was less than -15 dB, and the 3 dB-bandwidth was 11.04 nm. The peak wavelength output from ports a, c, and b were 1455, 1510 and 1300 nm, respectively, which deviated from our original expectations. The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion.

  5. Potential nitrification and denitrification and the corresponding composition of the bacterial communities in a compact constructed wetland treating landfill leachates.

    PubMed

    Sundberg, C; Tonderski, K; Lindgren, P E

    2007-01-01

    Constructed wetlands can be used to decrease the high ammonium concentrations in landfill leachates. We investigated nitrification/denitrification activity and the corresponding bacterial communities in landfill leachate that was treated in a compact constructed wetland, Tveta Recycling Facility, Sweden. Samples were collected at three depths in a filter bed and the sediment from a connected open pond in July, September and November 2004. Potential ammonia oxidation was measured by short-term incubation method and potential denitrification by the acetylene inhibition technique. The ammonia-oxidising and the denitrifying bacterial communities were investigated using group-specific PCR primers targeting 16S rRNA genes and the functional gene nosZ, respectively. PCR products were analysed by denaturing gradient gel electrophoresis and nucleotide sequencing. The same degree of nitrification activity was observed in the pond sediment and at all levels in the filter bed, whereas the denitrification activity decreased with filter bed depth. Denitrification rates were higher in the open pond, even though the denitrifying bacterial community was more diverse in the filter bed. The ammonia-oxidising community was also more varied in the filter bed. In the filter bed and the open pond, there was no obvious relationship between the nitrification/denitrification activities and the composition of the corresponding bacterial communities.

  6. Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane

    PubMed Central

    Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin

    2015-01-01

    A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer. PMID:26339313

  7. Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition.

    PubMed

    Park, Chulhee; Kang, Moon Gi

    2016-05-18

    A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors.

  8. Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane.

    PubMed

    Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin

    2015-07-01

    A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer.

  9. Color Restoration of RGBN Multispectral Filter Array Sensor Images Based on Spectral Decomposition

    PubMed Central

    Park, Chulhee; Kang, Moon Gi

    2016-01-01

    A multispectral filter array (MSFA) image sensor with red, green, blue and near-infrared (NIR) filters is useful for various imaging applications with the advantages that it obtains color information and NIR information simultaneously. Because the MSFA image sensor needs to acquire invisible band information, it is necessary to remove the IR cut-offfilter (IRCF). However, without the IRCF, the color of the image is desaturated by the interference of the additional NIR component of each RGB color channel. To overcome color degradation, a signal processing approach is required to restore natural color by removing the unwanted NIR contribution to the RGB color channels while the additional NIR information remains in the N channel. Thus, in this paper, we propose a color restoration method for an imaging system based on the MSFA image sensor with RGBN filters. To remove the unnecessary NIR component in each RGB color channel, spectral estimation and spectral decomposition are performed based on the spectral characteristics of the MSFA sensor. The proposed color restoration method estimates the spectral intensity in NIR band and recovers hue and color saturation by decomposing the visible band component and the NIR band component in each RGB color channel. The experimental results show that the proposed method effectively restores natural color and minimizes angular errors. PMID:27213381

  10. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1999-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses tha_ may not be important in longer wavelength designs. This paper describes the design of multi-bandwidth filters operating in the I-5 micrometer wavelength range. This work follows on previous design [1,2]. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using micro-lithographic techniques and used ir spectral imaging applications will be presented.

  11. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1998-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses that may not be important in longer wavelength designs. This paper describes the design of multi- bandwidth filters operating in the 1-5 micrometer wavelength range. This work follows on a previous design. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using microlithographic techniques and used in spectral imaging applications will be presented.

  12. Intercepted signals for ionospheric science

    NASA Astrophysics Data System (ADS)

    Lind, F. D.; Erickson, P. J.; Coster, A. J.; Foster, J. C.; Marchese, J. R.; Berkowitz, Z.; Sahr, J. D.

    2013-05-01

    The ISIS array (Intercepted Signals for Ionospheric Science) is a distributed, coherent software radio array designed for the study of geospace phenomena by observing the scatter of ambient radio frequency (RF) signals. ISIS data acquisition and analysis is performed using the MIDAS-M platform (Millstone Data Acquisition System - Mobile). Observations of RF signals can be performed between HF and L-band using the Array nodes and appropriate antennas. The deployment of the Array focuses on observations of the plasmasphere boundary layer. We discuss the concept of the coherent software radio array, describe the ISIS hardware, and give examples of data from the system for selected applications. In particular, we include the first observations of E region irregularities using the Array. We also present single-site passive radar observations of both meteor trails and E region irregularities using adaptive filtering techniques.

  13. Stochastic Flow Cascades

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo I.; Shlesinger, Michael F.

    2012-01-01

    We introduce and explore a Stochastic Flow Cascade (SFC) model: A general statistical model for the unidirectional flow through a tandem array of heterogeneous filters. Examples include the flow of: (i) liquid through heterogeneous porous layers; (ii) shocks through tandem shot noise systems; (iii) signals through tandem communication filters. The SFC model combines together the Langevin equation, convolution filters and moving averages, and Poissonian randomizations. A comprehensive analysis of the SFC model is carried out, yielding closed-form results. Lévy laws are shown to universally emerge from the SFC model, and characterize both heavy tailed retention times (Noah effect) and long-ranged correlations (Joseph effect).

  14. Digital Filter ASIC for NASA Deep Space Radio Science

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.

    1995-01-01

    This paper is about the implementation of an 80 MHz, 16-bit, multi-stage digital filter to decimate by 1600, providing a 50 kHz output with bandpass ripple of less than +/-0.1 dB. The chip uses two decimation by five units and six decimations by two executed by a single decimation by two units. The six decimations by two consist of six halfband filters, five having 30-taps and one having 51-taps. Use of a 16x16 register file for the digital delay lines enables implementation in the Vitesse 350K gate array.

  15. Storm Water Pollution Removal Performance of Compost Filter Socks

    USDA-ARS?s Scientific Manuscript database

    In 2005, the US Environmental Protection Agency National Menu of Best Management Practices (BMPs) listed compost filter socks as an approved BMP for controlling sediment in storm runoff on construction sites. Filtrexx International manufactures and distributes Filter Soxx (FS). Literature suggests...

  16. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing

    NASA Astrophysics Data System (ADS)

    Jia, Peipei; Yang, Jun

    2014-07-01

    Surface plasmon resonance (SPR) on metal nanostructures offers a promising route for manipulation and interrogation of light in the subwavelength regime. However, the utility of SPR structures is largely limited by currently used complex nanofabrication methods and relatively sophisticated optical components. Here to relieve these restrictions, plasmonic optical fibers are constructed by transferring periodic metal nanostructures from patterned templates onto endfaces of optical fibers using an epoxy adhesive. Patterned metal structures are generally extended from two-dimensional (2D) nanohole arrays to one-dimensional (1D) nanoslit arrays. By controlling the viscosity of the adhesive layer, diverse surface topographies of metal structures are realized with the same template. We design a special plasmonic fiber that simultaneously implements multimode refractive index sensing (transmission and reflection) with remarkably narrow linewidth (6.6 nm) and high figure of merit (60.7), which are both among the best reported values for SPR sensors. We further demonstrate a real-time immunoassay relying on our plasmonic fiber integrated with a special flow cell. Plasmonic optical fibers also take advantages of excellent stability during fiber bending and capability of spectrum filtering. These features enable our plasmonic fibers to open up an alternative avenue for the general community in biosensing and nanoplasmonics.

  17. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing.

    PubMed

    Jia, Peipei; Yang, Jun

    2014-08-07

    Surface plasmon resonance (SPR) on metal nanostructures offers a promising route for manipulation and interrogation of light in the subwavelength regime. However, the utility of SPR structures is largely limited by currently used complex nanofabrication methods and relatively sophisticated optical components. Here to relieve these restrictions, plasmonic optical fibers are constructed by transferring periodic metal nanostructures from patterned templates onto endfaces of optical fibers using an epoxy adhesive. Patterned metal structures are generally extended from two-dimensional (2D) nanohole arrays to one-dimensional (1D) nanoslit arrays. By controlling the viscosity of the adhesive layer, diverse surface topographies of metal structures are realized with the same template. We design a special plasmonic fiber that simultaneously implements multimode refractive index sensing (transmission and reflection) with remarkably narrow linewidth (6.6 nm) and high figure of merit (60.7), which are both among the best reported values for SPR sensors. We further demonstrate a real-time immunoassay relying on our plasmonic fiber integrated with a special flow cell. Plasmonic optical fibers also take advantages of excellent stability during fiber bending and capability of spectrum filtering. These features enable our plasmonic fibers to open up an alternative avenue for the general community in biosensing and nanoplasmonics.

  18. Simultaneous excitation system for efficient guided wave structural health monitoring

    NASA Astrophysics Data System (ADS)

    Hua, Jiadong; Michaels, Jennifer E.; Chen, Xin; Lin, Jing

    2017-10-01

    Many structural health monitoring systems utilize guided wave transducer arrays for defect detection and localization. Signals are usually acquired using the ;pitch-catch; method whereby each transducer is excited in turn and the response is received by the remaining transducers. When extensive signal averaging is performed, the data acquisition process can be quite time-consuming, especially for metallic components that require a low repetition rate to allow signals to die out. Such a long data acquisition time is particularly problematic if environmental and operational conditions are changing while data are being acquired. To reduce the total data acquisition time, proposed here is a methodology whereby multiple transmitters are simultaneously triggered, and each transmitter is driven with a unique excitation. The simultaneously transmitted waves are captured by one or more receivers, and their responses are processed by dispersion-compensated filtering to extract the response from each individual transmitter. The excitation sequences are constructed by concatenating a series of chirps whose start and stop frequencies are randomly selected from a specified range. The process is optimized using a Monte-Carlo approach to select sequences with impulse-like autocorrelations and relatively flat cross-correlations. The efficacy of the proposed methodology is evaluated by several metrics and is experimentally demonstrated with sparse array imaging of simulated damage.

  19. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity

    NASA Astrophysics Data System (ADS)

    Supradeepa, V. R.; Long, Christopher M.; Wu, Rui; Ferdous, Fahmida; Hamidi, Ehsan; Leaird, Daniel E.; Weiner, Andrew M.

    2012-03-01

    Photonic technologies have received considerable attention regarding the enhancement of radiofrequency electrical systems, including high-frequency analogue signal transmission, control of phased arrays, analog-to-digital conversion and signal processing. Although the potential of radiofrequency photonics for the implementation of tunable electrical filters over broad radiofrequency bandwidths has been much discussed, the realization of programmable filters with highly selective filter lineshapes and rapid reconfigurability has faced significant challenges. A new approach for radiofrequency photonic filters based on frequency combs offers a potential route to simultaneous high stopband attenuation, fast tunability and bandwidth reconfiguration. In one configuration, tuning of the radiofrequency passband frequency is demonstrated with unprecedented (~40 ns) speed by controlling the optical delay between combs. In a second, fixed filter configuration, cascaded four-wave mixing simultaneously broadens and smoothes the comb spectra, resulting in Gaussian radiofrequency filter lineshapes exhibiting an extremely high (>60 dB) main lobe to sidelobe suppression ratio and (>70 dB) stopband attenuation.

  20. Plenoptic projection fluorescence tomography.

    PubMed

    Iglesias, Ignacio; Ripoll, Jorge

    2014-09-22

    A new method to obtain the three-dimensional localization of fluorochrome distributions in micrometric samples is presented. It uses a microlens array coupled to the image port of a standard microscope to obtain tomographic data by a filtered back-projection algorithm. Scanning of the microlens array is proposed to obtain a dense data set for reconstruction. Simulation and experimental results are shown and the implications of this approach in fast 3D imaging are discussed.

  1. Mathematical Description of the GPS (Global Positioning System) Multisatellite Filter/Smoother

    DTIC Science & Technology

    1987-10-01

    the change is known exactly. This event affects the nominal clock as follows: For the first time t at, Ao,o is replaced by Asok + All subsequent...tN are given by p-x information array y information array NpNZ NY 1 NY I (112)(RP RP, it, NP (AY y,v )~ N, 0 k" RAy i N. where A,,/t•, and A are

  2. Crystalline Colloidal Arrays in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Sunkara, Hari B.; Penn, B. G.; Frazier, D. O.; Ramachandran, N.

    1997-01-01

    Crystalline Colloidal Arrays (CCA, also known as colloidal crystals), composed of aqueous or nonaqueous dispersions of self-assembled nanosized polymer colloidal spheres, are emerging toward the development of advanced optical devices for technological applications. The spontaneous self assembly of polymer spheres in a dielectric medium results from the electrostatic repulsive interaction between particles of uniform size and charge distribution. In a way similar to atomic crystals that diffract X-rays, CCA dispersions in thin quartz cells selectively and efficiently Bragg diffract the incident visible light. The reason for this diffraction is because the lattice (body or face centered cubic) spacing is on the order of the wavelength of visible light. Unlike the atomic crystals that diffract a fixed wavelength, colloidal crystals in principle, depending on the particle size, particle number and charge density, can diffract W, Vis or IR light. Therefore, the CCA dispersions can be used as laser filters. Besides, the diffraction intensity depends on the refractive index mismatch between polymer spheres and dielectric medium; therefore, it is possible to modulate incident light intensities by manipulating the index of either the spheres or the medium. Our interest in CCA is in the fabrication of all-optical devices such as optical switches, limiters, and spatial light modulators for optical signal processing. The two major requirements from a materials standpoint are the incorporation of suitable nonlinear optical materials (NLO) into polymer spheres which will allow us to alter the refractive index of the spheres by intense laser radiation, and preparation of solid CCA filters which can resist laser damage. The fabrication of solid composite filters not only has the advantage that the films are easier to handle, but also the arrays in solid films are more robust than in liquid media. In this paper, we report the photopolymerization process used to trap CCA in polymer matrices, the factors which affect the optical diffraction qualities of resulting polymer films, and methods to improve the efficiencies of solid optical filters. Before this, we also present the experimental demonstration, of controlling the optical diffraction intensities from aqueous CCA dispersions by varying the temperature, which establishes the feasibility of fabricating all-optical switching devices with nonlinear periodic array structures.

  3. Application of DFT Filter Banks and Cosine Modulated Filter Banks in Filtering

    NASA Technical Reports Server (NTRS)

    Lin, Yuan-Pei; Vaidyanathan, P. P.

    1994-01-01

    None given. This is a proposal for a paper to be presented at APCCAS '94 in Taipei, Taiwan. (From outline): This work is organized as follows: Sec. II is devoted to the construction of the new 2m channel under-decimated DFT filter bank. Implementation and complexity of this DFT filter bank are discussed therein. IN a similar manner, the new 2m channel cosine modulated filter bank is discussed in Sec. III. Design examples are given in Sec. IV.

  4. The discrete prolate spheroidal filter as a digital signal processing tool

    NASA Technical Reports Server (NTRS)

    Mathews, J. D.; Breakall, J. K.; Karawas, G. K.

    1983-01-01

    The discrete prolate spheriodall (DPS) filter is one of the glass of nonrecursive finite impulse response (FIR) filters. The DPS filter is superior to other filters in this class in that it has maximum energy concentration in the frequency passband and minimum ringing in the time domain. A mathematical development of the DPS filter properties is given, along with information required to construct the filter. The properties of this filter were compared with those of the more commonly used filters of the same class. Use of the DPS filter allows for particularly meaningful statements of data time/frequency resolution cell values. The filter forms an especially useful tool for digital signal processing.

  5. Construction of high-density bacterial colony arrays and patterns by the ink-jet method.

    PubMed

    Xu, Tao; Petridou, Sevastioni; Lee, Eric H; Roth, Elizabeth A; Vyavahare, Narendra R; Hickman, James J; Boland, Thomas

    2004-01-05

    We have developed a method for fabricating bacterial colony arrays and complex patterns using commercially available ink-jet printers. Bacterial colony arrays with a density of 100 colonies/cm(2) were obtained by directly ejecting Escherichia coli (E. coli) onto agar-coated substrates at a rapid arraying speed of 880 spots per second. Adjusting the concentration of bacterial suspensions allowed single colonies of viable bacteria to be obtained. In addition, complex patterns of viable bacteria as well as bacteria density gradients were constructed using desktop printers controlled by a simple software program. Copyright 2003 Wiley Periodicals, Inc.

  6. Demonstration of KHILS two-color IR projection capability

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence E.; Coker, Jason S.; Garbo, Dennis L.; Olson, Eric M.; Murrer, Robert Lee, Jr.; Bergin, Thomas P.; Goldsmith, George C., II; Crow, Dennis R.; Guertin, Andrew W.; Dougherty, Michael; Marler, Thomas M.; Timms, Virgil G.

    1998-07-01

    For more than a decade, there has been considerable discussion about using different IR bands for the detection of low contrast military targets. Theory predicts that a target can have little to no contrast against the background in one IR band while having a discernible signature in another IR band. A significant amount of effort has been invested towards establishing hardware that is capable of simultaneously imaging in two IR bands to take advantage of this phenomenon. Focal plane arrays (FPA) are starting to materialize with this simultaneous two-color imaging capability. The Kinetic Kill Vehicle Hardware-in-the-loop Simulator (KHILS) team of the Air Force Research Laboratory and the Guided Weapons Evaluation Facility (GWEF), both at Eglin AFB, FL, have spent the last 10 years developing the ability to project dynamic IR scenes to imaging IR seekers. Through the Wideband Infrared Scene Projector (WISP) program, the capability to project two simultaneous IR scenes to a dual color seeker has been established at KHILS. WISP utilizes resistor arrays to produce the IR energy. Resistor arrays are not ideal blackbodies. The projection of two IR colors with resistor arrays, therefore, requires two optically coupled arrays. This paper documents the first demonstration of two-color simultaneous projection at KHILS. Agema cameras were used for the measurements. The Agema's HgCdTe detector has responsivity from 4 to 14 microns. A blackbody and two IR filters (MWIR equals 4.2 t 7.4 microns, LWIR equals 7.7 to 13 microns) were used to calibrate the Agema in two bands. Each filter was placed in front of the blackbody one at a time, and the temperature of the blackbody was stepped up in incremental amounts. The output counts from the Agema were recorded at each temperature. This calibration process established the radiance to Agema output count curves for the two bands. The WISP optical system utilizes a dichroic beam combiner to optically couple the two resistor arrays. The transmission path of the beam combiner provided the LWIR (6.75 to 12 microns), while the reflective path produced the MWIR (3 to 6.5 microns). Each resistor array was individually projected into the Agema through the beam combiner at incremental output levels. Once again the Agema's output counts were recorded at each resistor array output level. These projections established the resistor array output to Agema count curves for the MWIR and LWIR resistor arrays. Using the radiance to Agema counts curves, the MWIR and LWIR resistor array output to radiance curves were established. With the calibration curves established, a two-color movie was projected and compared to the generated movie radiance values. By taking care to correctly account for the spectral qualities of the Agema camera, the calibration filters, and the diachroic beam combiner, the projections matched the theoretical calculations. In the near future, a Lockheed- Martin Multiple Quantum Well camera with true two-color IR capability will be tested.

  7. Comparison of the Extended Kalman Filter and the Unscented Kalman Filter for Magnetocardiography activation time imaging

    NASA Astrophysics Data System (ADS)

    Ahrens, H.; Argin, F.; Klinkenbusch, L.

    2013-07-01

    The non-invasive and radiation-free imaging of the electrical activity of the heart with Electrocardiography (ECG) or Magnetocardiography (MCG) can be helpful for physicians for instance in the localization of the origin of cardiac arrhythmia. In this paper we compare two Kalman Filter algorithms for the solution of a nonlinear state-space model and for the subsequent imaging of the activation/depolarization times of the heart muscle: the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). The algorithms are compared for simulations of a (6×6) magnetometer array, a torso model with piecewise homogeneous conductivities, 946 current dipoles located in a small part of the heart (apex), and several noise levels. It is found that for all tested noise levels the convergence of the activation times is faster for the UKF.

  8. Processing methods for photoacoustic Doppler flowmetry with a clinical ultrasound scanner

    NASA Astrophysics Data System (ADS)

    Bücking, Thore M.; van den Berg, Pim J.; Balabani, Stavroula; Steenbergen, Wiendelt; Beard, Paul C.; Brunker, Joanna

    2018-02-01

    Photoacoustic flowmetry (PAF) based on time-domain cross correlation of photoacoustic signals is a promising technique for deep tissue measurement of blood flow velocity. Signal processing has previously been developed for single element transducers. Here, the processing methods for acoustic resolution PAF using a clinical ultrasound transducer array are developed and validated using a 64-element transducer array with a -6 dB detection band of 11 to 17 MHz. Measurements were performed on a flow phantom consisting of a tube (580 μm inner diameter) perfused with human blood flowing at physiological speeds ranging from 3 to 25 mm / s. The processing pipeline comprised: image reconstruction, filtering, displacement detection, and masking. High-pass filtering and background subtraction were found to be key preprocessing steps to enable accurate flow velocity estimates, which were calculated using a cross-correlation based method. In addition, the regions of interest in the calculated velocity maps were defined using a masking approach based on the amplitude of the cross-correlation functions. These developments enabled blood flow measurements using a transducer array, bringing PAF one step closer to clinical applicability.

  9. Compressive Detection of Highly Overlapped Spectra Using Walsh-Hadamard-Based Filter Functions.

    PubMed

    Corcoran, Timothy C

    2018-03-01

    In the chemometric context in which spectral loadings of the analytes are already known, spectral filter functions may be constructed which allow the scores of mixtures of analytes to be determined in on-the-fly fashion directly, by applying a compressive detection strategy. Rather than collecting the entire spectrum over the relevant region for the mixture, a filter function may be applied within the spectrometer itself so that only the scores are recorded. Consequently, compressive detection shrinks data sets tremendously. The Walsh functions, the binary basis used in Walsh-Hadamard transform spectroscopy, form a complete orthonormal set well suited to compressive detection. A method for constructing filter functions using binary fourfold linear combinations of Walsh functions is detailed using mathematics borrowed from genetic algorithm work, as a means of optimizing said functions for a specific set of analytes. These filter functions can be constructed to automatically strip the baseline from analysis. Monte Carlo simulations were performed with a mixture of four highly overlapped Raman loadings and with ten excitation-emission matrix loadings; both sets showed a very high degree of spectral overlap. Reasonable estimates of the true scores were obtained in both simulations using noisy data sets, proving the linearity of the method.

  10. Preliminary Mechanical Characterization of Thermal Filters for the X-IFU Instrument on Athena

    NASA Astrophysics Data System (ADS)

    Barbera, Marco; Lo Cicero, Ugo; Sciortino, Luisa; Parodi, Giancarlo; D'Anca, Fabio; Giglio, Paolo; Ferruggia Bonura, Salvatore; Nuzzo, Flavio; Jimenez Escobar, Antonio; Ciaravella, Angela; Collura, Alfonso; Varisco, Salvatore; Samain, Valerie

    2018-05-01

    The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision Science Program. The X-IFU consists of a large array of TES microcalorimeters that will operate at 50 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be mounted on the cryostat thermal shields in order to attenuate the IR radiative load, to attenuate RF electromagnetic interferences, and to protect the detector from contamination. In this paper, we present the current thermal filters design, describe the filter samples developed/procured so far, and present preliminary results from the ongoing characterization tests.

  11. Development of Cryogenic Filter Wheels for the HERSCHEL Photodetector Array Camera & Spectrometer (PACS)

    NASA Technical Reports Server (NTRS)

    Koerner, Christian; Kampf, Dirk; Poglitsch, Albrecht; Schubert, Josef; Ruppert, U.; Schoele, M.

    2014-01-01

    This paper describes the two PACS Filter Wheels that are direct-drive rotational mechanisms operated at a temperature below 5K inside the PACS focal plane unit of the Herschel Satellite. The purpose of the mechanisms is to switch between filters. The rotation axis is pivoted to the support structure via a slightly preloaded pair of ball bearings and driven by a Cryotorquer. Position sensing is realized by a pair of Hall effect sensors. Powerless positioning at the filter positions is achieved by a magnetic ratchet system. The key technologies are the Cryotorquer design and the magnetic ratchet design in the low temperature range. Furthermore, we will report on lessons learned during the development and qualification of the mechanism and the paint.

  12. Glucose-Driven Fuel Cell Constructed from Enzymes and Filter Paper

    ERIC Educational Resources Information Center

    Ge, Jun; Schirhagl, Romana; Zare, Richard N.

    2011-01-01

    A glucose-driven enzymatic filter-paper fuel cell is described. A strip of filter paper coated with carbon nanotubes and the glucose oxidase enzyme functions as the anode of the enzyme fuel cell. Another strip of filter paper coated with carbon nanotubes and the laccase enzyme functions as the cathode. Between the anode and the cathode, a third…

  13. Filter Bed of Packed Spheres

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Wang, T. G.

    1986-01-01

    Spheres sized and treated for desired sieve properties. Filter constructed from densely packed spheres restrained by screens. Hollow gas-filled plastic or metal spheres normally used. Manufactured within one percent or better diameter tolerance. Normally, all spheres in filter of same nominal diameter. Filter used as sieve to pass only particles smaller than given size or to retain particles larger than that size. Options available under filter concept make it easy to design for specific applications.

  14. MST Filterability Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M. R.; Burket, P. R.; Duignan, M. R.

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRRmore » was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO 2, and NaNO 3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.« less

  15. Determining the Differential Emission Measure from EIS, XRT, and AIA

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy R.; Warren, H.P.; Schmelz, J.

    2010-01-01

    This viewgraph presentation determines the Differential Emission Measure (DEM) from the EUV Imaging Spectrometer (EIS), X Ray Telescope (XRT), and Atmospheric Imaging Array (AIA). Common observations with Fe, Si, and Ca EIS lines are shown along with observations with Al-mesh, Ti-poly Al-thick and Be-thick XRT filters. Results from these observations are shown to determine what lines and filters are important to better constrain the hot component.

  16. Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) for spaceborne measurements of CO

    NASA Astrophysics Data System (ADS)

    Johnson, Brian R.; Kampe, Thomas U.; Cook, William B.; Miecznik, Grzegorz; Novelli, Paul C.; Snell, Hilary E.; Turner-Valle, Jennifer A.

    2003-11-01

    An instrument concept for an Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) has been developed for measuring tropospheric carbon monoxide (CO) from space. The concept is based upon a correlation technique similar in nature to multi-order Fabry-Perot (FP) interferometer or gas filter radiometer techniques, which simultaneously measure atmospheric emission from several infrared vibration-rotation lines of CO. Correlation techniques provide a multiplex advantage for increased throughput, high spectral resolution and selectivity necessary for profiling tropospheric CO. Use of unconventional multilayer interference filter designs leads to improvement in CO spectral line correlation compared with the traditional FP multi-order technique, approaching the theoretical performance of gas filter correlation radiometry. In this implementation, however, the gas cell is replaced with a simple, robust solid interference filter. In addition to measuring CO, the correlation filter technique can be applied to measurements of other important gases such as carbon dioxide, nitrous oxide and methane. Imaging the scene onto a 2-D detector array enables a limited range of spectral sampling owing to the field-angle dependence of the filter transmission function. An innovative anamorphic optical system provides a relatively large instrument field-of-view for imaging along the orthogonal direction across the detector array. An important advantage of the IMOFPS concept is that it is a small, low mass and high spectral resolution spectrometer having no moving parts. A small, correlation spectrometer like IMOFPS would be well suited for global observations of CO2, CO, and CH4 from low Earth or regional observations from Geostationary orbit. A prototype instrument is in development for flight demonstration on an airborne platform with potential applications to atmospheric chemistry, wild fire and biomass burning, and chemical dispersion monitoring.

  17. Damage localization in aluminum plate with compact rectangular phased piezoelectric transducer array

    NASA Astrophysics Data System (ADS)

    Liu, Zenghua; Sun, Kunming; Song, Guorong; He, Cunfu; Wu, Bin

    2016-03-01

    In this work, a detection method for the damage in plate-like structure with a compact rectangular phased piezoelectric transducer array of 16 piezoelectric elements was presented. This compact array can not only detect and locate a single defect (through hole) in plate, but also identify multi-defects (through holes and surface defect simulated by an iron pillar glued to the plate). The experiments proved that the compact rectangular phased transducer array could detect the full range of plate structures and implement multiple-defect detection simultaneously. The processing algorithm proposed in this paper contains two parts: signal filtering and damage imaging. The former part was used to remove noise from signals. Continuous wavelet transform was applicable to signal filtering. Continuous wavelet transform can provide a plot of wavelet coefficients and the signal with narrow frequency band can be easily extracted from the plot. The latter part of processing algorithm was to implement damage detection and localization. In order to accurately locate defects and improve the imaging quality, two images were obtained from amplitude and phase information. One image was obtained with the Total Focusing Method (TFM) and another phase image was obtained with the Sign Coherence Factor (SCF). Furthermore, an image compounding technique for compact rectangular phased piezoelectric transducer array was proposed in this paper. With the proposed technique, the compounded image can be obtained by combining TFM image with SCF image, thus greatly improving the resolution and contrast of image.

  18. Beamforming strategy of ULA and UCA sensor configuration in multistatic passive radar

    NASA Astrophysics Data System (ADS)

    Hossa, Robert

    2009-06-01

    A Beamforming Network (BN) concept of Uniform Linear Array (ULA) and Uniform Circular Array (UCA) dipole configuration designed to multistatic passive radar is considered in details. In the case of UCA configuration, computationally efficient procedure of beamspace transformation from UCA to virtual ULA configuration with omnidirectional coverage is utilized. If effect, the idea of the proposed solution is equivalent to the techniques of antenna array factor shaping dedicated to ULA structure. Finally, exemplary results from the computer software simulations of elaborated spatial filtering solutions to reference and surveillance channels are provided and discussed.

  19. High voltage solar cell power generating system

    NASA Technical Reports Server (NTRS)

    Levy, E., Jr.; Opjorden, R. W.; Hoffman, A. C.

    1974-01-01

    A laboratory solar power system regulated by on-panel switches has been delivered for operating high power (3 kW), high voltage (15,000 volt) loads (communication tubes, ion thrusters). The modular system consists of 26 solar arrays, each with an integral light source and cooling system. A typical array contains 2,560 series-connected cells. Each light source consists of twenty 500-watt tungsten iodide lamps providing plus or minus 5 percent uniformity at one solar constant. An array temperature of less than 40 C is achieved using an infrared filter, a water-cooled plate, a vacuum hold-down system, and air flushing.

  20. VizieR Online Data Catalog: iz follow-up photometry of HAT-P-65 and HAT-P-66 (Hartman+, 2016)

    NASA Astrophysics Data System (ADS)

    Hartman, J. D.; Bakos, G. A.; Bhatti, W.; Penev, K.; Bieryla, A.; Latham, D. W.; Kovacs, G.; Torres, G.; Csubry, Z.; de Val-Borro, M.; Buchhave, L.; Kovacs, T.; Quinn, S.; Howard, A. W.; Isaacson, H.; Fulton, B. J.; Everett, M. E.; Esquerdo, G.; Beky, B.; Szklenar, T.; Falco, E.; Santerne, A.; Boisse, I.; Hebrard, G.; Burrows, A.; Lazar, J.; Papp, I.; Sari, P.

    2017-05-01

    Both HAT-P-65 and Both HAT-P-66 were selected as candidate transiting planet systems based on Sloan r-band photometric time series observations carried out with the HATNet telescope network. HATNet consists of six 11cm aperture telephoto lenses, each coupled to an APOGEE front-side-illuminated CCD camera, and each placed on a fully automated telescope mount. Four of the instruments are located at Fred Lawrence Whipple Observatory (FLWO) in Arizona, USA, while two are located on the roof of the Submillimeter Array hangar building at Mauna Kea Observatory (MKO) on the island of Hawaii, USA. Each instrument observes a 10.6°*10.6° field of view. We conducted follow-up photometric time series observations of each object using KeplerCam on the 1.2m telescope at FLWO. HAT-P-65 was observed on 2009 Sep-Dec with a r-band filter using the HAT-6/G342 (located at FLWO) and the HAT-8/G342 (located on the roof of the Smithsonian Astrophysical Observatory Submillimeter Array hangar building at Mauna Kea Observatory in Hawaii), and on 2011 Jun 10 (i filter), 2011 Jun 26 (i filter), 2011 Jul 14 (i filter), 2011 Sep 20 (i filter), 2013 Sep 16 (z filter), 2013 Sep 29 (i filter), and 2013 Oct 04 (i filter) using the FLWO 1.2m/KeplerCam. HAT-P-66 was observed on 2011 Feb-2012 Mar using the HAT-10/G101 (located at FLWO) with a r-band filter, using the HAT-6/G101 (located at FLWO) with a r-band filter, and using the HAT-7/G101 (located at FLWO) with a r-band filter, on 2011 Feb-2012 Apr using the HAT-5/G101 (located at FLWO) with a r-band filter, on 2011 May-2012 Jun using the HAT-8/G101 (located on the roof of the Smithsonian Astrophysical Observatory Submillimeter Array hangar building at Mauna Kea Observatory in Hawaii) with a r-band filter, on 2011 Oct-2012 Jan using the HAT-9/G101 (located at FLWO) with a r-band filter, and on 2015 Apr 29 (i filter), 2015 Nov 26 (z filter), 2015 Dec 08 (i filter) using the FLWO 1.2m/KeplerCam. Spectroscopic observations of both HAT-P-65 and HAT-P-66 were carried out using the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5m Tillinghast Reflector at FLWO (on 2010 Oct 27 for HAT-P-65, and 2014 Nov-2015 Jun for HAT-P-66), and the HIgh-Resolution Echelle Spectrometer (HIRES) on the Keck I 10m at Mauna Kea Observatory (MKO) on the island of Hawaii, USA (on 2010 Dec 14 and 2010 Dec-2013 Aug for HAT-P-65, and on 2016 Feb 3 and 2015 Dec-2016 Jan for HAT-P-66). For HAT-P-65 we also obtained observations on 2010 Aug 21-22 and 2011 Oct 8 using the Fibre-fed Echelle Spectrograph (FIES) on the 2.5m Nordic Optical Telescope (NOT) at the Observatorio del Roque de los Muchachos on the Spanish island of La Palma. For HAT-P-66 spectroscopic observations were also collected on 2015 Mar-2016 Jan using the SOPHIE spectrograph on the 1.93m telescope at the Observatoire de Haute-Provence (OHP) in France. The light curve measurements are available in Table2. The individual radial velocity and bisector span measurements are made available in Table4. (5 data files).

  1. Design of a multispectral, wedge filter, remote-sensing instrument incorporating a multiport, thinned, CCD area array

    NASA Astrophysics Data System (ADS)

    Demro, James C.; Hartshorne, Richard; Woody, Loren M.; Levine, Peter A.; Tower, John R.

    1995-06-01

    The next generation Wedge Imaging Spectrometer (WIS) instruments currently in integration at Hughes SBRD incorporate advanced features to increase operation flexibility for remotely sensed hyperspectral imagery collection and use. These features include: a) multiple linear wedge filters to tailor the spectral bands to the scene phenomenology; b) simple, replaceable fore-optics to allow different spatial resolutions and coverages; c) data acquisition system (DAS) that collects the full data stream simultaneously from both WIS instruments (VNIR and SWIR/MWIR), stores the data in a RAID storage, and provides for down-loading of the data to MO disks; the WIS DAS also allows selection of the spectral band sets to be stored; d) high-performance VNIR camera subsystem based upon a 512 X 512 CCD area array and associated electronics.

  2. Method of fabricating a scalable nanoporous membrane filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem

    A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter ofmore » the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.« less

  3. A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array.

    PubMed

    Unterseer, Sandra; Bauer, Eva; Haberer, Georg; Seidel, Michael; Knaak, Carsten; Ouzunova, Milena; Meitinger, Thomas; Strom, Tim M; Fries, Ruedi; Pausch, Hubert; Bertani, Christofer; Davassi, Alessandro; Mayer, Klaus Fx; Schön, Chris-Carolin

    2014-09-29

    High density genotyping data are indispensable for genomic analyses of complex traits in animal and crop species. Maize is one of the most important crop plants worldwide, however a high density SNP genotyping array for analysis of its large and highly dynamic genome was not available so far. We developed a high density maize SNP array composed of 616,201 variants (SNPs and small indels). Initially, 57 M variants were discovered by sequencing 30 representative temperate maize lines and then stringently filtered for sequence quality scores and predicted conversion performance on the array resulting in the selection of 1.2 M polymorphic variants assayed on two screening arrays. To identify high-confidence variants, 285 DNA samples from a broad genetic diversity panel of worldwide maize lines including the samples used for sequencing, important founder lines for European maize breeding, hybrids, and proprietary samples with European, US, semi-tropical, and tropical origin were used for experimental validation. We selected 616 k variants according to their performance during validation, support of genotype calls through sequencing data, and physical distribution for further analysis and for the design of the commercially available Affymetrix® Axiom® Maize Genotyping Array. This array is composed of 609,442 SNPs and 6,759 indels. Among these are 116,224 variants in coding regions and 45,655 SNPs of the Illumina® MaizeSNP50 BeadChip for study comparison. In a subset of 45,974 variants, apart from the target SNP additional off-target variants are detected, which show only a minor bias towards intermediate allele frequencies. We performed principal coordinate and admixture analyses to determine the ability of the array to detect and resolve population structure and investigated the extent of LD within a worldwide validation panel. The high density Affymetrix® Axiom® Maize Genotyping Array is optimized for European and American temperate maize and was developed based on a diverse sample panel by applying stringent quality filter criteria to ensure its suitability for a broad range of applications. With 600 k variants it is the largest currently publically available genotyping array in crop species.

  4. Adaptive smart simulator for characterization and MPPT construction of PV array

    NASA Astrophysics Data System (ADS)

    Ouada, Mehdi; Meridjet, Mohamed Salah; Dib, Djalel

    2016-07-01

    Partial shading conditions are among the most important problems in large photovoltaic array. Many works of literature are interested in modeling, control and optimization of photovoltaic conversion of solar energy under partial shading conditions, The aim of this study is to build a software simulator similar to hard simulator and to produce a shading pattern of the proposed photovoltaic array in order to use the delivered information to obtain an optimal configuration of the PV array and construct MPPT algorithm. Graphical user interfaces (Matlab GUI) are built using a developed script, this tool is easy to use, simple, and has a rapid of responsiveness, the simulator supports large array simulations that can be interfaced with MPPT and power electronic converters.

  5. On one-sided filters for spectral Fourier approximations of discontinuous functions

    NASA Technical Reports Server (NTRS)

    Wei, Cai; Gottlieb, David; Shu, Chi-Wang

    1991-01-01

    The existence of one-sided filters, for spectral Fourier approximations of discontinuous functions, which can recover spectral accuracy up to discontinuity from one side, was proved. A least square procedure was also used to construct such a filter and test it on several discontinuous functions numerically.

  6. Applications of ANSYS/Multiphysics at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Loughlin, Jim

    2007-01-01

    This viewgraph presentation reviews some of the uses that the ANSYS/Multiphysics system is used for at the NASA Goddard Space Flight Center. Some of the uses of the ANSYS system is used for is MEMS Structural Analysis of Micro-mirror Array for the James Web Space Telescope (JWST), Micro-shutter Array for JWST, MEMS FP Tunable Filter, AstroE2 Micro-calorimeter. Various views of these projects are shown in this presentation.

  7. Progress on applications of high temperature superconducting microwave filters

    NASA Astrophysics Data System (ADS)

    Chunguang, Li; Xu, Wang; Jia, Wang; Liang, Sun; Yusheng, He

    2017-07-01

    In the past two decades, various kinds of high performance high temperature superconducting (HTS) filters have been constructed and the HTS filters and their front-end subsystems have been successfully applied in many fields. The HTS filters with small insertion loss, narrow bandwidth, flat in-band group delay, deep out-of-band rejection, and steep skirt slope are reviewed. Novel HTS filter design technologies, including those in high power handling filters, multiband filters and frequency tunable filters, are reviewed, as well as the all-HTS integrated front-end receivers. The successful applications to various civilian fields, such as mobile communication, radar, deep space detection, and satellite technology, are also reviewed.

  8. Improved Modeling of Open Waveguide Aperture Radiators for use in Conformal Antenna Arrays

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory James

    Open waveguide apertures have been used as radiating elements in conformal arrays. Individual radiating element model patterns are used in constructing overall array models. The existing models for these aperture radiating elements may not accurately predict the array pattern for TEM waves which are not on boresight for each radiating element. In particular, surrounding structures can affect the far field patterns of these apertures, which ultimately affects the overall array pattern. New models of open waveguide apertures are developed here with the goal of accounting for the surrounding structure effects on the aperture far field patterns such that the new models make accurate pattern predictions. These aperture patterns (both E plane and H plane) are measured in an anechoic chamber and the manner in which they deviate from existing model patterns are studied. Using these measurements as a basis, existing models for both E and H planes are updated with new factors and terms which allow the prediction of far field open waveguide aperture patterns with improved accuracy. These new and improved individual radiator models are then used to predict overall conformal array patterns. Arrays of open waveguide apertures are constructed and measured in a similar fashion to the individual aperture measurements. These measured array patterns are compared with the newly modeled array patterns to verify the improved accuracy of the new models as compared with the performance of existing models in making array far field pattern predictions. The array pattern lobe characteristics are then studied for predicting fully circularly conformal arrays of varying radii. The lobe metrics that are tracked are angular location and magnitude as the radii of the conformal arrays are varied. A constructed, measured array that is close to conforming to a circular surface is compared with a fully circularly conformal modeled array pattern prediction, with the predicted lobe angular locations and magnitudes tracked, plotted and tabulated. The close match between the patterns of the measured array and the modeled circularly conformal array verifies the validity of the modeled circularly conformal array pattern predictions.

  9. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    NASA Astrophysics Data System (ADS)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  10. High Efficiency Particulate Air (HEPA) Filter Generation, Characterization, and Disposal Experiences at the Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, D. E.

    2002-02-28

    High Efficiency Particulate Air filtration is an essential component of the containment and ventilation systems supporting the research and development activities at the Oak Ridge National Laboratory. High Efficiency Particulate Air filters range in size from 7.6cm (3 inch) by 10.2 cm (4 inch) cylindrical shape filters to filter array assemblies up to 2.1 m (7 feet) high by 1.5 m (5 feet) wide. Spent filters are grouped by contaminates trapped in the filter media and become one of the components in the respective waste stream. Waste minimization and pollution prevention efforts are applied for both radiological and non-radiological applications.more » Radiological applications include laboratory hoods, glove boxes, and hot cells. High Efficiency Particulate Air filters also are generated from intake or pre-filtering applications, decontamination activities, and asbestos abatement applications. The disposal avenues include sanitary/industrial waste, Resource Conservation and Recovery Act and Toxic Substance Control Act, regulated waste, solid low-level waste, contact handled transuranic, and remote handled transuranic waste. This paper discusses characterization and operational experiences associated with the disposal of the spent filters across multiple applications.« less

  11. Radiation Hardened Low Power Digital Signal Processor

    DTIC Science & Technology

    2005-04-15

    Image Figure 53.0 Point Spread Function PSF Figure 54.0 Restored Image and Restored PSF Figure 55.0 Newly Created Array Figure 56.0 Deblurred Image and... noise and interference rejection. WOA’s of 32-taps and greater are easily managed by the TCSP. An architecture that could efficiently perform filter...to quickly calculate a Remez filter impulse response to be used in place of the window function. Using the Remez exchange algorithm to calculate the

  12. Deep-Sea Hydrothermal-Vent Sampler

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Venkateswaran, Kasthur; Matthews, Jaret B.

    2008-01-01

    An apparatus is being developed for sampling water for signs of microbial life in an ocean hydrothermal vent at a depth of as much as 6.5 km. Heretofore, evidence of microbial life in deep-sea hydrothermal vents has been elusive and difficult to validate. Because of the extreme conditions in these environments (high pressures and temperatures often in excess of 300 C), deep-sea hydrothermal- vent samplers must be robust. Because of the presumed low density of biomass of these environments, samplers must be capable of collecting water samples of significant volume. It is also essential to prevent contamination of samples by microbes entrained from surrounding waters. Prior to the development of the present apparatus, no sampling device was capable of satisfying these requirements. The apparatus (see figure) includes an intake equipped with a temperature probe, plus several other temperature probes located away from the intake. The readings from the temperature probes are utilized in conjunction with readings from flowmeters to determine the position of the intake relative to the hydrothermal plume and, thereby, to position the intake to sample directly from the plume. Because it is necessary to collect large samples of water in order to obtain sufficient microbial biomass but it is not practical to retain all the water from the samples, four filter arrays are used to concentrate the microbial biomass (which is assumed to consist of particles larger than 0.2 m) into smaller volumes. The apparatus can collect multiple samples per dive and is designed to process a total volume of 10 L of vent fluid, of which most passes through the filters, leaving a total possibly-microbe-containing sample volume of 200 mL remaining in filters. A rigid titanium nose at the intake is used for cooling the sample water before it enters a flexible inlet hose connected to a pump. As the water passes through the titanium nose, it must be cooled to a temperature that is above a mineral-precipitation temperature of 100 C but below the upper working temperature (230 C) of switching valves and tubes in the apparatus. The sample water then passes into a manifold tube, from whence the switching valves can direct the water through either a bypass tube or any one of the filter arrays, without contamination from a previous sample. Each filter array consists of series of filters having pore sizes decreasing in the direction of flow: 90-, 60-, 15-, and 7-micron prefilters and a large-surface-area 0.2-micron collection filter. All the filter taps are located between the intake and the bypass tube so that each time the bypass tube is used, the entire manifold tube is flushed as well.

  13. Newly patented process enables low-cost solution for increasing white light spectrum of LEDs

    NASA Astrophysics Data System (ADS)

    Spanard, Jan-Marie

    2017-10-01

    A newly patented process for completing the spectral light array emitted by LED bulbs provides a low-cost method for producing better human centered lighting (HCL). This process uses non-luminescent colorant filters, filling out the jagged LED spectral emission into a full, white light array. While LED bulbs have the distinct economic advantages of using less energy, producing less heat and lasting years longer than traditional incandescent bulbs, the persistent metameric failure of LED bulbs has resulted in slower, and sometimes reluctant, adoption of LED lighting by the residential, retail and architectural markets. Adding missing wavelengths to LED generated bulbs via colorant filters increases the aesthetic appeal of the light by decreasing current levels of metameric failure, reducing the `flatness', `harshness', and `dullness' of LED generated light reported by consumers. LED phosphor-converted light can be successfully tuned to "whiter" white light with selective color filtering using permanent, durable transparent pigments. These transparent pigments are selectively applied in combination with existing manufacturing technologies and utilized as a final color-tuning step in bulb design. The quantity of emitted light chosen for color filtering can be adjusted from 1% to 100% of emitted light, creating a custom balance of light quantity with light quality. This invention recognizes that "better light" is frequently chosen over "more light" in the consumer marketplace.

  14. Filtering NetCDF Files by Using the EverVIEW Slice and Dice Tool

    USGS Publications Warehouse

    Conzelmann, Craig; Romañach, Stephanie S.

    2010-01-01

    Network Common Data Form (NetCDF) is a self-describing, machine-independent file format for storing array-oriented scientific data. It was created to provide a common interface between applications and real-time meteorological and other scientific data. Over the past few years, there has been a growing movement within the community of natural resource managers in The Everglades, Fla., to use NetCDF as the standard data container for datasets based on multidimensional arrays. As a consequence, a need surfaced for additional tools to view and manipulate NetCDF datasets, specifically to filter the files by creating subsets of large NetCDF files. The U.S. Geological Survey (USGS) and the Joint Ecosystem Modeling (JEM) group are working to address these needs with applications like the EverVIEW Slice and Dice Tool, which allows users to filter grid-based NetCDF files, thus targeting those data most important to them. The major functions of this tool are as follows: (1) to create subsets of NetCDF files temporally, spatially, and by data value; (2) to view the NetCDF data in table form; and (3) to export the filtered data to a comma-separated value (CSV) file format. The USGS and JEM will continue to work with scientists and natural resource managers across The Everglades to solve complex restoration problems through technological advances.

  15. A portable array biosensor for food safety

    NASA Astrophysics Data System (ADS)

    Golden, Joel P.; Ngundi, Miriam M.; Shriver-Lake, Lisa C.; Taitt, Chris R.; Ligler, Frances S.

    2004-11-01

    An array biosensor developed for simultaneous analysis of multiple samples has been utilized to develop assays for toxins and pathogens in a variety of foods. The biochemical component of the multi-analyte biosensor consists of a patterned array of biological recognition elements immobilized on the surface of a planar waveguide. A fluorescence assay is performed on the patterned surface, yielding an array of fluorescent spots, the locations of which are used to identify what analyte is present. Signal transduction is accomplished by means of a diode laser for fluorescence excitation, optical filters and a CCD camera for image capture. A laptop computer controls the miniaturized fluidics system and image capture. Results for four mycotoxin competition assays in buffer and food samples are presented.

  16. Antenna-Coupled Bolometer Arrays for Astrophysics

    NASA Astrophysics Data System (ADS)

    Bock, James

    Bolometers offer the best sensitivity in the far-infrared to millimeter-wave region of the electromagnetic spectrum. We are developing arrays of feedhorn-coupled bolometers for the ESA/NASA Planck Surveyor and Herschel Space Observatory. Advances in the format and sensitivity of bolometric focal plane array enables future astrophysics mission opportunities, such as CMB polarimetry and far-infrared/submillimeter spectral line surveys. Compared to bolometers with extended area radiation absorbers, antenna-coupled bolometers offer active volumes that are orders of magnitude smaller. Coupled to lithographed micro-strip filters and antennas, antenna-coupled bolometer arrays allow flexible focal plane architectures specialized for imaging, polarimetry, and spectroscopy. These architectures greatly reduce the mass of sub-Kelvin bolometer focal planes that drive the design of bolometric instrumentation.

  17. Solar maximum: Solar array degradation

    NASA Technical Reports Server (NTRS)

    Miller, T.

    1985-01-01

    The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.

  18. Fluidized bed combustion bottom ash: A better and alternative geo-material resource for construction.

    PubMed

    Mandal, A K; Paramkusam, Bala Ramudu; Sinha, O P

    2018-04-01

    Though the majority of research on fly ash has proved its worth as a construction material, the utility of bottom ash is yet questionable due to its generation during the pulverized combustion process. The bottom ash produced during the fluidized bed combustion (FBC) process is attracting more attention due to the novelty of coal combustion technology. But, to establish its suitability as construction material, it is necessary to characterize it thoroughly with respect to the geotechnical as well as mineralogical points of view. For fulfilling these objectives, the present study mainly aims at characterizing the FBC bottom ash and its comparison with pulverized coal combustion (PCC) bottom ash, collected from the same origin of coal. Suitability of FBC bottom ash as a dike filter material in contrast to PCC bottom ash in replacing traditional filter material such as sand was also studied. The suitability criteria for utilization of both bottom ash and river sand as filter material on pond ash as a base material were evaluated, and both river sand and FBC bottom ash were found to be satisfactory. The study shows that FBC bottom ash is a better geo-material than PCC bottom ash, and it could be highly recommended as an alternative suitable filter material for constructing ash dikes in place of conventional sand.

  19. Chromotomography for a rotating-prism instrument using backprojection, then filtering.

    PubMed

    Deming, Ross W

    2006-08-01

    A simple closed-form solution is derived for reconstructing a 3D spatial-chromatic image cube from a set of chromatically dispersed 2D image frames. The algorithm is tailored for a particular instrument in which the dispersion element is a matching set of mechanically rotated direct vision prisms positioned between a lens and a focal plane array. By using a linear operator formalism to derive the Tikhonov-regularized pseudoinverse operator, it is found that the unique minimum-norm solution is obtained by applying the adjoint operator, followed by 1D filtering with respect to the chromatic variable. Thus the filtering and backprojection (adjoint) steps are applied in reverse order relative to an existing method. Computational efficiency is provided by use of the fast Fourier transform in the filtering step.

  20. Note: Operation of gamma-ray microcalorimeters at elevated count rates using filters with constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpert, B. K.; Horansky, R. D.; Bennett, D. A.

    Microcalorimeter sensors operated near 0.1 K can measure the energy of individual x- and gamma-ray photons with significantly more precision than conventional semiconductor technologies. Both microcalorimeter arrays and higher per pixel count rates are desirable to increase the total throughput of spectrometers based on these devices. The millisecond recovery time of gamma-ray microcalorimeters and the resulting pulse pileup are significant obstacles to high per pixel count rates. Here, we demonstrate operation of a microcalorimeter detector at elevated count rates by use of convolution filters designed to be orthogonal to the exponential tail of a preceding pulse. These filters allow operationmore » at 50% higher count rates than conventional filters while largely preserving sensor energy resolution.« less

  1. The invariant of the stiffness filter function with the weight filter function of the power function form

    NASA Astrophysics Data System (ADS)

    Shang, Zhen; Sui, Yun-Kang

    2012-12-01

    Based on the independent, continuous and mapping (ICM) method and homogenization method, a research model is constructed to propose and deduce a theorem and corollary from the invariant between the weight filter function and the corresponding stiffness filter function of the form of power function. The efficiency in searching for optimum solution will be raised via the choice of rational filter functions, so the above mentioned results are very important to the further study of structural topology optimization.

  2. Silicosis: Learn the Facts!

    MedlinePlus

    ... during water tank construction. He wore a charcoal filter respirator while sandblasting, but it was the wrong ... properly fitted and selected respirator (e.g. particulate filter or airline supplied air respirator) designated for protection ...

  3. Electrically tunable infrared filter based on the liquid crystal Fabry-Perot structure for spectral imaging detection.

    PubMed

    Zhang, Huaidong; Muhammmad, Afzal; Luo, Jun; Tong, Qing; Lei, Yu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2014-09-01

    An electrically tunable infrared (IR) filter based on the liquid crystal (LC) Fabry-Perot (FP) key structure, which works in the wavelength range from 5.5 to 12 μm, is designed and fabricated successfully. Both planar reflective mirrors with a very high reflectivity of ∼95%, which are shaped by depositing a layer of aluminum (Al) film over one side of a double-sided polished zinc selenide wafer, are coupled into a dual-mirror FP cavity. The LC materials are filled into the FP cavity with a thickness of ∼7.5  μm for constructing the LC-FP filter, which is a typical type of sandwich architecture. The top and bottom mirrors of the FP cavity are further coated by an alignment layer with a thickness of ∼100  nm over Al film. The formed alignment layer is rubbed strongly to shape relatively deep V-grooves to anchor LC molecules effectively. Common optical tests show some particular properties; for instance, the existing three transmission peaks in the measured wavelength range, the minimum full width at half-maximum being ∼120  nm, and the maximum adjustment extent of the imaging wavelength being ∼500  nm through applying the voltage driving signal with a root mean square (RMS) value ranging from 0 to ∼19.8  V. The experiment results are consistent with the simulation, according to our model setup. The spectral images obtained in the long-wavelength IR range, through the LC-FP device driven by the voltage signal with a different RMS value, demonstrates the prospect of the realization of smart spectral imaging and further integrating the LC-FP filter with IR focal plane arrays. The developed LC-FP filters show some advantages, such as electrically tunable imaging wavelength, very high structural and photoelectronic response stability, small size and low power consumption, and a very high filling factor of more than 95% compared with common MEMS-FP spectral imaging approaches.

  4. Structural model of standard ultrasonic transducer array developed for FEM analysis of mechanical crosstalk.

    PubMed

    Celmer, M; Opieliński, K J; Dopierała, M

    2018-02-01

    One of the reasons of distortions in ultrasonic imaging are crosstalk effects. They can be divided into groups according to the way of their formation. One of them is constituted by mechanical crosstalk, which is propagated by a construction of a multi-element array of piezoelectric transducers. When an individual transducer is excited, mechanical vibrations are transferred to adjacent construction components, thereby stimulating neighboring transducers to an undesired operation. In order to explore ways of the propagation of such vibrations, the authors developed the FEM model of the array of piezoelectric transducers designed for calculations in COMSOL Multiphysics software. Simulations of activating individual transducers and calculated electrical voltages appearing on transducers unstimulated intentionally, were performed in the time domain in order to assess the propagation velocity of different vibration modes through the construction elements. On this basis, conclusions were drawn in terms of the participation of various construction parts of the array of piezoelectric transducers in the process of creating the mechanical crosstalk. The elaborated FEM model allowed also to examine the ways aimed at reducing the transmission of mechanical crosstalk vibrations through the components of the array. Studies showed that correct cuts in the fasteners and the front layer improve the reduction of the mechanical crosstalk effect. The model can become a helpful tool in the process of design and modifications of manufactured ultrasonic arrays particularly in terms of mechanical crosstalk reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. KSC-2012-6403

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, groundbreaking will begin for the construction of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM, system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers will begin construction on the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and prepare the site for the operations command center facility. Photo credit: NASA/Charisse Nahser

  6. Precise and versatile formula for birefringent filters

    NASA Astrophysics Data System (ADS)

    Shao, Zhongxing

    1996-07-01

    In an investigation of extraordinary-(E-) ray behavior and the index of refraction for E waves in a uniaxial crystal, a precise and versatile formula for birefringent filters, based on the exact construction of the optical path difference, is set up with neither the approximation Delta n = no - ne less than or equals no (or n e), nor the ambiguity sin( theta )/sin(rw) = ne. The exact construction gives the correct variation of the position and the dimension in each path, yielding the path difference while the filter is tuning. The formula is applicable not only to a filter with its optical axis parallel to the entrance surface (FAPS) but also to a filter with its axis inclined to the surface (FAIS). Also, the formula indicates that a FAIS allows laser wavelengths to be tuned over a wider range than does a FAPS. The origin of the wider range is interpreted to be the greater variation in the index for the FAIS while the filter is tuning. With the help of the formula we design a FAIS for tuning a cw 42.25.Lc.

  7. Hemispherical array of sensors with contractively wrapped polymer petals for flow sensing

    NASA Astrophysics Data System (ADS)

    Kanhere, Elgar; Wang, Nan; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael

    2017-11-01

    Hemispherical arrays have inherent advantages that allow simultaneous detection of flow speed and direction due to their shape. Though MEMS technology has progressed leaps and bounds, fabrication of array of sensors on a hemispherical surface is still a challenge. In this work, a novel approach of constructing hemispherical array is presented which employs a technique of contractively wrapping a hemispherical surface with flexible liquid crystal polymer petals. This approach also leverages the offerings from rapid prototyping technology and established standard MEMS fabrication processes. Hemispherical arrays of piezoresistive sensors are constructed with two types of petal wrappings, 4-petals and 8-petals, on a dome. The flow sensing and direction detection abilities of the dome are evaluated through experiments in wind tunnel. Experimental results demonstrate that a dome equipped with a dense array of sensors can provide information pertaining to the stimulus, through visualization of output profile over the entire surface.

  8. Adaptive smart simulator for characterization and MPPT construction of PV array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouada, Mehdi, E-mail: mehdi.ouada@univ-annaba.org; Meridjet, Mohamed Salah; Dib, Djalel

    2016-07-25

    Partial shading conditions are among the most important problems in large photovoltaic array. Many works of literature are interested in modeling, control and optimization of photovoltaic conversion of solar energy under partial shading conditions, The aim of this study is to build a software simulator similar to hard simulator and to produce a shading pattern of the proposed photovoltaic array in order to use the delivered information to obtain an optimal configuration of the PV array and construct MPPT algorithm. Graphical user interfaces (Matlab GUI) are built using a developed script, this tool is easy to use, simple, and hasmore » a rapid of responsiveness, the simulator supports large array simulations that can be interfaced with MPPT and power electronic converters.« less

  9. Generation of Custom DSP Transform IP Cores: Case Study Walsh-Hadamard Transform

    DTIC Science & Technology

    2002-09-01

    mathematics and hardware design What I know: Finite state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing...state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing Adaptive filter theory … A math guy A hardware engineer...Synthesis Technology Libary Bit-width (8) HF factor (1,2,3,6) VF factor (1,2,4, ... 32) Xilinx FPGA Place&Route Xilinx FPGA Place&Route Performance

  10. Performance comparisons on spatial lattice algorithm and direct matrix inverse method with application to adaptive arrays processing

    NASA Technical Reports Server (NTRS)

    An, S. H.; Yao, K.

    1986-01-01

    Lattice algorithm has been employed in numerous adaptive filtering applications such as speech analysis/synthesis, noise canceling, spectral analysis, and channel equalization. In this paper the application to adaptive-array processing is discussed. The advantages are fast convergence rate as well as computational accuracy independent of the noise and interference conditions. The results produced by this technique are compared to those obtained by the direct matrix inverse method.

  11. Breast cancer detection using time reversal

    NASA Astrophysics Data System (ADS)

    Sheikh Sajjadieh, Mohammad Hossein

    Breast cancer is the second leading cause of cancer death after lung cancer among women. Mammography and magnetic resonance imaging (MRI) have certain limitations in detecting breast cancer, especially during its early stage of development. A number of studies have shown that microwave breast cancer detection has potential to become a successful clinical complement to the conventional X-ray mammography. Microwave breast imaging is performed by illuminating the breast tissues with an electromagnetic waveform and recording its reflections (backscatters) emanating from variations in the normal breast tissues and tumour cells, if present, using an antenna array. These backscatters, referred to as the overall (tumour and clutter) response, are processed to estimate the tumour response, which is applied as input to array imaging algorithms used to estimate the location of the tumour. Due to changes in the breast profile over time, the commonly utilized background subtraction procedures used to estimate the target (tumour) response in array processing are impractical for breast cancer detection. The thesis proposes a new tumour estimation algorithm based on a combination of the data adaptive filter with the envelope detection filter (DAF/EDF), which collectively do not require a training step. After establishing the superiority of the DAF/EDF based approach, the thesis shows that the time reversal (TR) array imaging algorithms outperform their conventional conterparts in detecting and localizing tumour cells in breast tissues at SNRs ranging from 15 to 30dB.

  12. Mosaic-Detector-Based Fluorescence Spectral Imager

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong

    2007-01-01

    A battery-powered, pen-sized, portable instrument for measuring molecular fluorescence spectra of chemical and biological samples in the field has been proposed. Molecular fluorescence spectroscopy is among the techniques used most frequently in laboratories to analyze compositions of chemical and biological samples. Heretofore, it has been possible to measure fluorescence spectra of molecular species at relative concentrations as low as parts per billion (ppb), with a few nm spectral resolution. The proposed instrument would include a planar array (mosaic) of detectors, onto which a fluorescence spectrum would be spatially mapped. Unlike in the larger laboratory-type molecular fluorescence spectrometers, mapping of wavelengths to spatial positions would be accomplished without use of relatively bulky optical parts. The proposed instrument is expected to be sensitive enough to enable measurement of spectra of chemical species at relative concentrations <1 ppb, with spectral resolution that could be tailored by design to be comparable to a laboratory molecular fluorescence spectrometer. The proposed instrument (see figure) would include a button-cell battery and a laser diode, which would generate the monochromatic ultraviolet light needed to excite fluorescence in a sample. The sample would be held in a cell bounded by far-ultraviolet-transparent quartz or optical glass. The detector array would be, more specifically, a complementary metal oxide/ semiconductor or charge-coupled- device imaging photodetector array, the photodetectors of which would be tailored to respond to light in the wavelength range of the fluorescence spectrum to be measured. The light-input face of the photodetector array would be covered with a matching checkerboard array of multilayer thin film interference filters, such that each pixel in the array would be sensitive only to light in a spectral band narrow enough so as not to overlap significantly with the band of an adjacent pixel. The wavelength interval between adjacent pixels (and, thus, the spectral resolution) would typically be chosen by design to be approximately equal to the width of the total fluorescence wavelength range of interest divided by the number of pixels. The unitary structure comprising the photodetector array overlaid with the matching filter array would be denoted a hyperspectral mosaic detector (HMD) array.

  13. Bolometeric detector arrays for CMB polarimetry

    NASA Technical Reports Server (NTRS)

    Kuo, C. L.; Bock, J. J.; Day, P.; Goldin, A.; Golwala, S.; Holmes, W.; Irwin, K.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; hide

    2005-01-01

    We describe the development of antenna coupled bolometers for CMB polarization experiments. The necessary components of a bolometric CMB polarimeter - a beam forming element, a band defining filter, and detectors - are all fabricated on a silicon chip with photolithography.

  14. DMD-based implementation of patterned optical filter arrays for compressive spectral imaging.

    PubMed

    Rueda, Hoover; Arguello, Henry; Arce, Gonzalo R

    2015-01-01

    Compressive spectral imaging (CSI) captures multispectral imagery using fewer measurements than those required by traditional Shannon-Nyquist theory-based sensing procedures. CSI systems acquire coded and dispersed random projections of the scene rather than direct measurements of the voxels. To date, the coding procedure in CSI has been realized through the use of block-unblock coded apertures (CAs), commonly implemented as chrome-on-quartz photomasks. These apertures block or permit us to pass the entire spectrum from the scene at given spatial locations, thus modulating the spatial characteristics of the scene. This paper extends the framework of CSI by replacing the traditional block-unblock photomasks by patterned optical filter arrays, referred to as colored coded apertures (CCAs). These, in turn, allow the source to be modulated not only spatially but spectrally as well, entailing more powerful coding strategies. The proposed CCAs are synthesized through linear combinations of low-pass, high-pass, and bandpass filters, paired with binary pattern ensembles realized by a digital micromirror device. The optical forward model of the proposed CSI architecture is presented along with a proof-of-concept implementation, which achieves noticeable improvements in the quality of the reconstruction.

  15. First Results from Contamination Monitoring with the WFC3 UVIS G280 Grism

    NASA Astrophysics Data System (ADS)

    Rothberg, B.; Pirzkal, N.; Baggett, S.

    2011-11-01

    The presence of contaminants within the optical light path of the instrument or telescope can alter photometric zeropoints and the observed flux levels of imaging and spectra, particularly at UV wavelengths. Regular monitoring of a spectro-photometric standard star using photometric filters has been used in the past to monitor the presence of contaminants and (when necessary) re-calibrate zeropoints. However, the use of the WFC3 UVIS Grism mode (G280 filter) may provide a more robust early alert detection system for the presence of contaminants, in particular, those that are photo-polymerized from the bright Earth. These contaminants may collect on surfaces in the optical light path of the telescope. The G280 grism is sensitive to light at wavelengths below the cutoff of the bluest UV filter (F218W). In this ISR, we present: 1) the first results from G280 monitoring for the period of 2010-November through 2011-August; 2) the discovery of an anomaly in the WCS header information of sub-array exposures; and 3) an outline for reducing standard G280 grism observations and the specialized case of observations obtained in sub-array mode.

  16. New quality measure for SNP array based CNV detection.

    PubMed

    Macé, A; Tuke, M A; Beckmann, J S; Lin, L; Jacquemont, S; Weedon, M N; Reymond, A; Kutalik, Z

    2016-11-01

    Only a few large systematic studies have evaluated the impact of copy number variants (CNVs) on common diseases. Several million individuals have been genotyped on single nucleotide variation arrays, which could be used for genome-wide CNVs association studies. However, CNV calls remain prone to false positives and only empirical filtering strategies exist in the literature. To overcome this issue, we defined a new quality score (QS) estimating the probability of a CNV called by PennCNV to be confirmed by other software. Out-of-sample comparison showed that the correlation between the consensus CNV status and the QS is twice as high as it is for any previously proposed CNV filters. ROC curves displayed an AUC higher than 0.8 and simulations showed an increase up to 20% in statistical power when using QS in comparison to other filtering strategies. Superior performance was confirmed also for alternative consensus CNV definition and through improving known CNV-trait associations. http://goo.gl/T6yuFM CONTACT: zoltan.kutalik@unil.ch or aurelien@mace@unil.chSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Two multichannel integrated circuits for neural recording and signal processing.

    PubMed

    Obeid, Iyad; Morizio, James C; Moxon, Karen A; Nicolelis, Miguel A L; Wolf, Patrick D

    2003-02-01

    We have developed, manufactured, and tested two analog CMOS integrated circuit "neurochips" for recording from arrays of densely packed neural electrodes. Device A is a 16-channel buffer consisting of parallel noninverting amplifiers with a gain of 2 V/V. Device B is a 16-channel two-stage analog signal processor with differential amplification and high-pass filtering. It features selectable gains of 250 and 500 V/V as well as reference channel selection. The resulting amplifiers on Device A had a mean gain of 1.99 V/V with an equivalent input noise of 10 microV(rms). Those on Device B had mean gains of 53.4 and 47.4 dB with a high-pass filter pole at 211 Hz and an equivalent input noise of 4.4 microV(rms). Both devices were tested in vivo with electrode arrays implanted in the somatosensory cortex.

  18. A digital optical phase-locked loop for diode lasers based on field programmable gate array.

    PubMed

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382∕MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad(2) and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  19. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    NASA Astrophysics Data System (ADS)

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad2 and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  20. Model-based adaptive 3D sonar reconstruction in reverberating environments.

    PubMed

    Saucan, Augustin-Alexandru; Sintes, Christophe; Chonavel, Thierry; Caillec, Jean-Marc Le

    2015-10-01

    In this paper, we propose a novel model-based approach for 3D underwater scene reconstruction, i.e., bathymetry, for side scan sonar arrays in complex and highly reverberating environments like shallow water areas. The presence of multipath echoes and volume reverberation generates false depth estimates. To improve the resulting bathymetry, this paper proposes and develops an adaptive filter, based on several original geometrical models. This multimodel approach makes it possible to track and separate the direction of arrival trajectories of multiple echoes impinging the array. Echo tracking is perceived as a model-based processing stage, incorporating prior information on the temporal evolution of echoes in order to reject cluttered observations generated by interfering echoes. The results of the proposed filter on simulated and real sonar data showcase the clutter-free and regularized bathymetric reconstruction. Model validation is carried out with goodness of fit tests, and demonstrates the importance of model-based processing for bathymetry reconstruction.

  1. A Method of Effective Quarry Water Purifying Using Artificial Filtering Arrays

    NASA Astrophysics Data System (ADS)

    Tyulenev, M.; Garina, E.; Khoreshok, A.; Litvin, O.; Litvin, Y.; Maliukhina, E.

    2017-01-01

    The development of open pit mining in the large coal basins of Russia and other countries increases their negative impact on the environment. Along with the damage of land and air pollution by dust and combustion gases of blasting, coal pits have a significant negative impact on water resources. Polluted quarry water worsens the ecological situation on a much larger area than covered by air pollution and land damage. This significantly worsens the conditions of people living in cities and towns located near the coal pits, and complicates the subsequent restoration of the environment, irreversibly destroying the nature. Therefore, the research of quarry wastewater purifying is becoming an important mater for scholars of technical colleges and universities in the regions with developing open-pit mining. This paper describes the method of determining the basic parameters of the artificial filtering arrays formed on coal pits of Kuzbass (Western Siberia, Russia), and gives recommendations on its application.

  2. Two-dimensional frequency scanning from a metasurface-based Fabry–Pérot resonant cavity

    NASA Astrophysics Data System (ADS)

    Yang, Pei; Yang, Rui

    2018-06-01

    A spatial angular filtering metasurface is introduced into a Fabry–Pérot (FP) resonant cavity design for the frequency scanning performance in this paper. More specifically, asymmetrical unit cells printed on the metasurface enable the radiation energy to move in different directions as the frequency changes, and the released emissions, meanwhile, are split into dual-beams from the initial pencil beam. We continue to implement a patch array to provide excitation with the aim of achieving scanned beams in another dimension, and the proposed design ultimately demonstrates a two-dimensional dual-beam scanning performance with 42° and 9° scanning angles respectively in two dimensions of the coordinate system over a frequency range from 10.50 GHz–11.25 GHz. The proposed technique, by integrating a spatial angular filtering metasurface with a patch array feed to generate steerable beams, should offer an efficient way to fulfill FP resonant cavities with reconfigurable radiation.

  3. Combinatorial Libraries of Arrayable Single-Chain Antibodies

    NASA Astrophysics Data System (ADS)

    Benhar, Itai

    Antibodies that bind their respective targets with high affinity and specificity have proven to be essential reagents for biological research. Antibody phage display has become the leading tool for the rapid isolation of single-chain variable fragment (scFv) antibodies in vitro for research applications, but there is usually a gap between scFv isolation and its application in an array format suitable for high-throughput proteomics. In this chapter, we present our antibody phage display system where antibody isolation and scFv immobilization are facilitated by the design of the phagemid vector used as platform. In our system, the scFvs are fused at their C-termini to a cellulose-binding domain (CBD) and can be immobilized onto cellulose-based filters. This made it possible to develop a unique filter lift screen that allowed the efficient screen for multiple binding specificities, and to directly apply library-derived scFvs in an antibody spotted microarray.

  4. Opening and closing of band gaps in magnonic waveguide by rotating the triangular antidots - A micromagnetic study

    NASA Astrophysics Data System (ADS)

    Vivek, T.; Bhoomeeswaran, H.; Sabareesan, P.

    2018-05-01

    Spin waves in ID periodic triangular array of antidots are encarved in a permalloy magnonic waveguide is investigated through micromagnetic simulation. The effect of the rotating array of antidots and in-plane rotation of the scattering centers on the band structure are investigated, to indicate new possibilities of fine tuning of spin-wave filter pass and stop bands. The results show that, the opening and closing of band gaps paves a way for band pass and stop filters on waveguide. From the results, the scattering center and strong spatial distribution field plays crucible role for controlling opening and closing bandgap width of ˜12 GHz for 0° rotation. We have obtained a single narrow bandgap of width 1GHz is obtained for 90° rotation of the antidot. Similarly, the tunability is achieved for desired microwave applications done by rotating triangular antidots with different orientation.

  5. Decoding grating orientation from microelectrode array recordings in monkey cortical area V4.

    PubMed

    Manyakov, Nikolay V; Van Hulle, Marc M

    2010-04-01

    We propose an invasive brain-machine interface (BMI) that decodes the orientation of a visual grating from spike train recordings made with a 96 microelectrodes array chronically implanted into the prelunate gyrus (area V4) of a rhesus monkey. The orientation is decoded irrespective of the grating's spatial frequency. Since pyramidal cells are less prominent in visual areas, compared to (pre)motor areas, the recordings contain spikes with smaller amplitudes, compared to the noise level. Hence, rather than performing spike decoding, feature selection algorithms are applied to extract the required information for the decoder. Two types of feature selection procedures are compared, filter and wrapper. The wrapper is combined with a linear discriminant analysis classifier, and the filter is followed by a radial-basis function support vector machine classifier. In addition, since we have a multiclass classification problen, different methods for combining pairwise classifiers are compared.

  6. Estimation of color filter array data from JPEG images for improved demosaicking

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Reeves, Stanley J.

    2006-02-01

    On-camera demosaicking algorithms are necessarily simple and therefore do not yield the best possible images. However, off-camera demosaicking algorithms face the additional challenge that the data has been compressed and therefore corrupted by quantization noise. We propose a method to estimate the original color filter array (CFA) data from JPEG-compressed images so that more sophisticated (and better) demosaicking schemes can be applied to get higher-quality images. The JPEG image formation process, including simple demosaicking, color space transformation, chrominance channel decimation and DCT, is modeled as a series of matrix operations followed by quantization on the CFA data, which is estimated by least squares. An iterative method is used to conserve memory and speed computation. Our experiments show that the mean square error (MSE) with respect to the original CFA data is reduced significantly using our algorithm, compared to that of unprocessed JPEG and deblocked JPEG data.

  7. Generation of red color and near infrared bandpass filters using nano-scale plasmonic structures

    NASA Astrophysics Data System (ADS)

    Sokar, Ahmed A. Z.; Hutter, Franz X.; Burghartz, Joachim N.

    2015-05-01

    Extraordinary/Enhanced optical transmission (EOT) is studied in the realization of plasmonic based filters in the visible range and near infrared spectrum for the purpose of substituting the Bayer-pattern filter with a new CMOS-compatible filter which can be easily tuned to provide different filter spectra. The filters studied in this paper are based on nano-structured 150nm thick Aluminum (Al) layer sandwiched between silicon dioxide (SiO2) layers. The resonance wavelengths achieved by the filters are at 700nm and 950 nm. Three parameters are used for tuning the two filters, i.e., aperture area, the period, and the holes arrangement (square or rhombic lattice). The filter is based on the principle of surface plasmon polaritons (SPPs), where the electromagnetic waves of the incident light couples with the free charges of the metal at the metal-dielectric interface. EOT is observed when the metal is structured with apertures such as rectangular, circular, cross, bowtie, etc. The resonance frequency in that case depends on the shape of the aperture, material used, the size of the apertures, the period of the array, and the surrounding material. The fabricated two filters show EOT at wavelengths as designed and simulated with blueshift in the peak location.

  8. Image scanning microscopy using a SPAD detector array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Castello, Marco; Tortarolo, Giorgio; Buttafava, Mauro; Tosi, Alberto; Sheppard, Colin J. R.; Diaspro, Alberto; Vicidomini, Giuseppe

    2017-02-01

    The use of an array of detectors can help overcoming the traditional limitation of confocal microscopy: the compromise between signal and theoretical resolution. Each element independently records a view of the sample and the final image can be reconstructed by pixel reassignment or by inverse filtering (e.g. deconvolution). In this work, we used a SPAD array of 25 detectors specifically designed for this goal and our scanning microscopy control system (Carma) to acquire the partial images and to perform online image processing. Further work will be devoted to optimize the image reconstruction step and to improve the fill-factor of the detector.

  9. The Lockheed alternate partial polarizer universal filter

    NASA Technical Reports Server (NTRS)

    Title, A. M.

    1976-01-01

    A tunable birefringent filter using an alternate partial polarizer design has been built. The filter has a transmission of 38% in polarized light. Its full width at half maximum is .09A at 5500A. It is tunable from 4500 to 8500A by means of stepping motor actuated rotating half wave plates and polarizers. Wave length commands and thermal compensation commands are generated by a PPD 11/10 minicomputer. The alternate partial polarizer universal filter is compared with the universal birefringent filter and the design techniques, construction methods, and filter performance are discussed in some detail. Based on the experience of this filter some conclusions regarding the future of birefringent filters are elaborated.

  10. Analysis of quality raw data of second generation sequencers with Quality Assessment Software.

    PubMed

    Ramos, Rommel Tj; Carneiro, Adriana R; Baumbach, Jan; Azevedo, Vasco; Schneider, Maria Pc; Silva, Artur

    2011-04-18

    Second generation technologies have advantages over Sanger; however, they have resulted in new challenges for the genome construction process, especially because of the small size of the reads, despite the high degree of coverage. Independent of the program chosen for the construction process, DNA sequences are superimposed, based on identity, to extend the reads, generating contigs; mismatches indicate a lack of homology and are not included. This process improves our confidence in the sequences that are generated. We developed Quality Assessment Software, with which one can review graphs showing the distribution of quality values from the sequencing reads. This software allow us to adopt more stringent quality standards for sequence data, based on quality-graph analysis and estimated coverage after applying the quality filter, providing acceptable sequence coverage for genome construction from short reads. Quality filtering is a fundamental step in the process of constructing genomes, as it reduces the frequency of incorrect alignments that are caused by measuring errors, which can occur during the construction process due to the size of the reads, provoking misassemblies. Application of quality filters to sequence data, using the software Quality Assessment, along with graphing analyses, provided greater precision in the definition of cutoff parameters, which increased the accuracy of genome construction.

  11. Sub-grid drag model for immersed vertical cylinders in fluidized beds

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; Dietiker, Jean -Francois; ...

    2017-01-03

    Immersed vertical cylinders are often used as heat exchanger in gas-solid fluidized beds. Computational Fluid Dynamics (CFD) simulations are computationally expensive for large scale systems with bundles of cylinders. Therefore sub-grid models are required to facilitate simulations on a coarse grid, where internal cylinders are treated as a porous medium. The influence of cylinders on the gas-solid flow tends to enhance segregation and affect the gas-solid drag. A correction to gas-solid drag must be modeled using a suitable sub-grid constitutive relationship. In the past, Sarkar et al. have developed a sub-grid drag model for horizontal cylinder arrays based on 2Dmore » simulations. However, the effect of a vertical cylinder arrangement was not considered due to computational complexities. In this study, highly resolved 3D simulations with vertical cylinders were performed in small periodic domains. These simulations were filtered to construct a sub-grid drag model which can then be implemented in coarse-grid simulations. Gas-solid drag was filtered for different solids fractions and a significant reduction in drag was identified when compared with simulation without cylinders and simulation with horizontal cylinders. Slip velocities significantly increase when vertical cylinders are present. Lastly, vertical suspension drag due to vertical cylinders is insignificant however substantial horizontal suspension drag is observed which is consistent to the finding for horizontal cylinders.« less

  12. Printed Graphene Derivative Circuits as Passive Electrical Filters

    PubMed Central

    Sinar, Dogan

    2018-01-01

    The objective of this study is to inkjet print resistor-capacitor (RC) low pass electrical filters, using a novel water-based cellulose graphene ink, and compare the voltage-frequency and transient behavior to equivalent circuits constructed from discrete passive components. The synthesized non-toxic graphene-carboxymethyl cellulose (G-CMC) ink is deposited on mechanically flexible polyimide substrates using a customized printer that dispenses functionalized aqueous solutions. The design of the printed first-order and second-order low-pass RC filters incorporate resistive traces and interdigitated capacitors. Low pass filter characteristics, such as time constant, cut-off frequency and roll-off rate, are determined for comparative analysis. Experiments demonstrate that for low frequency applications (<100 kHz) the printed graphene derivative circuits performed as well as the circuits constructed from discrete resistors and capacitors for both low pass filter and RC integrator applications. The impact of mechanical stress due to bending on the electrical performance of the flexible printed circuits is also investigated. PMID:29473890

  13. Printed Graphene Derivative Circuits as Passive Electrical Filters.

    PubMed

    Sinar, Dogan; Knopf, George K

    2018-02-23

    The objective of this study is to inkjet print resistor-capacitor ( RC ) low pass electrical filters, using a novel water-based cellulose graphene ink, and compare the voltage-frequency and transient behavior to equivalent circuits constructed from discrete passive components. The synthesized non-toxic graphene-carboxymethyl cellulose (G-CMC) ink is deposited on mechanically flexible polyimide substrates using a customized printer that dispenses functionalized aqueous solutions. The design of the printed first-order and second-order low-pass RC filters incorporate resistive traces and interdigitated capacitors. Low pass filter characteristics, such as time constant, cut-off frequency and roll-off rate, are determined for comparative analysis. Experiments demonstrate that for low frequency applications (<100 kHz) the printed graphene derivative circuits performed as well as the circuits constructed from discrete resistors and capacitors for both low pass filter and RC integrator applications. The impact of mechanical stress due to bending on the electrical performance of the flexible printed circuits is also investigated.

  14. Use of electrochromic materials in adaptive optics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammler, Daniel R.; Sweatt, William C.; Verley, Jason C.

    Electrochromic (EC) materials are used in 'smart' windows that can be darkened by applying a voltage across an EC stack on the window. The associated change in refractive index (n) in the EC materials might allow their use in tunable or temperature-insensitive Fabry-Perot filters and transmissive-spatial-light-modulators (SLMs). The authors are conducting a preliminary evaluation of these materials in many applications, including target-in-the-loop systems. Data on tungsten oxide, WO{sub 3}, the workhorse EC material, indicate that it's possible to achieve modest changes in n with only slight increases in absorption between the visible and {approx}10 {micro}m. This might enable construction ofmore » a tunable Fabry-Perot filter consisting of an active EC layer (e.g. WO{sub 3}) and a proton conductor (e.g.Ta{sub 2}O{sub 5}) sandwiched between two gold electrodes. A SLM might be produced by replacing the gold with a transparent conductor (e.g. ITO). This SLM would allow broad-band operation like a micromirror array. Since it's a transmission element, simple optical designs like those in liquid-crystal systems would be possible. Our team has fabricated EC stacks and characterized their switching speed and optical properties (n, k). We plan to study the interplay between process parameters, film properties, and performance characteristics associated with the FP-filter and then extend what we learn to SLMs. Our goals are to understand whether the changes in absorption associated with changes in n are acceptable, and whether it's possible to design an EC-stack that's fast enough to be interesting. We'll present our preliminary findings regarding the potential viability of EC materials for target-in-the-loop applications.« less

  15. Modeling Flow Past a Tilted Vena Cava Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, M A; Wang, S L

    Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside amore » model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.« less

  16. Hand-Held Color Meters Based on Interference Filters

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui

    2004-01-01

    Small, inexpensive, hand-held optoelectronic color-measuring devices based on metal-film/dielectric-film interference filters are undergoing development. These color meters could be suitable for use in a variety of applications in which there are requirements to quantify or match colors for aesthetic purposes but there is no need for the high spectral resolution of scientific-grade spectrometers. Such applications typically occur in the paint, printing, and cosmetic industries, for example. The figure schematically depicts a color meter of this type being used to measure the color of a sample in terms of the spectrum of light reflected from the sample. Light from a white source (for example, a white light-emitting diode) passes through a collimating lens to the sample. Another lens collects some of the light reflected from the sample and focuses the light onto the input end of optical fiber. Light emerging from the output end of the optical fiber illuminates an array of photodetectors covered with metal/dielectric-film interference filters like those described in Metal/Dielectric-film Interference Color Filters (NPO-20217), NASA Tech Briefs, Vol. 23, No. 2 (February 1999), page 70. Typically, these are wide-band-pass filters, as shown at the bottom of the figure. The photodetector array need not be of any particular design: it could be something as simple as an assembly containing several photodiodes or something as elaborate as an active-pixel sensor or other imaging device. What is essential is that each of the photodetectors or each of several groups of photodetectors is covered with a metal/dielectric-film filter of a different color. In most applications, it would be desirable to have at least three different filters, each for a spectral band that contains one of the three primary additive red, green, and blue colors. In some applications, it may be necessary to have more than three different color filters in order to characterize subtle differences in color (or in the sensation of color) that cannot be characterized with sufficient precision by use of the primary colors alone.

  17. Real-time Kalman filter: Cooling of an optically levitated nanoparticle

    NASA Astrophysics Data System (ADS)

    Setter, Ashley; Toroš, Marko; Ralph, Jason F.; Ulbricht, Hendrik

    2018-03-01

    We demonstrate that a Kalman filter applied to estimate the position of an optically levitated nanoparticle, and operated in real-time within a field programmable gate array, is sufficient to perform closed-loop parametric feedback cooling of the center-of-mass motion to sub-Kelvin temperatures. The translational center-of-mass motion along the optical axis of the trapped nanoparticle has been cooled by 3 orders of magnitude, from a temperature of 300 K to a temperature of 162 ±15 mK.

  18. Design of a miniature solid state NIR spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyi; Wang, Xiaolu L.; Soos, Jolanta I.; Crisp, Joy A.

    1995-06-01

    For aerospace applications a miniature, solid-state near infrared (NIR) spectrometer based on an acousto-optic tunable filter (AOTF) has been developed and built at Brimrose Corp. of America. In this spectrometer a light emitting diode (LED) array as light source, a set of optical fibers as the lightwave transmission route, and a miniature AOTF as a tunable filter were adopted. This approach makes the spectrometer very compact, light-weight, rugged and reliable, with low operating power and long lifetime.

  19. Evaluation of an innovative color sensor for space application

    NASA Astrophysics Data System (ADS)

    Cessa, Virginie; Beauvivre, Stéphane; Pittet, Jacques; Dougnac, Virgile; Fasano, M.

    2017-11-01

    We present in this paper an evaluation of an innovative image sensor that provides color information without the need of organic filters. The sensor is a CMOS array with more than 4 millions pixels which filters the incident photons into R, G, and B channels, delivering the full resolution in color. Such a sensor, combining high performance with low power consumption, is of high interest for future space missions. The paper presents the characteristics of the detector as well as the first results of environmental testing.

  20. Fast multiview three-dimensional reconstruction method using cost volume filtering

    NASA Astrophysics Data System (ADS)

    Lee, Seung Joo; Park, Min Ki; Jang, In Yeop; Lee, Kwan H.

    2014-03-01

    As the number of customers who want to record three-dimensional (3-D) information using a mobile electronic device increases, it becomes more and more important to develop a method which quickly reconstructs a 3-D model from multiview images. A fast multiview-based 3-D reconstruction method is presented, which is suitable for the mobile environment by constructing a cost volume of the 3-D height field. This method consists of two steps: the construction of a reliable base surface and the recovery of shape details. In each step, the cost volume is constructed using photoconsistency and then it is filtered according to the multiscale. The multiscale-based cost volume filtering allows the 3-D reconstruction to maintain the overall shape and to preserve the shape details. We demonstrate the strength of the proposed method in terms of computation time, accuracy, and unconstrained acquisition environment.

  1. Multi-anode microchannel arrays

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1977-01-01

    A development program is currently being undertaken to produce photon-counting detector arrays which are suitable for use in both ground-based and space-borne instruments and which utilize the full sensitivity, dynamic range and photometric stability of the microchannel array plate (MCP). The construction of the detector arrays and the status of the development program are described.

  2. Search for Long Period Solar Normal Modes in Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Caton, R.; Pavlis, G. L.

    2016-12-01

    We search for evidence of solar free oscillations (normal modes) in long period seismic data through multitaper spectral analysis of array stacks. This analysis is similar to that of Thomson & Vernon (2015), who used data from the most quiet single stations of the global seismic network. Our approach is to use stacks of large arrays of noisier stations to reduce noise. Arrays have the added advantage of permitting the use of nonparametic statistics (jackknife errors) to provide objective error estimates. We used data from the Transportable Array, the broadband borehole array at Pinyon Flat, and the 3D broadband array in Homestake Mine in Lead, SD. The Homestake Mine array has 15 STS-2 sensors deployed in the mine that are extremely quiet at long periods due to stable temperatures and stable piers anchored to hard rock. The length of time series used ranged from 50 days to 85 days. We processed the data by low-pass filtering with a corner frequency of 10 mHz, followed by an autoregressive prewhitening filter and median stack. We elected to use the median instead of the mean in order to get a more robust stack. We then used G. Prieto's mtspec library to compute multitaper spectrum estimates on the data. We produce delete-one jackknife error estimates of the uncertainty at each frequency by computing median stacks of all data with one station removed. The results from the TA data show tentative evidence for several lines between 290 μHz and 400 μHz, including a recurring line near 379 μHz. This 379 μHz line is near the Earth mode 0T2 and the solar mode 5g5, suggesting that 5g5 could be coupling into the Earth mode. Current results suggest more statistically significant lines may be present in Pinyon Flat data, but additional processing of the data is underway to confirm this observation.

  3. High-frequency Pulse-compression Ultrasound Imaging with an Annular Array

    NASA Astrophysics Data System (ADS)

    Mamou, J.; Ketterling, J. A.; Silverman, R. H.

    High-frequency ultrasound (HFU) allows fine-resolution imaging at the expense of limited depth-of-field (DOF) and shallow acoustic penetration depth. Coded-excitation imaging permits a significant increase in the signal-to-noise ratio (SNR) and therefore, the acoustic penetration depth. A 17-MHz, five-element annular array with a focal length of 31 mm and a total aperture of 10 mm was fabricated using a 25-μm thick piezopolymer membrane. An optimized 8-μs linear chirp spanning 6.5-32 MHz was used to excite the transducer. After data acquisition, the received signals were linearly filtered by a compression filter and synthetically focused. To compare the chirp-array imaging method with conventional impulse imaging in terms of resolution, a 25-μm wire was scanned and the -6-dB axial and lateral resolutions were computed at depths ranging from 20.5 to 40.5 mm. A tissue-mimicking phantom containing 10-μm glass beads was scanned, and backscattered signals were analyzed to evaluate SNR and penetration depth. Finally, ex-vivo ophthalmic images were formed and chirp-coded images showed features that were not visible in conventional impulse images.

  4. Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.

    2008-04-15

    In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patternsmore » but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements.« less

  5. Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Brooks, Thomas F.; Hunter, William W., Jr.; Meadows, Kristine R.

    1998-01-01

    An overview of the development of two microphone directional arrays for aeroacoustic testing is presented. These arrays were specifically developed to measure airframe noise in the NASA Langley Quiet Flow Facility. A large aperture directional array using 35 flush-mounted microphones was constructed to obtain high resolution noise localization maps around airframe models. This array possesses a maximum diagonal aperture size of 34 inches. A unique logarithmic spiral layout design was chosen for the targeted frequency range of 2-30 kHz. Complementing the large array is a small aperture directional array, constructed to obtain spectra and directivity information from regions on the model. This array, possessing 33 microphones with a maximum diagonal aperture size of 7.76 inches, is easily moved about the model in elevation and azimuth. Custom microphone shading algorithms have been developed to provide a frequency- and position-invariant sensing area from 10-40 kHz with an overall targeted frequency range for the array of 5-60 kHz. Both arrays are employed in acoustic measurements of a 6 percent of full scale airframe model consisting of a main element NACA 632-215 wing section with a 30 percent chord half-span flap. Representative data obtained from these measurements is presented, along with details of the array calibration and data post-processing procedures.

  6. Design Techniques for Uniform-DFT, Linear Phase Filter Banks

    NASA Technical Reports Server (NTRS)

    Sun, Honglin; DeLeon, Phillip

    1999-01-01

    Uniform-DFT filter banks are an important class of filter banks and their theory is well known. One notable characteristic is their very efficient implementation when using polyphase filters and the FFT. Separately, linear phase filter banks, i.e. filter banks in which the analysis filters have a linear phase are also an important class of filter banks and desired in many applications. Unfortunately, it has been proved that one cannot design critically-sampled, uniform-DFT, linear phase filter banks and achieve perfect reconstruction. In this paper, we present a least-squares solution to this problem and in addition prove that oversampled, uniform-DFT, linear phase filter banks (which are also useful in many applications) can be constructed for perfect reconstruction. Design examples are included illustrate the methods.

  7. A Near-Infrared and Thermal Imager for Mapping Titan's Surface Features

    NASA Technical Reports Server (NTRS)

    Aslam, S.; Hewagma, T.; Jennings, D. E.; Nixon, C.

    2012-01-01

    Approximately 10% of the solar insolation reaches the surface of Titan through atmospheric spectral windows. We will discuss a filter based imaging system for a future Titan orbiter that will exploit these windows mapping surface features, cloud regions, polar storms. In the near-infrared (NIR), two filters (1.28 micrometer and 1.6 micrometer), strategically positioned between CH1 absorption bands, and InSb linear array pixels will explore the solar reflected radiation. We propose to map the mid, infrared (MIR) region with two filters: 9.76 micrometer and 5.88-to-6.06 micrometers with MCT linear arrays. The first will map MIR thermal emission variations due to surface albedo differences in the atmospheric window between gas phase CH3D and C2H4 opacity sources. The latter spans the crossover spectral region where observed radiation transitions from being dominated by thermal emission to solar reflected light component. The passively cooled linear arrays will be incorporated into the focal plane of a light-weight thin film stretched membrane 10 cm telescope. A rad-hard ASIC together with an FPGA will be used for detector pixel readout and detector linear array selection depending on if the field-of-view (FOV) is looking at the day- or night-side of Titan. The instantaneous FOV corresponds to 3.1, 15.6, and 31.2 mrad for the 1, 5, and 10 micrometer channels, respectively. For a 1500 km orbit, a 5 micrometer channel pixel represents a spatial resolution of 91 m, with a FOV that spans 23 kilometers, and Titan is mapped in a push-broom manner as determined by the orbital path. The system mass and power requirements are estimated to be 6 kg and 5 W, respectively. The package is proposed for a polar orbiter with a lifetime matching two Saturn seasons.

  8. Miniature L-Band Radar Transceiver

    NASA Technical Reports Server (NTRS)

    McWatters, Dalia; Price, Douglas; Edelstein, Wendy

    2007-01-01

    A miniature L-band transceiver that operates at a carrier frequency of 1.25 GHz has been developed as part of a generic radar electronics module (REM) that would constitute one unit in an array of many identical units in a very-large-aperture phased-array antenna. NASA and the Department of Defense are considering the deployment of such antennas in outer space; the underlying principles of operation, and some of those of design, also are applicable on Earth. The large dimensions of the antennas make it advantageous to distribute radio-frequency electronic circuitry into elements of the arrays. The design of the REM is intended to implement the distribution. The design also reflects a requirement to minimize the size and weight of the circuitry in order to minimize the weight of any such antenna. Other requirements include making the transceiver robust and radiation-hard and minimizing power demand. Figure 1 depicts the functional blocks of the REM, including the L-band transceiver. The key functions of the REM include signal generation, frequency translation, amplification, detection, handling of data, and radar control and timing. An arbitrary-waveform generator that includes logic circuitry and a digital-to-analog converter (DAC) generates a linear-frequency-modulation chirp waveform. A frequency synthesizer produces local-oscillator signals used for frequency conversion and clock signals for the arbitrary-waveform generator, for a digitizer [that is, an analog-to-digital converter (ADC)], and for a control and timing unit. Digital functions include command, timing, telemetry, filtering, and high-rate framing and serialization of data for a high-speed scientific-data interface. The aforementioned digital implementation of filtering is a key feature of the REM architecture. Digital filters, in contradistinction to analog ones, provide consistent and temperature-independent performance, which is particularly important when REMs are distributed throughout a large array. Digital filtering also enables selection among multiple filter parameters as required for different radar operating modes. After digital filtering, data are decimated appropriately in order to minimize the data rate out of an antenna panel. The L-band transceiver (see Figure 2) includes a radio-frequency (RF)-to-baseband down-converter chain and an intermediate- frequency (IF)-to-RF up-converter chain. Transmit/receive (T/R) switches enable the use of a single feed to the antenna for both transmission and reception. The T/R switches also afford a built-in test capability by enabling injection of a calibration signal into the receiver chain. In order of decreasing priority, components of the transceiver were selected according to requirements of radiation hardness, then compactness, then low power. All of the RF components are radiation-hard. The noise figure (NF) was optimized to the extent that (1) a low-noise amplifier (LNA) (characterized by NF < 2 dB) was selected but (2) the receiver front-end T/R switches were selected for a high degree of isolation and acceptably low loss, regardless of the requirement to minimize noise.

  9. Arrays of very small voltammetric electrodes based on reticulated vitreous carbon

    NASA Astrophysics Data System (ADS)

    Sleszynski, N.; Osteryoung, J.; Carter, M.

    1983-10-01

    Micro-electrode arrays constructed from reticulated vitreous carbon are described and characterized. Sterological analysis and cyclic voltammetric data indicate the arrays have equivalent radii as small as 32 microns, with densities as high as 1650 electrodes/sq cm.

  10. Disposable sludge dewatering container and method

    DOEpatents

    Cole, Clifford M.

    1993-01-01

    A device and method for preparing sludge for disposal comprising a box with a thin layer of gravel on the bottom and a thin layer of sand on the gravel layer, an array of perforated piping deployed throughout the gravel layer, and a sump in the gravel layer below the perforated piping array. Standpipes connect the array and sump to an external ion exchanger/fine particulate filter and a pump. Sludge is deposited on the sand layer and dewatered using a pump connected to the piping array, topping up with more sludge as the aqueous component of the sludge is extracted. When the box is full and the free standing water content of the sludge is acceptable, the standpipes are cut and sealed and the lid secured to the box.

  11. Storage and computationally efficient permutations of factorized covariance and square-root information matrices

    NASA Technical Reports Server (NTRS)

    Muellerschoen, R. J.

    1988-01-01

    A unified method to permute vector-stored upper-triangular diagonal factorized covariance (UD) and vector stored upper-triangular square-root information filter (SRIF) arrays is presented. The method involves cyclical permutation of the rows and columns of the arrays and retriangularization with appropriate square-root-free fast Givens rotations or elementary slow Givens reflections. A minimal amount of computation is performed and only one scratch vector of size N is required, where N is the column dimension of the arrays. To make the method efficient for large SRIF arrays on a virtual memory machine, three additional scratch vectors each of size N are used to avoid expensive paging faults. The method discussed is compared with the methods and routines of Bierman's Estimation Subroutine Library (ESL).

  12. Divergence Free High Order Filter Methods for Multiscale Non-ideal MHD Flows

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern

    2003-01-01

    Low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous MHD flows has been constructed. Several variants of the filter approach that cater to different flow types are proposed. These filters provide a natural and efficient way for the minimization of the divergence of the magnetic field (Delta . B) numerical error in the sense that no standard divergence cleaning is required. For certain 2-D MHD test problems, divergence free preservation of the magnetic fields of these filter schemes has been achieved.

  13. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    PubMed Central

    Chakravarty, Swapnajit; Yang, Chun-Ju; Wang, Zheng; Tang, Naimei; Fan, Donglei; Chen, Ray T.

    2015-01-01

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed. PMID:25829549

  14. Noise reduction techniques for Bayer-matrix images

    NASA Astrophysics Data System (ADS)

    Kalevo, Ossi; Rantanen, Henry

    2002-04-01

    In this paper, some arrangements to apply Noise Reduction (NR) techniques for images captured by a single sensor digital camera are studied. Usually, the NR filter processes full three-color component image data. This requires that raw Bayer-matrix image data, available from the image sensor, is first interpolated by using Color Filter Array Interpolation (CFAI) method. Another choice is that the raw Bayer-matrix image data is processed directly. The advantages and disadvantages of both processing orders, before (pre-) CFAI and after (post-) CFAI, are studied with linear, multi-stage median, multistage median hybrid and median-rational filters .The comparison is based on the quality of the output image, the processing power requirements and the amount of memory needed. Also the solution, which improves preservation of details in the NR filtering before the CFAI, is proposed.

  15. A Covariance Modeling Approach to Adaptive Beamforming and Detection

    DTIC Science & Technology

    1991-07-30

    to achieve the main results of this report. I would especially like to thank Dr. E. J. Kelly for the support he has given me during the past years . His...direction of propagation A,, 0 S, Figure 4. Plane wace propagating through array. The array steering vector d(, E) is d~w d d2 ... dN]T (10) with...the covariance matrix to form a matched-filter beamformer that adapts to the interference environment. This was one of the first papers to propose using

  16. Wiener-matrix image restoration beyond the sampling passband

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-Ur; Alter-Gartenberg, Rachel; Fales, Carl L.; Huck, Friedrich O.

    1991-01-01

    A finer-than-sampling-lattice resolution image can be obtained using multiresponse image gathering and Wiener-matrix restoration. The multiresponse image gathering weighs the within-passband and aliased signal components differently, allowing the Wiener-matrix restoration filter to unscramble these signal components and restore spatial frequencies beyond the sampling passband of the photodetector array. A multiresponse images can be reassembled into a single minimum mean square error image with a resolution that is sq rt A times finer than the photodetector-array sampling lattice.

  17. SkyMapper Filter Set: Design and Fabrication of Large-Scale Optical Filters

    NASA Astrophysics Data System (ADS)

    Bessell, Michael; Bloxham, Gabe; Schmidt, Brian; Keller, Stefan; Tisserand, Patrick; Francis, Paul

    2011-07-01

    The SkyMapper Southern Sky Survey will be conducted from Siding Spring Observatory with u, v, g, r, i, and z filters that comprise glued glass combination filters with dimensions of 309 × 309 × 15 mm. In this article we discuss the rationale for our bandpasses and physical characteristics of the filter set. The u, v, g, and z filters are entirely glass filters, which provide highly uniform bandpasses across the complete filter aperture. The i filter uses glass with a short-wave pass coating, and the r filter is a complete dielectric filter. We describe the process by which the filters were constructed, including the processes used to obtain uniform dielectric coatings and optimized narrowband antireflection coatings, as well as the technique of gluing the large glass pieces together after coating using UV transparent epoxy cement. The measured passbands, including extinction and CCD QE, are presented.

  18. 78 FR 5797 - Missisquoi Associates; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... to allow its affiliate, EGP Solar 1, LLC, to construct and maintain a 2.2 megawatt solar photovoltaic... solar array would be constructed on both sides of Heather Lane (the project's access road), but public... be used for the solar array is currently devoid of trees, although some grading and tree cutting is...

  19. Imaging IR spectrometer, phase 2

    NASA Technical Reports Server (NTRS)

    Gradie, Jonathan; Lewis, Ralph; Lundeen, Thomas; Wang, Shu-I

    1990-01-01

    The development is examined of a prototype multi-channel infrared imaging spectrometer. The design, construction and preliminary performance is described. This instrument is intended for use with JPL Table Mountain telescope as well as the 88 inch UH telescope on Mauna Kea. The instrument is capable of sampling simultaneously the spectral region of 0.9 to 2.6 um at an average spectral resolution of 1 percent using a cooled (77 K) optical bench, a concave holographic grating and a special order sorting filter to allow the acquisition of the full spectral range on a 128 x 128 HgCdTe infrared detector array. The field of view of the spectrometer is 0.5 arcsec/pixel in mapping mode and designed to be 5 arcsec/pixel in spot mode. The innovative optical design has resulted in a small, transportable spectrometer, capable of remote operation. Commercial applications of this spectrometer design include remote sensing from both space and aircraft platforms as well as groundbased astronomical observations.

  20. Multiple resonant absorber with prism-incorporated graphene and one-dimensional photonic crystals in the visible and near-infrared spectral range

    NASA Astrophysics Data System (ADS)

    Zou, X. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.; Lai, M.

    2018-04-01

    A multi-band absorber constructed from prism-incorporated one-dimensional photonic crystal (1D-PhC) containing graphene defects is achieved theoretically in the visible and near-infrared (vis-NIR) spectral range. By means of the transfer matrix method (TMM), the effect of structural parameters on the optical response of the structure has been investigated. It is possible to achieve multi-peak and complete optical absorption. The simulations reveal that the light intensity is enhanced at the graphene plane, and the resonant wavelength and the absorption intensity can also be tuned by tilting the incidence angle of the impinging light. In particular, multiple graphene sheets are embedded in the arrays, without any demand of manufacture process to cut them into periodic patterns. The proposed concept can be extended to other two-dimensional (2D) materials and engineered for promising applications, including selective or multiplex filters, multiple channel sensors, and photodetectors.

  1. Psychoacoustics

    NASA Astrophysics Data System (ADS)

    Moore, Brian C. J.

    Psychoacoustics psychological is concerned with the relationships between the physical characteristics of sounds and their perceptual attributes. This chapter describes: the absolute sensitivity of the auditory system for detecting weak sounds and how that sensitivity varies with frequency; the frequency selectivity of the auditory system (the ability to resolve or hear out the sinusoidal components in a complex sound) and its characterization in terms of an array of auditory filters; the processes that influence the masking of one sound by another; the range of sound levels that can be processed by the auditory system; the perception and modeling of loudness; level discrimination; the temporal resolution of the auditory system (the ability to detect changes over time); the perception and modeling of pitch for pure and complex tones; the perception of timbre for steady and time-varying sounds; the perception of space and sound localization; and the mechanisms underlying auditory scene analysis that allow the construction of percepts corresponding to individual sounds sources when listening to complex mixtures of sounds.

  2. Detecting regional lung properties using audio transfer functions of the respiratory system.

    PubMed

    Mulligan, K; Adler, A; Goubran, R

    2009-01-01

    In this study, a novel instrument has been developed for measuring changes in the distribution of lung fluid the respiratory system. The instrument consists of a speaker that inputs a 0-4kHz White Gaussian Noise (WGN) signal into a patient's mouth and an array of 4 electronic stethoscopes, linked via a fully adjustable harness, used to recover signals on the chest surface. The software system for processing the data utilizes the principles of adaptive filtering in order to obtain a transfer function that represents the input-output relationship for the signal as the volume of fluid in the lungs is varied. A chest phantom model was constructed to simulate the behavior of fluid related diseases within the lungs through the injection of varying volumes of water. Tests from the phantom model were compared to healthy subjects. Results show the instrument can obtain similar transfer functions and sound propagation delays between both human and phantom chests.

  3. Algebraic signal processing theory: 2-D spatial hexagonal lattice.

    PubMed

    Pünschel, Markus; Rötteler, Martin

    2007-06-01

    We develop the framework for signal processing on a spatial, or undirected, 2-D hexagonal lattice for both an infinite and a finite array of signal samples. This framework includes the proper notions of z-transform, boundary conditions, filtering or convolution, spectrum, frequency response, and Fourier transform. In the finite case, the Fourier transform is called discrete triangle transform. Like the hexagonal lattice, this transform is nonseparable. The derivation of the framework makes it a natural extension of the algebraic signal processing theory that we recently introduced. Namely, we construct the proper signal models, given by polynomial algebras, bottom-up from a suitable definition of hexagonal space shifts using a procedure provided by the algebraic theory. These signal models, in turn, then provide all the basic signal processing concepts. The framework developed in this paper is related to Mersereau's early work on hexagonal lattices in the same way as the discrete cosine and sine transforms are related to the discrete Fourier transform-a fact that will be made rigorous in this paper.

  4. Incorporation of wavelength selective devices into waveguides with applications to a miniature spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stallard, B. R.; Kaushik, S.; Hadley, G. R.

    1996-02-01

    This report pertains to a Laboratory Directed Research and Development project which was funded for FY94 and FY95. The goal was to develop building blocks for small, cheap sensors that use optical spectroscopy as a means of detecting chemical analytes. Such sensors can have an impact on a wide variety of technologies, such as: industrial process control, environmental monitors, chemical analysis in medicine, and automotive monitors. We describe work in fabricating and demonstrating a waveguide/grating device that can serve as the wavelength dispersive component in a miniature spectrometer. Also, we describe the invention and modeling of a new way tomore » construct an array of optical interference filters using sub-wavelength lithography to tune the index of refraction of a fixed Fabry-Perot cavity. Next we describe progress in more efficiently calculating the fields in grating devices. Finally we present the invention of a new type of near field optical probe, applicable to scanning microscopy or optical data storage, which is based on a circular grating constructed in a waveguide. This result diverges from the original goal of the project but is quite significant in that it promises to increase the data storage capacity of CD-ROMs by 10 times.« less

  5. Consistently Sampled Correlation Filters with Space Anisotropic Regularization for Visual Tracking

    PubMed Central

    Shi, Guokai; Xu, Tingfa; Luo, Jiqiang; Li, Yuankun

    2017-01-01

    Most existing correlation filter-based tracking algorithms, which use fixed patches and cyclic shifts as training and detection measures, assume that the training samples are reliable and ignore the inconsistencies between training samples and detection samples. We propose to construct and study a consistently sampled correlation filter with space anisotropic regularization (CSSAR) to solve these two problems simultaneously. Our approach constructs a spatiotemporally consistent sample strategy to alleviate the redundancies in training samples caused by the cyclical shifts, eliminate the inconsistencies between training samples and detection samples, and introduce space anisotropic regularization to constrain the correlation filter for alleviating drift caused by occlusion. Moreover, an optimization strategy based on the Gauss-Seidel method was developed for obtaining robust and efficient online learning. Both qualitative and quantitative evaluations demonstrate that our tracker outperforms state-of-the-art trackers in object tracking benchmarks (OTBs). PMID:29231876

  6. An Improved Filtering Method for Quantum Color Image in Frequency Domain

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Xiao, Hong

    2018-01-01

    In this paper we investigate the use of quantum Fourier transform (QFT) in the field of image processing. We consider QFT-based color image filtering operations and their applications in image smoothing, sharpening, and selective filtering using quantum frequency domain filters. The underlying principle used for constructing the proposed quantum filters is to use the principle of the quantum Oracle to implement the filter function. Compared with the existing methods, our method is not only suitable for color images, but also can flexibly design the notch filters. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on color images. The major advantages of the quantum frequency filtering lies in the exploitation of the efficient implementation of the quantum Fourier transform.

  7. Method of producing monolithic ceramic cross-flow filter

    DOEpatents

    Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III

    1998-02-10

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.

  8. Method of producing monolithic ceramic cross-flow filter

    DOEpatents

    Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  9. Optical nose based on porous silicon photonic crystal infiltrated with ionic liquids.

    PubMed

    Zhang, Haijuan; Lin, Leimiao; Liu, Dong; Chen, Qiaofen; Wu, Jianmin

    2017-02-08

    A photonic-nose for the detection and discrimination of volatile organic compounds (VOCs) was constructed. Each sensing element on the photonic sensor array was formed by infiltrating a specific type of ionic liquid (IL) into the pore channel of a patterned porous silicon (PSi) chip. Upon exposure to VOC, the density of IL dramatically decreased due to the nano-confinement effect. As a result, the IL located in pore channel expanded its volume and protrude out of the pore channel, leading to the formation of microdroplets on the PSi surface. These VOC-stimulated microdroplets could scatter the light reflected from the PSi rugate filter, thereby producing an optical response to VOC. The intensity of the optical response produced by IL/PSi sensor mainly depends on the size and shape of microdroplets, which is related to the concentration of VOC and the physi-chemical propertied of ILs. For ethanol vapor, the optical response has linear relationship with its relative vapor pressure within 0-60%. The LOD of the IL/PSi sensor for ethanol detection is calculated to be 1.3 ppm. It takes around 30 s to reach a full optical response, while the time for recovery is less than 1 min. In addition, the sensor displayed good stability and reproducibility. Owing to the different molecular interaction between IL and VOC, the ILs/PSi sensor array can generate a unique cross-reactive "fingerprint" in response to a specific type of VOC analyte. With the assistance of image technologies and principle components analysis (PCA), rapid discrimination of VOC analyte could be achieved based on the pattern recognition of photonic sensor array. The technology established in this work allows monitoring in-door air pollution in a visualized way. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Sheet plastic filters for solar cells

    NASA Technical Reports Server (NTRS)

    Wizenick, R. J.

    1972-01-01

    Poly(vinylidene fluoride) (PVF) film protects solar cells on Mars surface from radiation and prevents degradation of solar cell surfaces by Martian dust storms. PVF films may replace glass or quartz windows on solar cell arrays used to generate power on earth.

  11. Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh

    2016-10-01

    The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and functionalmore » differences. In particular, the filtered stresses are strongly dependent on the gas-particle slip velocity. Closures for the filtered inter-phase drag, gas- and solids-phase pressures and viscosities are reported. A new model for solids stress anisotropy is also presented. These new filtered 3-D constitutive relationships are better suited to practical coarse-grid 3-D simulations of large, commercial-scale devices.« less

  12. Mechanically coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability.

    PubMed

    Li, Ming-Huang; Chen, Wen-Chien; Li, Sheng-Shian

    2012-03-01

    Integrated CMOS-MEMS free-free beam resonator arrays operated in a standard two-port electrical configuration with low motional impedance and high power handling capability, centered at 10.5 MHz, have been demonstrated using the combination of pull-in gap reduction mechanism and mechanically coupled array design. The mechanical links (i.e., coupling elements) using short stubs connect each constituent resonator of an array to its adjacent ones at the high-velocity vibrating locations to accentuate the desired mode and reject all other spurious modes. A single second-mode free-free beam resonator with quality factor Q > 2200 and motional impedance R(m) < 150 kΩ has been used to achieve mechanically coupled resonator arrays in this work. In array design, a 9-resonator array has been experimentally characterized to have performance improvement of approximately 10× on motional impedance and power handling as compared with that of a single resonator. In addition, the two-port electrical configuration is much preferred over a one-port configuration because of its low-feedthrough and high design flexibility for future oscillator and filter implementation.

  13. Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter: the spectrally tunable absolute irradiance and radiance source.

    PubMed

    Levick, Andrew P; Greenwell, Claire L; Ireland, Jane; Woolliams, Emma R; Goodman, Teresa M; Bialek, Agnieszka; Fox, Nigel P

    2014-06-01

    A new spectrally tunable source for calibration of radiometric detectors in radiance, irradiance, or power mode has been developed and characterized. It is termed the spectrally tunable absolute irradiance and radiance source (STAIRS). It consists of a supercontinuum laser, wavelength tunable bandpass filter, power stabilization feedback control scheme, and output coupling optics. It has the advantages of relative portability and a collimated beam (low étendue), and is an alternative to conventional sources such as tungsten lamps, blackbodies, or tunable lasers. The supercontinuum laser is a commercial Fianium SC400-6-02, which has a wavelength range between 400 and 2500 nm and a total power of 6 W. The wavelength tunable bandpass filter, a PhotonEtc laser line tunable filter (LLTF), is tunable between 400 and 1000 nm and has a bandwidth of 1 or 2 nm depending on the wavelength selected. The collimated laser beam from the LLTF filter is converted to an appropriate spatial and angular distribution for the application considered (i.e., for radiance, irradiance, or power mode calibration of a radiometric sensor) with the output coupling optics, for example, an integrating sphere, and the spectral radiance/irradiance/power of the source is measured using a calibration optical sensor. A power stabilization feedback control scheme has been incorporated that stabilizes the source to better than 0.01% for averaging times longer than 100 s. The out-of-band transmission of the LLTF filter is estimated to be < -65 dB (0.00003%), and is sufficiently low for many end-user applications, for example the spectral radiance calibration of earth observation imaging radiometers and the stray light characterization of array spectrometers (the end-user optical sensor). We have made initial measurements of two end-user instruments with the STAIRS source, an array spectrometer and ocean color radiometer.

  14. Constructed wetlands and waste stabilization ponds for small rural communities in the United Kingdom: a comparison of land area requirements, performance and costs.

    PubMed

    Mara, D D

    2006-07-01

    Land area requirements for secondary subsurface horizontal-flow constructed wetlands (CW) and primary and secondary facultative ponds with either unaerated or aerated rock filters were determined for three levels of effluent quality: that specified in the Urban Waste Water Treatment Directive (UWWTD) (< or = 25 mg filtered BOD l(-1) and < or = 150 mg SS l(-1) for waste stabilization ponds (WSP) effluents, and < or = 25 mg unfiltered BOD l(-1) for CW effluents (mean values); and two common requirements of the Environment Agency: < or = 40 mg BOD l(-1) and < or = 60 mg SS l(-1), and < or = 10 mg BOD l(-1), < or = 15 mg SS l(-1) and < or = 5 mg ammonia-N l(-1) (95-percentile values). A secondary CW requires 60 percent more land than a secondary facultative pond to produce an UWWTD-quality effluent, 38 percent more land than a secondary facultative pond and an unaerated rock filter to produce a 40/60 effluent and, were it to be used to produce a 10/15/5 effluent, it would require approximately 480 percent more land than a secondary facultative pond and an aerated rock filter. Its estimated 2005 cost is pound 1100-2600 p.e.(-1), whereas that of a primary facultative pond and rock filter is approximately pound 400 p.e.(-1). On the basis of land area requirements, performance and cost, facultative ponds and unaerated or aerated rock filters are to be preferred to secondary subsurface horizontal-flow constructed wetlands.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vladimir Larionov, Ph D

    A special interest in the organization of human centromeric DNA was stimulated a few years ago when two independent groups succeeded in reconstituting a functional human centromere, using constructs carrying centromere-specific alphoid DNA arrays. This work demonstrated the importance of DNA components in mammalian centromeres and opened a way for studying the structural requirements for de novo kinetochore formation and for construction of human artificial chromosomes (HACs) with therapeutic potential. To elucidate the structural requirements for formation of HACs with a functional kinetochore, we developed a new method for cloning of large DNA fragments for human centromeric regions that canmore » be used as a substrate for HAC formation. This method exploits in vivo recombination in yeast (TAR cloning). In addition, a new strategy for the construction of alphoid DNA arrays was developed in our lab. The strategy involves the construction of uniform or hybrid synthetic alphoid DNA arrays by the RCA-TAR technique. This technique comprises two steps: rolling circle amplification of an alphoid DNA dimer and subsequent assembling of the amplified fragments by in vivo homologous recombination in yeast (Figure 1). Using this system, we constructed a set of different synthetic alphoid DNA arrays with a predetermined sequence varying in size from 30 to 140 kb and demonstrated that some of the arrays are competent in HAC formation. Because any nucleotide can be changed in a dimer before its amplification, this new technique is optimal for identifying the structural requirements for de novo kinetochore formation in HACs. Moreover, the technique makes possible to introduce into alphoid DNA arrays recognition sites for DNA-binding proteins. We have made the following progress on the studying of human centromeric regions using transformation-associated recombination cloning technology: i) minimal size of alphoid DNA array required for de novo kinetochore formation was estimated; ii) critical role of CENP-B binding site in do novo kinetochore formation was demonstrated; iii) role of gamma-satellite DNA in functional centromere was elucidated; iv) new generation of HAC with a conditional centromere was constructed for the study of epigenetic control of kinetochore function and for gene expression studies. These studies de novo kinetochore formation may thus provide both a fundamental knowledge and new points of intervention for therapy.« less

  16. Decoupling of a tight-fit transceiver phased array for human brain imaging at 9.4T: Loop overlapping rediscovered.

    PubMed

    Avdievich, Nikolai I; Giapitzakis, Ioannis-Angelos; Pfrommer, Andreas; Henning, Anke

    2018-02-01

    To improve the decoupling of a transceiver human head phased array at ultra-high fields (UHF, ≥ 7T) and to optimize its transmit (Tx) and receive (Rx) performance, a single-row eight-element (1 × 8) tight-fit transceiver overlapped loop array was developed and constructed. Overlapping the loops increases the RF field penetration depth but can compromise decoupling by generating substantial mutual resistance. Based on analytical modeling, we optimized the loop geometry and relative positioning to simultaneously minimize the resistive and inductive coupling and constructed a 9.4T eight-loop transceiver head phased array decoupled entirely by overlapping loops. We demonstrated that both the magnetic and electric coupling between adjacent loops is compensated at the same time by overlapping and nearly perfect decoupling (below -30 dB) can be obtained without additional decoupling strategies. Tx-efficiency and SNR of the overlapped array outperformed that of a common UHF gapped array of similar dimensions. Parallel Rx-performance was also not compromised due to overlapping the loops. As a proof of concept we developed and constructed a 9.4T (400 MHz) overlapped transceiver head array based on results of the analytical modeling. We demonstrated that at UHF overlapping loops not only provides excellent decoupling but also improves both Tx- and Rx-performance. Magn Reson Med 79:1200-1211, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Designing manufacturable filters for a 16-band plenoptic camera using differential evolution

    NASA Astrophysics Data System (ADS)

    Doster, Timothy; Olson, Colin C.; Fleet, Erin; Yetzbacher, Michael; Kanaev, Andrey; Lebow, Paul; Leathers, Robert

    2017-05-01

    A 16-band plenoptic camera allows for the rapid exchange of filter sets via a 4x4 filter array on the lens's front aperture. This ability to change out filters allows for an operator to quickly adapt to different locales or threat intelligence. Typically, such a system incorporates a default set of 16 equally spaced at-topped filters. Knowing the operating theater or the likely targets of interest it becomes advantageous to tune the filters. We propose using a modified beta distribution to parameterize the different possible filters and differential evolution (DE) to search over the space of possible filter designs. The modified beta distribution allows us to jointly optimize the width, taper and wavelength center of each single- or multi-pass filter in the set over a number of evolutionary steps. Further, by constraining the function parameters we can develop solutions which are not just theoretical but manufacturable. We examine two independent tasks: general spectral sensing and target detection. In the general spectral sensing task we utilize the theory of compressive sensing (CS) and find filters that generate codings which minimize the CS reconstruction error based on a fixed spectral dictionary of endmembers. For the target detection task and a set of known targets, we train the filters to optimize the separation of the background and target signature. We compare our results to the default 16 at-topped non-overlapping filter set which comes with the plenoptic camera and full hyperspectral resolution data which was previously acquired.

  18. Numerical simulation studies of nano-scale surface plasmon components: waveguides, splitters, and filters

    NASA Astrophysics Data System (ADS)

    Lin, Xian-Shi; Huang, Xu-Guang

    2008-12-01

    In this paper, we theoretically and numerically demonstrate a two-dimensional Metal-Dielectric-Metal (MDM) waveguide based on finite-difference time-domain simulation of the propagation characteristics of surface plasmon polaritons (SPPs). For practical applications, we propose a plasmonic Y-branch waveguide based on MDM structure for high integration. The simulation results show that the Y-branch waveguide proposed here makes optical splitter with large branching angle (~180 degree) come true. We also introduce a finite array of periodic tooth structure on one surface of the MDM waveguide which is in a similar way as FBGs or Bragg reflectors, potentially as filters for WDM applications. Our results show that the novel structure not only can realize filtering function of wavelength with a high transmittance over 92%, but also with an ultra-compact size in the length of a few hundred nanometers, in comparison with other grating-like SPPs filters. The MDM waveguide splitters and filters could be utilized to achieve ultra-compact photonic filtering devices for high integration in SPPs-based flat metallic surfaces.

  19. Airborne electronically steerable phased array

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented of the second stage of a program for the design and development of a phased array capable of simultaneous and separate transmission and reception of radio frequency signals at S-band frequencies. The design goals of this stage were the development of three major areas of interest required for the final prototype model. These areas are the construction and testing of the low-weight, full-scale 128-element array of antenna elements, the development of the RF manifold feed system, and the construction and testing of a working module containing diplexer and transmit and receive circuits.

  20. Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography.

    PubMed

    Li, Wen-Di; Chou, Stephen Y

    2010-01-18

    We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO(2) square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.

  1. Spitzer Instrument Pointing Frame (IPF) Kalman Filter Algorithm

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kang, Bryan H.

    2004-01-01

    This paper discusses the Spitzer Instrument Pointing Frame (IPF) Kalman Filter algorithm. The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter, which is parametrized for calibrating the Spitzer Space Telescope focal plane and aligning the science instrument arrays with respect to the telescope boresight. The most stringent calibration requirement specifies knowledge of certain instrument pointing frames to an accuracy of 0.1 arcseconds, per-axis, 1-sigma relative to the Telescope Pointing Frame. In order to achieve this level of accuracy, the filter carries 37 states to estimate desired parameters while also correcting for expected systematic errors due to: (1) optical distortions, (2) scanning mirror scale-factor and misalignment, (3) frame alignment variations due to thermomechanical distortion, and (4) gyro bias and bias-drift in all axes. The resulting estimated pointing frames and calibration parameters are essential for supporting on-board precision pointing capability, in addition to end-to-end 'pixels on the sky' ground pointing reconstruction efforts.

  2. Development of an acoustic filter for parametric loudspeaker using phononic crystals.

    PubMed

    Ji, Peifeng; Hu, Wenlin; Yang, Jun

    2016-04-01

    The spurious signal generated as a result of nonlinearity at the receiving system affects the measurement of the difference-frequency sound in the parametric loudspeaker, especially in the nearfield or near the beam axis. In this paper, an acoustic filter is designed using phononic crystals and its theoretical simulations are carried out by quasi-one- and two-dimensional models with Comsol Multiphysics. According to the simulated transmission loss (TL), an acoustic filter is prototyped consisting of 5×7 aluminum alloy cylinders and its performance is verified experimentally. There is good agreement with the simulation result for TL. After applying our proposed filter in the axial measurement of the parametric loudspeaker, a clear frequency dependence from parametric array effect is detected, which exhibits a good match with the well-known theory described by the Gaussian-beam expansion technique. During the directivity measurement for the parametric loudspeaker, the proposed filter has also proved to be effective and is only needed for small angles. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Analysis of a color-matching backlight system using a blazed grating and a lenticular lens array.

    PubMed

    Son, Chang-Gyun; Gwag, Jin Seok; Lee, Jong Hoon; Kwon, Jin Hyuk

    2012-12-20

    A high efficiency LCD employing a color-matching backlight system that consists of a collimation lenticular lens sheet, a blazed grating, and a focusing lenticular lens array is proposed and analyzed. The RGB lights that are collimated and dispersed from the collimation lenticular lens sheet and the blazed grating are incident on the RGB color filters by the focusing lenticular lens array. The color-matched transmittance was increased 183% and 121% for divergence angles of 2° and 11°, respectively, compared to a conventional backlight that does not use a blazed grating. The design, simulation, and experimental results for the prototype color-matching backlight system are presented.

  4. Arrays of microscopic organic LEDs for high-resolution optogenetics

    PubMed Central

    Steude, Anja; Witts, Emily C.; Miles, Gareth B.; Gather, Malte C.

    2016-01-01

    Optogenetics is a paradigm-changing new method to study and manipulate the behavior of cells with light. Following major advances of the used genetic constructs over the last decade, the light sources required for optogenetic control are now receiving increased attention. We report a novel optogenetic illumination platform based on high-density arrays of microscopic organic light-emitting diodes (OLEDs). Because of the small dimensions of each array element (6 × 9 μm2) and the use of ultrathin device encapsulation, these arrays enable illumination of cells with unprecedented spatiotemporal resolution. We show that adherent eukaryotic cells readily proliferate on these arrays, and we demonstrate specific light-induced control of the ionic current across the membrane of individual live cells expressing different optogenetic constructs. Our work paves the way for the use of OLEDs for cell-specific optogenetic control in cultured neuronal networks and for acute brain slices, or as implants in vivo. PMID:27386540

  5. Flat-panel video resolution LED display system

    NASA Astrophysics Data System (ADS)

    Wareberg, P. G.; Kennedy, D. I.

    The system consists of a 128 x 128 element X-Y addressable LED array fabricated from green-emitting gallium phosphide. The LED array is interfaced with a 128 x 128 matrix TV camera. Associated electronics provides for seven levels of grey scale above zero with a grey scale ratio of square root of 2. Picture elements are on 0.008 inch centers resulting in a resolution of 125 lines-per-inch and a display area of approximately 1 sq. in. The LED array concept lends itself to modular construction, permitting assembly of a flat panel screen of any desired size from 1 x 1 inch building blocks without loss of resolution. A wide range of prospective aerospace applications exist extending from helmet-mounted systems involving small dedicated arrays to multimode cockpit displays constructed as modular screens. High-resolution LED arrays are already used as CRT replacements in military film-marking reconnaissance applications.

  6. A reflective-type, quasi-optical metasurface filter

    NASA Astrophysics Data System (ADS)

    Sima, Boyu; Momeni Hasan Abadi, Seyed Mohamad Amin; Behdad, Nader

    2017-08-01

    We introduce a new technique for designing quasi-optical, reflective-type spatial filters. The proposed filter is a reflective metasurface with a one dimensional, frequency-dependent phase gradient along the aperture. By careful design of each unit cell of the metasurface, the phase shift gradient provided by the adjacent unit cells can be engineered to steer the beam towards a desired, anomalous reflection direction over the passband region of the filter. Outside of that range, the phase shift gradient required to produce the anomalous reflection is not present and hence, the wave is reflected towards the specular reflection direction. This way, the metasurface acts as a reflective filter in a quasi-optical system where the detector is placed along the direction of anomalous reflection. The spectral selectivity of this filter is determined by the frequency dispersion of the metasurface's phase response. Based on this principle, a prototype of the proposed metasurface filter, which operates at 10 GHz and has a bandwidth of 3%, is designed. The device is modeled using a combination of theoretical analysis using the phased-array theory and full-wave electromagnetic simulations. A prototype of this device is also fabricated and characterized using a free-space measurement system. Experimental results agree well with the simulations.

  7. Full Field Photoelastic Stress Analysis

    NASA Technical Reports Server (NTRS)

    Lesniak, Jon R. (Inventor)

    2000-01-01

    A structural specimen coated with or constructed of photoelastic material, when illuminated with circularly polarized light will, when stressed: reflect or transmit elliptically polarized light, the direction of the axes of the ellipse and variation of the elliptically light from illuminating circular light will correspond to and indicate the direction and magnitude of the shear stresses for each illuminated point on the specimen. The principles of this invention allow for several embodiments of stress analyzing apparatus, ranging from those involving multiple rotating optical elements, to those which require no moving parts at all. A simple polariscope may be constructed having two polarizing filters with a single one-quarter waveplate placed between the polarizing filters. Light is projected through the first polarizing filter and the one-quarter waveplate and is reflected from a sub-fringe birefringent coating on a structure under load. Reflected light from the structure is analyzed with a polarizing filter. The two polarizing filters and the one-quarter waveplate may be rotated together or the analyzer alone may be rotated. Computer analysis of the variation in light intensity yields shear stress magnitude and direction.

  8. Minimum entropy deconvolution optimized sinusoidal synthesis and its application to vibration based fault detection

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhao, Qing

    2017-03-01

    In this paper, a minimum entropy deconvolution based sinusoidal synthesis (MEDSS) filter is proposed to improve the fault detection performance of the regular sinusoidal synthesis (SS) method. The SS filter is an efficient linear predictor that exploits the frequency properties during model construction. The phase information of the harmonic components is not used in the regular SS filter. However, the phase relationships are important in differentiating noise from characteristic impulsive fault signatures. Therefore, in this work, the minimum entropy deconvolution (MED) technique is used to optimize the SS filter during the model construction process. A time-weighted-error Kalman filter is used to estimate the MEDSS model parameters adaptively. Three simulation examples and a practical application case study are provided to illustrate the effectiveness of the proposed method. The regular SS method and the autoregressive MED (ARMED) method are also implemented for comparison. The MEDSS model has demonstrated superior performance compared to the regular SS method and it also shows comparable or better performance with much less computational intensity than the ARMED method.

  9. Multispectral Imager With Improved Filter Wheel and Optics

    NASA Technical Reports Server (NTRS)

    Bremer, James C.

    2007-01-01

    Figure 1 schematically depicts an improved multispectral imaging system of the type that utilizes a filter wheel that contains multiple discrete narrow-band-pass filters and that is rotated at a constant high speed to acquire images in rapid succession in the corresponding spectral bands. The improvement, relative to prior systems of this type, consists of the measures taken to prevent the exposure of a focal-plane array (FPA) of photodetectors to light in more than one spectral band at any given time and to prevent exposure of the array to any light during readout. In prior systems, these measures have included, variously the use of mechanical shutters or the incorporation of wide opaque sectors (equivalent to mechanical shutters) into filter wheels. These measures introduce substantial dead times into each operating cycle intervals during which image information cannot be collected and thus incoming light is wasted. In contrast, the present improved design does not involve shutters or wide opaque sectors, and it reduces dead times substantially. The improved multispectral imaging system is preceded by an afocal telescope and includes a filter wheel positioned so that its rotation brings each filter, in its turn, into the exit pupil of the telescope. The filter wheel contains an even number of narrow-band-pass filters separated by narrow, spoke-like opaque sectors. The geometric width of each filter exceeds the cross-sectional width of the light beam coming out of the telescope. The light transmitted by the sequence of narrow-band filters is incident on a dichroic beam splitter that reflects in a broad shorter-wavelength spectral band that contains half of the narrow bands and transmits in a broad longer-wavelength spectral band that contains the other half of the narrow spectral bands. The filters are arranged on the wheel so that if the pass band of a given filter is in the reflection band of the dichroic beam splitter, then the pass band of the adjacent filter is in the longer-wavelength transmission band of the dichroic beam splitter (see Figure 2). Each of the two optical paths downstream of the dichroic beam splitter contains an additional broad-band-pass filter: The filter in the path of the light transmitted by the dichroic beam splitter transmits and attenuates in the same bands that are transmitted and reflected, respectively, by the beam splitter; the filter in the path of the light reflected by the dichroic beam splitter transmits and attenuates in the same bands that are reflected and transmitted, respectively, by the dichroic beam splitter. In each of these paths, the filtered light is focused onto an FPA. As the filter wheel rotates at a constant angular speed, its shaft angle is monitored, and the shaft-angle signal is used to synchronize the exposure times of the two FPAs. When a single narrowband-pass filter on the wheel occupies the entire cross section of the beam of light coming out of the telescope, the spectrum of light that reaches the dichroic beam splitter lies entirely within the pass band of that filter. Therefore, the beam in its entirety is either transmitted by the dichroic beam splitter and imaged on the longer-wavelength FPA or reflected by the beam splitter and imaged onto the shorter-wavelength FPA.

  10. Adaptive Low Dissipative High Order Filter Methods for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern

    2004-01-01

    Adaptive low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous MHD flows has been constructed. Several variants of the filter approach that cater to different flow types are proposed. These filters provide a natural and efficient way for the minimization of the divergence of the magnetic field [divergence of B] numerical error in the sense that no standard divergence cleaning is required. For certain 2-D MHD test problems, divergence free preservation of the magnetic fields of these filter schemes has been achieved.

  11. Shaped, lead-loaded acrylic filters for patient exposure reduction and image-quality improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.E.; Stears, J.G.; Frank, E.D.

    1983-03-01

    Shaped filters that are constructed of lead-loaded acrylic material for use in patient radiography are discussed. Use of the filters will result in improved overall image quality with significant exposure reduction to the patient (approximately a 2X reduction in breast exposure and a 3X reduction in thyroid gland exposure). Detailed drawings of the shaped filters for scoliosis radiography, cervical spine radiography, and for long film changers in special procedures are provided. The use of the scoliosis filters is detailed and includes phantom and patient radiographs and dose reduction information.

  12. Stresses and Temperature Stability of Dense Wavelength Division Multiplexing Filters Prepared by Reactive Ion-Assisted E-Gun Evaporation

    NASA Astrophysics Data System (ADS)

    Wei, Chao-Tsang; Shieh, Han-Ping D.

    2005-10-01

    In this paper, we report the in situ measurement of the temperature stability of narrow-band-pass filters on different types of substrate, for dense wavelength division multiplexing (DWDM) filters in optical-fiber transmission systems. The DWDM filters were designed as all-dielectric Fabry-Perot filters and fabricated by reactive ion-assisted deposition. Ta2O5 and SiO2 were used as high- and low-refractive-index layers, respectively, for constructing the DWDM filters. The accuracy and stability of the coating process were evaluated for fabricating the DWDM filters for the temperature stability of the center wavelength. The center wavelength shift was determined to be greatly dependent on the coefficient of thermal expansion of the substrate on which the filter is deposited.

  13. Applications of Bayesian spectrum representation in acoustics

    NASA Astrophysics Data System (ADS)

    Botts, Jonathan M.

    This dissertation utilizes a Bayesian inference framework to enhance the solution of inverse problems where the forward model maps to acoustic spectra. A Bayesian solution to filter design inverts a acoustic spectra to pole-zero locations of a discrete-time filter model. Spatial sound field analysis with a spherical microphone array is a data analysis problem that requires inversion of spatio-temporal spectra to directions of arrival. As with many inverse problems, a probabilistic analysis results in richer solutions than can be achieved with ad-hoc methods. In the filter design problem, the Bayesian inversion results in globally optimal coefficient estimates as well as an estimate the most concise filter capable of representing the given spectrum, within a single framework. This approach is demonstrated on synthetic spectra, head-related transfer function spectra, and measured acoustic reflection spectra. The Bayesian model-based analysis of spatial room impulse responses is presented as an analogous problem with equally rich solution. The model selection mechanism provides an estimate of the number of arrivals, which is necessary to properly infer the directions of simultaneous arrivals. Although, spectrum inversion problems are fairly ubiquitous, the scope of this dissertation has been limited to these two and derivative problems. The Bayesian approach to filter design is demonstrated on an artificial spectrum to illustrate the model comparison mechanism and then on measured head-related transfer functions to show the potential range of application. Coupled with sampling methods, the Bayesian approach is shown to outperform least-squares filter design methods commonly used in commercial software, confirming the need for a global search of the parameter space. The resulting designs are shown to be comparable to those that result from global optimization methods, but the Bayesian approach has the added advantage of a filter length estimate within the same unified framework. The application to reflection data is useful for representing frequency-dependent impedance boundaries in finite difference acoustic simulations. Furthermore, since the filter transfer function is a parametric model, it can be modified to incorporate arbitrary frequency weighting and account for the band-limited nature of measured reflection spectra. Finally, the model is modified to compensate for dispersive error in the finite difference simulation, from the filter design process. Stemming from the filter boundary problem, the implementation of pressure sources in finite difference simulation is addressed in order to assure that schemes properly converge. A class of parameterized source functions is proposed and shown to offer straightforward control of residual error in the simulation. Guided by the notion that the solution to be approximated affects the approximation error, sources are designed which reduce residual dispersive error to the size of round-off errors. The early part of a room impulse response can be characterized by a series of isolated plane waves. Measured with an array of microphones, plane waves map to a directional response of the array or spatial intensity map. Probabilistic inversion of this response results in estimates of the number and directions of image source arrivals. The model-based inversion is shown to avoid ambiguities associated with peak-finding or inspection of the spatial intensity map. For this problem, determining the number of arrivals in a given frame is critical for properly inferring the state of the sound field. This analysis is effectively compression of the spatial room response, which is useful for analysis or encoding of the spatial sound field. Parametric, model-based formulations of these problems enhance the solution in all cases, and a Bayesian interpretation provides a principled approach to model comparison and parameter estimation. v

  14. Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients.

    PubMed

    Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel

    2005-03-07

    We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.

  15. Optimization and Validation of a Surface Wipe Method to Determine Cyanide and Cyanate: Application to the Emergency Destruction System

    DTIC Science & Technology

    2012-08-01

    NJ b WC-7 Grade 42, 55 mm filter paper Whatman, Piscataway, NJ b WC-8 Cellulose nitrate membrane filter, 47 mm Whatman, Piscataway, NJ b WC-9...density polypropylene plastic bottle. 2.5 Standards Sodium cyanide (NaCN, ≥97.0%, CAS no. 143-33-9) and potassium cyanate (KOCN, ≥97.0...Agilent Technologies model 3D CE system, with an ultraviolet (deuterium lamp) diode array detector, was used to determine the quantities of CN and OCN

  16. On-board multicarrier demodulator for mobile applications using DSP implementation

    NASA Astrophysics Data System (ADS)

    Yim, W. H.; Kwan, C. C. D.; Coakley, F. P.; Evans, B. G.

    1990-11-01

    This paper describes the design and implementation of an on-board multicarrier demodulator using commercial digital signal processors. This is for use in a mobile satellite communication system employing an up-link SCPC/FDMA scheme. Channels are separated by a flexible multistage digital filter bank followed by a channel multiplexed digital demodulator array. The cross/dot product design approach of error detector leads to a new QPSK frequency control algorithm that allows fast acquisition without special preamble pattern. Timing correction is performed digitally using an extended stack of polyphase sub-filters.

  17. Multimodel Kalman filtering for adaptive nonuniformity correction in infrared sensors.

    PubMed

    Pezoa, Jorge E; Hayat, Majeed M; Torres, Sergio N; Rahman, Md Saifur

    2006-06-01

    We present an adaptive technique for the estimation of nonuniformity parameters of infrared focal-plane arrays that is robust with respect to changes and uncertainties in scene and sensor characteristics. The proposed algorithm is based on using a bank of Kalman filters in parallel. Each filter independently estimates state variables comprising the gain and the bias matrices of the sensor, according to its own dynamic-model parameters. The supervising component of the algorithm then generates the final estimates of the state variables by forming a weighted superposition of all the estimates rendered by each Kalman filter. The weights are computed and updated iteratively, according to the a posteriori-likelihood principle. The performance of the estimator and its ability to compensate for fixed-pattern noise is tested using both simulated and real data obtained from two cameras operating in the mid- and long-wave infrared regime.

  18. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experimentmore » showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.« less

  19. A Near IR Fabry-Perot Interferometer for Wide Field, Low Resolution Hyperspectral Imaging on the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Satyapal, S.; Greenhouse, M. A.; Barclay, R.; Amato, D.; Arritt, B.; Brown, G.; Harvey, V.; Holt, C.; Kuhn, J.

    2000-01-01

    We discuss work in progress on a near-infrared tunable bandpass filter for the Goddard baseline wide field camera concept of the Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM). This filter, the Demonstration Unit for Low Order Cryogenic Etalon (DULCE), is designed to demonstrate a high efficiency scanning Fabry-Perot etalon operating in interference orders 1 - 4 at 30K with a high stability DSP based servo control system. DULCE is currently the only available tunable filter for lower order cryogenic operation in the near infrared. In this application, scanning etalons will illuminate the focal plane arrays with a single order of interference to enable wide field lower resolution hyperspectral imaging over a wide range of redshifts. We discuss why tunable filters are an important instrument component in future space-based observatories.

  20. Improved image reconstruction of low-resolution multichannel phase contrast angiography

    PubMed Central

    P. Krishnan, Akshara; Joy, Ajin; Paul, Joseph Suresh

    2016-01-01

    Abstract. In low-resolution phase contrast magnetic resonance angiography, the maximum intensity projected channel images will be blurred with consequent loss of vascular details. The channel images are enhanced using a stabilized deblurring filter, applied to each channel prior to combining the individual channel images. The stabilized deblurring is obtained by the addition of a nonlocal regularization term to the reverse heat equation, referred to as nonlocally stabilized reverse diffusion filter. Unlike reverse diffusion filter, which is highly unstable and blows up noise, nonlocal stabilization enhances intensity projected parallel images uniformly. Application to multichannel vessel enhancement is illustrated using both volunteer data and simulated multichannel angiograms. Robustness of the filter applied to volunteer datasets is shown using statistically validated improvement in flow quantification. Improved performance in terms of preserving vascular structures and phased array reconstruction in both simulated and real data is demonstrated using structureness measure and contrast ratio. PMID:26835501

  1. Evaluation of filter fabrics for use in silt fences.

    DOT National Transportation Integrated Search

    1980-01-01

    The study reported was initiated to develop tests simulating field conditions that could be used to develop information for the formulation of specifications for use in purchasing filter fabrics to be used to construct silt fences. Fifteen fabrics we...

  2. METHANOL MEASUREMENT IN AUTO EXHAUST USING A GAS-FILTER CORRELATION SPECTROMETER

    EPA Science Inventory

    Spectroscopic methods offer an alternative to wet chemical methods for analysis of methanol emissions from automobiles. The gas filter correlation infrared optical analysis approach appears very promising. The report describes the gas correlation optical system constructed to ana...

  3. Prefocused objective-pinhole unit for beam expanding and spatial filtering.

    PubMed

    Antes, G P

    1973-03-01

    A beam-expanding and spatial-filtering device, the prefocused objective-pinhole unit (POP unit), is presented. The design is primarily aimed at greater simplicity in handling and construction than the commercially available lens-pinhole spatial filters (LPSF), for once the pinhole is fixed in the correct position with respect to the objective, the alignment of the whole unit can be made an easy matter.

  4. Equalization filters for multiple-channel electromyogram arrays

    PubMed Central

    Clancy, Edward A.; Xia, Hongfang; Christie, Anita; Kamen, Gary

    2007-01-01

    Multiple channels of electromyogram activity are frequently transduced via electrodes, then combined electronically to form one electrophysiologic recording, e.g. bipolar, linear double difference and Laplacian montages. For high quality recordings, precise gain and frequency response matching of the individual electrode potentials is achieved in hardware (e.g., an instrumentation amplifier for bipolar recordings). This technique works well when the number of derived signals is small and the montages are pre-determined. However, for array electrodes employing a variety of montages, hardware channel matching can be expensive and tedious, and limits the number of derived signals monitored. This report describes a method for channel matching based on the concept of equalization filters. Monopolar potentials are recorded from each site without precise hardware matching. During a calibration phase, a time-varying linear chirp voltage is applied simultaneously to each site and recorded. Based on the calibration recording, each monopolar channel is digitally filtered to “correct” for (equalize) differences in the individual channels, and then any derived montages subsequently created. In a hardware demonstration system, the common mode rejection ratio (at 60 Hz) of bipolar montages improved from 35.2 ± 5.0 dB (prior to channel equalization) to 69.0 ± 5.0 dB (after equalization). PMID:17614134

  5. Identification and mitigation of interference sources present in SSB-based wireless MRI receiver arrays

    PubMed Central

    Riffe, Matthew J.; Twieg, Michael D.; Gudino, Natalia; Blumenthal, Colin J.; Heilman, Jeremy A.; Griswold, Mark A.

    2013-01-01

    Purpose Single sideband amplitude modulation (SSB) is an appealing platform for highly parallel wireless MRI detector arrays because the spacing between channels is ideally limited only by the MRI signal bandwidth. However this assumes that no other sources of interference are present outside that bandwidth. This work investigates the practical interference between multiple SSB-encoded MRI signals. Methods Noise from coil preamplifiers and carrier bleed-through are identified as sources of interference. Two different SSB systems were designed for 1.5T with different noise filtering properties. We show how the differences between the filtered noise profiles impact the received MR signal’s dynamic range (DRsig) and image signal-to-noise ratio (SNR) through simulation, bench measurements, and phantom imaging experiments. Results When operating individually in the MR scanner, both SSB systems were shown to minimally impact the original DRsig and SNR. On the other hand, when all eight channels were operating simultaneously, an average SNR loss was observed to be 12% in the one system, while a second system with more complex filtering was able to achieve a 3% loss in SNR. Conclusion Successful wireless transmission of multiple SSB-encoded MRI signals is possible as long as channel interference is properly managed through design and simulation. PMID:23413242

  6. Impact of dust filter installation in ironworks and construction on brownfield area on the toxic metal concentration in street and house dust (Celje, Slovenia).

    PubMed

    Zibret, Gorazd

    2012-05-01

    This article presents the impact of the ecological investment in ironworks (dust filter installation) and construction works at a highly contaminated brownfield site on the chemical composition of household dust (HD) and street sediment (SS) in Celje, Slovenia. The evaluation is based on two sampling campaigns: the first was undertaken 1 month before the ecological investment became operational and the second 3 years later. The results show that dust filter installations reduced the content of Co, Cr, Fe, Mn, Mo, W and Zn on average by 58% in HD and by 51% in SS. No reduction was observed at sampling points in the upwind direction from the ironworks. By contrast, the impact of the construction works on the highly contaminated brownfield site was detected by a significant increase (on average by 37%) of elements connected to the brownfield contamination in SS. Such increase was not detected in HD.

  7. The Si(1-x)Nx Rugate

    NASA Astrophysics Data System (ADS)

    Bassel, R. H.

    1989-08-01

    With the advent of lasers, intense sources of monochromatic light are now available. The problem of eye and sensor protection from these devices is now crucial to the field operations of troops and military weapons systems. In other words it is necessary to construct a filter which will reject particular laser lines from impinging upon a material. The results are presented in the infrared and near infrared region of the spectrum. The effectiveness of a Rugate filter constructed of a silicon nitrogen alloy is calculated. Single and double line rugates are discussed. The dependence on the rugate on the various parameters such as the number of cycles, the amplitudes of the sine waves and the phase angle are presented. The effects of absorption, constructional malfunctions, and the angle of incidence of the laser beam are studied. It is found that quite large optical densities can be achieved with rather thin films, thus the silicon nitrogen rugate is a viable candidate for a laser rejection filter.

  8. Compact multispectral photodiode arrays using micropatterned dichroic filters

    NASA Astrophysics Data System (ADS)

    Chandler, Eric V.; Fish, David E.

    2014-05-01

    The next generation of multispectral instruments requires significant improvements in both spectral band customization and portability to support the widespread deployment of application-specific optical sensors. The benefits of spectroscopy are well established for numerous applications including biomedical instrumentation, industrial sorting and sensing, chemical detection, and environmental monitoring. In this paper, spectroscopic (and by extension hyperspectral) and multispectral measurements are considered. The technology, tradeoffs, and application fits of each are evaluated. In the majority of applications, monitoring 4-8 targeted spectral bands of optimized wavelength and bandwidth provides the necessary spectral contrast and correlation. An innovative approach integrates precision spectral filters at the photodetector level to enable smaller sensors, simplify optical designs, and reduce device integration costs. This method supports user-defined spectral bands to create application-specific sensors in a small footprint with scalable cost efficiencies. A range of design configurations, filter options and combinations are presented together with typical applications ranging from basic multi-band detection to stringent multi-channel fluorescence measurement. An example implementation packages 8 narrowband silicon photodiodes into a 9x9mm ceramic LCC (leadless chip carrier) footprint. This package is designed for multispectral applications ranging from portable color monitors to purpose- built OEM industrial and scientific instruments. Use of an eight-channel multispectral photodiode array typically eliminates 10-20 components from a device bill-of-materials (BOM), streamlining the optical path and shrinking the footprint by 50% or more. A stepwise design approach for multispectral sensors is discussed - including spectral band definition, optical design tradeoffs and constraints, and device integration from prototype through scalable volume production. Additional customization options are explored for application-specific OEM sensors integrated into portable devices using multispectral photodiode arrays.

  9. Optical MEMS for Earth observation

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Viard, Thierry; Noell, Wilfried; Zamkotsian, Frédéric; Freire, Marco; Guldimann, Benedikt; Kraft, Stefan

    2017-11-01

    Due to the relatively large number of optical Earth Observation missions at ESA, this area is interesting for new space technology developments. In addition to their compactness, scalability and specific task customization, optical MEMS could generate new functions not available with current technologies and are thus candidates for the design of future space instruments. Most mature components for space applications are the digital mirror arrays, the micro-deformable mirrors, the programmable micro diffraction gratings and tiltable micromirrors. A first selection of market-pull and techno-push concepts is done. In addition, some concepts are coming from outside Earth Observation. Finally two concepts are more deeply analyzed. The first concept is a programmable slit for straylight control for space spectro-imagers. This instrument is a push-broom spectroimager for which some images cannot be exploited because of bright sources in the field-of-view. The proposed concept consists in replacing the current entrance spectrometer slit by an active row of micro-mirrors. The MEMS will permit to dynamically remove the bright sources and then to obtain a field-of-view with an optically enhanced signal-to-noise ratio. The second concept is a push-broom imager for which the acquired spectrum can be tuned by optical MEMS. This system is composed of two diffractive elements and a digital mirror array. The first diffractive element spreads the spectrum. A micromirror array is set at the location of the spectral focal plane. By putting the micro-mirrors ON or OFF, we can select parts of field-of-view or spectrum. The second diffractive element then recombines the light on a push-broom detector. Dichroics filters, strip filter, band-pass filter could be replaced by a unique instrument.

  10. Tunable thin-film optical filters for hyperspectral microscopy

    NASA Astrophysics Data System (ADS)

    Favreau, Peter F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.

    2013-02-01

    Hyperspectral imaging was originally developed for use in remote sensing applications. More recently, it has been applied to biological imaging systems, such as fluorescence microscopes. The ability to distinguish molecules based on spectral differences has been especially advantageous for identifying fluorophores in highly autofluorescent tissues. A key component of hyperspectral imaging systems is wavelength filtering. Each filtering technology used for hyperspectral imaging has corresponding advantages and disadvantages. Recently, a new optical filtering technology has been developed that uses multi-layered thin-film optical filters that can be rotated, with respect to incident light, to control the center wavelength of the pass-band. Compared to the majority of tunable filter technologies, these filters have superior optical performance including greater than 90% transmission, steep spectral edges and high out-of-band blocking. Hence, tunable thin-film optical filters present optical characteristics that may make them well-suited for many biological spectral imaging applications. An array of tunable thin-film filters was implemented on an inverted fluorescence microscope (TE 2000, Nikon Instruments) to cover the full visible wavelength range. Images of a previously published model, GFP-expressing endothelial cells in the lung, were acquired using a charge-coupled device camera (Rolera EM-C2, Q-Imaging). This model sample presents fluorescently-labeled cells in a highly autofluorescent environment. Linear unmixing of hyperspectral images indicates that thin-film tunable filters provide equivalent spectral discrimination to our previous acousto-optic tunable filter-based approach, with increased signal-to-noise characteristics. Hence, tunable multi-layered thin film optical filters may provide greatly improved spectral filtering characteristics and therefore enable wider acceptance of hyperspectral widefield microscopy.

  11. Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors

    NASA Astrophysics Data System (ADS)

    Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu

    2000-12-01

    New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.

  12. Advanced Rainbow Solar Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Shields, Virgil

    2003-01-01

    Photovoltaic arrays of the rainbow type, equipped with light-concentrator and spectral-beam-splitter optics, have been investigated in a continuing effort to develop lightweight, high-efficiency solar electric power sources. This investigation has contributed to a revival of the concept of the rainbow photovoltaic array, which originated in the 1950s but proved unrealistic at that time because the selection of solar photovoltaic cells was too limited. Advances in the art of photovoltaic cells since that time have rendered the concept more realistic, thereby prompting the present development effort. A rainbow photovoltaic array comprises side-by-side strings of series-connected photovoltaic cells. The cells in each string have the same bandgap, which differs from the bandgaps of the other strings. Hence, each string operates most efficiently in a unique wavelength band determined by its bandgap. To obtain maximum energy-conversion efficiency and to minimize the size and weight of the array for a given sunlight input aperture, the sunlight incident on the aperture is concentrated, then spectrally dispersed onto the photovoltaic array plane, whereon each string of cells is positioned to intercept the light in its wavelength band of most efficient operation. The number of cells in each string is chosen so that the output potentials of all the strings are the same; this makes it possible to connect the strings together in parallel to maximize the output current of the array. According to the original rainbow photovoltaic concept, the concentrated sunlight was to be split into multiple beams by use of an array of dichroic filters designed so that each beam would contain light in one of the desired wavelength bands. The concept has since been modified to provide for dispersion of the spectrum by use of adjacent prisms. A proposal for an advanced version calls for a unitary concentrator/ spectral-beam-splitter optic in the form of a parabolic curved Fresnel-like prism array with panels of photovoltaic cells on two sides (see figure). The surface supporting the solar cells can be adjusted in length or angle to accommodate the incident spectral pattern. An unoptimized prototype assembly containing ten adjacent prisms and three photovoltaic cells with different bandgaps (InGaP2, GaAs, and InGaAs) was constructed to demonstrate feasibility. The actual array will consist of a lightweight thin-film silicon layer of prisms curved into a parabolic shape. In an initial test under illumination of 1 sun at zero airmass, the energy-conversion efficiency of the assembly was found to be 20 percent. Further analysis of the data from this test led to a projected energy conversion efficiency as high as 41 percent for an array of 6 cells or strings (GaP, AlGaAs, InGaP2, GaAs, and two different InGaAs cells or strings).

  13. Plasma chamber testing of advanced photovoltaic solar array coupons

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1994-01-01

    The solar array module plasma interactions experiment is a space shuttle experiment designed to investigate and quantify the high voltage plasma interactions. One of the objectives of the experiment is to test the performance of the Advanced Photovoltaic Solar Array (APSA). The material properties of array blanket are also studied as electric insulators for APSA arrays in high voltage conditions. Three twelve cell prototype coupons of silicon cells were constructed and tested in a space simulation chamber.

  14. Optical add/drop filter for wavelength division multiplexed systems

    DOEpatents

    Deri, Robert J.; Strand, Oliver T.; Garrett, Henry E.

    2002-01-01

    An optical add/drop filter for wavelength division multiplexed systems and construction methods are disclosed. The add/drop filter includes a first ferrule having a first pre-formed opening for receiving a first optical fiber; an interference filter oriented to pass a first set of wavelengths along the first optical fiber and reflect a second set of wavelengths; and, a second ferrule having a second pre-formed opening for receiving the second optical fiber, and the reflected second set of wavelengths. A method for constructing the optical add/drop filter consists of the steps of forming a first set of openings in a first ferrule; inserting a first set of optical fibers into the first set of openings; forming a first set of guide pin openings in the first ferrule; dividing the first ferrule into a first ferrule portion and a second ferrule portion; forming an interference filter on the first ferrule portion; inserting guide pins through the first set of guide pin openings in the first ferrule portion and second ferrule portion to passively align the first set of optical fibers; removing material such that light reflected from the interference filter from the first set of optical fibers is accessible; forming a second set of openings in a second ferrule; inserting a second set of optical fibers into the second set of openings; and positioning the second ferrule with respect to the first ferrule such that the second set of optical fibers receive the light reflected from the interference filter.

  15. Glass wool filters for concentrating waterborne viruses and agricultural zoonotic pathogens

    USGS Publications Warehouse

    Millen, Hana T.; Gonnering, Jordan C.; Berg, Ryan K.; Spencer, Susan K.; Jokela, William E.; Pearce, John M.; Borchardt, Jackson S.; Borchardt, Mark A.

    2012-01-01

    The key first step in evaluating pathogen levels in suspected contaminated water is concentration. Concentration methods tend to be specific for a particular pathogen group, for example US Environmental Protection Agency Method 1623 for Giardia and Cryptosporidium1, which means multiple methods are required if the sampling program is targeting more than one pathogen group. Another drawback of current methods is the equipment can be complicated and expensive, for example the VIRADEL method with the 1MDS cartridge filter for concentrating viruses2. In this article we describe how to construct glass wool filters for concentrating waterborne pathogens. After filter elution, the concentrate is amenable to a second concentration step, such as centrifugation, followed by pathogen detection and enumeration by cultural or molecular methods. The filters have several advantages. Construction is easy and the filters can be built to any size for meeting specific sampling requirements. The filter parts are inexpensive, making it possible to collect a large number of samples without severely impacting a project budget. Large sample volumes (100s to 1,000s L) can be concentrated depending on the rate of clogging from sample turbidity. The filters are highly portable and with minimal equipment, such as a pump and flow meter, they can be implemented in the field for sampling finished drinking water, surface water, groundwater, and agricultural runoff. Lastly, glass wool filtration is effective for concentrating a variety of pathogen types so only one method is necessary. Here we report on filter effectiveness in concentrating waterborne human enterovirus, Salmonella enterica, Cryptosporidium parvum, and avian influenza virus.

  16. Glass Wool Filters for Concentrating Waterborne Viruses and Agricultural Zoonotic Pathogens

    PubMed Central

    Millen, Hana T.; Gonnering, Jordan C.; Berg, Ryan K.; Spencer, Susan K.; Jokela, William E.; Pearce, John M.; Borchardt, Jackson S.; Borchardt, Mark A.

    2012-01-01

    The key first step in evaluating pathogen levels in suspected contaminated water is concentration. Concentration methods tend to be specific for a particular pathogen group, for example US Environmental Protection Agency Method 1623 for Giardia and Cryptosporidium1, which means multiple methods are required if the sampling program is targeting more than one pathogen group. Another drawback of current methods is the equipment can be complicated and expensive, for example the VIRADEL method with the 1MDS cartridge filter for concentrating viruses2. In this article we describe how to construct glass wool filters for concentrating waterborne pathogens. After filter elution, the concentrate is amenable to a second concentration step, such as centrifugation, followed by pathogen detection and enumeration by cultural or molecular methods. The filters have several advantages. Construction is easy and the filters can be built to any size for meeting specific sampling requirements. The filter parts are inexpensive, making it possible to collect a large number of samples without severely impacting a project budget. Large sample volumes (100s to 1,000s L) can be concentrated depending on the rate of clogging from sample turbidity. The filters are highly portable and with minimal equipment, such as a pump and flow meter, they can be implemented in the field for sampling finished drinking water, surface water, groundwater, and agricultural runoff. Lastly, glass wool filtration is effective for concentrating a variety of pathogen types so only one method is necessary. Here we report on filter effectiveness in concentrating waterborne human enterovirus, Salmonella enterica, Cryptosporidium parvum, and avian influenza virus. PMID:22415031

  17. Ultrasonic filtration of industrial chemical solutions

    NASA Technical Reports Server (NTRS)

    Cosma, T.

    1974-01-01

    The practical results obtained as a result of filtering industrial chemical solutions under continuous flow conditions with the aid of an ultrasonic filter are presented. The main part of the assembly consists of an ultrasonic generator with an output power of about 400 W and the filtration assembly, in which there is a magnetostrictive amplifier constructed for 20.5 kHz. In addition to ensuring a continuous flow of filtered solution, ultrasonic filters can be replaced or cleaned at intervals of time that are 8-10 times greater than in the case of mechanical filters. They yield considerably better results as far as the size of the filtered particles is concerned. The parameters on which filtration quality depends are also presented.

  18. Rapid Pinhole Growth in the F160BW Filter

    NASA Astrophysics Data System (ADS)

    Biretta, J.; Verner, E.

    2009-03-01

    The WFPC2 Filter F160BW, also known as WOOD's filter, was designed to transmit UV emission around 150nm and strongly block all other wavelengths. The filter has a unique construction where a thin film of sodium metal serves as the spectral element. However, sodium is a highly unstable and reactive metal, which makes the filter susceptible to changes over time. Herein we report a rapidly growing pinhole in the filter located in the field of view of the WF2 CCD. Observers requiring a high rejection of out-of-band light (i.e. red leak) should take note of this feature, and avoid the affected region in the field-of-view.

  19. Context dependent anti-aliasing image reconstruction

    NASA Technical Reports Server (NTRS)

    Beaudet, Paul R.; Hunt, A.; Arlia, N.

    1989-01-01

    Image Reconstruction has been mostly confined to context free linear processes; the traditional continuum interpretation of digital array data uses a linear interpolator with or without an enhancement filter. Here, anti-aliasing context dependent interpretation techniques are investigated for image reconstruction. Pattern classification is applied to each neighborhood to assign it a context class; a different interpolation/filter is applied to neighborhoods of differing context. It is shown how the context dependent interpolation is computed through ensemble average statistics using high resolution training imagery from which the lower resolution image array data is obtained (simulation). A quadratic least squares (LS) context-free image quality model is described from which the context dependent interpolation coefficients are derived. It is shown how ensembles of high-resolution images can be used to capture the a priori special character of different context classes. As a consequence, a priori information such as the translational invariance of edges along the edge direction, edge discontinuity, and the character of corners is captured and can be used to interpret image array data with greater spatial resolution than would be expected by the Nyquist limit. A Gibb-like artifact associated with this super-resolution is discussed. More realistic context dependent image quality models are needed and a suggestion is made for using a quality model which now is finding application in data compression.

  20. Evaluation of multispectral plenoptic camera

    NASA Astrophysics Data System (ADS)

    Meng, Lingfei; Sun, Ting; Kosoglow, Rich; Berkner, Kathrin

    2013-01-01

    Plenoptic cameras enable capture of a 4D lightfield, allowing digital refocusing and depth estimation from data captured with a compact portable camera. Whereas most of the work on plenoptic camera design has been based a simplistic geometric-optics-based characterization of the optical path only, little work has been done of optimizing end-to-end system performance for a specific application. Such design optimization requires design tools that need to include careful parameterization of main lens elements, as well as microlens array and sensor characteristics. In this paper we are interested in evaluating the performance of a multispectral plenoptic camera, i.e. a camera with spectral filters inserted into the aperture plane of the main lens. Such a camera enables single-snapshot spectral data acquisition.1-3 We first describe in detail an end-to-end imaging system model for a spectrally coded plenoptic camera that we briefly introduced in.4 Different performance metrics are defined to evaluate the spectral reconstruction quality. We then present a prototype which is developed based on a modified DSLR camera containing a lenslet array on the sensor and a filter array in the main lens. Finally we evaluate the spectral reconstruction performance of a spectral plenoptic camera based on both simulation and measurements obtained from the prototype.

  1. Custom Array Comparative Genomic Hybridization: the Importance of DNA Quality, an Expert Eye, and Variant Validation

    PubMed Central

    Lantieri, Francesca; Malacarne, Michela; Gimelli, Stefania; Santamaria, Giuseppe; Coviello, Domenico; Ceccherini, Isabella

    2017-01-01

    The presence of false positive and false negative results in the Array Comparative Genomic Hybridization (aCGH) design is poorly addressed in literature reports. We took advantage of a custom aCGH recently carried out to analyze its design performance, the use of several Agilent aberrations detection algorithms, and the presence of false results. Our study provides a confirmation that the high density design does not generate more noise than standard designs and, might reach a good resolution. We noticed a not negligible presence of false negative and false positive results in the imbalances call performed by the Agilent software. The Aberration Detection Method 2 (ADM-2) algorithm with a threshold of 6 performed quite well, and the array design proved to be reliable, provided that some additional filters are applied, such as considering only intervals with average absolute log2ratio above 0.3. We also propose an additional filter that takes into account the proportion of probes with log2ratio exceeding suggestive values for gain or loss. In addition, the quality of samples was confirmed to be a crucial parameter. Finally, this work raises the importance of evaluating the samples profiles by eye and the necessity of validating the imbalances detected. PMID:28287439

  2. Diagnostics for Z-pinch implosion experiments on PTS

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Huang, X. B.; Zhou, S. T.; Zhang, S. Q.; Dan, J. K.; Li, J.; Cai, H. C.; Wang, K. L.; Ouyang, K.; Xu, Q.; Duan, S. C.; Chen, G. H.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.

    2014-12-01

    The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.

  3. Comparative performance analysis of shunt and series passive filter for LED lamp

    NASA Astrophysics Data System (ADS)

    Sarwono, Edi; Facta, Mochammad; Handoko, Susatyo

    2018-03-01

    Light Emitting Diode lamp or LED lamp nowadays is widely used by consumers as a new innovation in the lighting technologies due to its energy saving for low power consumption lamps for brighter light intensity. How ever, the LED lamp produce an electric pollutant known as harmonics. The harmonics is generated by rectifier as part of LED lamp circuit. The present of harmonics in current or voltage has made the source waveform from the grid is distorted. This distortion may cause inacurrate measurement, mall function, and excessive heating for any element at the grid. This paper present an analysis work of shunt and series filters to suppress the harmonics generated by the LED lamp circuit. The work was initiated by conducting several tests to investigate the harmonic content of voltage and currents. The measurements in this work were carried out by using HIOKI Power Quality Analyzer 3197. The measurement results showed that the harmonics current of tested LED lamps were above the limit of IEEE standard 519-2014. Based on the measurement results shunt and series filters were constructed as low pass filters. The bode analysis were appled during construction and prediction of the filters performance. Based on experimental results, the application of shunt filter at input side of LED lamp has reduced THD current up to 88%. On the other hand, the series filter has significantly reduced THD current up to 92%.

  4. Efficient Decoding With Steady-State Kalman Filter in Neural Interface Systems

    PubMed Central

    Malik, Wasim Q.; Truccolo, Wilson; Brown, Emery N.; Hochberg, Leigh R.

    2011-01-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5 ± 0.5 s (mean ± s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25 ± 3 single units by a factor of 7.0 ± 0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems. PMID:21078582

  5. 42 CFR 84.177 - Inhalation and exhalation valves; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... air from adversely affecting filters, except where filters are specifically designed to resist... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.177 Inhalation and exhalation valves... external influence; and (3) Designed and constructed to prevent inward leakage of contaminated air. ...

  6. 42 CFR 84.177 - Inhalation and exhalation valves; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... air from adversely affecting filters, except where filters are specifically designed to resist... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.177 Inhalation and exhalation valves... external influence; and (3) Designed and constructed to prevent inward leakage of contaminated air. ...

  7. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Zhouxiang; Zhang Xian; Huang Kaikai

    2012-09-15

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat notemore » line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.« less

  8. Aerodynamic Measurement Technology

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.

    2002-01-01

    Ohio State University developed a new spectrally filtered light-scattering apparatus based on a diode laser injected-locked titanium: sapphire laser and rubidium vapor filter at 780.2 nm. When the device was combined with a stimulated Brillouin scattering phase conjugate mirror, the realizable peak attenuation of elastic scattering interferences exceeded 105. The potential of the system was demonstrated by performing Thomson scattering measurements. Under USAF-NASA funding, West Virginia University developed a Doppler global velocimetry system using inexpensive 8-bit charged coupled device cameras and digitizers and a CW argon ion laser. It has demonstrated a precision of +/- 2.5 m/sec in a swirling jet flow. Low-noise silicon-micromachined microphones developed and incorporated in a novel two-tier, hybrid packaging scheme at the University of Florida used printed circuit board technology to realize a MEMS-based directional acoustic array. The array demonstrated excellent performance relative to conventional sensor technologies and provides scaling technologies that can reduce cost and increase speed and mobility.

  9. RF Design of a Wideband CMOS Integrated Receiver for Phased Array Applications

    NASA Astrophysics Data System (ADS)

    Jackson, Suzy A.

    2004-06-01

    New silicon CMOS processes developed primarily for the burgeoning wireless networking market offer significant promise as a vehicle for the implementation of highly integrated receivers, especially at the lower end of the frequency range proposed for the Square Kilometre Array (SKA). An RF-CMOS ‘Receiver-on-a-Chip’ is being developed as part of an Australia Telescope program looking at technologies associated with the SKA. The receiver covers the frequency range 500 1700 MHz, with instantaneous IF bandwidth of 500 MHz and, on simulation, yields an input noise temperature of < 50 K at mid-band. The receiver will contain all active circuitry (LNA, bandpass filter, quadrature mixer, anti-aliasing filter, digitiser and serialiser) on one 0.18 μm RF-CMOS integrated circuit. This paper outlines receiver front-end development work undertaken to date, including design and simulation of an LNA using noise cancelling techniques to achieve a wideband input-power-match with little noise penalty.

  10. Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean.

    PubMed

    Stafford, K M; Fox, C G; Clark, D S

    1998-12-01

    Analysis of acoustic signals recorded from the U.S. Navy's SOund SUrveillance System (SOSUS) was used to detect and locate blue whale (Balaenoptera musculus) calls offshore in the northeast Pacific. The long, low-frequency components of these calls are characteristic of calls recorded in the presence of blue whales elsewhere in the world. Mean values for frequency and time characteristics from field-recorded blue whale calls were used to develop a simple matched filter for detecting such calls in noisy time series. The matched filter was applied to signals from three different SOSUS arrays off the coast of the Pacific Northwest to detect and associate individual calls from the same animal on the different arrays. A U.S. Navy maritime patrol aircraft was directed to an area where blue whale calls had been detected on SOSUS using these methods, and the presence of vocalizing blue whale was confirmed at the site with field recordings from sonobuoys.

  11. What is the best reference RNA? And other questions regarding the design and analysis of two-color microarray experiments.

    PubMed

    Kerr, Kathleen F; Serikawa, Kyle A; Wei, Caimiao; Peters, Mette A; Bumgarner, Roger E

    2007-01-01

    The reference design is a practical and popular choice for microarray studies using two-color platforms. In the reference design, the reference RNA uses half of all array resources, leading investigators to ask: What is the best reference RNA? We propose a novel method for evaluating reference RNAs and present the results of an experiment that was specially designed to evaluate three common choices of reference RNA. We found no compelling evidence in favor of any particular reference. In particular, a commercial reference showed no advantage in our data. Our experimental design also enabled a new way to test the effectiveness of pre-processing methods for two-color arrays. Our results favor using intensity normalization and foregoing background subtraction. Finally, we evaluate the sensitivity and specificity of data quality filters, and we propose a new filter that can be applied to any experimental design and does not rely on replicate hybridizations.

  12. Photoacoustic Imaging of Animals with an Annular Transducer Array

    NASA Astrophysics Data System (ADS)

    Yang, Di-Wu; Zhou, Zhi-Bin; Zeng, Lv-Ming; Zhou, Xin; Chen, Xing-Hui

    2014-07-01

    A photoacoustic system with an annular transducer array is presented for rapid, high-resolution photoacoustic tomography of animals. An eight-channel data acquisition system is applied to capture the photoacoustic signals by using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experiments are performed on a mouse head and a rabbit head and clear photoacoustic images are obtained. The experimental results demonstrate that this imaging system holds the potential for imaging the human brain.

  13. Series array of highly hysteretic Josephson junctions coupled to a microstrip resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costabile, G.; Andreone, D.; Lacquaniti, V.

    1985-07-15

    We have tested a new device based on a 12 junction array coupled to a resonator. We have explored the feasibility of the phase lock for all the junctions at the same biasing current, which yields voltage quantization across each junction, eliminating the need to individually bias the junctions. The whole rf structure has been realized by stripline technology. The resonator is fed by a 50-..cap omega.. line and is decoupled from the dc circuit by elliptical low-pass filters inserted in the bias leads.

  14. Superconducting Quantum Arrays for Wideband Antennas and Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Mukhanov, O.; Prokopemko, G.; Romanofsky, Robert R.

    2014-01-01

    Superconducting Quantum Iinetference Filters (SQIF) consist of a two-dimensional array of niobium Josephson Junctions formed into N loops of incommensurate area. This structure forms a magnetic field (B) to voltage transducer with an impulse like response at B0. In principle, the signal-to-noise ratio scales as the square root of N and the noise can be made arbitrarily small (i.e. The SQIF chips are expected to exhibit quantum limited noise performance). A gain of about 20 dB was recently demonstrated at 10 GHz.

  15. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  16. Linear variable narrow bandpass optical filters in the far infrared (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rahmlow, Thomas D.

    2017-06-01

    We are currently developing linear variable filters (LVF) with very high wavelength gradients. In the visible, these filters have a wavelength gradient of 50 to 100 nm/mm. In the infrared, the wavelength gradient covers the range of 500 to 900 microns/mm. Filter designs include band pass, long pass and ulta-high performance anti-reflection coatings. The active area of the filters is on the order of 5 to 30 mm along the wavelength gradient and up to 30 mm in the orthogonal, constant wavelength direction. Variation in performance along the constant direction is less than 1%. Repeatable performance from filter to filter, absolute placement of the filter relative to a substrate fiducial and, high in-band transmission across the full spectral band is demonstrated. Applications include order sorting filters, direct replacement of the spectrometer and hyper-spectral imaging. Off-band rejection with an optical density of greater than 3 allows use of the filter as an order sorting filter. The linear variable order sorting filters replaces other filter types such as block filters. The disadvantage of block filters is the loss of pixels due to the transition between filter blocks. The LVF is a continuous gradient without a discrete transition between filter wavelength regions. If the LVF is designed as a narrow band pass filter, it can be used in place of a spectrometer thus reducing overall sensor weight and cost while improving the robustness of the sensor. By controlling the orthogonal performance (smile) the LVF can be sized to the dimensions of the detector. When imaging on to a 2 dimensional array and operating the sensor in a push broom configuration, the LVF spectrometer performs as a hyper-spectral imager. This paper presents performance of LVF fabricated in the far infrared on substrates sized to available detectors. The impact of spot size, F-number and filter characterization are presented. Results are also compared to extended visible LVF filters.

  17. Stressed detector arrays for airborne astronomy

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.

    1989-01-01

    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed.

  18. Ranging bowhead whale calls in a shallow-water dispersive waveguide.

    PubMed

    Abadi, Shima H; Thode, Aaron M; Blackwell, Susanna B; Dowling, David R

    2014-07-01

    This paper presents the performance of three methods for estimating the range of broadband (50-500 Hz) bowhead whale calls in a nominally 55-m-deep waveguide: Conventional mode filtering (CMF), synthetic time reversal (STR), and triangulation. The first two methods use a linear vertical array to exploit dispersive propagation effects in the underwater sound channel. The triangulation technique used here, while requiring no knowledge about the propagation environment, relies on a distributed array of directional autonomous seafloor acoustics recorders (DASARs) arranged in triangular grid with 7 km spacing. This study uses simulations and acoustic data collected in 2010 from coastal waters near Kaktovik, Alaska. At that time, a 12-element vertical array, spanning the bottom 63% of the water column, was deployed alongside a distributed array of seven DASARs. The estimated call location-to-array ranges determined from CMF and STR are compared with DASAR triangulation results for 19 whale calls. The vertical-array ranging results are generally within ±10% of the DASAR results with the STR results providing slightly better agreement. The results also indicate that the vertical array can range calls over larger ranges and with greater precision than the particular distributed array discussed here, whenever the call locations are beyond the distributed array boundaries.

  19. Improvement of sand filter and constructed wetland design using an environmental decision support system.

    PubMed

    Turon, Clàudia; Comas, Joaquim; Torrens, Antonina; Molle, Pascal; Poch, Manel

    2008-01-01

    With the aim of improving effluent quality of waste stabilization ponds, different designs of vertical flow constructed wetlands and intermittent sand filters were tested on an experimental full-scale plant within the framework of a European project. The information extracted from this study was completed and updated with heuristic and bibliographic knowledge. The data and knowledge acquired were difficult to integrate into mathematical models because they involve qualitative information and expert reasoning. Therefore, it was decided to develop an environmental decision support system (EDSS-Filter-Design) as a tool to integrate mathematical models and knowledge-based techniques. This paper describes the development of this support tool, emphasizing the collection of data and knowledge and representation of this information by means of mathematical equations and a rule-based system. The developed support tool provides the main design characteristics of filters: (i) required surface, (ii) media type, and (iii) media depth. These design recommendations are based on wastewater characteristics, applied load, and required treatment level data provided by the user. The results of the EDSS-Filter-Design provide appropriate and useful information and guidelines on how to design filters, according to the expert criteria. The encapsulation of the information into a decision support system reduces the design period and provides a feasible, reasoned, and positively evaluated proposal.

  20. Constructing an Efficient Self-Tuning Aircraft Engine Model for Control and Health Management Applications

    NASA Technical Reports Server (NTRS)

    Armstrong, Jeffrey B.; Simon, Donald L.

    2012-01-01

    Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulations.Self-tuning aircraft engine models can be applied for control and health management applications. The self-tuning feature of these models minimizes the mismatch between any given engine and the underlying engineering model describing an engine family. This paper provides details of the construction of a self-tuning engine model centered on a piecewise linear Kalman filter design. Starting from a nonlinear transient aerothermal model, a piecewise linear representation is first extracted. The linearization procedure creates a database of trim vectors and state-space matrices that are subsequently scheduled for interpolation based on engine operating point. A series of steady-state Kalman gains can next be constructed from a reduced-order form of the piecewise linear model. Reduction of the piecewise linear model to an observable dimension with respect to available sensed engine measurements can be achieved using either a subset or an optimal linear combination of "health" parameters, which describe engine performance. The resulting piecewise linear Kalman filter is then implemented for faster-than-real-time processing of sensed engine measurements, generating outputs appropriate for trending engine performance, estimating both measured and unmeasured parameters for control purposes, and performing on-board gas-path fault diagnostics. Computational efficiency is achieved by designing multidimensional interpolation algorithms that exploit the shared scheduling of multiple trim vectors and system matrices. An example application illustrates the accuracy of a self-tuning piecewise linear Kalman filter model when applied to a nonlinear turbofan engine simulation. Additional discussions focus on the issue of transient response accuracy and the advantages of a piecewise linear Kalman filter in the context of validation and verification. The techniques described provide a framework for constructing efficient self-tuning aircraft engine models from complex nonlinear simulatns.

  1. Hierarchical sinuous-antenna phased array for millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin

    2018-03-01

    We present the design, fabrication, and measured performance of a hierarchical sinuous-antenna phased array coupled to superconducting transition-edge-sensor (TES) bolometers for millimeter wavelengths. The architecture allows for dual-polarization wideband sensitivity with a beam width that is approximately frequency-independent. We report on measurements of a prototype device, which uses three levels of triangular phased arrays to synthesize beams that are approximately constant in width across three frequency bands covering a 3:1 bandwidth. The array element is a lens-coupled sinuous antenna. The device consists of an array of hemispherical lenses coupled to a lithographed wafer, which integrates TESs, planar sinuous antennas, and microwave circuitry including band-defining filters. The approximately frequency-independent beam widths improve coupling to telescope optics and keep the sensitivity of an experiment close to optimal across a broad frequency range. The design can be straightforwardly modified for use with non-TES lithographed cryogenic detectors such as kinetic inductance detectors. Additionally, we report on the design and measurements of a broadband 180° hybrid that can simplify the design of future multichroic focal planes including but not limited to hierarchical phased arrays.

  2. Range-azimuth decouple beamforming for frequency diverse array with Costas-sequence modulated frequency offsets

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wang, Wen-Qin; Shao, Huaizong

    2016-12-01

    Different from the phased-array using the same carrier frequency for each transmit element, the frequency diverse array (FDA) uses a small frequency offset across the array elements to produce range-angle-dependent transmit beampattern. FDA radar provides new application capabilities and potentials due to its range-dependent transmit array beampattern, but the FDA using linearly increasing frequency offsets will produce a range and angle coupled transmit beampattern. In order to decouple the range-azimuth beampattern for FDA radar, this paper proposes a uniform linear array (ULA) FDA using Costas-sequence modulated frequency offsets to produce random-like energy distribution in the transmit beampattern and thumbtack transmit-receive beampattern. In doing so, the range and angle of targets can be unambiguously estimated through matched filtering and subspace decomposition algorithms in the receiver signal processor. Moreover, random-like energy distributed beampattern can also be utilized for low probability of intercept (LPI) radar applications. Numerical results show that the proposed scheme outperforms the standard FDA in focusing the transmit energy, especially in the range dimension.

  3. Engineering sciences area and module performance and failure analysis area

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Runkle, L. D.

    1982-01-01

    Photovoltaic-array/power-conditioner interface studies are updated. An experiment conducted to evaluate different operating-point strategies, such as constant voltage and pilot cells, and to determine array energy losses when the array is operated off the maximum power points is described. Initial results over a test period of three and a half weeks showed a 2% energy loss when the array is operated at a fixed voltage. Degraded-array studies conducted at NE RES that used a range of simulated common types of degraded I-V curves are reviewed. The instrumentation installed at the JPL field-test site to obtain the irradiance data was described. Experiments using an optical filter to adjust the spectral irradiance of the large-area pulsed solar simulator (LAPSS) to AM1.5 are described. Residential-array research activity is reviewed. Voltage isolation test results are described. Experiments performed on one type of module to determine the relationship between leakage current and temperature are reviewed. An encapsulated-cell testing approach is explained. The test program, data reduction methods, and initial results of long-duration module testing are described.

  4. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less

  5. Design, Construction, and Initial Test of High Spatial Resolution Thermometry Arrays for Detection of Surface Temperature Profiles on SRF Cavities in Super Fluid Helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ari Palczewski, Rongli Geng, Grigory Eremeev

    2011-07-01

    We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance onmore » a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.« less

  6. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    DOE PAGES

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; ...

    2016-02-15

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less

  7. First Tests of Prototype SCUBA-2 Superconducting Bolometer Array

    NASA Astrophysics Data System (ADS)

    Woodcraft, Adam L.; Ade, Peter A. R.; Bintley, Dan; Hunt, Cynthia L.; Sudiwala, Rashmi V.; Hilton, Gene C.; Irwin, Kent D.; Reintsema, Carl D.; Audley, Michael D.; Holland, Wayne S.; MacIntosh, Mike

    2006-09-01

    We present results of the first tests on a 1280 pixel superconducting bolometer array, a prototype for SCUBA-2, a sub-mm camera being built for the James Clerk Maxwell Telescope in Hawaii. The bolometers are TES (transition edge sensor) detectors; these take advantage of the large variation of resistance with temperature through the superconducting transition. To keep the number of wires reasonable, a multiplexed read-out is used. Each pixel is read out through an individual DC SQUID; room temperature electronics switch between rows in the array by biasing the appropriate SQUIDs in turn. Arrays of 100 SQUIDs in series for each column then amplify the output. Unlike previous TES arrays, the multiplexing elements are located beneath each pixel, making large arrays possible, but construction more challenging. The detectors are constructed from Mo/Cu bi-layers; this technique enables the transition temperature to be tuned using the proximity effect by choosing the thickness of the normal and superconducting materials. To achieve the required performance, the detectors are operated at a temperature of approximately 120 mK. We describe the results of a basic characterisation of the array, demonstrating that it is fully operational, and give the results of signal to noise measurements.

  8. Ultraviolet filters in stomatopod crustaceans: diversity, ecology and evolution.

    PubMed

    Bok, Michael J; Porter, Megan L; Cronin, Thomas W

    2015-07-01

    Stomatopod crustaceans employ unique ultraviolet (UV) optical filters in order to tune the spectral sensitivities of their UV-sensitive photoreceptors. In the stomatopod species Neogonodactylus oerstedii, we previously found four filter types, produced by five distinct mycosporine-like amino acid pigments in the crystalline cones of their specialized midband ommatidial facets. This UV-spectral tuning array produces receptors with at least six distinct spectral sensitivities, despite expressing only two visual pigments. Here, we present a broad survey of these UV filters across the stomatopod order, examining their spectral absorption properties in 21 species from seven families in four superfamilies. We found that UV filters are present in three of the four superfamilies, and evolutionary character reconstruction implies that at least one class of UV filter was present in the ancestor of all modern stomatopods. Additionally, postlarval stomatopods were observed to produce the UV filters simultaneously alongside development of the adult eye. The absorbance properties of the filters are consistent within a species; however, between species we found a great deal of diversity, both in the number of filters and in their spectral absorbance characteristics. This diversity correlates with the habitat depth ranges of these species, suggesting that species living in shallow, UV-rich environments may tune their UV spectral sensitivities more aggressively. We also found additional, previously unrecognized UV filter types in the crystalline cones of the peripheral eye regions of some species, indicating the possibility for even greater stomatopod visual complexity than previously thought. © 2015. Published by The Company of Biologists Ltd.

  9. Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou, China.

    PubMed

    Chen, Hong; Zhang, Mingmei

    2013-08-06

    This study aimed at quantifying the concentration and removal of antibiotic resistance genes (ARGs) in three municipal wastewater treatment plants (WWTPs) employing different advanced treatment systems [biological aerated filter, constructed wetland, and ultraviolet (UV) disinfection]. The concentrations of tetM, tetO, tetQ, tetW, sulI, sulII, intI1, and 16S rDNA genes were examined in wastewater and biosolid samples. In municipal WWTPs, ARG reductions of 1-3 orders of magnitude were observed, and no difference was found among the three municipal WWTPs with different treatment processes (p > 0.05). In advanced treatment systems, 1-3 orders of magnitude of reductions in ARGs were observed in constructed wetlands, 0.6-1.2 orders of magnitude of reductions in ARGs were observed in the biological aerated filter, but no apparent decrease by UV disinfection was observed. A significant difference was found between constructed wetlands and biological filter (p < 0.05) and between constructed wetlands and UV disinfection (p < 0.05). In the constructed wetlands, significant correlations were observed in the removal of ARGs and 16S rDNA genes (R(2) = 0.391-0.866; p < 0.05). Constructed wetlands not only have the comparable ARG removal values with WWTP (p > 0.05) but also have the advantage in ARG relative abundance removal, and it should be given priority to be an advanced treatment system for further ARG attenuation from WWTP.

  10. The fabrication of a multi-spectral lens array and its application in assisting color blindness

    NASA Astrophysics Data System (ADS)

    Di, Si; Jin, Jian; Tang, Guanrong; Chen, Xianshuai; Du, Ruxu

    2016-01-01

    This article presents a compact multi-spectral lens array and describes its application in assisting color-blindness. The lens array consists of 9 microlens, and each microlens is coated with a different color filter. Thus, it can capture different light bands, including red, orange, yellow, green, cyan, blue, violet, near-infrared, and the entire visible band. First, the fabrication process is described in detail. Second, an imaging system is setup and a color blindness testing card is selected as the sample. By the system, the vision results of normal people and color blindness can be captured simultaneously. Based on the imaging results, it is possible to be used for helping color-blindness to recover normal vision.

  11. Tailoring the High-Q LC Filter Arrays for Readout of Kilo-Pixel TES Arrays in the SPICA-SAFARI Instrument

    NASA Astrophysics Data System (ADS)

    Bruijn, M. P.; Gottardi, L.; den Hartog, R. H.; van der Kuur, J.; van der Linden, A. J.; Jackson, B. D.

    2014-08-01

    Following earlier presentations of arrays of high quality factor (Q 10.000) superconducting resonators in the MHz regime, we report on improvement of the packing density of resonance frequencies to 160 in the 1-3 MHz band. Spread in the spacing of resonances is found to be limited to 1 kHz (1 with the present fabrication procedure. The present packing density of frequencies and chip area approaches the requirements for the SAFARI instrument on the SPICA mission (in preparation). The a-Si:H dielectric layer in the planar S-I-S capacitors shows a presently unexplained apparent negative effective series resistance, depending on operating temperature and applied testing voltage.

  12. Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Coughlin, M.; Mukund, N.; Harms, J.; Driggers, J.; Adhikari, R.; Mitra, S.

    2016-12-01

    Newtonian gravitational noise from seismic fields is predicted to be a limiting noise source at low frequency for second generation gravitational-wave detectors. Mitigation of this noise will be achieved by Wiener filtering using arrays of seismometers deployed in the vicinity of all test masses. In this work, we present optimized configurations of seismometer arrays using a variety of simplified models of the seismic field based on seismic observations at LIGO Hanford. The model that best fits the seismic measurements leads to noise reduction limited predominantly by seismometer self-noise. A first simplified design of seismic arrays for Newtonian-noise cancellation at the LIGO sites is presented, which suggests that it will be sufficient to monitor surface displacement inside the buildings.

  13. Thermoelastic analysis of solar cell arrays and their material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Rowe, W. M.; Yasui, R. K.

    1973-01-01

    A thermoelastic stress analysis procedure is reported for predicting the thermally induced stresses and failures in silicon solar cell arrays. A prerequisite for the analysis is the characterization of the temperature-dependent thermal and mechanical properties of the solar cell materials. Extensive material property testing was carried out in the temperature range -200 to +200 C for the filter glass, P- and N-type silicon, interconnector metals, solder, and several candidate silicone rubber adhesives. The analysis procedure is applied to several solar cell array design configurations. Results of the analysis indicate the optimum design configuration, with respect to compatible materials, effect of the solder coating, and effect of the interconnector geometry. Good agreement was found between results of the analysis and the test program.

  14. Optimal shortening of uniform covering arrays

    PubMed Central

    Rangel-Valdez, Nelson; Avila-George, Himer; Carrizalez-Turrubiates, Oscar

    2017-01-01

    Software test suites based on the concept of interaction testing are very useful for testing software components in an economical way. Test suites of this kind may be created using mathematical objects called covering arrays. A covering array, denoted by CA(N; t, k, v), is an N × k array over Zv={0,…,v-1} with the property that every N × t sub-array covers all t-tuples of Zvt at least once. Covering arrays can be used to test systems in which failures occur as a result of interactions among components or subsystems. They are often used in areas such as hardware Trojan detection, software testing, and network design. Because system testing is expensive, it is critical to reduce the amount of testing required. This paper addresses the Optimal Shortening of Covering ARrays (OSCAR) problem, an optimization problem whose objective is to construct, from an existing covering array matrix of uniform level, an array with dimensions of (N − δ) × (k − Δ) such that the number of missing t-tuples is minimized. Two applications of the OSCAR problem are (a) to produce smaller covering arrays from larger ones and (b) to obtain quasi-covering arrays (covering arrays in which the number of missing t-tuples is small) to be used as input to a meta-heuristic algorithm that produces covering arrays. In addition, it is proven that the OSCAR problem is NP-complete, and twelve different algorithms are proposed to solve it. An experiment was performed on 62 problem instances, and the results demonstrate the effectiveness of solving the OSCAR problem to facilitate the construction of new covering arrays. PMID:29267343

  15. KSC-2012-6409

    NASA Image and Video Library

    2012-10-29

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, workers continue construction of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM, system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers are placing the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and preparing the site for the operations command center facility. Photo credit: NASA/Ben Smegelski

  16. KSC-2012-6406

    NASA Image and Video Library

    2012-10-29

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, workers continue construction of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM, system. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers are placing the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and preparing the site for the operations command center facility. Photo credit: NASA/Ben Smegelski

  17. Native Vegetation Performance under a Solar PV Array at the National Wind Technology Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beatty, Brenda; Macknick, Jordan; McCall, James

    Construction activities at most large-scale ground installations of photovoltaic (PV) arrays are preceded by land clearing and re-grading to uniform slope and smooth surface conditions to facilitate convenient construction access and facility operations. The impact to original vegetation is usually total eradication followed by installation of a gravel cover kept clear of vegetation by use of herbicides. The degree to which that total loss can be mitigated by some form of revegetation is a subject in its infancy, and most vegetation studies at PV development sites only address weed control and the impact of tall plants on the efficiency ofmore » the solar collectors from shading.This study seeks to address this void, advancing the state of knowledge of how constructed PV arrays affect ground-level environments, and to what degree plant cover, having acceptable characteristics within engineering constraints, can be re-established.« less

  18. Creation of an atlas of filter positions for fluence field modulated CT.

    PubMed

    Szczykutowicz, Timothy P; Hermus, James

    2015-04-01

    Fluence field modulated CT (FFMCT) and volume of interest (VOI) CT imaging applications require adjustment of the profile of the x-ray fluence incident on a patient as a function of view angle. Since current FFMCT prototypes can theoretically take on an infinite number of configurations, measuring a calibration data set for all possible positions would not be feasible. The present work details a methodology for calculating an atlas of configurations that will span all likely body regions, patient sizes, patient positioning, and imaging modes. The hypothesis is that there exists a finite number of unique modulator configurations that effectively span the infinite number of possible fluence profiles with minimal loss in performance. CT images of a head, shoulder, thorax, abdominal, wrist, and leg anatomical slices were dilated and contracted to model small, medium, and large sized patients. Additionally, the images were positioned from iso-center by three different amounts. The modulator configurations required to compensate for each image were computed assuming a FFMCT prototype, digital beam attenuator, (DBA), was set to equalize the detector exposure. Each atlas configuration should be different from the other atlas configurations. The degree of difference was quantified using the sum of the absolute differences in filter thickness between configurations. Using this metric, a set of unique wedge configurations for which no two configurations have a metric value smaller than some threshold can be constructed. Differences in the total number of incident photons between the unconstrained filters and the atlas were studied as a function of the number of atlas positions for each anatomical site and size/off-centering combination. By varying the threshold used in creating the atlas, it was found that roughly 322 atlas positions provided an incident number of photons within 20% of using 19,440 unique filters (the number of atlas entries ranged from 7213 to 1). Additionally, for VOI applications implemented with a single VOI region, the number of required filter configurations was expressed in a simple closed form solution. The methodology proposed in this work will enable DBA-FFMCT and DBA-VOI imaging in the clinic without the need for patient specific air-scans to be performed. In addition, the methodology proposed here is directly applicable to other modulator designs such as piecewise linear, TomoTherapy multi leaf collimators, 2D fluid arrays, and inverse geometry CT.

  19. Partial differential equation-based localization of a monopole source from a circular array.

    PubMed

    Ando, Shigeru; Nara, Takaaki; Levy, Tsukassa

    2013-10-01

    Wave source localization from a sensor array has long been the most active research topics in both theory and application. In this paper, an explicit and time-domain inversion method for the direction and distance of a monopole source from a circular array is proposed. The approach is based on a mathematical technique, the weighted integral method, for signal/source parameter estimation. It begins with an exact form of the source-constraint partial differential equation that describes the unilateral propagation of wide-band waves from a single source, and leads to exact algebraic equations that include circular Fourier coefficients (phase mode measurements) as their coefficients. From them, nearly closed-form, single-shot and multishot algorithms are obtained that is suitable for use with band-pass/differential filter banks. Numerical evaluation and several experimental results obtained using a 16-element circular microphone array are presented to verify the validity of the proposed method.

  20. Method and apparatus for coherent imaging of infrared energy

    DOEpatents

    Hutchinson, Donald P.

    1998-01-01

    A coherent camera system performs ranging, spectroscopy, and thermal imaging. Local oscillator radiation is combined with target scene radiation to enable heterodyne detection by the coherent camera's two-dimensional photodetector array. Versatility enables deployment of the system in either a passive mode (where no laser energy is actively transmitted toward the target scene) or an active mode (where a transmitting laser is used to actively illuminate the target scene). The two-dimensional photodetector array eliminates the need to mechanically scan the detector. Each element of the photodetector array produces an intermediate frequency signal that is amplified, filtered, and rectified by the coherent camera's integrated circuitry. By spectroscopic examination of the frequency components of each pixel of the detector array, a high-resolution, three-dimensional or holographic image of the target scene is produced for applications such as air pollution studies, atmospheric disturbance monitoring, and military weapons targeting.

Top