Sample records for filter pressure drop

  1. Filter aids influence on pressure drop across a filtration system

    NASA Astrophysics Data System (ADS)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  2. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alexander; Wong, Victor

    Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing ormore » preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.« less

  4. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.

    PubMed

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping

    2017-03-01

    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  5. Numerical study of canister filters with alternatives filter cap configurations

    NASA Astrophysics Data System (ADS)

    Mohammed, A. N.; Daud, A. R.; Abdullah, K.; Seri, S. M.; Razali, M. A.; Hushim, M. F.; Khalid, A.

    2017-09-01

    Air filtration system and filter play an important role in getting a good quality air into turbo machinery such as gas turbine. The filtration system and filter has improved the quality of air and protect the gas turbine part from contaminants which could bring damage. During separation of contaminants from the air, pressure drop cannot be avoided but it can be minimized thus helps to reduce the intake losses of the engine [1]. This study is focused on the configuration of the filter in order to obtain the minimal pressure drop along the filter. The configuration used is the basic filter geometry provided by Salutary Avenue Manufacturing Sdn Bhd. and two modified canister filter cap which is designed based on the basic filter model. The geometries of the filter are generated by using SOLIDWORKS software and Computational Fluid Dynamics (CFD) software is used to analyse and simulates the flow through the filter. In this study, the parameters of the inlet velocity are 0.032 m/s, 0.063 m/s, 0.094 m/s and 0.126 m/s. The total pressure drop produce by basic, modified filter 1 and 2 is 292.3 Pa, 251.11 Pa and 274.7 Pa. The pressure drop reduction for the modified filter 1 is 41.19 Pa and 14.1% lower compared to basic filter and the pressure drop reduction for modified filter 2 is 17.6 Pa and 6.02% lower compared to the basic filter. The pressure drops for the basic filter are slightly different with the Salutary Avenue filter due to limited data and experiment details. CFD software are very reliable in running a simulation rather than produces the prototypes and conduct the experiment thus reducing overall time and cost in this study.

  6. PATHFINDER ATOMIC POWER PLANT. FILTRATION OF ALUMINUM CORROSION PRODUCTS PRODUCED IN HIGH-TEMPERATURE, HIGH PURITY WATER SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, J.H.; Davie, R.L.

    1961-05-01

    Filter tests were conducted to determine the most suitable filter for removing large quantities of aluminum corrosion product (boehmite) from reactor water. Filters tested included the following: wire-wound, sintered filter elements, sintered ceramic fllter elements, cotton stringwound filter elements, felted-cotton filter elements, cation resin, adsorption resin, diatomaceous earth precoat filter, and a wood-cellulose precoat filter. Parameters measured were flow rate, filter-influent and -effluent boehmite concentration, pressure drop, and final filter load. The pressure drop and efficiency of the filters was correlated with boehmite load. Boehmite deposits on filters as a nonporous gelatinous cake, and causes a rapidly increasing pressure drop.more » Tests indicate that the optimum load with filter elements and precoat filters is achieved at a pressure drop of 25 psi. Very little additional load can be obtained by operating to a higher pressure drop. Of the filters tested, the precoat filter snd 40 to 60 mesh cation resin were the more effective in removing boehmite. The efficiency of the precoat filter was in excess of 99%, and the efficiency of the cation resin was for the most part in excess of 95%. For various reasons, the other filters were eliminated from final consideration. The test program and available literature indicated that an element type precoat filter using wood cellulose as the precoat media would be most suitable for the proposed application. (auth)« less

  7. The long-term performance of electrically charged filters in a ventilation system.

    PubMed

    Raynor, Peter C; Chae, Soo Jae

    2004-07-01

    The efficiency and pressure drop of filters made from polyolefin fibers carrying electrical charges were compared with efficiency and pressure drop for filters made from uncharged glass fibers to determine if the efficiency of the charged filters changed with use. Thirty glass fiber filters and 30 polyolefin fiber filters were placed in different, but nearly identical, air-handling units that supplied outside air to a large building. Using two kinds of real-time aerosol counting and sizing instruments, the efficiency of both sets of filters was measured repeatedly for more than 19 weeks while the air-handling units operated almost continuously. Pressure drop was recorded by the ventilation system's computer control. Measurements showed that the efficiency of the glass fiber filters remained almost constant with time. However, the charged polyolefin fiber filters exhibited large efficiency reductions with time before the efficiency began to increase again toward the end of the test. For particles 0.6 microm in diameter, the efficiency of the polyolefin fiber filters declined from 85% to 45% after 11 weeks before recovering to 65% at the end of the test. The pressure drops of the glass fiber filters increased by about 0.40 in. H2O, whereas the pressure drop of the polyolefin fiber filters increased by only 0.28 in. H2O. The results indicate that dust loading reduces the effectiveness of electrical charges on filter fibers. Copyright 2004 JOEH, LLC

  8. Flowrate testing of the bag filter LANCS-BOP 6CPVC-1.5-2SPVC (LANCS Industries) at 1 psig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E.; Currie, Karissa Lyn; Berg, Charlotte Katherine

    2016-09-13

    The air flowrate through a flexible HEPA grade filter (Part LANCS-BOP 6CPVC-1.5-2SPVC www.lancsindustries.com) was measured at 48 ALPM for a differential pressure drop of 1.0 psig (28 inWC, 7.0 kPa). These filters are rated by the manufacturer to have a flowrate of 3 ALPM at a differential pressure drop of 1 inWC (0.25 kPa). The Los Alamos National Laboratory Aerosol Engineering Facility used one of their test rigs (originally developed to measure the pressure drop in capsule HEPA filters) to measure the airflow through the LANCS bag filter.

  9. 40 CFR Table 4 of Subpart Aaaaaaa... - Operating Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Roofing Manufacturing Other Requirements and Information Who implements and enforces this subpart? Pt. 63... filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop across device b The 3-hour... temperature and pressure drop, you can use a leak detection system that identifies when the filter media has...

  10. 40 CFR Table 4 of Subpart Aaaaaaa... - Operating Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Roofing Manufacturing Other Requirements and Information Who implements and enforces this subpart? Pt. 63... filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop across device b The 3-hour... temperature and pressure drop, you can use a leak detection system that identifies when the filter media has...

  11. Numerical study on self-cleaning canister filter with modified filter cap

    NASA Astrophysics Data System (ADS)

    Mohammed, Akmal Nizam; Zolkhaely, Mohd Hafiz; Sahrudin, Mohd Sahrizan; Razali, Mohd Azahari; Sapit, Azwan; Hushim, Mohd Faisal

    2017-04-01

    Air filtration system plays an important role in getting good quality air into turbo machinery such as gas turbine. The filtration system and filters improve the quality of air and protect the gas turbine parts from contaminants which could bring damage. This paper is focused on the configuration of the self-cleaning canister filter in order to obtain the minimal pressure drop along the filter. The configuration includes a modified canister filter cap that is based on the basic geometry that conforms to industry standard. This paper describes the use of CFD to simulate and analyze the flow through the filter. This tool is also used to monitor variables such as pressure and velocity along the filter and to visualize them in the form of contours, vectors and streamlines. In this study, the main parameter varied is the inlet velocity set in the boundary condition during simulations, which are 0.032, 0.063, 0.094 and 0.126 m/s respectively. The data obtained from simulations are then validated with reference data sourced from the industry, and comparisons have subsequently been made for these two filters. As a result, the improvement of the pressure drop for the modified filter is found to be 11.47% to 14.82% compared to the basic filter at the inlet velocity from 0.032 to 0.126 m/s. the total pressure drop produced is 292.3 Pa by the basic filter and 251.11 Pa for modified filter. The pressure drop reduction is 41.19 Pa, which is 14.1% from the basic filter.

  12. [Filtering facepieces: effect of oily aerosol load on penetration through the filtering material].

    PubMed

    Plebani, Carmela; Listrani, S; Di Luigi, M

    2010-01-01

    Electrostatic filters are widely used in applications requiring high filtration efficiency and low pressure drop. However various studies showed that the penetration through electrostatic filters increases during exposure to an aerosol flow. This study investigates the effects of prolonged exposure to an oily aerosol on the penetration through filtering facepieces available on the market. Some samples of FFP1, FFP2 and FFP3 filtering facepieces were exposed for 8 hours consecutively to a paraffin oil polydisperse aerosol. At the end of the exposure about 830 mg of paraffin oil were deposited in the facepiece. All the examined facepieces showed penetration values that increased with paraffin oil load while pressure drop values were substantially the same before and after exposure. The measured maximum penetration values did not exceed the maximum penetration values allowed by the European technical standards, except in one case. According to the literature, 830 mg of oil load in a facepiece is not feasible in workplaces over an eight- hour shift. However, the trend of the penetration versus exposure mass suggests that if the load increases, the penetration may exceed the maximum allowed values. For comparison a mechanical filter was also studied. This showed an initial pressure drop higher than FFP2 filtering facepieces characterized by comparable penetration values. During exposure the pressure drop virtually doubled while penetration did not change. The increase in penetration with no increase in pressure drop in the analyzed facepieces indicates that it is necessary to comply with the information supplied by the manufacturer that restricts their use to a single shift.

  13. Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters

    NASA Astrophysics Data System (ADS)

    Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran

    2016-08-01

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  14. 40 CFR 63.11567 - Who implements and enforces this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Processing and Asphalt Roofing Manufacturing Other Requirements and Information § 63.11567 Who implements and...). 2. A high-efficiency air filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop... the inlet gas temperature and pressure drop, you can use a leak detection system that identifies when...

  15. Washable antimicrobial polyester/aluminum air filter with a high capture efficiency and low pressure drop.

    PubMed

    Choi, Dong Yun; Heo, Ki Joon; Kang, Juhee; An, Eun Jeong; Jung, Soo-Ho; Lee, Byung Uk; Lee, Hye Moon; Jung, Jae Hee

    2018-06-05

    Here, we introduce a reusable bifunctional polyester/aluminum (PET/Al) air filter for the high efficiency simultaneous capture and inactivation of airborne microorganisms. Both bacteria of Escherichia coli and Staphylococcus epidermidis were collected on the PET/Al filter with a high efficiency rate (∼99.99%) via the electrostatic interactions between the charged bacteria and fibers without sacrificing pressure drop. The PET/Al filter experienced a pressure drop approximately 10 times lower per thickness compared with a commercial high-efficiency particulate air filter. As the Al nanograins grew on the fibers, the antimicrobial activity against airborne E. coli and S. epidermidis improved to ∼94.8% and ∼96.9%, respectively, due to the reinforced hydrophobicity and surface roughness of the filter. Moreover, the capture and antimicrobial performances were stably maintained during a cyclic washing test of the PET/Al filter, indicative of its reusability. The PET/Al filter shows great potential for use in energy-efficient bioaerosol control systems suitable for indoor environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Characteristics of nuclepore filters with large pore size—I. Physical properties

    NASA Astrophysics Data System (ADS)

    John, W.; Hering, S.; Reischl, G.; Sasaki, G.; Goren, S.

    Measurements of pore diameter, pore density and filter thickness have been made on Nuclepore filters of 5, 8 and 12 μm pore size. The areal distribution of the pores is random, as verified by total hole counts and by counts of overlapping holes. Filter thicknesses decrease with increasing pore diameter. The Hagen-Poiseuille formula accounts for less than half of the measured pressure drop across 12 μm pore size filters. A new calculation, including a term for the pressure drop external to the filter, accounts quantitatively for the observations. There are sufficient variations among filter batches to require knowledge of the filter parameters for each batch to ensure accurate measurements using these filters.

  17. In vitro comparison of Günther Tulip and Celect filters: testing filtering efficiency and pressure drop.

    PubMed

    Nicolas, M; Malvé, M; Peña, E; Martínez, M A; Leask, R

    2015-02-05

    In this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6mm and tube diameter of 19mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6mm clots both in an eccentric and tilted position and trapping 81.7% of the 3mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement

    PubMed Central

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M. Suleman; Krammer, Gernot

    2011-01-01

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefore, understanding formation and detachment of filter cake is important. In this regard, the filter media is the key component in the system. Needle felts are the most commonly used media in bag filters. Cake formation studies with heat treated and membrane coated needle felts in pilot scale pulse jet bag filter were carried out. The data is processed according to the procedures that were published already [Powder Technology, Volume 173, Issue 2, 19 April 2007, Pages 93–106]. Pressure drop evolution, cake height distribution evolution, cake patches area distribution and their characterization using fractal analysis on different needle felts are presented here. It is observed that concavity of pressure drop curve for membrane coated needle felt is principally caused by presence of inhomogeneous cake area load whereas it is inherent for heat treated media. Presence of residual cake enhances the concavity of pressure drop at the start of filtration cycle. Patchy cleaning is observed only when jet pulse pressure is too low and unable to provide the necessary force to detach the cake. The border line is very sharp. Based on experiments with limestone dust and three types of needle felts, for the jet pulse pressure above 4 bar and filtration velocity below 50 mm/s, cake is detached completely except a thin residual layer (100–200 μm). Uniformity and smoothness of residual cake depends on the surface characteristics of the filter media. Cake height distribution of residual cake and newly formed cake during filtration prevails. The patch size analysis and fractal analysis reveal that residual cake grow in size (latterly) following regeneration initially on the base with edges smearing out, however, the cake heights are not leveled off. Fractal dimension of cake patches boundary falls in the range of 1–1.4 and depends on vertical position as well as time of filtration. Cake height measurements with Polyimide (PI) needle felts were hampered on account of its photosensitive nature. PMID:24415801

  19. Feasibility of granular bed filtration of an aerosol of ultrafine metallic particles including a pressure drop regeneration system.

    PubMed

    Bémer, D; Wingert, L; Morele, Y; Subra, I

    2015-09-01

    A process for filtering an aerosol of ultrafine metallic particles (UFP) has been designed and tested, based on the principle of a multistage granular bed. The filtration system comprised a succession of granular beds of varying thickness composed of glass beads of different diameters. This system allows the pressure drop to be regenerated during filtration ("on-line" mode) using a vibrating probe. Tests monitoring the pressure drop were conducted on a "10-L/min" low airflow rate device and on a "100-m(3)/hr" prototype. Granular bed unclogging is automated on the latter. The cyclic operation and filtration performances are similar to that of filter medium-based industrial dust collectors. Filtration of ultrafine metallic particles generated by different industrial processes such as arc welding, metal cutting, or spraying constitutes a difficult problem due to the high filter clogging properties of these particles and to the high temperatures generally encountered. Granular beds represent an advantageous means of filtering these aerosols with difficult properties.

  20. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Drop Testing of Returned Units

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.; Berger, Gordon M.; Perry, Jay L.

    2017-01-01

    The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  2. Fiber length and orientation prevent migration in fluid filters

    NASA Technical Reports Server (NTRS)

    Reiman, P. A.

    1966-01-01

    Stainless steel fiber web filter resists fiber migration which causes contamination of filtered fluids. This filter is capable of holding five times more particulate matter before arbitrary cutoff pressure drop and shows excellent retention in fuel flow at high rates.

  3. Evaluation of a Shaker Dust Collector for Use in a Recirculating Ventilation System

    PubMed Central

    Sawvel, Russell A.; Park, Jae Hong; Anthony, T. Renée

    2016-01-01

    General ventilation with recirculated air may be cost-effective to control the concentration of low-toxicity, contaminants in workplaces with diffuse, dusty operations, such as in agriculture. Such systems are, however, rarely adopted with little evidence showing improved air quality and ability to operate under harsh conditions. The goal of this work was to examine the initial and long-term performance of a fabric-filter shaker dust collector (SDC) in laboratory tests and as deployed within a recirculating ventilation system in an agricultural building. In laboratory tests, collection efficiency and pressure drop were tracked over several filter loading cycles, and the recovery of filter capacity (pressure drop) from filter shaking was examined. Collection efficiencies of particles larger than 5 μm was high (>95%) even when the filter was pristine, showing effective collection of large particles that dominate inhalable concentrations typical of agricultural dusts. For respirable-sized particles, collection efficiencies were low when the filter was pristine (e.g., 27% for 1 μm) but much higher when a dust cake developed on the filter (>99% for all size particles), even after shaking (e.g., 90% for 1 μm). The first shake of a filter was observed to recovery a substantial fraction of filter capacity, with subsequent shakes providing little benefit. In field tests, the SDC performed effectively over a period of three months in winter when incorporated in a recirculating ventilation system of a swine farrowing room. Trends in collection efficiency and pressure drop with loading were similar to those observed in the laboratory with overall collection efficiencies high (>80%) when pressure drop exceeded 230 Pa, or 23% of the maximum loading recommended by the manufacturer. This work shows that the SDC can function effectively over the harsh winter in swine rearing operations. Together with findings of improved air quality in the farrowing room reported in a companion manuscript, this article provides evidence that an SDC represents a cost-effective solution to improve air quality in agricultural settings. PMID:25955507

  4. Exploration of PM2.5 filtration property of filter bag for environment protection

    NASA Astrophysics Data System (ADS)

    Zhu, Ruitian; Zheng, Jinwei; Ni, Bingxuan; Zhang, Peng

    2017-06-01

    In this paper, filter bag of polyphenylene sulfide (PPS) needle punched nonwoven for environment protection was investigated. The results showed that air permeability of sample was linear rise with the increase of the pressure drop. During the testing process, the residual pressure drop rose with the increase of cycles because of test dust attaching on the surface of the filter. The PM2.5 filtration efficiency was obtained of 99.854%, which was smaller than the dust filtration efficiency of 99.971% because of the fine particles taking larger proportion of the dust through the sample. Results show that this method of evaluating the PM2.5 filtration property is feasible.

  5. Fibrous filter efficiency and pressure drop in the viscous-inertial transition flow regime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Andres L.; Brockmann, John E.; Dellinger, Jennifer Gwynne

    2011-10-01

    Fibrous filter pressure drop and aerosol collection efficiency were measured at low air pressures (0.2 to 0.8 atm) and high face velocities (5 to 20 meters per second) to give fiber Reynolds numbers in the viscous-inertial transition flow regime (1 to 16). In this regime, contemporary filtration theory based on Kuwabara's viscous flow through an ensemble of fibers under-predicts single fiber impaction by several orders of magnitude. Streamline curvature increases substantially as inertial forces become dominant. Dimensionless pressure drop measurements followed the viscous-inertial theory of Robinson and Franklin rather than Darcy's linear pressure-velocity relationship (1972). Sodium chloride and iron nano-agglomeratemore » test aerosols were used to evaluate the effects of particle density and shape factor. Total filter efficiency collapsed when plotted against the particle Stokes and fiber Reynolds numbers. Efficiencies were then fitted with an impactor type equation where the cutpoint Stokes number and a steepness parameter described data well in the sharply increasing portion of the curve (20% to 80% efficiency). The cutpoint Stokes number was a linearly decreasing function of fiber Reynolds number. Single fiber efficiencies were calculated from total filter efficiencies and compared to contemporary viscous flow impaction theory (Stechkina et al. 1969), and numerical simulations from the literature. Existing theories under-predicted measured single fiber efficiencies although the assumption of uniform flow conditions for each successive layer of fibers is questionable; the common exponential relationship between single fiber efficiency and total filter efficiency may not be appropriate in this regime.« less

  6. ETV TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS GLASFLOSS INDUSTRIES EXCEL FILTER, MODEL SBG24242898

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Excel Filter, Model SBG24242898 air filter for dust and bioaerosol filtration manufactured by Glasfloss Industries, Inc. The pressure drop across the filter was 82 Pa clean and 348 Pa...

  7. Collection of biological and non-biological particles by new and used filters made from glass and electrostatically charged synthetic fibers.

    PubMed

    Raynor, P C; Kim, B G; Ramachandran, G; Strommen, M R; Horns, J H; Streifel, A J

    2008-02-01

    Synthetic filters made from fibers carrying electrostatic charges and fiberglass filters that do not carry electrostatic charges are both utilized commonly in heating, ventilating, and air-conditioning (HVAC) systems. The pressure drop and efficiency of a bank of fiberglass filters and a bank of electrostatically charged synthetic filters were measured repeatedly for 13 weeks in operating HVAC systems at a hospital. Additionally, the efficiency with which new and used fiberglass and synthetic filters collected culturable biological particles was measured in a test apparatus. Pressure drop measurements adjusted to equivalent flows indicated that the synthetic filters operated with a pressure drop less than half that of the fiberglass filters throughout the test. When measured using total ambient particles, synthetic filter efficiency decreased during the test period for all particle diameters. For particles 0.7-1.0 mum in diameter, efficiency decreased from 92% to 44%. It is hypothesized that this reduction in collection efficiency may be due to charge shielding. Efficiency did not change significantly for the fiberglass filters during the test period. However, when measured using culturable biological particles in the ambient air, efficiency was essentially the same for new filters and filters used for 13 weeks in the hospital for both the synthetic and fiberglass filters. It is hypothesized that the lack of efficiency reduction for culturable particles may be due to their having higher charge than non-biological particles, allowing them to overcome the effects of charge shielding. The type of particles requiring capture may be an important consideration when comparing the relative performance of electrostatically charged synthetic and fiberglass filters. Electrostatically charged synthetic filters with high initial efficiency can frequently replace traditional fiberglass filters with lower efficiency in HVAC systems because properly designed synthetic filters offer less resistance to air flow. Although the efficiency of charged synthetic filters at collecting non-biological particles declined substantially with use, the efficiency of these filters at collecting biological particles remained steady. These findings suggest that the merits of electrostatically charged synthetic HVAC filters relative to fiberglass filters may be more pronounced if collection of biological particles is of primary concern.

  8. Study of the filtration performance of a plain wave fabric filter using response surface methodology.

    PubMed

    Qian, Fuping; Wang, Haigang

    2010-04-15

    The gas-solid two-phase flows in the plain wave fabric filter were simulated by computational fluid dynamics (CFD) technology, and the warps and wefts of the fabric filter were made of filaments with different dimensions. The numerical solutions were carried out using commercial computational fluid dynamics (CFD) code Fluent 6.1. The filtration performances of the plain wave fabric filter with different geometry parameters and operating condition, including the horizontal distance, the vertical distance and the face velocity were calculated. The effects of geometry parameters and operating condition on filtration efficiency and pressure drop were studied using response surface methodology (RSM) by means of the statistical software (Minitab V14), and two second-order polynomial models were obtained with regard to the effect of the three factors as stated above. Moreover, the models were modified by dismissing the insignificant terms. The results show that the horizontal distance, vertical distance and the face velocity all play an important role in influencing the filtration efficiency and pressure drop of the plane wave fabric filters. The horizontal distance of 3.8 times the fiber diameter, the vertical distance of 4.0 times the fiber diameter and Reynolds number of 0.98 are found to be the optimal conditions to achieve the highest filtration efficiency at the same face velocity, while maintaining an acceptable pressure drop. 2009 Elsevier B.V. All rights reserved.

  9. Hybrid Filter Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of dust particles on the filter surface and to facilitate dust removal with pulse or back airflow.

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, FILTRATION GROUP, AEROSTAR "C-SERIES" POLYESTER PANEL FILTER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AeroStar "C-Series" Polyester Panel Filter air filter for dust and bioaerosol filtration manufactured by Filtration Group. The pressure drop across the filter was 126 Pa clean and 267...

  11. Filter Efficiency and Pressure Testing of Returned ISS Bacterial Filter Elements (BFEs)

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.

    2017-01-01

    The air quality control equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provide the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Air (HEPA) filters deployed at multiple locations in each U.S. Seg-ment module; these filters are referred to as Bacterial Filter Elements, or BFEs. In our previous work, we presented results of efficiency and pressure drop measurements for a sample set of two returned BFEs with a service life of 2.5 years. In this follow-on work, we present similar efficiency, pressure drop, and leak tests results for a larger sample set of six returned BFEs. The results of this work can aid the ISS Program in managing BFE logistics inventory through the stations planned lifetime as well as provide insight for managing filter element logistics for future exploration missions. These results also can provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  12. A Novel Anti-Pollution Filter for Volatile Agents During Cardiopulmonary Bypass: Preliminary Tests.

    PubMed

    Nigro Neto, Caetano; Landoni, Giovanni; Tardelli, Maria Angela

    2017-08-01

    Concerns regarding pollution of the operating room by volatile anesthetics and effects on atmospheric ozone depletion exist. Volatile agents commonly are used during cardiopulmonary bypass to provide anesthesia independent of any supposed myocardial protective effects. The authors' aim was to create and to assess the performance of a prototype filter for volatile agents to be connected to the cardiopulmonary bypass circuit to avoid the emission of volatile agents to the operating room, and also to the environment without causing damage to the membrane oxygenator. Observational trial. University hospital. Prototype filter for volatile agents. The prototype filter was tested in a single ex vivo experiment. The main data measured during the test were pressure drop to detect interference with the performance of the oxygenator, back pressure to detect overpressure to the outlet gas jacket of the oxygenator, analysis of exhaled sevoflurane after the membrane oxygenator, and after the filter to detect any presence of sevoflurane. The prototype filter adsorbed the sevoflurane eliminated through the outlet portion of the oxygenator. During the entire test, the back pressure remained constant (4 mmHg) and pressure drop varied from 243 mmHg to 247 mmHg. The prototype filter was considered suitable to absorb the sevoflurane, and it did not cause an overpressure to the membrane oxygenator during the test. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Antimisting kerosene: Low temperature degradation and blending

    NASA Technical Reports Server (NTRS)

    Yavrouian, A.; Parikh, P.; Sarohia, V.

    1988-01-01

    The inline filtration characteristics of freshly blended and degraded antimisting fuels (AMK) at low temperature are examined. A needle valve degrader was modified to include partial recirculation of degraded fuel and heat addition in the bypass loop. A pressure drop across the needle valve of up to 4,000 psi was used. The pressure drop across a 325 mesh filter screen placed inline with the degrader and directly downstream of the needle valve was measured as a function of time for different values of pressure drop across the needle valve. A volume flux of 1 gpm/sq in was employed based on the frontal area of the screen. It was found that, at ambient temperatures, freshly blended AMK fuel could be degraded using a single pass degradation at 4,000 psi pressure drop across the needle valve to give acceptable filterability performance. At fuel temperatures below -20 C, degradation becomes increasingly difficult and a single pass technique results in unacceptable filtration performance. Recirculation of a fraction of the degraded fuel and heat addition in the bypass loop improved low temperature degradation performance. The problem is addressed of blending the AMK additive with Jet A at various base fuel temperatures.

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, FILTRATION GROUP, AEROSTAR FP-98 MINIPLEAT V-BLANK FILTER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AeroStar FP-98 Minipleat V-Bank Filter air filter for dust and bioaerosol filtration manufactured by Filtration Group. The pressure drop across the filter was 137 Pa clean and 348 Pa ...

  15. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik; Lee, Jin-Ho; Lee, Seung-Joo; Viner, Andrew; Johnson, Erik W

    2011-07-01

    Respirators are used to help reduce exposure to a variety of contaminants in workplaces. Test aerosols used for certification of particulate respirators (PRs) include sodium chloride (NaCl), dioctyl phthalate, and paraffin oil. These aerosols are generally assumed to be worst case surrogates for aerosols found in the workplace. No data have been published to date on the performance of PRs with welding fumes, a hazardous aerosol that exists in real workplace settings. The aim of this study was to compare the performance of respirators and filters against a NaCl aerosol and a welding fume aerosol and determine whether or not a correlation between the two could be made. Fifteen commercial PRs and filters (seven filtering facepiece, two replaceable single-type filters, and six replaceable dual-type filters) were chosen for investigation. Four of the filtering facepiece respirators, one of the single-type filters, and all of the dual-type filters contained carbon to help reduce exposure to ozone and other vapors generated during the welding process. For the NaCl test, a modified National Institute for Occupational Safety and Health protocol was adopted for use with the TSI Model 8130 automated filter tester. For the welding fume test, welding fumes from mild steel flux-cored arcs were generated and measured with a SIBATA filter tester (AP-634A, Japan) and a manometer in the upstream and downstream sections of the test chamber. Size distributions of the two aerosols were measured using a scanning mobility particle sizer. Penetration and pressure drop were measured over a period of aerosol loading onto the respirator or filter. Photos and scanning electron microscope images of clean and exposed respirators were taken. The count median diameter (CMD) and mass median diameter (MMD) for the NaCl aerosol were smaller than the welding fumes (CMD: 74 versus 216 nm; MMD: 198 versus 528 nm, respectively). Initial penetration and peak penetration were higher with the NaCl aerosol. However, pressure drop increased much more rapidly in the welding fume test than the NaCl aerosol test. The data and images clearly show differences in performance trends between respirator models. Therefore, general correlations between NaCl and weld fume data could not be made. These findings suggest that respirators certified with a surrogate test aerosol such as NaCl are appropriate for filtering welding fume (based on penetration). However, some respirators may have a more rapid increase in pressure drop from the welding fume accumulating on the filter. Therefore, welders will need to choose which models are easier to breathe through for the duration of their use and replace respirators or filters according to the user instructions and local regulations.

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS: TRI-DIM FILTER CORP. PREDATOR II MODEL 8VADTP123C23

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Predator II, Model 8VADTP123C23CC000 air filter for dust and bioaerosol filtration manufactured by Tri-Dim Filter Corporation. The pressure drop across the filter was 138 Pa clean and...

  17. Fabrication of an anti-viral air filter with SiO₂-Ag nanoparticles and performance evaluation in a continuous airflow condition.

    PubMed

    Joe, Yun Haeng; Woo, Kyoungja; Hwang, Jungho

    2014-09-15

    In this study, SiO2 nanoparticles surface coated with Ag nanoparticles (SA particles) were fabricated to coat a medium air filter. The pressure drop, filtration efficiency, and anti-viral ability of the filter were evaluated against aerosolized bacteriophage MS2 in a continuous air flow condition. A mathematical approach was developed to measure the anti-viral ability of the filter with various virus deposition times. Moreover, two quality factors based on the anti-viral ability of the filter, and a traditional quality factor based on filtration efficiency, were calculated. The filtration efficiency and pressure drop increased with decreasing media velocity and with increasing SA particle coating level. The anti-viral efficiency also increased with increasing SA particle coating level, and decreased by with increasing virus deposition time. Consequently, SA particle coating on a filter does not have significant effects on filtration quality, and there is an optimal coating level to produce the highest anti-viral quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E.

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to massmore » flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is expected to require six months of time, after receipt of funding. Benefits: US DOE facilities that use HEPA filters will benefit from access to the new operational measurement methods. Uncertainty and guesswork will be removed from HEPA filter operations.« less

  19. Apparatus for isotopic alteration of mercury vapor

    DOEpatents

    Grossman, Mark W.; George, William A.; Marcucci, Rudolph V.

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  20. 40 CFR 63.11567 - Who implements and enforces this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...). 2. A high-efficiency air filter or fiber bed filter a. Inlet gas temperature b, andb. Pressure drop...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Area Sources: Asphalt...

  1. Optimization of plasma parameters with magnetic filter field and pressure to maximize H{sup −} ion density in a negative hydrogen ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Won-Hwi; Dang, Jeong-Jeung; Kim, June Young

    2016-02-15

    Transverse magnetic filter field as well as operating pressure is considered to be an important control knob to enhance negative hydrogen ion production via plasma parameter optimization in volume-produced negative hydrogen ion sources. Stronger filter field to reduce electron temperature sufficiently in the extraction region is favorable, but generally known to be limited by electron density drop near the extraction region. In this study, unexpected electron density increase instead of density drop is observed in front of the extraction region when the applied transverse filter field increases monotonically toward the extraction aperture. Measurements of plasma parameters with a movable Langmuirmore » probe indicate that the increased electron density may be caused by low energy electron accumulation in the filter region decreasing perpendicular diffusion coefficients across the increasing filter field. Negative hydrogen ion populations are estimated from the measured profiles of electron temperatures and densities and confirmed to be consistent with laser photo-detachment measurements of the H{sup −} populations for various filter field strengths and pressures. Enhanced H{sup −} population near the extraction region due to the increased low energy electrons in the filter region may be utilized to increase negative hydrogen beam currents by moving the extraction position accordingly. This new finding can be used to design efficient H{sup −} sources with an optimal filtering system by maximizing high energy electron filtering while keeping low energy electrons available in the extraction region.« less

  2. Exploration of Ultralight Nanofiber Aerogels as Particle Filters: Capacity and Efficiency.

    PubMed

    Deuber, Fabian; Mousavi, Sara; Federer, Lukas; Hofer, Marco; Adlhart, Christian

    2018-03-14

    Ultralight nanofiber aerogels (NFAs) or nanofiber sponges are a truly three-dimensional derivative of the intrinsically flat electrospun nanofiber mats or membranes (NFMs). Here we investigated the potential of such materials for particle or aerosol filtration because particle filtration is a major application of NFMs. Ultralight NFAs were synthesized from electrospun nanofibers using a solid-templating technique. These materials had a tunable hierarchical cellular open-pore structure. We observed high filtration efficiencies of up to 99.999% at the most penetrating particle size. By tailoring the porosity of the NFAs through the processing parameters, we were able to adjust the number of permeated particles by a factor of 1000 and the pressure drop by a factor of 9. These NFAs acted as a deep-bed filter, and they were capable of handling high dust loadings without any indication of performance loss or an increase in the pressure drop. When the face velocity was increased from 0.75 to 6 cm s -1 , the filtration efficiency remained high within a factor of 1.1-10. Both characteristics were in contrast to the behavior of two commercial NFM particle filters, which showed significant increases in the pressure drop with the filtration time as well as a susceptibility against high face velocities by a factor of 105.

  3. Al-Coated Conductive Fiber Filters for High-Efficiency Electrostatic Filtration: Effects of Electrical and Fiber Structural Properties.

    PubMed

    Choi, Dong Yun; An, Eun Jeong; Jung, Soo-Ho; Song, Dong Keun; Oh, Yong Suk; Lee, Hyung Woo; Lee, Hye Moon

    2018-04-10

    Through the direct decomposition of an Al precursor ink AlH 3 {O(C 4 H 9 ) 2 }, we fabricated an Al-coated conductive fiber filter for the efficient electrostatic removal of airborne particles (>99%) with a low pressure drop (~several Pascals). The effects of the electrical and structural properties of the filters were investigated in terms of collection efficiency, pressure drop, and particle deposition behavior. The collection efficiency did not show a significant correlation with the extent of electrical conductivity, as the filter is electrostatically charged by the metallic Al layers forming electrical networks throughout the fibers. Most of the charged particles were collected via surface filtration by Coulombic interactions; consequently, the filter thickness had little effect on the collection efficiency. Based on simulations of various fiber structures, we found that surface filtration can transition to depth filtration depending on the extent of interfiber distance. Therefore, the effects of structural characteristics on collection efficiency varied depending on the degree of the fiber packing density. This study will offer valuable information pertaining to the development of a conductive metal/polymer composite air filter for an energy-efficient and high-performance electrostatic filtration system.

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, AIRFLOW PRODUCTS AFP30

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AFP30 air filter for dust and bioaerosol filtration manufactured by Airflow Products. The pressure drop across the filter was 62 Pa clean and 247 Pa dust loaded. The filtration effici...

  5. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    PubMed

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Evaluation of Low-Pressure Drop Antimicrobial and Hybrid Air Filters

    DTIC Science & Technology

    2006-09-01

    purification of aerosol- contaminated air streams has been performed by mechanical filtration. Existing particle filters will stop bacterial and viral...or hybrid low-∆P antimicrobial particulate filter materials. 1.2 Background Traditional purification of aerosol- contaminated air streams has...Plastics, Lima , Ohio). Each path runs through a test article and thence through one AGI-30 all-glass impinger (Chemglass, Vineland, N.J.) partially

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATON: TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS AAF INTERNATIONAL DRIPAK 90/95%

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the DriPak 90/95% air filter for dust and bioaerosol filtration manufactured by AAF International. The pressure drop across the filter was 104 Pa clean and 348 Pa dust loaded, and the fil...

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATIONTEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS AAF INTERNATIONAL BIOCEL I (TYPE SH)

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the BioCel I (Type SH) air filter for dust and bioaerosol filtration manufactured by AAF International. The pressure drop across the filter was 236 Pa clean and 478 Pa dust loaded, and th...

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS:AAF INTERNATIONAL, PERFECTPLEAT ULTRA, 175-102-863

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the PerfectPleat Ultra 175-102-863 air filter for dust and bioaerosol filtration manufactured by AAF International. The pressure drop across the filter was 112 Pa clean and 229 Pa dust lo...

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, COLUMBUS INDUSTRIES SL-3 RING PANEL

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the High Efficiency Mini Pleat air filter for dust and bioaerosol filtration manufactured by Columbus Industries. The pressure drop across the filter was 142 Pa clean and 283 Pa dust load...

  11. AMERICAN AIR FILTER KINPACTOR 10 X 56 VENTURI SCRUBBER EVALUATION

    EPA Science Inventory

    The report gives results of an evaluation of an American Air Filter Kinpactor 10 x 56 venturi scrubber, operating on emissions from a large borax fusing furnace. Average total efficiency was 97.5% during the test period. The venturi was operated at a pressure drop of 110 cm W. C....

  12. Further theoretical studies of modified cyclone separator as a diesel soot particulate emission arrester.

    PubMed

    Mukhopadhyay, N; Bose, P K

    2009-10-01

    Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.

  13. A method for improving the drop test performance of a MEMS microphone

    NASA Astrophysics Data System (ADS)

    Winter, Matthias; Ben Aoun, Seifeddine; Feiertag, Gregor; Leidl, Anton; Scheele, Patrick; Seidel, Helmut

    2009-05-01

    Most micro electro mechanical system (MEMS) microphones are designed as capacitive microphones where a thin conductive membrane is located in front of a rigid counter electrode. The membrane is exposed to the environment to convert sound into vibrations of the membrane. The movement of the membrane causes a change in the capacitance between the membrane and the counter electrode. The resonance frequency of the membrane is designed to occur above the acoustic spectrum to achieve a linear frequency response. To obtain a good sensitivity the thickness of the membrane must be as small as possible, typically below 0.5 μm. These fragile membranes may be damaged by rapid pressure changes. For cell phones, drop tests are among the most relevant reliability tests. The extremely high acceleration during the drop impact leads to fast pressure changes in the microphone which could result in a rupture of the membrane. To overcome this problem a stable protection layer can be placed at a small distance to the membrane. The protective layer has small holes to form a low pass filter for air pressure. The low pass filter reduces pressure changes at high frequencies so that damage to the membrane by excitation in resonance will be prevented.

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION: TEST REPORT OF CONTROL OF BIOAEROSOLS IN HLVAC SYSTEMS: AEOLUS CORPORATION SYNTHETIC MINIPLEAT V-CELL, SMV-M13-2424

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Synthetic Minipleat V-Cell, SMV-M13-2424 air filter for dust and bioaerosol filtration manufactured by Aeolus Corporation. The pressure drop across the filter was 77 Pa clean and 348 ...

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION: TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS: AEOLUS CORPORATION SYNTHETIC MINIPLEAT V-CELL, SMV-M14-2424

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Synthetic Minipleat V-Cell, SMV-M14-2424 air filter for dust and bioaerosol filtration manufactured by Aeolus Corporation. The pressure drop across the filter was 104 Pa clean and 348...

  16. ETV TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS GLASFLOSS INDUSTRIES Z-PAK SERIES S, MODEL ZPS24241295BO

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Z-Pak Series S, Model ZPS24241295B0 air filter for dust and bioaerosol filtration manufactured by Glasfloss Industries, Inc. The pressure drop across the filter was 91 Pa clean and 34...

  17. Application of Pulsed Electrical Fields for Advanced Cooling and Water Recovery in Coal-Fired Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young Cho; Alexander Fridman

    2009-04-02

    The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filtermore » membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the present fouling experiments for three different cases: no treatment, PWT coil only, and PWT coil plus self-cleaning filter. Fouling resistances decreased by 59-72% for the combined case of PWT coil plus filter compared with the values for no-treatment cases. SEM photographs showed much smaller particle sizes for the combined case of PWT coil plus filter as larger particles were continuously removed from circulating water by the filter. The x-ray diffraction data showed calcite crystal structures for all three cases.« less

  18. Short-term effect of humid airflow on antimicrobial air filters using Sophora flavescens nanoparticles.

    PubMed

    Hwang, Gi Byoung; Lee, Jung Eun; Nho, Chu Won; Lee, Byung Uk; Lee, Seung Jae; Jung, Jae Hee; Bae, Gwi-Nam

    2012-04-01

    Bioaerosols have received social and scientific attention because they can be hazardous to human health. Recently, antimicrobial treatments using natural products have been used to improve indoor air quality (IAQ) since they are typically less toxic to humans compared to other antimicrobial substances such as silver, carbon nanotubes, and metal oxides. Few studies, however, have examined how environmental conditions such as the relative humidity (RH), surrounding temperature, and retention time of bacteria on filters affect the filtration and antimicrobial characteristics of a filter treated with such natural products. In this study, we investigated changes in the morphology of the natural nanoparticles, pressure drop, filtration efficiency, and the inactivation rate caused by the short-term effect of humid airflow on antimicrobial fiber filters. Nanoparticles of Sophora flavescens were deposited on the filter media surface using an aerosol process. We observed coalescence and morphological changes of the nanoparticles on fiber filters under humid conditions of an RH >50%. The level of coalescence in these nanoparticles increased with increasing RH. Filters exposed to an RH of 25% have a higher pressure drop than those exposed to an RH >50%. In an inactivation test against Staphylococcus epidermidis bacterial aerosol, the inactivation efficiency at an RH of 25% was higher than that at an RH of 57% or 82%. To effectively apply antimicrobial filters using natural products in the environment, one must characterize the filters under various environmental conditions. Thus, this study provides important information on the use of antimicrobial filters made of natural products. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Ozone and hydrogen peroxide as strategies to control biomass in a trickling filter to treat methanol and hydrogen sulfide under acidic conditions.

    PubMed

    García-Pérez, Teresa; Le Borgne, Sylvie; Revah, Sergio

    2016-12-01

    The operation and performance of a biotrickling filter for methanol (MeOH) and hydrogen sulfide (H 2 S) removal at acid pH was studied. Excess biomass in the filter bed, causing performance loss and high pressure drop, was controlled by intermittent addition, of ozone (O 3 ) and hydrogen peroxide (H 2 O 2 ). The results showed that after adaptation to acid pH, the maximum elimination capacity (EC) reached for MeOH was 565 g m -3  h -1 (97 % RE). High MeOH loads resulted in increased biomass concentration within the support, triggering reductions in the removal efficiency (RE) for both compounds close to 50 %, and high pressure drop. At this stage, an inlet load of 150.2 ± 16.7 g m -3  h -1 of O 3 was fed by 38 days favoring biomass detachment, and EC recovery and lower pressure dropped with a maximum elimination capacity of 587 g m -3  h -1 (81 % RE) and 15.8 g m -3  h -1 (97 % RE) for MeOH and H 2 S, respectively. After O 3 addition, a rapid increase in biomass content and higher fluctuations in pressure drop were observed reducing the system performance. A second treatment with oxidants was implemented feeding a O 3 load of 4.8 ± 0.1 g m -3  h -1 for 7 days, followed by H 2 O 2 addition for 23 days, registering 607.5 g biomass  L -1 packing before and 367.5 g biomass  L -1 packing after the oxidant addition. PCR-DGGE analysis of different operating stages showed a clear change in the bacterial populations when O 3 was present while the fungal population was less affected.

  20. 40 CFR Table 3 to Subpart Hhh of... - Operating Parameters To Be Monitored and Minimum Measurement and Recording Frequencies

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rural HMIWI HMIWI a with dry scrubber followed by fabric filter HMIWI a with wet scrubber HMIWI a with dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge... mercury (Hg) sorbent flow rate Hourly Once per hour ✔ ✔ Minimum pressure drop across the wet scrubber or...

  1. Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low Pressure Drop Systems to Reduce Engine Fuel Consumption (06B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alexander; Ragaller, Paul; Bromberg, Leslie

    This project developed a radio frequencybased sensor for accurate measurement of diesel particulate filter (DPF) loading with advanced low pressuredrop aftertreatment systems. The resulting technology demonstrated engine efficiency improvements through optimization of the combined engineaftertreatment system while reducing emissions, system cost, and complexity to meet the DOE program objectives.

  2. Straight-Pore Microfilter with Efficient Regeneration

    NASA Technical Reports Server (NTRS)

    Liu, Han; LaConti, Anthony B.; McCallum. Thomas J.; Schmitt, Edwin W.

    2010-01-01

    A novel, high-efficiency gas particulate filter has precise particle size screening, low pressure drop, and a simple and fast regeneration process. The regeneration process, which requires minimal material and energy consumption, can be completely automated, and the filtration performance can be restored within a very short period of time. This filter is of a novel material composite that contains the support structure and a novel coating.

  3. 40 CFR Table 3 to Subpart Ec of... - Operating Parameters To Be Monitored and Minimum Measurement and Recording Frequencies

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... scrubber followed by fabric filter Wet scrubber Dry scrubber followed by fabric filter and wet scrubber... flow rate Hourly 1×hour ✔ ✔ Minimum pressure drop across the wet scrubber or minimum horsepower or amperage to wet scrubber Continuous 1×minute ✔ ✔ Minimum scrubber liquor flow rate Continuous 1×minute...

  4. Reduction of ammonia and volatile organic compounds from food waste-composting facilities using a novel anti-clogging biofilter system.

    PubMed

    Ryu, Hee Wook; Cho, Kyung-Suk; Lee, Tae-Ho

    2011-04-01

    The performance of a pilot-scale anti-clogging biofilter system (ABS) was evaluated over a period of 125days for treating ammonia and volatile organic compounds emitted from a full-scale food waste-composting facility. The pilot-scale ABS was designed to intermittently and automatically remove excess biomass using an agitator. When the pressure drop in the polyurethane filter bed was increased to a set point (50 mm H(2)O m(-1)), due to excess biomass acclimation, the agitator automatically worked by the differential pressure switch, without biofilter shutdown. A high removal efficiency (97-99%) was stably maintained for the 125 days after an acclimation period of 1 week, even thought the inlet gas concentrations fluctuated from 0.16 to 0.55 g m(-3). Due the intermittent automatic agitation of the filter bed, the biomass concentration and pressure drop in the biofilter were maintained within the ranges of 1.1-2.0 g-DCW g PU(-1) and below 50 mm H(2)O m(-1), respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Aerosol filtration with steel fiber filters

    NASA Astrophysics Data System (ADS)

    Bergman, W.; Wilson, K.; Larsen, G.; Lopez, R.

    1993-04-01

    An experimental study has been conducted of aerosol penetration through a new high efficiency steel fiber filter and filter media that was developed in cooperation with Pall Corporation. Previous studies have shown that sintered steel fiber media have significant improvements in higher filter efficiency and lower pressure drop than the previous steel filter technology based on sintered powder metal media. In the present study, measurements were made of the penetration of dioctyl sebacate (DOS) aerosols through flat sheet samples, pleated cartridge filters, and a 1000 cfm filter having 64 cartridges housed in a 2 x 2 x 1 ft. frame. The steel fiber media used in our study consists of 2 micron diameter stainless steel (316 L) fibers sintered together into sheets.

  6. Fine dust filtration using a metal fiber bed.

    PubMed

    Lee, Kyung Mi; Lee, Young Sup; Jo, Young Min

    2006-08-01

    A bed-type filter composed of thin metal alloy fiber was closely examined with dust capturing in cold and hot runs. The investigation of an individual mechanism across the filter bed indicated that the aerated dust could be initially collected by depth filtration, and after a while, surface filtration dominated the overall dust collection. The present metal fiber bed was comparable to the conventional ceramic filters because of its good collection efficiency with low pressure drop. It also showed potential to be used as a prefilter in a diesel exhaust trapping system.

  7. AN ELECTROSTATIC PRECIPITATOR BACKUP FOR SAMPLING SYSTEMS

    EPA Science Inventory

    The report describes a program carried out to design and evaluate the performance of an electrostatic collector to be used as an alternative to filters as a fine particle collector. Potential advantages of an electrostatic precipitator are low pressure drop and high capacity. Pot...

  8. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Testing of Returned Units

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.

    2017-01-01

    The air revitalization system aboard the International Space Station (ISS) provides the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation due to the microgravity environment in Low Earth Orbit (LEO). The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) media filters deployed at multiple locations in each U.S. Segment module; these filters are referred to as Bacterial Filter Elements, or BFEs. These filters see a replacement interval, as part of maintenance, of 2-5 years dependent on location in the ISS. In this work, we present particulate removal efficiency, pressure drop, and leak test results for a sample set of 8 BFEs returned from the ISS after filter replacement. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS beyond 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  9. Concentric Split Flow Filter

    NASA Technical Reports Server (NTRS)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  10. Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide.

    PubMed

    Shinya, Akihiko; Mitsugi, Satoshi; Kuramochi, Eiichi; Notomi, Masaya

    2005-05-30

    We have devised an ultra-small multi-channel drop filter based on a two-port resonant tunneling system in a two-dimensional photonic crystal with a triangular air-hole lattice. This filter does not require careful consideration of the interference process to achieve a high dropping efficiency. First we develop three-port systems based on a two-port resonant tunneling filter. Next we devise a multi-port channel drop filter by cascading these three-port systems. In this paper, we demonstrate a ten-channel drop filter with an 18 mum device size by 2D-FDTD calculation, and a three-port resonant tunneling filter with 65+/- 20 % dropping efficiency by experiment.

  11. Field Evaluation of the Sidestream Sensors for Filter/Separators and Clay Filters.

    DTIC Science & Technology

    1987-02-01

    originally, but only the Atlanta and New York ( JFK ) airports produced suitable test results. At O’Hare (Chicago) Airport, the operator advised the...the JFK Airport installation, every one of the eight test runs terminated prematurely because solids caused pressure drop buildup before any surfactant...about 20 points. In this test period, the high CSS rating also confirmed the activity of the clay. At JFK Airport , the CSS was tested on 27 occasions

  12. Pre-clinical laboratory evaluation of the new 'AF' arterial line filter range.

    PubMed

    Yarham, Gemma; Mulholland, John

    2010-07-01

    The presence of emboli was recognised relatively early in the history of open heart surgery. The emboli produced during cardiopulmonary bypass have the predisposition to distribute into, and ultimately obstruct, microvessels of all tissues. The Sorin Group has recently developed a new range of arterial line filters. Before the Sorin AF range of filters was released for pre-launch clinical trials, our group performed in vitro laboratory testing of the AF range against a selection of commercially available filters on the global market. The Sorin AF620 and AF640 demonstrate both the smallest prime volume and smallest surface contact area (92ml and 290 cm(2), respectively).The results of the GME Handling Efficiency experiments ranged by 39.6%, from 95.9% to 56.3%. In terms of an air bolus handling, the results of the Limit Bolus experiment ranged by 97 ml, from 147.5 ml down to 50 ml. The pressure drop across all the filters was measured under steady state experimental conditions. All of the above investigations were considered against surface area and prime volume. It is clear from the results that some commercially available arterial line filters perform better than others, not only in overall performance, but also with regard to individual characteristics. Evaluating arterial line filters for hospital-specific use has to balance pressure drop, surface area, micro air handling, prime volume and gross air handling; all points need to be considered. In the AF620 and AF640, Sorin boast that they are the two smallest prime and smallest surface area filters commercially available on the global market. The Sorin AF filter range performs well in all of the areas we investigated and will be a competitive option for centres, irrespective of which characteristics they use to evaluate and select their arterial line filter.

  13. [Humidification assessment of four heat and moisture exchanger filters according to ISO 9360: 2000 standard].

    PubMed

    Lannoy, D; Décaudin, B; Resibois, J-P; Barrier, F; Wierre, L; Horrent, S; Batt, C; Moulront, S; Odou, P

    2008-02-01

    This work consisted of the assessment of humidification parameters and flow resistance for different heat and moisture exchanger filters (HMEF) used in intensive care unit. Four electrostatic HMEF were assessed: Hygrobac S (Tyco); Humidvent compact S (Teleflex); Hygrovent S/HME (Medisize-Dräger); Clear-Therm+HMEF (Intersurgical). Humidification parameters (loss of water weight, average absolute moisture [AAM], absolute variation of moisture) have been evaluated on a bench-test in conformity with the ISO 9360: 2000 standard, for 24h with the following ventilatory settings: tidal volume at 500 ml, respiratory rate at 15 c/min, and inspiration/expiration ratio at 1:1. The flow resistance of HMEFs assessed using the pressure drop method was measured before and after 24h of humidification for three increasing air flows of 30, 60, and 90 l/min. All the HMEFs allowed satisfactory level of humidification exceeding 30 mgH(2)O/l. The less powerful remained the Clear-Therm. Concerning HMEFs flow resistance, results showed a pressure drop slightly more important for the Hygrobac S filter as compared with other filters. This test showed differences between the HMEFs for both humidification and resistance parameters. When compared to the new version of the standards, HMEFs demonstrated their reliability. However, evolution of humidification and flow resistance characteristics over 24h showed a structural degradation of HMEFs, limiting their use over a longer period.

  14. Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles

    PubMed Central

    Yun, Ji Ho; Lee, Jung Eun; Lee, Hee Ju; Nho, Chu Won; Bae, Gwi- Nam; Jung, Jae Hee

    2015-01-01

    Controlling bioaerosols has become more important with increasing participation in indoor activities. Treatments using natural-product nanomaterials are a promising technique because of their relatively low toxicity compared to inorganic nanomaterials such as silver nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity, filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and antimicrobial activity increased as a function of nanoparticle deposition time (590, 855, and 1150 µg/cm2filter at 3-, 6-, and 9-min depositions, respectively). In filter tests, the antimicrobial efficacy was greater against Staphylococcus epidermidis than Micrococcus luteus; ~61, ~73, and ~82% of M. luteus cells were inactivated on filters that had been coated for 3, 6, and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S. epidermidis. Although statistically significant differences in filtration performance were not observed between samples as a function of deposition time, the average filtration efficacy was slightly higher for S. epidermidis aerosols (~97%) than for M. luteus aerosols (~95%). High-performance liquid chromatography (HPLC) and electrospray ionization-tandem mass spectrometry (ESI/MS) analyses confirmed that the major chemical compounds in the E. japonica extract were 1(ß)-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaempferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bacterial strains than a reference soluble nickel compound, which is classified as a human carcinogen. This study provides valuable information for the development of a bioaerosol control system that is environmental friendly and suitable for use in indoor environments. PMID:25974109

  15. Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.

    PubMed

    Welling, Irma; Lehtimäki, Matti; Rautio, Sari; Lähde, Tero; Enbom, Seppo; Hynynen, Pasi; Hämeri, Kaarle

    2009-02-01

    The importance of fine particles has become apparent as the knowledge of their effects on health has increased. Fine particle concentrations have been published for outside air, plasma arc cutting, welding, and grinding, but little data exists for the woodworking industry. Sanding was evaluated as the producer of the woodworking industry's finest particles, and was selected as the target study. The number of dust particles in different particle size classes and the mass concentrations were measured in the following environments: workplace air during sanding in plywood production and in the inlet and return air; in the dust emission chamber; and in filter testing. The numbers of fine particles were low, less than 10(4) particles/cm(3) (10(7) particles/L). They were much lower than typical number concentrations near 10(6) particles/cm(3) measured in plasma arc cutting, grinding, and welding. Ultrafine particles in the size class less than 100 nm were found during sanding of MDF (medium density fiberboard) sheets. When the cleaned air is returned to the working areas, the dust content in extraction systems must be monitored continuously. One way to monitor the dust content in the return air is to use an after-filter and measure pressure drop across the filter to indicate leaks in the air-cleaning system. The best after-filtration materials provided a clear increase in pressure drop across the filter in the loading of the filter. The best after-filtration materials proved to be quite effective also for fine particles. The best mass removal efficiencies for fine particles around 0.3 mum were over 80% for some filter materials loaded with sanding wood dust.

  16. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zong, Yichen; Zhang, Yingying; Yang, Mengmeng; Zhang, Rufan; Li, Shuiqing; Wei, Fei

    2013-03-01

    We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions.We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions. Electronic supplementary information (ESI) available: Schematic of the synthesis process of the CNT/QF filter; typical size distribution of atomized polydisperse NaCl aerosols used for air filtration testing; images of a QF filter and a CNT/QF filter; SEM image of a CNT/QF filter after 5 minutes of sonication in ethanol; calculation of porosity and filter specific area. See DOI: 10.1039/c3nr34325a

  17. Investigation of new radar-data-reduction techniques used to determine drag characteristics of a free-flight vehicle

    NASA Technical Reports Server (NTRS)

    Woodbury, G. E.; Wallace, J. W.

    1974-01-01

    An investigation was conducted of new techniques used to determine the complete transonic drag characteristics of a series of free-flight drop-test models using principally radar tracking data. The full capabilities of the radar tracking and meteorological measurement systems were utilized. In addition, preflight trajectory design, exact kinematic equations, and visual-analytical filtering procedures were employed. The results of this study were compared with the results obtained from analysis of the onboard, accelerometer and pressure sensor data of the only drop-test model that was instrumented. The accelerometer-pressure drag curve was approximated by the radar-data drag curve. However, a small amplitude oscillation on the latter curve precluded a precise definition of its drag rise.

  18. Pressure drop of He II flow through a porous media

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1990-01-01

    The paper reports on measurements of He II pressure drop across two porous SiO2 ceramic filter materials. These materials vary only in porosity, having values of 0.94 and 0.96. The average fiber diameter in both cases is approximately 5 microns. The experiment consists of a glass tube containing a piece of this sponge in one end. The tube is rapidly displaced downward in a bath of helium and the liquid levels are allowed to equilibrate over time producing variable velocities up to 10 cm/sec. The results are compared with those previously obtained using fine mesh screens. Good qualitative agreement is observed for turbulent flow; however, the behavior in the laminar flow regime is not fully understood.

  19. Bed mixing and leachate recycling strategies to overcome pressure drop buildup in the biofiltration of hydrogen sulfide.

    PubMed

    Roshani, Babak; Torkian, Ayoob; Aslani, Hasan; Dehghanzadeh, Reza

    2012-04-01

    The effects of leachate recycling and bed mixing on the removal rate of H(2)S from waste gas stream were investigated. The experimental setup consisted of an epoxy-coated three-section biofilter with an ID of 8 cm and effective bed height of 120 cm. Bed material consisted of municipal solid waste compost and PVC bits with an overall porosity of 54% and dry bulk density of 0.456 g cm(-3). Leachate recycling had a positive effect of increasing elimination capacity (EC) up to 21 g S m(-3) bed h(-1) at recycling rates of 75 ml d(-1), but in the bed mixing period EC declined to 8 g S m(-3) bed h(-1). Pressure drop had a range of zero to 18 mm H(2)O m(-1) in the course of leachate recycling. Accumulation of sulfur reduced removal efficiency and increased pressure drop up to 110 mm H(2)O m(-1) filter during the bed mixing stage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Survey of HEPA filter experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.

    1982-07-01

    A survey of high efficiency particulate air (HEPA) filter applications and experience at Department of Energy (DOE) sites was conducted to provide an overview of the reasons and magnitude of HEPA filter changeouts and failures. Results indicated that approximately 58% of the filters surveyed were changed out in the three year study period, and some 18% of all filters were changed out more than once. Most changeouts (63%) were due to the existence of a high pressure drop across the filter, indicative of filter plugging. Other reasons for changeout included leak-test failure (15%), preventive maintenance service life limit (13%), suspectedmore » damage (5%) and radiation buildup (4%). Filter failures occurred with approximately 12% of all installed filters. Of these failures, most (64%) occurred for unknown or unreported reasons. Handling or installation damage accounted for an additional 19% of reported failures. Media ruptures, filter-frame failures and seal failures each accounted for approximately 5 to 6% of the reported failures.« less

  1. Workplace field testing of the pressure drop of particulate respirators using welding fumes.

    PubMed

    Cho, Hyun-Woo; Yoon, Chung-Sik

    2012-10-01

    In a previous study, we concluded that respirator testing with a sodium chloride aerosol gave a conservative estimate of filter penetration for welding fume aerosols. A rapid increase in the pressure drop (PD) of some respirators was observed as fumes accumulated on the filters. The present study evaluated particulate respirator PD based on workplace field tests. A field PD tester was designed and validated using the TSI 8130 Automatic Filter Tester, designed in compliance with National Institute for Occupational and Safety and Health regulation 42 CFR part 84. Three models (two replaceable dual-type filters and one replaceable single-type filter) were evaluated against CO(2) gas arc welding on mild steel in confined booths in the workplace. Field tests were performed under four airborne concentrations (27.5, 15.4, 7.9, and 2.1 mg m(-3)). The mass concentration was measured by the gravimetric method, and number concentration was monitored using P-Trak (Model 8525, TSI, USA). Additionally, photos and scanning electron microscopy-energy dispersive X-ray spectroscopy were used to visualize and analyze the composition of welding fumes trapped in the filters. The field PD tester showed no significant difference compared with the TSI tester. There was no significant difference in the initial PD between laboratory and field results. The PD increased as a function of fume load on the respirator filters for all tested models. The increasing PD trend differed by models, and PD increased rapidly at high concentrations because greater amount of fumes accumulated on the filters in a given time. The increase in PD as a function of fume load on the filters showed a similar pattern as fume load varied for a particular model, but different patterns were observed for different models. Images and elemental analyses of fumes trapped on the respirator filters showed that most welding fumes were trapped within the first layer, outer web cover, and second layer, in order, while no fumes were observed beneath the fourth layer of the tested respirators. The current findings contribute substantially to our understanding of respirator PD in the presence of welding fumes.

  2. DEVELOPMENT OF AG-1 SECTION FI ON METAL MEDIA FILTERS - 9061

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D; Charles A. Waggoner, C

    Development of a metal media standard (FI) for ASME AG-1 (Code on Nuclear Air and Gas Treatment) has been under way for almost ten years. This paper will provide a brief history of the development process of this section and a detailed overview of its current content/status. There have been at least two points when dramatic changes have been made in the scope of the document due to feedback from the full Committee on Nuclear Air and Gas Treatment (CONAGT). Development of the proposed section has required resolving several difficult issues associated with scope; namely, filtering efficiency, operating conditions (mediamore » velocity, pressure drop, etc.), qualification testing, and quality control/acceptance testing. A proposed version of Section FI is currently undergoing final revisions prior to being submitted for balloting. The section covers metal media filters of filtering efficiencies ranging from medium (less than 99.97%) to high (99.97% and greater). Two different types of high efficiency filters are addressed; those units intended to be a direct replacement of Section FC fibrous glass HEPA filters and those that will be placed into newly designed systems capable of supporting greater static pressures and differential pressures across the filter elements. Direct replacements of FC HEPA filters in existing systems will be required to meet equivalent qualification and testing requirements to those contained in Section FC. A series of qualification and quality assurance test methods have been identified for the range of filtering efficiencies covered by this proposed standard. Performance characteristics of sintered metal powder vs. sintered metal fiber media are dramatically different with respect to parameters like differential pressures and rigidity of the media. Wide latitude will be allowed for owner specification of performance criteria for filtration units that will be placed into newly designed systems. Such allowances will permit use of the most appropriate metal media for a system as specified by the owner with respect to material of manufacture, media velocity, system maximum static pressure, maximum differential pressure across the filter, and similar parameters.« less

  3. Removal of alpha-pinene from gases using biofilters containing fungi

    NASA Astrophysics Data System (ADS)

    van Groenestijn, J. W.; Liu, J. X.

    Biofiltration is cost-effective for the treatment of gases containing low concentrations of volatile organic compounds (<3 g m -3) . However, conventional biofilters, based on compost and bacterial activity, face problems with the elimination of hydrophobic compounds. Besides that, biofilter operational stability is often hampered by acidification and drying out of the filter bed. To overcome these problems, biofilters with fungi on inert packing material have been developed. Fungi are more resistant to acid and dry conditions than bacteria, and it is hypothesised that the aerial mycelia of fungi, which are in direct contact with the gas, can take up hydrophobic compounds faster than flat aqueous bacterial biofilm surfaces. Alpha-pinene was chosen as a model compound. It is an odorous compound emitted by the wood processing industry. In 2 l biofilter columns four different packing materials were tested: perlite, expanded clay granules, polyurethane foam cubes and compost. The filters were inoculated with forest soil and ventilated with gas containing alpha-pinene. Start up took 1-2 months and removal efficiencies of more than 90% were observed, but mostly ranged from 50% to 90% due to overloading. In the filters containing perlite, clay, polyurethane and compost volumetric removal capacities of, respectively, 24, 33, 38 and 24 g alpha- pinene m -3 filter bed h -1 were attained and the gas pressure drops in the 60 cm high filter beds measured at a superficial gas velocity of 35 m h -1 were 70, 550, 180 and 250 Pa. The results indicate that it is possible to develop biofilters based on the action of fungi with higher elimination capacities for alpha-pinene as reported in literature for bacterial biofilters. The use of polyurethane foam cubes is preferred because of the low gas pressure drop in combination with a high volumetric elimination capacity.

  4. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J [Grand Forks, ND; Zhuang, Ye [Grand Forks, ND; Almlie, Jay C [East Grand Forks, MN

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  5. Sintered composite medium and filter

    DOEpatents

    Bergman, Werner

    1987-01-01

    A particulate filter medium is formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers. A preferred composition is about 40 vol. % quartz and about 60 vol. % stainless steel fibers. The media is sintered at about 1100.degree. C. to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550.degree. C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  6. Sintered composite filter

    DOEpatents

    Bergman, W.

    1986-05-02

    A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  7. Fabrication, Polarization of Electrospun Polyvinylidene Fluoride Electret Fibers and Effect on Capturing Nanoscale Solid Aerosols †

    PubMed Central

    Lolla, Dinesh; Lolla, Manideep; Abutaleb, Ahmed; Shin, Hyeon U.; Reneker, Darrell H.; Chase, George G.

    2016-01-01

    Electrospun polyvinylidene fluoride (PVDF) fiber mats with average fiber diameters (≈200 nm, ≈2000 nm) were fabricated by controlled electrospinning conditions. These fiber mats were polarized using a custom-made device to enhance the formation of the electret β-phase ferroelectric property of the fibers by simultaneous uniaxial stretching of the fiber mat and heating the mat to the Curie temperature of the PVDF polymer in a strong electric field of 2.5 kV/cm. Scanning electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry and Brunauer-Emmett-Teller (BET) surface area analyses were performed to characterize both the internal and external morphologies of the fiber mat samples to study polarization-associated changes. MATLAB simulations revealed the changes in the paths of the electric fields and the magnetic flux inside the polarization field with inclusion of the ferroelectric fiber mats. Both polarized and unpolarized fiber mats were challenged as filters against NaCl particles with average particle diameters of about 150 nm using a TSI 8130 to study capture efficiencies and relative pressure drops. Twelve filter experiments were conducted on each sample at one month time intervals between experiments to evaluate the reduction of the polarization enhancement over time. The results showed negligible polarization loss for the 200-nm fiber sample. The polarized mats had the highest filter efficiencies and lowest pressure drops. PMID:28773798

  8. Model simulation and experiments of flow and mass transport through a nano-material gas filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir

    2013-11-01

    A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing withmore » experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.« less

  9. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    PubMed

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  10. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.

    PubMed

    Murphy, P J; Morgan, P B; Patel, S; Marshall, J

    1999-05-01

    The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.

  11. Mode-routed fiber-optic add-drop filter

    NASA Technical Reports Server (NTRS)

    Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Shaw, Herbert John (Inventor)

    2000-01-01

    New elements mode-converting two-mode grating and mode-filtering two-mode coupler are disclosed and used as elements in a system for communications, add-drop filtering, and strain sensing. Methods of fabrication for these new two-mode gratings and mode-filtering two-mode couplers are also disclosed.

  12. Removal of Inclusions from Molten Aluminum by Supergravity Filtration

    NASA Astrophysics Data System (ADS)

    Song, Gaoyang; Song, Bo; Yang, Zhanbing; Yang, Yuhou; Zhang, Jing

    2016-12-01

    A new approach to removing inclusions from aluminum melt by supergravity filtration was investigated. The molten aluminum containing MgAl2O4 spinel and coarse Al3Ti particles was isothermally filtered with different gravity coefficients, different filtering times, and various filtering temperatures under supergravity field. When the gravity coefficient G ≥ 50, the alloy samples were divided automatically into two parts: the upper residue and the lower filtered aluminum. All inclusions (MgAl2O4 and Al3Ti particles) were nearly intercepted in the upper residue by filter felt with average pore size of 44.78 μm. The removal efficiencies of oxide inclusions and Al3Ti particles exceeded 98 and 90 pct, respectively, at G ≥ 50, t = 2 minutes, T = 973 K (700 °C). Besides, the yield of purified aluminum was up to 92.1 pct at G = 600, t = 2 minutes, and T = 973 K (700 °C). The calculations of centrifugal pressure indicated that supergravity filtration could effectively overcome the pressure drop without meeting the rigorous requirement of height of molten metal, especially for using the fine-pore filter medium. Moreover, cake-mode filtration was the major mechanism of supergravity filtration of molten metal in this work.

  13. Survey of HEPA filter applications and experience at Department of Energy sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.

    1981-11-01

    Results indicated that approximately 58% of the filters surveyed were changed out in the 1977 to 1979 study period and some 18% of all filters were changed out more than once. Most changeouts (60%) were due to the existence of a high pressure drop across the filter, indicative of filter plugging. The next most recurrent reasons for changeout and their percentage changeouts were leak test failure (15%) and preventive maintenance service life limit (12%). An average filter service life was calculated to be 3.0 years with a 2.0-year standard deviation. The labor required for filter changeout was calculated as 1.5more » manhours per filter changed. Filter failures occurred with approximately 12% of all installed filters. Most failures (60%) occurred for unknown reasons and handling or installation damage accounted for an additional 20% of all failures. Media ruptures, filter frame failures and seal failures occurred with approximately equal frequency at 5 to 6% each. Subjective responses to the questionnaire indicate problems are: need for improved acid and moisture resistant filters; filters more readily disposable as radioactive waste; improved personnel training in filter handling and installation; and need for pretreatment of air prior to HEPA filtration.« less

  14. Development of a double-layered ceramic filter for aerosol filtration at high-temperatures: the filter collection efficiency.

    PubMed

    de Freitas, Normanda L; Gonçalves, José A S; Innocentini, Murilo D M; Coury, José R

    2006-08-25

    The performance of double-layered ceramic filters for aerosol filtration at high temperatures was evaluated in this work. The filtering structure was composed of two layers: a thin granular membrane deposited on a reticulate ceramic support of high porosity. The goal was to minimize the high pressure drop inherent of granular structures, without decreasing their high collection efficiency for small particles. The reticulate support was developed using the technique of ceramic replication of polyurethane foam substrates of 45 and 75 pores per inch (ppi). The filtering membrane was prepared by depositing a thin layer of granular alumina-clay paste on one face of the support. Filters had their permeability and fractional collection efficiency analyzed for filtration of an airborne suspension of phosphatic rock in temperatures ranging from ambient to 700 degrees C. Results revealed that collection efficiency decreased with gas temperature and was enhanced with filtration time. Also, the support layer influenced the collection efficiency: the 75 ppi support was more effective than the 45 ppi. Particle collection efficiency dropped considerably for particles below 2 microm in diameter. The maximum collection occurred for particle diameters of approximately 3 microm, and decreased again for diameters between 4 and 8 microm. Such trend was successfully represented by the proposed correlation, which is based on the classical mechanisms acting on particle collection. Inertial impaction seems to be the predominant collection mechanism, with particle bouncing/re-entrainment acting as detachment mechanisms.

  15. Analysis of silicon on insulator (SOI) optical microring add-drop filter based on waveguide intersections

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, Andrzej; Bogaerts, Wim; Van Thourhout, Dries; Drouard, Emmanuel; Rojo-Romeo, Pedro; Giannone, Domenico; Gaffiot, Frederic

    2008-04-01

    We present a compact passive optical add-drop filter which incorporates two microring resonators and a waveguide intersection in silicon-on-insulator (SOI) technology. Such a filter is a key element for designing simple layouts of highly integrated complex optical networks-on-chip. The filter occupies an area smaller than 10μm×10μm and exhibits relatively high quality factors (up to 4000) and efficient signal dropping capabilities. In the present work, the influence of filter parameters such as the microring-resonators radii and the coupling section shape are analyzed theoretically and experimentally

  16. Design of a micromachined terahertz electromagnetic crystals (EMXT) channel-drop filter on silicon-substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Liu, Yong; Si, Liming; Lv, Xin

    2013-08-01

    An integrated 0.5 THz electromagnetic crystals(EMXT) channel-drop filter based on PBG structure is presented in this paper. A channel-drop filter is a device in which a narrow bandwidth is redirected to another "drop" waveguide while other frequencies are unaffected. It's capable of extracting a certain frequency from a continuous spectrum in the bus channel and passing it to the test channel. It has potential applications in photonic integrated circuits, radio astronomy, THz spectroscopy, THz communication and remote sensing radar receiver. PBG structures(or photonic crystals) are periodic structures which possess band gaps, where the electromagnetic wave of certain ranges of frequencies cannot pass through and is reflected. The proposed channel-drop filter consists of input waveguide,output waveguide and PBG structure. The proposed filter is simulated using the finite element method and can be fabricated by micro-electromechanical systems (MEMS) technology,due to its low cost, high performance and high processing precision.The filter operation principle and fabrication process are discussed.The simulation results show its ability to filter the frequency of 496GHz with a linewidth of approximately 4GHz and transmission of 27.2 dB above background.The loss at resonant frequency is less than 1dB considering the thickness and roughness of gold layer required by the MEMS process.The channel drop efficiency is 84%.

  17. Multidose Preservative Free Eyedrops by Selective Removal of Benzalkonium Chloride from Ocular Formulations.

    PubMed

    Hsu, Kuan-Hui; Gupta, Karishma; Nayaka, Harish; Donthi, Aashrit; Kaul, Siddarth; Chauhan, Anuj

    2017-12-01

    About 70% of eye drops contain benzalkonium chloride (BAK) to maintain sterility. BAK is an effective preservative but it can cause irritation and toxicity. We propose to mitigate ocular toxicity without compromising sterility by incorporating a filter into an eye drop bottle to selectively remove BAK during the process of drop instillation. The filter is a packed bed of particles made from poly(2-hydroxyethyl methacrylate) (pHEMA), which is a common ophthalmic material. We showed that pHEMA particle prepared by using ethoxylated trimethylolpropane triacrylate as crosslinker can be incorporated into a modified eyedrop bottle tip to selectively remove the preservative as the formulation is squeezed out of the bottle. Hydraulic permeability of the plug is measured to determine the resistance to eye drop squeezing, and % removal of BAK and drugs are determined. The modified tip has a hydraulic permeability of about 2 Darcy, which allows eyedrops formulations to flow through without excessive resistance. The tip is designed such that the patients can create an eyedrop of solution of 1-10 cP viscosity in 4 s with a nominal pressure. During this short contact time, the packed particles removed nearly 100% of benzalkonium chloride (BAK) from a 15 mL, 0.012% BAK solution but have only minimal impact on the concentration of contained active components. Our novel design can eliminate the preservative induced toxicity from eye drops thereby impacting hundreds of millions of patients with chronic ophthalmic diseases like glaucoma and dry eyes.

  18. Design of dual ring wavelength filters for WDM applications

    NASA Astrophysics Data System (ADS)

    Sathyadevaki, R.; Shanmuga sundar, D.; Sivanantha Raja, A.

    2016-12-01

    Wavelength division multiplexing plays a prime role in an optical communication due to its advantages such as easy network expansion, longer span lengths etc. In this work, photonic crystal based filters with the dual rings are proposed which act as band pass filters (BPF) and channel drop filter (CDF) that has found a massive applications in C and L-bands used for wavelength selection and noise filtering at erbium doped fiber amplifiers and dense wavelength division multiplexing operation. These filters are formulated on the square lattice with crystal rods of silicon material of refractive index 3.4 which are perforated on an air of refractive index 1. Dual ring double filters (band pass filter and channel drop filter) on single layout possess passing and dropping band of wavelengths in two distinct arrangements with entire band quality factors of 92.09523 & 505.263 and 124.85019 & 456.8633 for the pass and drop filters of initial setup and amended setup respectively. These filters have the high-quality factor with broad and narrow bandwidths of 16.8 nm & 3.04 nm and 12.85 nm & 3.3927 nm. Transmission spectra and band gap of the desired filters is analyzed using Optiwave software suite. Two dual ring filters incorporated on a single layout comprises the size of 15×11 μm which can also be used in the integrated photonic chips for the ultra-compact unification of devices.

  19. Comparison of nonwoven fiberglass and stainless steel microfiber media in aerosol coalescence filtration

    NASA Astrophysics Data System (ADS)

    Manzo, Gabriel

    Coalescing filters are used to remove small liquid droplets from air streams. They have numerous industrial applications including dehumidification, cabin air filtration, compressed air filtration, metal working, CCV, and agriculture. In compressed air systems, oils used for lubrication of compressor parts can aerosolize into the main air stream causing potential contamination concerns for downstream applications. In many systems, humid air can present problems to sensitive equipment and sensors. As the humid air cools, small water drops condense and can disrupt components that need to be kept dry. Fibrous nonwoven filter media are commonly used to coalesce small drops into larger drops for easier removal. The coalescing performance of a medium is dependent upon several parameters including permeability, porosity, and wettability. In many coalescing filters, glass fibers are used. In this work, the properties of steel fiber media are measured to see how these properties compare to glass fiber media. Steel fiber media has different permeability, porosity and wettability to oil and water than fiber glass media. These differences can impact coalescence performance. The impact of these differences in properties on coalescence filtration performance was evaluated in a coalescence test apparatus. The overall coalescence performance of the steel and glass nonwoven fiber media are compared using a filtration efficiency and filtration index. In many cases, the stainless steel media performed comparably to fiber glass media with efficiencies near 90%. Since stainless steel media had lower pressure drops than fiber glass media, its filtration index values were significantly higher. Broader impact of this work is the use of stainless steel fiber media as an alternative to fiber glass media in applications where aerosol filtration is needed to protect the environment or sensitive equipment and sensors.

  20. Impact of the air filtration on indoor particle concentration by using combination filters in offices building

    NASA Astrophysics Data System (ADS)

    Kabrein, H.; Hariri, A.; Leman, A. M.; Noraini, N. M. R.; Yusof, M. Z. M.; Afandi, A.

    2017-09-01

    Heating ventilation and air conditioning system (HVAC) is very important for offices building and human health. The combining filter method was used to reduce the air pollution indoor such as that particulate matter and gases pollution that affected in health and productivity. Using particle filters in industrial HVAC systems (factories and manufacturing process) does not enough to remove all the indoor pollution. The main objective of this study is to investigate the impact of combination filters for particle and gases removal efficiency. The combining method is by using two filters (particulate filter pre-filter and carbon filter) to reduce particle matter and gases respectively. The purpose of this study is to use minimum efficiency reporting value (MERV filter) rating 13 and activated carbon filter (ACF) to remove indoor air pollution and controlling the air change rate to enhance the air quality and energy saving. It was concluded that the combination filter showed good removal efficiency of particle up to 90.76% and 89.25% for PM10 and PM2.5 respectively. The pressure drop across the filters was small compared with the high-efficiency filters. The filtration efficiency of combination filters after three months’ was better than efficiency by the new MERV filter alone.

  1. Novel tunable dynamic tweezers using dark-bright soliton collision control in an optical add/drop filter.

    PubMed

    Teeka, Chat; Jalil, Muhammad Arif; Yupapin, Preecha P; Ali, Jalil

    2010-12-01

    We propose a novel system of the dynamic optical tweezers generated by a dark soliton in the fiber optic loop. A dark soliton known as an optical tweezer is amplified and tuned within the microring resonator system. The required tunable tweezers with different widths and powers can be controlled. The analysis of dark-bright soliton conversion using a dark soliton pulse propagating within a microring resonator system is analyzed. The dynamic behaviors of soliton conversion in add/drop filter is also analyzed. The control dark soliton is input into the system via the add port of the add/drop filter. The dynamic behavior of the dark-bright soliton conversion is observed. The required stable signal is obtained via a drop and throughput ports of the add/drop filter with some suitable parameters. In application, the trapped light/atom and transportation can be realized by using the proposed system.

  2. Simulation on Soot Oxidation with NO2 and O2 in a Diesel Particulate Filter

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Satake, Shingo; Yamashita, Hiroshi; Obuchi, Akira; Uchisawa, Junko

    Although diesel engines have an advantage of low fuel consumption in comparison with gasoline engines, exhaust gas has more particulate matters (PM) including soot. As one of the key technologies, a diesel particulate filter (DPF) has been developed to reduce PM. When the exhaust gas passes its porous filter wall, the soot particles are trapped. However, the filter would readily be plugged with particles, and the accumulated particles must be removed to prevent filter clogging and a rise in backpressure, which is called filter regeneration process. In this study, we have simulated the flow in the wall-flow DPF using the lattice Boltzmann method. Filters of different length, porosity, and pore size are used. The soot oxidation for filter regeneration process is considered. Especially, the effect of NO2 on the soot oxidation is examined. The reaction rate has been determined by previous experimental data. Results show that, the flow along the filter monolith is roughly uniform, and the large pressure drop across the filter wall is observed. The soot oxidation rate becomes ten times larger when NO2 is added. These are useful information to construct the future regeneration system.

  3. A novel photonic crystal ring resonator configuration for add/drop filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Liu, Hao; Ding, Yipeng; Wang, Yang

    2018-07-01

    A novel compact photonic crystal ring resonator (PCRR) configuration is proposed to realize high-efficiency waveguided add-drop filtering. Its wavelength selection and dropping-direction exchange functions are demonstrated numerically. The working mechanism of this nested dual-loop resonant cavity structure is analyzed in detail.

  4. Calibration and use of filter test facility orifice plates

    NASA Astrophysics Data System (ADS)

    Fain, D. E.; Selby, T. W.

    1984-07-01

    There are three official DOE filter test facilities. These test facilities are used by the DOE, and others, to test nuclear grade HEPA filters to provide Quality Assurance that the filters meet the required specifications. The filters are tested for both filter efficiency and pressure drop. In the test equipment, standard orifice plates are used to set the specified flow rates for the tests. There has existed a need to calibrate the orifice plates from the three facilities with a common calibration source to assure that the facilities have comparable tests. A project has been undertaken to calibrate these orifice plates. In addition to reporting the results of the calibrations of the orifice plates, the means for using the calibration results will be discussed. A comparison of the orifice discharge coefficients for the orifice plates used at the seven facilities will be given. The pros and cons for the use of mass flow or volume flow rates for testing will be discussed. It is recommended that volume flow rates be used as a more practical and comparable means of testing filters. The rationale for this recommendation will be discussed.

  5. Method for Hot Real-Time Sampling of Gasification Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomeroy, Marc D

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a highly instrumented half-ton/day pilot scale plant capable of demonstrating industrially relevant thermochemical technologies from lignocellulosic biomass conversion, including gasification. Gasification creates primarily Syngas (a mixture of Hydrogen and Carbon Monoxide) that can be utilized with synthesis catalysts to form transportation fuels and other valuable chemicals. Biomass derived gasification products are a very complex mixture of chemical components that typically contain Sulfur and Nitrogen species that can act as catalysis poisons for tar reforming and synthesis catalysts. Real-time hot online sampling techniques, such as Molecular Beammore » Mass Spectrometry (MBMS), and Gas Chromatographs with Sulfur and Nitrogen specific detectors can provide real-time analysis providing operational indicators for performance. Sampling typically requires coated sampling lines to minimize trace sulfur interactions with steel surfaces. Other materials used inline have also shown conversion of sulfur species into new components and must be minimized. Sample line Residence time within the sampling lines must also be kept to a minimum to reduce further reaction chemistries. Solids from ash and char contribute to plugging and must be filtered at temperature. Experience at NREL has shown several key factors to consider when designing and installing an analytical sampling system for biomass gasification products. They include minimizing sampling distance, effective filtering as close to source as possible, proper line sizing, proper line materials or coatings, even heating of all components, minimizing pressure drops, and additional filtering or traps after pressure drops.« less

  6. Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect.

    PubMed

    Ge, Xiaochen; Shi, Yaocheng; He, Sailing

    2014-12-15

    The design, fabrication, and characterization of a compact photonic crystal nanobeam drop filter based on the tunneling effect of the degenerate modes are presented. The degeneracy was achieved by tuning the coupling distance between the nanobeam and input/output waveguides. The tunneling effect of degenerate resonances with different symmetries has been verified experimentally. Channel drop filters with an extinction ratio larger than 10 dB and a quality factor of ∼5000 have been experimentally demonstrated.

  7. Channel add-drop filter based on dual photonic crystal cavities in push-pull mode.

    PubMed

    Poulton, Christopher V; Zeng, Xiaoge; Wade, Mark T; Popović, Miloš A

    2015-09-15

    We demonstrate an add-drop filter based on a dual photonic crystal nanobeam cavity system that emulates the operation of a traveling wave resonator, and, thus, provides separation of the through and drop port transmission from the input port. The device is on a 3×3  mm chip fabricated in an advanced microelectronics silicon-on-insulator complementary metal-oxide semiconductor (SOI CMOS) process (IBM 45 nm SOI) without any foundry process modifications. The filter shows 1 dB of insertion loss in the drop port with a 3 dB bandwidth of 64 GHz, and 16 dB extinction in the through port. To the best of our knowledge, this is the first implementation of a port-separating, add-drop filter based on standing wave cavities coupled to conventional waveguides, and demonstrates a performance that suggests potential for photonic crystal devices within optical immersion lithography-based advanced CMOS electronics-photonics integration.

  8. Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber.

    PubMed

    Chen, Xi; Shi, Yuechun; Lou, Fei; Chen, Yiting; Yan, Min; Wosinski, Lech; Qiu, Min

    2014-10-20

    An optically pumped thermo-optic (TO) silicon ring add-drop filter with fast thermal response is experimentally demonstrated. We propose that metal-insulator-metal (MIM) light absorber can be integrated into silicon TO devices, acting as a localized heat source which can be activated remotely by a pump beam. The MIM absorber design introduces less thermal capacity to the device, compared to conventional electrically-driven approaches. Experimentally, the absorber-integrated add-drop filter shows an optical response time of 13.7 μs following the 10%-90% rule (equivalent to a exponential time constant of 5 μs) and a wavelength shift over pump power of 60 pm/mW. The photothermally tunable add-drop filter may provide new perspectives for all-optical routing and switching in integrated Si photonic circuits.

  9. Flow in the human upper airway: work of breathing and the compliant soft palate and tongue

    NASA Astrophysics Data System (ADS)

    Jermy, Mark; Adams, Cletus; Aplin, Jonathan; Buchajczyk, Marcin; van Hove, Sibylle; Kabaliuk, Natalia; Geoghegan, Patrick; Cater, John

    2016-11-01

    The human upper airway (nasal cavity, pharynx and trachea) filters, heats and humidifies inspired air. Its pressure drop affects the work of breathing (WOB, energy expended to inspire and expire) to a degree which varies from person to person, and which is altered by breathing therapy devices. We report experimental studies using 3D printed models of the upper airway based on CT scans of single individuals (adult and paediatric), and average geometries based on PCA analysis of 150 individuals. Particle Image Velocimetry (PIV), gas concentration and pressure measurements, coupled with CFD simulation. These reveal the details of the washout of CO2 rich exhaled gas, the direction-dependent time-varying pressure drop, and the effect of high-flow nasal therapy (HFNT) on these phenomena. A 1D multi-compartment model is used to estimate the work of breathing. For the first time, soft (compliant) elements have been included in the model airways and show that the assumption of rigid tissue is acceptable for unassisted breathing, but unrealistic for therapy-assisted flows.

  10. Optimization of the cleaning process on a pilot filtration setup for waste water treatment accompanied by flow visualization

    NASA Astrophysics Data System (ADS)

    Bílek, Petr; Hrůza, Jakub

    2018-06-01

    This paper deals with an optimization of the cleaning process on a liquid flat-sheet filter accompanied by visualization of the inlet side of a filter. The cleaning process has a crucial impact on the hydrodynamic properties of flat-sheet filters. Cleaning methods avoid depositing of particles on the filter surface and forming a filtration cake. Visualization significantly helps to optimize the cleaning methods, because it brings new overall view on the filtration process in time. The optical method, described in the article, enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. Visualization is a strong tool for investigation of the processes on filters in details and it is also possible to determine concentration of particles after an image analysis. The impact of air flow rate, inverse pressure drop and duration on the cleaning mechanism is investigated in the article. Images of the cleaning process are compared to the hydrodynamic data. The tests are carried out on a pilot filtration setup for waste water treatment.

  11. Research on particulate filter simulation and regeneration control strategy

    NASA Astrophysics Data System (ADS)

    Dawei, Qu; Jun, Li; Yu, Liu

    2017-03-01

    This paper reports a DPF (Diesel Particulate Filter) collection mathematical model for a new regeneration control strategy. The new strategy is composed by main parts, such as regeneration time capturing, temperature rising strategy and regeneration control strategy. In the part of regeneration time capturing, a multi-level regeneration capturing method is put forward based on the combined effect of the PM (Particulate Matter) loading, pressure drop and fuel consumption. The temperature rising strategy proposes the global temperature for all operating conditions. The regeneration control process considers the particle loading density, temperature and oxygen respectively. Based on the analysis of the initial overheating, runaway temperature and local hot spot, the final control strategy is established.

  12. Part 2 of a Computational Study of a Drop-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2004-01-01

    This second of three reports on a computational study of a mixing layer laden with evaporating liquid drops presents the evaluation of Large Eddy Simulation (LES) models. The LES models were evaluated on an existing database that had been generated using Direct Numerical Simulation (DNS). The DNS method and the database are described in the first report of this series, Part 1 of a Computational Study of a Drop-Laden Mixing Layer (NPO-30719), NASA Tech Briefs, Vol. 28, No.7 (July 2004), page 59. The LES equations, which are derived by applying a spatial filter to the DNS set, govern the evolution of the larger scales of the flow and can therefore be solved on a coarser grid. Consistent with the reduction in grid points, the DNS drops would be represented by fewer drops, called computational drops in the LES context. The LES equations contain terms that cannot be directly computed on the coarser grid and that must instead be modeled. Two types of models are necessary: (1) those for the filtered source terms representing the effects of drops on the filtered flow field and (2) those for the sub-grid scale (SGS) fluxes arising from filtering the convective terms in the DNS equations. All of the filtered-sourceterm models that were developed were found to overestimate the filtered source terms. For modeling the SGS fluxes, constant-coefficient Smagorinsky, gradient, and scale-similarity models were assessed and calibrated on the DNS database. The Smagorinsky model correlated poorly with the SGS fluxes, whereas the gradient and scale-similarity models were well correlated with the SGS quantities that they represented.

  13. A comparative evaluation of dried activated sludge and mixed dried activated sludge with rice husk silica to remove hydrogen sulfide

    PubMed Central

    2013-01-01

    The aim of this study was to investigate the effectiveness of dried activated sludge (DAS) and mixed dried activated sludge with rice husk silica (DAS & RHS) for removal of hydrogen sulfide (H2S). Two laboratory-scale filter columns (packed one litter) were operated. Both systems were operated under different conditions of two parameters, namely different inlet gas concentrations and different inlet flow rates. The DAS & RHS packed filter showed more than 99.96% removal efficiency (RE) with empty bed residence time (EBRT) of 45 to 90 s and 300 mg/L inlet concentration of H2S. However, the RE decreased to 96.87% with the EBRT of 30 s. In the same condition, the DAS packed filter showed 99.37% RE. Nonetheless, the RE was shown to have dropped to 82.09% with the EBRT of 30 s. The maximum elimination capacity (EC) was obtained in the DAS & RHS packed filter up to 52.32 g/m3h, with the RE of 96.87% and H2S mass loading rate of 54 g/m3h. The maximum EC in the DAS packed filter was obtained up to 44.33 g/m3h with the RE of 82.09% and the H2S mass loading rate of 54 g/m3h. After 53 days of operating time and 54 g/m3h of loading rates, the maximum pressure drop reached to 3.0 and 8.0 (mm H2O) for the DAS & RHS packed and DAS packed filters, respectively. Based on the findings of this study, the DAS & RHS could be considered as a more suitable packing material to remove H2S. PMID:23497048

  14. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Vapor Flow Patterns During a Start-Up Transient in Heat Pipes

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Ghoniem, N, M.; Catton, I.

    1996-01-01

    The vapor flow patterns in heat pipes are examined during the start-up transient phase. The vapor core is modelled as a channel flow using a two dimensional compressible flow model. A nonlinear filtering technique is used as a post process to eliminate the non-physical oscillations of the flow variables. For high-input heat flux, multiple shock reflections are observed in the evaporation region. The reflections cause a reverse flow in the evaporation and circulations in the adiabatic region. Furthermore, each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe.

  16. Morphology of Nano and Micro Fiber Structures in Ultrafine Particles Filtration

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Fenyk, Jan; Petras, David; Zatloukal, Martin; Sambaer, Wannes; Zdimal, Vladimir

    2011-07-01

    Selected procedures permitting to prepare homogeneous nanofibre structures of the desired morphology by employing a suitable combination of variables during the electrospinning process are presented. A comparison (at the same pressure drop) was made of filtration capabilities of planar polyurethane nanostructures formed exclusively by nanofibres, space polycarbonate nanostructures having bead spacers, structures formed by a combination of polymethyl methacrylate micro- and nanofibres and polypropylene meltblown microstructures, through which ultrafine particles of ammonium sulphate 20-400 nm in size were filtered. The structures studied were described using a new digital image analysis technique based on black and white images obtained by scanning electron microscopy. More voluminous structures modified with distance microspheres and having a greater thickness and mass per square area of the material, i.e. structures possessing better mechanical properties, demanded so much in nanostructures, enable preparation of filters having approximately the same free volume fraction as flat nanofibre filters but an increased effective fibre surface area, changed pore size morphology and, consequently, a higher filter quality.

  17. Filter quality of electret masks in filtering 14.6–594 nm aerosol particles: Effects of five decontamination methods

    PubMed Central

    Lin, Tzu-Hsien; Chen, Chih-Chieh; Kuo, Chung-Wen

    2017-01-01

    This study investigates the effects of five decontamination methods on the filter quality (qf) of three commercially available electret masks—N95, Gauze and Spunlace nonwoven masks. Newly developed evaluation methods, the overall filter quality (qf,o) and the qf ratio were applied to evaluate the effectiveness of decontamination methods for respirators. A scanning mobility particle sizer is utilized to measure the concentration of polydispersed particles with diameter 14.6–594 nm. The penetration of particles and pressure drop (Δp) through the mask are used to determine qf and qf,o. Experimental results reveal that the most penetrating particle size (MPS) for the pre-decontaminated N95, Gauze and Spunlace masks were 118 nm, 461 nm and 279 nm, respectively, and the respective penetration rates were 2.6%, 23.2% and 70.0%. The Δp through the pretreated N95 masks was 9.2 mm H2O at the breathing flow rate of heavy-duty workers, exceeding the Δp values obtained through Gauze and Spunlace masks. Decontamination increased the sizes of the most penetrating particles, changing the qf values of all of the masks: qf fell as particle size increased because the penetration increased. Bleach increased the Δp of N95, but destroyed the Gauze mask. However, the use of an autoclave reduces the Δp values of both the N95 and the Gauze mask. Neither the rice cooker nor ethanol altered the Δp of the Gauze mask. Chemical decontamination methods reduced the qf,o values for the three electret masks. The value of qf,o for PM0.1 exceeded that for PM0.1–0.6, because particles smaller than 100 nm had lower penetration, resulting in a better qf for a given pressure drop. The values of qf,o, particularly for PM0.1, reveal that for the tested treatments and masks, physical decontamination methods are less destructive to the filter than chemical methods. Nevertheless, when purchasing new or reusing FFRs, penetration should be regarded as the priority. PMID:29023492

  18. Filter Measurement System for Nuclear Material Storage Canisters. End of Year Report FY 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E.; Reeves, Kirk P.

    2014-02-03

    A test system has been developed at Los Alamos National Laboratory to measure the aerosol collection efficiency of filters in the lids of storage canisters for special nuclear materials. Two FTS (filter test system) devices have been constructed; one will be used in the LANL TA-55 facility with lids from canisters that have stored nuclear material. The other FTS device will be used in TA-3 at the Radiation Protection Division’s Aerosol Engineering Facility. The TA-3 system will have an expanded analytical capability, compared to the TA-55 system that will be used for operational performance testing. The LANL FTS is intendedmore » to be automatic in operation, with independent instrument checks for each system component. The FTS has been described in a complete P&ID (piping and instrumentation diagram) sketch, included in this report. The TA-3 FTS system is currently in a proof-of-concept status, and TA-55 FTS is a production-quality prototype. The LANL specification for (Hagan and SAVY) storage canisters requires the filter shall “capture greater than 99.97% of 0.45-micron mean diameter dioctyl phthalate (DOP) aerosol at the rated flow with a DOP concentration of 65±15 micrograms per liter”. The percent penetration (PEN%) and pressure drop (DP) of fifteen (15) Hagan canister lids were measured by NFT Inc. (Golden, CO) over a period of time, starting in the year 2002. The Los Alamos FTS measured these quantities on June 21, 2013 and on Oct. 30, 2013. The LANL(6-21-2013) results did not statistically match the NFT Inc. data, and the LANL FTS system was re-evaluated, and the aerosol generator was replaced and the air flow measurement method was corrected. The subsequent LANL(10-30-2013) tests indicate that the PEN% results are statistically identical to the NFT Inc. results. The LANL(10-30-2013) pressure drop measurements are closer to the NFT Inc. data, but future work will be investigated. An operating procedure for the FTS (filter test system) was written, and future project milestones are on track for completion« less

  19. Critical Bursts in Filtration

    NASA Astrophysics Data System (ADS)

    Bianchi, Filippo; Thielmann, Marcel; de Arcangelis, Lucilla; Herrmann, Hans Jürgen

    2018-01-01

    Particle detachment bursts during the flow of suspensions through porous media are a phenomenon that can severely affect the efficiency of deep bed filters. Despite the relevance in several industrial fields, little is known about the statistical properties and the temporal organization of these events. We present experiments of suspensions of deionized water carrying quartz particles pushed with a peristaltic pump through a filter of glass beads measuring simultaneously the pressure drop, flux, and suspension solid fraction. We find that the burst size distribution scales consistently with a power law, suggesting that we are in the presence of a novel experimental realization of a self-organized critical system. Temporal correlations are present in the time series, like in other phenomena such as earthquakes or neuronal activity bursts, and also an analog to Omori's law can be shown. The understanding of burst statistics could provide novel insights in different fields, e.g., in the filter and petroleum industries.

  20. End of FY2014 Report - Filter Measurement System for Nuclear Material Storage Canisters (Including Altitude Correction for Filter Pressure Drop)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E.; Reeves, Kirk Patrick

    2015-02-24

    Two LANL FTS (Filter Test System ) devices for nuclear material storage canisters are fully operational. One is located in PF-4 ( i.e. the TA-55 FTS) while the other is located at the Radiation Protection Division’s Aerosol Engineering Facility ( i.e. the TA-3 FTS). The systems are functionally equivalent , with the TA-3 FTS being the test-bed for new additions and for resolving any issues found in the TA-55 FTS. There is currently one unresolved issue regarding the TA-55 FTS device. The canister lid clamp does not give a leak tight seal when testing the 1 QT (quart) or 2more » QT SAVY lids. An adapter plate is being developed that will ensure a correct test configuration when the 1 or 2 QT SAVY lid s are being tested .« less

  1. Electrospun Magnetic Nanoparticle-Decorated Nanofiber Filter and Its Applications to High-Efficiency Air Filtration.

    PubMed

    Kim, Juyoung; Chan Hong, Seung; Bae, Gwi Nam; Jung, Jae Hee

    2017-10-17

    Filtration technology has been widely studied due to concerns about exposure to airborne dust, including metal oxide nanoparticles, which cause serious health problems. The aim of these studies has been to develop mechanisms for the continuous and efficient removal of metal oxide dusts. In this study, we introduce a novel air filtration system based on the magnetic attraction force. The filtration system is composed of a magnetic nanoparticle (MNP)-decorated nanofiber (MNP-NF) filter. Using a simple electrospinning system, we fabricated continuous and smooth electrospun nanofibers with evenly distributed Fe 3 O 4 MNPs. Our electrospun MNP-NF filter exhibited high particle collection efficiency (∼97% at 300 nm particle size) compared to the control filter (w/o MNPs, ∼ 68%), with a ∼ 64% lower pressure drop (∼17 Pa) than the control filter (∼27 Pa). Finally, the filter quality factors of the MNP-NF filter were 4.7 and 11.9 times larger than those of the control filter and the conventional high-efficiency particulate air filters (>99% and ∼269 Pa), respectively. Furthermore, we successfully performed a field test of our MNP-NF filter using dust from a subway station tunnel. This work suggests that our novel MNP-NF filter can be used to facilitate effective protection against hazardous metal oxide dust in real environments.

  2. Chemical Laser Solid Fuels Program

    DTIC Science & Technology

    1976-12-01

    liquids. Solid propellant gas generators which can supply all of the ^(Tl-*fs DD , FORM w73 JAN 71 I"* EDITION OF 1 NOV SS IS OBSOLETE...seven tests, the mean weight yield was 13.24 ± 0.09 percent which is 97.72 percent of the theoretical weight yield of 13. SS percent for this...early in the test and peaks as the deuteriun flow rate is dropping at the burnout of the grain. The pressure differential across the filter discs

  3. Motor vehicle technology:Mobility for prosperity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    This book presents the papers given at a conference on internal combustion engines for vehicles. Topics considered at the conference included combustion chambers, the lubrication of turbocharged engines, oil filters, fuel consumption, traffic control, crashworthiness, brakes, acceleration, unleaded gasoline, methanol fuels, pressure drop, safety regulations, tire vibration, detergents, fuel economy, ceramics in engines, steels, catalytic converters, fuel additives, heat exchangers, pump systems, emissions control, fuel injection systems, noise pollution control, natural gas fuels, assembly plant productivity, aerodynamics, torsion, electronics, and automatic transmissions.

  4. Reducing bottom anti-reflective coating (BARC) defects: optimizing and decoupling the filtration and dispense process

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas L.; Martin, Gary; Simmons, Sean; Batchelder, Traci

    2006-03-01

    Semiconductor device manufacturing is one of the cleanest manufacturing operations that can be found in the world today. It has to be that way; a particle on a wafer today can kill an entire device, which raises the costs, and therefore reduces the profits, of the manufacturing company in two ways: it must produce extra wafers to make up for the lost die, and it has less product to sell. In today's state-of-the-art fab, everything is filtered to the lowest pore size available. This practice is fairly easy for gases because a gas molecule is very small compared to the pore size of the filter. Filtering liquids, especially photochemicals such as photoresists and BARCs, can be much harder because the molecules that form the polymers used to manufacture the photochemicals are approaching the filter pore size. As a result, filters may plug up, filtration rates may drop, pressure drops across the filter may increase, or a filter may degrade. These conditions can then cause polymer shearing, microbubble formation, gel particle formation, and BARC chemical changes to occur before the BARC reaches the wafer. To investigate these possible interactions, an Entegris(R) IntelliGen(R) pump was installed on a TEL Mk8 TM track to see if the filtration process would have an effect on the BARC chemistry and coating defects. Various BARC chemicals such as DUV112 and DUV42P were pumped through various filter media having a variety of pore sizes at different filtration rates to investigate the interaction between the dispense process and the filtration process. The IntelliGen2 pump has the capability to filter the BARC independent of the dispense process. By using a designed experiment to look at various parameters such as dispense rate, filtration rate, and dispense volume, the effects of the complete pump system can be learned, and appropriate conditions can be applied to yield the cleanest BARC coating process. Results indicate that filtration rate and filter pore size play a dramatic role in the defect density on a coated wafer with the actual dispense properties such as dispense wafer speed and dispense time playing a lesser role.

  5. Performance Evaluation of Pressure Transducers for Water Impacts

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  6. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.

    2017-01-01

    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  7. Optical add/drop filter for wavelength division multiplexed systems

    DOEpatents

    Deri, Robert J.; Strand, Oliver T.; Garrett, Henry E.

    2002-01-01

    An optical add/drop filter for wavelength division multiplexed systems and construction methods are disclosed. The add/drop filter includes a first ferrule having a first pre-formed opening for receiving a first optical fiber; an interference filter oriented to pass a first set of wavelengths along the first optical fiber and reflect a second set of wavelengths; and, a second ferrule having a second pre-formed opening for receiving the second optical fiber, and the reflected second set of wavelengths. A method for constructing the optical add/drop filter consists of the steps of forming a first set of openings in a first ferrule; inserting a first set of optical fibers into the first set of openings; forming a first set of guide pin openings in the first ferrule; dividing the first ferrule into a first ferrule portion and a second ferrule portion; forming an interference filter on the first ferrule portion; inserting guide pins through the first set of guide pin openings in the first ferrule portion and second ferrule portion to passively align the first set of optical fibers; removing material such that light reflected from the interference filter from the first set of optical fibers is accessible; forming a second set of openings in a second ferrule; inserting a second set of optical fibers into the second set of openings; and positioning the second ferrule with respect to the first ferrule such that the second set of optical fibers receive the light reflected from the interference filter.

  8. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2012-08-10

    The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Mode conversion in a tapered fiber via a whispering gallery mode resonator and its application as add/drop filter.

    PubMed

    Huang, Ligang; Wang, Jie; Peng, Weihua; Zhang, Wending; Bo, Fang; Yu, Xuanyi; Gao, Feng; Chang, Pengfa; Song, Xiaobo; Zhang, Guoquan; Xu, Jingjun

    2016-02-01

    Based on the conversion between the fundamental mode (LP01) and the higher-order mode (LP11) in a tapered fiber via a whispering gallery mode resonator, an add/drop filter was proposed and demonstrated experimentally, in which the resonator only interacted with one tapered fiber, rather than two tapered fibers as in conventional configurations. The filter gains advantages of easy alignment and low scattering loss over the other filters based on tapered fiber and resonator, and will be useful in application.

  10. Filter Efficiency and Leak Testing of Returned ISS Bacterial Filter Elements After 2.5 Years of Continuous Operation

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    The atmosphere revitalization equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provides the vital functions of maintaining a habitable environment for the crew as well as protecting the hardware from fouling by suspended particulate matter. Providing these functions are challenging in pressurized spacecraft cabins because no outside air ventilation is possible and a larger particulate load is imposed on the filtration system due to lack of sedimentation in reduced gravity conditions. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) filters deployed at multiple locations in each module. These filters are referred to as Bacteria Filter Elements (BFEs). As more experience has been gained with ISS operations, the BFE service life, which was initially one year, has been extended to two to five years, dependent on the location in the U.S. Segment. In previous work we developed a test facility and test protocol for leak testing the ISS BFEs. For this work, we present results of leak testing a sample set of returned BFEs with a service life of 2.5 years, along with particulate removal efficiency and pressure drop measurements. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS to 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  11. METAL MEDIA FILTERS, AG-1 SECTION FI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, D.

    One application of metal media filters is in various nuclear air cleaning processes including applications for protecting workers, the public and the environment from hazardous and radioactive particles. To support this application the development of the ASME AG-1 FI Standard on Metal Media has been under way for more than ten years. Development of the proposed section has required resolving several difficult issues associated with operating conditions (media velocity, pressure drop, etc.), qualification testing, and quality acceptance testing. Performance characteristics of metal media are dramatically different than the glass fiber media with respect to parameters like differential pressures, operating temperatures,more » media strength, etc. These differences make existing data for a glass fiber media inadequate for qualifying a metal media filter for AG-1. In the past much work has been conducted on metal media filters at facilities such as Lawrence Livermore National Laboratory (LLNL) and Savannah River National Laboratory (SRNL) to qualify the media as High Efficiency Particulate Air (HEPA) Filters. Particle retention testing has been conducted at Oak Ridge Filter Test Facility and at Air Techniques International (ATI) to prove that the metal media meets or exceeds the 99.97% particle retention required for a HEPA Filter. Even with his testing, data was lacking to complete an AG-1 FI Standard on metal media. With funding secured by Mississippi State University (MSU) from National Nuclear Security Administration (NNSA), a research test stand is being designed and fabricated at MSU's Institute for Clean Energy Technology (ICET) Facility to obtain qualification data on metal media. This in turn will support required data needed for the FI Standard. The paper will discuss in detail how the test stand at MSU will obtain the necessary data to complete the FI Standard.« less

  12. Thermo-optic microring resonator switching elements made of dielectric-loaded plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Tsilipakos, Odysseas; Kriezis, Emmanouil E.; Bozhevolnyi, Sergey I.

    2011-04-01

    Thermo-optic switching elements made of dielectric-loaded plasmonic (DLSPP) waveguides are theoretically investigated by utilizing the three-dimensional vector finite element method. The configurations considered employ microring resonators, whose resonant frequency is varied by means of thermal tuning. First, a classic add-drop filter with parallel access waveguides is examined. Such a component features very poor drop port extinction ratio (ER). We therefore extend the analysis to add-drop filters with perpendicular access waveguides, which are found to exhibit superior drop port ERs, due to interference effects associated with the drop port transmission. In the process, the performance of a DLSPP waveguide crossing is also assessed, since it is a building block of those filters whose bus waveguides intersect. An elliptic tapering scheme is proposed for minimizing cross talk and its effect on the filter performance is explored. The dual-resonator add-drop filter with perpendicular bus waveguides and an untreated waveguide crossing of Sec. V can act as an efficient 2×2 switching element (the single-resonator variant can only act as a 1×2 switch due to structure asymmetry), possessing two equivalent input ports and featuring high ERs for both output ports over a broad wavelength range. Specifically, an extinction ratio of at least 8 dB can be attained for both output ports over a wavelength range of 3.2 nm, accommodating four 100-GHz-spaced channels. Switching times are in the order of a few microseconds, rendering the aforementioned structure capable of handling real-world routing scenarios.

  13. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    PubMed

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  14. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems

    PubMed Central

    Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency. PMID:28594862

  15. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber

    NASA Astrophysics Data System (ADS)

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-01

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.

  16. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber.

    PubMed

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-12

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices.

  17. Sodium purification apparatus and method

    DOEpatents

    Gould, Marc I. [Van Nuys, CA

    1980-03-04

    An apparatus for and method of collecting and storing oxide impurities contained in high-temperature liquid alkali metal. A method and apparatus are provided for nucleating and precipitating oxide impurities by cooling, wherein the nucleation and precipitation are enhanced by causing a substantial increase in pressure drop and corresponding change in the velocity head of the alkali metal. Thereafter the liquid alkali metal is introduced into a quiescent zone wherein the liquid velocity is maintained below a specific maximum whereby it is possible to obtain high oxide removal efficiencies without the necessity of a mesh or filter.

  18. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy.

    PubMed

    Park, Jae Hong; Yoon, Ki Young; Na, Hyungjoo; Kim, Yang Seon; Hwang, Jungho; Kim, Jongbaeg; Yoon, Young Hun

    2011-09-01

    We grew multi-walled carbon nanotubes (MWCNTs) on a glass fiber air filter using thermal chemical vapor deposition (CVD) after the filter was catalytically activated with a spark discharge. After the CNT deposition, filtration and antibacterial tests were performed with the filters. Potassium chloride (KCl) particles (<1 μm) were used as the test aerosol particles, and their number concentration was measured using a scanning mobility particle sizer. Antibacterial tests were performed using the colony counting method, and Escherichia coli (E. coli) was used as the test bacteria. The results showed that the CNT deposition increased the filtration efficiency of nano and submicron-sized particles, but did not increase the pressure drop across the filter. When a pristine glass fiber filter that had no CNTs was used, the particle filtration efficiencies at particle sizes under 30 nm and near 500 nm were 48.5% and 46.8%, respectively. However, the efficiencies increased to 64.3% and 60.2%, respectively, when the CNT-deposited filter was used. The reduction in the number of viable cells was determined by counting the colony forming units (CFU) of each test filter after contact with the cells. The pristine glass fiber filter was used as a control, and 83.7% of the E. coli were inactivated on the CNT-deposited filter. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Separation of nanoparticles: Filtration and scavenging from waste incineration plants.

    PubMed

    Förster, Henning; Thajudeen, Thaseem; Funk, Christine; Peukert, Wolfgang

    2016-06-01

    Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Experimental Investigation of Oscillatory Flow Pressure and Pressure Drop Through Complex Geometries

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir B.; Wang, Meng; Gedeon, David

    2005-01-01

    A series of experiments have been performed to investigate the oscillatory flow pressure and pressure drop through complex geometries. These experiments were conducted at the CSU-SLRE facility which is a horizontally opposed, two-piston, single-acting engine with a split crankshaft driving mechanism. Flow through a rectangular duct, with no insert (obstruction), was studied first. Then four different inserts were examined: Abrupt, Manifold, Diverging Short and Diverging Long. The inserts were mounted in the center of the rectangular duct to represent different type of geometries that could be encountered in Stirling machines. The pressure and pressure drop of the oscillating flow was studied for: 1) different inserts, 2) different phase angle between the two pistons of the engine (zero, 90 lead, 180, and 90 lag), and 3) for different piston frequencies (5, 10, 15, and 20 Hz). It was found that the pressure drop of the oscillatory flow increases with increasing Reynolds number. The pressure drop was shown to be mainly due to the gas inertia for the case of oscillatory flow through a rectangular duct with no insert. On the other hand, for the cases with different inserts into the rectangular duct, the pressure drop has three sources: inertia, friction, and local losses. The friction pressure drop is only a small fraction of the total pressure drop. It was also shown that the dimensionless pressure drop decreases with increasing kinetic Reynolds number.

  1. An optimized microstructure to minimizing in-plane and through-plane pressure drops of fibrous materials: Counter-intuitive reduction of gas diffusion layer permeability with porosity

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza

    2018-05-01

    The present study experimentally investigates the realistic functionality of in-plane and through-plane pressure drops of layered fibrous media with porosity, fiber diameter, fiber spacing, fiber-fiber angles and fiber-flow angles. The study also reveals that pressure drop may increase with porosity and fiber diameter under specific circumstances. This counter-intuitive point narrows down the validity range of widely-used permeability-porosity-diameter models or correlations. It is found that, for fibrous materials, the most important parameter that impacts the in-plane pressure drop is not their porosities but the number of fibers extended in the flow direction. It is also concluded that in-plane pressure drop is highly dependent upon the flow direction (fiber-flow angles), especially at lower porosities. Contrary to in-plane pressure drop, through-plane pressure drop is a weak function of fiber-fiber angles but is strongly impacted by fiber spacing, especially at lower porosities. At a given porosity, low through-plane pressure drops occur if fiber spacing does not change practically from one layer to another. Through-plane pressure drop also, insignificantly, increases with the intersecting angles between fibers. An optimized microstructure of fibrous media resulting in minimal in-plane and through-plane pressure drops is also offered for the first time in this work.

  2. Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber

    PubMed Central

    Yu, Jianhui; Jin, Shaoshen; Wei, Qingsong; Zang, Zhigang; Lu, Huihui; He, Xiaoli; Luo, Yunhan; Tang, Jieyuan; Zhang, Jun; Chen, Zhe

    2015-01-01

    In this paper, we report our experimental study on directly coupling a micro/nano fiber (MNOF) ring with a side-polished fiber(SPF). As a result of the study, the behavior of an add-drop filter was observed. The demonstrated add-drop filter explored the wavelength dependence of light coupling between a MNOF ring and a SPF. The characteristics of the filter and its performance dependence on the MNOF ring diameter were investigated experimentally. The investigation resulted in an empirically obtained ring diameter that showed relatively good filter performance. Since light coupling between a (MNOF) and a conventional single mode fiber has remained a challenge in the photonic integration community, the present study may provide an alternative way to couple light between a MNOF device and a conventional single mode fiber based device or system. The hybridization approach that uses a SPF as a platform to integrate a MNOF device may enable the realization of other all-fiber optical hybrid devices. PMID:25578467

  3. Synthesis of highly integrated optical network based on microdisk-resonator add-drop filters in silicon-on-insulator technology

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, Andrzej; Dortu, Fabian; Giannone, Domenico; Bogaerts, Wim; Drouard, Emmanuel; Rojo-Romeo, Pedro; Gaffiot, Frederic

    2009-10-01

    We analyze a highly compact optical add-drop filter topology based on a pair of microdisk resonators and a bus waveguide intersection. The filter is further assessed on an integrated optical 4×4 network for optical on-chip communication. The proposed network structure, as compact as 50×50 μm, is fabricated in a CMOS-compatible process on a silicon-on-insulator (SOI) substrate. Finally, the experimental results demonstrate the proper operation of the fabricated devices.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Austin Douglas; Runnels, Joel T.; Moore, Murray E.

    A portable instrument has been developed to assess the functionality of filter sand o-rings on nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the Los Alamos Filter Test System. The US Department of Energy uses several thousand canisters for storing nuclear material in different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to escape, and to maintain an internal ambient pressure while containing radioactive contaminants. Diagnosing the condition of container filters and canistermore » integrity is important to ensure worker and public safety and for determining the handling requirements of legacy apparatus. This report describes the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that were developed at the Los Alamos National Laboratory to determine the “as found” condition of unopened storage canisters. The Instrument Operating Method provides instructions for future evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister interfaces were developed for pressure-port access and to apply a suction clamping force for the interface. These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased from NFT (Nuclear Filter Technology, Golden, CO). Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept) unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair) fouling of o-rings, (B) leakage through simulated cracks in o-rings, and (C) air leakage due to inadequately tightened canister lids. The Los Alamos POC instrument determined pertinent air flow and pressure quantities, and this knowledge was used to specify a customized Isaac® (Z axis, Salt Lake City, UT) leak test module. The final Los Alamos IPFT (incorporating the Isaac® leak test module) was used to repeat the tests in the Instrument Development Plan (with simulated filter clogging tests and canister leak pathway tests). The Los Alamos IPFT instrument is capable of determining filter clogging and leak rate conditions, without requiring removal of the container lid. The IPFT measures pressure decay rate from 1.7E-03 in WC/sec to 1.7E-01 in WC/sec. On the same unit scale, helium leak testing of canisters has a range from 5.7E-07 in WC/sec to 1.9E-03 in WC/sec. For a 5-quart storage canister, the IPFT measures equivalent leak flow rates from 0.03 to 3.0 cc/sec. The IPFT does not provide the same sensitivity as helium leak testing, but is able to gauge the assembled condition of as-found and in-situ canisters.« less

  5. A third-order silicon racetrack add-drop filter with a moderate feature size

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhou, Xin; Chen, Qian; Shao, Yue; Chen, Xiangning; Huang, Qingzhong; Jiang, Wei

    2018-01-01

    In this work, we design and fabricate a highly compact third-order racetrack add-drop filter consisting of silicon waveguides with modified widths on a silicon-on-insulator (SOI) wafer. Compared to the previous approach that requires an exceedingly narrow coupling gap less than 100nm, we propose a new approach that enlarges the minimum feature size of the whole device to be 300 nm to reduce the process requirement. The three-dimensional finite-difference time-domain (3D-FDTD) method is used for simulation. Experiment results show good agreement with simulation results in property. In the experiment, the filter shows a nearly box-like channel dropping response, which has a large flat 3-dB bandwidth ({3 nm), relatively large FSR ({13.3 nm) and out-of-band rejection larger than 14 dB at the drop port with a footprint of 0.0006 mm2 . The device is small and simple enough to have a wide range of applications in large scale on-chip photonic integration circuits.

  6. Advantageous new conic cannula for spine cement injection.

    PubMed

    González, Sergio Gómez; Vlad, María Daniela; López, José López; Aguado, Enrique Fernández

    2014-09-01

    Experimental study to characterize the influence of the cannula geometry on both, the pressure drop and the cement flow velocity established along the cannula. To investigate how the new experimental geometry of cannulas can affect the extravertebral injection pressure and the velocity profiles established along the cannula during the injection process. Vertebroplasty procedure is being used to treat vertebral compression fractures. Vertebra infiltration is favored by the use of suitable: (1) syringes or injector devices; (2) polymer or ceramic bone cements; and (3) cannulas. However, the clinical use of ceramic bone cement has been limited due to press-filtering problems. Thus, new approaches concerning the cannula geometry are needed to minimize the press-filtering of calcium phosphate-based bone cements and thereby broaden its possible applications. Straight, conic, and combined conic-straight new cannulas with different proximal and distal both length and diameter ratios were drawn with computer-assisted design software. The new geometries were theoretically analyzed by: (1) Hagen-Poisseuille law; and (2) computational fluid dynamics. Some experimental models were manufactured and tested for extrusion in order to confirm and further advance the theoretical results. The results confirm that the totally conic cannula model, having proximal to distal diameter ratio equal 2, requires the lowest injection pressure. Furthermore, its velocity profile showed no discontinuity at all along the cannula length, compared with other known combined proximal and distal straight cannulas, where discontinuity was produced at the proximal-distal transition zone. The conclusion is that the conic cannulas: (a) further reduced the extravertebral pressure during the injection process; (b) showed optimum fluid flow velocity profiles to minimize filter-pressing problems, especially when ceramic cements are used; and (c) can be easily manufactured. In this sense, the new conic cannulas should favor the use of calcium phosphate bone cements in the spine. N/A.

  7. Add/drop filters based on SiC technology for optical interconnects

    NASA Astrophysics Data System (ADS)

    Vieira, M.; Vieira, M. A.; Louro, P.; Fantoni, A.; Silva, V.

    2014-03-01

    In this paper we demonstrate an add/drop filter based on SiC technology. Tailoring of the channel bandwidth and wavelength is experimentally demonstrated. The concept is extended to implement a 1 by 4 wavelength division multiplexer with channel separation in the visible range. The device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure. Several monochromatic pulsed lights, separately or in a polychromatic mixture illuminated the device. Independent tuning of each channel is performed by steady state violet bias superimposed either from the front and back sides. Results show that, front background enhances the light-to-dark sensitivity of the long and medium wavelength channels and quench strongly the others. Back violet background has the opposite behaviour. This nonlinearity provides the possibility for selective removal or addition of wavelengths. An optoelectronic model is presented and explains the light filtering properties of the add/drop filter, under different optical bias conditions.

  8. Drop-port study of microresonator frequency combs: power transfer, spectra and time-domain characterization.

    PubMed

    Wang, Pei-Hsun; Xuan, Yi; Fan, Li; Varghese, Leo Tom; Wang, Jian; Liu, Yang; Xue, Xiaoxiao; Leaird, Daniel E; Qi, Minghao; Weiner, Andrew M

    2013-09-23

    We use a drop-port geometry to characterize frequency combs generated from silicon nitride on-chip microresonators in the normal group velocity regime. In sharp contrast with the traditional transmission geometry, we observe smooth output spectra with comparable powers in the pump and adjacent comb lines. The power transfer into the comb may be explained to a large extent by the coupling parameters characterizing the linear operation of the resonances studied. Furthermore, comparison of thru- and drop-port spectra shows that much of the ASE noise is filtered out by transmission to the drop-port. Autocorrelation measurements are performed on the drop-port output, without the need to filter out or suppress the strong pump line as is necessary in thru-port experiments. Passively mode-locked pulses with low background are observed in a normal dispersion microcavity.

  9. The simulation and improved design of tunable channel drop filter using hexagonal photonic crystal ring resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com

    2014-10-15

    In this paper, we have proposed a new design of tunable two dimensional (2D) photonic crystal (PhC) channel drop filter (CDF) using ring resonators. The increasing interest in photonic integrated circuits (PIC's) and the increasing use of all-optical fiber networks as backbones for global communication systems have been based in large part on the extremely wide optical transmission bandwidth provided by dielectric materials. Based on the analysis we present novel photonic crystal channel drop filters. Simulations demonstrate that these filters exhibit ideal transfer characteristics. Channel dropping filters (CDF's) that access one channel of a wavelength division multiplexed (WDM) signal whilemore » leaving other channels undisturbed are essential components of PIC's and optical communication systems. In this paper we have investigated such parameters which have an effect on resonant wavelength in this Channel Drop Filter, such as dielectric constant of inner, coupling, adjacent and whole rods of the structure. The dimensions of these structures are taken as 20a×19a and the area of the proposed structure is about 125.6μm{sup 2}; therefore this structure can be used in the future photonic integrated circuits. While using this design the dropping efficiency at the resonance of single ring are 100%. The spectrum of the power transmission is obtained with finite difference time domain (FDTD) method. FDTD method is the most famous method for PhC analysis. In this paper the dielectric rods have a dielectric constant of 10.65, so the refractive index is 3.26 and radius r=0.213a is located in air, where a is a lattice constant. In this we have used five scatter rods for obtaining more coupling efficiency; radius of scatter rods is set to 0.215a. The proposed structure is simulated with OptiFDTD.v.8.0 software, the different dielectric constant of rods equal to ε{sub r}−0.4, ε{sub r} and ε{sub r}+0.4 at wavelength of 1570 nm.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Keyu; Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Shenzhen 518067; College of Electronic Science and Technology, Shenzhen University, Shenzhen 518067

    We present a versatile add-drop integrated photonic filter (ADF) consisting of nonreciprocal waveguides in which the propagation of light is restricted in one predetermined direction. With the bus and add/drop waveguides symmetrically coupled through a cavity, the four-port device allows each individual port to add and/or drop a signal of the same frequency. The scheme is general and we demonstrate the nonreciprocal ADF with magneto-optical photonic crystals. The filter is immune to waveguide defects, allowing straightforward implementation of multi-channel ADFs by cascading the four-port designs. The results should find applications in wavelength-division multiplexing and related integrated photonic techniques.

  11. 40 CFR Table 5 to Subpart Jjjjj of... - Continuous Compliance With Emission Limits and Operating Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... kilns equipped with WS i. Collecting the scrubber pressure drop data according to § 63.8450(a); reducing the scrubber pressure drop data to 3-hour block averages according to § 63.8450(a); maintaining the average scrubber pressure drop for each 3-hour block period at or above the average pressure drop...

  12. Sodium purification apparatus and method

    DOEpatents

    Gould, M.I.

    1980-03-04

    An apparatus for and method of collecting and storing oxide impurities contained in high-temperature liquid alkali metal are disclosed. A method and apparatus are provided for nucleating and precipitating oxide impurities by cooling, wherein the nucleation and precipitation are enhanced by causing a substantial increase in pressure drop and corresponding change in the velocity head of the alkali metal. Thereafter the liquid alkali metal is introduced into a quiescent zone wherein the liquid velocity is maintained below a specific maximum whereby it is possible to obtain high oxide removal efficiencies without the necessity of a mesh or filter. 1 fig.

  13. Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler

    NASA Astrophysics Data System (ADS)

    Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen

    2018-01-01

    Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.

  14. COMPARISON OF PRESSURE DROP PRODUCED BY SPIRAL WRAPS, COOKIE CUTTERS AND OTHER ROD BUNDLE SPACERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyes, R.C.

    The problem of predicting pressure drop due to various fuel bundle spacers is considered in some detail. Three sets of experimental data are reviewed and presented in reduced form. These data are compared to several semitheoretical approaches to pressure drop prediction and a best method is selected to make the required predictions. The comparison between predictions for the ASCR spiral wrap spacer and cookie cutter spacer shows that both types of spacers produce about the same pressure drop. Spacer pressure drop is shown to be strongly dependent on spacer frontal area and pitch. (auth)

  15. Rapid and selective removal of preservative from ophthalmic formulations during eyedrops instillation.

    PubMed

    Hsu, Kuan-Hui; Chauhan, Anuj

    2015-11-01

    About 70% of eyedrops contain benzalkonium chloride (BAK) as a preservative to prevent the growth of microorganisms. While preservatives are mandated to maintain sterility, many patients exhibit irritation and toxicity to such compounds. We propose to mitigate the ocular toxicity in the ocular formulations without compromising sterility by designing a device that can be incorporated into an eyedrops bottle to selectively remove the preservatives during the process of drop instillation. Here, we specifically focus on macroporous poly(2-hydroxyethyl methacrylate) (pHEMA) gel due to its excellent biocompatibility and high partition coefficient for BAK. In addition to specific selectivity for BAK, the device also requires high hydraulic permeability to allow drop dispensing without excessive pressure drop. The pHEMA monolith can remove nearly 100% of contained BAK from a 25 ml, 0.012% BAK solution with negligible uptake of the hydrophilic drugs such as timolol and dorzolamide. The filter, however, had to be pre-equilibrated with hydrophobic drugs to reach a high separation of BAK without reducing the concentration of the active drug. The average hydraulic permeability of the filter was 0.025 Darcy, which is about 5-fold lower than the ideal value. Incorporation of a pHEMA macroporous gel into an eyedrops bottle can virtually eliminate the exposure of the eyes to the preservatives without compromising the sterility. Our novel design can eliminate the preservative induced toxicity from eyedrops thereby impacting hundreds of millions of patients with chronic ophthalmic diseases such as glaucoma and dry eyes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Experimental flow studies in glaucoma drainage device development.

    PubMed

    2001-10-01

    (I) To examine whether small holes produced by 248 nm excimer laser ablation in a polymer substrate could consistently produce a pressure drop in the desired target range (5-15 mm Hg) at physiological aqueous flow rates for use as an internal flow restrictor in a glaucoma drainage device, and (ii) to investigate whether external leakage could be reduced in comparison with conventional tube and plate glaucoma drainage devices by redesigning the exterior cross sectional shape of the portion contained within the sclerocorneal tunnel. Single holes with target diameters of 10 microm, 15 microm, 20 microm, and 25 microm were drilled using a 248 nm excimer laser in sample discs (n=6 at each diameter) punched from a 75 microm thick polyimide sheet. Sample discs were tested in a flow rig designed to measure the pressure drop across the discs. Using filtered, degassed water at a flow rate of 1.4 microl/min repeated flow measurements were taken (n=6) for each disc. After flow testing, all discs were imaged using a scanning electron microscope and the dimensions of each hole were derived using image analysis software. In the external leakage study, corneoscleral buttons (n=13) were prepared from cadaver pig eyes and mounted on an artificial anterior chamber infused with Tyrode solution. After the pressure had stabilised, standard occluded silicone tube implants were inserted through 23 gauge needle stab incisions at the limbus. These were compared against prototype PMMA implants with a novel shape profile inserted through 1.15 mm width microvitreoretinal (MVR) stab incisions at the limbus. The infusion rate was maintained and a second pressure measurement was taken when the pressure had stabilised. The difference between the first and second pressure measurement was then compared, as an index of external leakage. Ablated tubes were found to have a near perfect circular outline on both the entry and exit side. The observed pressure drops across the ablated sample discs at each target diameter were as follows: 10 microm, mean 25.66 (SD 4.9) mm Hg; 15 microm, 6.7 (1.15); 20 microm, 1.66 (1.07); and 25 microm, <0.1 mm Hg. A strong correlation was observed between observed pressure drops and those predicted by Poiseuille's formula (R(2) =0.996). Target ablations of 15 microm diameter produced tubes that consistently achieved a pressure drop within the desired range (5-15 mm Hg). In the external leakage study, preinsertion pressures (mm Hg; mean (SD)) were 19.00 (4.3) (conventional method) and 20.00 (3.9) (new technique with PMMA prototypes). Post-insertion pressures were significantly reduced (10.40 (7.7); p<0.01) for the conventional technique and were essentially unchanged for the new technique (18.80 (4.9); p>0.1). It was shown that it is possible, in principle, to control the dimensions of a manufactured tubular lumen in a glaucoma drainage device accurately enough to provide consistent protection from hypotony in the early period after glaucoma filtration surgery. By redesigning the external profile of glaucoma drainage device and incision technique, it was also shown that it is possible to eliminate uncontrolled external leakage.

  17. Tailoring Mechanically Robust Poly(m-phenylene isophthalamide) Nanofiber/nets for Ultrathin High-Efficiency Air Filter

    PubMed Central

    Zhang, Shichao; Liu, Hui; Yin, Xia; Li, Zhaoling; Yu, Jianyong; Ding, Bin

    2017-01-01

    Effective promotion of air filtration applications proposed for fibers requires their real nanoscale diameter, optimized pore structure, and high service strength; however, creating such filter medium has proved to be a tremendous challenge. This study first establishes a strategy to design and fabricate novel poly(m-phenylene isophthalamide) nanofiber/nets (PMIA NF/N) air filter via electrospinning/netting. Our strategy results in generation of a bimodal structure including a scaffold of nanofibers and abundant two-dimensional ultrathin (~20 nm) nanonets to synchronously construct PMIA filters by combining solution optimization, humidity regulation, and additive inspiration. Benefiting from the structural features including the true nanoscale diameter, small pore size, high porosity, and nets bonding contributed by the widely distributed nanonets, our PMIA NF/N filter exhibits the integrated properties of superlight weight (0.365 g m−2), ultrathin thickness (~0.5 μm), and high tensile strength (72.8 MPa) for effective air filtration, achieving the ultra-low penetration air filter level of 99.999% and low pressure drop of 92 Pa for 300–500 nm particles by sieving mechanism. The successful synthesis of PMIA NF/N would not only provide a promising medium for particle filtration, but also develop a versatile platform for exploring the application of nanonets in structural enhancement, separation and purification. PMID:28074880

  18. Tailoring Mechanically Robust Poly(m-phenylene isophthalamide) Nanofiber/nets for Ultrathin High-Efficiency Air Filter

    NASA Astrophysics Data System (ADS)

    Zhang, Shichao; Liu, Hui; Yin, Xia; Li, Zhaoling; Yu, Jianyong; Ding, Bin

    2017-01-01

    Effective promotion of air filtration applications proposed for fibers requires their real nanoscale diameter, optimized pore structure, and high service strength; however, creating such filter medium has proved to be a tremendous challenge. This study first establishes a strategy to design and fabricate novel poly(m-phenylene isophthalamide) nanofiber/nets (PMIA NF/N) air filter via electrospinning/netting. Our strategy results in generation of a bimodal structure including a scaffold of nanofibers and abundant two-dimensional ultrathin (~20 nm) nanonets to synchronously construct PMIA filters by combining solution optimization, humidity regulation, and additive inspiration. Benefiting from the structural features including the true nanoscale diameter, small pore size, high porosity, and nets bonding contributed by the widely distributed nanonets, our PMIA NF/N filter exhibits the integrated properties of superlight weight (0.365 g m-2), ultrathin thickness (~0.5 μm), and high tensile strength (72.8 MPa) for effective air filtration, achieving the ultra-low penetration air filter level of 99.999% and low pressure drop of 92 Pa for 300-500 nm particles by sieving mechanism. The successful synthesis of PMIA NF/N would not only provide a promising medium for particle filtration, but also develop a versatile platform for exploring the application of nanonets in structural enhancement, separation and purification.

  19. Benefit-cost analysis of commercially available activated carbon filters for indoor ozone removal in single-family homes.

    PubMed

    Aldred, J R; Darling, E; Morrison, G; Siegel, J; Corsi, R L

    2016-06-01

    This study involved the development of a model for evaluating the potential costs and benefits of ozone control by activated carbon filtration in single-family homes. The modeling effort included the prediction of indoor ozone with and without activated carbon filtration in the HVAC system. As one application, the model was used to predict benefit-to-cost ratios for single-family homes in 12 American cities in five different climate zones. Health benefits were evaluated using disability-adjusted life-years and included city-specific age demographics for each simulation. Costs of commercially available activated carbon filters included capital cost differences when compared to conventional HVAC filters of similar particle removal efficiency, energy penalties due to additional pressure drop, and regional utility rates. The average indoor ozone removal effectiveness ranged from 4 to 20% across the 12 target cities and was largely limited by HVAC system operation time. For the parameters selected in this study, the mean predicted benefit-to-cost ratios for 1-inch filters were >1.0 in 10 of the 12 cities. The benefits of residential activated carbon filters were greatest in cities with high seasonal ozone and HVAC usage, suggesting the importance of targeting such conditions for activated carbon filter applications. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractivemore » indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.« less

  1. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  2. Research and Development for Off-Road Fuel Cell Applications U.S. Department of Energy Grant DE-FG36-04GO14303 - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, Michael; Erickson, Paul; Lawrence, Richard

    Off-road concerns are related to the effects of shock and vibration and air quality on fuel cell power requirements. Mechanical stresses on differing material makeup and mass distribution within the system may render some components susceptible to impulse trauma while others may show adverse effects from harmonic disturbances or broad band mechanical agitation. One of the recognized challenges in fuel cell systems air purification is in providing a highly efficient particulate and chemical filter with minimal pressure drop. PEM integrators do not want additional parasitic loads added to the system as compensation for a highly efficient yet highly restrictive filter.more » Additionally, there is challenge in integrating multiple functions into a single air intake module tasked with effectively filtering high dust loads, diesel soot, pesticides, ammonias, and other anticipated off-road contaminants. This project has investigated both off-road associated issues cumulating in the prototype build and testing of two light duty off-road vehicles with integrated fuel cell power plant systems.« less

  3. Estimating the irreversible pressure drop across a stenosis by quantifying turbulence production using 4D Flow MRI

    PubMed Central

    Ha, Hojin; Lantz, Jonas; Ziegler, Magnus; Casas, Belen; Karlsson, Matts; Dyverfeldt, Petter; Ebbers, Tino

    2017-01-01

    The pressure drop across a stenotic vessel is an important parameter in medicine, providing a commonly used and intuitive metric for evaluating the severity of the stenosis. However, non-invasive estimation of the pressure drop under pathological conditions has remained difficult. This study demonstrates a novel method to quantify the irreversible pressure drop across a stenosis using 4D Flow MRI by calculating the total turbulence production of the flow. Simulation MRI acquisitions showed that the energy lost to turbulence production can be accurately quantified with 4D Flow MRI within a range of practical spatial resolutions (1–3 mm; regression slope = 0.91, R2 = 0.96). The quantification of the turbulence production was not substantially influenced by the signal-to-noise ratio (SNR), resulting in less than 2% mean bias at SNR > 10. Pressure drop estimation based on turbulence production robustly predicted the irreversible pressure drop, regardless of the stenosis severity and post-stenosis dilatation (regression slope = 0.956, R2 = 0.96). In vitro validation of the technique in a 75% stenosis channel confirmed that pressure drop prediction based on the turbulence production agreed with the measured pressure drop (regression slope = 1.15, R2 = 0.999, Bland-Altman agreement = 0.75 ± 3.93 mmHg). PMID:28425452

  4. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  5. Fluidization quality analyzer for fluidized beds

    DOEpatents

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  6. [Culture of pancreatic progenitor cells in hanging drop and on floating filter].

    PubMed

    Ma, Feng-xia; Chen, Fang; Chi, Ying; Yang, Shao-guang; Lu, Shi-hong; Han, Zhong-chao

    2013-06-01

    To construct a method to culture pancreatic progenitor cells in hanging drop and on floating filter,and to examine if pancreatic progenitor cells can differentiate into mature endocrine cells with this method. Murine embryos at day 12.5 were isolated and digested into single cells,which were then cultured in hanging drop for 24h and formed spheres.Spheres were cultured on the filter for 6 days,which floated in the dish containing medium.During culture,the expressions of pancreas duodenum homeobox-1(PDX-1)and neurogenin3(Ngn3)were determined.The expressions of endocrine and exocrine markers,insulin,glucagon,and carboxypeptidase(CPA)were determined on day 7 by immunohistochemistry.Insulin secretion of spheres stimulated by glucose was detected by ELISA.The changes of pancreatic marker expressions during culture were monitored by real-time polymerase chain reaction(PCR). One day after the culture,there were still a large amount of PDX-1 positive cells in pancreatic spheres,and these cells proliferated.On day 3,high expression of Ngn3 was detected,and the Ngn3-positive cells did not proliferate.On day 7,The expressions of endocrine and exocrine markers in the differentiated pancreatic progenitor cells were detected,which were consistent with that in vivo.Insulin was secreted by spheres upon the stimulation of glucose. In hanging drop and on floating filter,pancreatic progenitor cells can differentiate into mature endocrine cells.

  7. Technical Performance and Clinical Effectiveness of Drop Type With Adjustable Concentrator-Cell Free and Concentrated Ascites Reinfusion Therapy.

    PubMed

    Yamada, Yosuke; Harada, Makoto; Yamaguchi, Akinori; Kobayashi, Yasuko; Chino, Takashi; Minowa, Takashi; Kosuge, Takashi; Tsukada, Wataru; Hashimoto, Koji; Kamijo, Yuji

    2017-12-01

    Cell-free and concentrated ascites reinfusion therapy (CART) is a very useful treatment method for refractory ascites but is difficult for many hospitals to employ due to its need for specialized equipment. We have therefore developed drop-type with adjustable concentrator CART (DC-CART) that uses a drop-type filtration mechanism and requires only a simple pump and pressure monitor for its concentration process. Easy adjustment of ascites concentration is possible through a recirculation loop, and filter membrane washing is aided by DC-CART's external pressure-type filtration to enable the processing of any quality or quantity of ascites. Moreover, the absence of a roller pump before filtration avoids inflammatory substance release from compressed cells. A total of 268 sessions of DC-CART using ascites from 98 patients were performed with good clinical results at our hospitals between January 2012 and June 2016. This report presents the detailed methods of DC-CART and summarizes its clinical effectiveness using patient ascites and blood data obtained from 59 sessions between March 2015 and February 2016. This novel technique successfully processed refractory ascites in numerous diseases with no serious adverse events. DC-CART could concentrate large amounts of ascites (from median weight: 4900 g [max: 20 200 g] to median weight: 695 g; median concentration ratio: 7.4), and a high amount of protein (median weight: 73 g [max: 294 g]) could be reinfused. Serum albumin levels were significantly increased (P = 0.010) and kidney function and systemic hemodynamics were well maintained in treated subjects. Additional concentration of ascites and adjustment of ascites volume were easily performed by recirculation (from median weight: 615 g to median weight: 360 g; median concentration ratio: 1.5). Time was needed during DC-CART for filter membrane cleaning, especially for viscous ascites. Overall, DC-CART represents a safe and useful treatment method for various forms of refractory ascites that can be performed at a wide range of health care institutions. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Effect of flow rate and temperature on transmembrane blood pressure drop in an extracorporeal artificial lung.

    PubMed

    Park, M; Costa, E L V; Maciel, A T; Barbosa, E V S; Hirota, A S; Schettino, G de P; Azevedo, L C P

    2014-11-01

    Transmembrane pressure drop reflects the resistance of an artificial lung system to blood transit. Decreased resistance (low transmembrane pressure drop) enhances blood flow through the oxygenator, thereby, enhancing gas exchange efficiency. This study is part of a previous one where we observed the behaviour and the modulation of blood pressure drop during the passage of blood through artificial lung membranes. Before and after the induction of multi-organ dysfunction, the animals were instrumented and analysed for venous-venous extracorporeal membrane oxygenation, using a pre-defined sequence of blood flows. Blood flow and revolutions per minute (RPM) of the centrifugal pump varied in a linear fashion. At a blood flow of 5.5 L/min, pre- and post-pump blood pressures reached -120 and 450 mmHg, respectively. Transmembrane pressures showed a significant spread, particularly at blood flows above 2 L/min; over the entire range of blood flow rates, there was a positive association of pressure drop with blood flow (0.005 mmHg/mL/minute of blood flow) and a negative association of pressure drop with temperature (-4.828 mmHg/(°Celsius). These associations were similar when blood flows of below and above 2000 mL/minute were examined. During its passage through the extracorporeal system, blood is exposed to pressure variations from -120 to 450 mmHg. At high blood flows (above 2 L/min), the drop in transmembrane pressure becomes unpredictable and highly variable. Over the entire range of blood flows investigated (0-5500 mL/min), the drop in transmembrane pressure was positively associated with blood flow and negatively associated with body temperature. © The Author(s) 2014.

  9. Gas cleaning system and method

    DOEpatents

    Newby, Richard Allen

    2006-06-06

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  10. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-03

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Performance of a sand filter in removal of micro-algae from seawater in aquaculture production systems.

    PubMed

    Sabiri, N E; Castaing, J B; Massé, A; Jaouen, P

    2012-01-01

    In this study, a sand filter was used to remove micro-algae from seawater feeding aquaculture ponds. A lab-scale sand filter was used to filter 30,000 cells/mL of Heterocapsa triquetra suspension, a non-toxic micro-alga that has morphological and dimensional (15-20 microm) similarities with Alexandrium sp., one of the smallest toxic micro-algae in seawater. Removal efficiency and capture mechanisms for a fixed superficial velocity (3.5 m/h) were evaluated in relation to size distribution and mean diameter of the sand. Various sands (average diameter ranging between 200 microm and 600 microm) were characterized and used as porous media. The structural parameters of the fixed beds were evaluated for each medium using experimental measurements of pressure drop as a function of superficial velocity over a range of Reynolds numbers covering Darcy's regime and the inertial regime. For a filtration cycle of six hours, the best efficiency (E = 90%) was obtained with the following sand characteristics: sieved sand with a range of grain diameter of 100 and 300 microm and a mean grain diameter equal to 256 microm. Results obtained show the influence of the size distribution of sand on the quality of retention of the micro-algae studied.

  12. Numerical studies on the performance of an aerosol respirator with faceseal leakage

    NASA Astrophysics Data System (ADS)

    Zaripov, S. K.; Mukhametzanov, I. T.; Grinshpun, S. A.

    2016-11-01

    We studied the efficiency of a facepiece filtering respirator (FFR) in presence of a measurable faceseal leakage using the previously developed model of a spherical sampler with porous layer. In our earlier study, the model was validated for a specific filter permeability value. In this follow-up study, we investigated the effect of permeability on the overall respirator performance accounting for the faceseal leakage. The Total Inward Leakage (TIL) was calculated as a function of the leakage-to-filter surface ratio and the particle diameter. A good correlation was found between the theoretical and experimental TIL values. The TIL value was shown to increase and the effect of particle size on TIL to decrease as the leakage-to- filter surface ratio grows. The model confirmed that within the most penetrating particle size range (∼50 nm) and at relatively low leakage-to-filter surface ratios, an FFR performs better (TIL is lower) when the filter has a lower permeability which should be anticipated as long as the flow through the filter represents the dominant particle penetration pathway. An increase in leak size causes the TIL to rise; furthermore, under certain leakage-to-filter surface ratios, TIL for ultrafine particles becomes essentially independent on the filter properties due to a greater contribution of the aerosol flow through the faceseal leakage. In contrast to the ultrafine fraction, the larger particles (e.g., 800 nm) entering a typical high- or medium-quality respirator filter are almost fully collected by the filter medium regardless of its permeability; at the same time, the fraction penetrated through the leakage appears to be permeability- dependent: higher permeability generally results in a lower pressure drop through the filter which increases the air flow through the filter at the expense of the leakage flow. The latter reduces the leakage effect thus improving the overall respiratory protection level. The findings of this study provide valuable information for developing new respirators with a predictable actual workplace protection factor.

  13. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    PubMed

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles.

  14. Convective heat transfer and pressure drop of aqua based TiO2 nanofluids at different diameters of nanoparticles: Data analysis and modeling with artificial neural network

    NASA Astrophysics Data System (ADS)

    Hemmat Esfe, Mohammad; Nadooshan, Afshin Ahmadi; Arshi, Ali; Alirezaie, Ali

    2018-03-01

    In this study, experimental data related to the Nusselt number and pressure drop of aqueous nanofluids of Titania is modeled and estimated by using ANN with 2 hidden layers and 8 neurons in each layer. Also in this study the effect of various effective variables in the Nusselt number and pressure drop is surveyed. This study indicated that the neural network modeling has been able to model experimental data with great accuracy. The modeling regression coefficient for the data of Nusselt number and relative pressure drop is 99.94% and 99.97% respectively. Besides, it represented that the increment of the Reynolds number and concentration made the increment of Nusselt number and pressure drop of aqueous nanofluid.

  15. Influence of fuel temperature on atomization performance of pressure-swirl atomizers

    NASA Astrophysics Data System (ADS)

    Wang, X. F.; Lefebvre, A. H.

    The influence of fuel temperature on mean drop size and drop-size distribution is examined for aviation gasoline and diesel oil, using three pressure-swirl simplex nozzles. Spray characteristics are measured over wide ranges of fuel injection pressure and ambient air pressure using a Malvern spray analyzer. Fuel temperatures are varied from -20 C to +50 C. Over this range of temperature, the overall effect of an increase in fuel temperature is to reduce the mean drop size and broaden the distribution of drop sizes in the spray. Generally, it is found that the influence of fuel temperature on mean drop size is far more pronounced for diesel oil than for gasoline. For both fuels the beneficial effect of higher fuel temperatures on atomization quality is sensibly independent of ambient air pressure.

  16. Development of guidelines for optimum baghouse fluid-dynamic-system design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eskinazi, D.; Gilbert, G.B.

    1982-06-01

    In recent years, the utility industry has turned to fabric filters as an alternative technology to electrostatic precipitators for particulate emission control from pulverized coal-fired power plants. One aspect of baghouse technology which appears to be of major importance in minimizing the size, cost, and operating pressure drop is the development of ductwork and compartment designs which achieve uniform gas and dust flow distribution to individual compartments and bags within a compartment. The objective of this project was to perform an experimental modeling program to develop design guidelines for optimizing the fluid mechanic performance of baghouses. Tasks included formulation ofmore » the appropriate modeling techniques for analysis of the flow of dust-laden gas through the collector system and extensive experimental analysis of fabric filter duct system design. A matrix of geometric configurations and operating conditions was experimentally investigated to establish the characteristics of an optimum system, to identify the level of fluid mechanic sophistication in current designs, and to experimentally develop new ideas and improved designs. Experimental results indicate that the design of the inlet and outlet manifolds, hopper entrance, hopper region below the tubesheet, and the compartment outlet have not been given sufficient attention. Unsteady flow patterns, poor velocity profiles, recirculation zones, and excessive pressure losses may be associated with these regions. It is evident from the results presented here that the fluid mechanic design of fabric filter systems can be improved significantly.« less

  17. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    NASA Technical Reports Server (NTRS)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  18. Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine

    DOE PAGES

    Choi, Seungmok; Seong, Heeje

    2016-09-30

    Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less

  19. Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seungmok; Seong, Heeje

    Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less

  20. Role of regression analysis and variation of rheological data in calculation of pressure drop for sludge pipelines.

    PubMed

    Farno, E; Coventry, K; Slatter, P; Eshtiaghi, N

    2018-06-15

    Sludge pumps in wastewater treatment plants are often oversized due to uncertainty in calculation of pressure drop. This issue costs millions of dollars for industry to purchase and operate the oversized pumps. Besides costs, higher electricity consumption is associated with extra CO 2 emission which creates huge environmental impacts. Calculation of pressure drop via current pipe flow theory requires model estimation of flow curve data which depends on regression analysis and also varies with natural variation of rheological data. This study investigates impact of variation of rheological data and regression analysis on variation of pressure drop calculated via current pipe flow theories. Results compare the variation of calculated pressure drop between different models and regression methods and suggest on the suitability of each method. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Cognet, Vincent; Shidhore, Tanmay C.; Stone, Howard A.

    2018-04-01

    Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate--pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop [{Gervais, T., El-Ali, J., G\\"unther, A. \\& Jensen, K.\\ F.}\\ 2006 Flow-induced deformation of shallow microfluidic channels.\\ \\textit{Lab Chip} \\textbf{6}, 500--507]. Gervais et. al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate--pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel's height to its width and of the channel's height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et. al.'s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate--pressure drop relation compares favorably with experimental measurements.

  2. Numerical investigation of adhesion effects on solid particles filtration efficiency

    NASA Astrophysics Data System (ADS)

    Shaffee, Amira; Luckham, Paul; Matar, Omar K.

    2017-11-01

    Our work investigate the effectiveness of particle filtration process, in particular using a fully-coupled Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) approach involving poly-dispersed, adhesive solid particles. We found that an increase in particle adhesion reduces solid production through the opening of a wire-wrap type filter. Over time, as particle agglomerates continuously deposit on top of the filter, layer upon layer of particles is built on top of the filter, forming a particle pack. It is observed that with increasing particle adhesion, the pack height build up also increases and hence decreases the average particle volume fraction of the pack. This trend suggests higher porosity and looser packing of solid particles within the pack with increased adhesion. Furthermore, we found that the pressure drop for adhesive case is lower compared to non-adhesive case. Our results suggest agglomerating solid particles has beneficial effects on particle filtration. One important application of these findings is towards designing and optimizing sand control process for a hydrocarbon well with excessive sand production which is major challenge in oil and gas industry. Funding from PETRONAS and RAEng UK for Research Chair (OKM) gratefully acknowledged.

  3. Hierarchical Metal-Organic Framework-Assembled Membrane Filter for Efficient Removal of Particulate Matter.

    PubMed

    Koo, Won-Tae; Jang, Ji-Soo; Qiao, Shaopeng; Hwang, Wontae; Jha, Gaurav; Penner, Reginald M; Kim, Il-Doo

    2018-06-13

    Here, we propose heterogeneous nucleation-assisted hierarchical growth of metal-organic frameworks (MOFs) for efficient particulate matter (PM) removal. The assembly of two-dimensional (2D) Zn-based zeolite imidazole frameworks (2D-ZIF-L) in deionized water over a period of time produced hierarchical ZIF-L (H-ZIF-L) on hydrophilic substrates. During the assembly, the second nucleation and growth of ZIF-L occurred on the surface of the first ZIF-L, leading to the formation of flowerlike H-ZIF-L on the substrate. The flowerlike H-ZIF-L was easily synthesized on various substrates, namely, glass, polyurethane three-dimensional foam, nylon microfibers, and nonwoven fabrics. We demonstrated H-ZIF-L-assembled polypropylene microfibers as a washable membrane filter with highly efficient PM removal property (92.5 ± 0.8% for PM 2.5 and 99.5 ± 0.2% for PM 10 ), low pressure drop (10.5 Pa at 25 L min -1 ), long-term stability, and superior recyclability. These outstanding particle filtering properties are mainly attributed to the unique structure of the 2D-shaped H-ZIF-L, which is tightly anchored on individual fibers comprising the membrane.

  4. Pressure driven flow of superfluid 4He through a nanopipe

    NASA Astrophysics Data System (ADS)

    Botimer, Jeffrey; Taborek, Peter

    2016-09-01

    Pressure driven flow of superfluid helium through single high-aspect-ratio glass nanopipes into a vacuum has been studied for a wide range of pressure drop (0-30 bars), reservoir temperature (0.8-2.5 K), pipe lengths (1-30 mm), and pipe radii (131 and 230 nm). As a function of pressure drop we observe two distinct flow regimes above and below a critical pressure drop Pc. For P

  5. A systematic search of sudden pressure drops on Gale crater during two Martian years derived from MSL/REMS data

    NASA Astrophysics Data System (ADS)

    Ordonez-Etxeberria, Iñaki; Hueso, Ricardo; Sánchez-Lavega, Agustín

    2018-01-01

    The Mars Science Laboratory (MSL) rover carries a suite of meteorological detectors that constitute the Rover Environmental Monitoring Station (REMS) instrument. REMS investigates the meteorological conditions at Gale crater by obtaining high-frequency data of pressure, air and ground temperature, relative humidity, UV flux at the surface and wind intensity and direction with some limitations in the wind data. We have run a search of atmospheric pressure drops of short duration (< 25 s) and we present a statistical study of the frequency of these events in the REMS pressure data during its first 1417 sols (more than two Martian years). The identified daytime pressure drops could be caused by the close passages of warm vortices and dust devils. Previous systematic searches of warm vortices from REMS pressure data (Kahanpää et al., 2016; Steakley and Murphy, 2016) cover about one Martian year. We show that sudden pressure drops are twice more abundant in the second Martian year [sols 671-1339] than in the first one analyzed in previous works. The higher number of detections could be linked to a combination of different topography, higher altitudes (120 m above the landing site) and true inter-annual meteorological variability. We found 1129 events with a pressure drop larger than 0.5 Pa. Of these, 635 occurred during the local daytime (∼56%) and 494 were nocturnal. The most intense pressure drop (4.2 Pa) occurred at daytime on sol 1417 (areocentric solar longitude Ls = 195°) and was accompanied by a simultaneous decrease in the UV signal of 7.1%, pointing to a true dust devil. We also discuss similar but less intense simultaneous pressure and UV radiation drops that constitute 0.7% of all daytime events. Most of the intense daytime pressure drops with variations larger than 1.0 Pa occur when the difference between air and ground temperature is larger than 15 K. Statistically, the frequency of daytime pressure drops peaks close to noon (12:00-13:00 Local True Solar Time or LTST) with more events in spring and summer (Ls from 180° to 360°). The nocturnal sudden pressure drops concentrate in the 20:00-23:00 LTST time interval and they only occur in spring and summer. We interpret these nocturnal events as a consequence of local mechanically forced turbulence. This interpretation is consistent with published results from simulations with the MRAMS model (Rafkin et al., 2016) that predict a competition between local orographic circulation and global Hadley cell circulation at Gale crater at summer night-time that can enhance forced turbulence at the surface. Bursts of pressure drops appear on particular sols, especially at night-time. Most of the vortex bursts occurred when MSL was in the region called Pahrump Hills characterized by a complex terrain. A comparison of the daytime pressure drops from REMS data with published results from the Pathfinder and Phoenix missions shows that the frequency of daytime events at Gale crater in spring and summer is similar to the one previously found at other locations. Finally, we present possible correlations between MSL activity and some daytime pressure drops. If such an instrumental effect is present in the REMS data its impact in this analysis is small and would only affect about 7% of our detections.

  6. 46 CFR 39.30-1 - Operational requirements-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... oxygen content of each area of that tank formed by each partial bulkhead must be measured at a point one... the requirements of this part. (b) The pressure drop through the vapor collection system from the most... rate versus the pressure drop. (c) If a vessel carries vapor hoses, the pressure drop through the hoses...

  7. Herbal Extract Incorporated Nanofiber Fabricated by an Electrospinning Technique and its Application to Antimicrobial Air Filtration.

    PubMed

    Choi, Jeongan; Yang, Byeong Joon; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-18

    Recently, with the increased attention to indoor air quality, antimicrobial air filtration techniques have been studied widely to inactivate hazardous airborne microorganisms effectively. In this study, we demonstrate herbal extract incorporated (HEI) nanofibers synthesized by an electrospinning technique and their application to antimicrobial air filtration. As an antimicrobial herbal material, an ethanolic extract of Sophora flavescens, which exhibits great antibacterial activity against pathogens, was mixed with the polymer solution for the electrospinning process. We measured various characteristics of the synthesized HEI nanofibers, such as fiber morphology, fiber size distribution, and thermal stability. For application of the electrospun HEI nanofibers, we made highly effective air filters with 99.99% filtration efficiency and 99.98% antimicrobial activity against Staphylococcus epidermidis. The pressure drop across the HEI nanofiber air filter was 4.75 mmH2O at a face air velocity of 1.79 cm/s. These results will facilitate the implementation of electrospun HEI nanofiber techniques to control air quality and protect against hazardous airborne microorganisms.

  8. A novel generation of 3D SAR-based passive micromixer: efficient mixing and low pressure drop at a low Reynolds number

    NASA Astrophysics Data System (ADS)

    Viktorov, Vladimir; Nimafar, Mohammad

    2013-05-01

    This study introduces a novel generation of 3D splitting and recombination (SAR) passive micromixer with microstructures placed on the top and bottom floors of microchannels called a ‘chain mixer’. Both experimental verification and numerical analysis of the flow structure of this type of passive micromixer have been performed to evaluate the mixing performance and pressure drop of the microchannel, respectively. We propose here two types of chain mixer—chain 1 and chain 2—and compare their mixing performance and pressure drop with other micromixers, T-, o- and tear-drop micromixers. Experimental tests carried out in the laminar flow regime with a low Reynolds number range, 0.083 ≤ Re ≤ 4.166, and image-based techniques are used to evaluate the mixing efficiency. Also, the computational fluid dynamics code, ANSYS FLUENT-13.0 has been used to analyze the flow and pressure drop in the microchannel. Experimental results show that the chain and tear-drop mixer's efficiency is very high because of the SAR process: specifically, an efficiency of up to 98% can be achieved at the tested Reynolds number. The results also show that chain mixers have a lower required pressure drop in comparison with a tear-drop micromixer.

  9. Sound field inside acoustically levitated spherical drop

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2007-05-01

    The sound field inside an acoustically levitated small spherical water drop (radius of 1mm) is studied under different incident sound pressures (amplitude p0=2735-5643Pa). The transmitted pressure ptr in the drop shows a plane standing wave, which varies mainly in the vertical direction, and distributes almost uniformly in the horizontal direction. The maximum of ptr is always located at the lowermost point of the levitated drop. Whereas the secondary maximum appears at the uppermost point if the incident pressure amplitude p0 is higher than an intermediate value (3044Pa), in which there exists a pressure nodal surface in the drop interior. The value of the maximum ptr lies in a narrow range of 2489-3173Pa, which has a lower limit of 2489Pa when p0=3044Pa. The secondary maximum of ptr is rather small and only remarkable at high incident pressures.

  10. Pressure drop in tubing in aircraft instrument installations

    NASA Technical Reports Server (NTRS)

    Wildhack, W A

    1937-01-01

    The theoretical basis of calculation of pressure drop in tubing is reviewed briefly. The effect of pressure drop in connecting tubing upon the operation and indication of aircraft instruments is discussed. Approximate equations are developed, and charts and tables based upon them are presented for use in designing installations of altimeters, air-speed indicators, rate-of-climb indicators, and air-driven gyroscopic instruments.

  11. Particle loading rates for HVAC filters, heat exchangers, and ducts.

    PubMed

    Waring, M S; Siegel, J A

    2008-06-01

    The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.

  12. Method and means for producing solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1976-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  13. Solid evacuated microspheres of hydrogen

    DOEpatents

    Turnbull, Robert J.; Foster, Christopher A.; Hendricks, Charles D.

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  14. Novel all-optical logic gate using an add/drop filter and intensity switch.

    PubMed

    Threepak, T; Mitatha, S; Yupapin, P P

    2011-12-01

    A novel design of all-optical logic device is proposed. An all-optical logic device system composes of an optical intensity switch and add/drop filter. The intensity switch is formed to switch signal by using the relationship between refraction angle and signal intensity. In operation, two input signals are coupled into one with some coupling loss and attenuation, in which the combination of add/drop with intensity switch produces the optical logic gate. The advantage is that the proposed device can operate the high speed logic function. Moreover, it uses low power consumption. Furthermore, by using the extremely small component, this design can be put into a single chip. Finally, we have successfully produced the all-optical logic gate that can generate the accurate AND and NOT operation results.

  15. Heat loss and drag of spherical drop tube samples

    NASA Technical Reports Server (NTRS)

    Wallace, D. B.

    1982-01-01

    Analysis techniques for three aspects of the performance of the NASA/MSFC 32 meter drop tube are considered. Heat loss through the support wire in a pendant drop sample, temperature history of a drop falling through the drop tube when the tube is filled with helium gas at various pressures, and drag and resulting g-levels experienced by a drop falling through the tube when the tube is filled with helium gas at various pressures are addressed. The developed methods apply to systems with sufficiently small Knudsen numbers for which continuum theory may be applied. Sample results are presented, using niobium drops, to indicate the magnitudes of the effects. Helium gas at one atmosphere pressure can approximately double the amount of possible undercooling but it results in an apparent gravity levels of up to 0.1 g.

  16. Automatic safety rod for reactors. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-03-23

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  17. Automatic safety rod for reactors

    DOEpatents

    Germer, John H.

    1988-01-01

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  18. Methodology to estimate the relative pressure field from noisy experimental velocity data

    NASA Astrophysics Data System (ADS)

    Bolin, C. D.; Raguin, L. G.

    2008-11-01

    The determination of intravascular pressure fields is important to the characterization of cardiovascular pathology. We present a two-stage method that solves the inverse problem of estimating the relative pressure field from noisy velocity fields measured by phase contrast magnetic resonance imaging (PC-MRI) on an irregular domain with limited spatial resolution, and includes a filter for the experimental noise. For the pressure calculation, the Poisson pressure equation is solved by embedding the irregular flow domain into a regular domain. To lessen the propagation of the noise inherent to the velocity measurements, three filters - a median filter and two physics-based filters - are evaluated using a 2-D Couette flow. The two physics-based filters outperform the median filter for the estimation of the relative pressure field for realistic signal-to-noise ratios (SNR = 5 to 30). The most accurate pressure field results from a filter that applies in a least-squares sense three constraints simultaneously: consistency between measured and filtered velocity fields, divergence-free and additional smoothness conditions. This filter leads to a 5-fold gain in accuracy for the estimated relative pressure field compared to without noise filtering, in conditions consistent with PC-MRI of the carotid artery: SNR = 5, 20 x 20 discretized flow domain (25 X 25 computational domain).

  19. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.

    PubMed

    Jung, Jae Hee; Hwang, Gi Byoung; Lee, Jung Eun; Bae, Gwi Nam

    2011-08-16

    Carbon nanotubes (CNTs) have been widely used in a variety of applications because of their unique structure and excellent mechanical and electrical properties. Additionally, silver (Ag) nanoparticles exhibit broad-spectrum biocidal activity toward many different bacteria, fungi, and viruses. In this study, we prepared Ag-coated CNT hybrid nanoparticles (Ag/CNTs) using aerosol nebulization and thermal evaporation/condensation processes and tested their usefulness for antimicrobial air filtration. Droplets were generated from a CNT suspension using a six-jet collison nebulizer, passed through a diffusion dryer to remove moisture, and entered a thermal tube furnace where silver nanoparticles were generated by thermal evaporation/condensation at ∼980 °C in a nitrogen atmosphere. The CNT and Ag nanoparticle aerosols mixed together and attached to each other, forming Ag/CNTs. For physicochemical characterization, the Ag/CNTs were introduced into a scanning mobility particle sizer (SMPS) for size distribution measurements and were sampled by the nanoparticle sampler for morphological and elemental analyses. For antimicrobial air filtration applications, the airborne Ag/CNT particles generated were deposited continuously onto an air filter medium. Physical characteristics (fiber morphology, pressure drop, and filtration efficiency) and biological characteristics (antimicrobial tests against Staphylococcus epidermidis and Escherichia coli bioaerosols) were evaluated. Real-time SMPS and transmission electron microscopy (TEM) data showed that Ag nanoparticles that were <20 nm in diameter were homogeneously dispersed and adhered strongly to the CNT surfaces. Because of the attachment of Ag nanoparticles onto the CNT surfaces, the total particle surface area concentration measured by a nanoparticle surface area monitor (NSAM) was lower than the summation of each Ag nanoparticle and CNT generated. When Ag/CNTs were deposited on the surface of an air filter medium, the antimicrobial activity against test bacterial bioaerosols was enhanced, compared with the deposition of CNTs or Ag nanoparticles alone, whereas the filter pressure drop and bioaerosol filtration efficiency were similar to those of CNT deposition only. At a residence time of 2 h, the relative microbial viabilities of gram-positive S. epidermidis were ∼32, 13, 5, and 0.9% on the control, CNT-, Ag nanoparticle-, and Ag/CNT-deposited filters, respectively, and those of gram-negative E. coli were 13, 2.1, 0.4, and 0.1% on the control, CNTs, Ag nanoparticles, and Ag/CNTs, respectively. These Ag/CNT hybrid nanoparticles may be useful for applications in biomedical devices and antibacterial control systems.

  20. Combining spray nozzle simulators with meshes: characterization of rainfall intensity and drop properties

    NASA Astrophysics Data System (ADS)

    Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.

    2013-04-01

    Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.

  1. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  2. Passively actuated valve

    DOEpatents

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  3. Preliminary Engineering Design Package for the Basin A Neck Groundwater Intercept and Treatment System Interim Response Action

    DTIC Science & Technology

    1989-02-01

    INDICATOR pPOST-FILTERED VITER RPUESIC POST-FILTRATION POLYMER SOLUTION MCUUM BREAKER FILTRATION POLYMER D*+RENTALkL PRESSURE SWITCH FEED PUMPS POLYMER...differential pressure switch signals the need for backwash of the operating filter. At this time, flow is S automatically switched to the standby filter...filter is undergoing backwash or on standby. High differential pressure across the filter bed, as sensed by a differential pressure switch , signals

  4. Investigation of powder injection moulded oblique fin heat sinks

    NASA Astrophysics Data System (ADS)

    Sai, Vadri Siva

    The present work attempts to study the fluid flow and heat transfer characteristics of PIM oblique finned microchannel heat sink both numerically and experimentally. Experimental results such as thermal resistance and pressure drop have been well validated with ANSYS FLUENT simulations. Hot spots are observed at the most downstream location of the channel is due to the effect of flow migration. Finally, a novel technique has been proposed to reduce the pressure drop on creating additional channels by removing some material at the middle portion of oblique fins. It is found that the creation of oblique cuts incurred a reduction in both pressure drop and Nuavg up to 31.36 % and 16.66 % respectively at a flow rate of 500 ml/min. Nevertheless, for all the flowrates considered in this analysis. % reduction in pressure drop is almost double as compared with % reduction in Nuavg. Therefore, this analysis is beneflcial in reducing the additional cost incurs due to pressure drop penalty.

  5. Experimental investigation into vortex structure and pressure drop across microcavities in 3D integrated electronics

    NASA Astrophysics Data System (ADS)

    Renfer, Adrian; Tiwari, Manish K.; Brunschwiler, Thomas; Michel, Bruno; Poulikakos, Dimos

    2011-09-01

    Hydrodynamics in microcavities with cylindrical micropin fin arrays simulating a single layer of a water-cooled electronic chip stack is investigated experimentally. Both inline and staggered pin arrangements are investigated using pressure drop and microparticle image velocimetry (μPIV) measurements. The pressure drop across the cavity shows a flow transition at pin diameter-based Reynolds numbers ( Re d ) ~200. Instantaneous μPIV, performed using a pH-controlled high seeding density of tracer microspheres, helps visualize vortex structure unreported till date in microscale geometries. The post-transition flow field shows vortex shedding and flow impingement onto the pins explaining the pressure drop increase. The flow fluctuations start at the chip outlet and shift upstream with increasing Re d . No fluctuations are observed for a cavity with pin height-to-diameter ratio h/ d = 1 up to Re d ~330; however, its pressure drop was higher than for a cavity with h/d = 2 due to pronounced influence of cavity walls.

  6. Heat transfer and pressure drop for air flow through enhanced passages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less

  7. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less

  8. Beyond Bernoulli

    PubMed Central

    Donati, Fabrizio; Myerson, Saul; Bissell, Malenka M.; Smith, Nicolas P.; Neubauer, Stefan; Monaghan, Mark J.; Nordsletten, David A.

    2017-01-01

    Background— Transvalvular peak pressure drops are routinely assessed noninvasively by echocardiography using the Bernoulli principle. However, the Bernoulli principle relies on several approximations that may not be appropriate, including that the majority of the pressure drop is because of the spatial acceleration of the blood flow, and the ejection jet is a single streamline (single peak velocity value). Methods and Results— We assessed the accuracy of the Bernoulli principle to estimate the peak pressure drop at the aortic valve using 3-dimensional cardiovascular magnetic resonance flow data in 32 subjects. Reference pressure drops were computed from the flow field, accounting for the principles of physics (ie, the Navier–Stokes equations). Analysis of the pressure components confirmed that the spatial acceleration of the blood jet through the valve is most significant (accounting for 99% of the total drop in stenotic subjects). However, the Bernoulli formulation demonstrated a consistent overestimation of the transvalvular pressure (average of 54%, range 5%–136%) resulting from the use of a single peak velocity value, which neglects the velocity distribution across the aortic valve plane. This assumption was a source of uncontrolled variability. Conclusions— The application of the Bernoulli formulation results in a clinically significant overestimation of peak pressure drops because of approximation of blood flow as a single streamline. A corrected formulation that accounts for the cross-sectional profile of the blood flow is proposed and adapted to both cardiovascular magnetic resonance and echocardiographic data. PMID:28093412

  9. Biomass plug development and propagation in porous media.

    PubMed

    Stewart, T L; Fogler, H S

    2001-02-05

    Exopolymer-producing bacteria can be used to modify soil profiles for enhanced oil recovery or bioremediation. Understanding the mechanisms associated with biomass plug development and propagation is needed for successful application of this technology. These mechanisms were determined from packed-bed and micromodel experiments that simulate plugging in porous media. Leuconostoc mesenteroides was used, because production of dextran, a water-insoluble exopolymer, can be controlled by using different carbon sources. As dextran was produced, the pressure drop across the porous media increased and began to oscillate. Three pressure phases were identified under exopolymer-producing conditions: the exopolymer-induction phase, the plugging phase, and the plug-propagation phase. The exopolymer-induction phase extended from the time that exopolymer-producing conditions were induced until there was a measurable increase in pressure drop across the porous media. The plugging phase extended from the first increase in pressure drop until a maximum pressure drop was reached. Changes in pressure drop in these two phases were directly related to biomass distribution. Specifically, flow channels within the porous media filled with biomass creating a plugged region where convective flow occurred only in water channels within the biofilm. These water channels were more restrictive to flow causing the pressure drop to increase. At a maximum pressure drop across the porous media, the biomass yielded much like a Bingham plastic, and a flow channel was formed. This behavior marked the onset of the plug-propagation phase which was characterized by sequential development and breakthrough of biomass plugs. This development and breakthrough propagated the biomass plug in the direction of nutrient flow. The dominant mechanism associated with all three phases of plugging in porous media was exopolymer production; yield stress is an additional mechanism in the plug-propagation phase. Copyright 2001 John Wiley & Sons, Inc.

  10. An investigation of two phase flow pressure drops in a reduced acceleration environment

    NASA Astrophysics Data System (ADS)

    Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.

    1993-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.

  11. Estimation of methacrylate monolith binding capacity from pressure drop data.

    PubMed

    Podgornik, Aleš; Smrekar, Vida; Krajnc, Peter; Strancar, Aleš

    2013-01-11

    Convective chromatographic media comprising of membranes and monoliths represent an important group of chromatographic supports due to their flow-unaffected chromatographic properties and consequently fast separation and purification even of large biological macromolecules. Consisting of a single piece of material, common characterization procedures based on analysis of a small sample assuming to be representative for the entire batch, cannot be applied. Because of that, non-invasive characterization methods are preferred. In this work pressure drop was investigated for an estimation of dynamic binding capacity (DBC) of proteins and plasmid DNA for monoliths with different pore sizes. It was demonstrated that methacrylate monolith surface area is reciprocally proportional to pore diameter and that pressure drop on monolith is reciprocally proportional to square pore size demonstrating that methacrylate monolith microstructure is preserved by changing pore size. Based on these facts mathematical formalism has been derived predicting that DBC is in linear correlation with the square root of pressure drop. This was experimentally confirmed for ion-exchange and hydrophobic interactions for proteins and plasmid DNA. Furthermore, pressure drop was also applied for an estimation of DBC in grafted layers of different thicknesses as estimated from the pressure drop data. It was demonstrated that the capacity is proportional to the estimated grafted layer thickness. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Resonances, radiation pressure and optical scattering phenomena of drops and bubbles

    NASA Technical Reports Server (NTRS)

    Marston, P. L.; Goosby, S. G.; Langley, D. S.; Loporto-Arione, S. E.

    1982-01-01

    Acoustic levitation and the response of fluid spheres to spherical harmonic projections of the radiation pressure are described. Simplified discussions of the projections are given. A relationship between the tangential radiation stress and the Konstantinov effect is introduced and fundamental streaming patterns for drops are predicted. Experiments on the forced shape oscillation of drops are described and photographs of drop fission are displayed. Photographs of critical angle and glory scattering by bubbles and rainbow scattering by drops are displayed.

  13. Two-phase pressure drop in a helical coil flow boiling system

    NASA Astrophysics Data System (ADS)

    Hardik, B. K.; Prabhu, S. V.

    2018-05-01

    The objective of the present work is to study the two-phase pressure drop in helical coils. Literature on the two-phase pressure drop in a helical coil suggests the complexity in flow boiling inside a helical coil due to secondary flow. Most of correlations reported in the literature on the two-phase pressure drop in a helical coil are limited to a specific operating range. No general correlation is available for a helical coil which is applicable for all fluids. In the present study, an experimental databank collected containing a total of 832 data points includes the data from the present study and from the literature. The data includes diabatic pressure drop of two fluids namely water and R123. Data covers a range of parameters namely a mass flux of 120-2058 kg/m2 s, a heat flux of 18-2831 kW/m2, an exit quality of 0.03-1, a density ratio of 32-1404 and a coil to tube diameter ratio of 14-58. The databank is compared with eighteen empirical correlations which include well referred correlations of straight tubes and the available correlations of helical coils. The straight tube correlations are not working well for the present data set. The helical coil correlations work reasonably well for the present databank. A correlation is suggested to predict the two-phase pressure drop in helical coils. The present study suggests that the influence of a helical coil is completely included in the single phase pressure drop correlation for helical coils.

  14. A study of nonlinear dynamics of single- and two-phase flow oscillations

    NASA Astrophysics Data System (ADS)

    Mawasha, Phetolo Ruby

    The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.

  15. Camphor-Crataegus berry extract combination dose-dependently reduces tilt induced fall in blood pressure in orthostatic hypotension.

    PubMed

    Belz, G G; Butzer, R; Gaus, W; Loew, D

    2002-10-01

    In order to test the efficacy of a combination of natural D-camphor and an extract of fresh crataegus berries (Korodin Herz-Kreislauf-Tropfen) on orthostatic hypotension, two similar, controlled, randomized studies were carried out in a balanced crossover design in 24 patients each with orthostatic dysregulation. The camphor-crataegus berry combination (CCC) was orally administered as a single regimen in 3 different dosages of 5 drops, 20 drops and 80 drops; a placebo with 20 drops of a 60% alcoholic solution served as control. Orthostatic hypotension was assessed with the tilt table test before and after medication. Source data of both studies were pooled and meta-analytically evaluated for all 48 patients. CCC drops decreased the orthostatic fall in blood pressure versus placebo, as almost uniformly established at all times by mean arterial pressure and diastolic blood pressure. Mean arterial pressure demonstrated the very fast onset of action by a clearly dose-dependent statistically significant effect even after 1-minute orthostasis. Increase of mean arterial pressure as compared to the orthostasis test before medication was on average 4.5 mmHg. CCC affected diastolic blood pressure after 1 minute of orthostasis in all dosages as compared to placebo. A statistically significant effect of the highest dose of 80 drops on diastolic blood pressure could be demonstrated after 1-, 3-, and 5-minute orthostasis. The hemodynamic findings of a stabilizing effect on arterial pressure in orthostasis corroborate the long-term medical experience with CCC and justify the indication orthostatic hypotension.

  16. Modified rotating biological contactor for removal of dichloromethane vapours.

    PubMed

    Ravi, R; Philip, Ligy; Swaminathan, T

    2015-01-01

    Bioreactors are used for the treatment of waste gas and odour that has gained much acceptance in the recent years to treat volatile organic compounds (VOCs). The different types of bioreactors (biofilter, biotrickling filter and bioscrubber) have been used for waste gas treatment. Each of these reactors has some advantages and some limitations. Though biodegradation is the main process for the removal of the pollutants, the mechanisms of removal and the microbial communities may differ among these bioreactors. Consequently, their performance or removal efficiency may also be different. Clogging of reactor and pressure drop are the main problems. In this study attempts are made to use the principle of rotating biological contactor (RBC) used for wastewater treatment for the removal of VOC. To overcome the above problem the RBC is modified which is suitable for the treatment of VOC (dichloromethane, DCM). DCM is harmful to human health and hazardous to the atmospheric environment. Modified RBC had no clogging problems and no pressure drop. So, it can handle the pollutant load for a longer period of time. A maximum elimination capacity of 25.7 g/m3 h has been achieved in this study for the DCM inlet load of 58 g/m3 h. The average biofilm thickness is 1 mm. The transient behaviour of the modified RBC treating DCM was investigated. The modified RBC is able to handle shutdown, restart and shock loading operations.

  17. Automated single cell sorting and deposition in submicroliter drops

    NASA Astrophysics Data System (ADS)

    Salánki, Rita; Gerecsei, Tamás; Orgovan, Norbert; Sándor, Noémi; Péter, Beatrix; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-08-01

    Automated manipulation and sorting of single cells are challenging, when intact cells are needed for further investigations, e.g., RNA or DNA sequencing. We applied a computer controlled micropipette on a microscope admitting 80 PCR (Polymerase Chain Reaction) tubes to be filled with single cells in a cycle. Due to the Laplace pressure, fluid starts to flow out from the micropipette only above a critical pressure preventing the precise control of drop volume in the submicroliter range. We found an anomalous pressure additive to the Laplace pressure that we attribute to the evaporation of the drop. We have overcome the problem of the critical dropping pressure with sequentially operated fast fluidic valves timed with a millisecond precision. Minimum drop volume was 0.4-0.7 μl with a sorting speed of 15-20 s per cell. After picking NE-4C neuroectodermal mouse stem cells and human primary monocytes from a standard plastic Petri dish we could gently deposit single cells inside tiny drops. 94 ± 3% and 54 ± 7% of the deposited drops contained single cells for NE-4C and monocytes, respectively. 7.5 ± 4% of the drops contained multiple cells in case of monocytes. Remaining drops were empty. Number of cells deposited in a drop could be documented by imaging the Petri dish before and after sorting. We tuned the adhesion force of cells to make the manipulation successful without the application of microstructures for trapping cells on the surface. We propose that our straightforward and flexible setup opens an avenue for single cell isolation, critically needed for the rapidly growing field of single cell biology.

  18. Enantioseparation of omeprazole--effect of different packing particle size on productivity.

    PubMed

    Enmark, Martin; Samuelsson, Jörgen; Forssén, Patrik; Fornstedt, Torgny

    2012-06-01

    Enantiomeric separation of omeprazole has been extensively studied regarding both product analysis and preparation using several different chiral stationary phases. In this study, the preparative chiral separation of omeprazole is optimized for productivity using three different columns packed with amylose tris (3,5-dimethyl phenyl carbamate) coated macroporous silica (5, 10 and 25 μm) with a maximum allowed pressure drop ranging from 50 to 400 bar. This pressure range both covers low pressure process systems (50-100 bar) and investigates the potential for allowing higher pressure limits in preparative applications in a future. The process optimization clearly show that the larger 25 μm packing material show higher productivity at low pressure drops whereas with increasing pressure drops the smaller packing materials have substantially higher productivity. Interestingly, at all pressure drops, the smaller packing material result in lower solvent consumption (L solvent/kg product); the higher the accepted pressure drop, the larger the gain in reduced solvent consumption. The experimental adsorption isotherms were not identical for the different packing material sizes; therefore all calculations were recalculated and reevaluated assuming identical adsorption isotherms (with the 10 μm isotherm as reference) which confirmed the trends regarding productivity and solvent consumption. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. On the collapse pressure of armored bubbles and drops.

    PubMed

    Pitois, O; Buisson, M; Chateau, X

    2015-05-01

    Drops and bubbles wrapped in dense monolayers of hydrophobic particles are known to sustain a significant decrease of their internal pressure. Through dedicated experiments we investigate the collapse behavior of such armored water drops as a function of the particle-to-drop size ratio in the range 0.02-0.2. We show that this parameter controls the behavior of the armor during the deflation: at small size ratios the drop shrinkage proceeds through the soft crumpling of the monolayer, at intermediate ratios the drop becomes faceted, and for the largest studied ratios the armor behaves like a granular arch. The results show that each of the three morphological regimes is characterized by an increasing magnitude of the collapse pressure. This increase is qualitatively modeled thanks to a mechanism involving out-of-plane deformations and particle disentanglement in the armor.

  20. Heat Pipe Vapor Dynamics. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Issacci, Farrokh

    1990-01-01

    The dynamic behavior of the vapor flow in heat pipes is investigated at startup and during operational transients. The vapor is modeled as two-dimensional, compressible viscous flow in an enclosure with inflow and outflow boundary conditions. For steady-state and operating transients, the SIMPLER method is used. In this method a control volume approach is employed on a staggered grid which makes the scheme very stable. It is shown that for relatively low input heat fluxes the compressibility of the vapor flow is low and the SIMPLER scheme is suitable for the study of transient vapor dynamics. When the input heat flux is high or the process under a startup operation starts at very low pressures and temperatures, the vapor is highly compressible and a shock wave is created in the evaporator. It is shown that for a wide range of input heat fluxes, the standard methods, including the SIMPLER scheme, are not suitable. A nonlinear filtering technique, along with the centered difference scheme, are then used for shock capturing as well as for the solution of the cell Reynolds-number problem. For high heat flux, the startup transient phase involves multiple shock reflections in the evaporator region. Each shock reflection causes a significant increase in the local pressure and a large pressure drop along the heat pipe. Furthermore, shock reflections cause flow reversal in the evaporation region and flow circulations in the adiabatic region. The maximum and maximum-averaged pressure drops in different sections of the heat pipe oscillate periodically with time because of multiple shock reflections. The pressure drop converges to a constant value at steady state. However, it is significantly higher than its steady-state value at the initiation of the startup transient. The time for the vapor core to reach steady-state condition depends on the input heat flux, the heat pipe geometry, the working fluid, and the condenser conditions. However, the vapor transient time, for an Na-filled heat pipe is on the order of seconds. Depending on the time constant for the overall system, the vapor transient time may be very short. Therefore, the vapor core may be assumed to be quasi-steady in the transient analysis of a heat pipe operation.

  1. Particle Collection Efficiency of a Lens-Liquid Filtration System

    NASA Astrophysics Data System (ADS)

    Wong, Ross Y. M.; Ng, Moses L. F.; Chao, Christopher Y. H.; Li, Z. G.

    2011-09-01

    Clinical and epidemiological studies have shown that indoor air quality has substantial impact on the health of building occupants [1]. Possible sources of indoor air contamination include hazardous gases as well as particulate matters (PMs) [2]. Experimental studies show that the size distribution of PMs in indoor air ranges from tens of nanometers to a few hundreds of micrometers [3]. Vacuum cleaners can be used as a major tool to collect PMs from floor/carpets, which are the main sources of indoor PMs. However, the particle collection efficiency of typical cyclonic filters in the vacuums drops significantly for particles of diameter below 10 μm. In this work, we propose a lens-liquid filtration system (see Figure 1), where the flow channel is formed by a liquid free surface and a planar plate with fin/lens structures. Computational fluid dynamics simulations are performed by using FLUENT to optimize the structure of the proposed system toward high particle collection efficiency and satisfactory pressure drop. Numerical simulations show that the system can collect 250 nm diameter particles with collection efficiency of 50%.

  2. Remotely operated high pressure valve protects test personnel

    NASA Technical Reports Server (NTRS)

    Howland, B. T.

    1967-01-01

    High pressure valve used in testing certain spacecraft systems is safely opened and closed by a remotely stationed operator. The valve is self-regulating in that if the incoming pressure drops below a desired value the valve will automatically close, warning the operator that the testing pressure has dropped to an undesired level.

  3. Digibaro pressure instrument onboard the Phoenix Lander

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  4. iQOS: evidence of pyrolysis and release of a toxicant from plastic.

    PubMed

    Davis, Barbara; Williams, Monique; Talbot, Prue

    2018-03-13

    To evaluate performance of the I quit original smoking (iQOS) heat-not-burn system as a function of cleaning and puffing topography, investigate the validity of manufacturer's claims that this device does not burn tobacco and determine if the polymer-film filter is potentially harmful. iQOS performance was evaluated using five running conditions incorporating two different cleaning protocols. Heatsticks were visually and stereomicroscopically inspected preuse and postuse to determine the extent of tobacco plug charring (from pyrolysis) and polymer-film filter melting, and to elucidate the effects of cleaning on charring. Gas chromatography-mass spectrometry headspace analysis was conducted on unused polymer-film filters to determine if potentially toxic chemicals are emitted from the filter during heating. For all testing protocols, pressure drop decreased as puff number increased. Changes in testing protocols did not affect aerosol density. Charring due to pyrolysis (a form of organic matter thermochemical decomposition) was observed in the tobacco plug after use. When the manufacturer's cleaning instructions were followed, both charring of the tobacco plug and melting of the polymer-film filter increased. Headspace analysis of the polymer-film filter revealed the release of formaldehyde cyanohydrin at 90°C, which is well below the maximum temperature reached during normal usage. Device usage limitations may contribute to decreases in interpuff intervals, potentially increasing user's intake of nicotine and other harmful chemicals. This study found that the tobacco plug does char and that charring increases when the device is not cleaned between heatsticks. Release of formaldehyde cyanohydrin is a concern as it is highly toxic at very low concentrations. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends onmore » the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.« less

  6. Observation of ice nucleation in acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Xie, W. J.; Wei, B.

    2005-10-01

    The supercooling and nucleation of acoustically levitated water drops were investigated at two different sound pressure levels (SPL). These water drops were supercooled by 13to16K at the low SPL of 160.6dB, whereas their supercoolings varied from 5to11K at the high SPL of 164.4dB. The maximum supercooling obtained in the experiments is 32K. Statistical analyses based on the classical nucleation theory reveal that the occurrence of ice nucleation in water drops is mainly confined to the surface region under acoustic levitation conditions and the enlargement of drop surface area caused by the acoustic radiation pressure reduces water supercoolability remarkably. A comparison of the nucleation rates at the two SPLs indicates that the sound pressure can strengthen the surface-dominated nucleation of water drops. The acoustic stream around levitated water drops and the cavitation effect associated with ultrasonic field are the main factors that induce surface-dominated nucleation.

  7. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface

    PubMed Central

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing–most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon’s characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops. PMID:27388276

  8. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    PubMed

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  9. Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution

    DOE PAGES

    Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla; ...

    2018-01-03

    The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less

  10. Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla

    The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less

  11. Heat Transfer Enhancement Through Self-Sustained Oscillating Flow in Microchannels

    DTIC Science & Technology

    2006-05-01

    Qu and Mudawar [30]. The numerical results for Nusselt number and pressure drop are in good agreement with the experimental Contract Number: FA8650...500 1000 1500 0 0.2 0.4 0.6 0.8 1 Experiment, Qu and Mudawar (2002) Numerical study, present Figure 28. Comparison of pressure drop between numerical...Mass Transfer, 48, 1688-1704, 2005. [30]. Weilin Qu, Issam Mudawar , Experimental and numerical study of pressure drop and heat transfer in a single

  12. O the Electrohydrodynamics of Drop Extraction from a Conductive Liquid Meniscus

    NASA Astrophysics Data System (ADS)

    Wright, Graham Scott

    This thesis is concerned with the use of an electric field in the extraction of liquid drops from a capillary orifice or nozzle. The motivating application is ink jet printing. Current drop-on-demand ink jets use pressure pulses to eject drops. Literature on electrostatic spraying suggests that by using an electric field, drops could be produced with a wider range of sizes and speeds than is possible with pressure ejection. Previous efforts to apply electric spraying to printing or similar selective coating tasks have taken an experimental approach based on steady or periodic spraying phenomena, without attempting cycle -by-cycle drop control. The centerpiece of this thesis is a simulation tool developed to explore such possibilities. A simplified analytic model is developed as a preliminary step, yielding formulas for force and time scales that provide an appropriate basis for nondimensionalization of the governing differential equations; important dimensionless parameters are identified. The complete self-consistent model permits simulation of meniscus behavior under time -varying applied voltage or pressure, with the electric field solution continually updated as the surface changes shape. The model uses a quasi-one-dimensional hydrodynamic formulation and a two-dimensional axisymmetric boundary element solution for the electric field. The simulation is checked against experimental results for meniscus stability, resonant modes, and drop emission under electric field. The simulation faithfully captures important qualitative aspects of meniscus behavior and gives reasonable quantitative agreement within the limitations of the model. Insights gained in simulation point the way to a successful laboratory demonstration of drop extraction using a shaped voltage pulse. Drop size control is pursued in simulation using pressure and voltage pulses both alone and in combination, for both light and viscous liquids. Combining pressure and field pulses is shown to be synergistic; drop volumes over a range of 175 to 1 were obtained, while maintaining good drop velocity. The differing strategies for obtaining large and small drops are described. Drop extraction using only the electric field is more difficult, but promising approaches remain open.

  13. Heat transfer and pressure drop of condensation of hydrocarbons in tubes

    NASA Astrophysics Data System (ADS)

    Fries, Simon; Skusa, Severin; Luke, Andrea

    2018-03-01

    The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.

  14. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  15. Detection of antibodies against hepatitis A in blood spots dried on filter paper. Is this a reliable method for epidemiological studies?

    PubMed Central

    Gil, A.; González, A.; Dal-Ré, R.; Dominguez, V.; Astasio, P.; Aguilar, L.

    1997-01-01

    Diluted dried blood drops on filter paper were compared with serum samples as a specimen source for qualitative anti-HAV antibody determination by ELISA. A total of 298 serum samples and dried blood drops were collected from a population of healthy adolescents (15.3 +/- 1.2 years old). The prevalence of anti-HAV antibody obtained by testing serum samples was 7.7% (95% CI:4.8 10.1). Compared with serum sampling the sensitivity and specificity of diluted dried blood drops were 91.3 and 99.3%. The positive and negative predictive values were 91.3 and 99.3%, respectively, and the likelihood ratios of positive and negative results were 91 and 0.09. It is proposed that this test represents a reliable procedure for anti-HAV antibody testing. PMID:9129596

  16. Boiling regimes of impacting drops on a heated substrate under reduced pressure

    NASA Astrophysics Data System (ADS)

    van Limbeek, Michiel A. J.; Hoefnagels, Paul B. J.; Shirota, Minori; Sun, Chao; Lohse, Detlef

    2018-05-01

    We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P =0.13 bar to atmospheric pressure. We employ frustrated total internal reflection imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling), or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependence on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism and are dominated by the dynamics taking place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e., the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P =0.13 and 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.

  17. Pressure Profiles in a Loop Heat Pipe Under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  18. Pressure Profiles in a Loop Heat Pipe under Gravity Influence

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    During the operation of a loop heat pipe (LHP), the viscous flow induces pressure drops in various elements of the loop. The total pressure drop is equal to the sum of pressure drops in vapor grooves, vapor line, condenser, liquid line and primary wick, and is sustained by menisci at liquid and vapor interfaces on the outer surface of the primary wick in the evaporator. The menisci will curve naturally so that the resulting capillary pressure matches the total pressure drop. In ground testing, an additional gravitational pressure head may be present and must be included in the total pressure drop when LHP components are placed in a non-planar configuration. Under gravity-neutral and anti-gravity conditions, the fluid circulation in the LHP is driven solely by the capillary force. With gravity assist, however, the flow circulation can be driven by the combination of capillary and gravitational forces, or by the gravitational force alone. For a gravity-assist LHP at a given elevation between the horizontal condenser and evaporator, there exists a threshold heat load below which the LHP operation is gravity driven and above which the LHP operation is capillary force and gravity co-driven. The gravitational pressure head can have profound effects on the LHP operation, and such effects depend on the elevation, evaporator heat load, and condenser sink temperature. This paper presents a theoretical study on LHP operations under gravity-neutral, anti-gravity, and gravity-assist modes using pressure diagrams to help understand the underlying physical processes. Effects of the condenser configuration on the gravitational pressure head and LHP operation are also discussed.

  19. Filter Feeding, Chaotic Filtration, and a Blinking Stokeslet

    NASA Astrophysics Data System (ADS)

    Blake, J. R.; Otto, S. R.; Blake, D. A.

    The filtering mechanisms in bivalve molluscs, such as the mussel Mytilus edulis, and in sessile organisms, such as Vorticella or Stentor, involve complex fluid mechanical phenomena. In the former example, three different sets of cilia serving different functions are involved in the process whereas in the sessile organisms the flexibility and contractile nature of the stalk may play an important role in increasing the filtering efficiency of the organisms. In both cases, beating microscopic cilia are the ``engines'' driving the fluid motion, so the fluid mechanics will be dominated entirely by viscous forces. A fluid mechanical model is developed for the filtering mechanism in mussels that enables estimates to be made of the pressure drop through the gill filaments due to (i) latero-frontal filtering cilia, (ii) the lateral (pumping) cilia, and (iii) through the non-ciliated zone of the ventral end of the filament. The velocity profile across the filaments indicates that a backflow can occur in the centre of the channel leading to the formation of two ``standing'' eddies which may drive particles towards the mucus-laden short cilia, the third set of cilia. Filter feeding in the sessile organisms is modelled by a point force above a rigid boundary. The point force periodically changes its point of application according to a given protocol (a blinking stokeslet). The resulting fluid field is illustrated via Poincaré sections and particle dispersion-showing the potential for a much improved filtering efficiency. Returning to filter feeding in bivalve molluscs, this concept is extended to a pair of blinking stokeslets above a rigid boundary to give insight into possible mechanisms for movement of food particles onto the short mucus-bearing cilia. The appendix contains a Latin and English version of an ``Ode of Achievement'' in celebration of Sir James Lighthill's contributions to mathematics and fluid mechanics.

  20. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  1. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  2. Drop dynamics in space and interference with acoustic field (M-15)

    NASA Technical Reports Server (NTRS)

    Yamanaka, Tatsuo

    1993-01-01

    The objective of the experiment is to study contactless positioning of liquid drops, excitation of capillary waves on the surface of acoustically levitated liquid drops, and deformation of liquid drops by means of acoustic radiation pressure. Contactless positioning technologies are very important in space materials processing because the melt is processed without contacting the wall of a crucible which can easily contaminate the melt specifically for high melting temperatures and chemically reactive materials. Among the contactless positioning technologies, an acoustic technology is especially important for materials unsusceptible to electromagnetic fields such as glasses and ceramics. The shape of a levitated liquid drop in the weightless condition is determined by its surface tension and the internal and external pressure distribution. If the surface temperature is constant and there exist neither internal nor external pressure perturbations, the levitated liquid drop forms a shape of perfect sphere. If temperature gradients on the surface and internal or external pressure perturbations exist, the liquid drop forms various modes of shapes with proper vibrations. A rotating liquid drop was specifically studied not only as a classical problem of theoretical mechanics to describe the shapes of the planets of the solar system, as well as their arrangement, but it is also more a contemporary problem of modern non-linear mechanics. In the experiment, we are expecting to observe various shapes of a liquid drop such as cocoon, tri-lobed, tetropod, multi-lobed, and doughnut.

  3. Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings.

    PubMed

    Xu, Fang; Poon, Andrew W

    2008-06-09

    We report silicon cross-connect filters using microring resonator coupled multimode-interference (MMI) based waveguide crossings. Our experiments reveal that the MMI-based cross-connect filters impose lower crosstalk at the crossing than the conventional cross-connect filters using plain crossings, while offering a nearly symmetric resonance line shape in the drop-port transmission. As a proof-of-concept for cross-connection applications, we demonstrate on a silicon-on-insulator substrate (i) a 4-channel 1 x 4 linear-cascaded MMI-based cross-connect filter, and (ii) a 2-channel 2 x 2 array-cascaded MMI-based cross-connect filter.

  4. Study of nitrogen two-phase flow pressure drop in horizontal and vertical orientation

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Kirsch, H.; Santandrea, D.; Bremer, J.

    2017-12-01

    The large-scale liquid argon Short Baseline Neutrino Far-detector located at Fermilab is designed to detect neutrinos allowing research in the field of neutrino oscillations. It will be filled with liquid argon and operate at almost ambient pressure. Consequently, its operation temperature is determined at about 87 K. The detector will be surrounded by a thermal shield, which is actively cooled with boiling nitrogen at a pressure of about 2.8 bar absolute, the respective saturation pressure of nitrogen. Due to strict temperature gradient constraints, it is important to study the two-phase flow pressure drop of nitrogen along the cooling circuit of the thermal shield in different orientations of the flow with respect to gravity. An experimental setup has been built in order to determine the two-phase flow pressure drop in nitrogen in horizontal, vertical upward and vertical downward direction. The measurements have been conducted under quasi-adiabatic conditions and at a saturation pressure of 2.8 bar absolute. The mass velocity has been varied in the range of 20 kg·m-2·s-1 to 70 kg·m-2·s-1 and the pressure drop data has been recorded scanning the two-phase region from vapor qualities close to zero up to 0.7. The experimental data will be compared with several established predictions of pressure drop e.g. Mueller-Steinhagen and Heck by using the void fraction correlation of Rouhani.

  5. Ultrafiltration by a compacted clay membrane-I. Oxygen and hydrogen isotopic fractionation

    USGS Publications Warehouse

    Coplen, T.B.; Hanshaw, B.B.

    1973-01-01

    Laboratory experiments were carried out to determine the magnitude of the isotopic fractionation of distilled water and of 0.01 N NaCl forced to flow at ambient temperature under a hydraulic pressure drop of 100 bars across a montmorillonite disc compacted to a porosity of 35 per cent by a pressure of 330 bars. The ultrafiltrates in both experiments were depleted in D by 2.5%. and in O18 by 0.8%. relative to the residual solution. No additional isotopic fractionation due to a salt filtering mechanism was observed at NaCl concentrations up to 0.01 N. Adsorption is most likely the principal mechanism which produces isotopic fractionation, but molecular diffusion may play a minor role. The results suggest that oxygen and hydrogen isotopic fractionation of ground water during passage through compacted clayey sediments should be a common occurrence, in accord with published interpretations of isotopic data from the Illinois and Alberta basins. ?? 1973.

  6. Experimental and Computational Study of the Hydrodynamics of Trickle Bed Flow Reactor Operating Under Different Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Rabbani, S.; Ben Salem, I.; Nadeem, H.; Kurnia, J. C.; Shamim, T.; Sassi, M.

    2014-12-01

    Pressure drop estimation and prediction of liquid holdup play a crucial role in design and operation of trickle bed reactors. Experiments are performed for Light Gas Oil (LGO)-nitrogen system in ambient temperature conditions in an industrial pilot plant with reactor height 0.79 m and diameter of 0.0183 m and pressure ranging from atmospheric to 10 bars. It was found that pressure drop increased with increase in system pressure, superficial gas velocity and superficial liquid velocity. It was demonstrated in the experiments that liquid holdup of the system increases with the increase in superficial liquid velocity and tends to decrease with increase in superficial gas velocity which is in good agreement with existing literature. Similar conditions were also simulated using CFD-software FLUENT. The Volume of Fluid (VoF) technique was employed in combination with "discrete particle approach" and results were compared with that of experiments. The overall pressure drop results were compared with the different available models and a new comprehensive model was proposed to predict the pressure drop in Trickle Bed Flow Reactor.

  7. Reducing cyclone pressure drop with evasés

    USDA-ARS?s Scientific Manuscript database

    Cyclones are widely used to separate particles from gas flows and as air emissions control devices. Their cost of operation is proportional to the fan energy required to overcome their pressure drop. Evasés or exit diffusers potentially could reduce exit pressure losses without affecting collection...

  8. Performance of a pilot-scale biotrickling filter in controlling the volatile organic compound emissions in a furniture manufacturing facility.

    PubMed

    Martínez-Soria, Vicente; Gabaldón, Carmen; Penya-Roja, Josep M; Palau, Jordi; Alvarez-Hornos, F Javier; Sempere, Feliu; Soriano, Carlos

    2009-08-01

    A 0.75-m3 pilot-scale biotrickling filter was run for over 1 yr in a Spanish furniture company to evaluate its performance in the removal of volatile organic compounds (VOCs) contained in the emission of two different paint spray booths. The first one was an open front booth used to manually paint furniture, and the second focus was an automatically operated closed booth operated to paint pieces of furniture. In both cases, the VOC emissions were very irregular, with rapid and extreme fluctuations. The pilot plant was operated at an empty bed residence time (EBRT) ranging from 10 to 40 sec, and good removal efficiencies of VOCs were usually obtained. When a buffering activated carbon prefilter was installed, the system performance was improved considerably, so a much better compliance with legal constraints was reached. After different shutdowns in the factory, the period to recover the previous performance of the biotrickling reactor was minimal. A weekend dehydration strategy was developed and implemented to control the pressure drop associated with excessive biomass accumulation.

  9. Determination of pressure drop across activated carbon fiber respirator cartridges.

    PubMed

    Balanay, Jo Anne G; Lungu, Claudiu T

    2016-01-01

    Activated carbon fiber (ACF) is considered as an alternative adsorbent to granular activated carbon (GAC) for the development of thinner, lighter, and efficient respirators because of their larger surface area and adsorption capacities, thinner critical bed depth, lighter weight, and fabric form. This study aims to measure the pressure drop across different types of commercially available ACFs in respirator cartridges to determine the ACF composition and density that will result in acceptably breathable respirators. Seven ACF types in cloth (ACFC) and felt (ACFF) forms were tested. ACFs in cartridges were challenged with pre-conditioned constant air flow (43 LPM, 23°C, 50% RH) at different compositions (single- or combination-ACF type) in a test chamber. Pressure drop across ACF cartridges were obtained using a micromanometer, and compared among different cartridge configurations, to those of the GAC cartridge, and to the NIOSH breathing resistance requirements for respirator cartridges. Single-ACF type cartridges filled with any ACFF had pressure drop measurements (23.71-39.93 mmH2O) within the NIOSH inhalation resistance requirement of 40 mmH2O, while those of the ACFC cartridges (85.47±3.67 mmH2O) exceeded twice the limit due possibly to the denser weaving of ACFC fibers. All single ACFF-type cartridges had higher pressure drop compared to the GAC cartridge (23.13±1.14 mmH2O). Certain ACF combinations (2 ACFF or ACFC/ACFF types) resulted to pressure drop (26.39-32.81 mmH2O) below the NIOSH limit. All single-ACFF type and all combination-ACF type cartridges with acceptable pressure drop had much lower adsorbent weights than GAC (≤15.2% of GAC weight), showing potential for light-weight respirator cartridges. 100% ACFC in cartridges may result to respirators with high breathing resistance and, thus, is not recommended. The more dense ACFF and ACFC types may still be possibly used in respirators by combining them with less dense ACFF materials and/or by reducing cartridge bed depth to reduce pressure drop to acceptable levels. ACFF by itself may be more appropriate as adsorbent materials in ACF respirator cartridges in terms of acceptable breathing resistance.

  10. Bi-directional ROADM with one pair of NxN cyclic-AWGs for over N wavelength channels configuration

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Mu

    2018-01-01

    This paper presents a bidirectional optical add-drop multiplexer (BROADM) with permitting white spectral channels input in bidirectional configuration. The filter routing rule of array waveguide grating (AWG) is applied for the wavelength channels (WCs) that need to be added and dropped by using the corresponding tunable fiber Bragg gratings (FBGs). The other WCs pass through output by tuning FBG filter spectra away from the WCs. The bandwidth between two adjacent WCs of each pair of ports in AWG is wider than one channel spacing so that the filter spectra of FBG is tuned to free spectral range (FSR) region to realize the wavelength routing function without interfering other WCs. The WCs can be flexibly handled by installing the corresponding tunable FBG. Therefore, the proposed BROADM is more flexible and has higher transmission capacity in the optical network.

  11. Treatment with sodium hyaluronate eye drops in a patient who had early-onset bleb leakage after trabeculectomy with mitomycin C

    PubMed Central

    Sagara, Hideto; Sekiryu, Tetsuju; Noji, Hiroki; Ogasawara, Masashi; Imaizumi, Kimihiro; Yago, Keiko

    2015-01-01

    We present the case of a 47-year-old man who had bilateral proliferative diabetic retinopathy and neovascular glaucoma. Schirmer I test revealed tear secretions of 5 mm and 3 mm in the right and left eyes, respectively. Tear breakup times in the right and left eyes were 7 and 8 seconds, respectively. The ocular surface staining in both eyes was scored as Grade 1 as per the Oxford scheme. Retinal photocoagulation was performed for correction of the proliferative diabetic retinopathy and rubeosis iridis, which resolved with treatment. However, the intraocular pressure in the left eye could not be adequately controlled. Therefore, trabeculectomy with mitomycin C using limbal-based conjunctival flap was performed. Three hours after the surgery, the patient developed a large and diffuse filtering bleb, but no leakage occurred from the conjunctival scar. However, on the first postoperative day, leakage was noted and the conjunctiva was at the leakage point. The leakage resolved transiently, but recurred the next day. Severe keratoconjunctival epithelial failure was detected, and the patient was administrated 0.1% sodium hyaluronate eye drops six times daily. The epithelial failure improved, and many microcysts were detected on the bleb surface where the epithelial failure improved. The leakage resolved 2 days after initiation of the sodium hyaluronate eye drops. The microcysts disappeared and the bleb surface became smooth 1 month later. PMID:26664245

  12. Treatment with sodium hyaluronate eye drops in a patient who had early-onset bleb leakage after trabeculectomy with mitomycin C.

    PubMed

    Sagara, Hideto; Sekiryu, Tetsuju; Noji, Hiroki; Ogasawara, Masashi; Imaizumi, Kimihiro; Yago, Keiko

    2015-01-01

    We present the case of a 47-year-old man who had bilateral proliferative diabetic retinopathy and neovascular glaucoma. Schirmer I test revealed tear secretions of 5 mm and 3 mm in the right and left eyes, respectively. Tear breakup times in the right and left eyes were 7 and 8 seconds, respectively. The ocular surface staining in both eyes was scored as Grade 1 as per the Oxford scheme. Retinal photocoagulation was performed for correction of the proliferative diabetic retinopathy and rubeosis iridis, which resolved with treatment. However, the intraocular pressure in the left eye could not be adequately controlled. Therefore, trabeculectomy with mitomycin C using limbal-based conjunctival flap was performed. Three hours after the surgery, the patient developed a large and diffuse filtering bleb, but no leakage occurred from the conjunctival scar. However, on the first postoperative day, leakage was noted and the conjunctiva was at the leakage point. The leakage resolved transiently, but recurred the next day. Severe keratoconjunctival epithelial failure was detected, and the patient was administrated 0.1% sodium hyaluronate eye drops six times daily. The epithelial failure improved, and many microcysts were detected on the bleb surface where the epithelial failure improved. The leakage resolved 2 days after initiation of the sodium hyaluronate eye drops. The microcysts disappeared and the bleb surface became smooth 1 month later.

  13. 76 FR 142 - Notice of a Regional Project Waiver of Section 1605 (Buy American) of the American Recovery and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... (``Town''), for the purchase of GreensandPlus pressure filter media, manufactured in Brazil, for six pressure filters. This is a project specific waiver and only applies to the use of the specified product... different types of pressure filter media selecting GreensandPlus filter media. The ARRA funded project is...

  14. 40 CFR 63.1657 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressure drop across each baghouse cell, or across the baghouse if it is not possible to monitor each cell individually, to ensure the pressure drop is within the normal operating range identified in the baghouse... detection system if the furnace primary and/or tapping emissions are ducted to a negative pressure baghouse...

  15. Heat transfer and pressure drop performance of a finned-tube heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.

    1985-01-01

    A segment of the heat exchanger proposed for use in the NASA Lewis Altitude Wind Tunnel (AWT) facility has been tested under dry and icing conditions. The heat exchanger has the largest pressure drop of any component in the AWT loop. It is therefore critical that its performance be known at all conditions before the final design of the AWT is complete. The heat exchanger segment is tested in the NASA Lewis Icing Research Tunnel (IRT) in order to provide an icing cloud environment similar to what will be encountered in the AWT. Dry heat transfer and pressure drop data are obtained and compared to correlations available in the literature. The effects of icing sprays on heat transfer and pressure drop are also investigated.

  16. Variability among electronic cigarettes in the pressure drop, airflow rate, and aerosol production.

    PubMed

    Williams, Monique; Talbot, Prue

    2011-12-01

    This study investigated the performance of electronic cigarettes (e-cigarettes), compared different models within a brand, compared identical copies of the same model within a brand, and examined performance using different protocols. Airflow rate required to generate aerosol, pressure drop across e-cigarettes, and aerosol density were examined using three different protocols. First 10 puff protocol: The airflow rate required to produce aerosol and aerosol density varied among brands, while pressure drop varied among brands and between the same model within a brand. Total air hole area correlated with pressure drop for some brands. Smoke-out protocol: E-cigarettes within a brand generally performed similarly when puffed to exhaustion; however, there was considerable variation between brands in pressure drop, airflow rate required to produce aerosol, and the total number of puffs produced. With this protocol, aerosol density varied significantly between puffs and gradually declined. CONSECUTIVE TRIAL PROTOCOL: Two copies of one model were subjected to 11 puffs in three consecutive trials with breaks between trials. One copy performed similarly in each trial, while the second copy of the same model produced little aerosol during the third trial. The different performance properties of the two units were attributed to the atomizers. There was significant variability between and within brands in the airflow rate required to produce aerosol, pressure drop, length of time cartridges lasted, and production of aerosol. Variation in performance properties within brands suggests a need for better quality control during e-cigarette manufacture.

  17. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocitymore » exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)« less

  18. Experimental Investigation of Two-Phase Oil (D130)-Water Flow in 4″ Pipe for Different Inclination Angles

    NASA Astrophysics Data System (ADS)

    Shaahid, S. M.; Basha, Mehaboob; Al-Hems, Luai M.

    2018-03-01

    Oil and water are often produced and transported together in pipelines that have various degrees of inclination from the horizontal. The flow of two immiscible liquids oil and water in pipes has been a research topic since several decades. In oil and chemical industries, knowledge of the frictional pressure loss in oil-water flows in pipes is necessary to specify the size of the pump required to pump the emulsions. An experimental investigation has been carried out for measurement of pressure drop of oil (D130)-water two-phase flows in 4 inch diameter inclined stainless steel pipe at different flow conditions. Experiments were conducted for different inclination angles including; 0°, 15°, 30° (for water cuts “WC” 0 - 100%). The flow rates at the inlet were varied from 4000 to 8000 barrels-per-day (BPD). For a given flow rate the frictional pressure drop has been found to increase (for all angles) from WC = 0 - 60%, and thereafter friction pressure drop decreases, this could be due phase inversion. For a given WC 40%, the frictional pressure drop has been found to increase with angle and flow rate. It has been noticed that inclination angle has appreciable effect on frictional pressure drop.

  19. Multichannel silicon WDM ring filters fabricated with DUV lithography

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Moo; Park, Sahnggi; Kim, Gyungock

    2008-09-01

    We have fabricated 9-channel silicon wavelength-division-multiplexing (WDM) ring filters using 193 nm deep-ultraviolet (DUV) lithography and investigated the spectral properties of the ring filters by comparing the transmission spectra with and without an upper cladding. The average channel-spacing of the 9-channel WDM ring filter with a polymeric upper cladding is measured about 1.86 nm with the standard deviation of the channel-spacing about 0.34 nm. The channel crosstalk is about -30 dB, and the minimal drop loss is about 2 dB.

  20. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910

  1. Consistent Large-Eddy Simulation of a Temporal Mixing Layer Laden with Evaporating Drops. Part 2; A Posteriori Modelling

    NASA Technical Reports Server (NTRS)

    Leboissertier, Anthony; Okong'O, Nora; Bellan, Josette

    2005-01-01

    Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.

  2. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells.

    PubMed

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-02

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  3. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  4. Development of a primary standard for dynamic pressure based on drop weight method covering a range of 10 MPa-400 MPa

    NASA Astrophysics Data System (ADS)

    Salminen, J.; Högström, R.; Saxholm, S.; Lakka, A.; Riski, K.; Heinonen, M.

    2018-04-01

    In this paper we present the development of a primary standard for dynamic pressures that is based on the drop weight method. At the moment dynamic pressure transducers are typically calibrated using reference transducers, which are calibrated against static pressure standards. Because dynamic and static characteristics of pressure transducers may significantly differ from each other, it is important that these transducers are calibrated against dynamic pressure standards. In a method developed in VTT Technical Research Centre of Finland Ltd, Centre for Metrology MIKES, a pressure pulse is generated by impact between a dropping weight and a piston of a liquid-filled piston-cylinder assembly. The traceability to SI-units is realized through interferometric measurement of the acceleration of the dropping weight during impact, the effective area of the piston-cylinder assembly and the mass of the weight. Based on experimental validation and an uncertainty evaluation, the developed primary standard provides traceability for peak pressures in the range from 10 MPa to 400 MPa with a few millisecond pulse width and a typical relative expanded uncertainty (k  =  2) of 1.5%. The performance of the primary standard is demonstrated by test calibrations of two dynamic pressure transducers.

  5. Influence of ambient air pressure on effervescent atomization

    NASA Technical Reports Server (NTRS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1993-01-01

    The influence of ambient air pressure on the drop-size distributions produced in effervescent atomization is examined in this article. Also investigated are the effects on spray characteristics of variations in air/liquid mass ratio, liquid-injection pressure, and atomizer discharge-orifice diameter at different levels of ambient air pressure. It is found that continuous increase in air pressure above the normal atmospheric value causes the mean drop-size to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the various contributing factors to the overall atomization process. It is also observed that changes in atomizer geometry and operating conditions have little effect on the distribution of drop-sizes in the spray.

  6. Carbonate formation on Mars: Latest experiments

    NASA Technical Reports Server (NTRS)

    Stephens, S. K.; Stevenson, D. J.; Rossman, G. R.; Keyser, L. F.

    1993-01-01

    Laboratory simulations of Martian CO2 storage address whether carbonate formation could have reduced CO2 pressure from a hypothetical greater than 1 bar to the present 7 mbar in less than or equal to 3 to 4 billion years. This problem is addressed with experiments and analysis designed to verify and improve previous kinetic measurements, reaction mechanisms, and product characterizations, with the goal of improving existing models of Martian CO2 history. A sensitive manometer monitored the pressure drop of CO2 due to uptake by powdered silicate for periods of 3 to 100+ days. Pressure drops for diopside 1 and basalt show rapid short-term (approximately one day) CO2 uptake and considerably slower long-term pressure drops. Curves for diopside 2, olivine 1, and olivine 2 are qualitatively similar to those for diopside 1, whereas quartz and plagioclase show near-zero short-term pressure drops and very slow long-term signals, indistinguishable from a leak (less than 10(exp 11) mol/sq m/s).

  7. Optimization of In-Cylinder Pressure Filter for Engine Research

    DTIC Science & Technology

    2017-06-01

    ARL-TR-8034 ● JUN 2017 US Army Research Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth...Laboratory Optimization of In-Cylinder Pressure Filter for Engine Research by Kenneth S Kim, Michael T Szedlmayer, Kurt M Kruger, and Chol-Bum M...

  8. Prediction of friction pressure drop for low pressure two-phase flows on the basis of approximate analytical models

    NASA Astrophysics Data System (ADS)

    Zubov, N. O.; Kaban'kov, O. N.; Yagov, V. V.; Sukomel, L. A.

    2017-12-01

    Wide use of natural circulation loops operating at low redused pressures generates the real need to develop reliable methods for predicting flow regimes and friction pressure drop for two-phase flows in this region of parameters. Although water-air flows at close-to-atmospheric pressures are the most widely studied subject in the field of two-phase hydrodynamics, the problem of reliably calculating friction pressure drop can hardly be regarded to have been fully solved. The specific volumes of liquid differ very much from those of steam (gas) under such conditions, due to which even a small change in flow quality may cause the flow pattern to alter very significantly. Frequently made attempts to use some or another universal approach to calculating friction pressure drop in a wide range of steam quality values do not seem to be justified and yield predicted values that are poorly consistent with experimentally measured data. The article analyzes the existing methods used to calculate friction pressure drop for two-phase flows at low pressures by comparing their results with the experimentally obtained data. The advisability of elaborating calculation procedures for determining the friction pressure drop and void fraction for two-phase flows taking their pattern (flow regime) into account is demonstrated. It is shown that, for flows characterized by low reduced pressures, satisfactory results are obtained from using a homogeneous model for quasi-homogeneous flows, whereas satisfactory results are obtained from using an annular flow model for flows characterized by high values of void fraction. Recommendations for making a shift from one model to another in carrying out engineering calculations are formulated and tested. By using the modified annular flow model, it is possible to obtain reliable predictions for not only the pressure gradient but also for the liquid film thickness; the consideration of droplet entrainment and deposition phenomena allows reasonable corrections to be introduced into calculations. To the best of the authors' knowledge, it is for the first time that the entrainment of droplets from the film surface is taken into consideration in the dispersed-annular flow model.

  9. Microseismicity Induced by Fluid Pressure Drop (Laboratory Study)

    NASA Astrophysics Data System (ADS)

    Turuntaev, Sergey; Zenchenko, Evgeny; Melchaeva, Olga

    2013-04-01

    Pore pressure change in saturated porous rocks may result in its fracturing (Maury et Fourmaintraux, 1993) and corresponding microseismic event occurrences. Microseismicity due to fluid injection is considered in numerous papers (Maxwell, 2010, Shapiro et al., 2005). Another type of the porous medium fracturing is related with rapid pore pressure drop at some boundary. The mechanism of such fracturing was considered by (Khristianovich, 1985) as a model of sudden coal blowing and by (Alidibirov, Panov, 1998) as a model of volcano eruptions. If the porous saturated medium has a boundary where it directly contacted with fluid under the high pressure (in a hydraulic fracture or in a borehole), and the pressure at that boundary is dropped, the conditions for tensile cracks can be achieved at some distance from the boundary. In the paper, the results of experimental study of saturated porous sample fracturing due to pore pressure rapid drop are discussed. The samples (82 mm high, ∅60 mm) were made of quartz sand, which was cemented by "liquid glass" glue with mass fraction 1%. The sample (porosity 35%, uniaxial unconfined compression strength 2.5 MPa) was placed in a mould and saturated by oil. The upper end of the sample contacted with the mould upper lid, the lower end contacted with fluid. The fluid pressure was increased to 10 MPa and then discharged through the bottom nipple. The pressure increases/drops were repeated 30-50 times. Pore pressure and acoustic emission (AE) were registered by transducers mounted into upper and bottom lids of the mould. It was found, that AE sources (corresponded to microfracturing) were spreading from the open end to the closed end of the sample, and that maximal number of AE events was registered at some distance from the opened end. The number of AE pulses increased with every next pressure drop, meanwhile the number of pulses with high amplitudes diminished. It was found that AE maximal rate corresponded to the fluid pressure gradient maximal values. The model of AE relation with the pore pressure gradient was considered based on the following assumptions: AE event occurred when the pore pressure gradient reaches some critical value; the critical value varies and can be described by Weibull distribution. Permeability variation during the fluid pressure drop was estimated by means of fluid pressure data and pore-elastic equation solution for small time intervals (0.01 sec). The study showed possibility to solve both a direct problem of microseismicity variation relation with fluid pressure changes and an inverse problem of defining permeability by registering microseismic activity variation in particular volume of porous medium alongside with pore pressure measurements at some point.

  10. Photonic crystal ring resonator based optical filters for photonic integrated circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, S., E-mail: mail2robinson@gmail.com

    In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which ismore » highly suitable of photonic integrated circuits.« less

  11. Spin-on bottom antireflective coating defect reduction by proper filter selection and process optimization

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas L.; Kidd, Brian; Mesawich, Michael; Stevens, Don, Jr.; Gotlinsky, Barry

    2003-06-01

    A design of experiment (DOE) was implemented to show the effects of various point of use filters on the coat process. The DOE takes into account the filter media, pore size, and pumping means, such as dispense pressure, time, and spin speed. The coating was executed on a TEL Mark 8 coat track, with an IDI M450 pump, and PALL 16 stack Falcon filters. A KLA 2112 set at 0.69 μm pixel size was used to scan the wafers to detect and identify the defects. The process found for DUV42P to maintain a low defect coating irrespective of the filter or pore size is a high start pressure, low end pressure, low dispense time, and high dispense speed. The IDI M450 pump has the capability to compensate for bubble type defects by venting the defects out of the filter before the defects are in the dispense line and the variable dispense rate allows the material in the dispense line to slow down at the end of dispense and not create microbubbles in the dispense line or tip. Also the differential pressure sensor will alarm if the pressure differential across the filter increases over a user-determined setpoint. The pleat design allows more surface area in the same footprint to reduce the differential pressure across the filter and transport defects to the vent tube. The correct low defect coating process will maximize the advantage of reducing filter pore size or changing the filter media.

  12. Could some aviation deep vein thrombosis be a form of decompression sickness?

    PubMed

    Buzzacott, Peter; Mollerlokken, Andreas

    2016-10-01

    Aviation deep vein thrombosis is a challenge poorly understood in modern aviation. The aim of the present project was to determine if cabin decompression might favor formation of vascular bubbles in commercial air travelers. Thirty commercial flights were taken. Cabin pressure was noted at take-off and at every minute following, until the pressure stabilized. These time-pressure profiles were imported into the statistics program R and analyzed using the package SCUBA. Greatest pressure differentials between tissues and cabin pressures were estimated for 20, 40, 60, 80 and 120 min half-time compartments. Time to decompress ranged from 11 to 47 min. The greatest drop in cabin pressure was from 1022 to 776 mBar, equivalent to a saturated diver ascending from 2.46 msw depth. Mean pressure drop in flights >2 h duration was 193 mBar, while mean pressure drop in flights <2 h was 165 mBar. The greatest drop in pressure over 1 min was 28 mBar. Over 30 commercial flights it was found that the drop in cabin pressure was commensurate with that found to cause bubbles in man. Both the US Navy and the Royal Navy mandate far slower decompression from states of saturation, being 1.7 and 1.9 mBar/min respectively. The median overall rate of decompression found in this study was 8.5 mBar/min, five times the rate prescribed for USN saturation divers. The tissues associated with hypobaric bubble formation are likely slower than those associated with bounce diving, with 60 min a potentially useful index.

  13. Alterations of Blood Flow Through Arteries Following Atherectomy and the Impact on Pressure Variation and Velocity.

    PubMed

    Plourde, Brian D; Vallez, Lauren J; Sun, Biyuan; Nelson-Cheeseman, Brittany B; Abraham, John P; Staniloae, Cezar S

    2016-09-01

    Simulations were made of the pressure and velocity fields throughout an artery before and after removal of plaque using orbital atherectomy plus adjunctive balloon angioplasty or stenting. The calculations were carried out with an unsteady computational fluid dynamic solver that allows the fluid to naturally transition to turbulence. The results of the atherectomy procedure leads to an increased flow through the stenotic zone with a coincident decrease in pressure drop across the stenosis. The measured effect of atherectomy and adjunctive treatment showed decrease the systolic pressure drop by a factor of 2.3. Waveforms obtained from a measurements were input into a numerical simulation of blood flow through geometry obtained from medical imaging. From the numerical simulations, a detailed investigation of the sources of pressure loss was obtained. It is found that the major sources of pressure drop are related to the acceleration of blood through heavily occluded cross sections and the imperfect flow recovery downstream. This finding suggests that targeting only the most occluded parts of a stenosis would benefit the hemodynamics. The calculated change in systolic pressure drop through the lesion was a factor of 2.4, in excellent agreement with the measured improvement. The systolic and cardiac-cycle-average pressure results were compared with measurements made in a multi-patient study treated with orbital atherectomy and adjunctive treatment. The agreements between the measured and calculated systolic pressure drop before and after the treatment were within 3%. This excellent agreement adds further confidence to the results. This research demonstrates the use of orbital atherectomy to facilitate balloon expansion to restore blood flow and how pressure measurements can be utilized to optimize revascularization of occluded peripheral vessels.

  14. A fault constitutive relation accounting for thermal pressurization of pore fluid

    USGS Publications Warehouse

    Andrews, D.J.

    2002-01-01

    The heat generated in a slip zone during an earthquake can raise fluid pressure and thereby reduce frictional resistance to slip. The amount of fluid pressure rise depends on the associated fluid flow. The heat generated at a given time produces fluid pressure that decreases inversely with the square root of hydraulic diffusivity times the elapsed time. If the slip velocity function is crack-like, there is a prompt fluid pressure rise at the onset of slip, followed by a slower increase. The stress drop associated with the prompt fluid pressure rise increases with rupture propagation distance. The threshold propagation distance at which thermally induced stress drop starts to dominate over frictionally induced stress drop is proportional to hydraulic diffusivity. If hydraulic diffusivity is 0.02 m2/s, estimated from borehole samples of fault zone material, the threshold propagation distance is 300 m. The stress wave in an earthquake will induce an unknown amount of dilatancy and will increase hydraulic diffusivity, both of which will lessen the fluid pressure effect. Nevertheless, if hydraulic diffusivity is no more than two orders of magnitude larger than the laboratory value, then stress drop is complete in large earthquakes.

  15. Soft Listeria: actin-based propulsion of liquid drops.

    PubMed

    Boukellal, Hakim; Campás, Otger; Joanny, Jean-François; Prost, Jacques; Sykes, Cécile

    2004-06-01

    We study the motion of oil drops propelled by actin polymerization in cell extracts. Drops deform and acquire a pearlike shape under the action of the elastic stresses exerted by the actin comet, a tail of cross-linked actin filaments. We solve this free boundary problem and calculate the drop shape taking into account the elasticity of the actin gel and the variation of the polymerization velocity with normal stress. The pressure balance on the liquid drop imposes a zero propulsive force if gradients in surface tension or internal pressure are not taken into account. Quantitative parameters of actin polymerization are obtained by fitting theory to experiment.

  16. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.

  17. Pumping power considerations in the designs of NASA-Redox flow cells

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.

    1981-01-01

    Pressure drop data for six different cell geometries of various flow port, manifold, and cavity dimensions are presented. The redox/energy/storage system uses two fully soluble redox couples as anode and cathode fluids. Both fluids are pumped through a redox cell, or stack of cells, where the electrochemical reactions take place at porous carbon felt electrodes. Pressure drop losses are therefore associated with this system due to the continuous flow of reactant solutions. The exact pressure drop within a redox flow cell is directly dependent on the flow rate as well as the various cell dimensions. Pumping power requirements for a specific set of cell operating conditions are found for various cell geometries once the flow rate and pressure drop are determined. These pumping power requirements contribute to the overall system parasitic energy losses which must be minimized, the choice of cell geometry becomes critical.

  18. The critical pressure drop for the purge process in the anode of a fuel cell

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Pingwen, Ming; Ming, Hou; Baolian, Yi; Shao, Zhi-Gang

    Purge operation is an effective way to remove the accumulated liquid water in the anode of proton exchange membrane fuel cells (PEMFCs). This paper studies the phenomenon of the two-phase flow as well as the pressure drop fluctuation inside the flow field of a single cell during the purge process. The flow patterns are identified as intermittent purge and annular purge, and the two purge processes are contrastively analyzed and discussed. The intermittent purge greatly affects the fuel cell performance and thus it is not suitable for the in situ application. The annular purge process requires a higher pressure drop, and the critical pressure drop is calculated from the annular purge model. Furthermore, this value is quantitatively analyzed and validated by experiments. The results show that the annular purge is appropriate for removing liquid water out of the anode in the fuel cell.

  19. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    NASA Astrophysics Data System (ADS)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  20. Re-examining the upper limit of temporal pitch

    PubMed Central

    Macherey, Olivier; Carlyon, Robert P.

    2015-01-01

    Five normally-hearing listeners pitch-ranked harmonic complexes of different fundamental frequencies (F0s) filtered in three different frequency regions. Harmonics were summed either in sine, alternating sine-cosine (ALT), or pulse-spreading (PSHC) phase. The envelopes of ALT and PSHC complexes repeated at rates of 2F0 and 4F0. Pitch corresponded to those rates at low F0s, but, as F0 increased, there was a range of F0s over which pitch remained constant or dropped. Gammatone-filterbank simulations showed that, as F0 increased and the number of harmonics interacting in a filter dropped, the output of that filter switched from repeating at 2F0 or 4F0 to repeating at F0. A model incorporating this phenomenon accounted well for the data, except for complexes filtered into the highest frequency region (7800-10800 Hz). To account for the data in that region it was necessary to assume either that auditory filters at very high frequencies are sharper than traditionally believed, and/or that the auditory system applies smaller weights to filters whose outputs repeat at high rates. The results also provide new evidence on the highest pitch that can be derived from purely temporal cues, and corroborate recent reports that a complex pitch can be derived from very-high-frequency resolved harmonics. PMID:25480066

  1. Pressure at the ground in a large tornado

    NASA Astrophysics Data System (ADS)

    Winn, W. P.; Hunyady, S. J.; Aulich, G. D.

    1999-09-01

    A number of instruments were placed on the ground across the path of a large tornado that passed west of the town of Allison, Texas, on June 8, 1995. The center of the tornado came within 660 m of the closest instrument, which recorded a pressure drop of 55 mbar and a subsequent pressure rise of 60 mbar. During the lowest recorded pressures (near r = 660 m), there were large and rapid pressure fluctuations; the largest fluctuation was a 10-mbar spike lasting 2 s. A second instrument on the opposite side of the tornado recorded a pressure drop of 26 mbar. From the pressure variations with time P(t) at the two instruments, the variation of pressure with distance p(r) from the center of the tornado has been deduced for r>660 m. As r decreases, the measured pressure function p(r) drops more abruptly than would be expected from conservation of angular momentum of air spiraling inward near the ground level.

  2. Tunable all-optical photonic crystal channel drop filter for DWDM systems

    NASA Astrophysics Data System (ADS)

    Habibiyan, H.; Ghafoori-Fard, H.; Rostami, A.

    2009-06-01

    In this paper we propose a tunable channel drop filter in a two-dimensional photonic crystal, based on coupled-cavity waveguides with alternating small and large defects and an electromagnetically induced transparency phenomenon. By utilizing this phenomenon a narrower linewidth is obtained and also the frequency of the dropped signal becomes tunable. Simulation results show that the proposed filter is suitable for dense wavelength-division multiplexing (DWDM) systems with 0.8 nm channel spacing. Using this novel component, two ultrasmall eight-channel double-sided and single-sided demultiplexers are introduced. The properties of these devices are investigated using the finite-difference time-domain method. For the single-sided device, transmission loss is 1.5 ± 0.5 dB, the cross-talk level between adjacent channels is better than -18 dB and the average 3 dB optical passband is 0.36 nm. Using planar silicon-on-insulator technology, the physical area for the single-sided component is 700 µm2 and for the double-sided component is 575 µm2. To the best of our knowledge, these are the smallest all-optical demultiplexers with this spectral resolution reported to date. Malfunction of the proposed device due to fabrication errors is modeled and its tunable characteristic is demonstrated.

  3. Investigation of 2D photonic crystal structure based channel drop filter using quad shaped photonic crystal ring resonator for CWDM system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar; Rajasthan Technical University, Kota, Rajasthan

    In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 andmore » 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.« less

  4. Controlling Vapor Pressure In Hanging-Drop Crystallization

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  5. Characterization of high-pressure capacitively coupled hydrogen plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunomura, S.; Kondo, M.

    2007-11-01

    Capacitively coupled very-high-frequency hydrogen plasmas have been systematically diagnosed in a wide range of a gas pressure from 5 mTorr to 10 Torr. The plasma parameters, ion species, and ion energy distributions (IEDs) are measured using a Langmuir probe, optical emission spectroscopy, and energy filtered mass spectrometer. The measurement results show that the ion species in a hydrogen plasma is determined from ionization channels and subsequent ion-molecule reactions. The ions are dominated by H{sub 2}{sup +} at a less-collisional condition of < or approx. 20 mTorr, whereas those are dominated by H{sub 3}{sup +} at a collisional condition of >more » or approx. 20 mTorr. The IED is determined by both the sheath potential drop and ion-neutral collisions in the plasma sheath. The IED is broadened for a collisional sheath at > or approx. 0.3 Torr and the ion bombardment energy is lowered. For high-pressure discharge operated at {approx_equal}10 Torr, plasmas are characterized by a low electron temperature of {approx_equal}0.8 eV and a low ion bombardment energy of < or approx. 15 eV.« less

  6. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less

  7. Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements

    DOE PAGES

    Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton

    2017-08-01

    We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less

  8. Pressure Drop Across Woven Screens Under Uniform and Nonuniform Flow Conditions. [flow characteristics of water through Dutch twill and square weave fabrics

    NASA Technical Reports Server (NTRS)

    Ludewig, M.; Omori, S.; Rao, G. L.

    1974-01-01

    Tests were conducted to determine the experimental pressure drop and velocity data for water flowing through woven screens. The types of materials used are dutch twill and square weave fabrics. Pressure drop measures were made at four locations in a rectangular channel. The data are presented as change in pressure compared with the average entry velocity and the numerical relationship is determined by dividing the volumetric flow rate by the screen area open to flow. The equations of continuity and momentum are presented. A computer program listing an extension of a theoretical model and data from that computer program are included.

  9. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b), you must at all times monitor the hourly average pressure drop and liquid flow rate using a CPMS...

  10. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b), you must at all times monitor the hourly average pressure drop and liquid flow rate using a CPMS...

  11. 40 CFR 63.9920 - What are my continuous monitoring requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scrubber subject to the operating limits for pressure drop and scrubber water flow rates in § 63.9890(b), you must at all times monitor the hourly average pressure drop and liquid flow rate using a CPMS...

  12. Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber with Development of an Optimized Design

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.

    1998-01-01

    An analytical investigation on the effect of high aspect ratio (height/width) cooling channels, considering different coolant channel designs, on hot-gas-side wall temperature and coolant pressure drop for a liquid hydrogen cooled rocket combustion chamber, was performed. Coolant channel design elements considered were: length of combustion chamber in which high aspect ratio cooling was applied, number of coolant channels, and coolant channel shape. Seven coolant channel designs were investigated using a coupling of the Rocket Thermal Evaluation code and the Two-Dimensional Kinetics code. Initially, each coolant channel design was developed, without consideration for fabrication, to reduce the hot-gas-side wall temperature from a given conventional cooling channel baseline. These designs produced hot-gas-side wall temperature reductions up to 22 percent, with coolant pressure drop increases as low as 7.5 percent from the baseline. Fabrication constraints for milled channels were applied to the seven designs. These produced hot-gas-side wall temperature reductions of up to 20 percent, with coolant pressure drop increases as low as 2 percent. Using high aspect ratio cooling channels for the entire length of the combustion chamber had no additional benefit on hot-gas-side wall temperature over using high aspect ratio cooling channels only in the throat region, but increased coolant pressure drop 33 percent. Independent of coolant channel shape, high aspect ratio cooling was able to reduce the hot-gas-side wall temperature by at least 8 percent, with as low as a 2 percent increase in coolant pressure drop. ne design with the highest overall benefit to hot-gas-side wall temperature and minimal coolant pressure drop increase was the design which used bifurcated cooling channels and high aspect ratio cooling in the throat region. An optimized bifurcated high aspect ratio cooling channel design was developed which reduced the hot-gas-side wall temperature by 18 percent and reduced the coolant pressure drop by 4 percent. Reductions of coolant mass flow rate of up to 50 percent were possible before the hot-gas-side wall temperature reached that of the baseline. These mass flow rate reductions produced coolant pressure drops of up to 57 percent.

  13. A steady state pressure drop model for screen channel liquid acquisition devices

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Darr, S. R.; McQuillen, J. B.; Rame, E.; Chato, D. J.

    2014-11-01

    This paper presents the derivation of a simplified one dimensional (1D) steady state pressure drop model for flow through a porous liquid acquisition device (LAD) inside a cryogenic propellant tank. Experimental data is also presented from cryogenic LAD tests in liquid hydrogen (LH2) and liquid oxygen (LOX) to compare against the simplified model and to validate the model at cryogenic temperatures. The purpose of the experiments was to identify the various pressure drop contributions in the analytical model which govern LAD channel behavior during dynamic, steady state outflow. LH2 pipe flow of LAD screen samples measured the second order flow-through-screen (FTS) pressure drop, horizontal LOX LAD outflow tests determined the relative magnitude of the third order frictional and dynamic losses within the channel, while LH2 inverted vertical outflow tests determined the magnitude of the first order hydrostatic pressure loss and validity of the full 1D model. When compared to room temperature predictions, the FTS pressure drop is shown to be temperature dependent, with a significant increase in flow resistance at LH2 temperatures. Model predictions of frictional and dynamic losses down the channel compare qualitatively with LOX LADs data. Meanwhile, the 1D model predicted breakdown points track the trends in the LH2 inverted outflow experimental results, with discrepancies being due to a non-uniform injection velocity across the LAD screen not accounted for in the model.

  14. Effect of Water Cut on Pressure Drop of Oil (D130) -Water Flow in 4″Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Basha, Mehaboob; Shaahid, S. M.; Al-Hems, Luai M.

    2018-03-01

    The oil-water flow in pipes is a challenging subject that is rich in physics and practical applications. It is often encountered in many oil and chemical industries. The pressure gradient of two phase flow is still subject of immense research. The present study reports pressure measurements of oil (D130)-water flow in a horizontal 4″ diameter stainless steel pipe at different flow conditions. Experiments were carried out for different water cuts (WC); 0-100%. Inlet oil-water flow rates were varied from 4000 to 8000 barrels-per-day in steps of 2000. It has been found that the frictional pressure drop decreases for WC = 0 - 40 %. With further increase in WC, friction pressure drop increases, this could be due to phase inversion.

  15. Study on Transfer Rules of Coal Reservoir Pressure Drop Based on Coalbed Methane Well Drainage Experiments

    NASA Astrophysics Data System (ADS)

    Yuhang, X.

    2017-12-01

    A pumping test was carried out to explore the transfer rules of pressure drop in coal reservoir during the drainage. The experiment was divided into three stages. In the first stage, the pump displacement of 3m3/h was used to reduce the bottom hole flowing pressure and stopped until the continuous gas phase was produced; Undertaking the first stage, in the second stage, when the gas phase was continuously produced, the pump was stopped immediately. As the bottom hole flowing pressure going up without gas phase, pumping started again for a week. In the third stage ,the well pumping was carried out at the bottom hole pressure drop rate of 30Kpa/d after two months' recovery. Combined with the data of regional geology and fractured well, taking the characteristics of macroscopic coal rocks, development of pore and fracture in coal and isothermal adsorption test as the background, the features of reservoir output in each stage of the experiment were analyzed and compared, and then the transfer rules of pressure drop contained in the differences of the output was studied further. In the first and third stage of the experiment, the output of liquid phase was much larger than the space volume of coal reservoir pore and fracture in the range of 100m2. In the second stage, the output of the continuous gas phase appeared around 0.7Mpa when the continuous gas phase appears below the critical desorption pressure of 0.25Mpa during the whole experiment. The results indicate that, the transfer of pressure drop in the coal reservoir of this well is mainly horizontal, and the liquid phase produced in the reservoir mainly comes from the recharge of the reservoir at the far end of the relative high pressure area; the adsorption space of coalbed methane in the coal matrix as well as the main migration channel of fluid in the reservoir doesn't belong to the same pressure system and there exists the communication barrier between them. In addition, the increasing of the effective stress has little influence on the communication between these two systems. The definition of transfer rules in coal reservoir pressure drop, also the understanding of the correlation between the rules and characteristics of the reservoir output has great guiding significance to the establishment of pressure drop system in coalbed methane well as well as the analysis of production problems.

  16. Numerical simulation on the powder propellant pickup characteristics of feeding system at high pressure

    NASA Astrophysics Data System (ADS)

    Sun, Haijun; Hu, Chunbo; Zhu, Xiaofei

    2017-10-01

    A numerical study of powder propellant pickup progress at high pressure was presented in this paper by using two-fluid model with kinetic theory of granular flow in the computational fluid dynamics software package ANSYS/Fluent. Simulations were conducted to evaluate the effects of initial pressure, initial powder packing rate and mean particle diameter on the flow characteristics in terms of velocity vector distribution, granular temperature, pressure drop, particle velocity and volume. The numerical results of pressure drop were also compared with experiments to verify the TFM model. The simulated results show that the pressure drop value increases as the initial pressure increases, and the granular temperature under the conditions of different initial pressures and packing rates is almost the same in the area of throttling orifice plate. While there is an appropriate value for particle size and packing rate to form a ;core-annulus; structure in powder box, and the time-averaged velocity vector distribution of solid phase is inordinate.

  17. Hydrodynamic shrinkage of liquid CO2 Taylor drops in a straight microchannel

    NASA Astrophysics Data System (ADS)

    Qin, Ning; Wen, John Z.; Ren, Carolyn L.

    2018-03-01

    Hydrodynamic shrinkage of liquid CO2 drops in water under a Taylor flow regime is studied using a straight microchannel (length/width ~100). A general form of a mathematical model of the solvent-side mass transfer coefficient (k s) is developed first. Based on formulations of the surface area (A) and the volume (V) of a general Taylor drop in a rectangular microchannel, a specific form of k s is derived. Drop length and speed are experimentally measured at three specified positions of the straight channel, namely, immediately after drop generation (position 1), the midpoint of the channel (position 2) and the end of the channel (position 3). The reductions of drop length (L x , x  =  1, 2, 3) from position 1 to 2 and down to 3 are used to quantify the drop shrinkage. Using the specific model, k s is calculated mainly based on L x and drop flowing time (t). Results show that smaller CO2 drops produced by lower flow rate ratios ({{Q}LC{{O2}}}/{{Q}{{H2}O}} ) are generally characterized by higher (nearly three times) k s and Sherwood numbers than those produced by higher {{Q}LC{{O2}}}/{{Q}{{H2}O}} , which is essentially attributed to the larger effective portion of the smaller drop contributing in the mass transfer under same levels of the flowing time and the surface-to-volume ratio (~104 m-1) of all drops. Based on calculated pressure drops of the segmented flow in microchannel, the Peng-Robinson equation of state and initial pressures of drops at the T-junction in experiments, overall pressure drop (ΔP t) in the straight channel as well as the resulted drop volume change are quantified. ΔP t from position 1-3 is by average 3.175 kPa with a ~1.6% standard error, which only leads to relative drop volume changes of 0.3‰ to 0.52‰.

  18. Study on atomization features of a plain injector in high speed transverse air stream

    NASA Astrophysics Data System (ADS)

    Wan, Jian; Gu, Shanjian; Yang, Maolin; Xiao, Weihui

    1990-04-01

    The atomization features of a plain injector in high-speed transverse air stream were investigated by Malvern. In this investigation, air velocity ranged from 50-150m/s, pressure drop of fuel injector, (1.1 - 4.2) x 10 to the 6th Pa, diameter of orifice, 0.5 - 0.9 mm, axial distance between the injector and the survey plane, 50 - 250 mm. Aviation kerosene was used in all experiments. It was found that the atomization features in high pressure drop of fuel injector were greatly differed from the low pressure drop of fuel injector.

  19. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    PubMed Central

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-01-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer. PMID:28251983

  20. SWS grating for UV band filter by nano-imprint

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Shian; Liao, Ke-Hao; Chen, Chang-Tai; Lai, Chieh-Lung; Ko, Cheng-Hao

    2009-05-01

    Regarding to researches on manufacturing process, the fabrication of nano structures on SWS (subwavelength structured) grating are mainly produced by photo lithography. We find that UV light transmission efficiency of PET film significantly drops 50% when we put nano structures on the surface of material. In this paper, we add nano structures on the surface of PET film and create a UV band filter. Decent optical filtering effects can be achieved by combining the characteristics of PET materials with nano structures on their surfaces.

  1. High-Pressure Transport Properties Of Fluids: Theory And Data From Levitated Drops At Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi

    2003-01-01

    Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.

  2. [Appropriate dust control measures for jade carving operations].

    PubMed

    Liu, Jiang; Wang, Qiushui; Liu, Guangquan

    2002-12-01

    To provide the appropriate dust control measures for jade carving operations. Dust concentrations in the workplace were measured according to GB/T 5748-85. Ventilation system of dust control were measured according to GB/T 16157-1996. Dust particle size distributions for different sources and particle size fraction collecting efficiencies of the dust collectors were measured with WY-1 in-stack 7 stage cascade impactors. On the basis of adopting wet process in the carving operations, local exhaust ventilation system for dust control was installed, which included: the special designed slot exhaust hoods with hood face velocity of 2.5 m/s and exhaust volume of 600 m3/h. The pipe sizes were determined according to the air volume passing through the pipe and the reasonable air velocities. Impinging scrubber or bag filter dust collector were selected to treat the dust laden air from the local exhaust ventilation system, which gave a total collecting efficiency of 97% for impinging scrubber and 98% for bag filter; The type of fan and its size were selected according to the total air volume of the ventilation system and maximum total pressure needed for the longest pipe line plus the pressure drop of the dust collector. Practical application showed that, after installation and use of the appropriate dust control measures, the dust concentrations in the workplaces could meet or nearly meet the national hygienic standard and the dust laden air at the local exhaust ventilation system could meet the national emission standard.

  3. Study of two-phase flow in helical and spiral coils

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Yan, AN; Omrani, Adel

    1990-01-01

    The principal purposes of the present study were to: (1) observe and develop a fundamental understanding of the flow regimes and their transitions occurring in helical and spiral coils; and (2) obtain pressure drop measurements of such flows, and, if possible, develop a method for predicting pressure drop in these flow geometries. Elaborating upon the above, the general intent is to develop criteria (preferably generalized) for establishing the nature of the flow dynamics (e.g. flow patterns) and the magnitude of the pressure drop in such configurations over a range of flow rates and fluid properties. Additionally, the visualization and identification of flow patterns were a fundamental objective of the study. From a practical standpoint, the conditions under which an annular flow pattern exists is of particular practical importance. In the possible practical applications which would implement these geometries, the working fluids are likely to be refrigerant fluids. In the present study the working fluids were an air-water mixture, and refrigerant 113 (R-113). In order to obtain records of flow patterns and their transitions, video photography was employed extensively. Pressure drop measurements were made using pressure differential transducers connected across pressure taps in lines immediately preceding and following the various test sections.

  4. Apparatus and method for removing particulate deposits from high temperature filters

    DOEpatents

    Nakaishi, Curtis V.; Holcombe, Norman T.; Micheli, Paul L.

    1992-01-01

    A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.

  5. Effects of vascular structures on the pressure drop in stenotic coronary arteries

    NASA Astrophysics Data System (ADS)

    Kim, Jaerim; Choi, Haecheon; Kweon, Jihoon; Kim, Young-Hak; Yang, Dong Hyun; Kim, Namkug

    2016-11-01

    A stenosis, which is a narrowing of a blood vessel, of the coronary arteries restricts the flow to the heart and it may lead to sudden cardiac death. Therefore, the accurate determination of the severity of a stenosis is a critical issue. Due to the convenience of visual assessments, geometric parameters such as the diameter stenosis and area stenosis have been used, but the decision based on them sometimes under- or overestimates the functional severity of a stenosis, i.e., pressure drop. In this study, patient-specific models that have similar area stenosis but different pressure drops are considered, and their geometries are reconstructed from the coronary computed tomography angiography (CCTA). Both steady and pulsatile inflows are considered for the simulations. Comparison between two models that have a bifurcation right after a stenosis shows that the parent to daughter vessel angle results in different secondary flow patterns and wall shear stress distributions which affect the pressure downstream. Thus, the structural features of the lower and upper parts of a stenosis significantly affect the pressure drop. Supported by 20152020105600.

  6. Gas-Liquid Packed Bed Reactors in Microgravity

    NASA Technical Reports Server (NTRS)

    Balakotaiah, Vemuri; Motil, Brian J.; McCready, Mark J.; Kamotani, Yasuhiro

    2004-01-01

    Flow regime and pressure drop data was obtained and analyzed. Pulse flow exists at lower liquid flow rates in 0-g compared to 1-g. 1-g flow regime maps do not apply in microgravity. Pressure drop is higher in microgravity (enhanced interfacial effects).

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, R.M.

    Although use of reverse-air filters dominates in operating US utility power stations, pulse-jet designs seem to be getting the lion`s share of attention for new and retrofit plants. This article examines key technical advantages of reverse-air designs that are becoming lost in the current debate. Control of particulate emissions continues to be an area of growing concern for operators of coal-fired powerplants, especially as it relates to air toxics and fine particulates. That concern has led to greater scrutiny of the devices used to control those emissions. Regarding the fabric-filter option, reverse-air (RA) designs have operated reliably at large utilitymore » units, but now face a strong challenge from pulse-jet (PJ) designs--which are more popular with operators of independent-power-producer, waste-to-energy, and other small solid-fuel-fired units. Both RA and PJ designs can adequately meet the particulate emissions requirements for large coal-fired units when properly applied. The wholesale shift by electric utilities from RA to PJ fabric filters--at least in discussion if not actual projects--is apparent but may be short-sighted. The oft-stated reason--that RA fabric filters can only handle a face velocity one-half that of PJ, resulting in higher cost for the RA option--is too simplistic. The many design and operating characteristics that distinguish the two should be thoroughly reviewed before blanket acceptance of PJ technology. Some of the technical areas reviewed here are level of commercial design experience, bag life, pressure drop, bag replacement procedure, cleaning cycles, particle elutriation, submicron-particle floaters, residual-cake preservation, and particle re-entrainment.« less

  8. Evaluation of Open Cell Foam Heat Transfer Enhancement for Liquid Rocket Engine

    NASA Technical Reports Server (NTRS)

    Chung, J. N.; Tully, Landon; Kim, Jung Hwan; Jones, Gregg W.; Watkins, William

    2006-01-01

    As NASA pursues the exploration mission, advanced propulsion for the next generation of spacecraft will be needed. These new propulsion systems will require higher performance and increased durability, despite current limitations on materials. A break-through technology is needed in the thrust chamber. In this paper the idea of using a porous metallic foam is examined for its potential cooling enhancement capabilities. The goal is to increase the chamber wall cooling without creating an additional pressure drop penalty. A feasibility study based on experiments at laboratory-scale conditions was performed and analysis at rocket conditions is underway. In the experiment, heat transfer and pressure drop data were collected using air as the coolant in a copper or nickel foam filled annular channel. The foam-channel performance was evaluated based on comparison with conventional microchannel cooling passages under equal pressure drop conditions. The heat transfer enhancement of the foam channel over the microchannel ranges from 130% to 172%. The enhancement is relatively independent of the pressure drop and increases with decreasing pore size. A direct numerical simulation model of the foam heat exchange has been built. The model is based on the actual metal foam microstructure of thin ligaments (0.2- 0.3 mm in diameter) that form a network of interconnected open-cells. The cell dimension is around 2 mm. The numerical model was built using the FLUENT CFD code. Comparison of the pressure drop results predicted by the current model with those experimental data of Leong and Jin [8] shows favorable comparisons. Pressure drop predictions have been made using hydrogen as a coolant at typical rocket conditions. Conjugate heat transfer analysis using the foam filled channel is planned for the future.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barleon, L.; Buehler, L.; Molokov, S.

    Magnetohydrodynamic (MHD) flow through a 90{degrees} bend, in which the flow is turned from the direction perpendicular to magnetic field lines into a direction aligned with the field, is characterized by strong three-dimensional effects leading to additional pressure drop and large deformations in the velocity distribution. Since such bends are basic elements of a fusion reactor blanket, the question whether the additional pressure drop exceeds unacceptable limits or whether the change in flow distribution may lead to unfavorable heat transfer conditions as to be answered. To investigate MHD flows in a right angle bend, several experiments have been performed inmore » a wide range of the relevant parameters. In the lower range of the interaction parameter N (N {much_lt} 10{sup 4}) the total pressure drop over the whole bend shows a pronounced N-dependence but only a weak dependence on the Hartmann number M. Both effects can be combined to a pressure drop correlation. At higher values of N and M the experimental results for pressure drop and potential distribution agree rather well with theoretical ones obtained on the basis of an asymptotic approach for high N and M. It can be shown theoretically and confirmed by the experiment that, even at high N and M the additional pressure drop in a right angle bend is not excessively high. For the investigated bend with conducting channel walls the predicted flow distribution does not show any stagnant zone at the high heat flux walls in the perfectly aligned part of the duct. This result, however, could not be checked experimentally because there is still no reliable velocity measurement technique available for field-aligned flows.« less

  10. Pressure drop reduction and heat transfer deterioration of slush nitrogen in triangular and circular pipe flows

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Kurose, Kizuku; Okuyama, Jun; Saito, Yutaro; Takahashi, Koichi

    2017-01-01

    Slush fluids such as slush hydrogen and slush nitrogen are characterized by superior properties as functional thermal fluids due to their density and heat of fusion. In addition to allowing efficient hydrogen transport and storage, slush hydrogen can serve as a refrigerant for high-temperature superconducting (HTS) equipment using MgB2, with the potential for synergistic effects. In this study, pressure drop reduction and heat transfer deterioration experiments were performed on slush nitrogen flowing in a horizontal triangular pipe with sides of 20 mm under the conditions of three different cross-sectional orientations. Experimental conditions consisted of flow velocity (0.3-4.2 m/s), solid fraction (0-25 wt.%), and heat flux (0, 10, and 20 kW/m2). Pressure drop reduction became apparent at flow velocities exceeding about 1.3-1.8 m/s, representing a maximum amount of reduction of 16-19% in comparison with liquid nitrogen, regardless of heating. Heat transfer deterioration was seen at flow velocities of over 1.2-1.8 m/s, for a maximum amount of deterioration of 13-16%. The authors of the current study compared the results for pressure drop reduction and heat transfer deterioration in triangular pipe with those obtained previously for circular and square pipes, clarifying differences in flow and heat transfer properties. Also, a correlation equation was obtained between the slush Reynolds number and the pipe friction factor, which is important in the estimation of pressure drop in unheated triangular pipe. Furthermore, a second correlation equation was derived between the modified slush Reynolds number and the pipe friction factor, enabling the integrated prediction of pressure drop in both unheated triangular and circular pipes.

  11. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  12. 40 CFR Appendix A to Part 80 - Test for the Determination of Phosphorus in Gasoline

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Specification for Filter Paper for Use in Chemical Analysis. 3. Summary of method. 3.1 Organic matter in the...) during the entire period of sample heating. Note 1: If the temperature of the hot water bath drops below... 100-ml volumetric flasks submerged to the mark in ice water. 4.4 Filter Paper, for quantitative...

  13. 40 CFR Appendix A to Part 80 - Test for the Determination of Phosphorus in Gasoline

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Specification for Filter Paper for Use in Chemical Analysis. 3. Summary of method. 3.1 Organic matter in the...) during the entire period of sample heating. Note 1: If the temperature of the hot water bath drops below... 100-ml volumetric flasks submerged to the mark in ice water. 4.4 Filter Paper, for quantitative...

  14. 40 CFR Appendix A to Part 80 - Test for the Determination of Phosphorus in Gasoline

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Specification for Filter Paper for Use in Chemical Analysis. 3. Summary of method. 3.1 Organic matter in the...) during the entire period of sample heating. Note 1: If the temperature of the hot water bath drops below... 100-ml volumetric flasks submerged to the mark in ice water. 4.4 Filter Paper, for quantitative...

  15. Static stress drop of the largest recorded M 4.6 hydraulic fracturing induced earthquake and its aftershock pattern in the northern Montney Play, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Wang, B.; Harrington, R. M.; Liu, Y.; Kao, H.

    2016-12-01

    The largest suspected fracking-induced earthquake to date occurred near Fort St. John, British Columbia on August 17, 2015, with a reported magnitude of Mw 4.6. Here we estimate the static stress released by the mainshock and the five cataloged aftershocks using new data from eight broadband seismometers installed approximately 50km from the hypocenter of the mainshock, at distances much closer than the Natural Resources Canada regional seismic stations. The estimated cross-correlation coefficient among the 5 cataloged earthquakes is 0.35 or greater. We will present seismic moment (M0) and spectral corner frequency (fc) values estimated using both individual earthquake spectra and spectral ratios to correct for travel-path attenuation and site effects. Static stress drop and scaled energy value calculations based on the estimated moment and corner frequency values will be presented, as well as focal mechanisms for the largest events with adequate station coverage. We will also use a multi-station matched-filter approach to detect additional uncataloged earthquakes on continuous waveforms for a period of two months after the mainshock. Using the results of the matched-filter approach, we will present the aftershock magnitude distribution and locations. The results of our detection and location calculations will be compared to reported fracking parameters, such as fluid injection pressure and duration, to determine their correlation with the spatial and temporal distribution of aftershocks. The objective of this study is to relate operational parameters to earthquake occurrence in order to help to develop procedures to understand the mechanisms responsible for fracking induced earthquakes, their relation to the maximum induced magnitude, and to reduce potential hazards of anthropogenically induced seismic activity.

  16. Spacecraft compartment venting

    NASA Astrophysics Data System (ADS)

    Scialdone, John J.

    1998-10-01

    At various times, concerns have been expressed that rapid decompressions of compartments of gas pockets and thermal blankets during spacecraft launches may have caused pressure differentials across their walls sufficient to cause minor structural failures, separations of adhesively-joined parts, ballooning, and flapping of blankets. This paper presents a close form equation expressing the expected pressure differentials across the walls of a compartment as a function of the external to the volume pressure drops, the pressure at which the rates occur and the vent capability of the compartment. The pressure profiles measured inside the shrouds of several spacecraft propelled by several vehicles and some profiles obtained from ground vacuum systems have been included. The equation can be used to design the appropriate vent, which will preclude excessive pressure differentials. Precautions and needed approaches for the evaluations of the expected pressures have been indicated. Methods to make a rapid assessment of the response of the compartment to rapid external pressure drops have been discussed. These are based on the evaluation of the compartment vent flow conductance, the volume and the length of time during which the rapid pressure drop occurs.

  17. Spacecraft Compartment Venting

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1998-01-01

    At various time concerns have been expressed that rapid decompressions of compartments of gas pockets and thermal blankets during spacecraft launches may have caused pressure differentials across their walls sufficient to cause minor structural failures, separations of adhesively-joined parts, ballooning, and flapping of blankets. This paper presents a close form equation expressing the expected pressure differentials across the walls of a compartment as a function of the external to the volume pressure drops, the pressure at which the rates occur and the vent capability of the compartment. The pressure profiles measured inside the shrouds of several spacecraft propelled by several vehicles and some profiles obtained from ground vacuum systems have been included. The equation can be used to design the appropriate vent, which will preclude excessive pressure differentials. Precautions and needed approaches for the evaluations of the expected pressures have been indicated. Methods to make a rapid assessment of the response of the compartment to rapid external pressure drops have been discussed. These are based on the evaluation of the compartment vent flow conductance, the volume and the length of time during which the rapid pressure drop occurs.

  18. Wavelength-tunable filter utilizing non-cyclic arrayed waveguide grating to create colorless, directionless, contentionless ROADMs

    NASA Astrophysics Data System (ADS)

    Niwa, Masaki; Takashina, Shoichi; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi; Watanabe, Toshio

    2015-01-01

    With the continuous increase in Internet traffic, reconfigurable optical add-drop multiplexers (ROADMs) have been widely adopted in the core and metro core networks. Current ROADMs, however, allow only static operation. To realize future dynamic optical-network services, and to minimize any human intervention in network operation, the optical signal add/drop part should have colorless/directionless/contentionless (C/D/C) capabilities. This is possible with matrix switches or a combination of splitter-switches and optical tunable filters. The scale of the matrix switch increases with the square of the number of supported channels, and hence, the matrix-switch-based architecture is not suitable for creating future large-scale ROADMs. In contrast, the numbers of splitter ports, switches, and tunable filters increase linearly with the number of supported channels, and hence the tunable-filter-based architecture will support all future traffic. So far, we have succeeded in fabricating a compact tunable filter that consists of multi-stage cyclic arrayed-waveguide gratings (AWGs) and switches by using planar-lightwave-circuit (PLC) technologies. However, this multistage configuration suffers from large insertion loss and filter narrowing. Moreover, power-consuming temperature control is necessary since it is difficult to make cyclic AWGs athermal. We propose here novel tunable-filter architecture that sandwiches a single-stage non-cyclic athermal AWG having flatter-topped passbands between small-scale switches. With this configuration, the optical tunable filter attains low insertion loss, large passband bandwidths, low power consumption, compactness, and high cost-effectiveness. A prototype is monolithically fabricated with PLC technologies and its excellent performance is experimentally confirmed utilizing 80-channel 30-GBaud dual-polarization quadrature phase-shift-keying (QPSK) signals.

  19. Acoustic forcing of a liquid drop

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  20. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Bohn, Mark S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610 mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440 C and air inlet temperatures of approximately 230 C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/sq m/s air flow and 6 to 18 kg/sq m/s salt flow, the data agree with the model within 22 percent standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18 percent standard deviation over the range of column pressure drop from 40 to 1250 Pa/m.

  1. Operational durability of a giant ER valve for Braille display

    NASA Astrophysics Data System (ADS)

    Luning, Xu; Han, Li; Yufei, Li; Shen, Rong; Kunquan, Lu

    2017-05-01

    The compact configuration of giant ER (electrorheological) valves provides the possibility of realizing a full-page Braille display. The operational durability of ER valves is a key issue in fulfilling a Braille display. A giant ER valve was used to investigate the variations in pressure drops and critical pressure drops of the valves over a long period under some typical operational parameters. The results indicate that neither the pressure drops nor critical pressure drops of giant ER valves show apparent deterioration over a long period. Without ER fluid exchange, a blockage appears in the channel of the valve because the ER structures induced by an external electric field cannot be broken by the Brownian motion of hydraulic oil molecules when the external electric field is removed. Forcing ER fluid flow is an effective and necessary method to keep the channel of the valve unblocked. Thus the operational durability of the valve using giant ER fluids is able to meet the demands of Braille display.

  2. Flow and Thermal Performance of a Water-Cooled Periodic Transversal Elliptical Microchannel Heat Sink for Chip Cooling.

    PubMed

    Wei, Bo; Yang, Mo; Wang, Zhiyun; Xu, Hongtao; Zhang, Yuwen

    2015-04-01

    Flow and thermal performance of transversal elliptical microchannels were investigated as a passive scheme to enhance the heat transfer performance of laminar fluid flow. The periodic transversal elliptical micro-channel is designed and its pressure drop and heat transfer characteristics in laminar flow are numerically investigated. Based on the comparison with a conventional straight micro- channel having rectangular cross section, it is found that periodic transversal elliptical microchannel not only has great potential to reduce pressure drop but also dramatically enhances heat transfer performance. In addition, when the Reynolds number equals to 192, the pressure drop of the transversal elliptical channel is 36.5% lower than that of the straight channel, while the average Nusselt number is 72.8% higher; this indicates that the overall thermal performance of the periodic transversal elliptical microchannel is superior to the conventional straight microchannel. It is suggested that such transversal elliptical microchannel are attractive candidates for cooling future electronic chips effectively with much lower pressure drop.

  3. Condensation heat transfer and pressure drop of R-410A in a 7.0 mm O.D. microfin tube at low mass fluxes

    NASA Astrophysics Data System (ADS)

    Kim, Nae-Hyun

    2016-12-01

    R-410A condensation heat transfer and pressure drop data are provided for a 7.0 mm O.D. microfin tube at low mass fluxes (50-250 kg/m2 s). The heat transfer coefficient of the microfin tube shows a minimum behavior with the mass flux. At a low mass flux, where flow pattern is stratified, condensation induced by surface tension by microfins overwhelms condensation induced by shear, and the heat transfer coefficient decreases as mass flux increases. At a high mass flux, where flow pattern is annular, condensation induced by shear governs the heat transfer, and the heat transfer coefficient increases as mass flux increases. The pressure drop of the microfin tube is larger than that of the smooth tube at the annular flow regime. On the contrary, the pressure drop of the smooth tube is larger than that of the microfin tube at the stratified flow regime.

  4. A study of pressure losses in residential air distribution systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

    2002-07-01

    An experimental study was conducted to evaluate the pressure drop characteristics of residential duct system components that are either not available or not thoroughly (sometimes incorrectly) described in existing duct design literature. The tests were designed to imitate cases normally found in typical residential and light commercial installations. The study included three different sizes of flexible ducts, under different compression configurations, splitter boxes, supply boots, and a fresh air intake hood. The experimental tests conformed to ASHRAE Standard 120P--''Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings''. The flexible duct study covered compressibility and bending effectsmore » on the total pressure drop, and the results showed that the available published references tend to underestimate the effects of compression in flexible ducts that can increase pressure drops by up to a factor of nine. The supply boots were tested under different configurations including a setup where a flexible duct elbow connection was considered as an integral part of the supply boot. The supply boots results showed that diffusers can increase the pressure drop by up to a factor of two in exit fittings, and the installation configuration can increase the pressure drop by up to a factor of five. The results showed that it is crucial for designers and contractors to be aware of the compressibility effects of the flexible duct, and the installation of supply boots and diffusers.« less

  5. Prediction of load threshold of fibre-reinforced laminated composite panels subjected to low velocity drop-weight impact using efficient data filtering techniques

    NASA Astrophysics Data System (ADS)

    Farooq, Umar; Myler, Peter

    This work is concerned with physical testing of carbon fibrous laminated composite panels with low velocity drop-weight impacts from flat and round nose impactors. Eight, sixteen, and twenty-four ply panels were considered. Non-destructive damage inspections of tested specimens were conducted to approximate impact-induced damage. Recorded data were correlated to load-time, load-deflection, and energy-time history plots to interpret impact induced damage. Data filtering techniques were also applied to the noisy data that unavoidably generate due to limitations of testing and logging systems. Built-in, statistical, and numerical filters effectively predicted load thresholds for eight and sixteen ply laminates. However, flat nose impact of twenty-four ply laminates produced clipped data that can only be de-noised involving oscillatory algorithms. Data filtering and extrapolation of such data have received rare attention in the literature that needs to be investigated. The present work demonstrated filtering and extrapolation of the clipped data using Fast Fourier Convolution algorithm to predict load thresholds. Selected results were compared to the damage zones identified with C-scan and acceptable agreements have been observed. Based on the results it is proposed that use of advanced data filtering and analysis methods to data collected by the available resources has effectively enhanced data interpretations without resorting to additional resources. The methodology could be useful for efficient and reliable data analysis and impact-induced damage prediction of similar cases' data.

  6. 61. (Credit CBF) Operating floor of filter room, c1912. A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. (Credit CBF) Operating floor of filter room, c1912. A remodeled Hyatt pressure filter, now operating as a tub, gravity, rapid sand filter, is in the foreground (the remodeling took place c1908-1909). The remodeled New York horizontal pressure filters (installed 01900, remodeled c1908-1909) are in the background. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  7. 40 CFR 63.9921 - What are the installation, operation and maintenance requirements for my monitors?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating limits in § 63.9890(b) for pressure drop and scrubber water flow rate, you must install, operate...) For the pressure drop CPMS, you must: (i) Locate the pressure sensor(s) in or as close to a position... sensitivity of 0.5 inch of water or a transducer with a minimum measurement sensitivity of 1 percent of the...

  8. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  9. Increasing the Contrast-to-Noise Ratio of MRI Signals for Regional Assessment of Dynamic Cerebral Autoregulation.

    PubMed

    Jara, José L; Saeed, Nazia P; Panerai, Ronney B; Robinson, Thompson G

    2018-01-01

    To devise an appropriate measure of the quality of a magnetic resonance imaging (MRI) signal for the assessment of dynamic cerebral autoregulation, and propose simple strategies to improve its quality. Magnetic resonance images of 11 healthy subjects were scanned during a transient decrease in arterial blood pressure (BP). Mean signals were extracted from non-overlapping brain regions for each image. An ad-hoc contrast-to-noise ratio (CNR) was used to evaluate the quality of these regional signals. Global mean signals were obtained by averaging the set of regional signals resulting after applying a Hampel filter and discarding a proportion of the lower quality component signals. Significant improvements in CNR values of global mean signals were obtained, whilst maintaining significant correlation with the original ones. A Hampel filter with a small moving window and a low rejection threshold combined with a selection of the 50% component signals seems a recommendable option. This work has demonstrated the possibility of improving the quality of MRI signals acquired during transient drops in BP. This approach needs validation at a voxel level, which could help to consolidate MRI as a technological alternative to the standard techniques for the study of cerebral autoregulation.

  10. Predicting pressure drop in venturi scrubbers with artificial neural networks.

    PubMed

    Nasseh, S; Mohebbi, A; Jeirani, Z; Sarrafi, A

    2007-05-08

    In this study a new approach based on artificial neural networks (ANNs) has been used to predict pressure drop in venturi scrubbers. The main parameters affecting the pressure drop are mainly the gas velocity in the throat of venturi scrubber (V(g)(th)), liquid to gas flow rate ratio (L/G), and axial distance of the venturi scrubber (z). Three sets of experimental data from five different venturi scrubbers have been applied to design three independent ANNs. Comparing the results of these ANNs and the calculated results from available models shows that the results of ANNs have a better agreement with experimental data.

  11. Development of a constant surface pressure penetration langmuir balance based on axisymmetric drop shape analysis.

    PubMed

    Wege, H A; Holgado-Terriza, J A; Cabrerizo-Vílchez, M A

    2002-05-15

    A new constant pressure pendant-drop penetration surface balance has been developed combining a pendant-drop surface balance, a rapid-subphase-exchange technique, and a fuzzy logic control algorithm. Beside the determination of insoluble monolayer compression-expansion isotherms, it allows performance of noninvasive kinetic studies of the adsorption of surfactants added to the new subphase onto the free surface and of the adsorption/penetration/reaction of the former onto/into/with surface layers, respectively. The interfacial pressure pi is a fundamental parameter in these studies: by working at constant pi one controls the height of the energy barrier to adsorption/penetration and can select different regimes and steps of the adsorption/penetration process. In our device a solution drop is formed at the tip of a coaxial double capillary, connected to a double microinjector. Drop profiles are extracted from digital drop micrographs and fitted to the equation of capillarity, yielding pi, the drop volume V, and the interfacial area A. pi is varied changing V (and hence A) with the microinjector. Control is based on a case-adaptable modulated fuzzy-logic PID algorithm able to maintain constant pi (or A) under a wide range of experimental conditions. The drop subphase liquid can be exchanged quantitatively by the coaxial capillaries. The adsorption/penetration/reaction kinetics at constant pi are then studied monitoring A(t), i.e., determining the relative area change necessary at each instant to compensate the pressure variation due to the interaction of the surfactant in the subsurface with the surface layer. A fully Windows-integrated program manages the whole setup. Examples of experimental protein adsorption and monolayer penetration kinetics are presented.

  12. Technical Requirements for On-Site Thermal Desorption of Solid Media Contaminated with Hazardous Chlorinated Organics

    DTIC Science & Technology

    1997-09-18

    scrubbers , detectable dioxin/furans may occur, since dioxin/furans are much more soluble in organics than in water. Carbon adsorption is frequently...air pollution control device is required. Acid gases may be controlled by using a wet or dry scrubber or by using a coated baghouse. Operating...unit: 1. exit treated waste temperature; 2. baghouse pressure drop, venturi pressure drop, or drop in liquid/gas ratio; 3. waste feed rate; 4

  13. Mechanisms of Exhaust Pollutants and Plume Formation in Continuous Combustion.

    DTIC Science & Technology

    1984-11-30

    drop swirler. A swirled air inlet decreased flame length . Two modes of operation were observed. At higher fuel loadings, reaction could be initiated...and maintained in the recirculation zone in the shadow of the step. The net result was a shorter overall flame length . The low-pressure drop swirler...yielded a shorter flame length relative to the higher pressure drop devices. - • u mmm m -m~amkn Jm• ml AM mmmmm TABLE OF CONTENTS Section Title Page

  14. Visualization Measurement of Streaming Flows Associated with a Single-Acoustic Levitator

    NASA Astrophysics Data System (ADS)

    Hasegawa, Koji; Abe, Yutaka; Kaneko, Akiko; Yamamoto, Yuji; Aoki, Kazuyoshi

    2009-08-01

    The purpose of the study is to experimentally investigate flow fields generated by an acoustic levitator. This flow field has been observed using flow visualization, PIV method. In the absent of a drop, the flow field was strongly influenced by sound pressure level (SPL). In light of the interfacial stability of a levitated drop, SPL was set at 161-163 [dB] in our experiments. In the case of any levitated drop at a pressure node of a standing wave, the toroidal vortices were appeared around a drop and clearly observed the flow fields around the drop by PIV measurement. It is found that the toroidal vortices around a levitated drop were strongly affected by the viscosity of a drop. For more detailed research, experiments in the reduced gravity were conducted with aircraft parabolic flights. By comparison with experimental results in the earth and reduced gravity, it is also indicated that the configuration of the external flow field around a drop is most likely to be affected by a position of a drop as well.

  15. 40 CFR 63.1659 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... followed and the corrective actions taken. (2) Venturi scrubbers. In addition to the information required... identify the periods when the average hourly pressure drop of venturi scrubbers used to control particulate... of the scrubber pressure drop limit per paragraph (b)(2) of this section. These reports are to be...

  16. Summary of efficiency testing of standard and high-capacity high-efficiency particulate air filters subjected to simulated tornado depressurization and explosive shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.R.; Gregory, W.S.

    1985-04-01

    Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the samemore » (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released.« less

  17. Motion measurement of acoustically levitated object

    NASA Technical Reports Server (NTRS)

    Watkins, John L. (Inventor); Barmatz, Martin B. (Inventor)

    1993-01-01

    A system is described for determining motion of an object that is acoustically positioned in a standing wave field in a chamber. Sonic energy in the chamber is sensed, and variation in the amplitude of the sonic energy is detected, which is caused by linear motion, rotational motion, or drop shape oscillation of the object. Apparatus for detecting object motion can include a microphone coupled to the chamber and a low pass filter connected to the output of the microphone, which passes only frequencies below the frequency of sound produced by a transducer that maintains the acoustic standing wave field. Knowledge about object motion can be useful by itself, can be useful to determine surface tension, viscosity, and other information about the object, and can be useful to determine the pressure and other characteristics of the acoustic field.

  18. Oxygen-free atomic layer deposition of indium sulfide

    DOEpatents

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  19. Polarization-independent optical wavelength filter for channel dropping applications

    DOEpatents

    Deri, R.J.; Patterson, F.

    1996-05-07

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required. 14 figs.

  20. Polarization-independent optical wavelength filter for channel dropping applications

    DOEpatents

    Deri, Robert J.; Patterson, Frank

    1996-01-01

    The polarization dependence of optical wavelength filters is eliminated by using waveguide directional couplers. Material birefringence is used to compensate for the waveguide (electromagnetic) birefringence which is the original cause of the polarization dependence. Material birefringence is introduced in a controllable fashion by replacing bulk waveguide layers by finely layered composites, such as multiple quantum wells using III-V semiconductor materials. The filter has use in wavelength-division-multiplexed fiber optic communication systems. This filter has broad application for wavelength-tunable receivers in fiber optic communication links, which may be used for telecommunications, optical computer interconnect links, or fiber optic sensor systems. Since multiple-wavelength systems are increasingly being used for all of these applications, the filter is useable whenever a rapidly tunable, wavelength-filtering receiver is required.

  1. Pulsatile plasma filtration and cell-free DNA amplification using a water-head-driven point-of-care testing chip.

    PubMed

    Lee, Yonghun; Kim, Dong-Min; Li, Zhenglin; Kim, Dong-Eun; Kim, Sung-Jin

    2018-03-13

    We demonstrate a microfiltration chip that separates blood plasma by using water-head-driven pulsatile pressures rather than any external equipment and use it for on-chip amplification of nucleic acids. The chip generates pulsatile pressures to significantly reduce filter clogging without hemolysis, and consists of an oscillator, a plasma-extraction pump, and filter units. The oscillator autonomously converts constant water-head pressure to pulsatile pressure, and the pump uses the pulsatile pressure to extract plasma through the filter. Because the pulsatile pressure can periodically clear blood cells from the filter surface, filter clogging can be effectively reduced. In this way, we achieve plasma extraction with 100% purity and 90% plasma recovery at 15% hematocrit. During a 10 min period, the volume of plasma extracted was 43 μL out of a 243 μL extraction volume at 15% hematocrit. We also studied the influence of the pore size and diameter of the filter, blood loading volume, oscillation period, and hematocrit level on the filtration performance. To demonstrate the utility of our chip for point-of-care testing (POCT) applications, we successfully implemented on-chip amplification of a nucleic acid (miDNA21) in plasma filtered from blood. We expect our chip to be useful not only for POCT applications but also for other bench-top analysis tools using blood plasma.

  2. DEVELOPMENT OF A LAMINATED DISK FOR THE SPIN TEK ROTARY MICROFILTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, D.

    2011-06-03

    Funded by the Department of Energy Office of Environmental Management, EM-31, the Savannah River National Laboratory (SRNL) partnered with SpinTek Filtration{trademark} to develop a filter disk that would withstand a reverse pressure or flow during operation of the rotary microfilter. The ability to withstand a reverse pressure and flow eliminates a potential accident scenario that could have resulted in damage to the filter membranes. While the original welded filter disks have been shown to withstand and reverse pressure/flow in the static condition, the filter disk design discussed in this report will allow a reverse pressure/flow while the disks are rotating.more » In addition, the laminated disk increases the flexibility during filter startup and cleaning operations. The new filter disk developed by SRNL and SpinTek is manufactured with a more open structure significantly reducing internal flow restrictions in the disk. The prototype was tested at the University of Maryland and demonstrated to withstand the reverse pressure due to the centrifugal action of the rotary filter. The tested water flux of the disk was demonstrated to be 1.34 gpm in a single disk test. By comparison, the water flux of the current disk was 0.49 gpm per disk during a 25 disk test. The disk also demonstrated rejection of solids by filtering a 5 wt % Strontium Carbonate slurry with a filtrate clarity of less the 1.4 Nephelometric Turbidity Units (NTU) throughout the two hour test. The Savannah River National Laboratory (SRNL) has been working with SpinTek Filtration{trademark} to adapt the rotary microfilter for radioactive service in the Department of Energy (DOE) Complex. One potential weakness is the loose nature of the membrane on the filter disks. The current disk is constructed by welding the membrane at the outer edge of the disk. The seal for the center of the membrane is accomplished by an o-ring in compression for the assembled stack. The remainder of the membrane is free floating on the disk. This construction requires that a positive pressure be applied to the rotary filter tank to prevent the membrane from rising from the disk structure and potentially contacting the filter turbulence promoter. In addition, one accident scenario is a reverse flow through the filtrate line due to mis-alignment of valves resulting in the membrane rising from the disk structure. The structural integrity of the current disk has been investigated, and shown that the disk can withstand a significant reverse pressure in a static condition. However, the disk will likely incur damage if the filter stack is rotated during a reverse pressure. The development of a laminated disk would have several significant benefits for the operation of the rotary filter including the prevention of a compromise in filter disk integrity during a reverse flow accident, increasing operational flexibility, and increasing the self cleaning ability of the filter. A laminated disk would allow the filter rotor operation prior to a positive pressure in the filter tank. This would prevent the initial dead-head of the filter and prevent the resulting initial filter cake buildup. The laminated disk would allow rotor operation with cleaning fluid, eliminating the need for a recirculation pump. Additionally, a laminated disk would allow a reverse flow of fluid through the membrane pores removing trapped particles.« less

  3. Postprandial hypotension among older residents of a nursing home in Korea.

    PubMed

    Son, Jung Tae; Lee, Eunjoo

    2012-12-01

    The purpose of this study was to identify changes in blood pressure and pulse rate after a meal for elders living in a nursing home. Postprandial hypotension is a major health issue for older persons, because it has been shown to cause increased incidence of falls, syncope, coronary disease, strokes and deterioration in the quality of life. However, there has been little systematic investigation into blood pressure changes after meals in older people. A descriptive, cross-sectional design was used to identify postprandial blood pressure and pulse rate changes in residents of a nursing home. Blood pressure and pulse rates of 121 people aged 65 and above were measured before and after a meal and at 15-minute intervals for six more measurements. Data were analysed with descriptive statistics, repeated measures anova and paired t-tests using SPSS (SPSS Inc., Chicago, IL, USA). There were significant differences in systolic and diastolic pressure by time. The biggest drop in systolic and diastolic blood pressure occurred at 45 minutes after the meal. There was no significant change in pulse rates except for immediately after the meal. To prevent complications from drops in postprandial blood pressure, nurses should carefully monitor blood pressure of elders at least from 30-90 minutes after meals. Further study of drops in postprandial blood pressure should be conducted for various types and times of meals. Nurses caring for older persons can identify drops in the postprandial blood pressure to manage the incidence of falls, syncope and stroke more effectively, especially in nursing homes. © 2012 Blackwell Publishing Ltd.

  4. Calculation of pressure drop in the developmental stages of the medaka fish heart and microvasculature

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sreyashi; Vlachos, Pavlos

    2016-11-01

    Peristaltic contraction of the developing medaka fish heart produces temporally and spatially varying pressure drop across the atrioventricular (AV) canal. Blood flowing through the tail vessels experience a slug flow across the developmental stages. We have performed a series of live imaging experiments over 14 days post fertilization (dpf) of the medaka fish egg and cross-correlated the red blood cell (RBC) pattern intensities to obtain the two-dimensional velocity fields. Subsequently we have calculated the pressure field by integrating the pressure gradient in the momentum equation. Our calculations show that the pressure drop across the AV canal increases from 0.8mm Hg during 3dpf to 2.8 mm Hg during 14dpf. We have calculated the time-varying wall shear stress for the blood vessels by assuming a spatially constant velocity magnitude in each vessel. The calculated wall shear stress matches the wall shear stress sensed by human endothelial cells (10-12 dyne/sq. cm). The pressure drop per unit length of the vessel is obtained by doing a control volume analysis of flow in the caudal arteries and veins. The current results can be extended to investigate the effect of the fluid dynamic parameters on the vascular and cardiac morphogenesis.

  5. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter.

    PubMed

    Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun

    2017-01-23

    In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.

  6. Drop impact on a solid surface at reduced air pressure

    NASA Astrophysics Data System (ADS)

    Langley, Kenneth; Li, E. Q.; Tian, Y. S.; Hicks, P. D.; Thoroddsen, S. T.

    2017-11-01

    When a drop approaches a solid surface at atmospheric pressure, the lubrication pressure within the air forms a dimple in the bottom of the drop resulting in the entrainment of an air disc upon impact. Reducing the ambient air pressure below atmospheric has been shown to suppress splashing and the compression of the intervening air could be significant on the air disc formation; however, to date there have been no experimental studies showing how the entrainment of the air disc is affected by reducing the ambient pressure. Using ultra-high-speed interferometry, at up to 5 Mfps, we investigate droplet impacts onto dry solid surfaces in reduced ambient air pressures with particular interest in what happens as rarified gas effects become important, i.e. when the thickness of the air layer is of the same magnitude as the mean free path of the air molecules. Experimental data will be presented showing novel phenomena and comparisons will be drawn with theoretical models from the literature.

  7. Filter for high-pressure gases has easy take- down, assembly

    NASA Technical Reports Server (NTRS)

    Mac Glashan, W. F.

    1964-01-01

    A small metal filter body, for use in tubing supplying sterilization gases, has an inlet end that can be unscrewed. Inside, the high pressure filter is supported on both sides and sealed by an O ring. Design facilitates assembly and disassembly of parts.

  8. Ab Interno Trabeculectomy With the Trabectome as a Valuable Therapeutic Option for Failed Filtering Blebs.

    PubMed

    Wecker, Thomas; Neuburger, Matthias; Bryniok, Laura; Bruder, Kathrin; Luebke, Jan; Anton, Alexandra; Jordan, Jens F

    2016-09-01

    Uncontrolled intraocular pressure (IOP) after glaucoma filtration surgery is a challenging problem in the management of glaucoma patients. The Trabectome is a device for selective electroablation of the trabecular meshwork through a clear cornea incision without affecting the conjunctiva. Minimally invasive glaucoma surgery using the Trabectome is safe and effective as primary glaucoma surgery. Here we investigate the results of ab interno trabeculectomy with the Trabectome for IOP control in patients with a failed filtering bleb. A total of 60 eyes of 60 consecutive patients with primary open-angle glaucoma (POAG) or pseudoexfoliative glaucoma (PXG) were enrolled in this single center observational study. Trabectome surgery was performed alone or in combination with phacoemulsification by 2 experienced surgeons. IOP readings and number of IOP lowering medication as primary outcome parameters were taken by an independent examiner. Intraoperative and postoperative medication were recorded systematically. Mean IOP before surgery was 24.5±3.5 mm Hg and decreased to 15.7±3.4 (-36%) after mean follow-up of 415 days. The number of necessary IOP lowering medication dropped from 2.1±1.3 to 1.8±1.2 (14% reduction from baseline). A total of 25% (n=15) of cases reported here needed additional surgery after 517 days (range: 6 to 1563 d). No major complications were observed. After mean follow-up, we found a qualified success rate for PXG of 87% and 50% for POAG as revealed by the Kaplan-Meier analysis according to the definitions for success in advanced glaucoma cases according to the World Glaucoma Association (40% reduction from baseline IOP and maximum IOP of 15 mm Hg). Trabectome surgery for uncontrolled IOP after trabeculectomy is safe and effective especially in PXG patients. Given the demanding subgroup of patients studied here, it is not surprising that success rates are lower compared with previous studies investigating the Trabectome for primary glaucoma surgery. The number of necessary IOP lowering medication drops at first, but seems to reach preoperative values after 20 months of follow-up. Trabectome surgery should be considered as a valuable escape procedure for patients with failed filtering blebs and uncontrolled IOP.

  9. Development of a multimodal blast sensor for measurement of head impact and over-pressurization exposure.

    PubMed

    Chu, Jeffrey J; Beckwith, Jonathan G; Leonard, Daniel S; Paye, Corey M; Greenwald, Richard M

    2012-01-01

    It is estimated that 10-20% of United States soldiers returning from Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) have suffered at least one instance of blast-induced traumatic brain injury (bTBI) with many reporting persistent symptomology and long-term effects. This variation in blast response may be related to the complexity of blast waves and the many mechanisms of injury, including over-pressurization due to the shock wave and potential for blunt impacts to the head from shrapnel or from other indirect impacts (e.g., building, ground, and vehicle). To help differentiate the effects of primary, secondary, and tertiary effects of blast, a custom sensor was developed to simultaneously measure over-pressurization and blunt impact. Moreover, a custom, complementary filter was designed to differentiate the measurements of blunt (low-frequency bandwidth) from over-pressurization (high-frequency bandwidth). The custom sensor was evaluated in the laboratory using a shock tube to simulate shock waves and a drop fixture to simulate head impacts. Both bare sensors and sensor embedded within an ACH helmet coupon were compared to laboratory reference transducers under multiple loading conditions (n = 5) and trials at each condition (n = 3). For all comparative measures, peak magnitude, peak impulse, and cross-correlation measures, R (2) values, were greater than 0.900 indicating excellent agreement of peak measurements and time-series comparisons with laboratory measures.

  10. Evaluation of Plastic Media Blasting Equipment

    DTIC Science & Technology

    1987-04-01

    the differential pressure across the filter element or by a timer with a differential pressure switch override. The timer and the differential pressure ...automatic. The mechanism should be activated by the differential pressure across the filter element or by a timer with a differential pressure switch override...The timer and the differential pressure switch settings should be adjustable. The dust then falls to the bottom of the baghouse for

  11. Evaluation of different diameter arterial tubing and arterial cannulae in simulated neonatal/pediatric cardiopulmonary bypass circuits.

    PubMed

    Wang, Shigang; Rosenthal, Tami; Kunselman, Allen R; Ündar, Akif

    2015-01-01

    The objective of this study is to evaluate three different diameters of arterial tubing and three diameters of arterial cannulae in terms of pressure drop, and hemodynamic energy delivery in simulated neonatal/pediatric cardiopulmonary bypass (CPB) circuits. The CPB circuit consisted of a Terumo Capiox Baby FX05 oxygenator (Terumo Corporation, Tokyo, Japan), arterial tubing (1/4 in, 3/16 in, or 1/8 in × 150 cm), and a Medtronic Bio-Medicus arterial cannula (8, 10, or 12 Fr; Medtronic, Inc., Minneapolis, MN, USA). The pseudo patient's pressure was maintained at 50 mm Hg. The circuit was primed using lactated Ringer's solution and heparinized packed human red blood cells (hematocrit 30%). Trials were conducted at different flow rates and temperatures (35 and 28°C). Flow and pressure data were collected using a custom-based data acquisition system. Using 8 Fr arterial cannula at 500 mL/min, small diameter arterial tubing generated higher circuit pressure (294.6 ± 0.1 mm Hg [1/8 in], 213.5 ± 0.5 mm Hg [3/16 in], 208.4 ± 0.4 mm Hg [1/4 in] at 35°C) and arterial line pressure drop (158.3 ± 0.1 mm Hg [1/8 in], 79.6 ± 0.1 mm Hg [3/16 in], 62.1 ± 0.1 mm Hg [1/4 in] at 35°C). Using 10 Fr arterial cannula at 1000 mL/min, pre-oxygenator pressures were 266.8 ± 0.2 mm Hg (3/16 in) and 248.0 ± 0.3 mm Hg (1/4 in); arterial line pressure drops were 111.6 ± 0.0 mm Hg (3/16 in) and 74.0 ± 0.1 mm Hg (1/4 in) at 35°C. When using 12 Fr arterial cannula at 1500 mL/min, preoxygenator pressures reached 324.4 ± 0.3 mm Hg (3/16 in) and 302.5 ± 0.4 mm Hg (1/4 in); arterial line pressure drops were 154.0 ± 0.1 mm Hg (3/16 in) and 92.0 ± 0.2 mm Hg (1/4 in) at 35°C. Pressure drops across arterial line tubing were main CPB circuit pressure drops. High flow rate, hypothermia, small diameter arterial tubing. and arterial cannula created more hemodynamic energy at the preoxygenator site, but energy loss across CPB circuit also increased. Although small diameter (<1/4 in ID) arterial tubing may decrease total CPB priming volume, it also led to significantly higher circuit pressure, higher pressure drop, and more hemodynamic energy loss across CPB circuit. Larger diameter arterial cannula had less pressure drop and allowed more hemodynamic energy delivery to the patient. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Fundamental study of transpiration cooling. [pressure drop and heat transfer data from porous metals

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Dutton, J. L.; Benson, B. A.

    1973-01-01

    Isothermal and non-isothermal pressure drop data and heat transfer data generated on porous 304L stainless steel wire forms, sintered spherical stainless steel powder, and sintered spherical OFHC copper powder are reported and correlated. Pressure drop data was collected over a temperature range from 500 R to 2000 R and heat transfer data collected over a heat flux range from 5 to 15 BTU/in2/sec. It was found that flow data could be correlated independently of transpirant temperature and type (i.e., H2, N2). It was also found that no simple relation between heat transfer coefficient and specimen porosity was obtainable.

  13. Orbiter thermal pressure drop characteristics for shuttle orbiter thermal protection system components: High density tile, low density tile, densified low density tile, and strain isolation pad

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Nystrom, D. M.

    1980-01-01

    Pressure drop tests were conducted on available samples of low and high density tile, densified low density tile, and strain isolation pads. The results are presented in terms of pressure drop, material thickness and volume flow rate. Although the test apparatus was only capable of a small part of the range of conditions to be encountered in a Shuttle Orbiter flight, the data serve to determine the type of flow characteristics to be expected for each material type tested; the measured quantities also should serve as input for initial venting and flow through analysis.

  14. Condensation of nano-refrigerant inside a horizontal tube

    NASA Astrophysics Data System (ADS)

    Darzi, Milad; Sadoughi, M. K.; Sheikholeslami, M.

    2018-05-01

    In this paper, condensing pressure drop of refrigerant-based nanofluid inside a tube is studied. Isobutene was selected as the base fluid while CuO nanoparticles were utilized to prepare nano-refrigerant. However, for the feasibility of nanoparticle dispersion into the refrigerant, Polyester oil (POE) was utilized as lubricant oil and added to the pure refrigerant by 1% mass fraction. Various values of mass flux, vapor quality, concentration of nanoparticle are investigated. Results indicate that adding nanoparticles leads to enhance frictional pressure drop. Nanoparticles caused larger pressure drop penalty at relatively lower vapor qualities which may be attributed to the existing condensation flow pattern such that annular flow is less influenced by nanoparticles compared to intermittent flow regime.

  15. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOEpatents

    Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  16. Time to stabilization in single leg drop jump landings: an examination of calculation methods and assessment of differences in sample rate, filter settings and trial length on outcome values.

    PubMed

    Fransz, Duncan P; Huurnink, Arnold; de Boode, Vosse A; Kingma, Idsart; van Dieën, Jaap H

    2015-01-01

    Time to stabilization (TTS) is the time it takes for an individual to return to a baseline or stable state following a jump or hop landing. A large variety exists in methods to calculate the TTS. These methods can be described based on four aspects: (1) the input signal used (vertical, anteroposterior, or mediolateral ground reaction force) (2) signal processing (smoothed by sequential averaging, a moving root-mean-square window, or fitting an unbounded third order polynomial), (3) the stable state (threshold), and (4) the definition of when the (processed) signal is considered stable. Furthermore, differences exist with regard to the sample rate, filter settings and trial length. Twenty-five healthy volunteers performed ten 'single leg drop jump landing' trials. For each trial, TTS was calculated according to 18 previously reported methods. Additionally, the effects of sample rate (1000, 500, 200 and 100 samples/s), filter settings (no filter, 40, 15 and 10 Hz), and trial length (20, 14, 10, 7, 5 and 3s) were assessed. The TTS values varied considerably across the calculation methods. The maximum effect of alterations in the processing settings, averaged over calculation methods, were 2.8% (SD 3.3%) for sample rate, 8.8% (SD 7.7%) for filter settings, and 100.5% (SD 100.9%) for trial length. Differences in TTS calculation methods are affected differently by sample rate, filter settings and trial length. The effects of differences in sample rate and filter settings are generally small, while trial length has a large effect on TTS values. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effects of sudden air pressure changes on hospital admissions for cardiovascular diseases in Prague, 1994-2009

    NASA Astrophysics Data System (ADS)

    Plavcová, Eva; Kyselý, Jan

    2014-08-01

    Sudden weather changes have long been thought to be associated with negative impacts on human health, but relatively few studies have attempted to quantify these relationships. We use large 6-h changes in atmospheric pressure as a proxy for sudden weather changes and evaluate their association with hospital admissions for cardiovascular diseases (CVD). Winter and summer seasons and positive and negative pressure changes are analysed separately, using data for the city of Prague (population 1.2 million) over a 16-year period (1994-2009). We found that sudden pressure drops in winter are associated with significant rise in hospital admissions. Increased CVD morbidity was observed neither for pressure drops in summer nor pressure increases in any season. Analysis of synoptic weather maps shows that large pressure drops in winter are associated with strong zonal flow and rapidly moving low-pressure systems with centres over northern Europe and atmospheric fronts affecting western and central Europe. Analysis of links between passages of strong atmospheric fronts and hospital admissions, however, shows that the links disappear if weather changes are characterised by frontal passages. Sudden pressure drops in winter are associated also with significant excess CVD mortality. As climate models project strengthening of zonal circulation in winter and increased frequency of windstorms, the negative effects of such weather phenomena and their possible changes in a warmer climate of the twenty-first century need to be better understood, particularly as their importance in inducing excess morbidity and mortality in winter may increase compared to cold spells.

  18. 40 CFR Table 2 to Subpart Kkkkk of... - Operating Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Maintain the average scrubber pressure drop for each 3-hour block period at or above the average pressure drop established during the performance test; andb. Maintain the average scrubber liquid pH for each 3-hour block period at or above the average scrubber liquid pH established during the performance test...

  19. Heat transfer and pressure drop in rectangular channels with crossing fins (a Review)

    NASA Astrophysics Data System (ADS)

    Sokolov, N. P.; Polishchuk, V. G.; Andreev, K. D.; Rassokhin, V. A.; Zabelin, N. A.

    2015-06-01

    Channels with crossing finning find wide use in the cooling paths of high-temperature gas turbine blade systems. At different times, different institutions carried out experimental investigations of heat transfer and pressure drop in channels with coplanar finning of opposite walls for obtaining semiempirical dependences of Nusselt criteria (dimensionless heat-transfer coefficients) and pressure drop coefficients on the operating Reynolds number and relative geometrical parameters (or their complexes). The shape of experimental channels, the conditions of experiments, and the used variables were selected so that they would be most suited for solving particular practical tasks. Therefore, the results obtained in processing the experimental data have large scatter and limited use. This article considers the results from experimental investigations of different authors. In comparing the results, additional calculations were carried out for bringing the mathematical correlations to the form of dependences from the same variables. Generalization of the results is carried out. In the final analysis, universal correlations are obtained for determining the pressure drop coefficients and Nusselt number values for the flow of working medium in channels with coplanar finning.

  20. Part 1 of a Computational Study of a Drop-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okong'o, Nora A.; Bellan, Josette

    2004-01-01

    This first of three reports on a computational study of a drop-laden temporal mixing layer presents the results of direct numerical simulations (DNS) of well-resolved flow fields and the derivation of the large-eddy simulation (LES) equations that would govern the larger scales of a turbulent flow field. The mixing layer consisted of two counterflowing gas streams, one of which was initially laden with evaporating liquid drops. The gas phase was composed of two perfect gas species, the carrier gas and the vapor emanating from the drops, and was computed in an Eulerian reference frame, whereas each drop was tracked individually in a Lagrangian manner. The flow perturbations that were initially imposed on the layer caused mixing and eventual transition to turbulence. The DNS database obtained included transitional states for layers with various liquid mass loadings. For the DNS, the gas-phase equations were the compressible Navier-Stokes equations for conservation of momentum and additional conservation equations for total energy and species mass. These equations included source terms representing the effect of the drops on the mass, momentum, and energy of the gas phase. From the DNS equations, the expression for the irreversible entropy production (dissipation) was derived and used to determine the dissipation due to the source terms. The LES equations were derived by spatially filtering the DNS set and the magnitudes of the terms were computed at transitional states, leading to a hierarchy of terms to guide simplification of the LES equations. It was concluded that effort should be devoted to the accurate modeling of both the subgridscale fluxes and the filtered source terms, which were the dominant unclosed terms appearing in the LES equations.

  1. Optical Add-Drop Filters Based on Photonic Crystal Ring Resonators

    DTIC Science & Technology

    2007-02-19

    34 Appl. Phys. Lett. 81,2499-2501 (2002). 17. V. Dinesh Kumar , T. Srinivas, A. Selvarajan, "Investigation of ring resonators in photonic crystal...No.4 / opncs EXPRESS 1824 Kumar et al. [17], where a large single quasi-rectangular ring was introduced as the frequency selective dropping elements...were introduced by Kumar et al. as well, in order to suppress the counter propagating modes which can cause spurious dips in the transmission spectrum

  2. 21 CFR 113.40 - Equipment and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ensure a supply of clean, dry air. (3) Pressure gages. Each retort should be equipped with a pressure... should have adequate filter systems to ensure a supply of clean, dry air. (3) Pressure gages. (i) Each... controllers should have adequate filter systems to ensure a supply of clean, dry air. (3) Pressure gages. Each...

  3. Polarization-independent fiber filter with an all-polarization-maintaining fiber loop for tunable fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Wu, Weiran; Rao, Qi; Zhou, Kejiang

    2018-05-01

    Tunable fiber lasers are a promising light source in all-optical wavelength conversion, fiber grating sensing and optical add-drop multiplexing. In order to achieve a tunable wavelength in the output, optical filters are indispensable for the construction of tunable fiber lasers. Recently, much attention has been given to developing high-performance filters. This paper proposes an environment-insensitive filter based on a Sagnac interferometer which was designed by an all-polarization-maintaining fiber with linear birefringence. According to the Sagnac interferometer, we derived the transfer function of an environment-insensitive filter. Based on this principle, it is shown that the device is able to implement a precision filtering function that can be used in a fiber laser’s optical resonant cavity. The experiment results demonstrated the effectiveness of this structure.

  4. 60. (Credit LSU) Hyatt pressure filters (originally installed c1890) in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. (Credit LSU) Hyatt pressure filters (originally installed c1890) in filter wing of McNeil Station in 1904. (From: Shreveport Progressive League, Shreveport of To-Day, September 1904, p. 47) - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  5. The transport phase of pyrolytic oil exiting a fast fluidized bed reactor

    NASA Astrophysics Data System (ADS)

    Daugaard, Daren Einar

    An unresolved and debated aspect in the fast pyrolysis of biomass is whether the bio-oil exits as a vapor or as an aerosol from the pyrolytic reactor. The determination of the bio-oil transport phase will have direct and significant impact on the design of fast pyrolysis systems. Optimization of both the removal of particulate matter and collection of bio-oil will require this information. In addition, the success of catalytic reforming of bio-oil to high-value chemicals will depend upon this transport phase. A variety of experimental techniques were used to identify the transport phase. Some tests were as simple as examining the catch of an inline filter while others attempted to deduce whether vapor or aerosol predominated by examining the pressure drop across a flow restriction. In supplementary testing, the effect of char on aerosol formation and the potential impact of cracking during direct contact filtering are evaluated. The study indicates that for pyrolysis of red oak approximately 90 wt-% of the collected bio-oil existed as a liquid aerosol. Conversely, the pyrolysis of corn starch produced bio-oil predominately in the vapor phase at the exit of the reactor. Furthermore, it was determined that the addition of char promotes the production of aerosols during pyrolysis of corn starch. Direct contact filtering of the product stream did not collect any liquids and the bio-oil yield was not significantly reduced indicating measurable cracking or coking did not occur.

  6. Nanoscale plasmonic waveguides for filtering and demultiplexing devices

    NASA Astrophysics Data System (ADS)

    Akjouj, A.; Noual, A.; Pennec, Y.; Bjafari-Rouhani, B.

    2010-05-01

    Numerical simulations, based on a FDTD (finite-difference-time-domain) method, of infrared light propagation for add/drop filtering in two-dimensional (2D) Ag-SiO2-Ag resonators are reported to design 2D Y-bent plasmonic waveguides with possible applications in telecommunication WDM (wavelength demultiplexing). First, we study optical transmission and reflection of a nanoscale SiO2 waveguide coupled to a nanocavity of the same insulator located either inside or on the side of a linear waveguide sandwiched between Ag. According to the inside or outside positioning of the nanocavity with respect to the waveguide, the transmission spectrum displays peaks or dips, respectively, which occur at the same central frequency. A fundamental study of the possible cavity modes in the near-infrared frequency band is also given. These filtering properties are then exploited to propose a nanoscale demultiplexer based on a Y-shaped plasmonic waveguide for separation of two different wavelengths, in selection or rejection, from an input broadband signal around 1550 nm. We detail coupling of the 2D add/drop Y connector to two cavities inserted on each of its branches.

  7. Distribution and observed associations of orthostatic blood pressure changes in elderly general medicine outpatients

    NASA Technical Reports Server (NTRS)

    Robertson, D.; DesJardin, J. A.; Lichtenstein, M. J.

    1998-01-01

    Factors associated with orthostatic blood pressure change in elderly outpatients were determined by surveying 398 medical clinical outpatients aged 65 years and older. Blood pressure was measured with random-zero sphygmomanometers after patients were 5 minutes in a supine and 5 minutes in a standing position. Orthostatic blood pressure changes were at normally distributed levels with systolic and diastolic pressures dropping an average of 4 mm Hg (standard deviation [SD]=15 mm Hg) and 2 mm Hg (SD=11 mm Hg), respectively. Orthostatic blood pressure changes were unassociated with age, race, sex, body mass, time since eating, symptoms, or other factors. According to multiple linear regression analysis, supine systolic pressure, chronic obstructive pulmonary disease (COPD), and diabetes mellitus were associated with a decrease in systolic pressure on standing. Hypertension, antiarthritic drugs, and abnormal heartbeat were associated with an increase in systolic pressure on standing. For orthostatic diastolic pressure changes, supine diastolic pressure and COPD were associated with a decrease in diastolic pressure on standing. Congestive heart failure was associated with an increase in standing diastolic pressure. Using logistic regression analysis, only supine systolic pressure was associated with a greater than 20-mm Hg drop in systolic pressure (n=53, prevalence=13%). Supine diastolic pressure and COPD were the only variables associated with a greater than 20-mm Hg drop in diastolic pressure (n=16, prevalence=4%). These factors may help physicians in identifying older persons at risk for having orthostatic hypotension.

  8. Effect of high latitude filtering on NWP skill

    NASA Technical Reports Server (NTRS)

    Kalnay, E.; Takacs, L. L.; Hoffman, R. N.

    1984-01-01

    The high latitude filtering techniques commonly employed in global grid point models to eliminate the high frequency waves associated with the convergence of meridians, can introduce serious distortions which ultimately affect the solution at all latitudes. Experiments completed so far with the 4 deg x 5 deg, 9-level GLAS Fourth Order Model indicate that the high latitude filter currently in operation affects only minimally its forecasting skill. In one case, however, the use of pressure gradient filter significantly improved the forecast. Three day forecasts with the pressure gradient and operational filters are compared as are 5-day forecasts with no filter.

  9. Dustiness behaviour of loose and compacted Bentonite and organoclay powders: What is the difference in exposure risk?

    NASA Astrophysics Data System (ADS)

    Jensen, Keld Alstrup; Koponen, Ismo Kalevi; Clausen, Per Axel; Schneider, Thomas

    2009-01-01

    Single-drop and rotating drum dustiness testing was used to investigate the dustiness of loose and compacted montmorillonite (Bentonite) and an organoclay (Nanofil®5), which had been modified from montmorillonite-rich Bentonite. The dustiness was analysed based on filter measurements as well as particle size distributions, the particle generation rate, and the total number of generated particles. Particle monitoring was completed using a TSI Fast Mobility Particle Sizer (FMPS) and a TSI Aerosol Particle Sizer (APS) at 1 s resolution. Low-pressure uniaxial powder compaction of the starting materials showed a logarithmic compaction curve and samples subjected to 3.5 kg/cm2 were used for dustiness testing to evaluate the role of powder compaction, which could occur in powders from large shipments or high-volume storage facilities. The dustiness tests showed intermediate dustiness indices (1,077-2,077 mg/kg powder) in tests of Nanofil®5, Bentonite, and compacted Bentonite, while a high-level dustiness index was found for compacted Nanofil®5 (3,487 mg/kg powder). All powders produced multimodal particle size-distributions in the dust cloud with one mode around 300 nm (Bentonite) or 400 nm (Nanofil®5) as well as one (Nanofil®5) or two modes (Bentonite) with peaks between 1 and 2.5 μm. The dust release was found to occur either as a burst (loose Bentonite and Nanofil®5), constant rate (compacted Nanofil®5), or slowly increasing rate (compacted Bentonite). In rotating drum experiments, the number of particles generated in the FMPS and APS size-ranges were in general agreement with the mass-based dustiness index, but the same order was not observed in the single-drop tests. Compaction of Bentonite reduced the number of generated particles with app. 70 and 40% during single-drop and rotating drum dustiness tests, respectively. Compaction of Nanofil®5 reduced the dustiness in the single-drop test, but it was more than doubled in the rotating drum test. Physically relevant low-pressure compaction may reduce the risk of particle exposure if powders are handled in operations with few agitations such as pouring or tapping. Repeated agitation, e.g., mixing, of these compacted powders, would result in reduced (app. 20% for Bentonite) or highly increased (app. 225% for Nanofil®5) dustiness and thereby alter the exposure risk significantly.

  10. Novel Process for Removal and Recovery of Vapor Phase Mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwell, Collin; Roberts, Daryl L; Albiston, Jason

    We demonstrated in the Phase I program all key attributes of a new technology for removing mercury from flue gases, namely, a) removal of greater than 95% of both elemental and oxidized forms of mercury, both in the laboratory and in the field b) regenerability of the sorbent c) ability to scale up, and d) favorable economics. The Phase I program consisted of four tasks other than project reporting: Task I-1 Screen Sorbent Configurations in the Laboratory Task I-2 Design and Fabricate Bench-Scale Equipment Task I-3 Test Bench-Scale Equipment on Pilot Combustor Task I-4 Evaluate Economics Based on Bench-Scale Resultsmore » In Task I-1, we demonstrated that the sorbents are thermally durable and are regenerable through at least 55 cycles of mercury uptake and desorption. We also demonstrated two low-pressure- drop configurations of the sorbent, namely, a particulate form and a monolithic form. We showed that the particulate form of the sorbent would take up 100% of the mercury so long as the residence time in a bed of the sorbent exceeded 0.1 seconds. In principle, the particulate form of the sorbent could be imbedded in the back side of a higher temperature bag filter in a full-scale application. With typical bag face velocities of four feet per minute, the thickness of the particulate layer would need to be about 2000 microns to accomplish the uptake of the mercury. For heat transfer efficiency, however, we believed the monolithic form of the sorbent would be the more practical in a full scale application. Therefore, we purchased commercially-available metallic monoliths and applied the sorbent to the inside of the flow channels of the monoliths. At face velocities we tested (up to 1.5 ft/sec), these monoliths had less than 0.05 inches of water pressure drop. We tested the monolithic form of the sorbent through 21 cycles of mercury sorption and desorption in the laboratory and included a test of simultaneous uptake of both mercury and mercuric chloride. Overall, in Task I-1, we found that the particulate and monolith forms of the sorbent were thermally stable and durable and would repeatedly sorb and desorb 100% of the mercury, including mercuric chloride, with low pressure drop and short residence times at realistic flue gas conditions.« less

  11. Development of a split-flow system for high precision variable sample introduction in supercritical fluid chromatography.

    PubMed

    Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-09-15

    In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.

  12. Flow structure, heat transfer and pressure drop in varying aspect ratio two-pass rectangular smooth channels

    NASA Astrophysics Data System (ADS)

    Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V.; Hushmandi, Narmin B.; Fransson, Torsten H.

    2012-05-01

    Two-pass channels are used for internal cooling in a number of engineering systems e.g., gas turbines. Fluid travelling through the curved path, experiences pressure and centrifugal forces, that result in pressure driven secondary motion. This motion helps in moving the cold high momentum fluid from the channel core to the side walls and plays a significant role in the heat transfer in the channel bend and outlet pass. The present study investigates using Computational Fluid Dynamics (CFD), the flow structure, heat transfer enhancement and pressure drop in a smooth channel with varying aspect ratio channel at different divider-to-tip wall distances. Numerical simulations are performed in two-pass smooth channel with aspect ratio Win/H = 1:3 at inlet pass and Wout/H = 1:1 at outlet pass for a variety of divider-to-tip wall distances. The results show that with a decrease in aspect ratio of inlet pass of the channel, pressure loss decreases. The divider-to-tip wall distance (Wel) not only influences the pressure drop, but also the heat transfer enhancement at the bend and outlet pass. With an increase in the divider-to-tip wall distance, the areas of enhanced heat transfer shifts from side walls of outlet pass towards the inlet pass. To compromise between heat transfer and pressure drop in the channel, Wel/H = 0.88 is found to be optimum for the channel under study.

  13. Design of distributed JT (Joule-Thomson) effect heat exchanger for superfluid 2 K cooling device

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Park, C.; Kim, K.

    2018-03-01

    Superfluid at 2 K or below is readily obtained from liquid helium at 4.2 K by reducing its vapour pressure. For better cooling performance, however, the cold energy of vaporized helium at 2 K chamber can be effectively utilized in a recuperator which is specially designed in this paper for accomplishing so-called the distributed Joule-Thomson (JT) expansion effect. This paper describes the design methodology of distributed JT effect heat exchanger for 2 K JT cooling device. The newly developed heat exchanger allows continuous significant pressure drop at high-pressure part of the recuperative heat exchanger by using a capillary tube. Being different from conventional recuperative heat exchangers, the efficient JT effect HX must consider the pressure drop effect as well as the heat transfer characteristic. The heat exchanger for the distributed JT effect actively utilizes continuous pressure loss at the hot stream of the heat exchanger by using an OD of 0.64 mm and an ID of 0.4 mm capillary tube. The analysis is performed by dividing the heat exchanger into the multiple sub-units of the heat exchange part and JT valve. For more accurate estimation of the pressure drop of spirally wound capillary tube, preliminary experiments are carried out to investigate the friction factor at high Reynolds number. By using the developed pressure drop correlation and the heat transfer correlation, the specification of the heat exchanger with distributed JT effect for 2 K JT refrigerator is determined.

  14. Travelling wave resonators fabricated with low-loss hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Lipka, Timo; Amthor, Julia; Trieu, Hoc Khiem; Müller, Jörg

    2013-05-01

    Low-loss hydrogenated amorphous silicon is employed for the fabrication of various planar integrated travelling wave resonators. Microring, racetrack, and disk resonators of different dimensions were fabricated with CMOS-compatible processes and systematically investigated. The key properties of notch filter ring resonators as extinction ratio, Q-factor, free spectral range, and the group refractive index were determined for resonators of varying radius, thereby achieving critically coupled photonic systems with high extinction ratios of about 20 dB for both polarizations. Racetrack resonators that are arranged in add/drop configuration and high quality factor microdisk resonators were optically characterized, with the microdisks exhibiting Q-factors of greater than 100000. Four-channel add/drop wavelength-division multiplexing filters that are based on cascaded racetrack resonators are studied. The design, the fabrication, and the optical characterization are presented.

  15. Fuel cell flooding detection and correction

    DOEpatents

    DiPierno Bosco, Andrew; Fronk, Matthew Howard

    2000-08-15

    Method and apparatus for monitoring an H.sub.2 -O.sub.2 PEM fuel cells to detect and correct flooding. The pressure drop across a given H.sub.2 or O.sub.2 flow field is monitored and compared to predetermined thresholds of unacceptability. If the pressure drop exists a threshold of unacceptability corrective measures are automatically initiated.

  16. 40 CFR Table 3 to Subpart Dddd of... - Model Rule-Operating Limits for Wet Scrubbers

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Scrubbers 3 Table 3 to Subpart DDDD of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—Model Rule—Operating Limits for Wet Scrubbers For these operating parameters You must establish these... intermittent units) a Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop...

  17. 40 CFR Table 3 to Subpart Dddd of... - Model Rule-Operating Limits for Wet Scrubbers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Scrubbers 3 Table 3 to Subpart DDDD of Part 60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...—Model Rule—Operating Limits for Wet Scrubbers For these operating parameters You must establish these... intermittent units) a Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop...

  18. Sound wave energy emitted by water drop during the splash on the soil surface

    NASA Astrophysics Data System (ADS)

    Bieganowski, Andrzej; Ryżak, Magdalena; Korbiel, Tomasz

    2017-04-01

    A drop of rain falling on the surface of bare soil not only moisturizes but also can cause splash or compaction, depending on the energy of incident drops and the condition of the surface on which it falls. The splash phenomenon can be characterized by the weight of detached soil material (using splash cups) as well as the number and trajectory of splashed particles (using high-speed cameras). The study presents a new aspect of the analysis of the splash phenomenon by measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out in an anechoic chamber. Three soils (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol, and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa, and 16 kPa) were tested. Drops of 4.2 mm diameter were falling from a height of 1.5m. The sound pressure level was recorded after 10 consecutive water drop impacts using a special set of microphones. In all measuring conditions with 1m distance, the sound pressure level ranged from 27 to 42dB. The impact of water drops on the ground created sound pulses, which were recalculated to the energy emitted in the form of sound waves. For all soil samples, the sound wave energy was within the range of 0.14 μJ to 5.26 μJ, which corresponds to 0.03-1.07% of the energy of the incident drops (Ryżak et al., 2016). This work was partly financed from the National Science Centre, Poland; project no. 2014/14/E/ST10/00851. References Ryżak M., Bieganowski A., Korbiel T.: Sound wave Energy resulting from the impact of water drops on the soil surface. PLoS One 11(7):e0158472. doi:10.1371/journal.pone.0158472, 2016

  19. The effect of geometry and operation conditions on the performance of a gas-liquid cylindrical cyclone separator with new structure

    NASA Astrophysics Data System (ADS)

    Han, Qing; Zhang, Chi; Xu, Bo; Chen, Jiangping

    2013-07-01

    The hydrodynamic flow behavior, effects of geometry and working conditions of a gas-liquid cylindrical cyclone separator with a new structure are investigated by computational fluid dynamic and experiment. Gas liquid cylindrical cyclone separator is widely used in oil industry, refrigeration system because of its simple structure, high separating efficiency, little maintenance and no moving parts nor internal devices. In this work, a gas liquid cylindrical cyclone separator with new structure used before evaporator in refrigeration system can remove the vapor from the mixture and make evaporator compact by improving its heat exchange efficiency with the lower inlet quality. It also decreases evaporator pressure drop and reduces compressor work. The two pipes are placed symmetrically which makes each of them can be treated as inlet. It means when the fluids flow reverse, the separator performance will not be influence. Four samples with different geometry parameters are tested by experiment with different inlet quality (0.18-0.33), inlet mass flow rate (65-100kg/h). Compared with the experimental data, CFD simulation results show a good agreement. Eulerian multiphase model and Reynolds Stress Turbulence model are applied in the CFD simulation and obtained the inner flow field such as phase path lines, tangential velocity profiles and pressure and volume of fraction distribution contours. The separator body diameter (24, 36, 48mm) and inlet diameter (3.84, 4.8, 5.76mm) decide the maximum tangential velocity which results in the centrifugal force. The tangential velocity profiles are simulated and compared among different models. The higher tangential velocity makes higher quality of gas outlet but high pressure drop at the same time. Decreasing the inlet diameter increases quality of gas outlet pipe and pressure drop. High gas outlet quality is cost at high pressure drop. Increasing of separator diameter makes gas outlet quality increase first and then decrease but the pressure drop decreases all the way. The offset (0, 2.4, 3.6mm) of gas outlet is an insensitive factor which influences the quality and pressure drop little.

  20. Development of a test facility and preliminary testing of flow boiling heat transfer of R410A refrigerant with Al2O3 nanolubricants

    NASA Astrophysics Data System (ADS)

    Wong, Thiam

    In vapor compression cycles, a small portion of the oil circulates with the refrigerant throughout the system components, while most of the oil stays in the compressors. In heat exchangers, the lubricant in excess penalizes the heat transfer and increases the pressure losses: both effects are highly undesired but yet unavoidable. Nanoparticles dispersed in the excess lubricant are expected to provide enhancements in heat transfer. While solubility and miscibility of refrigerants in polyolesters (POE) lubricant are well established knowledge, there is a lack of information regarding if and how nanoparticles dispersed in the lubricant affect these properties. This thesis presents experimental data of solubility of two types of Al2O3 nanolubricants with refrigerant R-410A. The nanoparticles were dispersed in POE lubricant by using different surfactants and dispersion methods. The nanolubricants appeared to have slightly lower solubility than that of R-410A but actually the solid nanoparticles did not really interfere with the POE oil solubility characteristics. A test facility and experimental methodology was developed for the investigation of heat transfer coefficient and pressure drop. The pressure drop of the refrigerant lubricant mixtures during flow boiling depended on the mass flux of the refrigerant. Greater augmentation was seen in the pressure drop results with decreasing mass flow rate. Pure refrigerant R410A showed the lowest pressure drop, addition of nanolubricants to the refrigerant showed a slightly higher pressure drop and POE-refrigerant mixture showed the highest pressure drop in the tests conducted. Enhancement or degradation in heat transfer coefficient during flow boiling depended on the nanoparticle concentration in the lubricant as well as the lubricant concentration in refrigerant. R410A showed the highest heat transfer coefficient for all conditions tested. For a concentration of 1% nanolubricant in refrigerant, the heat transfer coefficient showed more enhancement with increase in nanoparticle concentration compared to POE refrigerant mixtures. For a concentration of 3% nanolubricant in refrigerant mixtures there was little to no enhancement for tests conducted.

  1. Pressure-Drop Considerations in the Characterization of Dew-Point Transfer Standards at High Temperatures

    NASA Astrophysics Data System (ADS)

    Mitter, H.; Böse, N.; Benyon, R.; Vicente, T.

    2012-09-01

    During calibration of precision optical dew-point hygrometers (DPHs), it is usually necessary to take into account the pressure drop induced by the gas flow between the "point of reference" and the "point of use" (mirror or measuring head of the DPH) either as a correction of the reference dew-point temperature or as part of the uncertainty estimation. At dew-point temperatures in the range of ambient temperature and below, it is sufficient to determine the pressure drop for the required gas flow, and to keep the volumetric flow constant during the measurements. In this case, it is feasible to keep the dry-gas flow into the dew-point generator constant or to measure the flow downstream the DPH at ambient temperature. In normal operation, at least one DPH in addition to the monitoring DPH are used, and this operation has to be applied to each instrument. The situation is different at high dew-point temperatures up to 95 °C, the currently achievable upper limit reported in this paper. With increasing dew-point temperatures, the reference gas contains increasing amounts of water vapour and a constant dry-gas flow will lead to a significant enhanced volume flow at the conditions at the point of use, and therefore, to a significantly varying pressure drop depending on the applied dew-point temperature. At dew-point temperatures above ambient temperature, it is also necessary to heat the reference gas and the mirror head of the DPH sufficiently to avoid condensation which will additionally increase the volume flow and the pressure drop. In this paper, a method is provided to calculate the dry-gas flow rate needed to maintain a known wet-gas flow rate through a chilled mirror for a range of temperature and pressures.

  2. Axisymmetric oscillation modes of a double droplet system

    DOE PAGES

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) themore » pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR 3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R 3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.« less

  3. Diesel particulate abatement via wall-flow traps based on perovskite catalysts.

    PubMed

    Fino, Debora; Russo, Nunzio; Saracco, Guido; Specchia, Vito

    2003-01-01

    It is probably redundant to stress how extensive are nowadays the attempts to reduce the diesel particulate emissions from automotive and stationary sources. The present paper looks into a technology relied on a catalytic trap based on a SiC wall-flow monolith lined with suitable catalysts for the sake of promoting a more complete and faster regeneration after particulate capture. All the major steps of the catalytic filter preparation are dealt with, including: the synthesis and choice of the proper catalyst and trap materials, the development of an in situ catalyst deposition technique, the bench testing of the derived catalytic wall-flow. The best catalyst selected was the perovskite La0.9K0.1Cr0.9O3-delta. The filtration efficiency and the pressure drop of the catalytic and non-catalytic monoliths were evaluated on a diesel engine bench under various operating conditions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  5. Intercooler cooling-air weight flow and pressure drop for minimum drag loss

    NASA Technical Reports Server (NTRS)

    Reuter, J George; Valerino, Michael F

    1944-01-01

    An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.

  6. Resistance to forced airflow through layers of composting organic material.

    PubMed

    Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro

    2015-02-01

    The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Combining liquid inertia with pressure recovery from bubble expansion for enhanced flow boiling

    NASA Astrophysics Data System (ADS)

    Kalani, A.; Kandlikar, S. G.

    2015-11-01

    In this paper, we demonstrate using liquid inertia force in a taper gap microchannel geometry to provide a high level of heat dissipation capacity accompanied by a high heat transfer coefficient and low pressure drop during flow boiling. The high mass flux increases liquid inertia force and promotes vapor removal from the manifold, thereby increasing critical heat flux (CHF) and heat transfer coefficient. The tapered gap above the microchannels provides an increasing cross-sectional area in the flow direction. This gap allows bubbles to emerge from microchannels and expand within the gap along the flow direction. The bubble evaporation and expansion in tapered gap causes pressure recovery and reduces the total pressure drop. The pressure recovery increases with the increased evaporation rate at higher heat fluxes. Using a 6% taper and a moderately high inlet liquid flow Reynolds number of 1095, we have reached a CHF of 1.07 kW/cm2 with a heat transfer coefficient of 295 kW/m2 °C and a pressure drop of 30 kPa.

  8. Regenerator filled with a matrix of polycrystalline iron whiskers

    NASA Astrophysics Data System (ADS)

    Eder, F. X.; Appel, H.

    1982-08-01

    In thermal regenerators, parameters were optimized: convection coefficient, surface of heat accumulating matrix, matrix density and heat capacity, and frequency of cycle inversions. The variation of heat capacity with working temperature was also computed. Polycrystalline iron whiskers prove a good compromise as matrix for heat regenerators at working temperatures ranging from 300 to 80 K. They were compared with wire mesh screens and microspheres of bronze and stainless steel. For theses structures and materials, thermal conductivity, pressure drop, heat transfer and yield were calculated and related to the experimental values. As transport heat gas, helium, argon, and dry nitrogen were applied at pressures up to 20 bar. Experimental and theoretical studies result in a set of formulas for calculating pressure drop, heat capacity, and heat transfer rate for a given thermal regenerator in function of mass flow. It is proved that a whisker matrix has an efficiency that depends strongly on gas pressure and composition. Iron whiskers make a good matrix with heat capacities of kW/cu cm per K, but their relative high pressure drop may, at low pressures, be a limitation. A regenerator expansion machine is described.

  9. Airborne irritant contact dermatitis due to synthetic fibres from an air-conditioning filter.

    PubMed

    Patiwael, Jiska A; Wintzen, Marjolein; Rustemeyer, Thomas; Bruynzeel, Derk P

    2005-03-01

    We describe 8 cases of occupational airborne irritant contact dermatitis in intensive care unit (ICU) employees caused by synthetic (polypropylene and polyethylene) fibres from an air-conditioning filter. Not until a workplace investigation was conducted, was it possible to clarify the unusual sequence of events. High filter pressure in the intensive care air-conditioning system, maintained to establish an outward airflow and prevent microorganisms from entering the ward, probably caused fibres from the filter to become airborne. Upon contact with air-exposed skin, fibres subsequently provoked skin irritation. Test periods in the ICU with varying filter pressures, in an attempt to improve environmental conditions, led to even higher filter pressure levels and more complaints. The sometimes-very-low humidity might have contributed to development of skin irritation. The fact that most patients recovered quickly after treatment with emollients and changing the filters made it most likely that the airborne dermatitis was of an irritant nature.

  10. Splashing, feeding, contracting: Drop impact and fluid dynamics of Vorticella

    NASA Astrophysics Data System (ADS)

    Pepper, Rachel E.

    This thesis comprises two main topics: understanding drop impact and splashing, and studying the feeding and contracting of the microorganism Vorticella. In Chapter 1, we study the effect of substrate compliance on the splash threshold of a liquid drop using an elastic membrane under variable tension. We find that splashing can be suppressed by reducing this tension. Measurements of the velocity and acceleration of the spreading drop after impact indicate that the splashing behavior is set at very early times after, or possibly just before, impact, far before the actual splash occurs. We also provide a model for the tension dependence of the splashing threshold. In Chapter 2, we study the evolution of the ejected liquid sheet, or lamella, created after impact of a liquid drop onto a solid surface using high-speed video. We find that the lamella rim thickness is always much larger than the boundary layer thickness, and that this thickness decreases with increasing impact speed. We also observe an unusual plateau behavior in thickness versus time at higher impact speeds as we approach the splash threshold. In Chapter 3, we show through calculations, simulations, and experiments that the eddies often observed near sessile filter feeders are due to the presence of nearby boundaries. We model the common filter feeder Vorticella, and also track particles around live feeding Vorticella to determine the experimental flow field. Our models are in good agreement both with each other and with the experiments. We also provide simple approximate equations to predict experimental eddy sizes due to boundaries. In Chapter 4, we show through calculations that filter feeders such as Vorticella can greatly enhance their nutrient uptake by feeding at an angle rather than perpendicular to a substrate. We also show experimental evidence that living Vorticella use this strategy. Finally, in Chapter 5, we discuss possible future directions for these projects, including potential insights from a close examination of lamella behavior at the splash threshold, and calculations to determine if Vorticella contract rapidly towards the substrate to which they are attached in order to mix the surrounding fluid.

  11. The behavior of a liquid drop levitated and drastically flattened by an intense sound field

    NASA Technical Reports Server (NTRS)

    Lee, C. P.; Anilkumar, A. V.; Wang, Taylor G.

    1992-01-01

    The deformation and break-up are studied of a liquid drop in levitation through the radiation pressure. Using high-speed photography ripples are observed on the central membrane of the drop, atomization of the membrane by emission of satellite drops from its unstable ripples, and shattering of the drop after upward buckling like an umbrella, or after horizontal expansion like a sheet. These effects are captured on video. The ripples are theorized to be capillary waves generated by the Faraday instability excited by the sound vibration. Atomization occurs whenever the membrane becomes so thin that the vibration is sufficiently intense. The vibration leads to a destabilizing Bernoulli correction in the static pressure. Buckling occurs when an existent equilibrium is unstable to a radial (i.e., tangential) motion of the membrane because of the Bernoulli effect. Besides, the radiation stress at the rim of the drop is a suction stress which can make equilibrium impossible, leading to the horizontal expansion and the subsequent break-up.

  12. Ex-situ gas diffusion layer intrusion effect determination of polymer electrolyte membrane fuel cell flow fields

    NASA Astrophysics Data System (ADS)

    Haase, S.; Rauber, M.

    2015-09-01

    In automotive PEM fuel cell systems, one of the most important targets is to reduce the parasitic power of balance of plant components, e.g. the air supply. This can be achieved for example by decreasing air stoichiometry. However, this could lead to bad flow sharing in the fuel cell stack. Therefore the fluid distribution in the flow field has to be evaluated, understood and optimized. This work evaluates the effect of GDL intrusion on the pressure drop via ex-situ determination of GDL intrusion using CFD simulation. The intruded GDL geometries, evaluated by an optical microscope with 200 times enlargement, are transferred to pressure drop behaviors by a numerical CFD model. These results are compared to the results of the differential pressure method of mapping the pressure distribution, described in [43]. The intrusion of the GDL leads to homogeneous flow distribution up to clamping pressures of 2.5 MPa. The inhomogeneous intrusion, induced by cracked fibers that extend into the channel, dominates the flow at higher clamping pressures and leads to the exponential increase in pressure drop in the differential pressure method. For clamping pressures used in typical fuel cell applications, the results of both methods show homogeneous flow through the channels.

  13. Snake constriction rapidly induces circulatory arrest in rats.

    PubMed

    Boback, Scott M; McCann, Katelyn J; Wood, Kevin A; McNeal, Patrick M; Blankenship, Emmett L; Zwemer, Charles F

    2015-07-01

    As legless predators, snakes are unique in their ability to immobilize and kill their prey through the process of constriction, and yet how this pressure incapacitates and ultimately kills the prey remains unknown. In this study, we examined the cardiovascular function of anesthetized rats before, during and after being constricted by boas (Boa constrictor) to examine the effect of constriction on the prey's circulatory function. The results demonstrate that within 6 s of being constricted, peripheral arterial blood pressure (PBP) at the femoral artery dropped to 1/2 of baseline values while central venous pressure (CVP) increased 6-fold from baseline during the same time. Electrocardiographic recordings from the anesthetized rat's heart revealed profound bradycardia as heart rate (fH) dropped to nearly half of baseline within 60 s of being constricted, and QRS duration nearly doubled over the same time period. By the end of constriction (mean 6.5±1 min), rat PBP dropped 2.9-fold, fH dropped 3.9-fold, systemic perfusion pressure (SPP=PBP-CVP) dropped 5.7-fold, and 91% of rats (10 of 11) had evidence of cardiac electrical dysfunction. Blood drawn immediately after constriction revealed that, relative to baseline, rats were hyperkalemic (serum potassium levels nearly doubled) and acidotic (blood pH dropped from 7.4 to 7.0). These results are the first to document the physiological response of prey to constriction and support the hypothesis that snake constriction induces rapid prey death due to circulatory arrest. © 2015. Published by The Company of Biologists Ltd.

  14. 40 CFR Table 3 to Subpart Jjjjjj... - Operating Limits for Boilers With Emission Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system alarm does not sound more than 5 percent of the operating time during each 6-month period. 2... the pressure drop at or above the lowest 1-hour average pressure drop across the wet scrubber and the... recent performance stack test. 8. Continuous Oxygen Monitor Maintain the oxygen level at or above the...

  15. 40 CFR 63.9917 - How do I demonstrate initial compliance with the emission limitations and work practice standards...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subpart; and (2) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured during the performance test in...

  16. 40 CFR 63.9923 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to this subpart. (b) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must demonstrate continuous compliance according to the... according to § 63.9921(b); and (2) Maintaining the hourly average pressure drop and scrubber water flow rate...

  17. 40 CFR 63.9917 - How do I demonstrate initial compliance with the emission limitations and work practice standards...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart; and (2) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured during the performance test in...

  18. 40 CFR 63.9923 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to this subpart. (b) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must demonstrate continuous compliance according to the... according to § 63.9921(b); and (2) Maintaining the hourly average pressure drop and scrubber water flow rate...

  19. 40 CFR 63.9917 - How do I demonstrate initial compliance with the emission limitations and work practice standards...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subpart; and (2) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured during the performance test in...

  20. 40 CFR 63.9923 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to this subpart. (b) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must demonstrate continuous compliance according to the... according to § 63.9921(b); and (2) Maintaining the hourly average pressure drop and scrubber water flow rate...

  1. 40 CFR 63.9917 - How do I demonstrate initial compliance with the emission limitations and work practice standards...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart; and (2) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured during the performance test in...

  2. 40 CFR 63.9923 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to this subpart. (b) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must demonstrate continuous compliance according to the... according to § 63.9921(b); and (2) Maintaining the hourly average pressure drop and scrubber water flow rate...

  3. 40 CFR 63.9917 - How do I demonstrate initial compliance with the emission limitations and work practice standards...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subpart; and (2) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured during the performance test in...

  4. 40 CFR 63.9923 - How do I demonstrate continuous compliance with the emission limitations and work practice...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to this subpart. (b) For each wet scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must demonstrate continuous compliance according to the... according to § 63.9921(b); and (2) Maintaining the hourly average pressure drop and scrubber water flow rate...

  5. 40 CFR Table 3 to Subpart Ffff of... - Model Rule-Operating Limits for Incinerators and Wet Scrubbers

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Incinerators and Wet Scrubbers 3 Table 3 to Subpart FFFF of Part 60 Protection of Environment ENVIRONMENTAL...—Model Rule—Operating Limits for Incinerators and Wet Scrubbers As stated in § 60.3023, you must comply... units. a 2. Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop or...

  6. 40 CFR Table 3 to Subpart Ffff of... - Model Rule-Operating Limits for Incinerators and Wet Scrubbers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Incinerators and Wet Scrubbers 3 Table 3 to Subpart FFFF of Part 60 Protection of Environment ENVIRONMENTAL...—Model Rule—Operating Limits for Incinerators and Wet Scrubbers As stated in § 60.3023, you must comply... units. a 2. Pressure drop across the wet scrubber or amperage to wet scrubber Minimum pressure drop or...

  7. Evaluation of cooling performance of impinging jet array over various dimpled surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Min; Kim, Kwang-Yong

    2016-04-01

    Various configurations of an impinging jet-dimple array cooling system were evaluated in terms of their heat transfer and pressure drop performances. The steady incompressible laminar flow and heat transfer in the cooling system were analyzed using three-dimensional Navier-Stokes equations. The obtained numerical results were validated by a comparison with experimental data for the local Nusselt number distribution. The area-averaged Nusselt number on the projected area and the pressure drop through the system were selected as the performance parameters. Among the four tested configurations—inline concave, staggered concave, inline convex, and staggered convex—the staggered convex impinging jet-dimple array showed the best heat transfer performance whereas the staggered-concave configuration showed the lowest pressure drop. A parametric study with two geometric variables, i.e., the height of dimple and the diameter of dimple, was also conducted for the staggered-convex impinging jet-dimple array. As a result, the best heat transfer and pressure drop performances were achieved when the ratio of the height of dimple to the diameter of jet was 0.8. And, the increase in the ratio of the diameter of dimple to the diameter of jet yielded monotonous increase in the heat transfer performance.

  8. Characterisation and optimisation of flexible transfer lines for liquid helium. Part II: Thermohydraulic modelling

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.

    2016-10-01

    In part one of this publication experimental results for a single-channel transfer line used at liquid helium (LHe) decant stations are presented. The transfer of LHe into mobile dewars is an unavoidable process since the places of storage and usage are generally located apart from each other. The experimental results have shown that reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus, generated helium cold gas has to be collected and reliquefied, demanding a huge amount of electrical energy. Although this transfer process is common in cryogenic laboratories, no existing code could be found to model it. Therefore, a thermohydraulic model has been developed to model the LHe flow at operating conditions using published heat transfer and pressure drop correlations. This paper covers the basic equations used to calculate heat transfer and pressure drop, as well as the validation of the thermohydraulic code, and its application within the optimisation process. The final transfer line design features reduced heat leak and pressure drop values based on a combined measurement and modelling campaign in the range of 0.112 < pin < 0.148 MPa, 190 < G < 450 kg/(m2 s), and 0.04 < xout < 0.12.

  9. Impact of axial velocity and transmembrane pressure (TMP) on ARP filter performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Burket, P.

    2016-02-29

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. One potential method for increasing filter flux is to adjust the axial velocity andmore » transmembrane pressure (TMP). SRR requested SRNL to conduct bench-scale filter tests to evaluate the effects of axial velocity and transmembrane pressure on crossflow filter flux. The objective of the testing was to determine whether increasing the axial velocity at the ARP could produce a significant increase in filter flux. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate and 2.5 g MST/L, processing the slurry through a bench-scale crossflow filter unit at varying axial velocity and TMP, and measuring filter flux as a function of time.« less

  10. Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla

    The state-of-the-art multiscale modeling of GPFs including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtration on a singlemore » channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. The microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less

  11. The transition from frictional sliding to shear melting in laboratory experiments and the implications for scale dependent earthquake source properties

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Lockner, D. A.; Kilgore, B. D.; Moore, D. E.

    2011-12-01

    Localized slip during earthquakes, e.g., at 1 m/s for a few seconds, should produce enough thermal energy to melt rock or pressurize pore fluid and drastically reduce fault strength (Sibson, Nature Phys. Sci., 1973. Sibson, Geophys. J. R. Astr. Soc., 1975). Expected changes in earthquake source properties for events with large enough temperature change to induce melting or fluid pressurization include an increase in stress drop, a possible increase in low frequency content of the radiated energy and an increase in the ratio of radiated energy to seismic moment. Such changes with increasing moment, while expected, are not observed seismologically and the role of thermal weakening during large earthquakes remains unknown. To investigate the effect of the onset of thermal weakening on earthquake source properties such as stress drop, slip velocity, weakening distance, and apparent stress, we have conducted stick-slip experiments at confining pressures between 50 and 400 MPa on initially bare rock surfaces of Westerly granite (Lockner et al., Eos Trans. Am. Geophys. Un. T23A-2245, 2010). These conditions span a transition from frictional sliding, producing dry comminuted fault gouge and fractional stress drops at lower confining pressure, to shear induced melting with complete stress drop at the highest pressures. The confining pressure, axial stress and displacement, are measured as in standard faulting tests. Temperature is monitored with a thermocouple ~2.5 mm from the fault. Rapid motions of the fault are inferred from independent recordings of the acceleration and velocity of the loading piston using an accelerometer and a laser Doppler vibrometer. Slip velocity, and event duration increase with stress drop. Stress drops vary from less than 10 to greater than 400 MPa. Durations are between 0.1 and 0.5 ms and average sliding velocities range from <1 to > 10 m/s. Total stress drop is associated with slip and shear stress sufficient to increase the entire shear zone temperature to the melting point of feldspar, but melt is also found in samples subjected to smaller stress drops, suggesting heating to somewhat lower temperature. Stress and slip constrain the total energy; the temperature measurements constrain the energy associated with frictional heating and the heat of fusion, while the velocity measurements allow an estimate of the radiated energy. Using these constraints and models of shear-induced melting we examine changes in event source properties across the transition to shear melting.

  12. Design certification tests: High Pressure Oxygen Filter (HPOF) program. Summary report

    NASA Technical Reports Server (NTRS)

    Smith, I. D.

    1976-01-01

    Design and acceptance certification test procedures and results are presented for a high pressure oxygen filter developed to protect the sealing surfaces in emergency oxygen systems. Equipment specifications are included.

  13. An Investigation Into Low Fuel Pressure Warnings on a Macchi-Viper Aircraft

    DTIC Science & Technology

    1988-05-01

    was sufficient To activate the low pressure warning light. The pressure switch is normally set to a differential of between 2.5 - 3 psi. Partial...only a 2.1 psig margin for light illumination, if the pressure switch is set at 3 psig, and gives little scope for extra pipe or filter losses when... pressure switch is set between 2.5 - 3 psig. Any untoward pressure resistance in the fuel delivery line and filtering system would soon erode this

  14. Effects of air pollutants on Los Angeles Basin citrus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, C.R.; Taylor, O.C.; Richards, B.L.

    1970-03-01

    Commercially producing lemon and navel orange trees were enclosed in plastic covered greenhouses and were given various fractions of the air pollutants occurring in the Los Angeles Basin. In some treatments nitric oxide was supplied to the trees to react with ozone but this formed nitrogen dioxide, another phytotoxicant. The study showed that the photochemical smog complex reduced the rate of water, apparent photosynthesis and yield of both lemons and navel oranges. Fluoride levels in the atmosphere were too low to cause detectable effects. Leaf drop was significantly less in lemons receiving carbon filtered air than those receiving ''ambient air''.more » A similar trend occurred in navel oranges. Fruit drop is a serious problem in navel oranges. This loss was significantly less in carbon filtered air than ambient. Yield of mature fruit is reduced in some cases by as much as 50 percent.« less

  15. Low blood pressure

    MedlinePlus

    Hypotension; Blood pressure - low; Postprandial hypotension; Orthostatic hypotension; Neurally mediated hypotension; NMH ... Blood pressure varies from one person to another. A drop as little as 20 mmHg, can cause ...

  16. Hyperfiltration wash water recovery subsystem - Design and test results. [for extended mission spacecraft such as space stations

    NASA Technical Reports Server (NTRS)

    Reysa, R. P.; Price, D. F.; Olcott, T.; Gaddis, J. L.

    1983-01-01

    The Hyperfiltration Wash Water Recovery (HWWR) subsystem, designed to offer low-power high-volume wash water purification for extended mission spacecraft, is discussed in terms of preprototype design and configuration. Heated wash water collected from the shower, hand wash, and laundry flows into a temperature-controlled (374 K) waste storage tank. Two parallel 25 micron absolute filters at the tank outlet remove large particles from the feed stream. A positive displacement feed pump delivers wash water to the hyperfiltration module at a constant flow rate of 0.20 lpm with discharge pressure variations from 4181-7239 Kpa. The hyperfiltration membrane module is a single-pass design including 36 porous stainless steel tubes, and is designed to provide an approximate water recovery rate of 90 percent. Permeate and brine water flows are monitored by flow meters, and removal of urea and ammonia is achieved by adding 15 percent NaOCl solution to the permeate fluid stream. An alternate module design using two diameters of tubing (allowing a smaller pressure drop and a larger membrane area) gave a superior predicted performance over the first module with larger tubing throughout.

  17. Usability of prostaglandin monotherapy eye droppers.

    PubMed

    Drew, Tom; Wolffsohn, James S

    2015-09-01

    To determine the force needed to extract a drop from a range of current prostaglandin monotherapy eye droppers and how this related to the comfortable and maximum pressure subjects could exert. The comfortable and maximum pressure subjects could apply to an eye dropper constructed around a set of cantilevered pressure sensors and mounted above their eye was assessed in 102 subjects (mean 51.2±18.7 years), repeated three times. A load cell amplifier, mounted on a stepper motor controlled linear slide, was constructed and calibrated to test the force required to extract the first three drops from 13 multidose or unidose latanoprost medication eye droppers. The pressure that could be exerted on a dropper comfortably (25.9±17.7 Newtons, range 1.2-87.4) could be exceeded with effort (to 64.8±27.1 Newtons, range 19.9-157.8; F=19.045, p<0.001), and did not differ between repeats (F=0.609, p=0.545). Comfortable and maximum pressures exerted were correlated (r=0.618, p<0.001), neither were influenced strongly by age (r=0.138, p=0.168; r=-0.118, p=0237, respectively), but were lower in women than in men (F=12.757, p=0.001). The force required to expel a drop differed between dropper designs (F=22.528, p<0.001), ranging from 6.4 Newtons to 23.4 Newtons. The force needed to exert successive drops increased (F=36.373, p<0.001) and storing droppers in the fridge further increased the force required (F=7.987, p=0.009). Prostaglandin monotherapy droppers for glaucoma treatment vary in their resistance to extract a drop and with some a drop could not be comfortably achieved by half the population, which may affect compliance and efficacy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas.

    PubMed

    Bright, A N; Yoshida, K; Tanaka, N

    2013-01-01

    Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Experimental investigation of the two-phase flow regimes and pressure drop in horizontal mini-size rectangular test section

    NASA Astrophysics Data System (ADS)

    Elazhary, Amr Mohamed; Soliman, Hassan M.

    2012-10-01

    An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.

  20. Filter holder and gasket assembly for candle or tube filters

    DOEpatents

    Lippert, Thomas Edwin; Alvin, Mary Anne; Bruck, Gerald Joseph; Smeltzer, Eugene E.

    1999-03-02

    A filter holder and gasket assembly for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut.

  1. 40 CFR 63.7825 - How do I demonstrate initial compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accordance with § 63.7824(a)(1); and (3) For each venturi scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.7790(b)(2), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured...

  2. Prediction of pressure drop in fluid tuned mounts using analytical and computational techniques

    NASA Technical Reports Server (NTRS)

    Lasher, William C.; Khalilollahi, Amir; Mischler, John; Uhric, Tom

    1993-01-01

    A simplified model for predicting pressure drop in fluid tuned isolator mounts was developed. The model is based on an exact solution to the Navier-Stokes equations and was made more general through the use of empirical coefficients. The values of these coefficients were determined by numerical simulation of the flow using the commercial computational fluid dynamics (CFD) package FIDAP.

  3. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  4. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  5. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  6. 40 CFR Table 2 to Subpart Zzzzz of... - Procedures for Establishing Operating Limits for New Affected Sources Classified as Large Foundries

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... using the procedures in the following table: For . . . You must . . . 1. Each wet scrubber subject to the operating limits in § 63.10895(d)(1) for pressure drop and scrubber water flow rate. Using the CPMS required in § 63.10897(b), measure and record the pressure drop and scrubber water flow rate in...

  7. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  8. 40 CFR 63.9916 - What test methods and other procedures must I use to establish and demonstrate initial compliance...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance with the operating limits? For a wet scrubber subject to operating limits for pressure drop and scrubber water flow rate in § 63.9890(b), you must establish site-specific operating limits according to... monitoring system (CPMS) required in § 63.9920, measure and record the pressure drop and scrubber water flow...

  9. 40 CFR 63.7825 - How do I demonstrate initial compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with § 63.7824(a)(1); and (3) For each venturi scrubber subject to the operating limits for pressure drop and scrubber water flow rate in § 63.7790(b)(2), you have established appropriate site-specific operating limits and have a record of the pressure drop and scrubber water flow rate measured...

  10. 40 CFR Table 2 to Subpart Zzzzz of... - Procedures for Establishing Operating Limits for New Affected Sources Classified as Large Foundries

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... using the procedures in the following table: For . . . You must . . . 1. Each wet scrubber subject to the operating limits in § 63.10895(d)(1) for pressure drop and scrubber water flow rate. Using the CPMS required in § 63.10897(b), measure and record the pressure drop and scrubber water flow rate in...

  11. 40 CFR Table 2 to Subpart Zzzzz of... - Procedures for Establishing Operating Limits for New Affected Sources Classified as Large Foundries

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... using the procedures in the following table: For . . . You must . . . 1. Each wet scrubber subject to the operating limits in § 63.10895(d)(1) for pressure drop and scrubber water flow rate. Using the CPMS required in § 63.10897(b), measure and record the pressure drop and scrubber water flow rate in...

  12. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid and liquid-solid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients kLa and kGa (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.

  13. Fixed Packed Bed Reactors in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.

    2004-01-01

    We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients k(L)a and k(G)a (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.

  14. Safety Assessment of TACOM’s Crew Station/Turret Motion Base Simulator

    DTIC Science & Technology

    1992-04-01

    mode. The power ON switch is interlocked with the system hydraulic pressure switch so that the electronics can not be turned off while the system...analog) "o Oil Temperature Transducer (analog) "o Facility Pressure Switch o Pressure Critical Switch "o Six Supply Solenoid Valves "O Three Accumulator...Relief Solenoid Valves o Return Pressure Switch o Return Valve Switch o Six Filter Clogged Switches (one per filter) The Facility Pressure switch detects

  15. Evaluation of Delcath Systems' Generation 2 (GEN 2) melphalan hemofiltration system in a porcine model of percutaneous hepatic perfusion.

    PubMed

    Moeslein, Fred M; McAndrew, Elizabeth G; Appling, William M; Hryniewich, Nicole E; Jarvis, Kevin D; Markos, Steven M; Sheets, Timothy P; Uzgare, Rajneesh P; Johnston, Daniel S

    2014-06-01

    A new melphalan hemoperfusion filter (GEN 2) was evaluated in a simulated-use porcine model of percutaneous hepatic perfusion (PHP). The current study evaluated melphalan filtration efficiency, the transfilter pressure gradient, and the removal of specific blood products. A porcine PHP procedure using the GEN 2 filter was performed under Good Laboratory Practice conditions to model the 60-min clinical PHP procedure. The mean filter efficiency for removing melphalan in six filters was 99.0 ± 0.4 %. The transfilter pressure gradient across the filter averaged 20.9 mmHg for the 60-min procedure. Many blood components, including albumin and platelets, decreased on average from 3.55 to 2.02 g/dL and from 342 to 177 × 10.e3/μL, respectively, during the procedure. The increased melphalan extraction efficiency of the new filter is expected to decrease systemic melphalan exposure. In addition, the low transfilter pressure gradient resulted in low resistance to blood flow in the GEN 2 filter, and the changes to blood components are expected to be clinically manageable.

  16. Source Mechanism of Vulcanian Degassing at Popocatépetl Volcano, Mexico, Determined From Moment-Tensor Inversion of Very-long-period Seismic Waveforms

    NASA Astrophysics Data System (ADS)

    Chouet, B.; Dawson, P.; Arciniega, A.

    2004-12-01

    The source mechanism of very-long-period (VLP) signals accompanying degassing exhalations at Popocatépetl is analyzed in the 15-70~s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of two events (04/23/00, 05/23/00) representative of mild Vulcanian eruptions are well reproduced by our inversion, which takes into account volcano topography. The source centroid is positioned 1500~m below the western perimeter of the summit crater, and the modeled source is composed of a shallow-dipping crack (sill with easterly dip of 10° ) intersecting a steeply-dipping crack (northeast striking dike with northwest dip of 83° ), whose surface trace bisects the vent. Both cracks undergo a similar sequence of inflation, deflation, and reinflation --- reflecting a cycle of pressurization, depressurization, and repressurization within a time interval of 3-5~min. The largest moment release occurs in the sill, showing a maximum volume change of 500-1000\\:m3, pressure drop of 3-5~MPa, and amplitude of recovered pressure equal to 1.2 times the amplitude of the pressure drop. In contrast, the maximum volume change in the dike is 200-300\\:m3, with a corresponding pressure drop of 1-2~MPa and pressure recovery equal to the pressure drop. Accompanying these volumetric sources is a single force with magnitude of 5 × 108~N, consistent with melt advection in response to the pressure transients. The source-time history of the three components of this force confirms that significant mass movement starts in the sill and triggers a mass movement response in the dike within ˜ 5~s. Such source behavior is consistent with the opening of an escape pathway for accumulated gases from slow pressurization of the sill driven by magma crystallization. The opening of a pathway for pent-up gases in the sill and rapid evacuation of this separated gas phase induces the pressure drop. Pressure recovery in the magma filling the sill is driven by diffusion of gases from the resulting supersaturated melt into bubbles. Assuming a penny-shaped crack at ambient pressure of 40~MPa, the observed pressure and volume variations can be modeled with the following attributes: crack radius, (100~m), crack aperture, (5~m), bubble number density, (1010 - 1012\\:m-3), initial bubble radius, (10-6\\:m), final bubble radius, ( ˜ 10-5\\:m), and net decrease of gas concentration in the melt, (0.01~wt%).

  17. Source mechanism of Vulcanian degassing at Popocatépetl Volcano, Mexico, determined from waveform inversions of very long period signals

    NASA Astrophysics Data System (ADS)

    Chouet, Bernard; Dawson, Phillip; Arciniega-Ceballos, Alejandra

    2005-07-01

    The source mechanism of very long period (VLP) signals accompanying volcanic degassing bursts at Popocatépetl is analyzed in the 15-70 s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of two eruptions (23 April and 23 May 2000) representative of mild Vulcanian activity are well reproduced by our inversion, which takes into account volcano topography. The source centroid is positioned 1500 m below the western perimeter of the summit crater, and the modeled source is composed of a shallow dipping crack (sill with easterly dip of 10°) intersecting a steeply dipping crack (northeast striking dike dipping 83° northwest), whose surface extension bisects the vent. Both cracks undergo a similar sequence of inflation, deflation, and reinflation, reflecting a cycle of pressurization, depressurization, and repressurization within a time interval of 3-5 min. The largest moment release occurs in the sill, showing a maximum volume change of 500-1000 m3, pressure drop of 3-5 MPa, and amplitude of recovered pressure equal to 1.2 times the amplitude of the pressure drop. In contrast, the maximum volume change in the dike is less (200-300 m3), with a corresponding pressure drop of 1-2 MPa and pressure recovery equal to the pressure drop. Accompanying these volumetric sources are single-force components with magnitudes of 108 N, consistent with melt advection in response to pressure transients. The source time histories of the volumetric components of the source indicate that significant mass movement starts within the sill and triggers a mass movement response in the dike within a few seconds. Such source behavior is consistent with the opening of a pathway for escape of pent-up gases from slow pressurization of the sill driven by magma crystallization. The opening of this pathway and associated rapid evacuation of volcanic gases induces the pressure drop. Pressure recovery in the magma filling the sill is driven by diffusion of gases from the resulting supersaturated melt into bubbles. Assuming a penny-shaped crack at ambient pressure of 40 MPa, the observed pressure and volume variations can be modeled with the following attributes: crack radius (100 m), crack aperture (5 m), bubble number density (1010-1012 m-3), initial bubble radius (10-6 m), final bubble radius (˜10-5 m), and net decrease of gas concentration in the melt (0.01 wt %).

  18. Source mechanism of Vulcanian degassing at Popocatépetl Volcano, Mexico, determined from waveform inversions of very long period signals

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.; Arciniega-Ceballos, Alejandra

    2005-01-01

    The source mechanism of very long period (VLP) signals accompanying volcanic degassing bursts at Popocatépetl is analyzed in the 15–70 s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of two eruptions (23 April and 23 May 2000) representative of mild Vulcanian activity are well reproduced by our inversion, which takes into account volcano topography. The source centroid is positioned 1500 m below the western perimeter of the summit crater, and the modeled source is composed of a shallow dipping crack (sill with easterly dip of 10°) intersecting a steeply dipping crack (northeast striking dike dipping 83° northwest), whose surface extension bisects the vent. Both cracks undergo a similar sequence of inflation, deflation, and reinflation, reflecting a cycle of pressurization, depressurization, and repressurization within a time interval of 3–5 min. The largest moment release occurs in the sill, showing a maximum volume change of 500–1000 m3, pressure drop of 3–5 MPa, and amplitude of recovered pressure equal to 1.2 times the amplitude of the pressure drop. In contrast, the maximum volume change in the dike is less (200–300 m3), with a corresponding pressure drop of 1–2 MPa and pressure recovery equal to the pressure drop. Accompanying these volumetric sources are single-force components with magnitudes of 108 N, consistent with melt advection in response to pressure transients. The source time histories of the volumetric components of the source indicate that significant mass movement starts within the sill and triggers a mass movement response in the dike within a few seconds. Such source behavior is consistent with the opening of a pathway for escape of pent-up gases from slow pressurization of the sill driven by magma crystallization. The opening of this pathway and associated rapid evacuation of volcanic gases induces the pressure drop. Pressure recovery in the magma filling the sill is driven by diffusion of gases from the resulting supersaturated melt into bubbles. Assuming a penny-shaped crack at ambient pressure of 40 MPa, the observed pressure and volume variations can be modeled with the following attributes: crack radius (100 m), crack aperture (5 m), bubble number density (1010–1012 m−3), initial bubble radius (10−6 m), final bubble radius (∼10−5 m), and net decrease of gas concentration in the melt (0.01 wt %).

  19. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  20. 75 FR 8351 - Notice of a Regional Project Waiver of Section 1605 (Buy American) of the American Recovery and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Old Town, Maine for the purchase of GreensandPlus pressure filter media, manufactured in Brazil, for two of the 12 foot diameter filters. This is a project specific waiver and only applies to the use of... evaluated three different types of pressure filter media during a pilot test in April of 2008 and, well...

  1. Testing of a 4 K to 2 K heat exchanger with an intermediate pressure drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, Peter N.; Ganni, Venkatarao

    2015-12-01

    Most large sub-atmospheric helium refrigeration systems incorporate a heat exchanger at the load, or in the distribution system, to counter-flow the sub-atmospheric return with the super-critical or liquid supply. A significant process improvement is theoretically obtainable by handling the exergy loss across the Joule-Thompson throttling valve supplying the flow to the load in a simple but different manner. As briefly outlined in previous publications, the exergy loss can be minimized by allowing the supply flow pressure to decrease to a sub-atmospheric pressure concurrent with heat exchange flow from the load. One practical implementation is to sub-divide the supply flow pressuremore » drop between two heat exchanger sections, incorporating an intermediate pressure drop. Such a test is being performed at Jefferson Lab's Cryogenic Test Facility (CTF). This paper will briefly discuss the theory, practical implementation and test results and analysis obtained to date.« less

  2. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  3. A priori and a posteriori investigations for developing large eddy simulations of multi-species turbulent mixing under high-pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borghesi, Giulio; Bellan, Josette, E-mail: josette.bellan@jpl.nasa.gov; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099

    2015-03-15

    A Direct Numerical Simulation (DNS) database was created representing mixing of species under high-pressure conditions. The configuration considered is that of a temporally evolving mixing layer. The database was examined and analyzed for the purpose of modeling some of the unclosed terms that appear in the Large Eddy Simulation (LES) equations. Several metrics are used to understand the LES modeling requirements. First, a statistical analysis of the DNS-database large-scale flow structures was performed to provide a metric for probing the accuracy of the proposed LES models as the flow fields obtained from accurate LESs should contain structures of morphology statisticallymore » similar to those observed in the filtered-and-coarsened DNS (FC-DNS) fields. To characterize the morphology of the large-scales structures, the Minkowski functionals of the iso-surfaces were evaluated for two different fields: the second-invariant of the rate of deformation tensor and the irreversible entropy production rate. To remove the presence of the small flow scales, both of these fields were computed using the FC-DNS solutions. It was found that the large-scale structures of the irreversible entropy production rate exhibit higher morphological complexity than those of the second invariant of the rate of deformation tensor, indicating that the burden of modeling will be on recovering the thermodynamic fields. Second, to evaluate the physical effects which must be modeled at the subfilter scale, an a priori analysis was conducted. This a priori analysis, conducted in the coarse-grid LES regime, revealed that standard closures for the filtered pressure, the filtered heat flux, and the filtered species mass fluxes, in which a filtered function of a variable is equal to the function of the filtered variable, may no longer be valid for the high-pressure flows considered in this study. The terms requiring modeling are the filtered pressure, the filtered heat flux, the filtered pressure work, and the filtered species mass fluxes. Improved models were developed based on a scale-similarity approach and were found to perform considerably better than the classical ones. These improved models were also assessed in an a posteriori study. Different combinations of the standard models and the improved ones were tested. At the relatively small Reynolds numbers achievable in DNS and at the relatively small filter widths used here, the standard models for the filtered pressure, the filtered heat flux, and the filtered species fluxes were found to yield accurate results for the morphology of the large-scale structures present in the flow. Analysis of the temporal evolution of several volume-averaged quantities representative of the mixing layer growth, and of the cross-stream variation of homogeneous-plane averages and second-order correlations, as well as of visualizations, indicated that the models performed equivalently for the conditions of the simulations. The expectation is that at the much larger Reynolds numbers and much larger filter widths used in practical applications, the improved models will have much more accurate performance than the standard one.« less

  4. Investigating performance of microchannel evaporators for automobile air conditioning with different port structures

    NASA Astrophysics Data System (ADS)

    Zhou, Guoliang; Su, Lin; Cheng, Qia; Wu, Longbing

    2017-08-01

    Microchannel evaporator has been widely applied in automobile air conditioning, while it faces the problem of refrigerant maldistribution which deteriorates the thermal performance of evaporator. In this study, the performances of microchannel evaporators with different port structures are experimentally investigated for purpose of reducing evaporator pressure drop. Four evaporator samples with different port number and hydraulic diameter are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant R-134A at a real automobile air conditioning. The results on the variations of the evaporator pressure drop and evaporator surface temperature distribution are presented and analyzed. By studying the performance of an evaporator, seeking proper port structure is an approach to reduce refrigerant pressure drop as well as improve refrigerant distribution.

  5. Optimized Design of Spacer in Electrodialyzer Using CFD Simulation Method

    NASA Astrophysics Data System (ADS)

    Jia, Yuxiang; Yan, Chunsheng; Chen, Lijun; Hu, Yangdong

    2018-06-01

    In this study, the effects of length-width ratio and diversion trench of the spacer on the fluid flow behavior in an electrodialyzer have been investigated through CFD simulation method. The relevant information, including the pressure drop, velocity vector distribution and shear stress distribution, demonstrates the importance of optimized design of the spacer in an electrodialysis process. The results show width of the diversion trench has a great effect on the fluid flow compared with length. Increase of the diversion trench width could strength the fluid flow, but also increase the pressure drop. Secondly, the dead zone of the fluid flow decreases with increase of length-width ratio of the spacer, but the pressure drop increases with the increase of length-width ratio of the spacer. So the appropriate length-width ratio of the space should be moderate.

  6. Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor

    NASA Astrophysics Data System (ADS)

    Qinwen, XUE; Xiaohua, WANG; Chenglin, LIU; Youwen, LIU

    2018-03-01

    The tunable terahertz (THz) filter has been designed and studied, which is composed of 1D photonic crystal (PC) containing a defect layer of semiconductor GaAs. The analytical solution of 1D defective PC (1DDPC) is deduced based on the transfer matrix method, and the electromagnetic plane wave numerical simulation of this 1DDPC is performed by using the finite element method. The calculated and simulated results have confirmed that the filtering transmittance of this 1DDPC in symmetric structure of air/(Si/SiO2) N /GaAs/(SiO2/Si) N /air is far higher than in asymmetric structure of air/(Si/SiO2) N /GaAs/(Si/SiO2) N /air, where the filtering frequency can be tuned by the external pressure. It can provide a feasible route to design the external pressure-controlled THz filter based on 1DPC with a defective semiconductor.

  7. Respiratory-Induced Haemodynamic Changes: A Contributing Factor to IVC Filter Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laborda, Alicia, E-mail: alaborda@unizar.es; Kuo, William T., E-mail: wkuo@stanford.edu; Ioakeim, Ignatios, E-mail: ignacio.ioakim@hotmail.es

    2015-10-15

    PurposeThe purpose of the study is to evaluate the influence of respiratory-induced vena caval hemodynamic changes on filter migration/penetration.Materials and MethodsAfter placement of either a Gunther Tulip or Celect IVC filter, 101 consecutive patients scheduled for filter retrieval were prospectively enrolled in this study. Pre-retrieval CT scans were used to assess filter complications and to calculate cross-sectional area in three locations: at level of filter strut fixation, 3 cm above and 3 cm below. A 3D finite element simulation was constructed on these data and direct IVC pressure was recorded during filter retrieval. Cross-sectional areas and pressures of the vena cava weremore » measured during neutral breathing and in Valsalva maneuver and identified filter complications were recorded. A statistical analysis of these variables was then performed.ResultsDuring Valsalva maneuvers, a 60 % decrease of the IVC cross-sectional area and a fivefold increase in the IVC pressure were identified (p < 0.001). There was a statistically significant difference in the reduction of the cross-sectional area at the filter strut level (p < 0.001) in patient with filter penetration. Difficulty in filter retrieval was higher in penetrated or tilted filters (p < 0.001; p = 0.005). 3D computational models showed significant IVC deformation around the filter during Valsalva maneuver.ConclusionCaval morphology and hemodynamics are clearly affected by Valsalva maneuvers. A physiological reduction of IVC cross-sectional area is associated with higher risk of filter penetration, despite short dwell times. Physiologic data should be used to improve future filter designs to remain safely implanted over longer dwell times.« less

  8. Optimization of UA of heat exchangers and BOG compressor exit pressure of LNG boil-off gas reliquefaction system using exergy analysis

    NASA Astrophysics Data System (ADS)

    Kochunni, Sarun Kumar; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2015-12-01

    Boil-off gas (BOG) generation and its handling are important issues in Liquefied natural gas (LNG) value chain because of economic, environment and safety reasons. Several variants of reliquefaction systems of BOG have been proposed by researchers. Thermodynamic analyses help to configure them and size their components for improving performance. In this paper, exergy analysis of reliquefaction system based on nitrogen-driven reverse Brayton cycle is carried out through simulation using Aspen Hysys 8.6®, a process simulator and the effects of heat exchanger size with and without related pressure drop and BOG compressor exit pressure are evaluated. Nondimensionalization of parameters with respect to the BOG load allows one to scale up or down the design. The process heat exchanger (PHX) requires much higher surface area than that of BOG condenser and it helps to reduce the quantity of methane vented out to atmosphere. As pressure drop destroys exergy, optimum UA of PHX decreases for highest system performance if pressure drop is taken into account. Again, for fixed sizes of heat exchangers, as there is a range of discharge pressures of BOG compressor at which the loss of methane in vent minimizes, the designer should consider choosing the pressure at lower value.

  9. Filter holder and gasket assembly for candle or tube filters

    DOEpatents

    Lippert, T.E.; Alvin, M.A.; Bruck, G.J.; Smeltzer, E.E.

    1999-03-02

    A filter holder and gasket assembly are disclosed for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut. 9 figs.

  10. NASA Glenn Icing Research Tunnel: 2014 Cloud Calibration Procedure and Results

    NASA Technical Reports Server (NTRS)

    Van Zante, Judith F.; Ide, Robert F.; Steen, Laura E.; Acosta, Waldo J.

    2014-01-01

    The results of the December 2013 to February 2014 Icing Research Tunnel full icing cloud calibration are presented. The calibration steps included establishing a uniform cloud and conducting drop size and liquid water content calibrations. The goal of the calibration was to develop a uniform cloud, and to generate a transfer function from the inputs of air speed, spray bar atomizing air pressure and water pressure to the outputs of median volumetric drop diameter and liquid water content. This was done for both 14 CFR Parts 25 and 29, Appendix C ('typical' icing) and soon-to-be released Appendix O (supercooled large drop) conditions.

  11. Pre-sheath density drop induced by ion-neutral friction along plasma blobs and implications for blob velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furno, I.; Chabloz, V.; Fasoli, A.

    2014-01-15

    The pre-sheath density drop along the magnetic field in field-aligned, radially propagating plasma blobs is investigated in the TORPEX toroidal experiment [Fasoli et al., Plasma Phys. Controlled Fusion 52, 124020 (2010)]. Using Langmuir probes precisely aligned along the magnetic field, we measure the density n{sub se} at a poloidal limiter, where blobs are connected, and the upstream density n{sub 0} at a location half way to the other end of the blobs. The pre-sheath density drop n{sub se}/n{sub 0} is then computed and its dependence upon the neutral background gas pressure is studied. At low neutral gas pressures, the pre-sheathmore » density drop is ≈0.4, close to the value of 0.5 expected in the collisionless case. In qualitative agreement with a simple model, this value decreases with increasing gas pressure. No significant dependence of the density drop upon the radial distance into the limiter shadow is observed. The effect of reduced blob density near the limiter on the blob radial velocity is measured and compared with predictions from a blob speed-versus-size scaling law [Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)].« less

  12. Influence of Peer Pressure on Secondary School Students Drop out in Rongo Sub-County, Migori County, Kenya

    ERIC Educational Resources Information Center

    Omollo, Atieno Evaline; Yambo, Onyango J. M.

    2017-01-01

    The purpose of this study was to establish the influence of peer pressure on secondary school students' drop out in Rongo Sub-County, Migori County, Kenya. The statement of the problem showed that the sub-county had a dropout rate of 43 percent as compared to the neighboring sub counties like Uriri, Awendo, Nyatike, Kuria and Migori which had 25,…

  13. Nanoengineered Surfaces for High Flux Thin Film Evaporation

    DTIC Science & Technology

    2013-07-15

    for a variety of heat transfer and resource conserving applications. References 1. Mudawar , I., Assessment of high-heat-flux thermal...M.B. and I. Mudawar , High-flux boiling in low-flow rate, low-pressure drop mini- channel and microchannel heat sinks. International Journal of Heat...pressure drop elements and fabricated nucleation sites. Journal of Heat Transfer, 2006. 128(4): p. 389-396. 7. Qu, W. and I. Mudawar , Measurement and

  14. Apparatus for providing directional permeability measurements in subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-01-01

    Directional permeability measurements are provided in a subterranean earth formation by injecting a high-pressure gas from a wellbore into the earth formation in various azimuthal directions with the direction having the largest pressure drop being indicative of the maximum permeability direction. These measurements are provided by employing an inflatable boot containing a plurality of conduits in registry with a like plurality of apertures penetrating the housing at circumferentially spaced-apart locations. These conduits are, in turn, coupled through a valved manifold to a source of pressurized gas so that the high-pressure gas may be selectively directed through any conduit into the earth formation defining the bore with the resulting difference in the pressure drop through the various conduits providing the permeability measurements.

  15. Two-phase adiabatic pressure drop experiments and modeling under micro-gravity conditions

    NASA Astrophysics Data System (ADS)

    Longeot, Matthieu J.; Best, Frederick R.

    1995-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion systems have the capability of achieving high specific power levels. However, before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a ``0-g'' acceleration environment is necessary. To meet this need, two phase flow experiments were conducted by the Interphase Transport Phenomena Laboratory Group (ITP) aboard the National Aeronautics and Space Administration's (NASA) KC-135, using R12 as the working fluid. The present work is concerned with modeling of two-phase pressure drop under 0-g conditions, for bubbly and slug flow regimes. The set of data from the ITP group includes 3 bubbly points, 9 bubbly/slug points and 6 slug points. These two phase pressure drop data were collected in 1991 and 1992. A methodology to correct and validate the data was developed to achieve high levels of confidence. A homogeneous model was developed to predict the pressure drop for particular flow conditions. This model, which uses the Blasius Correlation, was found to be accurate for bubbly and bubbly/slug flows, with errors not larger than 28%. For slug flows, however, the errors are greater, attaining values up to 66%.

  16. Evaluation of BAUER K220 High Pressure Breathing Air Compressor

    DTIC Science & Technology

    1990-03-01

    switch , intermediate 6 Inter-cooler lstf2nd stage pressure lst/2nd stage 7 Inter-cooler 2nd/3rd stage 25 Pressure switch , intermediate 8 Inter-cooler...3rd/4th stage pressure 2nd/3rd stage 9 After-cooler 26 Pressure switch , intermediate 10 Inter-filter 2nd/3rd stage pressure 3rd/4th stage 11 Inter...filter 3rd/4th stage 27 Temperature switch 4th stage 12 Oil and water separator 28 Final pressure switch . 13 Safety valve 1st stage 29 3/2-way solenoid

  17. Noise Exposure of Teachers in Nursery Schools—Evaluation of Measures for Noise Reduction When Dropping DUPLO Toy Bricks into Storage Cases by Sound Analyses

    PubMed Central

    Gebauer, Konstanze; Scharf, Thomas; Baumann, Uwe; Groneberg, David A.; Bundschuh, Matthias

    2016-01-01

    Background: Although noise is one of the leading work-related health risk factors for teachers, many nursery schools lack sufficient noise reduction measures. Methods: This intervention study evaluated the noise exposure of nursery school teachers when dropping DUPLO toy bricks into storage cases. Sound analyses of the impact included assessment of the maximum sound pressure level (LAFmax) as well as frequency analyses with 1/3 octave band filter. For the purpose of standardization, a customized gadget was developed. Recordings were performed in 11 cases of different materials and designs to assess the impact on sound level reduction. Thereby, the acoustic effects of three damping materials (foam rubber, carpet, and PU-foam) were investigated. Results: The lowest LAFmax was measured in cases consisting of “metal grid” (90.71 dB) or of a woven willow “basket” (91.61 dB), whereas a case of “aluminium” (103.34 dB) generated the highest impact LAFmax. The frequency analyses determined especially low LAFmax in the frequency bands between 80 and 2500 Hz in cases designs “metal grid” and “basket”. The insertion of PU-foam achieved the most significant attenuation of LAFmax (−13.88 dB) and, in the frequency analyses, the best sound damping. Conclusion: The dropping of DUPLO bricks in cases contributes to the high noise level in nursery schools, but measured LAFmax show no evidence for the danger of acute hearing loss. However, continuous exposure may lead to functional impairment of the hair cells and trigger stress reactions. We recommend noise reduction by utilizing cases of woven “basket” with an insert of PU-foam. PMID:27384575

  18. Noise Exposure of Teachers in Nursery Schools-Evaluation of Measures for Noise Reduction When Dropping DUPLO Toy Bricks into Storage Cases by Sound Analyses.

    PubMed

    Gebauer, Konstanze; Scharf, Thomas; Baumann, Uwe; Groneberg, David A; Bundschuh, Matthias

    2016-07-04

    Although noise is one of the leading work-related health risk factors for teachers, many nursery schools lack sufficient noise reduction measures. This intervention study evaluated the noise exposure of nursery school teachers when dropping DUPLO toy bricks into storage cases. Sound analyses of the impact included assessment of the maximum sound pressure level (LAFmax) as well as frequency analyses with 1/3 octave band filter. For the purpose of standardization, a customized gadget was developed. Recordings were performed in 11 cases of different materials and designs to assess the impact on sound level reduction. Thereby, the acoustic effects of three damping materials (foam rubber, carpet, and PU-foam) were investigated. The lowest LAFmax was measured in cases consisting of "metal grid" (90.71 dB) or of a woven willow "basket" (91.61 dB), whereas a case of "aluminium" (103.34 dB) generated the highest impact LAFmax. The frequency analyses determined especially low LAFmax in the frequency bands between 80 and 2500 Hz in cases designs "metal grid" and "basket". The insertion of PU-foam achieved the most significant attenuation of LAFmax (-13.88 dB) and, in the frequency analyses, the best sound damping. The dropping of DUPLO bricks in cases contributes to the high noise level in nursery schools, but measured LAFmax show no evidence for the danger of acute hearing loss. However, continuous exposure may lead to functional impairment of the hair cells and trigger stress reactions. We recommend noise reduction by utilizing cases of woven "basket" with an insert of PU-foam.

  19. Hydrological response to earthquakes in the Haibara well, central Japan - II. Possible mechanism inferred from time-varying hydraulic properties

    USGS Publications Warehouse

    Matsumoto, N.; Roeloffs, E.A.

    2003-01-01

    28 coseismic groundwater level decreases have been observed at the Haibara well, Shizuoka prefecture, central Japan, from 1981 to 1997. These groundwater level changes cannot be explained as the poroelastic response to coseismic static strain. We use the atmospheric pressure and tidal responses of the well, rock properties measured on core samples from the same formation and pumping test results to characterize the hydraulic and mechanical properties of the aquifer. The responses of the Haibara well to the M2 Earth tide constituent and to atmospheric pressure have varied over time. In particular, increasing amplitude and decreasing phase lags were observed after the 1993 pumping test, as well as after earthquakes that caused coseismic water level changes. The tidal response, together with the surface load efficiency derived from the atmospheric pressure response, is used to estimate the mechanical properties of the aquifer. The largest amplitude of the M2 constituent, 2.2 mm, is small enough to imply that pore fluid in this system is approximately twice as compressible as water, possibly due to the presence of a small amount of exsolved gas. Diffusion of a coseismic pressure drop near the well could account for the observed time histories of the water level changes. The time histories of the water level drops are well matched by the decay of a coseismic pressure drop at least 80 m away from the well. Removal of a small amount of gas from the formation in that location might in turn explain the coseismic pressure drops.

  20. Investigation on heat transfer characteristics and flow performance of Methane at supercritical pressures

    NASA Astrophysics Data System (ADS)

    Xian, Hong Wei; Oumer, A. N.; Basrawi, F.; Mamat, Rizalman; Abdullah, A. A.

    2018-04-01

    The aim of this study is to investigate the heat transfer and flow characteristic of cryogenic methane in regenerative cooling system at supercritical pressures. The thermo-physical properties of supercritical methane were obtained from the National institute of Standards and Technology (NIST) webbook. The numerical model was developed based on the assumptions of steady, turbulent and Newtonian flow. For mesh independence test and model validation, the simulation results were compared with published experimental results. The effect of four different performance parameter ranges namely inlet pressure (5 to 8 MPa), inlet temperature (120 to 150 K), heat flux (2 to 5 MW/m2) and mass flux (7000 to 15000 kg/m2s) on heat transfer and flow performances were investigated. It was found that the simulation results showed good agreement with experimental data with maximum deviation of 10 % which indicates the validity of the developed model. At low inlet temperature, the change of specific heat capacity at near-wall region along the tube length was not significant while the pressure drop registered was high. However, significant variation was observed for the case of higher inlet temperature. It was also observed that the heat transfer performance and pressure drop penalty increased when the mass flux was increased. Regarding the effect of inlet pressure, the heat transfer performance and pressure drop results decreased when the inlet pressure is increased.

  1. Low Blood Pressure (Hypotension)

    MedlinePlus

    ... Low blood pressure on standing up (orthostatic, or postural, hypotension). This is a sudden drop in blood ... progressive damage to the autonomic nervous system, which controls involuntary functions such as blood pressure, heart rate, ...

  2. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact.

    PubMed

    Lee, Choongyeop; Nam, Youngsuk; Lastakowski, Henri; Hur, Janet I; Shin, Seungwon; Biance, Anne-Laure; Pirat, Christophe; Kim, Chang-Jin C J; Ybert, Christophe

    2015-06-21

    Despite the fact that superhydrophobic surfaces possess useful and unique properties, their practical application has remained limited by durability issues. Among those, the wetting transition, whereby a surface gets impregnated by the liquid and permanently loses its superhydrophobicity, certainly constitutes the most limiting aspect under many realistic conditions. In this study, we revisit this so-called Cassie-to-Wenzel transition (CWT) under the broadly encountered situation of liquid drop impact. Using model hydrophobic micropillar surfaces of various geometrical characteristics and high speed imaging, we identify that CWT can occur through different mechanisms, and at different impact stages. At early impact stages, right after contact, CWT occurs through the well established dynamic pressure scenario of which we provide here a fully quantitative description. Comparing the critical wetting pressure of surfaces and the theoretical pressure distribution inside the liquid drop, we provide not only the CWT threshold but also the hardly reported wetted area which directly affects the surface spoiling. At a later stage, we report for the first time to our knowledge, a new CWT which occurs during the drop recoil toward bouncing. With the help of numerical simulations, we discuss the mechanism underlying this new transition and provide a simple model based on impulse conservation which successfully captures the transition threshold. By shedding light on the complex interaction between impacting water drops and surface structures, the present study will facilitate designing superhydrophobic surfaces with a desirable wetting state during drop impact.

  3. Nonlinear oscillations of inviscid free drops

    NASA Technical Reports Server (NTRS)

    Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.

    1991-01-01

    The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.

  4. Parametric resonance in acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Shen, C. L.; Xie, W. J.; Wei, B.

    2010-05-01

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  5. Measurement and modelling of forced convective heat transfer coefficient and pressure drop of Al2O3- and SiO2-water nanofluids

    NASA Astrophysics Data System (ADS)

    Julia, J. E.; Hernández, L.; Martínez-Cuenca, R.; Hibiki, T.; Mondragón, R.; Segarra, C.; Jarque, J. C.

    2012-11-01

    Forced convective heat transfer coefficient and pressure drop of SiO2- and Al2O3-water nanofluids were characterized. The experimental facility was composed of thermal-hydraulic loop with a tank with an immersed heater, a centrifugal pump, a bypass with a globe valve, an electromagnetic flow-meter, a 18 kW in-line pre-heater, a test section with band heaters, a differential pressure transducer and a heat exchanger. The test section consists of a 1000 mm long aluminium pipe with an inner diameter of 31.2 mm. Eighteen band heaters were placed all along the test section in order to provide a uniform heat flux. Heat transfer coefficient was calculated measuring fluid temperature using immersed thermocouples (Pt100) placed at both ends of the test section and surface thermocouples in 10 axial locations along the test section (Pt1000). The measurements have been performed for different nanoparticles (Al2O3 and SiO2 with primary size of 11 nm and 12 nm, respectively), volume concentrations (1% v., 5% v.), and flow rates (3 103Re<105). Maximum heat transfer coefficient enhancement (300%) and pressure drop penalty (1000%) is obtained with 5% v. SiO2 nanofluid. Existing correlations can predict, at least in a first approximation, the heat transfer coefficient and pressure drop of nanofluids if thermal conductivity, viscosity and specific heat were properly modelled.

  6. 62. (Credit CBF) Operating floor of filter room, c1912. The ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. (Credit CBF) Operating floor of filter room, c1912. The remodeled New York horizontal pressure filters (now gravity filters) are in the foreground; the remodelled Hyatt tub filters are in the background. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  7. Modified friction factor correlation for CICC's based on a porous media analogy

    NASA Astrophysics Data System (ADS)

    Lewandowska, Monika; Bagnasco, Maurizio

    2011-09-01

    A modified correlation for the bundle friction factor in CICC's based on a porous media analogy is presented. The correlation is obtained by the analysis of the collected pressure drop data measured for 23 CICC's. The friction factors predicted by the proposed correlation are compared with those resulting from the pressure drop data for two CICC's measured recently using cryogenic helium in the SULTAN test facility at EPFL-CRPP.

  8. Fluid mechanics relevant to flow through pretreatment of cellulosic biomass.

    PubMed

    Archambault-Léger, Véronique; Lynd, Lee R

    2014-04-01

    The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow. Copyright © 2014. Published by Elsevier Ltd.

  9. Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Jayanti, S.

    2017-08-01

    In this paper, we present a study of the effect of electrode intrusion into the flow channel in an all-vanadium redox flow battery. Permeability, pressure drop and electrochemical performance have been measured in a cell with active area 100 cm2and 414 cm2 fitted with a carbon felt electrode of thickness of 3, 6 or 9 mm compressed to 1.5, 2.5 or 4 mm, respectively, during assembly. Results show that the pressure drop is significantly higher than what can be expected in the thick electrode case while its electrochemical performance is lower. Detailed flow analysis using computational fluid dynamics simulations in two different flow fields shows that both these results can be attributed to electrode intrusion into the flow channel leading to increased resistance to electrolyte flow through the electrode. A correlation is proposed to evaluate electrode intrusion depth as a function of compression.

  10. Architecture for improved mass transport and system performance in redox flow batteries

    NASA Astrophysics Data System (ADS)

    Houser, Jacob; Pezeshki, Alan; Clement, Jason T.; Aaron, Douglas; Mench, Matthew M.

    2017-05-01

    In this work, electrochemical performance and parasitic losses are combined in an overall system-level efficiency metric for a high performance, all-vanadium redox flow battery. It was found that pressure drop and parasitic pumping losses are relatively negligible for high performance cells, i.e., those capable of operating at a high current density while at a low flow rate. Through this finding, the Equal Path Length (EPL) flow field architecture was proposed and evaluated. This design has superior mass transport characteristics in comparison with the standard serpentine and interdigitated designs at the expense of increased pressure drop. An Aspect Ratio (AR) design is discussed and evaluated, which demonstrates decreased pressure drop compared to the EPL design, while maintaining similar electrochemical performance under most conditions. This AR design is capable of leading to improved system energy efficiency for flow batteries of all chemistries.

  11. Thermal design, rating and second law analysis of shell and tube condensers based on Taguchi optimization for waste heat recovery based thermal desalination plants

    NASA Astrophysics Data System (ADS)

    Chandrakanth, Balaji; Venkatesan, G; Prakash Kumar, L. S. S; Jalihal, Purnima; Iniyan, S

    2018-03-01

    The present work discusses the design and selection of a shell and tube condenser used in Low Temperature Thermal Desalination (LTTD). To optimize the key geometrical and process parameters of the condenser with multiple parameters and levels, a design of an experiment approach using Taguchi method was chosen. An orthogonal array (OA) of 25 designs was selected for this study. The condenser was designed, analysed using HTRI software and the heat transfer area with respective tube side pressure drop were computed using the same, as these two objective functions determine the capital and running cost of the condenser. There was a complex trade off between the heat transfer area and pressure drop in the analysis, however second law analysis was worked out for determining the optimal heat transfer area vs pressure drop for condensing the required heat load.

  12. Selective laser melting in heat exchanger development - experimental investigation of heat transfer and pressure drop characteristics of wavy fins

    NASA Astrophysics Data System (ADS)

    Kuehndel, J.; Kerler, B.; Karcher, C.

    2018-04-01

    To improve performance of heat exchangers for vehicle applications, it is necessary to increase the air side heat transfer. Selective laser melting gives rise to be applied for fin development due to: i) independency of conventional tooling ii) a fast way to conduct essential experimental studies iii) high dimensional accuracy iv) degrees of freedom in design. Therefore, heat exchanger elements with wavy fins were examined in an experimental study. Experiments were conducted for air side Reynolds number range of 1400-7400, varying wavy amplitude and wave length of the fins at a constant water flow rate of 9.0 m3/h. Heat transfer and pressure drop characteristics were evaluated with Nusselt Number Nu and Darcy friction factor ψ as functions of Reynolds number. Heat transfer and pressure drop correlations were derived from measurement data obtained by regression analysis.

  13. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  14. Effect of Exit-Slot Position and Opening on the Available Cooling Pressure for NACA Nose-Slot Cowlings

    NASA Technical Reports Server (NTRS)

    Stickle, George W; Naiman, Irven; Crigler, John L

    1940-01-01

    Report presents the results of an investigation of full-scale nose-slot cowlings conducted in the NACA 20-foot wind tunnel to furnish information on the pressure drop available for cooling. Engine conductances from 0 to 0.12 and exit-slot conductances from 0 to 0.30 were covered. Two basic nose shapes were tested to determine the effect of the radius of curvature of the nose contour; the nose shape with the smaller radius of curvature gave the higher pressure drop across the engine. The best axial location of the slot for low-speed operation was found to be in the region of maximum negative pressure for the basic shape for the particular operating condition. The effect of the pressure operating condition on the available cooling pressure is shown.

  15. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners

    PubMed Central

    Batterman, S.; Du, L.; Mentz, G.; Mukherjee, B.; Parker, E.; Godwin, C.; Chin, J.-Y.; O'Toole, A.; Robins, T.; Rowe, Z.; Lewis, T.

    2014-01-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84 ± 27%, but dropped to 63 ± 33% in subsequent seasons. In months when households were not visited, use averaged only 34 ± 30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. PMID:22145709

  16. Effect of swirler-mounted mixing venturi on emissions of flame-tube combustor using jet A fuel

    NASA Technical Reports Server (NTRS)

    Ercegovic, D. B.

    1979-01-01

    Six headplate modules in a flame-tube combustor were evaluated. Unburned hydrocarbons, carbon monoxide, and oxides of nitrogen were measured for three types of fuel injectors both with and without a mixing venturi. Tests were conducted using jet A fuel at an inlet pressure of 0.69 megapascal, an inlet temperature of 478 K, and an isothermal static pressure drop of 3 percent. Oxides of nitrogen were reduced by over 50 percent with a mixing venturi with no performance penalties in either other gaseous emissions or pressure drop.

  17. Aral Sea

    Atmospheric Science Data Center

    2013-04-16

    ... the fourth-largest inland sea in the world. Since then, its water volume has dropped by about 80% due to extensive irrigation systems ... in 3D requires the use of red-blue glasses, with the red filter placed over your left eye. Information on ordering glasses can be found ...

  18. Hanging drop crystal growth apparatus and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  19. Experimental investigation of MHD pressure losses in a mock-up of a liquid metal blanket

    NASA Astrophysics Data System (ADS)

    Mistrangelo, C.; Bühler, L.; Brinkmann, H.-J.

    2018-03-01

    Experiments have been performed to investigate the influence of a magnetic field on liquid metal flows in a scaled mock-up of a helium cooled lead lithium (HCLL) blanket. During the experiments pressure differences between points on the mock-up have been recorded for various values of flow rate and magnitude of the imposed magnetic field. The main contributions to the total pressure drop in the test-section have been identified as a function of characteristic flow parameters. For sufficiently strong magnetic fields the non-dimensional pressure losses are practically independent on the flow rate, namely inertia forces become negligible. Previous experiments on MHD flows in a simplified test-section for a HCLL blanket showed that the main contributions to the total pressure drop in a blanket module originate from the flow in the distributing and collecting manifolds. The new experiments confirm that the largest pressure drops occur along manifolds and near the first wall of the blanket module, where the liquid metal passes through small openings in the stiffening plates separating two breeder units. Moreover, the experimental data shows that with the present manifold design the flow does not distribute homogeneously among the 8 stacked boxes that form the breeding zone.

  20. Liquid jet response to internal modulated ultrasonic radiation pressure and stimulated drop production.

    PubMed

    Lonzaga, Joel B; Osterhoudt, Curtis F; Thiessen, David B; Marston, Philip L

    2007-06-01

    Experimental evidence shows that a liquid jet in air is an acoustic waveguide having a cutoff frequency inversely proportional to the jet diameter. Ultrasound applied to the jet supply liquid can propagate within the jet when the acoustic frequency is near to or above the cutoff frequency. Modulated radiation pressure is used to stimulate large amplitude deformations and the breakup of the jet into drops. The jet response to the modulated internal ultrasonic radiation pressure was monitored along the jet using (a) an optical extinction method and (b) images captured by a video camera. The jet profile oscillates at the frequency of the radiation pressure modulation and where the response is small, the amplitude was found to increase in proportion to the square of the acoustic pressure amplitude as previously demonstrated for oscillating drops [P.L. Marston and R.E. Apfel, J. Acoust. Soc. Am. 67, 27-37 (1980)]. Small amplitude deformations initially grow approximately exponentially with axial distance along the jet. Though aspects of the perturbation growth can be approximated from Rayleigh's analysis of the capillary instability, some detailed features of the observed jet response to modulated ultrasound are unexplained neglecting the effects of gravity.

  1. The impact of wall shear stress and pressure drop on the stability of the atherosclerotic plaque.

    PubMed

    Li, Zhi-Yong; Taviani, Valentina; Gillard, Jonathan H

    2008-01-01

    Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.

  2. Correlation of current drop, filling gas pressure, and ion beam emission in a low energy Mather-type plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behbahani, R. A.; Aghamir, F. M.

    The behavior of current drop and its correlation with ion beam emission during the radial phase of a high inductance low energy Mather type plasma focus device have been studied. The study includes two ranges of filling gas pressure, namely the low range of 0.2-0.8 mbar and the high range of 0.8-1.5 mbar. Two different current simulation processes were performed to aid the interpretation of the experimental results. Within the low range of operating pressure, an acceptable match between the computed and experimental current signals was achieved when the effects of anomalous resistances were contemplated. While in the high rangemore » of pressure, the computed and experimental current traces were in line even without considering the effects of anomalous resistances. The analysis shows that by decreasing the filling gas pressure the effects of instabilities are intensified. The computed and experimental current traces, along with ion beam signals gathered from a faraday cup, show that there is a strong correlation between the intensity of ion beam and its duration with the current drop during the radial phase.« less

  3. Adaptive gain, equalization, and wavelength stabilization techniques for silicon photonic microring resonator-based optical receivers

    NASA Astrophysics Data System (ADS)

    Palermo, Samuel; Chiang, Patrick; Yu, Kunzhi; Bai, Rui; Li, Cheng; Chen, Chin-Hui; Fiorentino, Marco; Beausoleil, Ray; Li, Hao; Shafik, Ayman; Titriku, Alex

    2016-03-01

    Interconnect architectures based on high-Q silicon photonic microring resonator devices offer a promising solution to address the dramatic increase in datacenter I/O bandwidth demands due to their ability to realize wavelength-division multiplexing (WDM) in a compact and energy efficient manner. However, challenges exist in realizing efficient receivers for these systems due to varying per-channel link budgets, sensitivity requirements, and ring resonance wavelength shifts. This paper reports on adaptive optical receiver design techniques which address these issues and have been demonstrated in two hybrid-integrated prototypes based on microring drop filters and waveguide photodetectors implemented in a 130nm SOI process and high-speed optical front-ends designed in 65nm CMOS. A 10Gb/s powerscalable architecture employs supply voltage scaling of a three inverter-stage transimpedance amplifier (TIA) that is adapted with an eye-monitor control loop to yield the necessary sensitivity for a given channel. As reduction of TIA input-referred noise is more critical at higher data rates, a 25Gb/s design utilizes a large input-stage feedback resistor TIA cascaded with a continuous-time linear equalizer (CTLE) that compensates for the increased input pole. When tested with a waveguide Ge PD with 0.45A/W responsivity, this topology achieves 25Gb/s operation with -8.2dBm sensitivity at a BER=10-12. In order to address microring drop filters sensitivity to fabrication tolerances and thermal variations, efficient wavelength-stabilization control loops are necessary. A peak-power-based monitoring loop which locks the drop filter to the input wavelength, while achieving compatibility with the high-speed TIA offset-correction feedback loop is implemented with a 0.7nm tuning range at 43μW/GHz efficiency.

  4. 63. (Credit JTL) Filter room looking east from doorway of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. (Credit JTL) Filter room looking east from doorway of 1887 high service room. Remodelled Hyatt tub filters are in foreground; remodelled New York horizontal pressure filters are in background. These two sets of filters were retired in 1942. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  5. Methodology for processing pressure traces used as inputs for combustion analyses in diesel engines

    NASA Astrophysics Data System (ADS)

    Rašić, Davor; Vihar, Rok; Žvar Baškovič, Urban; Katrašnik, Tomaž

    2017-05-01

    This study proposes a novel methodology for designing an optimum equiripple finite impulse response (FIR) filter for processing in-cylinder pressure traces of a diesel internal combustion engine, which serve as inputs for high-precision combustion analyses. The proposed automated workflow is based on an innovative approach of determining the transition band frequencies and optimum filter order. The methodology is based on discrete Fourier transform analysis, which is the first step to estimate the location of the pass-band and stop-band frequencies. The second step uses short-time Fourier transform analysis to refine the estimated aforementioned frequencies. These pass-band and stop-band frequencies are further used to determine the most appropriate FIR filter order. The most widely used existing methods for estimating the FIR filter order are not effective in suppressing the oscillations in the rate- of-heat-release (ROHR) trace, thus hindering the accuracy of combustion analyses. To address this problem, an innovative method for determining the order of an FIR filter is proposed in this study. This method is based on the minimization of the integral of normalized signal-to-noise differences between the stop-band frequency and the Nyquist frequency. Developed filters were validated using spectral analysis and calculation of the ROHR. The validation results showed that the filters designed using the proposed innovative method were superior compared with those using the existing methods for all analyzed cases. Highlights • Pressure traces of a diesel engine were processed by finite impulse response (FIR) filters with different orders • Transition band frequencies were determined with an innovative method based on discrete Fourier transform and short-time Fourier transform • Spectral analyses showed deficiencies of existing methods in determining the FIR filter order • A new method of determining the FIR filter order for processing pressure traces was proposed • The efficiency of the new method was demonstrated by spectral analyses and calculations of rate-of-heat-release traces

  6. Prediction of orthostatic hypotension in multiple system atrophy and Parkinson disease

    PubMed Central

    Sun, Zhanfang; Jia, Dandan; Shi, Yuting; Hou, Xuan; Yang, Xiaosu; Guo, Jifeng; Li, Nan; Wang, Junling; Sun, Qiying; Zhang, Hainan; Lei, Lifang; Shen, Lu; Yan, Xinxiang; Xia, Kun; Jiang, Hong; Tang, Beisha

    2016-01-01

    Orthostatic hypotension (OH) is common in multiple system atrophy (MSA) and Parkinson disease (PD), generally assessed through a lying-to-standing orthostatic test. However, standing blood pressure may not be available due to orthostatic intolerance or immobilization for such patients. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were successively measured in supine, sitting, and standing positions in patients with MSA and PD. Receiver operating characteristic analysis was used to evaluate diagnostic performance of the drops of sitting SBP or DBP. OH and severe OH were respectively regarded as “gold standard”. The drops of SBP in standing position were associated with increased disease severity for MSA and correlated with age for PD. In MSA group, drops in sitting SBP ≥ 14 mmHg or DBP ≥ 6 mmHg had highest validity for prediction of OH, and drops in sitting SBP ≥ 18 mmHg or DBP ≥ 8 mmHg for severe OH. In PD group, drops in sitting SBP ≥ 10 mmHg or DBP ≥ 6 mmHg had highest validity for prediction of OH. The lying-to-sitting orthostatic test is an alternative method for detection of OH in MSA and PD, especially when standing BP could not be validly measured due to various reasons. PMID:26867507

  7. Comparison of MERV 16 and HEPA filters for cab filtration of underground mining equipment.

    PubMed

    Cecala, A B; Organiscak, J A; Noll, J D; Zimmer, J A

    2016-08-01

    Significant strides have been made in optimizing the design of filtration and pressurization systems used on the enclosed cabs of mobile mining equipment to reduce respirable dust and provide the best air quality to the equipment operators. Considering all of the advances made in this area, one aspect that still needed to be evaluated was a comparison of the efficiencies of the different filters used in these systems. As high-efficiency particulate arrestance (HEPA) filters provide the highest filtering efficiency, the general assumption would be that they would also provide the greatest level of protection to workers. Researchers for the U.S. National Institute for Occupational Safety and Health (NIOSH) speculated, based upon a previous laboratory study, that filters with minimum efficiency reporting value, or MERV rating, of 16 may be a more appropriate choice than HEPA filters in most cases for the mining industry. A study was therefore performed comparing HEPA and MERV 16 filters on two kinds of underground limestone mining equipment, a roof bolter and a face drill, to evaluate this theory. Testing showed that, at the 95-percent confidence level, there was no statistical difference between the efficiencies of the two types of filters on the two kinds of mining equipment. As the MERV 16 filters were less restrictive, provided greater airflow and cab pressurization, cost less and required less-frequent replacement than the HEPA filters, the MERV 16 filters were concluded to be the optimal choice for both the roof bolter and the face drill in this comparative-analysis case study. Another key finding of this study is the substantial improvement in the effectiveness of filtration and pressurization systems when using a final filter design.

  8. Comparison of MERV 16 and HEPA filters for cab filtration of underground mining equipment

    PubMed Central

    Cecala, A.B.; Organiscak, J.A.; Noll, J.D.; Zimmer, J.A.

    2016-01-01

    Significant strides have been made in optimizing the design of filtration and pressurization systems used on the enclosed cabs of mobile mining equipment to reduce respirable dust and provide the best air quality to the equipment operators. Considering all of the advances made in this area, one aspect that still needed to be evaluated was a comparison of the efficiencies of the different filters used in these systems. As high-efficiency particulate arrestance (HEPA) filters provide the highest filtering efficiency, the general assumption would be that they would also provide the greatest level of protection to workers. Researchers for the U.S. National Institute for Occupational Safety and Health (NIOSH) speculated, based upon a previous laboratory study, that filters with minimum efficiency reporting value, or MERV rating, of 16 may be a more appropriate choice than HEPA filters in most cases for the mining industry. A study was therefore performed comparing HEPA and MERV 16 filters on two kinds of underground limestone mining equipment, a roof bolter and a face drill, to evaluate this theory. Testing showed that, at the 95-percent confidence level, there was no statistical difference between the efficiencies of the two types of filters on the two kinds of mining equipment. As the MERV 16 filters were less restrictive, provided greater airflow and cab pressurization, cost less and required less-frequent replacement than the HEPA filters, the MERV 16 filters were concluded to be the optimal choice for both the roof bolter and the face drill in this comparative-analysis case study. Another key finding of this study is the substantial improvement in the effectiveness of filtration and pressurization systems when using a final filter design. PMID:27524838

  9. Altitude Cooling Investigation of the R-2800-21 Engine in the P-47G Airplane. IV - Engine Cooling-Air Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Samuel J.; Staudt, Robert C.; Valerino, Michael F.

    1947-01-01

    A study of the data obtained in a flight investigation of an R-2800-21 engine in a P-47G airplane was made to determine the effect of the flight variables on the engine cooling-air pressure distribution. The investigation consisted of level flights at altitudes from 5000 to 35,000 feet for the normal range of engine and airplane operation. The data showed that the average engine front pressures ranged from 0.73 to 0.82 of the impact pressure (velocity head). The average engine rear pressures ranged from 0.50 to 0.55 of the impact pressure for closed cowl flaps and from 0.10 to 0.20 for full-open cowl flaps. In general, the highest front pressures were obtained at the bottom of the engine. The rear pressures for the rear-row cylinders were .lower and the pressure drops correspondingly higher than for the front-row cylinders. The rear-pressure distribution was materially affected by cowl-flap position in that the differences between the rear pressures of the front-row and rear-row cylinders markedly increased as the cowl flaps were opened. For full-open cowl flaps, the pressure drops across the rear-row cylinders were in the order of 0.2 of the impact pressure greater than across the front-row cylinders. Propeller speed and altitude had little effect on the -coolingair pressure distribution, Increase in angle of inclination of the thrust axis decreased the front ?pressures for the cylinders at the top of the engine and increased them for the cylinders at the bottom of the engine. As more auxiliary air was taken from the engine cowling, the front pressures and, to a lesser extent, the rear pressures for the cylinders at the bottom of the engine decreased. No correlation existed between the cooling-air pressure-drop distribution and the cylinder-temperature distribution.

  10. Experimental study of the effect of drag reducing agent on pressure drop and thermal efficiency of an air cooler

    NASA Astrophysics Data System (ADS)

    Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Saffarian, H.; Shekari, F.

    2016-01-01

    Effect of polymeric drag reduction agents (DRAs) on pressure drop and heat transfer was studied. Aqueous solutions of carboxy methyl cellulose were used inside an air-finned heat exchanger. Despite the previous studies which indicated the importance of drag reduction just in turbulent flow, results of this study in laminar flow indicated that the addition of DRA increases drag reduction, and decreases the overall heat transfer coefficient.

  11. Theoretical and experimental evaluation of the effects of an argon gas mixture on the pressure drop through adult tracheobronchial airway replicas.

    PubMed

    Litwin, Patrick D; Reis Dib, Anna Luisa; Chen, John; Noga, Michelle; Finlay, Warren H; Martin, Andrew R

    2017-06-14

    Argon has the potential to be a novel inhaled therapeutic agent, owing to the neuroprotective and organoprotective properties demonstrated in preclinical studies. Before human trials are performed, an understanding of varying gas properties on airway resistance during inhalation is essential. This study predicts the effect of an 80% argon/20% oxygen gas mixture on the pressure drop through conducting airways, and by extension the airway resistance, and then verifies these predictions experimentally using 3-D printed adult tracheobronchial airway replicas. The predicted pressure drop was calculated using established analytical models of airway resistance, incorporating the change in viscosity and density of the 80% argon/20% oxygen mixture versus that of air. Predicted pressure drop for the argon mixture increased by approximately 29% compared to that for air. The experimental results were consistent with this prediction for inspiratory flows ranging from 15 to 90slpm. These results indicate that established analytical models may be used to predict increases in conducting airway resistance for argon/oxygen mixtures, compared with air. Such predictions are valuable in predicting average patient response to breathing argon/oxygen mixtures, and in selecting or designing delivery systems for use in administration of argon/oxygen mixtures to critically ill or injured patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterisation and optimisation of flexible transfer lines for liquid helium. Part I: Experimental results

    NASA Astrophysics Data System (ADS)

    Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.

    2016-04-01

    The transfer of liquid helium (LHe) into mobile dewars or transport vessels is a common and unavoidable process at LHe decant stations. During this transfer reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus generated helium gas needs to be collected and reliquefied which requires a huge amount of electrical energy. Therefore, the design of transfer lines used at LHe decant stations has been optimised to establish a LHe transfer with minor evaporation losses which increases the overall efficiency and capacity of LHe decant stations. This paper presents the experimental results achieved during the thermohydraulic optimisation of a flexible LHe transfer line. An extensive measurement campaign with a set of dedicated transfer lines equipped with pressure and temperature sensors led to unique experimental data of this specific transfer process. The experimental results cover the heat leak, the pressure drop, the transfer rate, the outlet quality, and the cool-down and warm-up behaviour of the examined transfer lines. Based on the obtained results the design of the considered flexible transfer line has been optimised, featuring reduced heat leak and pressure drop.

  13. The effect of passive mixing on pressure drop and oxygen mass fraction using opposing channel flow field design in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Singh, Anant Bir

    This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the serpentine channel with similar conditions. Simulations for mass transfer show that recombining of the flow streams generate more uniform current density unlike the serpentine configuration where the current density was concentrated at the entrance of the flow stream. The background section provides a brief overview of the governing equations, the theory of flow field operation and previous bodies of work on flow field design. Recommendations are made for further verification of the design using a real working cell based on the results.

  14. Static shape of an acoustically levitated drop with wave-drop interaction

    NASA Astrophysics Data System (ADS)

    Lee, C. P.; Anilkumar, A. V.; Wang, T. G.

    1994-11-01

    The static shape of a drop levitated and flattened by an acoustic standing wave field in air is calculated, requiring self-consistency between the drop shape and the wave. The wave is calculated for a given shape using the boundary integral method. From the resulting radiation stress on the drop surface, the shape is determined by solving the Young-Laplace equation, completing an iteration cycle. The iteration is continued until both the shape and the wave converge. Of particular interest are the shapes of large drops that sustain equilibrium, beyond a certain degree of flattening, by becoming more flattened at a decreasing sound pressure level. The predictions for flattening versus acoustic radiation stress, for drops of different sizes, compare favorably with experimental data.

  15. Design of high pressure oxygen filter for extravehicular activity life support system, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, B. A.

    1977-01-01

    The experience of the National Aeronautics and Space Administration (NASA) with extravehicular activity life support emergency oxygen supply subsystems has shown a large number of problems associated with particulate contamination. These problems have resulted in failures of high pressure oxygen component sealing surfaces. A high pressure oxygen filter was designed which would (a) control the particulate contamination level in the oxygen system to a five-micron glass bead rating, ten-micron absolute condition (b) withstand the dynamic shock condition resulting from the sudden opening of 8000 psi oxygen system shutoff valve. Results of the following program tasks are reported: (1) contaminant source identification tests, (2) dynamic system tests, (3) high pressure oxygen filter concept evaluation, (4) design, (5) fabrication, (6) test, and (7) application demonstration.

  16. High-Temperature Particulate Matter Filtration with Resilient Yttria-Stabilized ZrO2 Nanofiber Sponge.

    PubMed

    Wang, Haolun; Lin, Sen; Yang, Shen; Yang, Xudong; Song, Jianan; Wang, Dong; Wang, Haiyang; Liu, Zhenglian; Li, Bo; Fang, Minghao; Wang, Ning; Wu, Hui

    2018-05-01

    Particulate matter (PM) is a major air pollutant in many regions, jeopardizing ecosystems and public health. Filtration at pollutant source is one of the most important ways to protect the environment, however, considering the high-temperature exhaust gas emissions, effective removal of PM and related pollutants from their sources remains a major challenge. In this study, a resilient, heat-resisting, and high-efficiency PM filter based on yttria-stabilized ZrO 2 (YSZ) nanofiber sponge produced with a scalable solution blow spinning process is reported. The porous 3D sponge composed of YSZ nanofibers is lightweight (density of 20 mg cm -3 ) and resilient at both room temperature and high temperatures. At room-temperature conditions, the YSZ nanofiber sponge exhibits 99.4% filtration efficiency for aerosol particles with size in the range of 20-600 nm, associated with a low pressure drop of only 57 Pa under an airflow velocity of 4.8 cm s -1 . At a high temperature of 750 °C, the ceramic sponge maintains a high filtration efficiency of 99.97% for PM 0.3-2.5 under a high airflow velocity of 10 cm s -1 . A practical vehicle exhaust filter to capture particles with filtration efficiency of >98.3% is also assembled. Hence, the YSZ nanofiber sponge has enormous potential to be applied in industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multiscale modeling of a Chemofilter device for filtering chemotherapy toxins from blood

    NASA Astrophysics Data System (ADS)

    Maani, Nazanin; Beyhaghi, Saman; Yee, Daryl; Nosonovsky, Micheal; Greer, Julia; Hetts, Steven; Rayz, Vitaliy

    2016-11-01

    Purpose: Chemotherapy drugs injected intra-arterially to treat cancer can cause systemic toxic effects. A catheter-based Chemofilter device, temporarily deployed in a vein during the procedure can filter excessive drug from the blood thus reducing chemotherapy side-effects. CFD modeling is used to design the membrane of the Chemofilter in order to optimize its hemodynamic performance. Methods: Multiscale approach is used to model blood flow through the Chemofilter. The toxins bind to the Chemofilter's membrane formed by a lattice of numerous micro cells deployed in a blood vessel of much larger size. A detailed model of the flow through a 2x2 microcell matrix with periodic boundary conditions is used to determine the permeability of the membrane. The results are used to simulate the flow through the whole device modeled as a uniform porous membrane. The finite-volume solver Fluent is used to obtain the numerical solution. Results: The micro cell matrix has a porosity of 0.92. The pressure drop across the resolved microcells was found to be 630 Pa, resulting in the permeability of 6.21 x10-11 m2 in the normal direction. These values were used to optimize the device geometry in order to increase the contact area of the membrane, while minimizing its obstruction to the flow. NIH NCI R01CA194533.

  18. The magnetodynamic filters in monitoring the contaminants from polluted water systems (abstract)

    NASA Astrophysics Data System (ADS)

    Swarup, R.; Singh, Bharat

    1994-05-01

    The magnetic interaction seems to influence the ``structural memory'' of water systems which is quenched in ideally pure water. The sedentary lifetime of each water molecule is extremely short (10-10 s) and its molecular structures may be influenced by some physical effect like magnetic field treatment, it's space time gradients, water velocity, pressure drop, etc. in the interpolar space, so as to yield a noticeable temporal magnetopotential development characterizing the properties of homogeneous and heterogeneous water systems. This principle is also extended to prevailing water systems which always contain various impurities, gas, molecules, ions, microscopic particles in random order. Still the existence of structural memory may be verified by reliable experimental data. The magnetopotential curves of different water systems depict the design and develop-software package for constructing the magnetodynamic-filters superior to the existing techniques on pollution studies like remote sensing, muon spin resonance, laser spectroscopy, nuclear techniques, the gamma ray peak efficiency method, trace elemental characterization due to NBS, neutron activation analysis, and graphite furnance atomic absorption spectrometer. The physiochemical characteristics of water calibrated in terms of magnetopotential curves change with the removal of dissolved gasses, impurities, thermal activation, etc. and the algae, bacteria, phosphates, etc. have been removed at a rapid rate. The magnetodynamic study of ganga water proves it to be an extremely pure and highly resourced fluid.

  19. Biofiltration of solvent vapors from air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Young-sook.

    1993-01-01

    For various industrial solvent vapors, biofiltration promises to offer a cost-effective emission control technology. Exploiting the full potential of this technology will help attain the goals of the Clean Air Act Amendments of 1990. Concentrating on large volumes of volatile industrial solvents, stable multicomponent microbial enrichments capable of growing a mineral medium with solvent vapors as their only source of carbon and energy were obtained from soil and sewage sludge. These consortia were immobilized on an optimized porous solid support (ground peat moss and perlite). The biofilter material was packed in glass columns connected to an array of pumps andmore » flow meters that allowed the independent variation of superficial velocity and solvent vapor concentrations. In various experiments, single solvents, such as methanol, butanol, acetonitrile, hexane and nitrobenzene, and solvent mixtures, such as benzene-toluene-xylene (BTX) and chlorobenzene-o-dichlorobenzene (CB/DCB) were biofiltered with rates ranging from 15 to334 g solvent removed per m[sup 3] filter volume /h. Pressure drops were low to moderate (0-10 mmHg/m) and with periodic replacement of moisture, the biofiltration activity could be maintained for a period of several months. The experimental data on methanol biofiltration were subjected to mathematical analysis and modeling by the group of Dr. Baltzis at NJIT for a better understanding and a possible scale up of solvent vapor biofilters. In the case of chlorobenzenes and nitrobenzene, the biofilter columns had to be operated with water recirculation in a trickling filter mode. To prevent inactivation of the trickling filter by acidity during CB/DCB removal, pH control was necessary, and the removal rate of CB/DCB was strongly influenced by the flow rate of the recyling water. Nitrobenzene removal in a trickling filter did not require pH control, since the nitro group was reduced and volatilized as ammonia.« less

  20. Characteristics of tuneable optical filters using optical ring resonator with PCF resonance loop

    NASA Astrophysics Data System (ADS)

    Shalmashi, K.; Seraji, F. E.; Mersagh, M. R.

    2012-05-01

    A theoretical analysis of a tuneable optical filter is presented by proposing an optical ring resonator (ORR) using photonic crystal fiber (PCF) as the resonance loop. The influences of the characteristic parameters of the PCF on the filter response have been analyzed under steady-state condition of the ORR. It is shown that the tuneability of the filter is mainly achieved by changing the modulation frequency of the light signal applied to the resonator. The analyses have shown that the sharpness and the depth of the filter response are controlled by parameters such as amplitude modulation index of applied field, the coupling coefficient of the ORR, and hole-spacing and air-filling ratio of the PCF, respectively. When transmission coefficient of the loop approaches the coupling coefficient, the filter response enhances sharply with PCF parameters. The depth and the full-width at half-maximum (FWHM) of the response strongly depend on the number of field circulations in the resonator loop. With the proposed tuneability scheme for optical filter, we achieved an FWHM of ~1.55 nm. The obtained results may be utilized in designing optical add/drop filters used in WDM communication systems.

Top