Sample records for filter surface area

  1. Laboratory and on-road evaluations of cabin air filters using number and surface area concentration monitors.

    PubMed

    Qi, Chaolong; Stanley, Nick; Pui, David Y H; Kuehn, Thomas H

    2008-06-01

    An automotive cabin air filter's effectiveness for removing airborne particles was determined both in a laboratory wind tunnel and in vehicle on-road tests. The most penetrating particle size for the test filter was approximately 350 nm, where the filtration efficiency was 22.9 and 17.4% at medium and high fan speeds, respectively. The filtration efficiency increased for smaller particles and was 43.9% for 100 nm and 72.0% for 20 nm particles at a medium fan speed. We determined the reduction in passenger exposure to particles while driving in freeway traffic caused by a vehicle ventilation system with a cabin air filter installed. Both particle number and surface area concentration measurements were made inside the cabin and in the surrounding air. At medium fan speed, the number and surface area concentration-based exposure reductions were 65.6 +/- 6.0% and 60.6 +/- 9.4%, respectively. To distinguish the exposure reduction contribution from the filter alone and the remainder of the ventilation system, we also performed tests with and without the filter in place using the surface area monitors. The ventilation system operating in the recirculation mode with the cabin air filter installed provided the maximum protection, reducing the cabin particle concentration exponentially over time and usually taking only 3 min to reach 10 microm2/cm3 (a typical office air condition) under medium fan speed.

  2. Pre-clinical laboratory evaluation of the new 'AF' arterial line filter range.

    PubMed

    Yarham, Gemma; Mulholland, John

    2010-07-01

    The presence of emboli was recognised relatively early in the history of open heart surgery. The emboli produced during cardiopulmonary bypass have the predisposition to distribute into, and ultimately obstruct, microvessels of all tissues. The Sorin Group has recently developed a new range of arterial line filters. Before the Sorin AF range of filters was released for pre-launch clinical trials, our group performed in vitro laboratory testing of the AF range against a selection of commercially available filters on the global market. The Sorin AF620 and AF640 demonstrate both the smallest prime volume and smallest surface contact area (92ml and 290 cm(2), respectively).The results of the GME Handling Efficiency experiments ranged by 39.6%, from 95.9% to 56.3%. In terms of an air bolus handling, the results of the Limit Bolus experiment ranged by 97 ml, from 147.5 ml down to 50 ml. The pressure drop across all the filters was measured under steady state experimental conditions. All of the above investigations were considered against surface area and prime volume. It is clear from the results that some commercially available arterial line filters perform better than others, not only in overall performance, but also with regard to individual characteristics. Evaluating arterial line filters for hospital-specific use has to balance pressure drop, surface area, micro air handling, prime volume and gross air handling; all points need to be considered. In the AF620 and AF640, Sorin boast that they are the two smallest prime and smallest surface area filters commercially available on the global market. The Sorin AF filter range performs well in all of the areas we investigated and will be a competitive option for centres, irrespective of which characteristics they use to evaluate and select their arterial line filter.

  3. Pollution patterns and underlying relationships of benzophenone-type UV-filters in wastewater treatment plants and their receiving surface water.

    PubMed

    Wu, Ming-Hong; Li, Jian; Xu, Gang; Ma, Luo-Dan; Li, Jia-Jun; Li, Jin-Song; Tang, Liang

    2018-05-15

    The environmental behaviors of emerging pollutants, benzophenone-type UV filters (BP-UV filters) and their derivatives were investigated in four wastewater treatment plants (WWTPs), and their receiving surface waters in Shanghai. The concentration level of selected BP-UV filters in the WWTPs was detected from ngL -1 to μgL -1 . BP (621-951ngL -1 ) and BP-3 (841-1.32 × 10 3 ngL -1 ) were the most abundant and highest detection frequency individuals among the target BP-UV filters in influents, whereas BP (198-400ngL -1 ), BP-4 (93.3-288ngL -1 ) and BP-3 (146-258ngL -1 ) were predominant in effluents. BP-UV filters cannot be completely removed and the total removal efficiency varied widely (-456% to 100%) during the treatment process. It can be inferred that the usage of BP and BP-3 are higher than other BP-UV filters in the study area. The lowest and highest levels were BP-2 (ND-7.66ngL -1 ) and BP-3 (68.5-5.01 × 10 3 ng L -1 ) in the receiving surface water, respectively. Interestingly, the seasonal variation of BP-3 is larger than those of other BP-UV filters in surface water from Shanghai. There is no obvious pollution pattern of BP-UV filters in the surface water from the cosmetic factory area. The correlation analysis of BP-UV filters between WWTPs effluents and nearby downstream water samples suggested that BP-UV filters emitted from some WWTPs might be the main source of receiving surface water. Preliminary risk assessment indicated that the levels of BP-UV filters detected by the effluent posed medium to high risk to fish as well as other aquatic organisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  5. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  6. Evaluation of vacuum filter sock surface sample collection method for Bacillus spores from porous and non-porous surfaces.

    PubMed

    Brown, Gary S; Betty, Rita G; Brockmann, John E; Lucero, Daniel A; Souza, Caroline A; Walsh, Kathryn S; Boucher, Raymond M; Tezak, Matthew S; Wilson, Mollye C

    2007-07-01

    Vacuum filter socks were evaluated for recovery efficiency of powdered Bacillus atrophaeus spores from two non-porous surfaces, stainless steel and painted wallboard and two porous surfaces, carpet and bare concrete. Two surface coupons were positioned side-by-side and seeded with aerosolized Bacillus atrophaeus spores. One of the surfaces, a stainless steel reference coupon, was sized to fit into a sample vial for direct spore removal, while the other surface, a sample surface coupon, was sized for a vacuum collection application. Deposited spore material was directly removed from the reference coupon surface and cultured for enumeration of colony forming units (CFU), while deposited spore material was collected from the sample coupon using the vacuum filter sock method, extracted by sonication and cultured for enumeration. Recovery efficiency, which is a measure of overall transfer effectiveness from the surface to culture, was calculated as the number of CFU enumerated from the filter sock sample per unit area relative to the number of CFU enumerated from the co-located reference coupon per unit area. The observed mean filter sock recovery efficiency from stainless steel was 0.29 (SD = 0.14, n = 36), from painted wallboard was 0.25 (SD = 0.15, n = 36), from carpet was 0.28 (SD = 0.13, n = 40) and from bare concrete was 0.19 (SD = 0.14, n = 44). Vacuum filter sock recovery quantitative limits of detection were estimated at 105 CFU m(-2) from stainless steel and carpet, 120 CFU m(-2) from painted wallboard and 160 CFU m(-2) from bare concrete. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling for biological agents such as Bacillus anthracis.

  7. Comparison of interleukin-6 removal properties among hemofilters consisting of varying membrane materials and surface areas: an in vitro study.

    PubMed

    Hirayama, Yo; Oda, Shigeto; Wakabayashi, Kiyohito; Sadahiro, Tomohito; Nakamura, Masataka; Watanabe, Eizo; Tateishi, Yoshihisa

    2011-01-01

    We sought to identify the most relevant hemofilter for cytokine removal based on the mechanisms of filtration and adsorption. Ascites were filtered using four types of hemofilters composed of different membrane materials (polymethyl methacrylate, PMMA, cellulose triacetate, CTA, or polysulfone, PS) and different surface areas (1.0 or 2.1 m(2)) to investigate the rate of interleukin-6 (IL-6) filtration. Next, ascites were perfused through each hemofilter without obtaining a filtrate to study each filter's adsorptive capability. The PMMA hemofilters resulted in a marginal observed IL-6 filtration rates, whereas the CTA and PS hemofilters resulted in highly effective IL-6 filtration. Regarding the IL-6 adsorptive capabilities of the filters, the PMMA hemofilter with a large surface area showed the highest level of IL-6 clearance. The present findings suggest that when cytokine removal based on filtration is desired, CTA or PS hemofilters should be selected. When IL-6 removal based on adsorption is desired, a PMMA hemofilter with a large surface area should be selected. Copyright © 2010 S. Karger AG, Basel.

  8. Modelling hydrology of a single bioretention system with HYDRUS-1D.

    PubMed

    Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan

    2014-01-01

    A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.

  9. Performance of a stratified sand filter in removal of chemical oxygen demand, total suspended solids and ammonia nitrogen from high-strength wastewaters.

    PubMed

    Healy, M G; Rodgers, M; Mulqueen, J

    2007-06-01

    A stratified sand filter column, operated in recirculation mode and treating synthetic effluent resembling high-strength dairy wastewaters was studied over a 342-d duration. The aim of this paper was to examine the organic, total suspended solids (TSS) and nutrient removal rates of the sand filter, operated in recirculation mode, under incrementally increasing hydraulic and organic loading rates and to propose a field filter-sizing criterion. Best performance was obtained at a system hydraulic loading rate of 10 L m(-2) d(-1); a higher system hydraulic loading rate (of 13.4 L m(-2) d(-1)) caused surface ponding. The system hydraulic loading rate of 10 L m(-2) d(-1) gave a filter chemical oxygen demand (COD), TSS, and total kjeldahl nitrogen (TKN) loading rate of 14, 3.7, and 2.1 g m(-2) d(-1), respectively, and produced consistent COD and TSS removals of greater than 99%, and an effluent NO(3)-N concentration of 42 mg L(-1) (accounting for an 86% reduction in total nitrogen (Tot-N)). As the proportional surface area requirement for the sand filter described in this study is less than the recommended surface area requirement of a free-water surface (FWS) wetland treating an effluent of similar quality, it could provide an economic and sustainable alternative to conventional wetland treatment.

  10. Process for forming a porous silicon member in a crystalline silicon member

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  11. Electric filter with movable belt electrode

    DOEpatents

    Bergman, W.

    1983-09-20

    A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched there between. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants. 4 figs.

  12. Electric filter with movable belt electrode

    DOEpatents

    Bergman, Werner

    1983-01-01

    A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched therebetween. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants.

  13. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOEpatents

    Yang, W.C.; Newby, R.A.; Lippert, T.E.

    1997-08-05

    The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

  14. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOEpatents

    Yang, Wen-Ching; Newby, Richard A.; Lippert, Thomas E.

    1997-01-01

    The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

  15. Preparation of affordable and multifunctional clay-based ceramic filter matrix for treatment of drinking water.

    PubMed

    Shivaraju, H Puttaiah; Egumbo, Henok; Madhusudan, P; Anil Kumar, K M; Midhun, G

    2018-02-01

    Affordable clay-based ceramic filters with multifunctional properties were prepared using low-cost and active ingredients. The characterization results clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with a typical gravity slow sand filter (GSSF). All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than the typical GSSF. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by the clay-based ceramic filter with 25% and 30% activated carbon along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5%), nitrate (80.5%), total dissolved solids (62%), total hardness (55%), total organic pollutants (89%), and pathogenic microorganisms (100%) using ceramic filters within a short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm 3  g -1 ), surface area (124.61 m 2  g -1 ), stability, and presence of active nanoparticles such as Cu, TiO 2 , and Ag within the porous matrix of the ceramic filter.

  16. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  17. Increasing biochar surface area: effects of various milling

    USDA-ARS?s Scientific Manuscript database

    Biochar produced from corn stover is a renewable, plentiful source of carbon that is a potential substitute for carbon black as rubber composite filler and also as binder/filter media for water or beverage purification applications. However, to be successful in these applications, the surface area o...

  18. Aquatic Plant/microbial Filters for Treating Septic Tank Effluent

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1988-01-01

    The use of natural biological processes for treating many types of wastewater have been developed by NASA at the John C. Stennis Space Center, NSTL, Mississippi, during the past 15 years. The simplest form of this technology involves the use of aquatic plant/marsh filters for treatment of septic tank effluent. Septic tank effluent from single home units can be treated to advanced secondary levels and beyond by using a 37.2 sq m (400 sq ft) surface area washed gravel filter. This filter is generally 0.3 m (1 ft) deep with a surface cover of approximately 0.15 m (6 in.) of gravel. The plants in this filter are usually aesthetic or ornamental such as calla lily (Zantedeschia aethiopica), canna lily (Canna flaccida), elephant ear (Colocasia esculenta), and water iris (Iris pseudacorus).

  19. Ecological filtering and plant traits variation across quarry geomorphological surfaces: implication for restoration.

    PubMed

    Gilardelli, Federica; Sgorbati, Sergio; Armiraglio, Stefano; Citterio, Sandra; Gentili, Rodolfo

    2015-05-01

    Revegetation patterns after quarry abandonment have been widely studied from several ecological points of view, but a trait-based approach is still lacking. The aim of this study was to characterise the plant species assemblages and the associated functional traits filtered on different geomorphological surfaces in abandoned limestone quarry areas: artificial cliffs, embankments, and platforms. We then verified if species with certain traits were better able to overcome the dispersal and environmental filters necessary for establishment. To this aim, we analyzed 113 vegetation plots and collected data on 25 morphological, ecological, and dispersal traits to detect species adaptaions across these man-made environments. As a case study, we investigated the extraction basin of Botticino (Lombardy, Italy), the second largest in Italy. The results obtained by SIMPER and CCA analyses showed that rockiness, stoniness, slope, elevation, and time of surfaces are the main filters that varied across quarries and affected plant assemblages at the macro-scale level. Across the three geomorphological surfaces (meso-scale) of quarries, more specific abiotic filters selecting species were found. In turn, traits differentiation according to the three main geomorphological surfaces of quarry emphasized that further filters acting at the micro-scale imply differences in dispersal mechanisms and resource availability. This work highlighted the utility to study species assemblages and environmental filters to address quarry restoration according to the type of geomorphological surface. The investigation of some traits (chorological form, life forms, seed dispersal,s and plant height) can furnish some interesting indications for practice individuating further abiotic filters acting at the micro-scale.

  20. Increasing biochar surface area: Optimization of ball milling parameters

    USDA-ARS?s Scientific Manuscript database

    Biochar produced from corn stover is a renewable, plentiful source of carbon that is a potential substitute for carbon black as rubber composite filler and also as binder/filter media for water or beverage purification applications. However, to be successful in these applications, the surface area o...

  1. Modification of ceramic microfilters with colloidal zirconia to promote the adsorption of viruses from water.

    PubMed

    Wegmann, Markus; Michen, Benjamin; Luxbacher, Thomas; Fritsch, Johannes; Graule, Thomas

    2008-03-01

    The purpose of this study was to test the feasibility of modifying commercial microporous ceramic bacteria filters to promote adsorption of viruses. The internal surface of the filter medium was coated with ZrO(2) nanopowder via dip-coating and heat-treatment in order to impart a filter surface charge opposite to that of the target viruses. Streaming potential measurements revealed a shift in the isoelectric point from pH <3 to between pH 5.5 and 9, respectively. While the base filter elements generally exhibited only 75% retention with respect to MS2 bacteriophages, the modified elements achieved a 7log removal (99.99999%) of these virus-like particles. The coating process also increased the specific surface area of the filters from approximately 2m(2)/g to between 12.5 and 25.5m(2)/g, thereby also potentially increasing their adsorption capacity. The results demonstrate that, given more development effort, the chosen manufacturing process has the potential to yield effective virus filters with throughputs superior to those of current virus filtration techniques.

  2. Contributions of depth filter components to protein adsorption in bioprocessing.

    PubMed

    Khanal, Ohnmar; Singh, Nripen; Traylor, Steven J; Xu, Xuankuo; Ghose, Sanchayita; Li, Zheng J; Lenhoff, Abraham M

    2018-04-16

    Depth filtration is widely used in downstream bioprocessing to remove particulate contaminants via depth straining and is therefore applied to harvest clarification and other processing steps. However, depth filtration also removes proteins via adsorption, which can contribute variously to impurity clearance and to reduction in product yield. The adsorption may occur on the different components of the depth filter, that is, filter aid, binder, and cellulose filter. We measured adsorption of several model proteins and therapeutic proteins onto filter aids, cellulose, and commercial depth filters at pH 5-8 and ionic strengths <50 mM and correlated the adsorption data to bulk measured properties such as surface area, morphology, surface charge density, and composition. We also explored the role of each depth filter component in the adsorption of proteins with different net charges, using confocal microscopy. Our findings show that a complete depth filter's maximum adsorptive capacity for proteins can be estimated by its protein monolayer coverage values, which are of order mg/m 2 , depending on the protein size. Furthermore, the extent of adsorption of different proteins appears to depend on the nature of the resin binder and its extent of coating over the depth filter surface, particularly in masking the cation-exchanger-like capacity of the siliceous filter aids. In addition to guiding improved depth filter selection, the findings can be leveraged in inspiring a more intentional selection of components and design of depth filter construction for particular impurity removal targets. © 2018 Wiley Periodicals, Inc.

  3. The Environmental Assessment and Management (TEAM) Guide: New York Supplement

    DTIC Science & Technology

    2010-03-01

    pressure-sensitive tape regardless of substance (including paper , fabric or plastic film) and related web coating processes on plastic film such as...Cartridge Filter - a replaceable cartridge filter that contains one of the following as the filter medium: paper , activated carbon, or paper and activated...associated drying or curing areas. A single coating line ends after drying or curing and before other surface coatings are applied. For any web

  4. Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering

    USGS Publications Warehouse

    DeWitt, Jessica D.; Warner, Timothy A.; Chirico, Peter G.; Bergstresser, Sarah E.

    2017-01-01

    For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be photogrammetrically created using globally available high-spatial resolution stereo satellite imagery. The resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface features. In densely vegetated conditions, this inclusion can limit its usefulness in applications requiring a bare-earth DEM. This study explores the use of techniques designed for filtering lidar point clouds to mitigate the elevation artifacts caused by above ground features, within the context of a case study of Prince William Forest Park, Virginia, USA. The influences of land cover and leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar Topography Mission DEM. Although the filtered leaf-on photogrammetric DEM retains some artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in accuracy comparable of that to the lidar DEM.

  5. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    PubMed Central

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin; Mateiu, Ramona V.; Albrechtsen, Hans-Jørgen

    2014-01-01

    A mineral coating develops on the filter grain surface when groundwater is treated via rapid sand filtration in drinking water production. The coating changes the physical and chemical properties of the filter material, but little is known about its effect on the activity, colonization, diversity, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35.6 μm) of the mineral coating, which had a thickness of up to 600 ± 51 μm. Environmental scanning electron microscopic (E-SEM) observations suggested an extracellular polymeric substance-rich matrix and submicron-sized bacterial cells. Nitrifier diversity profiles were similar irrespective of the degree of mineral coating, as indicated by pyrosequencing analysis. Overall, our results demonstrate that mineral coating positively affects microbial colonization and activity in rapid sand filters, most likely due to increased volumetric cell abundances facilitated by the large surface area of internal mineral porosity accessible for microbial colonization. PMID:25192987

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT STORMWATER MANAGEMENT INC., STORMFILTER SYSTEM WITH ZPG MEDIA

    EPA Science Inventory

    Verification testing of the Stormwater Management, Inc. StormFilter Using ZPG Filter Media was conducted on a 0.19 acre portion of the eastbound highway surface of Interstate 794, at an area commonly referred to as the "Riverwalk" site near downtown Milwaukee, Wisconsin...

  7. Development of a New Arterial-Line Filter Design Using Computational Fluid Dynamics Analysis

    PubMed Central

    Herbst, Daniel P.; Najm, Hani K.

    2012-01-01

    Abstract: Arterial-line filters used during extracorporeal circulation continue to rely on the physical properties of a wetted micropore and reductions in blood flow velocity to affect air separation from the circulating blood volume. Although problems associated with air embolism during cardiac surgery persist, a number of investigators have concluded that further improvements in filtration are needed to enhance air removal during cardiopulmonary bypass procedures. This article reviews theoretical principles of micropore filter technology and outlines the development of a new arterial-line filter concept using computational fluid dynamics analysis. Manufacturer-supplied data of a micropore screen and experimental results taken from an ex vivo test circuit were used to define the inputs needed for numerical modeling of a new filter design. Flow patterns, pressure distributions, and velocity profiles predicted with computational fluid dynamics softwarewere used to inform decisions on model refinements and how to achieve initial design goals of ≤225 mL prime volume and ≤500 cm2 of screen surface area. Predictions for optimal model geometry included a screen angle of 56° from the horizontal plane with a total surface area of 293.9 cm2 and a priming volume of 192.4 mL. This article describes in brief the developmental process used to advance a new filter design and supports the value of numerical modeling in this undertaking. PMID:23198394

  8. Development of a new arterial-line filter design using computational fluid dynamics analysis.

    PubMed

    Herbst, Daniel P; Najm, Hani K

    2012-09-01

    Arterial-line filters used during extracorporeal circulation continue to rely on the physical properties of a wetted micropore and reductions in blood flow velocity to affect air separation from the circulating blood volume. Although problems associated with air embolism during cardiac surgery persist, a number of investigators have concluded that further improvements in filtration are needed to enhance air removal during cardiopulmonary bypass procedures. This article reviews theoretical principles of micropore filter technology and outlines the development of a new arterial-line filter concept using computational fluid dynamics analysis. Manufacturer-supplied data of a micropore screen and experimental results taken from an ex vivo test circuit were used to define the inputs needed for numerical modeling of a new filter design. Flow patterns, pressure distributions, and velocity profiles predicted with computational fluid dynamics software were used to inform decisions on model refinements and how to achieve initial design goals of < or = 225 mL prime volume and < or = 500 cm2 of screen surface area. Predictions for optimal model geometry included a screen angle of 56 degrees from the horizontal plane with a total surface area of 293.9 cm2 and a priming volume of 192.4 mL. This article describes in brief the developmental process used to advance a new filter design and supports the value of numerical modeling in this undertaking.

  9. Field application of farmstead runoff to vegetated filter strips: surface and subsurface water quality assessment.

    PubMed

    Larson, Rebecca A; Safferman, Steven I

    2012-01-01

    Farmstead runoff poses significant environmental impacts to ground and surface waters. Three vegetated filter strips were assessed for the treatment of dairy farmstead runoff at the soil surface and subsurface at 0.3- or 0. 46-m and 0. 76-m depths for numerous storm events. A medium-sized Michigan dairy was retrofitted with two filter strips on sandy loam soil and a third filter strip was implemented on a small Michigan dairy with sandy soil to collect and treat runoff from feed storage, manure storage, and other impervious farmstead areas. All filter strips were able to eliminate surface runoff via infiltration for all storm events over the duration of the study, eliminating pollutant contributions to surface water. Subsurface effluent was monitored to determine the contributing groundwater concentrations of numerous pollutants including chemical oxygen demand (COD), metals, and nitrates. Subsurface samples have an average reduction of COD concentrations of 20, 11, and 85% for the medium dairy Filter Strip 1 (FS1), medium dairy Filter Strip 2 (FS2), and the small Michigan dairy respectively, resulting in average subsurface concentrations of 355, 3960, and 718 mg L COD. Similar reductions were noted for ammonia and total Kjeldahl nitrogen (TKN) in the subsurface effluent. The small Michigan dairy was able to reduce the pollutant leachate concentrations of COD, TKN, and ammonia over a range of influent concentrations. Increased influent concentrations in the medium Michigan dairy filter strips resulted in an increase in COD, TKN, and ammonia concentrations in the leachate. Manganese was leached from the native soils at all filter strips as evidenced by the increase in manganese concentrations in the leachate. Nitrate concentrations were above standard drinking water limits (10 mg L), averaging subsurface concentrations of 11, 45, and 25 mg L NO-N for FS1, FS2, and the small Michigan dairy, respectively. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Subnanomolar Sensitivity of Filter Paper-Based SERS Sensor for Pesticide Detection by Hydrophobicity Change of Paper Surface.

    PubMed

    Lee, Minwoo; Oh, Kyudeok; Choi, Han-Kyu; Lee, Sung Gun; Youn, Hye Jung; Lee, Hak Lae; Jeong, Dae Hong

    2018-01-26

    As a cost-effective approach for detecting trace amounts of pesticides, filter paper-based SERS sensors have been the subject of intensive research. One of the hurdles to overcome is the difficulty of retaining nanoparticles on the surface of the paper because of the hydrophilic nature of the cellulose fibers in paper. This reduces the sensitivity and reproducibility of paper-based SERS sensors due to the low density of nanoparticles and short retention time of analytes on the paper surface. In this study, filter paper was treated with alkyl ketene dimer (AKD) to modify its property from hydrophilic to hydrophobic. AKD treatment increased the contact angle of the aqueous silver nanoparticle (AgNP) dispersion, which consequently increased the density of AgNPs. The retention time of the analyte was also increased by preventing its rapid absorption into the filter paper. The SERS signal was strongly enhanced by the increased number of SERS hot spots owing to the increased density of AgNPs on a small contact area of the filter surface. The reproducibility and sensitivity of the SERS signal were optimized by controlling the distribution of AgNPs on the surface of the filter paper by adjusting the concentration of the AgNP solution. Using this SERS sensor with a hydrophobicity-modified filter paper, the spot-to-spot variation of the SERS intensity of 25 spots of 4-aminothiophenol was 6.19%, and the limits of detection of thiram and ferbam as test pesticides were measured to be 0.46 nM and 0.49 nM, respectively. These proof-of-concept results indicate that this paper-based SERS sensor can serve for highly sensitive pesticide detection with low cost and easy fabrication.

  11. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red

    NASA Astrophysics Data System (ADS)

    Maes, Thomas; Jessop, Rebecca; Wellner, Nikolaus; Haupt, Karsten; Mayes, Andrew G.

    2017-03-01

    A new approach is presented for analysis of microplastics in environmental samples, based on selective fluorescent staining using Nile Red (NR), followed by density-based extraction and filtration. The dye adsorbs onto plastic surfaces and renders them fluorescent when irradiated with blue light. Fluorescence emission is detected using simple photography through an orange filter. Image-analysis allows fluorescent particles to be identified and counted. Magnified images can be recorded and tiled to cover the whole filter area, allowing particles down to a few micrometres to be detected. The solvatochromic nature of Nile Red also offers the possibility of plastic categorisation based on surface polarity characteristics of identified particles. This article details the development of this staining method and its initial cross-validation by comparison with infrared (IR) microscopy. Microplastics of different sizes could be detected and counted in marine sediment samples. The fluorescence staining identified the same particles as those found by scanning a filter area with IR-microscopy.

  12. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red

    PubMed Central

    Maes, Thomas; Jessop, Rebecca; Wellner, Nikolaus; Haupt, Karsten; Mayes, Andrew G.

    2017-01-01

    A new approach is presented for analysis of microplastics in environmental samples, based on selective fluorescent staining using Nile Red (NR), followed by density-based extraction and filtration. The dye adsorbs onto plastic surfaces and renders them fluorescent when irradiated with blue light. Fluorescence emission is detected using simple photography through an orange filter. Image-analysis allows fluorescent particles to be identified and counted. Magnified images can be recorded and tiled to cover the whole filter area, allowing particles down to a few micrometres to be detected. The solvatochromic nature of Nile Red also offers the possibility of plastic categorisation based on surface polarity characteristics of identified particles. This article details the development of this staining method and its initial cross-validation by comparison with infrared (IR) microscopy. Microplastics of different sizes could be detected and counted in marine sediment samples. The fluorescence staining identified the same particles as those found by scanning a filter area with IR-microscopy. PMID:28300146

  13. Subnanosecond Scintillation Detector

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael (Inventor); Hennessy, John (Inventor); Hitlin, David (Inventor)

    2017-01-01

    A scintillation detector, including a scintillator that emits scintillation; a semiconductor photodetector having a surface area for receiving the scintillation, wherein the surface area has a passivation layer configured to provide a peak quantum efficiency greater than 40% for a first component of the scintillation, and the semiconductor photodetector has built in gain through avalanche multiplication; a coating on the surface area, wherein the coating acts as a bandpass filter that transmits light within a range of wavelengths corresponding to the first component of the scintillation and suppresses transmission of light with wavelengths outside said range of wavelengths; and wherein the surface area, the passivation layer, and the coating are controlled to increase the temporal resolution of the semiconductor photodetector.

  14. Physical and Chemical Processes in Turbulent Flames

    DTIC Science & Technology

    2015-06-23

    positive aerodynamics stretch, into a multitude of wrinkled flamelets possessing either positive or negative stretch, such that the intensified...flame surface, such as the flame surface area ratio, build up this global measure. The turbulent flame surface is typically highly wrinkled and folded...consider a filtered/average location of the flame positions to represent a smooth surface. The information contained in the wrinkled surface if

  15. Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles.

    PubMed

    Sim, Kyoung Mi; Kim, Kyung Hwan; Hwang, Gi Byoung; Seo, SungChul; Bae, Gwi-Nam; Jung, Jae Hee

    2014-09-15

    Activated carbon fiber (ACF) filters have a wide range of applications, including air purification, dehumidification, and water purification, due to their large specific surface area, high adsorption capacity and rate, and specific surface reactivity. However, when airborne microorganisms such as bacteria and fungi adhere to the carbon substrate, ACF filters can become a source of microbial contamination, and their filter efficacy declines. Antimicrobial treatments are a promising means of preventing ACF bio-contamination. In this study, we demonstrate the use of Sophora flavescens in antimicrobial nanoparticles coated onto ACF filters. The particles were prepared using an aerosol process consisting of nebulization-thermal drying and particle deposition. The extract from S. flavescens is an effective, natural antimicrobial agent that exhibits antibacterial activity against various pathogens. The efficiency of Staphylococcus epidermidis inactivation increased with the concentration of S. flavescens nanoparticles in the ACF filter coating. The gas adsorption efficiency of the coated antimicrobial ACF filters was also evaluated using toluene. The toluene-removal capacity of the ACF filters remained unchanged while the antimicrobial activity was over 90% for some nanoparticle concentrations. Our results provide a scientific basis for controlling both bioaerosol and gaseous pollutants using antimicrobial ACF filters coated with S. flavescens nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Power Flow Angles for Slanted Finger Surface Acoustic Wave Filters on Langasite Substrate

    NASA Astrophysics Data System (ADS)

    Goto, Mikihiro; Yatsuda, Hiromi; Chiba, Takao

    2007-07-01

    Power flow angles (PFAs) on a langasite (LGS) substrate with Euler angles of (0{\\degree}, 138.5{\\degree}, \\psi), \\psi=25.7 to 27.7° are investigated for slanted finger interdigital transducer (SFIT) surface acoustic wave (SAW) filters by an electrical and optical methods. In the electrical method, several tilted SFIT SAW filters with different tilt angles for (0{\\degree}, 138.5{\\degree}, \\psi) LGS substrates were designed, and the frequency responses of the filters were measured. In the optical method, the PFAs were directly measured by optical probing for a parallel interdigital transducer (IDT) with wide propagation area on the substrate. As a result, a good correlation between electrical and optical measurements of the PFAs is obtained, but the calculated PFAs are slightly different from the measured PFAs. A good frequency response of a tilted 380 MHz SFIT SAW filter with an appropriate tilt angle corresponding to the PFA on the substrate is obtained even though the aperture is small.

  17. Surface Fitting Filtering of LIDAR Point Cloud with Waveform Information

    NASA Astrophysics Data System (ADS)

    Xing, S.; Li, P.; Xu, Q.; Wang, D.; Li, P.

    2017-09-01

    Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from "WATER (Watershed Allied Telemetry Experimental Research)" are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.

  18. Nanoparticle Treated Stainless Steel Filters for Metal Vapor Sequestration

    NASA Astrophysics Data System (ADS)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; Coopersmith, Kaitlin J.; Summer, Ansley J.; Lewis, Rebecca

    2017-02-01

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown onto various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. The effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.

  19. Mechanical comparison of a polymer nanocomposite to a ceramic thin-film anti-reflective filter.

    PubMed

    Druffel, Thad; Geng, Kebin; Grulke, Eric

    2006-07-28

    Thin-film filters on optical components have been in use for decades and, for those industries utilizing a polymer substrate, the mismatch in mechanical behaviour has caused problems. Surface damage including scratches and cracks induces haze on the optical filter, reducing the transmission of the optical article. An in-mold anti-reflective (AR) filter incorporating 1/4-wavelength thin films based on a polymer nanocomposite is outlined here and compared with a traditional vacuum deposition AR coating. Nanoindentation and nanoscratch techniques are used to evaluate the mechanical properties of the thin films. Scanning electron microscopy (SEM) images of the resulting indentations and scratches are then compared to the force deflection curves to further explain the phenomena. The traditional coatings fractured by brittle mechanisms during testing, increasing the area of failure, whereas the polymer nanocomposite gave ductile failure with less surface damage.

  20. High throughput fabrication of large-area plasmonic color filters by soft-X-ray interference lithography.

    PubMed

    Sun, Libin; Hu, Xiaolin; Wu, Qingjun; Wang, Liansheng; Zhao, Jun; Yang, Shumin; Tai, Renzhong; Fecht, Hans-Jorg; Zhang, Dong-Xian; Wang, Li-Qiang; Jiang, Jian-Zhong

    2016-08-22

    Plasmonic color filters in mass production have been restricted from current fabrication technology, which impede their applications. Soft-X-ray interference lithography (XIL) has recently generated considerable interest as a newly developed technique for the production of periodic nano-structures with resolution theoretically below 4 nm. Here we ameliorate XIL by adding an order sorting aperture and designing the light path properly to achieve perfect-stitching nano-patterns and fast fabrication of large-area color filters. The fill factor of nanostructures prepared on ultrathin Ag films can largely affect the transmission minimum of plasmonic color filters. By changing the fill factor, the color can be controlled flexibly, improving the utilization efficiency of the mask in XIL simultaneously. The calculated data agree well with the experimental results. Finally, an underlying mechanism has been uncovered after systematically analyzing the localized surface plasmon polaritons (LSPPs) coupling in electric field distribution.

  1. Impact of HVAC filter on indoor air quality in terms of ozone removal and carbonyls generation

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Chi; Chen, Hsuan-Yu

    2014-06-01

    This study aims at detecting ozone removal rates and corresponding carbonyls generated by ozone reaction with HVAC filters from various building, i.e., shopping mall, school, and office building. Studies were conducted in a small-scale environmental chamber. By examining dust properties including organic carbon proportion and specific surface area of dusts adsorbed on filters along with ozone removal rates and carbonyls generation rate, the relationship among dust properties, ozone removal rates, and carbonyls generation was identified. The results indicate a well-defined positive correlation between ozone removal efficiency and carbonyls generation on filters, as well as a positive correlation among the mass of organic carbon on filters, ozone removal efficiency and carbonyls generations.

  2. 133Xe contamination found in internal bacteria filter of xenon ventilation system.

    PubMed

    Hackett, Michael T; Collins, Judith A; Wierzbinski, Rebecca S

    2003-09-01

    We report on (133)Xe contamination found in the reusable internal bacteria filter of our xenon ventilation system. Internal bacteria filters (n = 6) were evaluated after approximately 1 mo of normal use. The ventilation system was evacuated twice to eliminate (133)Xe in the system before removal of the filter. Upon removal, the filter was monitored using a survey meter with an energy-compensated probe and was imaged on a scintillation camera. The filter was monitored and imaged over several days and was stored in a fume hood. Estimated (133)Xe activity in each filter immediately after removal ranged from 132 to 2,035 kBq (3.6-55.0 micro Ci), based on imaging. Initial surface radiation levels ranged from 0.4 to 4.5 micro Sv/h (0.04-0.45 mrem/h). The (133)Xe activity did not readily leave the filter over time (i.e., time to reach half the counts of the initial decay-corrected image ranged from <6 to >72 h). The majority of the image counts (approximately 70%) were seen in 2 distinctive areas in the filter. They corresponded to sites where the manufacturer used polyurethane adhesive to attach the fiberglass filter medium to the filter housing. (133)Xe contamination within the reusable internal bacteria filter of our ventilation system was easily detected by a survey meter and imaging. Although initial activities and surface radiation levels were low, radiation safety practices would dictate that a (133)Xe-contaminated bacteria filter be stored preferably in a fume hood until it cannot be distinguished from background before autoclaving or disposal.

  3. Cleanliness evaluation of rough surfaces with diffuse IR reflectance

    NASA Technical Reports Server (NTRS)

    Pearson, L. H.

    1995-01-01

    Contamination on bonding surfaces has been determined to be a primary cause for degraded bond strength in certain solid rocket motor bondlines. Hydrocarbon and silicone based organic contaminants that are airborne or directly introduced to a surface are a significant source of contamination. Diffuse infrared (IR) reflectance has historically been used as an effective technique for detection of organic contaminants, however, common laboratory methods involving the use of a Fourier transform IR spectrometer (FTIR) are impractical for inspecting the large bonding surface areas found on solid rocket motors. Optical methods involving the use of acousto-optic tunable filters and fixed bandpass optical filters are recommended for increased data acquisition speed. Testing and signal analysis methods are presented which provide for simultaneous measurement of contamination concentration and roughness level on rough metal surfaces contaminated with hydrocarbons.

  4. Development of active porous medium filters based on plasma textiles

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan; Kuznetsov, Andrey V.; Brown, Alan; Jasper, Warren

    2012-05-01

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guided the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath ("plasma shield") that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).

  5. Development of active porous medium filters based on plasma textiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, Ivan A.; Saveliev, Alexei V.; Rasipuram, Srinivasan

    2012-05-15

    Inexpensive, flexible, washable, and durable materials that serve as antimicrobial filters and self-decontaminating fabrics are needed to provide active protection to people in areas regularly exposed to various biohazards, such as hospitals and bio research labs working with pathogens. Airlines and cruise lines need such material to combat the spread of infections. In households these materials can be used in HVAC filters to fight indoor pollution, which is especially dangerous to people suffering from asthma. Efficient filtering materials are also required in areas contaminated by other types of hazardous dust particulates, such as nuclear dust. The primary idea that guidedmore » the undertaken study is that a microplasma-generating structure can be embedded in a textile fabric to generate a plasma sheath (''plasma shield'') that kills bacterial agents coming in contact with the fabric. The research resulted in the development of a plasma textile that can be used for producing new types of self-decontaminating garments, fabrics, and filter materials, capable of activating a plasma sheath that would filter, capture, and destroy any bacteriological agent deposited on its surface. This new material relies on the unique antimicrobial and catalytic properties of cold (room temperature) plasma that is benign to people and does not cause thermal damage to many polymer textiles, such as Nomex and polypropylene. The uniqueness of cold plasma as a disinfecting agent lies in the inability of bacteria to develop resistance to plasma exposure, as they can for antibiotics. Plasma textiles could thus be utilized for microbial destruction in active antimicrobial filters (for continuous decontamination and disinfection of large amounts of air) as well as in self-decontaminating surfaces and antibacterial barriers (for example, for creating local antiseptic or sterile environments around wounds and burns).« less

  6. A multimodal optical and electrochemical device for monitoring surface reactions: redox active surfaces in porous silicon Rugate filters.

    PubMed

    Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin

    2012-12-21

    Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.

  7. Experimental evaluation of ALS point cloud ground extraction over different land cover in the Malopolska Province

    NASA Astrophysics Data System (ADS)

    Korzeniowska, Karolina; Mandlburger, Gottfried; Klimczyk, Agata

    2013-04-01

    The paper presents an evaluation of different terrain point extraction algorithms for Airborne Laser Scanning (ALS) point clouds. The research area covers eight test sites in the Małopolska Province (Poland) with varying point density between 3-15points/m² and surface as well as land cover characteristics. In this paper the existing implementations of algorithms were considered. Approaches based on mathematical morphology, progressive densification, robust surface interpolation and segmentation were compared. From the group of morphological filters, the Progressive Morphological Filter (PMF) proposed by Zhang K. et al. (2003) in LIS software was evaluated. From the progressive densification filter methods developed by Axelsson P. (2000) the Martin Isenburg's implementation in LAStools software (LAStools, 2012) was chosen. The third group of methods are surface-based filters. In this study, we used the hierarchic robust interpolation approach by Kraus K., Pfeifer N. (1998) as implemented in SCOP++ (Trimble, 2012). The fourth group of methods works on segmentation. From this filtering concept the segmentation algorithm available in LIS was tested (Wichmann V., 2012). The main aim in executing the automatic classification for ground extraction was operating in default mode or with default parameters which were selected by the developers of the algorithms. It was assumed that the default settings were equivalent to the parameters on which the best results can be achieved. In case it was not possible to apply an algorithm in default mode, a combination of the available and most crucial parameters for ground extraction were selected. As a result of these analyses, several output LAS files with different ground classification were achieved. The results were described on the basis of qualitative and quantitative analyses, both being in a formal description. The classification differences were verified on point cloud data. Qualitative verification of ground extraction was made on the basis of a visual inspection of the results (Sithole G., Vosselman G., 2004; Meng X. et al., 2010). The results of these analyses were described as a graph using weighted assumption. The quantitative analyses were evaluated on a basis of Type I, Type II and Total errors (Sithole G., Vosselman G., 2003). The achieved results show that the analysed algorithms yield different classification accuracies depending on the landscape and land cover. The simplest terrain for ground extraction was flat rural area with sparse vegetation. The most difficult were mountainous areas with very dense vegetation where only a few ground points were available. Generally the LAStools algorithm gives good results in every type of terrain, but the ground surface is too smooth. The LIS Progressive Morphological Filter algorithm gives good results in forested flat and low slope areas. The surface-based algorithm from SCOP++ gives good results in mountainous areas - both forested and built-up because it better preserves steep slopes, sharp ridges and breaklines, but sometimes it fails to remove off-terrain objects from the ground class. The segmentation-based algorithm in LIS gives quite good results in built-up flat areas, but in forested areas it does not work well. Bibliography: Axelsson, P., 2000. DEM generation from laser scanner data using adaptive TIN models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIII (Pt. B4/1), 110- 117 Kraus, K., Pfeifer, N., 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry & Remote Sensing 53 (4), 193-203 LAStools website http://www.cs.unc.edu/~isenburg/lastools/ (verified in September 2012) Meng, X., Currit, N., Zhao, K., 2010. Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues. Remote Sensing 2, 833-860 Sithole, G., Vosselman, G., 2003. Report: ISPRS Comparison of Filters. Commission III, Working Group 3. Department of Geodesy, Faculty of Civil Engineering and Geosciences, Delft University of technology, The Netherlands Sithole, G., Vosselman, G., 2004. Experimental comparison of filter algorithms for bare-Earth extraction form airborne laser scanning point clouds. ISPRS Journal of Photogrammetry & Remote Sensing 59, 85-101 Trimble, 2012 http://www.trimble.com/geospatial/aerial-software.aspx (verified in November 2012) Wichmann, V., 2012. LIS Command Reference, LASERDATA GmbH, 1-231 Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J., Zhang, C., 2003. A progressive morphological filter for removing non-ground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872-882

  8. Voyager spacecraft images of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.

    1982-01-01

    The Voyager imaging system is described, noting that it is made up of a narrow-angle and a wide-angle TV camera, each in turn consisting of optics, a filter wheel and shutter assembly, a vidicon tube, and an electronics subsystem. The narrow-angle camera has a focal length of 1500 mm; its field of view is 0.42 deg and its focal ratio is f/8.5. For the wide-angle camera, the focal length is 200 mm, the field of view 3.2 deg, and the focal ratio of f/3.5. Images are exposed by each camera through one of eight filters in the filter wheel on the photoconductive surface of a magnetically focused and deflected vidicon having a diameter of 25 mm. The vidicon storage surface (target) is a selenium-sulfur film having an active area of 11.14 x 11.14 mm; it holds a frame consisting of 800 lines with 800 picture elements per line. Pictures of Jupiter, Saturn, and their moons are presented, with short descriptions given of the area being viewed.

  9. Sub-micron filter

    DOEpatents

    Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  10. Nanoparticle treated stainless steel filters for metal vapor sequestration

    DOE PAGES

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul; ...

    2016-12-07

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less

  11. Nanoparticle treated stainless steel filters for metal vapor sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murph, Simona E. Hunyadi; Larsen, George K.; Korinko, Paul

    The ability to sequester vapor phase radioactive compounds during industrial processes reduces the exposure of workers and the environment to dangerous radioactive materials. Nanomaterials have a lot of potential in this area because they typically demonstrate size- and shape-dependent properties with higher reactivity than bulk. This is due to the increased surface area-to-volume ratio and quantum size effects. In this report, we developed a gold nanomaterial-treated stainless steel filter, namely wools and coupons, that can be efficiently used for zinc vapor sequestration. Without nanoparticle modification, stainless steel coupons do not react or alloy with Zn. Gold nanomaterials were grown ontomore » various stainless steel filters using solution chemistry that is amenable to scaling up. Materials were characterized by electron microscopy, inductively coupled plasma mass spectroscopy and dynamic light scattering before and after exposure to zinc vapors. X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy mapping and ultraviolet-visible spectroscopy confirm the formation of gold-zinc alloys after Zn vapor exposure. Furthermore, the effect of surface topography on nanoparticle morphology, size and loading density were also investigated, and stainless steel surface defects were found to have an impact on the Au NP growth and subsequently Zn sequestration.« less

  12. FLASH_SSF_Aqua-FM3-MODIS_Version3C

    Atmospheric Science Data Center

    2018-04-04

    ... Tool:  CERES Order Tool  (netCDF) Subset Data:  CERES Search and Subset Tool (HDF4 & netCDF) ... Cloud Layer Area Cloud Infared Emissivity Cloud Base Pressure Surface (Radiative) Flux TOA Flux Surface Types TOT ... Radiance SW Filtered Radiance LW Flux Order Data:  Earthdata Search:  Order Data Guide Documents:  ...

  13. FLASH_SSF_Terra-FM1-MODIS_Version3C

    Atmospheric Science Data Center

    2018-04-04

    ... Tool:  CERES Order Tool  (netCDF) Subset Data:  CERES Search and Subset Tool (HDF4 & netCDF) ... Cloud Layer Area Cloud Infrared Emissivity Cloud Base Pressure Surface (Radiative) Flux TOA Flux Surface Types TOT ... Radiance SW Filtered Radiance LW Flux Order Data:  Earthdata Search:  Order Data Guide Documents:  ...

  14. A generalized adaptive mathematical morphological filter for LIDAR data

    NASA Astrophysics Data System (ADS)

    Cui, Zheng

    Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in processing LIDAR data to effectively and efficiently identify ground measurements for the complex terrains in a large LIDAR data set. The GAPM filter is highly automatic and requires little human input. Therefore, it can significantly reduce the effort of manually processing voluminous LIDAR measurements.

  15. Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: A computational approach

    NASA Astrophysics Data System (ADS)

    Ribeiro, M. S.; Pascoini, A. L.; Knupp, W. G.; Camps, I.

    2017-12-01

    Carbon nanotubes (CNTs) have important electronic, mechanical and optical properties. These features may be different when comparing a pristine nanotube with other presenting its surface functionalized. These changes can be explored in areas of research and application, such as construction of nanodevices that act as sensors and filters. Following this idea, in the current work, we present the results from a systematic study of CNT's surface functionalized with hydroxyl and carboxyl groups. Using the entropy as selection criterion, we filtered a library of 10k stochastically generated complexes for each functional concentration (5, 10, 15, 20 and 25%). The structurally related parameters (root-mean-square deviation, entropy, and volume/area) have a monotonic relationship with functionalization concentration. Differently, the electronic parameters (frontier molecular orbital energies, electronic gap, molecular hardness, and electrophilicity index) present and oscillatory behavior. For a set of concentrations, the nanotubes present spin polarized properties that can be used in spintronics.

  16. Combined application of airborne and terrestrial laserscanning for quantifying sediment relocation by a large debris flow event

    NASA Astrophysics Data System (ADS)

    Bremer, Magnus; Sass, Oliver; Vetter, Michael; Geilhausen, Martin

    2010-05-01

    Country-wide ALS datasets of high resolution become more and more available and can provide a solid basis for geomorphological research. On the other hand, terrain changes after geomorphological extreme events can be quickly and flexibly documented by TLS and be compared to the pre-existing ALS datasets. For quantifying net-erosion, net-sedimentation and transport rates of events like rock falls, landslides and debris flows, comparing TLS surveys after the event to ALS data before the event is likely to become a widespread and powerful tool. However, the accuracy and possible errors of fitting ALS and TLS data have to be carefully assessed. We tried to quantify sediment movement and terrain changes caused by a major debris-flow-event in the Halltal in the Karwendel Mountains (Tyrol, Austria). Wide areas of limestone debris were dissected and relocated in the course of an exceptional rainstorm event on 29th June 2008. The event occurred 64 years after wildfire-driven deforestation. In the area, dense dwarf pine (pinus mugo) shrub cover is widespread, causing specific problems in generating terrain models. We compared a pre-event ALS-dataset, provided by the federal-state of Tyrol, and a post-event TLS survey. The two scanner systems have differing system characteristics (scan angles, resolutions, application of dGPS, etc.), causing different systematic and random errors. Combining TLS and ALS point data was achieved using an algorithm of the RISCAN_PRO software (Multi Station Adjustment), enabling a least square fitting between the two surfaces. Adjustment and registration accuracies as well as the quality of applied vegetation filters, mainly eliminating non-groundpoints from the raw data, are crucial for the generation of high-quality terrain models and a reliable comparison of the two data sets. Readily available filter algorithms provide good performance for gently sloped terrain and high forest vegetation. However, the low krummholz vegetation on steep terrain proved difficult to be filtered. This is due to a small height difference between terrain and canopy, a very strong height variation of the terrain points compared to the height variation of the canopy points and a very high density of the vegetation. The letter leads to very low percentages of groundpoints (1 - 5%). A combined filtering approach using a surface-based filter and a morphological filter, adapted to the characteristics of the krummholz vegetation were applied to overcome these problems. In the next step, the datasets were compared, erosion- and sedimentation areas were detected and quantified (cut-and-fill) in view of the accuracy achieved. The position of the relocated surface areas were compared to the morphological structures of the initial surface (inclination, curvature, flowpaths, hydrological catchments). Considerable deviations between the datasets were caused, besides the geomorphic terrain changes, by systematic and random errors. Due to the scanner perspective, parts of the steep slopes are depicted inaccurately by ALS. Rugged terrain surfaces cause random errors of ALS/TLS adjustment when the ratio of point density to surface variability is low. Due to multiple returns and alteration of pulse shape, terrain altitude is frequently overestimated when dense shrub cover is present. This effect becomes stronger with larger footprints. Despite these problems, erosional and depositional areas of debris flows could be clearly identified and match the results of field surveys. Strongest erosion occurred along the flowpaths with the greatest runoff concentration, mainly at the bedrock-debris interface.

  17. Energy from aquatic plant wastewater treatment systems

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.

    1979-01-01

    Water hyacinth (Eichhornia crassipes), duckweed (Spirodela sp. and Lemma sp.), water pennywort (Hydrocotyle ranunculoides), and kudzu (Pueraria lobata) were anaerobically fermented using an anaerobic filter technique that reduced the total digestion time from 90 days to an average of 23 days and produced 0.14-0.28 cu m CH4/kg (dry weight) (2.3-4.5 cu ft/lb) from mature filters. The anaerobic filter provided a large surface area for the anaerobic bacteria to establish and maintain an optimum balance of facultative, acid-forming, and methane-producing bacteria. Consequently the efficiency of the process was greatly improved over prior batch fermentations.

  18. Robot Towed Shortwave Infrared Camera for Specific Surface Area Retrieval of Surface Snow

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Lines, A.; Ray, L.; Albert, M. R.

    2017-12-01

    Optical grain size and specific surface area are key parameters for measuring the atmospheric interactions of snow, as well as tracking metamorphosis and allowing for the ground truthing of remote sensing data. We describe a device using a shortwave infrared camera with changeable optical bandpass filters (centered at 1300 nm and 1550 nm) that can be used to quickly measure the average SSA over an area of 0.25 m^2. The device and method are compared with calculations made from measurements taken with a field spectral radiometer. The instrument is designed to be towed by a small autonomous ground vehicle, and therefore rides above the snow surface on ultra high molecular weight polyethylene (UHMW) skis.

  19. Moving Bed Granular Bed Filter Development Program. Topical report, September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, J.C.; Prudhomme, J.W.; Wilson, K.W.

    1994-09-01

    Five test arrangements have been designed to support the Granular Bed Filter Development Program as defined in the Test Plan. The first arrangement is a 3.6 ft. diameter half filter, with a glass covering along the cross section to allow visual examination of the granular alumina material passing through the filter. The second test arrangement is a 3.6 ft diameter full size filter having refractory lining to simulate actual surface roughness conditions. The third test arrangement will examine filter geometry scale up by testing a 6.0 ft. diameter full size filter. The fourth Test Arrangement consists of a small 12more » inch diameter fluidizer to measure the minimum fluidization velocity of the 7 m (approx. size) alumina material to be used in the filter assemblies. The last Test Unit is used to evaluation relative abrasion characteristics of potential refractory and ceramic materials to be installed in high abrasion areas in the pneumatic transport piping.« less

  20. On-farm treatment of dairy soiled water using aerobic woodchip filters.

    PubMed

    Ruane, Eimear M; Murphy, Paul N C; Healy, Mark G; French, Padraig; Rodgers, Michael

    2011-12-15

    Dairy soiled water (DSW) is produced on dairy farms through the washing-down of milking parlours and holding areas, and is generally applied to land. However, there is a risk of nutrient loss to surface and ground waters from land application. The aim of this study was to use aerobic woodchip filters to remove organic matter, suspended solids (SS) and nutrients from DSW. This novel treatment method would allow the re-use of the final effluent from the woodchip filters to wash down yards, thereby reducing water usage and environmental risks associated with land spreading. Three replicate 100 m(2) farm-scale woodchip filters, each 1 m deep, were constructed and operated to treat DSW from 300 cows over an 11-month study duration. The filters were loaded at a hydraulic loading rate of 30 L m(-2) d(-1), applied in four doses through a network of pipes on the filter surface. Average influent concentrations of chemical oxygen demand (COD), SS and total nitrogen (TN) of 5750 ± 1441 mg L(-1), 602 ± 303 mg L(-1) and 357 ± 100 mg L(-1), respectively, were reduced by 66, 86 and 57% in the filters. Effluent nutrient concentrations remained relatively stable over the study period, indicating the effectiveness of the filter despite increasing and/or fluctuating influent concentrations. Woodchip filters are a low cost, minimal maintenance treatment system, using a renewable resource that can be easily integrated into existing farm infrastructure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Spatial and Temporal Variation of Land Surface Temperature in Fujian Province from 2001 TO 2015

    NASA Astrophysics Data System (ADS)

    Li, Y.; Wang, X.; Ding, Z.

    2018-04-01

    Land surface temperature (LST) is an essential parameter in the physics of land surface processes. The spatiotemporal variations of LST on the Fujian province were studied using AQUA Moderate Resolution Imaging Spectroradiometer LST data. Considering the data gaps in remotely sensed LST products caused by cloud contamination, the Savitzky-Golay (S-G) filter method was used to eliminate the influence of cloud cover and to describe the periodical signals of LST. Observed air temperature data from 27 weather stations were employed to evaluate the fitting performance of the S-G filter method. Results indicate that S-G can effectively fit the LST time series and remove the influence of cloud cover. Based on the S-G-derived result, Spatial and temporal Variations of LST in Fujian province from 2001 to 2015 are analysed through slope analysis. The results show that: 1) the spatial distribution of annual mean LST generally exhibits consistency with altitude in the study area and the average of LST was much higher in the east than in the west. 2) The annual mean temperature of LST declines slightly among 15 years in Fujian. 3) Slope analysis reflects the spatial distribution characteristics of LST changing trend in Fujian.Improvement areas of LST are mainly concentrated in the urban areas of Fujian, especially in the eastern urban areas. Apparent descent areas are mainly distributed in the area of Zhangzhou and eastern mountain area.

  2. Comparing activated alumina with indigenous laterite and bauxite as potential sorbents for removing fluoride from drinking water in Ghana

    USGS Publications Warehouse

    Craig, Laura; Stillings, Lisa; Decker, David L.; Thomas, James M.

    2015-01-01

    Fluoride is considered beneficial to teeth and bones when consumed in low concentrations, but at elevated concentrations it can cause dental and skeletal fluorosis. Most fluoride-related health problems occur in poor, rural communities of the developing world where groundwater fluoride concentrations are high and the primary sources of drinking water are from community hand-pump borehole drilled wells. One solution to drinking high fluoride water is to attach a simple de-fluoridation filter to the hand-pump; and indigenous materials have been recommended as low-cost sorbents for use in these filters. In an effort to develop an effective, inexpensive, and low-maintenance de-fluoridation filter for a high fluoride region in rural northern Ghana, this study conducted batch fluoride adsorption experiments and potentiometric titrations to investigate the effectiveness of indigenous laterite and bauxite as sorbents for fluoride removal. It also determined the physical and chemical properties of each sorbent. Their properties and the experimental results, including fluoride adsorption capacity, were then compared to those of activated alumina, which has been identified as a good sorbent for removing fluoride from drinking water. The results indicate that, of the three sorbents, bauxite has the highest fluoride adsorption capacity per unit area, but is limited by a low specific surface area. When considering fluoride adsorption per unit weight, activated alumina has the highest fluoride adsorption capacity because of its high specific surface area. Activated alumina also adsorbs fluoride well in a wider pH range than bauxite, and particularly laterite. The differences in adsorption capacity are largely due to surface area, pore size, and mineralogy of the sorbent.

  3. Morphology of Nano and Micro Fiber Structures in Ultrafine Particles Filtration

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Fenyk, Jan; Petras, David; Zatloukal, Martin; Sambaer, Wannes; Zdimal, Vladimir

    2011-07-01

    Selected procedures permitting to prepare homogeneous nanofibre structures of the desired morphology by employing a suitable combination of variables during the electrospinning process are presented. A comparison (at the same pressure drop) was made of filtration capabilities of planar polyurethane nanostructures formed exclusively by nanofibres, space polycarbonate nanostructures having bead spacers, structures formed by a combination of polymethyl methacrylate micro- and nanofibres and polypropylene meltblown microstructures, through which ultrafine particles of ammonium sulphate 20-400 nm in size were filtered. The structures studied were described using a new digital image analysis technique based on black and white images obtained by scanning electron microscopy. More voluminous structures modified with distance microspheres and having a greater thickness and mass per square area of the material, i.e. structures possessing better mechanical properties, demanded so much in nanostructures, enable preparation of filters having approximately the same free volume fraction as flat nanofibre filters but an increased effective fibre surface area, changed pore size morphology and, consequently, a higher filter quality.

  4. Comparative Evaluation of Vacuum-based Surface Sampling ...

    EPA Pesticide Factsheets

    Journal Article Following a biological contamination incident, collection of surface samples is necessary to determine the extent and level of contamination, and to deem an area safe for reentry upon decontamination. Current sampling strategies targeting Bacillus anthracis spores prescribe vacuum-based methods for rough and/or porous surfaces. In this study, four commonly-used B. anthracis spore sampling devices (vacuum socks, 37 mm 0.8 µm MCE filter cassettes, 37 mm 0.3 µm PTFE filter cassettes, and 3MTM forensic filters) were comparatively evaluated for their ability to recover surface-associated spores. The vacuum sock device was evaluated at two sampling speeds (slow and fast), resulting in five total methods evaluated. Aerosolized spores (~105 cm-2) of a surrogate Bacillus species (Bacillus atrophaeus) were allowed to settle onto three material types (concrete, carpet, and upholstery). Ten replicate samples were collected using each vacuum method, from each of the three material types. In addition, stainless steel (i.e., nonporous) surfaces inoculated simultaneously were sampled with pre-moistened wipes. Recoveries from wipes of steel surfaces were utilized to verify the inoculum, and to normalize vacuum-based recoveries across trials. Recovery (CFU cm-2) and relative recovery (vacuum recovery/wipe recovery) were determined for each method and material type. Relative recoveries were compared by one-way and three-way ANOVA. Data analysis by one-

  5. New Technology-Large-Area Three- Dimensional Surface Profiling Using Only Focused Air-Coupled Ultrasound-Given 1999 R&D 100 Award

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2000-01-01

    Surface topography, which significantly affects the performance of many industrial components, is normally measured with diamond-tip profilometry over small areas or with optical scattering methods over larger areas. To develop air-coupled surface profilometry, the NASA Glenn Research Center at Lewis Field initiated a Space Act Agreement with Sonix, Inc., through two Glenn programs, the Advanced High Temperature Engine Materials Program (HITEMP) and COMMTECH. The work resulted in quantitative surface topography profiles obtained using only high-frequency, focused ultrasonic pulses in air. The method is nondestructive, noninvasive, and noncontact, and it does not require light-reflective surfaces. Air surface profiling may be desirable when diamond-tip or laserbased methods are impractical, such as over large areas, when a significant depth range is required, or for curved surfaces. When the configuration is optimized, the method is reasonably rapid and all the quantitative analysis facilities are online, including two- and three-dimensional visualization, extreme value filtering (for faulty data), and leveling.

  6. Assessing environmental risk of the retired filter bed area, Battelle West Jefferson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.F.; Thompson, M.D.; Glennon, M.A.

    1997-04-01

    Initial investigations conducted by the U.S. Department of Energy, Chicago Operations Office, and by Argonne National Laboratory used seismic refraction profiling, electrical resistivity depth sounding, conductivity profiling, magnetic gradiometry, and ground-penetrating radar to study environmental geophysics in the area of the Battelle West Jefferson site`s radiologically contaminated retired filter beds. The investigators used a combination of nonintrusive technologies and innovative drilling techniques to assess environmental risk at the filter beds and to improve understanding of the geology of the Big Darby Creek floodplain. The geophysical investigation, which showed that the preferred groundwater pathway is associated with a laterally extensive depositmore » of silty sand to sand that is less than 12 ft deep in the floodplain area, also guided the location of cone penetrometer test sites and piezometer installation. Cone penetrometer testing was useful for comparing continuous logging data with surface geophysical data in establishing correlations among unconsolidated materials.« less

  7. Nanosize electropositive fibrous adsorbent

    DOEpatents

    Tepper, Frederick; Kaledin, Leonid

    2005-01-04

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2 /g have been fount to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of mirobes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolicules such as proteins may be separated from each other based on their electronegative charges.

  8. Investigation of Dual-Mode Microstrip Bandpass Filter Based on SIR Technique

    PubMed Central

    Mezaal, Yaqeen S.; Ali, Jawad K.

    2016-01-01

    In this paper, a new bandpass filter design has been presented using simple topology of stepped impedance square loop resonator. The proposed bandpass filter has been simulated and fabricated using a substrate with an insulation constant of 10.8, thickness of 1.27mm and loss tangent of 0.0023 at center frequency of 5.8 GHz. The simulation results have been evaluated using Sonnet simulator that is extensively adopted in microwave analysis and implementation. The output frequency results demonstrated that the proposed filter has high-quality frequency responses in addition to isolated second harmonic frequency. Besides, this filter has very small surface area and perceptible narrow band response features that represent the conditions of recent wireless communication systems. Various filter specifications have been compared with different magnitudes of perturbation element dimension. Furthermore, phase scattering response and current intensity distribution of the proposed filter have been discussed. The simulated and experimental results are well-matched. Lastly, the features of the proposed filter have been compared with other designed microstrip filters in the literature. PMID:27798675

  9. SU-F-I-73: Surface Dose from KV Diagnostic Beams From An On-Board Imager On a Linac Machine Using Different Imaging Techniques and Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Hossain, S; Syzek, E

    Purpose: To quantitatively investigate the surface dose deposited in patients imaged with a kV on-board-imager mounted on a radiotherapy machine using different clinical imaging techniques and filters. Methods: A high sensitivity photon diode is used to measure the surface dose on central-axis and at an off-axis-point which is mounted on the top of a phantom setup. The dose is measured for different imaging techniques that include: AP-Pelvis, AP-Head, AP-Abdomen, AP-Thorax, and Extremity. The dose measurements from these imaging techniques are combined with various filtering techniques that include: no-filter (open-field), half-fan bowtie (HF), full-fan bowtie (FF) and Cu-plate filters. The relativemore » surface dose for different imaging and filtering techniques is evaluated quantiatively by the ratio of the dose relative to the Cu-plate filter. Results: The lowest surface dose is deposited with the Cu-plate filter. The highest surface dose deposited results from open fields without filter and it is nearly a factor of 8–30 larger than the corresponding imaging technique with the Cu-plate filter. The AP-Abdomen technique delivers the largest surface dose that is nearly 2.7 times larger than the AP-Head technique. The smallest surface dose is obtained from the Extremity imaging technique. Imaging with bowtie filters decreases the surface dose by nearly 33% in comparison with the open field. The surface doses deposited with the HF or FF-bowtie filters are within few percentages. Image-quality of the radiographic images obtained from the different filtering techniques is similar because the Cu-plate eliminates low-energy photons. The HF- and FF-bowtie filters generate intensity-gradients in the radiographs which affects image-quality in the different imaging technique. Conclusion: Surface dose from kV-imaging decreases significantly with the Cu-plate and bowtie-filters compared to imaging without filters using open-field beams. The use of Cu-plate filter does not affect image-quality and may be used as the default in the different imaging techniques.« less

  10. Leica ADS40 Sensor for Coastal Multispectral Imaging

    NASA Technical Reports Server (NTRS)

    Craig, John C.

    2007-01-01

    The Leica ADS40 Sensor as it is used for coastal multispectral imaging is presented. The contents include: 1) Project Area Overview; 2) Leica ADS40 Sensor; 3) Focal Plate Arrangements; 4) Trichroid Filter; 5) Gradient Correction; 6) Image Acquisition; 7) Remote Sensing and ADS40; 8) Band comparisons of Satellite and Airborne Sensors; 9) Impervious Surface Extraction; and 10) Impervious Surface Details.

  11. A comparative CFD study of four inferior vena cava filters.

    PubMed

    López, Josep M; Fortuny, Gerard; Puigjaner, Dolors; Herrero, Joan; Marimon, Francesc

    2018-03-30

    Computational fluid dynamics was used to simulate the flow of blood within an inferior vena cava (IVC) geometry model that was reconstructed from computed tomography images obtained from a real patient. The main novelty of the present work is that we simulated the implantation of 4 different filter models in this realistic IVC geometry. We considered different blood flow rates in the range between V in =20 and V in =80 cm 3 /s, and all simulations were performed with both the Newtonian and a non-Newtonian model for the blood viscosity. We compared the hemodynamics performance of the different filter models, and we paid a special attention to the total drag force, F d , exerted by the blood flow on the filter surface. This force is the sum of 2 contributions: the viscous skin friction force, which was found to be roughly proportional to the filter surface area, and the pressure force, which depended on the particular filter geometry design. The F d force is relevant because it must be balanced by the total force exerted by the filter hooks/struts on the IVC wall at the attachment locations. For the highest V in value investigated, the variation in F d among filters was from 116 to 308 dyne. We also showed how the present results can be extrapolated to obtain good estimates of the drag forces if the blood viscosity levels change, ie, if the patient with a filter implanted is treated with anticoagulant therapy. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Enabling High Performance Instruments for Astronomy and Space Exploration and ALD

    NASA Technical Reports Server (NTRS)

    Greer, Frank; Lee, M. C.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Dickie, M.; Monacos, S.; Nikzad, S.; Day, P.; Leduc, R.; hide

    2012-01-01

    Benefits of ALD for NASA instruments and applications: a) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area. b). High quality films (density, roughness, conductivity, etc.) . Angstrom level control of stoichiometry, interfaces, and surface properties: 1) Multilayer nanolaminates/nanocomposites. 2) Low temperature surface engineering. Flight applications enabled by ALD: a) Anti-reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors. b) Superconducting Films for Submillimeter Astronomy.

  13. Devices based on surface plasmon interference filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2001-01-01

    Devices based on surface plasmon filters having at least one metal-dielectric interface to support surface plasmon waves. A multi-layer-coupled surface plasmon notch filter is provided to have more than two symmetric metal-dielectric interfaces coupled with one another to produce a transmission spectral window with desired spectral profile and bandwidth. Such notch filters can form various color filtering devices for color flat panel displays.

  14. Enabling High Performance Instruments for UV Astronomy and Space Exploration with ALD

    NASA Technical Reports Server (NTRS)

    Greer, F.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Monacos, S.; Nikzad, S.; Hamden, E.; Schiminovich, D.

    2011-01-01

    Benefits of Atomic Layer Deposition (ALD) for UV instruments and application are: (1) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area (2) High quality films (density, roughness, conductivity, etc.) (3) Angstrom level control of stoichiometry, interfaces, and surface properties (3a) Multilayer nanolaminates/nanocomposites (3b) Low temperature surface engineering UV flight applications enabled by ALD. (1) Anti -reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors (2) Surface Passivation for III -N detectors

  15. Point Cloud Oriented Shoulder Line Extraction in Loess Hilly Area

    NASA Astrophysics Data System (ADS)

    Min, Li; Xin, Yang; Liyang, Xiong

    2016-06-01

    Shoulder line is the significant line in hilly area of Loess Plateau in China, dividing the surface into positive and negative terrain (P-N terrains). Due to the point cloud vegetation removal methods of P-N terrains are different, there is an imperative need for shoulder line extraction. In this paper, we proposed an automatic shoulder line extraction method based on point cloud. The workflow is as below: (i) ground points were selected by using a grid filter in order to remove most of noisy points. (ii) Based on DEM interpolated by those ground points, slope was mapped and classified into two classes (P-N terrains), using Natural Break Classified method. (iii) The common boundary between two slopes is extracted as shoulder line candidate. (iv) Adjust the filter gird size and repeat step i-iii until the shoulder line candidate matches its real location. (v) Generate shoulder line of the whole area. Test area locates in Madigou, Jingbian County of Shaanxi Province, China. A total of 600 million points are acquired in the test area of 0.23km2, using Riegl VZ400 3D Laser Scanner in August 2014. Due to the limit Granted computing performance, the test area is divided into 60 blocks and 13 of them around the shoulder line were selected for filter grid size optimizing. The experiment result shows that the optimal filter grid size varies in diverse sample area, and a power function relation exists between filter grid size and point density. The optimal grid size was determined by above relation and shoulder lines of 60 blocks were then extracted. Comparing with the manual interpretation results, the accuracy of the whole result reaches 85%. This method can be applied to shoulder line extraction in hilly area, which is crucial for point cloud denoising and high accuracy DEM generation.

  16. Genetic particle filter application to land surface temperature downscaling

    NASA Astrophysics Data System (ADS)

    Mechri, Rihab; Ottlé, Catherine; Pannekoucke, Olivier; Kallel, Abdelaziz

    2014-03-01

    Thermal infrared data are widely used for surface flux estimation giving the possibility to assess water and energy budgets through land surface temperature (LST). Many applications require both high spatial resolution (HSR) and high temporal resolution (HTR), which are not presently available from space. It is therefore necessary to develop methodologies to use the coarse spatial/high temporal resolutions LST remote-sensing products for a better monitoring of fluxes at appropriate scales. For that purpose, a data assimilation method was developed to downscale LST based on particle filtering. The basic tenet of our approach is to constrain LST dynamics simulated at both HSR and HTR, through the optimization of aggregated temperatures at the coarse observation scale. Thus, a genetic particle filter (GPF) data assimilation scheme was implemented and applied to a land surface model which simulates prior subpixel temperatures. First, the GPF downscaling scheme was tested on pseudoobservations generated in the framework of the study area landscape (Crau-Camargue, France) and climate for the year 2006. The GPF performances were evaluated against observation errors and temporal sampling. Results show that GPF outperforms prior model estimations. Finally, the GPF method was applied on Spinning Enhanced Visible and InfraRed Imager time series and evaluated against HSR data provided by an Advanced Spaceborne Thermal Emission and Reflection Radiometer image acquired on 26 July 2006. The temperatures of seven land cover classes present in the study area were estimated with root-mean-square errors less than 2.4 K which is a very promising result for downscaling LST satellite products.

  17. Activated, coal-based carbon foam

    DOEpatents

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  18. Determination of lunar ilmentite abundances from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Larson, S. M.; Singer, Robert B.

    1990-01-01

    The mapping of ilmenite on the surface of the moon is a necessary precursor to the investigation of prospective lunar base sites. Telescopic observations of the moon using a variety of narrow bandpass optical interference filters are being performed as a preliminary means of achieving this goal. Specifically, ratios of images obtained using filters centered at 0.40 and 0.56 microns provide quantitative estimates of TiO2 abundances. Analysis of preliminary distribution maps of TiO2 concentrations allows identification of specific high-Ti areas. Investigations of these areas using slit spectra in the range 0.03 to 0.85 microns are underway to search for discrete spectral signatures attributable to ilmenite.

  19. Integration of multi-sensor data to measure soil surface changes

    NASA Astrophysics Data System (ADS)

    Eltner, Anette; Schneider, Danilo

    2016-04-01

    Digital elevation models (DEM) of high resolution and accuracy covering a suitable sized area of interest can be a promising approach to help understanding the processes of soil erosion. Thereby, the plot under investigation should remain undisturbed. The fragile marl landscape in Andalusia (Spain) is especially prone to soil detachment and transport with unique sediment connectivity characteristics due to the soil properties and climatic conditions. A 600 m² field plot is established and monitored during three field campaigns (Sep. 2013, Nov. 2013 and Feb. 2014). Unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanning (TLS) are suitable tools to generate high resolution topography data that describe soil surface changes at large field plots. Thereby, the advantages of both methods are utilised in a synergetic manner. On the one hand, TLS data is assumed to comprise a higher reliability regarding consistent error behaviour than DEMs derived from overlapping UAV images. Therefore, global errors (e.g. dome effect) and local errors (e.g. DEM blunders due to erroneous image matching) within the UAV data are assessed with the DEMs produced by TLS. Furthermore, TLS point clouds allow for fast and reliable filtering of vegetation spots, which is not as straightforward within the UAV data due to known image matching problems in areas displaying plant cover. On the other hand, systematic DEM errors linked to TLS are detected and possibly corrected utilising the DEMs reconstructed from overlapping UAV images. Furthermore, TLS point clouds are filtered corresponding to the degree of point quality, which is estimated from parameters of the scan geometry (i.e. incidence angle and footprint size). This is especially relevant for this study because the area of interest is located at gentle hillslopes that are prone to soil erosion. Thus, the view of the scanning device onto the surface results in an adverse angle, which is solely slightly improved by the usage of a 4 m high tripod. Surface roughness is considered as a further parameter to evaluate the TLS point quality. The filtering tool allows for choosing each data point either from the TLS or UAV data corresponding to the data acquisition geometry and surface properties. The filtered points are merged into one point cloud, which is finally processed to reduce remaining data noise. DEM analysis reveals a continuous decrease of soil surface roughness after tillage, the reappearance of former wheel tracks and local patterns of erosion as well as accumulation.

  20. Multiple Bloch surface waves in visible region of light at the interfaces between rugate filter/rugate filter and rugate filter/dielectric slab/rugate filter

    NASA Astrophysics Data System (ADS)

    Ullah Manzoor, Habib; Manzoor, Tareq; Hussain, Masroor; Manzoor, Sanaullah; Nazar, Kashif

    2018-04-01

    Surface electromagnetic waves are the solution of Maxwell’s frequency domain equations at the interface of two dissimilar materials. In this article, two canonical boundary-value problems have been formulated to analyze the multiplicity of electromagnetic surface waves at the interface between two dissimilar materials in the visible region of light. In the first problem, the interface between two semi-infinite rugate filters having symmetric refractive index profiles is considered and in the second problem, to enhance the multiplicity of surface electromagnetic waves, a homogeneous dielectric slab of 400 nm is included between two semi-infinite symmetric rugate filters. Numerical results show that multiple Bloch surface waves of different phase speeds, different polarization states, different degrees of localization and different field profiles are propagated at the interface between two semi-infinite rugate filters. Having two interfaces when a homogeneous dielectric layer is placed between two semi-infinite rugate filters has increased the multiplicity of electromagnetic surface waves.

  1. Miniature spectrally selective dosimeter

    NASA Technical Reports Server (NTRS)

    Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr. (Inventor)

    1980-01-01

    A miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas is described. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (E-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two E-cells, and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one E-cell, three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame.

  2. Functional Silver-Silicone-Nanofilament-Composite Material for Water Disinfection.

    PubMed

    Meier, Margrith; Suppiger, Angela; Eberl, Leo; Seeger, Stefan

    2017-01-01

    The roughness of superhydrophobic silicone nanofilaments (SNFs) is exploited to enlarge the contact area of conventional filter material. As an efficient wetting of the filter material is crucial for water treatment, the wettability of SNFs is readily modified from superhydrophobic to hydrophilic during the functionalization process. SNFs are coated on glass beads and subsequently modified with biocidal silver nanoparticles (AgNPs). The enlarged surface area of SNFs allows a 30 times higher loading of AgNPs in comparison to glass beads without SNF coating. Thus, in column experiments, the AgNP-SNF-nanocomposite-modified glass beads exert superior antibacterial activity towards suspensions of E. coli K12 compared to AgNP functionalized glass beads without SNFs. Additionally, reusing the AgNP-SNF-nanocomposite-coated glass beads with fresh bacteria contaminated medium increases their efficacy and reduces the colony forming units by ≈6 log units. Thereby, the silver loss during percolation is below 0.1 μg mL -1 . These results highlight, first, the potential of AgNP-SNF-nanocomposite-modified glass beads as an effective filter substrate for water disinfection, and second, the efficiency of SNF coating in increasing the contact area of conventional filter material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: Spatial and seasonal variations in water quality

    USGS Publications Warehouse

    Alpers, Charles N.; Fleck, Jacob A.; Marvin-DiPasquale, Mark C.; Stricker, Craig A.; Stephenson, Mark; Taylor, Howard E.

    2014-01-01

    The seasonal and spatial variability of water quality, including mercury species, was evaluated in agricultural and managed, non-agricultural wetlands in the Yolo Bypass Wildlife Area, an area managed for multiple beneficial uses including bird habitat and rice farming. The study was conducted during an 11-month period (June 2007 to April 2008) that included a summer growing season and flooded conditions during winter. Methylmercury (MeHg) concentrations in surface water varied over a wide range (0.1 to 37 ng L−1 unfiltered; 0.04 to 7.3 ng L−1 filtered). Maximum MeHg values are among the highest ever recorded in wetlands. Highest MeHg concentrations in unfiltered surface water were observed in drainage from wild rice fields during harvest (September 2007), and in white rice fields with decomposing rice straw during regional flooding (February 2008). The ratio of MeHg to total mercury (MeHg/THg) increased about 20-fold in both unfiltered and filtered water during the growing season (June to August 2007) in the white and wild rice fields, and about 5-fold in fallow fields (July to August 2007), while there was little to no change in MeHg/THg in the permanent wetland. Sulfate-bearing fertilizer had no effect on Hg(II) methylation, as sulfate-reducing bacteria were not sulfate limited in these agricultural wetlands. Concentrations of MeHg in filtered and unfiltered water correlated with filtered Fe, filtered Mn, DOC, and two indicators of sulfate reduction: the SO4 2 −/Cl− ratio, and δ34S in aqueous sulfate. These relationships suggest that microbial reduction of SO4 2−, Fe(III), and possibly Mn(IV) may contribute to net Hg(II)-methylation in this setting.

  4. Investigation of E. coli and Virus Reductions Using Replicate, Bench-Scale Biosand Filter Columns and Two Filter Media

    PubMed Central

    Elliott, Mark; Stauber, Christine E.; DiGiano, Francis A.; Fabiszewski de Aceituno, Anna; Sobsey, Mark D.

    2015-01-01

    The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006–2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction performance. Bench-scale experiments provided confirmation that increased schmutzdecke growth, as indicated by decline in filtration rate, is the primary factor causing increased E. coli reductions of up to 5-log10. However, reductions of challenge viruses improved only modestly with increased schmutzdecke growth. Filter media type (Accusand silica vs. crushed granite) did not influence reduction of E. coli bacteria. The granite media without backwashing yielded superior virus reductions when compared to Accusand. However, for columns in which the granite media was first backwashed (to yield a more consistent distribution of grains and remove the finest size fraction), virus reductions were not significantly greater than in columns with Accusand media. It was postulated that a decline in surface area with backwashing decreased the sites and surface area available for virus sorption and/or biofilm growth and thus decreased the extent of virus reduction. Additionally, backwashing caused preferential flow paths and deviation from plug flow; backwashing is not part of standard BSF field preparation and is not recommended for BSF column studies. Overall, virus reductions were modest and did not meet the 5- or 3-log10 World Health Organization performance targets. PMID:26308036

  5. AMIE SMART-1: review of results and legacy 10 years after launch

    NASA Astrophysics Data System (ADS)

    Josset, Jean-Luc; Souchon, Audrey; Josset, Marie; Foing, Bernard

    2014-05-01

    The Advanced Moon micro-Imager Experiment (AMIE) camera was launched in September 2003 onboard the ESA SMART-1 spacecraft. We review the technical characteristics, scientific objectives and results of the instrument, 10 years after its launch. The AMIE camera is an ultra-compact imaging system that includes a tele-objective with a 5.3° x 5.3° field of view and an imaging sensor of 1024 x 1024 pixels. It is dedicated to spectral imaging with three spectral filters (750, 915 and 960 nm filters), photometric measurements (filter free CCD area), and Laser-link experiment (laser filter at 847 nm). The AMIE camera was designed to acquire high-resolution images of the lunar surface, in white light and for specific spectral bands, under a number of different viewing conditions and geometries. Specifically, its main scientific objectives included: (i) imaging of high latitude regions in the southern hemisphere, in particular the South Pole Aitken basin and the permanently shadowed regions close to the South Pole; (ii) determination of the photometric properties of the lunar surface from observations at different phase angles (physical properties of the regolith); (iii) multi-band imaging for constraining the chemical and mineral composition of the surface; (iv) detection and characterisation of lunar non-mare volcanic units; (v) study of lithological variations from impact craters and implications for crustal heterogeneity. The study of AMIE images enhanced the knowledge of the lunar surface, in particular regarding photometric modelling and surface physical properties of localized lunar areas and geological units. References: http://scholar.google.nl/scholar?q=smart-1+amie We acknowledge ESA, member states, industry and institutes for their contribution, and the members of the AMIE Team: J.-L. Josset, P. Plancke, Y. Langevin, P. Cerroni, M. C. De Sanctis, P. Pinet, S. Chevrel, S. Beauvivre, B.A. Hofmann, M. Josset, D. Koschny, M. Almeida, K. Muinonen, J. Piironen, M. A. Barucci, P. Ehrenfreund, Yu. Shkuratov, V. Shevchenko, Z. Sodnik, S. Mancuso, F. Ankersen, B.H. Foing, and other associated scientists, collaborators, students and colleagues.

  6. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    NASA Astrophysics Data System (ADS)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore water of the pond sediments were much higher than the pond water and closed to that of groundwater. Also, other metal elements showed the same trend. This result suggested that Arsenic and other metal elements recharged to these ponds is probably adsorbed and removed by sediments (including organic matters). That is, pond sediment plays an important role for solute transport as a filter of Arsenic and metal elements. The results of this study strongly suggest that the natural and artificial surface water areas have important roles for water cycle and solute transport in Hanoi city. Although the number of the natural water areas is decreasing, dredging of artificial water areas increases the infiltration from the surface to aquifers. Therefore, qualitative and quantitative preservation of the surface water areas is important for conservation of groundwater environment and contribute to sustainable groundwater management in Hanoi city.

  7. Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface.

    PubMed

    Gao, Zhengxin; Zhai, Xianglin; Liu, Feng; Zhang, Ming; Zang, Deli; Wang, Chengyu

    2015-09-05

    A composite filter paper with super-hydrophobicity was obtained by adhering micro/nano structure of amorphous titanium dioxide on the filter paper surface with modifying low surface energy material. By virtue of the coupling agent, which plays an important part in bonding amorphous titanium dioxide and epoxy resin, the structure of super-hydrophobic thin film on the filter paper surface is extremely stable. The microstructure of super-hydrophobic filter paper was characterized by scanning electron microscopy (SEM), the images showed that the as-prepared filter paper was covered with uniform amorphous titanium dioxide particles, generating a roughness structure on the filter paper surface. The super-hydrophobic performance of the filter paper was characterized by water contact angle measurements. The observations showed that the wettability of filter paper samples transformed from super-hydrophilicity to super-hydrophobicity with the water contact angle of 153 ± 1°. Some experiments were also designed to test the effect of water-oil separation and UV-resistant by the super-hydrophobic filter paper. The prepared super-hydrophobic filter paper worked efficiently and simply in water-oil separation as well as enduringly in anti-UV property after the experiments. This method offers an opportunity to the practical applications of the super-hydrophobic filter paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Generation of red color and near infrared bandpass filters using nano-scale plasmonic structures

    NASA Astrophysics Data System (ADS)

    Sokar, Ahmed A. Z.; Hutter, Franz X.; Burghartz, Joachim N.

    2015-05-01

    Extraordinary/Enhanced optical transmission (EOT) is studied in the realization of plasmonic based filters in the visible range and near infrared spectrum for the purpose of substituting the Bayer-pattern filter with a new CMOS-compatible filter which can be easily tuned to provide different filter spectra. The filters studied in this paper are based on nano-structured 150nm thick Aluminum (Al) layer sandwiched between silicon dioxide (SiO2) layers. The resonance wavelengths achieved by the filters are at 700nm and 950 nm. Three parameters are used for tuning the two filters, i.e., aperture area, the period, and the holes arrangement (square or rhombic lattice). The filter is based on the principle of surface plasmon polaritons (SPPs), where the electromagnetic waves of the incident light couples with the free charges of the metal at the metal-dielectric interface. EOT is observed when the metal is structured with apertures such as rectangular, circular, cross, bowtie, etc. The resonance frequency in that case depends on the shape of the aperture, material used, the size of the apertures, the period of the array, and the surrounding material. The fabricated two filters show EOT at wavelengths as designed and simulated with blueshift in the peak location.

  9. Fourier transform profilometry (FTP) using an innovative band-pass filter for accurate 3-D surface reconstruction

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Ho, Hsuan-Wei; Nguyen, Xuan-Loc

    2010-02-01

    This article presents a novel band-pass filter for Fourier transform profilometry (FTP) for accurate 3-D surface reconstruction. FTP can be employed to obtain 3-D surface profiles by one-shot images to achieve high-speed measurement. However, its measurement accuracy has been significantly influenced by the spectrum filtering process required to extract the phase information representing various surface heights. Using the commonly applied 2-D Hanning filter, the measurement errors could be up to 5-10% of the overall measuring height and it is unacceptable to various industrial application. To resolve this issue, the article proposes an elliptical band-pass filter for extracting the spectral region possessing essential phase information for reconstructing accurate 3-D surface profiles. The elliptical band-pass filter was developed and optimized to reconstruct 3-D surface models with improved measurement accuracy. Some experimental results verify that the accuracy can be effectively enhanced by using the elliptical filter. The accuracy improvement of 44.1% and 30.4% can be achieved in 3-D and sphericity measurement, respectively, when the elliptical filter replaces the traditional filter as the band-pass filtering method. Employing the developed method, the maximum measured error can be kept within 3.3% of the overall measuring range.

  10. Evaluation of the surface properties of PTFE foam coating filter media using XPS and contact angle measurements

    NASA Astrophysics Data System (ADS)

    Park, Byung Hyun; Lee, Myong-Hwa; Kim, Sang Bum; Jo, Young Min

    2011-02-01

    A newly developed PTFE foam coating filter was developed which can be used for hot gas cleaning at temperatures up to 250 °C. The emulsion-type PTFE was coated onto a woven glass fiber using a foam coating method. The filter surface was closely examined using X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The XPS results were used to determine the binding force between the carbon and fluorine of PTFE, which imparts coating stability to the filter medium. More than 95% of the bonds of the PTFE foam coating filter were between carbon and fluorine, and this filter demonstrated excellent hydrophobic and good oleophobic properties at the same time. The contact angles of liquid droplets on the filter surface were used to predict the potential wetability of the filter against water or oil. In addition, the very low surface free energy of the filter medium, which was evaluated using the Owens-Wendt method, demonstrates a very stable surface and a high de-dusting quality.

  11. Filter and method of fabricating

    DOEpatents

    Janney, Mark A.

    2006-02-14

    A method of making a filter includes the steps of: providing a substrate having a porous surface; applying to the porous surface a coating of dry powder comprising particles to form a filter preform; and heating the filter preform to bind the substrate and the particles together to form a filter.

  12. A recommended procedure for the preparation of oriented clay-mineral specimens for X-ray diffraction analysis; modifications to Drever's filter-membrane peel technique

    USGS Publications Warehouse

    Pollastro, R.M.

    1982-01-01

    Extremely well-oriented clay mineral mounts for X-ray diffraction analysis can be prepared quickly and without introducing segregation using the filter-membrane peel technique. Mounting problems encountered with smectite-rich samples can be resolved by using minimal sample and partial air-drying of the clay film before transfer to a glass slide. Samples containing small quantities of clay can produce useful oriented specimens if Teflon masks having more restrictive areas are inserted above the membrane filter during clay deposition. War]page and thermal shock of glass slides can be controlled by using a flat, porous, ceramic plate as a holding surface during heat treatments.

  13. Method of and apparatus for measuring the mean concentration of thoron and/or radon in a gas mixture

    DOEpatents

    Lucas, Henry

    1990-01-01

    A method of and an apparatus for detecting and accurately measuring the mean concentrations of .sup.222 Rn and .sup.220 Tn in a gas mixture, such as the ambient atmosphere in a mine, is provided. The apparatus includes an alpha target member which defines at least one operative target surface and which is preferably fabricated from a single piece of an alpha particle sensitive material. At least one portion of the operative target surface is covered with an alpha particle filter. The uncovered and filter covered operative surface is exposed to the gas mixture containing the .sup.222 Rn and .sup.220 Tn. In the radioactive decay series of these isotopes the maximum kinetic energy emitted by the alpha decay of .sup.222 Rn is about 1.1 MeV less than the maximum kinetic energy emitted by the alpha decay of a .sup.220 Tn. The alpha particle filter has a predetermined mass per unit area of the covered portion of the operative target surface that prevents penetration of alpha particles which originate from .sup.222 Rn decay, but which allows passage therethrough of the maximum kinetic energy alpha particles from .sup.220 Tn decay. Thus, a count of the alpha particle tracks in the uncovered portion of the target member is proportional to the mean concentration of sum of .sup.222 Rn and .sup.220 Tn in the gas mixture, while the count of alpha tracks in the target member under the filter is proportional to the concentration of only the .sup.220 Tn in the gas mixture.

  14. Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain).

    PubMed

    Rodil, Rosario; Quintana, José Benito; Concha-Graña, Estefanía; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2012-03-01

    A monitoring programme was carried out on wastewater, surface and drinking water on the NW area of Spain during the four seasons of a year period (November 2007-September 2008). This study covered a series of emerging pollutants of different classes, including pharmaceuticals, neutral and acidic organophosphorus flame retardant/plasticizers (OPs), triclosan, phenoxy-herbicides, insect repellents and UV filters. From the total set of 53 compounds, 19 were found in raw wastewater with median concentrations higher than 0.1 μg L(-1). Among them, salicylic acid, ibuprofen and the UV filter benzophenone-4 (BP-4) were the most concentrated, exceeding the 1 μg L(-1) median value. Subsequently, 11 of these contaminants are not efficiently enough removed in the small WWTPs tested and their median concentrations in effluents still surpassed the 0.1 μg L(-1), so that they can spread through surface water. These chemicals are the pharmaceuticals naproxen, diclofenac and atenolol; the OPs tri(2-chloroethyl) phosphate (TCEP), tri(chloropropyl) phosphate (TCPP), tri-n-butyl phosphate (TnBP), diphenyl phosphate (DPhP) and diethylhexyl phosphate (DEHP); and the sulphonate UV filters BP-4 and 2-phenylbenzimidazole-5-sulphonic acid (PBSA). These OPs were then the dominant emerging pollutants occurring in surface and drinking water, where they are detected in the 20-200 ng L(-1) range. Pharmaceuticals and UV filters are typically below the 10 ng L(-1) level. Finally, herbicides were only detected in the last sampling campaign under the 100 ng L(-1) drinking water European Union limit. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Fast and Sustained Degradation of Chemical Warfare Agent Simulants Using Flexible Self-Supported Metal-Organic Framework Filters.

    PubMed

    Liang, Huixin; Yao, Aonan; Jiao, Xiuling; Li, Cheng; Chen, Dairong

    2018-06-20

    Self-detoxification filters against lethal chemical warfare agents (CWAs) are highly desirable for the protection of human beings and the environment. In this report, flexible self-supported filters of a series of Zr(IV)-based metal-organic frameworks (MOFs) including UiO-66, UiO-67, and UiO-66-NH 2 were successfully prepared and exhibited fast and sustained degradation of CWA simulants. A half-life as short as 2.4 min was obtained for the catalytic hydrolysis of dimethyl 4-nitrophenyl phosphate, and the percent conversion remained above 90% over a long-term exposure of 120 min, well exceeding those of the previously reported composite MOF filters and the corresponding MOF powders. The outstanding detoxification performance of the self-supported fibrous filter comes from the exceptionally high surface area, excellent pore accessibility, and hierarchical structure from the nano- to macroscale. This work demonstrates, for the first time, MOF-only filters as efficient self-detoxification media, which will offer new opportunities for the design and fabrication of functional materials for toxic chemical protection.

  16. Iron-Anode Enhanced Sand Filter for Arsenic Removal from Tube Well Water.

    PubMed

    Xie, Shiwei; Yuan, Songhu; Liao, Peng; Tong, Man; Gan, Yiqun; Wang, Yanxin

    2017-01-17

    Sand filters are widely used for well water purification in endemic arsenicosis areas, but arsenic (As) removal is difficult at low intrinsic iron concentrations. This work developed an enhanced sand filter by electrochemically generated Fe(II) from an iron anode. The efficiency of As removal was tested in an arsenic burdened region in the Jianghan Plain, central China. By controlling a current of 0.6 A and a flow rate of about 12 L/h, the filter removed total As in the tube well water from 196 to 472 μg/L to below 10 μg/L, whereas the residual As was about 110 μg/L without electricity. Adsorption and subsequent oxidation on the surface of Fe(III) precipitates are the main processes controlling the removals of As and Fe. During a 30-day intermittent operation, both effluent As concentration and electrical energy consumption decreased progressively. Although filter clogging was observed, it can be alleviated by replacing the top layer of sand. Our findings suggest that dosing Fe(II) by an iron anode is an effective means to enhance As removal in a sand filter.

  17. A comparison study of the start-up of a MnOx filter for catalytic oxidative removal of ammonium from groundwater and surface water.

    PubMed

    Cheng, Ya; Li, Ye; Huang, Tinglin; Sun, Yuankui; Shi, Xinxin; Shao, Yuezong

    2018-03-01

    As an efficient method for ammonium (NH 4 + ) removal, contact catalytic oxidation technology has drawn much attention recently, due to its good low temperature resistance and short start-up period. Two identical filters were employed to compare the process for ammonium removal during the start-up period for ammonium removal in groundwater (Filter-N) and surface water (Filter-S) treatment. Two types of source water (groundwater and surface water) were used as the feed waters for the filtration trials. Although the same initiating method was used, Filter-N exhibited much better ammonium removal performance than Filter-S. The differences in catalytic activity among these two filters were probed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and compositional analysis. XRD results indicated that different manganese oxide species were formed in Filter-N and Filter-S. Furthermore, the Mn3p XPS spectra taken on the surface of the filter films revealed that the average manganese valence of the inactive manganese oxide film collected from Filter-S (FS-MnO x ) was higher than in the film collected from Filter-N (FN-MnO x ). Mn(IV) was identified as the predominant oxidation state in FS-MnO x and Mn(III) was identified as the predominant oxidation state in FN-MnO x . The results of compositional analyses suggested that polyaluminum ferric chloride (PAFC) used during the surface water treatment was an important factor in the mineralogy and reactivity of MnO x . This study provides the theoretical basis for promoting the wide application of the technology and has great practical significance. Copyright © 2017. Published by Elsevier B.V.

  18. A simple energy filter for low energy electron microscopy/photoelectron emission microscopy instruments.

    PubMed

    Tromp, R M; Fujikawa, Y; Hannon, J B; Ellis, A W; Berghaus, A; Schaff, O

    2009-08-05

    Addition of an electron energy filter to low energy electron microscopy (LEEM) and photoelectron emission microscopy (PEEM) instruments greatly improves their analytical capabilities. However, such filters tend to be quite complex, both electron optically and mechanically. Here we describe a simple energy filter for the existing IBM LEEM/PEEM instrument, which is realized by adding a single scanning aperture slit to the objective transfer optics, without any further modifications to the microscope. This energy filter displays a very high energy resolution ΔE/E = 2 × 10(-5), and a non-isochromaticity of ∼0.5 eV/10 µm. The setup is capable of recording selected area electron energy spectra and angular distributions at 0.15 eV energy resolution, as well as energy filtered images with a 1.5 eV energy pass band at an estimated spatial resolution of ∼10 nm. We demonstrate the use of this energy filter in imaging and spectroscopy of surfaces using a laboratory-based He I (21.2 eV) light source, as well as imaging of Ag nanowires on Si(001) using the 4 eV energy loss Ag plasmon.

  19. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  20. Urban Growth Detection Using Filtered Landsat Dense Time Trajectory in an Arid City

    NASA Astrophysics Data System (ADS)

    Ye, Z.; Schneider, A.

    2014-12-01

    Among all remote sensing environment monitoring techniques, time series analysis of biophysical index is drawing increasing attention. Although many of them studied forest disturbance and land cover change detection, few focused on urban growth mapping at medium spatial resolution. As Landsat archive becomes open accessible, methods using Landsat time-series imagery to detect urban growth is possible. It is found that a time trajectory from a newly developed urban area shows a dramatic drop of vegetation index. This enable the utilization of time trajectory analysis to distinguish impervious surface and crop land that has a different temporal biophysical pattern. Also, the time of change can be estimated, yet many challenges remain. Landsat data has lower temporal resolution, which may be worse when cloud-contaminated pixels and SLC-off effect exist. It is difficult to tease apart intra-annual, inter-annual, and land cover difference in a time series. Here, several methods of time trajectory analysis are utilized and compared to find a computationally efficient and accurate way on urban growth detection. A case study city, Ankara, Turkey is chosen for its arid climate and various landscape distributions. For preliminary research, Landsat TM and ETM+ scenes from 1998 to 2002 are chosen. NDVI, EVI, and SAVI are selected as research biophysical indices. The procedure starts with a seasonality filtering. Only areas with seasonality need to be filtered so as to decompose seasonality and extract overall trend. Harmonic transform, wavelet transform, and a pre-defined bell shape filter are used to estimate the overall trend in the time trajectory for each pixel. The point with significant drop in the trajectory is tagged as change point. After an urban change is detected, forward and backward checking is undertaken to make sure it is really new urban expansion other than short time crop fallow or forest disturbance. The method proposed here can capture most of the urban growth during research time period, although the accuracy of time point determination is a bit lower than this. Results from several biophysical indices and filtering methods are similar. Some fallows and bare lands in arid area are easily confused with urban impervious surface.

  1. Quantitative analysis and predictors of embolic filter debris load during carotid artery stenting in asymptomatic patients.

    PubMed

    Piazza, Michele; Squizzato, Francesco; Chincarini, Chiara; Fedrigo, Marny; Castellani, Chiara; Angelini, Annalisa; Grego, Franco; Antonello, Michele

    2018-03-01

    The objective of this study was to perform a quantitative analysis and to identify predictors of embolic filter debris (EFD) load during carotid artery stenting (CAS) in asymptomatic patients. All patients with asymptomatic carotid stenosis >70% undergoing CAS between 2008 and 2016 were included in a prospective database. A distal filter protection device was used in all patients. At the end of the procedure, the filter was fixed in formalin and then analyzed with a stereomicroscope. Morphometric analysis was performed with Image-Pro Plus software (Media Cybernetics, Rockville, Md). The total area of the filter membrane and the area covered by particulate material were quantified. The quantity of membrane occupied by debris was expressed as percentage of covered surface area. Anatomic and clinical variables were evaluated for their association with EFD load using multiple logistic regression. Among the 278 patients undergoing CAS, an open-cell stent was implanted in 211 patients (76%); 67 patients (24%) received a closed-cell stent. Overall technical success and clinical success were both 99%; no perioperative death was reported. Stroke rate was 1.8% (major, n = 1 [0.4%]; minor, n = 4 [1.4%]); transient ischemic attacks occurred in 5% of cases (n = 14). The quantitative analysis of the filter revealed that EFD was present in 74% of cases (n = 207). The mean EFD load was 10% of the filter surface (median, 1; range, 0-80); it was <10% in 203 patients (73%), between 11% and 20% in 39 patients (14%), between 21% and 30% in 14 patients (5%), and >31% in 22 (8%). Patients with any type of ischemic neurologic event after CAS (stroke and transient ischemic attack) had a significantly higher mean EFD load compared with uneventful cases (26.7% ± 19.0% vs 8.5% ± 13.5%; P < .001). The observational frequency distribution analysis identified the presence of >12.5% EFD load as the optimal cutoff for the association with clinically relevant perioperative ischemic events (sensitivity, 78%; specificity, 77%; area under the curve, 0.81). The multivariate analysis demonstrated that age >75 years (odds ratio [OR], 2.56; P = .003), pre-existing ipsilateral ischemic cerebral lesions (OR, 2.09; P = .047), hypoechogenic plaque on the preoperative duplex ultrasound examination (OR, 6.05; P < .001), and plaque length >15 mm (OR, 1.79; P = .049) were independent predictors of EFD load >12.5%. The majority of asymptomatic carotid stenoses treated with CAS have detectable embolic debris in the protecting filter. Age >75 years, pre-existing ipsilateral cerebral ischemic lesions, hypoechogenic plaque, and plaque length >15 mm should be taken into consideration as independent predictors of clinically relevant embolic debris during the procedure. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  2. Evaluation of filter media for particle number, surface area and mass penetrations.

    PubMed

    Li, Lin; Zuo, Zhili; Japuntich, Daniel A; Pui, David Y H

    2012-07-01

    The National Institute for Occupational Safety and Health (NIOSH) developed a standard for respirator certification under 42 CFR Part 84, using a TSI 8130 automated filter tester with photometers. A recent study showed that photometric detection methods may not be sensitive for measuring engineered nanoparticles. Present NIOSH standards for penetration measurement are mass-based; however, the threshold limit value/permissible exposure limit for an engineered nanoparticle worker exposure is not yet clear. There is lack of standardized filter test development for engineered nanoparticles, and development of a simple nanoparticle filter test is indicated. To better understand the filter performance against engineered nanoparticles and correlations among different tests, initial penetration levels of one fiberglass and two electret filter media were measured using a series of polydisperse and monodisperse aerosol test methods at two different laboratories (University of Minnesota Particle Technology Laboratory and 3M Company). Monodisperse aerosol penetrations were measured by a TSI 8160 using NaCl particles from 20 to 300 nm. Particle penetration curves and overall penetrations were measured by scanning mobility particle sizer (SMPS), condensation particle counter (CPC), nanoparticle surface area monitor (NSAM), and TSI 8130 at two face velocities and three layer thicknesses. Results showed that reproducible, comparable filtration data were achieved between two laboratories, with proper control of test conditions and calibration procedures. For particle penetration curves, the experimental results of monodisperse testing agreed well with polydisperse SMPS measurements. The most penetrating particle sizes (MPPSs) of electret and fiberglass filter media were ~50 and 160 nm, respectively. For overall penetrations, the CPC and NSAM results of polydisperse aerosols were close to the penetration at the corresponding median particle sizes. For each filter type, power-law correlations between the penetrations measured by different instruments show that the NIOSH TSI 8130 test may be used to predict penetrations at the MPPS as well as the CPC and NSAM results with polydisperse aerosols. It is recommended to use dry air (<20% RH) as makeup air in the test system to prevent sodium chloride particle deliquescing and minimizing the challenge particle dielectric constant and to use an adequate neutralizer to fully neutralize the polydisperse challenge aerosol. For a simple nanoparticle penetration test, it is recommended to use a polydisperse aerosol challenge with a geometric mean of ~50 nm with the CPC or the NSAM as detectors.

  3. The Development of A Chip-Scale Spectrometer for In Situ Characterization of Solar System Surfaces

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Voelz, David; Cho, Sang-Yeon; Pelzman, Charles

    2017-10-01

    We discuss the development of a plasmonic spectrometer for in situ characterization of solar system surface and subsurface environments. The two goals of this project are to (1) quantitatively demonstrate that a plasmonic spectrometer can be used to rapidly acquire high signal-to-noise spectra between 0.5 - 1.0 microns at a spectral resolution suitable for unambiguous detection of spectral features indicative of volatiles and characteristic surface mineralogies, and (2) demonstrate that this class of spectrometer can be used in conjunction with optical fibers to access subsurface materials and vertically map the geochemistry and mineralogy of subsurface layers, thereby demonstrating that a plasmonic spectrometer is feasible in a low-mass, low-power, compact configuration. Our prototype spectrometer is comprised of a broadband lamp/source, a fiber optic system to illuminate the sample surface and collect the reflected light, a mosaic filter element based on plasmon resonance, and a focal plane array (FPA) detector. Our work thus far has been divided into two primary areas: (i) the development of the plasmon filter element and (ii) the construction of a testbed to explore the source, fiber system and focal plane array components of the system. We discuss our preliminary design studies of the plasmonic nanostructure prototypes to optimize the full-width half-maximum of the filter, and our fiber illumination and signal collection system.

  4. Composition and stability of bacterial communities associated with granular activated carbon and anthracite filters in a pilot scale municipal drinking water treatment facility.

    PubMed

    Shirey, T B; Thacker, R W; Olson, J B

    2012-06-01

    Granular activated carbon (GAC) is an alternative filter substrate for municipal water treatment as it provides a high surface area suitable for microbial colonization. The resulting microbial growth promotes biodegradation of organic materials and other contaminants from influent waters. Here, the community structure of the bacteria associated with three GAC and two anthracite filters was examined over 12 months to monitor changes in community composition. Nearly complete 16S rRNA genes were polymerase chain reaction amplified for terminal restriction fragment length polymorphism (T-RFLP) analyses. The identity of commonly occurring peaks was determined through the construction of five representative 16S rRNA clone libraries. Based on sequence analysis, the bacterial communities associated with both anthracite and GAC filters appear to be composed of environmentally derived bacteria, with no known human pathogens. Analysis of similarity tests revealed that significant differences in bacterial community structure occurred over time, with filter substrate playing an important role in determining community composition. GAC filters exhibited the greatest degree of bacterial community variability over the sampling period, while anthracite filters showed a lower degree of variability and less change in community composition. Thus, GAC may be a suitable biologically active filter substrate for the treatment of municipal drinking water.

  5. Application of Data Assimilation with the Root Zone Water Quality Model for Soil Moisture Profile Estimation

    USDA-ARS?s Scientific Manuscript database

    Estimation of soil moisture has received considerable attention in the areas of hydrology, agriculture, meteorology and environmental studies because of its role in the partitioning water and energy at the land surface. In this study, the Ensemble Kalman Filter (EnKF), a popular data assimilation te...

  6. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration

    NASA Astrophysics Data System (ADS)

    Voigt, Claudia; Jäckel, Eva; Taina, Fabio; Zienert, Tilo; Salomon, Anton; Wolf, Gotthard; Aneziris, Christos G.; Le Brun, Pierre

    2017-02-01

    The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

  7. Global Temperature Measurement of Supercooled Water under Icing Conditions using Two-Color Luminescent Images and Multi-Band Filter

    NASA Astrophysics Data System (ADS)

    Tanaka, Mio; Morita, Katsuaki; Kimura, Shigeo; Sakaue, Hirotaka

    2012-11-01

    Icing occurs by a collision of a supercooled-water droplet on a surface. It can be seen in any cold area. A great attention is paid in an aircraft icing. To understand the icing process on an aircraft, it is necessary to give the temperature information of the supercooled water. A conventional technique, such as a thermocouple, is not valid, because it becomes a collision surface that accumulates ice. We introduce a dual-luminescent imaging to capture a global temperature distribution of supercooled water under the icing conditions. It consists of two-color luminescent probes and a multi-band filter. One of the probes is sensitive to the temperature and the other is independent of the temperature. The latter is used to cancel the temperature-independent luminescence of a temperature-dependent image caused by an uneven illumination and a camera location. The multi-band filter only selects the luminescent peaks of the probes to enhance the temperature sensitivity of the imaging system. By applying the system, the time-resolved temperature information of a supercooled-water droplet is captured.

  8. Molecular surface mesh generation by filtering electron density map.

    PubMed

    Giard, Joachim; Macq, Benoît

    2010-01-01

    Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.

  9. Relative importance of habitat filtering and limiting similarity on species assemblages of alpine and subalpine plant communities.

    PubMed

    Takahashi, Koichi; Tanaka, Saeka

    2016-11-01

    This study examined how habitat filtering and limiting similarity affect species assemblages of alpine and subalpine plant communities along a slope gradient on Mt. Norikura in central Japan. Plant traits (plant height, individual leaf area, specific leaf area (SLA), leaf linearity, leaf nitrogen and chlorophyll concentrations) and abiotic environmental factors (elevation, slope inclination, ground surface texture, soil water, soil pH, soil nutrient concentrations of NH 4 -N and NO 3 -N) were examined. The metrics of variance, range, kurtosis and the standard deviation of neighbor distance divided by the range of traits present (SDNDr) were calculated for each plant trait to measure trait distribution patterns. Limiting similarity was detected only for chlorophyll concentration. By contrast, habitat filtering was detected for individual leaf area, SLA, leaf linearity, chlorophyll concentration. Abiotic environmental factors were summarized by the principal component analysis (PCA). The first PCA axis positively correlated with elevation and soil pH, and negatively correlated with sand cover, soil water, NH 4 -N and NO 3 -N concentrations. High values of the first PCA axis represent the wind-exposed upper slope with lower soil moisture and nutrient availabilities. Plant traits changed along the first PCA axis. Leaf area, SLA and chlorophyll concentration decreased, and leaf linearity increased with the first PCA axis. This study showed that the species assemblage of alpine and subalpine plants was determined mainly by habitat filtering, indicating that abiotic environmental factors are more important for species assemblage than interspecific competition. Therefore, only species adapting to abiotic environments can distribute to these environments.

  10. The application of the detection filter to aircraft control surface and actuator failure detection and isolation

    NASA Technical Reports Server (NTRS)

    Bonnice, W. F.; Wagner, E.; Motyka, P.; Hall, S. R.

    1985-01-01

    The performance of the detection filter in detecting and isolating aircraft control surface and actuator failures is evaluated. The basic detection filter theory assumption of no direct input-output coupling is violated in this application due to the use of acceleration measurements for detecting and isolating failures. With this coupling, residuals produced by control surface failures may only be constrained to a known plane rather than to a single direction. A detection filter design with such planar failure signatures is presented, with the design issues briefly addressed. In addition, a modification to constrain the residual to a single known direction even with direct input-output coupling is also presented. Both the detection filter and the modification are tested using a nonlinear aircraft simulation. While no thresholds were selected, both filters demonstrated an ability to detect control surface and actuator failures. Failure isolation may be a problem if there are several control surfaces which produce similar effects on the aircraft. In addition, the detection filter was sensitive to wind turbulence and modeling errors.

  11. Filtering fens: mechanisms explaining phosphorus-limited hotspots of biodiversity in wetlands adjacent to heavily fertilized areas.

    PubMed

    Cusell, Casper; Kooijman, Annemieke; Fernandez, Filippo; van Wirdum, Geert; Geurts, Jeroen J M; van Loon, E Emiel; Kalbitz, Karsten; Lamers, Leon P M

    2014-05-15

    The conservation of biodiverse wetland vegetation, including that of rich fens, has a high priority at a global scale. Although P-eutrophication may strongly decrease biodiversity in rich fens, some well-developed habitats do still survive in highly fertilized regions due to nutrient filtering services of large wetlands. The occurrence of such nutrient gradients is well-known, but the biogeochemical mechanisms that determine these patterns are often unclear. We therefore analyzed chemical speciation and binding of relevant nutrients and minerals in surface waters, soils and plants along such gradients in the large Ramsar nature reserve Weerribben-Wieden in the Netherlands. P-availability was lowest in relatively isolated floating rich fens, where plant N:P ratios indicated P-limitation. P-limitation can persist here despite high P-concentrations in surface waters near the peripheral entry locations, because only a small part of the P-input reaches the more isolated waters and fens. This pattern in P-availability appears to be primarily due to precipitation of Fe-phosphates, which mainly occurs close to entry locations as indicated by decreasing concentrations of Fe- and Al-bound P in the sub-aquatic sediments along this gradient. A further decrease of P-availability is caused by biological sequestration, which occurs throughout the wetland as indicated by equal concentrations of organic P in all sub-aquatic sediments. Our results clearly show that the periphery of large wetlands does indeed act as an efficient P-filter, sustaining the necessary P-limitation in more isolated parts. However, this filtering function does harm the ecological quality of the peripheral parts of the reserve. The filtering mechanisms, such as precipitation of Fe-phosphates and biological uptake of P, are crucial for the conservation and restoration of biodiverse rich fens in wetlands that receive eutrophic water from their surroundings. This seems to implicate that biodiverse wetland vegetation requires larger areas, as long as eutrophication has not been seriously tackled. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Chemical patterning on preformed porous silicon photonic crystals: towards multiplex detection of protease activity at precise positions†Electronic supplementary information (ESI) available: SEM images, XPS result and more optical reflectivity data. See DOI: 10.1039/c4tb00281dClick here for additional data file.

    PubMed

    Zhu, Ying; Soeriyadi, Alexander H; Parker, Stephen G; Reece, Peter J; Gooding, J Justin

    2014-06-21

    Porous silicon (PSi) rugate filters modified with alkyne-terminated monolayers were chemically patterned using a combination of photolithography of photoresist and click chemistry. Two chemical functionalities were obtained by conjugating, via click reactions, ethylene glycol moieties containing two different terminal groups to discrete areas towards the exterior of a PSi rugate filter. The patterning of biological species to the functionalized surface was demonstrated through the conjugation of fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA). Fluorescence microscopy showed selective positioning of FITC-BSA at discretely functionalized areas. Meanwhile, the optical information from precisely defined positions on the patterned surface was monitored by optical reflectivity measurements. The optical measurements revealed successful step-wise chemical functionalization followed by immobilization of gelatin. Multiplex detection of protease activity from different array elements on the patterned surface was demonstrated by monitoring the blue shifts in the reflectivity spectra resulted from the digestion of gelatin by subtilisin. Precise information from both individual elements and average population was acquired. This technique is important for the development of PSi into a microarray platform for highly parallel biosensing applications, especially for cell-based assays.

  13. Technical Note: Kinect V2 surface filtering during gantry motion for radiotherapy applications.

    PubMed

    Nazir, Souha; Rihana, Sandy; Visvikis, Dimitris; Fayad, Hadi

    2018-04-01

    In radiotherapy, the Kinect V2 camera, has recently received a lot of attention concerning many clinical applications including patient positioning, respiratory motion tracking, and collision detection during the radiotherapy delivery phase. However, issues associated with such applications are related to some materials and surfaces reflections generating an offset in depth measurements especially during gantry motion. This phenomenon appears in particular when the collimator surface is observed by the camera; resulting in erroneous depth measurements, not only in Kinect surfaces itself, but also as a large peak when extracting a 1D respiratory signal from these data. In this paper, we proposed filtering techniques to reduce the noise effect in the Kinect-based 1D respiratory signal, using a trend removal filter, and in associated 2D surfaces, using a temporal median filter. Filtering process was validated using a phantom, in order to simulate a patient undergoing radiotherapy treatment while having the ground truth. Our results indicate a better correlation between the reference respiratory signal and its corresponding filtered signal (Correlation coefficient of 0.76) than that of the nonfiltered signal (Correlation coefficient of 0.13). Furthermore, surface filtering results show a decrease in the mean square distance error (85%) between the reference and the measured point clouds. This work shows a significant noise compensation and surface restitution after surface filtering and therefore a potential use of the Kinect V2 camera for different radiotherapy-based applications, such as respiratory tracking and collision detection. © 2018 American Association of Physicists in Medicine.

  14. Developing a Small-Scale De-Fluoridation Filter for Use in Rural Northern Ghana with Activated Alumina As the Sorbent

    NASA Astrophysics Data System (ADS)

    Craig, L.; Stillings, L. L.

    2014-12-01

    In northern Ghana, groundwater is the main source of household water and is generally considered safe to drink. However in some areas it contains fluoride (F-) concentrations above the 1.5 ppm limit recommended by the World Health Organization, putting the users at risk of fluorosis. The study area in the Upper East Region of Ghana has pockets of groundwater F- up to 4.6 ppm and, as a result, also has a high percentage of residents with dental fluorosis. They have no alternative water source and, because of poverty and limited access to technology, lack the capacity to set up advanced treatment systems. One proposed solution is to attach F- adsorption filters to the wells, since adsorption is considered a simple and cost effective approach for treating high F-drinking water. This study evaluates activated alumina as a sorbent for use in de-fluoridation filters in the study area. We evaluated the long-term adsorption capacity of activated alumina, and changes in F- adsorption rate and capacity with grain size. We measured differences in positive surface charge (C m-2) via slow acid titration, as well as F- loading with varied prior hydration time. Results from this research show no notable change in F- adsorption or positive surface charge when the activated alumina surface was pre-equilibrated in distilled water from 24 hours to 30 weeks. The results of F- loading show a maximum of ~3.4 mg F- sorbed per gm activated alumina (initial pH ~6.9, initial F- 1 to 60 ppm, 20 hr reaction time). The pH dependent surface charge is ~0.14 C m-2 at pH of ~4.4 and is zero at pH ~8.6. F- loading experiments were conducted with grain size 0.125 to 0.250 mm and 0.5 to 1.0 mm to evaluate changes in F- adsorption rate (initial pH ~6.9, initial F- 10 ppm) and F- loading (initial pH ~6.9, initial F- 1 to 60 ppm, 20 hr reaction time). The F- loading did not change with grain size. However time to equilibrium increased dramatically with a decrease in grain size - after one hour of reaction time, the larger grain size adsorbed only 59% of F-, while at the finer grain size 90% was adsorbed. Future work will determine the volume of high F- water that can be treated before activated alumina needs to be regenerated or changed. These data will aid in the design of a small-scale F- adsorption filter in the study area, and will predict the longevity of activated alumina as the sorbent.

  15. Developing a Small-scale De-fluoridation Filter for use in Rural Northern Ghana with Activated Alumina as the Sorbent

    NASA Astrophysics Data System (ADS)

    Craig, L.; Stillings, L. L.; Decker, D.; Thomas, J.

    2013-12-01

    In northern Ghana, groundwater is the main source of household water and is generally considered a safe and economical source of drinking water. However in some areas it contains fluoride (F-) concentrations above the 1.5 ppm limit recommended by the World Health Organization, putting the users at risk of fluorosis. The study area in the Upper East Region of northern Ghana has pockets of groundwater F- up to 4.6 ppm and, as a result, also has a high percentage of residents with dental fluorosis. They have no alternative water source and, because of the poverty and limited access to technology, the affected community lacks the capacity to set up advanced treatment systems. One proposed solution is to attach F- adsorption filters to the wells, since adsorption is considered a simple and cost effective approach for treating high F- drinking water. This study evaluates activated alumina as a sorbent for use in de-fluoridation filters in the study area. We evaluated the long-term adsorption capacity of activated alumina, as well as potential changes in F- adsorption rate and capacity with grain size. We measured differences in positive surface charge (as C m-2) via slow acid titration, as well as F- loading with varied prior hydration time. Experimental results from this research show no notable change in F- adsorption or positive surface charge when the activated alumina surface was pre-equilibrated in distilled water from 24 hours up to 30 weeks before the experiment. The results of F- loading show a maximum of ~3.4 mg F- sorbed per gm activated alumina (at initial pH ~6.9, initial F- 1 to 60 ppm, and 20 hr reaction time). The pH dependent surface charge shows a maximum of ~0.14 C m-2 at pH of ~4.4 and zero surface charge at pH ~8.5. F- loading experiments were conducted with grain size ranges 0.125 to 0.250 mm and 0.5 to 1.0 mm to evaluate changes in F- adsorption rate (initial pH ~6.9, initial F- 10 ppm) and F- loading (initial pH ~6.9, initial F- 1 to 60 ppm, 20 hr reaction time). The F- loading onto activated alumina did not change with grain size. However time to equilibrium increased dramatically with a decrease in grain size - after one hour of reaction time, the larger grain size adsorbed only 59% of F-, while at the finer grain size 90% was adsorbed. Future work will determine the volume of high F- water that can be treated before activated alumina needs to be regenerated or changed. These data will be incorporated into the design of a small-scale F-1 adsorption filter in the study area, and will predict the longevity of activated alumina as the sorbent.

  16. ECG artifact cancellation in surface EMG signals by fractional order calculus application.

    PubMed

    Miljković, Nadica; Popović, Nenad; Djordjević, Olivera; Konstantinović, Ljubica; Šekara, Tomislav B

    2017-03-01

    New aspects for automatic electrocardiography artifact removal from surface electromyography signals by application of fractional order calculus in combination with linear and nonlinear moving window filters are explored. Surface electromyography recordings of skeletal trunk muscles are commonly contaminated with spike shaped artifacts. This artifact originates from electrical heart activity, recorded by electrocardiography, commonly present in the surface electromyography signals recorded in heart proximity. For appropriate assessment of neuromuscular changes by means of surface electromyography, application of a proper filtering technique of electrocardiography artifact is crucial. A novel method for automatic artifact cancellation in surface electromyography signals by applying fractional order calculus and nonlinear median filter is introduced. The proposed method is compared with the linear moving average filter, with and without prior application of fractional order calculus. 3D graphs for assessment of window lengths of the filters, crest factors, root mean square differences, and fractional calculus orders (called WFC and WRC graphs) have been introduced. For an appropriate quantitative filtering evaluation, the synthetic electrocardiography signal and analogous semi-synthetic dataset have been generated. The examples of noise removal in 10 able-bodied subjects and in one patient with muscle dystrophy are presented for qualitative analysis. The crest factors, correlation coefficients, and root mean square differences of the recorded and semi-synthetic electromyography datasets showed that the most successful method was the median filter in combination with fractional order calculus of the order 0.9. Statistically more significant (p < 0.001) ECG peak reduction was obtained by the median filter application compared to the moving average filter in the cases of low level amplitude of muscle contraction compared to ECG spikes. The presented results suggest that the novel method combining a median filter and fractional order calculus can be used for automatic filtering of electrocardiography artifacts in the surface electromyography signal envelopes recorded in trunk muscles. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Nonlinear diffusion filtering of the GOCE-based satellite-only MDT

    NASA Astrophysics Data System (ADS)

    Čunderlík, Róbert; Mikula, Karol

    2015-04-01

    A combination of the GRACE/GOCE-based geoid models and mean sea surface models provided by satellite altimetry allows modelling of the satellite-only mean dynamic topography (MDT). Such MDT models are significantly affected by a stripping noise due to omission errors of the spherical harmonics approach. Appropriate filtering of this kind of noise is crucial in obtaining reliable results. In our study we use the nonlinear diffusion filtering based on a numerical solution to the nonlinear diffusion equation on closed surfaces (e.g. on a sphere, ellipsoid or the discretized Earth's surface), namely the regularized surface Perona-Malik model. A key idea is that the diffusivity coefficient depends on an edge detector. It allows effectively reduce the noise while preserve important gradients in filtered data. Numerical experiments present nonlinear filtering of the satellite-only MDT obtained as a combination of the DTU13 mean sea surface model and GO_CONS_GCF_2_DIR_R5 geopotential model. They emphasize an adaptive smoothing effect as a principal advantage of the nonlinear diffusion filtering. Consequently, the derived velocities of the ocean geostrophic surface currents contain stronger signal.

  18. Portable spotter for fluorescent contaminants on surfaces

    DOEpatents

    Schuresko, Daniel D.

    1980-01-01

    A portable fluorescence-based spotter for polynuclear aromatic hydrocarbon contamination on personnel and work area surfaces under ambient lighting conditions is provided. This instrument employs beam modulation and phase sensitive detection for discriminating between fluorescence from organic materials from reflected background light and inorganic fluorescent material. The device uses excitation and emission filters to provide differentiation between classes of aromatic organic compounds. Certain inorganic fluorescent materials, including heavy metal compounds, may also be distinguished from the organic compounds, despite both having similar optical properties.

  19. NittanySat Final Report for University Nanosatellite-5 Program

    DTIC Science & Technology

    2009-10-12

    Figures 9 through 12 and tabulated in Table 2. Figure 9 – 14-MHz BPF . Figure 10 – 21-MHz BPF .   Page 13   Figure 11 – 28-MHz BPF ...Figure 12 – 50-MHz BPF . Table 2 - Narrow Band-pass Filter Parameters Frequency Band [MHz] Bandwidth Range [MHz] Insertion Loss [dB] Return Loss...surface area, and surface properties (e.g., absorptivity, emissivity) of the various components. In order to make predictions and guide design choices, an

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Young-Sun; Yoon, Wang-Jung

    The purpose of this study is to map pyprophyllite distribution at surface of the Nohwa deposit, Korea by using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) data. For this, combined Spectral Angle Mapper (SAM), and Matched Filtering (MF) technique based on mathematical algorithm was applied. The regional distribution of high-grade and low-grade pyrophyllite in the Nohwa deposit area could be differentiated by this method. The results of this study show that ASTER data analysis using combination of SAM and MF techniques will assist in exploration of pyrophyllite at the exposed surface.

  1. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters.

    PubMed

    Nemoto, Junji; Saito, Tsuguyuki; Isogai, Akira

    2015-09-09

    Simple freeze-drying of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibril (TOCN) dispersions in water/tert-butyl alcohol (TBA) mixtures was conducted to prepare TOCN aerogels as high-performance air filter components. The dispersibility of the TOCNs in the water/TBA mixtures, and the specific surface area (SSA) of the resulting TOCN aerogels, was investigated as a function of the TBA concentration in the mixtures. The TOCNs were homogeneously dispersed in the water/TBA mixtures at TBA concentrations up to 40% w/w. The SSAs of the TOCN aerogels exceeded 300 m2/g when the TBA concentration in the aqueous mixtures was in the range from 20% to 50% w/w. When a commercially available, high-efficiency particulate air (HEPA) filter was combined with TOCN/water/TBA dispersions prepared using 30% TBA, and the product was freeze-dried, the resulting TOCN aerogel-containing filters showed superior filtration properties. This was because nanoscale, spider-web-like networks of the TOCNs with large SSAs were formed within the filter.

  2. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  3. Spin-on bottom antireflective coating defect reduction by proper filter selection and process optimization

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nickolas L.; Kidd, Brian; Mesawich, Michael; Stevens, Don, Jr.; Gotlinsky, Barry

    2003-06-01

    A design of experiment (DOE) was implemented to show the effects of various point of use filters on the coat process. The DOE takes into account the filter media, pore size, and pumping means, such as dispense pressure, time, and spin speed. The coating was executed on a TEL Mark 8 coat track, with an IDI M450 pump, and PALL 16 stack Falcon filters. A KLA 2112 set at 0.69 μm pixel size was used to scan the wafers to detect and identify the defects. The process found for DUV42P to maintain a low defect coating irrespective of the filter or pore size is a high start pressure, low end pressure, low dispense time, and high dispense speed. The IDI M450 pump has the capability to compensate for bubble type defects by venting the defects out of the filter before the defects are in the dispense line and the variable dispense rate allows the material in the dispense line to slow down at the end of dispense and not create microbubbles in the dispense line or tip. Also the differential pressure sensor will alarm if the pressure differential across the filter increases over a user-determined setpoint. The pleat design allows more surface area in the same footprint to reduce the differential pressure across the filter and transport defects to the vent tube. The correct low defect coating process will maximize the advantage of reducing filter pore size or changing the filter media.

  4. Low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream

    NASA Astrophysics Data System (ADS)

    DeTemple, B.; Wilcock, P.

    2011-12-01

    In an alluvial, gravel-bed stream governed by a plane-bed bedload transport regime, the physicochemical properties, size distribution, and granular architecture of the sediment grains that constitute the streambed surface influence many hydrodynamic, geomorphic, chemical, and ecological processes. Consequently, the abilities to accurately characterize the morphology and model the morphodynamics of the streambed surface and its interaction with the bedload above and subsurface below are necessary for a more complete understanding of how sediment, flow, organisms, and biogeochemistry interact. We report on our progress in the bottom-up development of low-pass filtered continuum streambed and bedload sediment mass balance laws for an alluvial, gravel-bed stream. These balance laws are assembled in a four stage process. First, the stream sediment-water system is conceptually abstracted as a nested, multi-phase, multi-species, structured continuum. Second, the granular surface of an aggregate of sediment grains is mathematically defined. Third, an integral approach to mass balance, founded in the continuum theory of multiphase flow, is used to formulate primordial, differential, instantaneous, local, continuum, mass balance laws applicable at any material point within a gravel-bed stream. Fourth, area averaging and time-after-area averaging, employing planform, low-pass filtering expressed as correlation or convolution integrals and based on the spatial and temporal filtering techniques found in the fields of multiphase flow, porous media flow, and large eddy simulation of turbulent fluid flow, are applied to smooth the primordial equations while maximizing stratigraphic resolution and preserving the definitions of relevant morphodynamic surfaces. Our approach unifies, corrects, contextualizes, and generalizes prior efforts at developing stream sediment continuity equations, including the top-down derivations of the surface layer (or "active layer") approach of Hirano [1971a,b] and probabilistic approach of Parker et al. [2000], as well as the bottom-up, low-pass filtered continuum approach of Coleman & Nikora [2009] which employed volume and volume-after-time averaging. It accommodates partial transport (e.g., Wilcock & McArdell [1997], Wilcock [1997a,b]). Additionally, it provides: (1) precise definitions of the geometry and kinematics of sediment in a gravel-bed stream required to collect and analyze the high resolution spatial and temporal datasets that are becoming ever more present in both laboratory and field investigations, (2) a mathematical framework for the use of tracer grains in gravel-bed streams, including the fate of streambed-emplaced tracers as well as the dispersion of tracers in the bedload, (3) spatial and temporal averaging uncompromised by the Reynolds rules necessary to assess the nature of scale separation, and (4) a kinematic foundation for hybrid Langrangian-Eulerian models of sediment morphodynamics.

  5. Comparison of cellulose vs. plastic cigarette filter decomposition under distinct disposal environments.

    PubMed

    Joly, François-Xavier; Coulis, Mathieu

    2018-02-01

    It is estimated that 4.5 trillion cigarette butts are discarded annually, making them numerically the most common type of litter on Earth. To accelerate their disappearance after disposal, a new type of cigarette filters made of cellulose, a readily biodegradable compound, has been introduced in the market. Yet, the advantage of these cellulose filters over the conventional plastic ones (cellulose acetate) for decomposition, remains unknown. Here, we compared the decomposition of cellulose and plastic cigarettes filters, either intact or smoked, on the soil surface or within a composting bin over a six-month field decomposition experiment. Within the compost, cellulose filters decomposed faster than plastic filters, but this advantage was strongly reduced when filters had been used for smoking. This indicates that the accumulation of tars and other chemicals during filter use can strongly affect its subsequent decomposition. Strikingly, on the soil surface, we observed no difference in mass loss between cellulose and plastic filters throughout the incubation. Using a first order kinetic model for mass loss of for used filters over the short period of our experiment, we estimated that conventional plastic filters take 7.5-14 years to disappear, in the compost and on the soil surface, respectively. In contrast, we estimated that cellulose filters take 2.3-13 years to disappear, in the compost and on the soil surface, respectively. Our data clearly showed that disposal environments and the use of cellulose filters must be considered when assessing their advantage over plastic filters. In light of our results, we advocate that the shift to cellulose filters should not exempt users from disposing their waste in appropriate collection systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Morphometrics and structure of complete baleen racks in gray whales (Eschrichtius robustus) from the Eastern North Pacific Ocean.

    PubMed

    Young, Samantha; DeméRé, Thomas A; Ekdale, Eric G; Berta, Annalisa; Zellmer, Nicholas

    2015-04-01

    Mysticetes have evolved a novel filter feeding apparatus-baleen-an epidermal keratinous tissue composed of keratin that grows as a serial arrangement of transverse cornified laminae from the right and left sides of the palate. The structure and function of baleen varies among extant mysticete clades and this variation likely can be viewed as adaptations related to different filter feeding strategies. In one of the first morphometric studies of the full baleen apparatus, we describe the morphology of complete baleen racks in neonate, yearling and adult gray whales (Eschrichtius robustus), and note morphometric variations between age groups as well as within individual racks. Morphometric data and detailed descriptions were collected from the full baleen apparatus of three frozen specimens of E. robustus using previously derived ecologically significant and broad scale measurements of baleen. Additionally, characters of the baleen apparatus were described based on visible patterns of baleen laminae and plates on the dorsal root of the rack. Results indicate that the longest, widest, and thickest plates and laminae are found toward the posterior half of the rack, resulting in the greatest surface area for filtration of prey occurring in this region. Ontogenetic changes were also documented that reveal a progressive increase in the filter surface area of the developing baleen apparatus as baleen laminae and main plates grow in length and width. Also noted was a progressive posterior shift in the position of greatest filtration area. Histological examination of the epithelial base (Zwischensubstanz) and laminae showed basic epidermal layers, as well as gapping between layers and vacuoles. © 2015 Wiley Periodicals, Inc.

  7. Study the velocity and pressure exerted in front of the filter surface in the kitchen hood system by using ANSYS

    NASA Astrophysics Data System (ADS)

    Asmuin, Norzelawati; Pairan, M. Rasidi; Isa, Norasikin Mat; Sies, Farid

    2017-04-01

    Commercial kitchen hood ventilation system is a device used to capture and filtered the plumes from cooking activities in the kitchen area. Nowadays, it is very popular in the industrial sector such as restaurant and hotel to provide hygiene food. This study focused at the KSA filter part which installed in the kitchen hood system, the purpose of this study is to identify the critical region which indicated by observing the velocity and pressure of plumes exerted at of KSA filter. It is important to know the critical location of the KSA filter in order to install the nozzle which will helps increase the filtration effectiveness. The ANSYS 16.1 (FLUENT) software as a tool used to simulate the kitchen hood systems which consist of KSA filter. The commercial kitchen hood system model has a dimension 700 mm width, 1600 mm length and 555 mm height. The system has two inlets and one outlet. The velocity of the plumes is set to be 0.235m/s and the velocity of the inlet capture jet is set to be 1.078m/s. The KSA filter is placed 45 degree from the y axis. The result shows the plumes has more tendency flowing pass through at the bottom part of KSA filter.

  8. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; DePoy, David Moore [Clifton Park, NY; Baldasaro, Paul Francis [Clifton Park, NY

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  9. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; Baldasaro, Paul F [Clifton Park, NY; DePoy, David M [Clifton Park, NY

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  10. Using Simplistic Shape/Surface Models to Predict Brightness in Estimation Filters

    NASA Astrophysics Data System (ADS)

    Wetterer, C.; Sheppard, D.; Hunt, B.

    The prerequisite for using brightness (radiometric flux intensity) measurements in an estimation filter is to have a measurement function that accurately predicts a space objects brightness for variations in the parameters of interest. These parameters include changes in attitude and articulations of particular components (e.g. solar panel east-west offsets to direct sun-tracking). Typically, shape models and bidirectional reflectance distribution functions are combined to provide this forward light curve modeling capability. To achieve precise orbit predictions with the inclusion of shape/surface dependent forces such as radiation pressure, relatively complex and sophisticated modeling is required. Unfortunately, increasing the complexity of the models makes it difficult to estimate all those parameters simultaneously because changes in light curve features can now be explained by variations in a number of different properties. The classic example of this is the connection between the albedo and the area of a surface. If, however, the desire is to extract information about a single and specific parameter or feature from the light curve, a simple shape/surface model could be used. This paper details an example of this where a complex model is used to create simulated light curves, and then a simple model is used in an estimation filter to extract out a particular feature of interest. In order for this to be successful, however, the simple model must be first constructed using training data where the feature of interest is known or at least known to be constant.

  11. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries.

    PubMed

    Tsui, Mirabelle M P; Leung, H W; Wai, Tak-Cheung; Yamashita, Nobuyoshi; Taniyasu, Sachi; Liu, Wenhua; Lam, Paul K S; Murphy, Margaret B

    2014-12-15

    Organic UV filters are common ingredients of personal care products (PCPs), but little is known about their distribution in and potential impacts to the marine environment. This study reports the occurrence and risk assessment of twelve widely used organic UV filters in surface water collected in eight cities in four countries (China, the United States, Japan, and Thailand) and the North American Arctic. The number of compounds detected, Hong Kong (12), Tokyo (9), Bangkok (9), New York (8), Los Angeles (8), Arctic (6), Shantou (5) and Chaozhou (5), generally increased with population density. Median concentrations of all detectable UV filters were <250 ng/L. The presence of these compounds in the Arctic is likely due to a combination of inadequate wastewater treatment and long-range oceanic transport. Principal component analysis (PCA) and two-way analysis of variance (ANOVA) were conducted to explore spatiotemporal patterns and difference in organic UV filter levels in Hong Kong. In general, spatial patterns varied with sampling month and all compounds showed higher concentrations in the wet season except benzophenone-4 (BP-4). Probabilistic risk assessment showed that 4-methylbenzylidene camphor (4-MBC) posed greater risk to algae, while benzophenone-3 (BP-3) and ethylhexyl methoxycinnamate (EHMC) were more likely to pose a risk to fishes and also posed high risk of bleaching in hard corals in aquatic recreational areas in Hong Kong. This study is the first to report the occurrence of organic UV filters in the Arctic and provides a wider assessment of their potential negative impacts in the marine environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Efficient color display using low-absorption in-pixel color filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2000-01-01

    A display system having a non-absorbing and reflective color filtering array and a reflector to improve light utilization efficiency. One implementation of the color filtering array uses a surface plasmon filter having two symmetric metal-dielectric interfaces coupled with each other to produce a transmission optical wave at a surface plasmon resonance wavelength at one interface from a p-polarized input beam on the other interface. Another implementation of the color filtering array uses a metal-film interference filter having two dielectric layers and three metallic films.

  13. Treatment of heavy metals by iron oxide coated and natural gravel media in Sustainable urban Drainage Systems.

    PubMed

    Norris, M J; Pulford, I D; Haynes, H; Dorea, C C; Phoenix, V R

    2013-01-01

    Sustainable urban Drainage Systems (SuDS) filter drains are simple, low-cost systems utilized as a first defence to treat road runoff by employing biogeochemical processes to reduce pollutants. However, the mechanisms involved in pollution attenuation are poorly understood. This work aims to develop a better understanding of these mechanisms to facilitate improved SuDS design. Since heavy metals are a large fraction of pollution in road runoff, this study aimed to enhance heavy metal removal of filter drain gravel with an iron oxide mineral amendment to increase surface area for heavy metal scavenging. Experiments showed that amendment-coated and uncoated (control) gravel removed similar quantities of heavy metals. Moreover, when normalized to surface area, iron oxide coated gravels (IOCGs) showed poorer metal removal capacities than uncoated gravel. Inspection of the uncoated microgabbro gravel indicated that clay particulates on the surface (a natural product of weathering of this material) augmented heavy metal removal, generating metal sequestration capacities that were competitive compared with IOCGs. Furthermore, when the weathered surface was scrubbed and removed, metal removal capacities were reduced by 20%. When compared with other lithologies, adsorption of heavy metals by microgabbro was 10-70% higher, indicating that both the lithology of the gravel, and the presence of a weathered surface, considerably influence its ability to immobilize heavy metals. These results contradict previous assumptions which suggest that gravel lithology is not a significant factor in SuDS design. Based upon these results, weathered microgabbro is suggested to be an ideal lithology for use in SuDS.

  14. A laminar cortical model of stereopsis and 3D surface perception: closure and da Vinci stereopsis.

    PubMed

    Cao, Yongqiang; Grossberg, Stephen

    2005-01-01

    A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model includes two main new developments: (1) It clarifies how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain data about stereopsis. This feedback has previously been used to explain data about 3D figure-ground perception. (2) It proposes that the binocular false match problem is subsumed under the Gestalt grouping problem. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The enhanced model explains all the psychophysical data previously simulated by Grossberg and Howe (2003), such as contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, and da Vinci stereopsis. It also explains psychophysical data about perceptual closure and variations of da Vinci stereopsis that previous models cannot yet explain.

  15. Removing tidal-period variations from time-series data using low-pass digital filters

    USGS Publications Warehouse

    Walters, Roy A.; Heston, Cynthia

    1982-01-01

    Several low-pass, digital filters are examined for their ability to remove tidal Period Variations from a time-series of water surface elevation for San Francisco Bay. The most efficient filter is the one which is applied to the Fourier coefficients of the transformed data, and the filtered data recovered through an inverse transform. The ability of the filters to remove the tidal components increased in the following order: 1) cosine-Lanczos filter, 2) cosine-Lanczos squared filter; 3) Godin filter; and 4) a transform fitter. The Godin fitter is not sufficiently sharp to prevent severe attenuation of 2–3 day variations in surface elevation resulting from weather events.

  16. Sequential estimation of surface water mass changes from daily satellite gravimetry data

    NASA Astrophysics Data System (ADS)

    Ramillien, G. L.; Frappart, F.; Gratton, S.; Vasseur, X.

    2015-03-01

    We propose a recursive Kalman filtering approach to map regional spatio-temporal variations of terrestrial water mass over large continental areas, such as South America. Instead of correcting hydrology model outputs by the GRACE observations using a Kalman filter estimation strategy, regional 2-by-2 degree water mass solutions are constructed by integration of daily potential differences deduced from GRACE K-band range rate (KBRR) measurements. Recovery of regional water mass anomaly averages obtained by accumulation of information of daily noise-free simulated GRACE data shows that convergence is relatively fast and yields accurate solutions. In the case of cumulating real GRACE KBRR data contaminated by observational noise, the sequential method of step-by-step integration provides estimates of water mass variation for the period 2004-2011 by considering a set of suitable a priori error uncertainty parameters to stabilize the inversion. Spatial and temporal averages of the Kalman filter solutions over river basin surfaces are consistent with the ones computed using global monthly/10-day GRACE solutions from official providers CSR, GFZ and JPL. They are also highly correlated to in situ records of river discharges (70-95 %), especially for the Obidos station where the total outflow of the Amazon River is measured. The sparse daily coverage of the GRACE satellite tracks limits the time resolution of the regional Kalman filter solutions, and thus the detection of short-term hydrological events.

  17. Aquatic Plants and Wastewater Treatment (an Overview)

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  18. Monitoring of hourly variations in coastal water turbidity using the geostationary ocean color imager (GOCI)

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ryu, J.

    2011-12-01

    Temporal variations of suspended sediment concentration (SSC) in coastal water are the key to understanding the pattern of sediment movement within coastal area, in particular, such as in the west coast of the Korean Peninsula which is influenced by semi-diurnal tides. Remote sensing techniques can effectively monitor the distribution and dynamic changes in seawater properties across wide areas. Thus, SSC on the sea surface has been investigated using various types of satellite-based sensors. An advantage of Geostationary Ocean Color Imager (GOCI), the world's first geostationary ocean color observation satellite, over other ocean color satellite images is that it can obtain data every hour during the day and makes it possible to monitor the ocean in real time. In this study, hourly variations in turbidity on the coastal waters were estimated quantitatively using GOCI. Thirty three water samples were obtained on the coastal water surface in southern Gyeonggi Bay, located on the west coast of Korea. Water samples were filtered using 25-mm glass fiber filters (GF/F) for the estimation of SSC. The radiometric characteristics of the surface water, such as the total water-leaving radiance (LwT, W/m2/nm/sr), the sky radiance (Lsky, W/m2/nm/sr) and the downwelling irradiance, were also measured at each sampling location. In situ optical properties of the surface water were converted into remote sensing reflectance (Rrs) and then were used to develop an algorithm to generate SSC images in the study area. GOCI images acquired on the same day as the samples acquisition were used to generate the map of turbidity and to estimate the difference in SSC displayed in each image. The estimation of the time-series variation in SSC in a coastal, shallow-water area affected by tides was successfully achieved using GOCI data that had been acquired at hourly intervals during the daytime.

  19. Economic filters for evaluating porphyry copper deposit resource assessments using grade-tonnage deposit models, with examples from the U.S. Geological Survey global mineral resource assessment: Chapter H in Global mineral resource assessment

    USGS Publications Warehouse

    Robinson, Gilpin R.; Menzie, W. David

    2012-01-01

    One implication of the economic filter results for undiscovered copper resources is that global copper supply will continue to be dominated by production from a small number of giant deposits. This domination of resource supply by a small number of producers may increase in the future, because an increasing proportion of new deposit discoveries are likely to occur in remote areas and be concealed deep beneath covering rock and sediments. Extensive mineral exploration activity will be required to meet future resource demand, because these deposits will be harder to find and more costly to mine than near-surface deposits located in more accessible areas. Relatively few of the new deposit discoveries in these high-cost settings will have sufficient tonnage and grade characteristics to assure positive economic returns on development and exploration costs.

  20. Sampling Artifacts from Conductive Silicone Tubing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timko, Michael T.; Yu, Zhenhong; Kroll, Jesse

    2009-05-15

    We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: 1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and 2) silicone tubing emits organic contaminants containing siloxane that adsorb onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosolmore » mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and should, therefore, be used with caution. Gentle heating, physical and chemical properties of the particle carriers, exposure to solvents, and tubing age may influence siloxane uptake. The amount of contamination is expected to increase as the tubing surface area increases and as the particle surface area increases. The effect is observed at ambient temperature and enhanced by mild heating (<100 oC). Further evaluation is warranted.« less

  1. Evaluation of spatial filtering on the accuracy of wheat area estimate

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Moreira, M. A.; Chen, S. C.; Delima, A. M.

    1982-01-01

    A 3 x 3 pixel spatial filter for postclassification was used for wheat classification to evaluate the effects of this procedure on the accuracy of area estimation using LANDSAT digital data obtained from a single pass. Quantitative analyses were carried out in five test sites (approx 40 sq km each) and t tests showed that filtering with threshold values significantly decreased errors of commission and omission. In area estimation filtering improved the overestimate of 4.5% to 2.7% and the root-mean-square error decreased from 126.18 ha to 107.02 ha. Extrapolating the same procedure of automatic classification using spatial filtering for postclassification to the whole study area, the accuracy in area estimate was improved from the overestimate of 10.9% to 9.7%. It is concluded that when single pass LANDSAT data is used for crop identification and area estimation the postclassification procedure using a spatial filter provides a more accurate area estimate by reducing classification errors.

  2. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.

    PubMed

    Jung, Jae Hee; Hwang, Gi Byoung; Lee, Jung Eun; Bae, Gwi Nam

    2011-08-16

    Carbon nanotubes (CNTs) have been widely used in a variety of applications because of their unique structure and excellent mechanical and electrical properties. Additionally, silver (Ag) nanoparticles exhibit broad-spectrum biocidal activity toward many different bacteria, fungi, and viruses. In this study, we prepared Ag-coated CNT hybrid nanoparticles (Ag/CNTs) using aerosol nebulization and thermal evaporation/condensation processes and tested their usefulness for antimicrobial air filtration. Droplets were generated from a CNT suspension using a six-jet collison nebulizer, passed through a diffusion dryer to remove moisture, and entered a thermal tube furnace where silver nanoparticles were generated by thermal evaporation/condensation at ∼980 °C in a nitrogen atmosphere. The CNT and Ag nanoparticle aerosols mixed together and attached to each other, forming Ag/CNTs. For physicochemical characterization, the Ag/CNTs were introduced into a scanning mobility particle sizer (SMPS) for size distribution measurements and were sampled by the nanoparticle sampler for morphological and elemental analyses. For antimicrobial air filtration applications, the airborne Ag/CNT particles generated were deposited continuously onto an air filter medium. Physical characteristics (fiber morphology, pressure drop, and filtration efficiency) and biological characteristics (antimicrobial tests against Staphylococcus epidermidis and Escherichia coli bioaerosols) were evaluated. Real-time SMPS and transmission electron microscopy (TEM) data showed that Ag nanoparticles that were <20 nm in diameter were homogeneously dispersed and adhered strongly to the CNT surfaces. Because of the attachment of Ag nanoparticles onto the CNT surfaces, the total particle surface area concentration measured by a nanoparticle surface area monitor (NSAM) was lower than the summation of each Ag nanoparticle and CNT generated. When Ag/CNTs were deposited on the surface of an air filter medium, the antimicrobial activity against test bacterial bioaerosols was enhanced, compared with the deposition of CNTs or Ag nanoparticles alone, whereas the filter pressure drop and bioaerosol filtration efficiency were similar to those of CNT deposition only. At a residence time of 2 h, the relative microbial viabilities of gram-positive S. epidermidis were ∼32, 13, 5, and 0.9% on the control, CNT-, Ag nanoparticle-, and Ag/CNT-deposited filters, respectively, and those of gram-negative E. coli were 13, 2.1, 0.4, and 0.1% on the control, CNTs, Ag nanoparticles, and Ag/CNTs, respectively. These Ag/CNT hybrid nanoparticles may be useful for applications in biomedical devices and antibacterial control systems.

  3. Energy from vascular plant wastewater treatment systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolverton, B.C.; McDonald, R.C.

    1981-04-01

    Water hyacinth (Eichhornia crassipes) duckweed (Spirodela sp. and Lemna sp.), water pennywort (Hydrocotyle ranunculoides), and kudzu (Pueraria lobata) were anaerobically fermented using an anaerobic filter technique that reduced the total digestion time from 90 d to an average of 23 d and produced 0.14 to 0.22 m/sup 3/ CH/sub 4//kg (dry weight) (2.3 to 3.6 ft/sup 3//lb) from mature filters for the 3 aquatic species. Kudzu required an average digestion time of 33 d and produced an average of 0.21 m/sup 3/ CH/sub 4//kg (dry weight) (3.4 ft/sup 3//lb). The anaerobic filter provided a large surface area for the anaerobicmore » bacteria to establish and maintain an optimal balance of facultative, acid-forming, and methane-producing bacteria. Consequently the efficiency of the process was greatly improved over prior batch fermentations.« less

  4. Storage containers for radioactive material

    DOEpatents

    Groh, Edward F.; Cassidy, Dale A.; Dates, Leon R.

    1981-01-01

    A radioactive material storage system for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together, whereby the plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or

  5. Respiratory-Induced Haemodynamic Changes: A Contributing Factor to IVC Filter Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laborda, Alicia, E-mail: alaborda@unizar.es; Kuo, William T., E-mail: wkuo@stanford.edu; Ioakeim, Ignatios, E-mail: ignacio.ioakim@hotmail.es

    2015-10-15

    PurposeThe purpose of the study is to evaluate the influence of respiratory-induced vena caval hemodynamic changes on filter migration/penetration.Materials and MethodsAfter placement of either a Gunther Tulip or Celect IVC filter, 101 consecutive patients scheduled for filter retrieval were prospectively enrolled in this study. Pre-retrieval CT scans were used to assess filter complications and to calculate cross-sectional area in three locations: at level of filter strut fixation, 3 cm above and 3 cm below. A 3D finite element simulation was constructed on these data and direct IVC pressure was recorded during filter retrieval. Cross-sectional areas and pressures of the vena cava weremore » measured during neutral breathing and in Valsalva maneuver and identified filter complications were recorded. A statistical analysis of these variables was then performed.ResultsDuring Valsalva maneuvers, a 60 % decrease of the IVC cross-sectional area and a fivefold increase in the IVC pressure were identified (p < 0.001). There was a statistically significant difference in the reduction of the cross-sectional area at the filter strut level (p < 0.001) in patient with filter penetration. Difficulty in filter retrieval was higher in penetrated or tilted filters (p < 0.001; p = 0.005). 3D computational models showed significant IVC deformation around the filter during Valsalva maneuver.ConclusionCaval morphology and hemodynamics are clearly affected by Valsalva maneuvers. A physiological reduction of IVC cross-sectional area is associated with higher risk of filter penetration, despite short dwell times. Physiologic data should be used to improve future filter designs to remain safely implanted over longer dwell times.« less

  6. Removal of virus and toxin using heatable multi-walled carbon nanotube web filters

    NASA Astrophysics Data System (ADS)

    Jang, Hoon-Sik; Jeon, Sang Koo; Ryu, Kwon-Sang; Nahm, Seung Hoon

    2016-02-01

    Many studies have used a carbon nanotube (CNT) filter for pathogen removal and/or inactivation by means of electrochemical or electrochlorination. The large surface area, fine pore size and high electrical and thermal conductivity of CNTs make them suitable and distinct to use for the filtering and removal of pathogens. Here, we grew spin-capable multi-walled CNTs (MWCNTs) and manufactured a web filter using the spun MWCNTs. Botulinum toxin type E light chain (BoT/E-LC) and vaccinia virus (VV) were filtered using the MWCNT web filters and were evaporated and removed by applying direct current (DC) voltage to both sides of the MWCNT webs, excluding electrochemical or electrochlorination. The filtering and removal of BoT/E-LC and VV were performed after seven layers of the MWCNT sheets were coated onto a silicon oxide porous plate. The electrical resistance of the webs in the seven layer sheet was 293 Ω. The temperature of MWCNTs webs was linearly increased to ˜300 °C at 210 V of DC voltage. This temperature was enough to remove BoT/E-LC and VV. From the SEM and XPS results, we confirmed that BoT/E-LC and VV on the MWCNT webs were almost removed by applying a DC voltage and that some element (N, Na, Cl, etc.) as residues on the MWCNT webs remained.

  7. Violet and blue light-induced green fluorescence emissions from dental caries.

    PubMed

    Shakibaie, F; Walsh, L J

    2016-12-01

    The objective of this laboratory study was to compare violet and visible blue LED light-elicited green fluorescence emissions from enamel and dentine in healthy or carious states. Microscopic digital photography was undertaken using violet and blue LED illumination (405 nm and 455 nm wavelengths) of tooth surfaces, which were photographed through a custom-made stack of green compensating filters which removed the excitation light and allowed green fluorescence emissions to pass. Green channel pixel data were analysed. Dry sound enamel and sound root surfaces showed strong green fluorescence when excited by violet or blue lights. Regions of cavitated dental caries gave lower green fluorescence, and this was similar whether the dentine in the lesions was the same colour as normal dentine or was darkly coloured. The presence of saliva on the surface did not significantly change the green fluorescence, while the presence of blood diluted in saliva depressed green fluorescence. Using violet or blue illumination in combination with green compensating filters could potentially aid in the assessment of areas of mineral loss. © 2016 Australian Dental Association.

  8. Development and investigation of a pollution control pit for treatment of stormwater from metal roofs and traffic areas.

    PubMed

    Dierkes, C; Göbel, P; Lohmann, M; Coldewey, W G

    2006-01-01

    Source control by on-site retention and infiltration of stormwater is a sustainable and proven alternative to classical drainage methods. Unfortunately, sedimentary particles and pollutants from drained surfaces cause clogging and endanger soil and groundwater during long-term operation of infiltration devices. German water authorities recommend the use of infiltration devices, such as swales or swale-trench-systems. Direct infiltration by underground facilities, such as pipes, trenches or sinks, without pretreatment of runoff is generally not permitted. Problems occur with runoff from metal roofs, traffic areas and industrial sites. However, due to site limitations, underground systems are often the only feasible option. To overcome this situation, a pollution control pit was developed with a hydrodynamic separator and a multistage filter made of coated porous concrete. The system treats runoff at source and protects soil, groundwater and receiving waterways. Typically, more than 90% of the pollutants such as sedimentary particles, hydrocarbons and heavy metals can be removed. Filters have been developed to treat even higher polluted stormwater loads from metal roofs and industrial sites. The treatment process is based on sedimentation, filtration, adsorption and chemical precipitation. Sediments are trapped in a special chamber within the pit and can be removed easily. Other pollutants are captured in the concrete filter upstream of the sediment separator chamber. Filters can be easily replaced.

  9. Biomethanation of Harmful Macroalgal Biomass in Leach-Bed Reactor Coupled to Anaerobic Filter: Effect of Water Regime and Filter Media

    PubMed Central

    Jung, Heejung; Kim, Jaai; Lee, Changsoo

    2018-01-01

    Ulva is a marine macroalgal genus which causes serious green tides in coastal areas worldwide. This study investigated anaerobic digestion as a way to manage Ulva waste in a leach-bed reactor coupled to an anaerobic filter (LBR-AF). Two LBR-AF systems with different filter media, blast furnace slag grains for R1, and polyvinyl chloride rings for R2, were run at increasing water replacement rates (WRRs). Both achieved efficient volatile solids reduction (68.4–87.1%) and methane yield (148–309 mL/g VS fed) at all WRRs, with the optimal WRR for maximum methane production being 100 mL/d. R1 maintained more stable methanation performance than R2, possibly due to the different surface properties (i.e., biomass retention capacity) of the filter media. Such an effect was also noted in the different behaviors of the LBR and AF between R1 and R2. The molecular analysis results revealed that the development of the microbial community structure in the reactors was primarily determined by the fermentation type, i.e., dry (LBR) or wet (AF). PMID:29701670

  10. Nanocellulose-Based Materials for Water Purification

    PubMed Central

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P.

    2017-01-01

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted. PMID:28336891

  11. Spectral analysis and filtering techniques in digital spatial data processing

    USGS Publications Warehouse

    Pan, Jeng-Jong

    1989-01-01

    A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author

  12. Electrospinning and stabilization of chitosan nanofiber mats

    NASA Astrophysics Data System (ADS)

    Grimmelsmann, N.; Grothe, T.; Homburg, S. V.; Ehrmann, A.

    2017-10-01

    Chitosan is of special interest for biotechnological and medical applications due to its antibacterial, antifungal and other intrinsic physical and chemical properties. The biopolymer can, e.g., be used for biotechnological purposes, as a filter medium, in medical products, etc. In all these applications, the inner surface should be maximized to increase the contact area with the filtered medium etc. and thus the chitosan’s efficacy. Chitosan dissolves in acidic solutions, opposite to neutral water. Electrospinning is possible, e.g., by co-spinning with PEO (poly(ethylene oxide)). Tests with different chitosan:PEO ratios revealed that higher PEO fractions resulted in better spinnability and more regular fibre mats, but make stabilization of the fibre structure more challenging.

  13. Interactions between protein molecules and the virus removal membrane surface: Effects of immunoglobulin G adsorption and conformational changes on filter performance.

    PubMed

    Hamamoto, Ryo; Ito, Hidemi; Hirohara, Makoto; Chang, Ryongsok; Hongo-Hirasaki, Tomoko; Hayashi, Tomohiro

    2018-03-01

    Membrane fouling commonly occurs in all filter types during virus filtration in protein-based biopharmaceutical manufacturing. Mechanisms of decline in virus filter performance due to membrane fouling were investigated using a cellulose-based virus filter as a model membrane. Filter performance was critically dependent on solution conditions; specifically, ionic strength. To understand the interaction between immunoglobulin G (IgG) and cellulose, sensors coated with cellulose were fabricated for surface plasmon resonance and quartz crystal microbalance with energy dissipation measurements. The primary cause of flux decline appeared to be irreversible IgG adsorption on the surface of the virus filter membrane. In particular, post-adsorption conformational changes in the IgG molecules promoted further irreversible IgG adsorption, a finding that could not be adequately explained by DLVO theory. Analyses of adsorption and desorption and conformational changes in IgG molecules on cellulose surfaces mimicking cellulose-based virus removal membranes provide an effective approach for identifying ways of optimizing solution conditions to maximize virus filter performance. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:379-386, 2018. © 2017 American Institute of Chemical Engineers.

  14. Alkali metal for ultraviolet band-pass filter

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  15. Irrigation-induced contamination of water, sediment, and biota in the western United States-synthesis of data from the National Irrigation Water Quality Program

    USGS Publications Warehouse

    Seiler, Ralph L.; Skorupa, Joseph P.; Naftz, David L.; Nolan, B. Thomas

    2003-01-01

    In October 1985 the U.S. Department of the Interior (DOI), through the National Irrigation Water Quality Program (NIWQP), began a series of field investigations at 26 areas in the Western United States to determine whether irrigation drainage has had harmful effects on fish, wildlife, and humans or has reduced beneficial uses of water. In 1992 NIWQP initiated the Data Synthesis Project to evaluate data collected during the field investigations. Geologic, climatologic, and hydrologic data were evaluated and water, sediment, and biota from the 26 areas were analyzed to identify commonalities and dominant factors that result in irrigation-induced contamination of water and biota. Data collected for the 26 area investigations have been compiled and merged into a common data base. The structure of the data base is designed to enable assessment of relations between contaminant concentrations in water, sediment, and biota. The data base is available to the scientific community through the World Wide Web at URL http://www.usbr.gov/niwqp. Analysis of the data base for the Data Synthesis included use of summary statistics, factor analysis, and logistic regression. A Geographic Information System was used to store and analyze spatially oriented digital data such as land use, geology and evaporation rates. In the U.S. Department of the Interior (DOI) study areas, samples of water, bottom sediment, and biota were collected for trace-element and pesticide analysis. Contaminants most commonly associated with irrigation drainage were identified by comparing concentrations in water with established criteria. For surface water, the criteria used were typically chronic criteria for the protection of freshwater aquatic life. Because ground water can discharge to the surface where wildlife can be exposed to it, the criteria used for ground water were both the maximum contaminant levels (MCL's) for drinking water and the chronic criteria for the protection of freshwater aquatic life. Data collected by the NIWQP studies indicated that, in surface water, filtered and unfiltered samples had nearly the same concentrations of arsenic, boron, molybdenum, and selenium for concentrations greater than about 10 micrograms per liter. Therefore, in this concentration range, filtered concentrations can be directly compared to biological-effect levels developed for unfiltered samples. In the range of 1 to 10 micrograms per liter there may be a tendency for unfiltered arsenic concentrations to be greater than filtered concentrations. For selenium, however, the data suggest differences from equality in that range result from analytical imprecision and not a general tendency for unfiltered concentrations to be greater than filtered concentrations. This relation may not be true in lentic, nutrient-rich waters because in such settings algae can bioaccumulate large amounts of selenium and other trace elements. Selenium was the trace element in surface water that most commonly exceeded chronic criteria for the protection of freshwater aquatic life; more than 40 percent of the selenium concentrations in surface-water samples exceeded the U.S. Environmental Protection Agency (USEPA) aquatic-life chronic criterion (5 micrograms per liter). In 12 of the 26 areas at least 25 percent of the surface water-samples had selenium concentrations that either equaled or exceeded the chronic criterion (5 micrograms per liter). More than 28 percent of boron concentrations and almost 17 percent of the molybdenum concentrations exceeded the aquatic life criteria established by the State of California (550 and 19 micrograms per liter, respectively). In ground water, more than 22 percent of the arsenic concentrations and more than 35 percent of the selenium concentrations exceeded the MCL (10 and 50 micrograms per liter, respectively). Few samples of uranium in surface water exceeded a criterion for the protection of aquatic life (300 micrograms per liter), but 44 percent

  16. French vertical-flow constructed wetland design: adaptations for tropical climates.

    PubMed

    Molle, P; Latune, R Lombard; Riegel, C; Lacombe, G; Esser, D; Mangeot, L

    2015-01-01

    The French Outermost Regions are under tropical climate yet still have to comply with both French and EU regulations. French vertical-flow constructed wetland systems appear well adapted to the technical specifics of these regions but their adaptation to tropical climate requires new design guidelines to be defined (area needed, number of filters, type of plants, material to be used, etc.). A study was started in 2008, with backing from the national water authorities, to implement full-scale experimental sites and assess the impacts of local context on design and performances. This paper reports the monitoring results on three vertical-flow constructed wetlands fed directly with raw wastewater (known as the 'French system') in Mayotte and French Guiana. The plants, now in operation for between 1 and 6 years, range from 160 to 480 population equivalent (p.e.). Monitoring consisted of 28 daily composite flow samples in different seasons (dry season, rainy season) at the inlet and outlet of each filter. Performances are benchmarked against French mainland area standards from Irstea's database. Results show that performances are improved by warmer temperature for chemical oxygen demand (COD), suspended solids (SS) and total Kjeldahl nitrogen (TKN) and satisfy national quality objectives with a single stage of filters. Treatment plant footprint can thus be reduced as only two parallel filters are needed. Indeed, warm temperatures allow faster mineralization of the sludge deposit, making it possible to operate at similar rest and feeding period durations. Systems operated using one twin-filter stage can achieve over 90% COD, SS and TKN removal for a total surface of 0.8 m²/p.e.

  17. Soil amendments for heavy metals removal from stormwater runoff discharging to environmentally sensitive areas

    NASA Astrophysics Data System (ADS)

    Trenouth, William R.; Gharabaghi, Bahram

    2015-10-01

    Concentrations of dissolved metals in stormwater runoff from urbanized watersheds are much higher than established guidelines for the protection of aquatic life. Five potential soil amendment materials derived from affordable, abundant sources have been tested as filter media using shaker tests and were found to remove dissolved metals in stormwater runoff. Blast furnace (BF) slag and basic oxygenated furnace (BOF) slag from a steel mill, a drinking water treatment residual (DWTR) from a surface water treatment plant, goethite-rich overburden (IRON) from a coal mine, and woodchips (WC) were tested. The IRON and BOF amendments were shown to remove 46-98% of dissolved metals (Cr, Co, Cu, Pb, Ni, Zn) in repacked soil columns. Freundlich adsorption isotherm constants for six metals across five materials were calculated. Breakthrough curves of dissolved metals and total metal accumulation within the filter media were measured in column tests using synthetic runoff. A reduction in system performance over time occurred due to progressive saturation of the treatment media. Despite this, the top 7 cm of each filter media removed up to 72% of the dissolved metals. A calibrated HYDRUS-1D model was used to simulate long-term metal accumulation in the filter media, and model results suggest that for these metals a BOF filter media thickness as low as 15 cm can be used to improve stormwater quality to meet standards for up to twenty years. The treatment media evaluated in this research can be used to improve urban stormwater runoff discharging to environmentally sensitive areas (ESAs).

  18. Investigation on filter method for smoothing spiral phase plate

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanhang; Wen, Shenglin; Luo, Zijian; Tang, Caixue; Yan, Hao; Yang, Chunlin; Liu, Mincai; Zhang, Qinghua; Wang, Jian

    2018-03-01

    Spiral phase plate (SPP) for generating vortex hollow beams has high efficiency in various applications. However, it is difficult to obtain an ideal spiral phase plate because of its continuous-varying helical phase and discontinued phase step. This paper describes the demonstration of continuous spiral phase plate using filter methods. The numerical simulations indicate that different filter method including spatial domain filter, frequency domain filter has unique impact on surface topography of SPP and optical vortex characteristics. The experimental results reveal that the spatial Gaussian filter method for smoothing SPP is suitable for Computer Controlled Optical Surfacing (CCOS) technique and obtains good optical properties.

  19. Directly-deposited blocking filters for high-performance silicon x-ray detectors

    NASA Astrophysics Data System (ADS)

    Bautz, M.; Kissel, S.; Masterson, R.; Ryu, K.; Suntharalingam, V.

    2016-07-01

    Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E < 1 keV) X-ray spectral resolution of the detector is sensitive to the charge collection efficiency in the immediate vicinity of its entrance surface, so it is important that any filter layer is deposited without disturbing the electric field distribution there. We have successfully deposited aluminum blocking filters, ranging in thickness from 70 to 220nm, on back-illuminated CCD X-ray detectors passivated by means of molecular beam epitaxy. Here we report measurements showing that directly deposited filters have little or no effect on soft X-ray spectral resolution. We also find that in applications requiring very large optical density (> OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.

  20. IMMUNOBLOT ANALYSIS OF PROTEINS ASSOCIATED WITH SELF-ASSEMBLED MONOLAYER SURFACES OF DEFINED CHEMISTRIES

    PubMed Central

    Cornelius, Rena M.; Shankar, Sucharita P.; Brash, John L.; Babensee, Julia E.

    2011-01-01

    Intact and fragmented proteins, eluted from self assembled monolayer (SAM) surfaces of alkanethiols of different chemistries (-CH3, -OH, -COOH, -NH2 ), following exposure to human plasma (HP) or human serum (HS), were examined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting techniques. The SAM surfaces were incubated for 1 hour with 10% (v/v) sterile-filtered heat-inactivated (h.i.) HS or 1% (v/v) sterile-filtered h.i. HP preparations [both in phosphate buffered saline (PBS)]. Adsorbed proteins were eluted using 10% SDS/2.3% dithioerythritol for characterization of protein profiles. The type of incubating medium may be an important determinant of adsorbed protein profiles, since some variations were observed in eluates from filtered versus control unfiltered h.i. 10% HS or 1% HP. Albumin and apolipoprotein A1 were consistently detected in both filtered h.i 10% HS and 1% HP eluates from all SAM surfaces and from control tissue culture-treated polystyrene (TCPS). Interestingly, Factor H and Factor I, antithrombin, prothrombin, high molecular weight kininogen (HMWK) and IgG were present in eluates from OH, COOH and NH2 SAM surfaces and in eluates from TCPS, but not in eluates from CH3 SAM surfaces, following exposure to filtered h.i. 10% HS. These results suggest that CH3 SAM surfaces were the least pro-inflammatory of all SAM surfaces. Overall, similar trends were observed in the profiles of proteins eluted from surfaces exposed to filtered 10% HS or 1% HP. However the unique profiles of adsorbed proteins on different SAM surface chemistries may be related to their differential interactions with cells, including immune/inflammatory cells. PMID:21509932

  1. Lily Pad Spectra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The color image on the lower left from the panoramic camera on the Mars Exploration Rover Opportunity shows the 'Lily Pad' bounce-mark area at Meridiani Planum, Mars. This image was acquired on the 3rd sol, or martian day, of Opportunity's mission (Jan.26, 2004). The upper left image is a monochrome (single filter) image from the rover's panoramic camera, showing regions from which spectra were extracted from the 'Lily Pad' area. As noted by the line graph on the right, the green spectra is from the undisturbed surface and the red spectra is from the airbag bounce mark.

  2. Miniaturized cathodic arc plasma source

    DOEpatents

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  3. Contamination Impact of Station Brush Fire on Cleanroom Facilities

    NASA Technical Reports Server (NTRS)

    Carey, Phil; Blakkolb, Brian

    2010-01-01

    Brush and forest fires, both naturally occurring and anthropogenic in origin, in proximity to space flight hardware processing facilities raise concerns about the threat of contamination resulting from airborne particulate and molecular components of smoke. Perceptions of the severity of the threat are possibly heightened by the high sensitivity of the human sense of smell to some components present in the smoke of burning vegetation.On August 26th, 2009, a brushfire broke out north of Pasadena, California, two miles from the Jet Propulsion Laboratory. The Station Fire destroyed over 160,000 acres, coming within a few hundred yards of JPL. Smoke concentrations on Lab were very heavy over several days. All Lab operations were halted, and measures were taken to protect personnel, critical hardware, and facilities. Evaluation of real-time cleanroom monitoring data, visualinspection of facilities, filter systems, and analysis of surface cleanliness samples revealed facility environments andhardware were minimally effected.Outside air quality easily exceeded Class Ten Million. Prefilters captured most large ash and soot; multi-stage filtration greatly minimized the impact on the HEPA/ULPA filters. Air quality in HEPA filtered spacecraft assembly cleanrooms remained within Class 10,000 specification throughout. Surface cleanliness was inimally affected, as large particles were effectively removed from the airstream, and sub-micron particles have extremely long settling rates. Approximate particulate fallout within facilities was 0.00011% area coverage/day compared to 0.00038% area coverage/day during normal operations. Deposition of condensable airborne components, as measured in real time, peaked at approximately1.0 ng/cm2/day compared to 0.05 ng/cm2/day nominal.

  4. Contamination impact of station brush fire on cleanroom facilities

    NASA Astrophysics Data System (ADS)

    Carey, Philip A.; Blakkolb, Brian K.

    2010-08-01

    Brush and forest fires, both naturally occurring and anthropogenic in origin, in proximity to space flight hardware processing facilities raise concerns about the threat of contamination resulting from airborne particulate and molecular components of smoke. Perceptions of the severity of the threat are possibly heightened by the high sensitivity of the human sense of smell to some components present in the smoke of burning vegetation. On August 26th, 2009, a brushfire broke out north of Pasadena, California, two miles from the Jet Propulsion Laboratory. The Station Fire destroyed over 160,000 acres, coming within a few hundred yards of JPL. Smoke concentrations on Lab were very heavy over several days. All Lab operations were halted, and measures were taken to protect personnel, critical hardware, and facilities. Evaluation of real-time cleanroom monitoring data, visual inspection of facilities, filter systems, and analysis of surface cleanliness samples revealed facility environments and hardware were minimally effected. Outside air quality easily exceeded Class Ten Million. Prefilters captured most large ash and soot; multi-stage filtration greatly minimized the impact on the HEPA/ULPA filters. Air quality in HEPA filtered spacecraft assembly cleanrooms remained within Class 10,000 specification throughout. Surface cleanliness was minimally affected, as large particles were effectively removed from the airstream, and sub-micron particles have extremely long settling rates. Approximate particulate fallout within facilities was 0.00011% area coverage/day compared to 0.00038% area coverage/day during normal operations. Deposition of condensable airborne components, as measured in real time, peaked at approximately 1.0 ng/cm2/day compared to 0.05 ng/cm2/day nominal.

  5. Numerical simulation studies of nano-scale surface plasmon components: waveguides, splitters, and filters

    NASA Astrophysics Data System (ADS)

    Lin, Xian-Shi; Huang, Xu-Guang

    2008-12-01

    In this paper, we theoretically and numerically demonstrate a two-dimensional Metal-Dielectric-Metal (MDM) waveguide based on finite-difference time-domain simulation of the propagation characteristics of surface plasmon polaritons (SPPs). For practical applications, we propose a plasmonic Y-branch waveguide based on MDM structure for high integration. The simulation results show that the Y-branch waveguide proposed here makes optical splitter with large branching angle (~180 degree) come true. We also introduce a finite array of periodic tooth structure on one surface of the MDM waveguide which is in a similar way as FBGs or Bragg reflectors, potentially as filters for WDM applications. Our results show that the novel structure not only can realize filtering function of wavelength with a high transmittance over 92%, but also with an ultra-compact size in the length of a few hundred nanometers, in comparison with other grating-like SPPs filters. The MDM waveguide splitters and filters could be utilized to achieve ultra-compact photonic filtering devices for high integration in SPPs-based flat metallic surfaces.

  6. Sorption of chlorophenols from aqueous solution by granular activated carbon, filter coal, pine and hardwood.

    PubMed

    Hossain, G S M; McLaughlan, R G

    2012-09-01

    Wood and coal, as low-cost sorbents, have been evaluated as an alternative to commercial granular activated carbon (GAC) for chlorophenol removal. Kinetic experiments indicated that filter coal had a significantly lower rate of uptake (approximately 10% of final uptake was achieved after three hours) than the other sorbents, owing to intra-particle diffusion limitations. The data fitted a pseudo-second-order model. Sorption capacity data showed that GAC had a high sorption capacity (294-467 mg g(-1)) compared with other sorbents (3.2-7.5 mg(g-1)). However, wood and coal had a greater sorption capacity per unit surface area than GAC. Sorption equilibrium data was best predicted using a Freundlich adsorption model. The sorption capacity for all sorbents was 2-chlorophenol < 4-chlorophenol < 2, 4-dichlorophenol, which correlates well with solute hydrophobicity, although the relative differences were much less for coal than the other sorbents. The results showed that pine, hardwood and filter coal can be used as sorbent materials for the removal of chlorophenol from water; however, kinetic considerations may limit the application of filter coal.

  7. Carbon nanotube filters

    NASA Astrophysics Data System (ADS)

    Srivastava, A.; Srivastava, O. N.; Talapatra, S.; Vajtai, R.; Ajayan, P. M.

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus (~25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  8. Carbon nanotube filters.

    PubMed

    Srivastava, A; Srivastava, O N; Talapatra, S; Vajtai, R; Ajayan, P M

    2004-09-01

    Over the past decade of nanotube research, a variety of organized nanotube architectures have been fabricated using chemical vapour deposition. The idea of using nanotube structures in separation technology has been proposed, but building macroscopic structures that have controlled geometric shapes, density and dimensions for specific applications still remains a challenge. Here we report the fabrication of freestanding monolithic uniform macroscopic hollow cylinders having radially aligned carbon nanotube walls, with diameters and lengths up to several centimetres. These cylindrical membranes are used as filters to demonstrate their utility in two important settings: the elimination of multiple components of heavy hydrocarbons from petroleum-a crucial step in post-distillation of crude oil-with a single-step filtering process, and the filtration of bacterial contaminants such as Escherichia coli or the nanometre-sized poliovirus ( approximately 25 nm) from water. These macro filters can be cleaned for repeated filtration through ultrasonication and autoclaving. The exceptional thermal and mechanical stability of nanotubes, and the high surface area, ease and cost-effective fabrication of the nanotube membranes may allow them to compete with ceramic- and polymer-based separation membranes used commercially.

  9. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has themore » advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors performed several tests to demonstrate increases in filter performance. With the proper use of filter flow conditions and filter enhancers, filter flow rates can be increased over rates currently realized today.« less

  10. Surface applicator of a miniature X-ray tube for superficial electronic brachytherapy of skin cancer.

    PubMed

    Kim, Hyun Nam; Lee, Ju Hyuk; Park, Han Beom; Kim, Hyun Jin; Cho, Sung Oh

    2018-01-01

    We designed and fabricated a surface applicator of a novel carbon nanotube (CNT)-based miniature X-ray tube for the use in superficial electronic brachytherapy of skin cancer. To investigate the effectiveness of the surface applicator, the performance of the applicator was numerically and experimentally analyzed. The surface applicator consists of a graphite flattening filter and an X-ray shield. A Monte Carlo radiation transport code, MCNP6, was used to optimize the geometries of both the flattening filter and the shield so that X-rays are generated uniformly over the desired region. The performance of the graphite filter was compared with that of conventional aluminum (Al) filters of different geometries using the numerical simulations. After fabricating a surface applicator, the X-ray spatial distribution was measured to evaluate the performance of the applicator. The graphite filter shows better spatial dose uniformity and less dose distortion than Al filters. Moreover, graphite allows easy fabrication of the flattening filter due to its low X-ray attenuation property, which is particularly important for low-energy electronic brachytherapy. The applicator also shows that no further X-ray shielding is required for the application because unwanted X-rays are completely protected. As a result, highly uniform X-ray dose distribution was achieved from the miniature X-ray tube mounted with the surface applicators. The measured values of both flatness and symmetry were less than 5% and the measured penumbra values were less than 1 mm. All these values satisfy the currently accepted tolerance criteria for radiation therapy. The surface applicator exhibits sufficient performance capability for their application in electronic brachytherapy of skin cancers. © 2017 American Association of Physicists in Medicine.

  11. Optical Absorption Spectra of Nuclear Filters Modified by Deposition of Silver Nano- and Microparticles

    NASA Astrophysics Data System (ADS)

    Smolyanskii, A. S.; Kozlova, N. V.; Zheltova, A. V.; Aksyutina, A. S.; Shvedov, A. S.; Lakeev, S. G.

    2015-07-01

    Light scattering and interference patterns are studied in the optical absorption spectra of nuclear filters based on polyethylene terephthalate fi lms modifi ed by dry aerosol deposition of silver nano- and microparticles. Surface plasmon polaritons and localized plasmons formed by the passage of light through porous silver films are found to have an effect on the diffraction and interference modes. The thickness of silver nano- and microparticle coatings on the surface of the nuclear fi lters was determined from the shift in the interference patterns in the optical absorption spectra of the modified nuclear filters relative to the original nuclear filters. A correlation was found between the estimated coating thickness and the average surface roughness of the nuclear filters modified by layers of silver nano- and microparticles.

  12. Numerical studies on the performance of an aerosol respirator with faceseal leakage

    NASA Astrophysics Data System (ADS)

    Zaripov, S. K.; Mukhametzanov, I. T.; Grinshpun, S. A.

    2016-11-01

    We studied the efficiency of a facepiece filtering respirator (FFR) in presence of a measurable faceseal leakage using the previously developed model of a spherical sampler with porous layer. In our earlier study, the model was validated for a specific filter permeability value. In this follow-up study, we investigated the effect of permeability on the overall respirator performance accounting for the faceseal leakage. The Total Inward Leakage (TIL) was calculated as a function of the leakage-to-filter surface ratio and the particle diameter. A good correlation was found between the theoretical and experimental TIL values. The TIL value was shown to increase and the effect of particle size on TIL to decrease as the leakage-to- filter surface ratio grows. The model confirmed that within the most penetrating particle size range (∼50 nm) and at relatively low leakage-to-filter surface ratios, an FFR performs better (TIL is lower) when the filter has a lower permeability which should be anticipated as long as the flow through the filter represents the dominant particle penetration pathway. An increase in leak size causes the TIL to rise; furthermore, under certain leakage-to-filter surface ratios, TIL for ultrafine particles becomes essentially independent on the filter properties due to a greater contribution of the aerosol flow through the faceseal leakage. In contrast to the ultrafine fraction, the larger particles (e.g., 800 nm) entering a typical high- or medium-quality respirator filter are almost fully collected by the filter medium regardless of its permeability; at the same time, the fraction penetrated through the leakage appears to be permeability- dependent: higher permeability generally results in a lower pressure drop through the filter which increases the air flow through the filter at the expense of the leakage flow. The latter reduces the leakage effect thus improving the overall respiratory protection level. The findings of this study provide valuable information for developing new respirators with a predictable actual workplace protection factor.

  13. Dual functional nisin-multi-walled carbon nanotubes coated filters for bacterial capture and inactivation.

    PubMed

    Dong, Xiuli; Yang, Liju

    2015-01-01

    Removal of pathogens from water is one way to prevent waterborne illness. In this paper, we developed dual functional carbon nanotube (CNT) modified filters for bacterial capture and inactivation, utilizing multi-walled CNTs (MWCNTs) to coat on commercially available filters and making use of the exceptional adsorption property of CNTs to adsorb a natural antimicrobial peptide-nisin on it. Two types of MWCNTs with different outer layer diameters were used (MWCNTs1: <8 nm in diameter; MWCNTs2: 10-20 nm in diameter). The thickness of MWCNT layers, surface morphology, and surface hydrophobicity of both types of MWCNT coated filters were characterized. The MWCNT coating on filters significantly increased the surface hydrophobicity. The absorption of nisin and the capture of bacterial pathogens were correlated with increased surface hydrophobicity. The MWCNTs1 and MWCNTs2 filters with 1.5 mg MWCNTs loading captured 2.44 and 3.88 log of cells, respectively, from aqueous solutions containing a total of ~10(6) CFU/mL cells. Nisin deposit at the amount of 0.5 mg on the surfaces of MWCNT filters significantly reduced the viability of captured B. anthracis cells by 95.71-97.19 %, and inhibited the metabolic activities of the captured cells by approximately 98.3 %. The results demonstrated that the MWCNT-nisin filters achieved dual functions in bacterial pathogen capture and inhibition in one single filtration step, which is potentially applicable in removing undesired microorganisms from water sources and inhibiting captured Gram positive bacteria activities.

  14. Virus removal in ceramic depth filters based on diatomaceous earth.

    PubMed

    Michen, Benjamin; Meder, Fabian; Rust, Annette; Fritsch, Johannes; Aneziris, Christos; Graule, Thomas

    2012-01-17

    Ceramic filter candles, based on the natural material diatomaceous earth, are widely used to purify water at the point-of-use. Although such depth filters are known to improve drinking water quality by removing human pathogenic protozoa and bacteria, their removal regarding viruses has rarely been investigated. These filters have relatively large pore diameters compared to the physical dimension of viruses. However, viruses may be retained by adsorption mechanisms due to intermolecular and surface forces. Here, we use three types of bacteriophages to investigate their removal during filtration and batch experiments conducted at different pH values and ionic strengths. Theoretical models based on DLVO-theory are applied in order to verify experimental results and assess surface forces involved in the adsorptive process. This was done by calculation of interaction energies between the filter surface and the viruses. For two small spherically shaped viruses (MS2 and PhiX174), these filters showed no significant removal. In the case of phage PhiX174, where attractive interactions were expected, due to electrostatic attraction of oppositely charged surfaces, only little adsorption was reported in the presence of divalent ions. Thus, we postulate the existence of an additional repulsive force between PhiX174 and the filter surface. It is hypothesized that such an additional energy barrier originates from either the phage's specific knobs that protrude from the viral capsid, enabling steric interactions, or hydration forces between the two hydrophilic interfaces of virus and filter. However, a larger-sized, tailed bacteriophage of the family Siphoviridae was removed by log 2 to 3, which is explained by postulating hydrophobic interactions.

  15. Dislocation filtering in GaN nanostructures.

    PubMed

    Colby, Robert; Liang, Zhiwen; Wildeson, Isaac H; Ewoldt, David A; Sands, Timothy D; García, R Edwin; Stach, Eric A

    2010-05-12

    Dislocation filtering in GaN by selective area growth through a nanoporous template is examined both by transmission electron microscopy and numerical modeling. These nanorods grow epitaxially from the (0001)-oriented GaN underlayer through the approximately 100 nm thick template and naturally terminate with hexagonal pyramid-shaped caps. It is demonstrated that for a certain window of geometric parameters a threading dislocation growing within a GaN nanorod is likely to be excluded by the strong image forces of the nearby free surfaces. Approximately 3000 nanorods were examined in cross-section, including growth through 50 and 80 nm diameter pores. The very few threading dislocations not filtered by the template turn toward a free surface within the nanorod, exiting less than 50 nm past the base of the template. The potential active region for light-emitting diode devices based on these nanorods would have been entirely free of threading dislocations for all samples examined. A greater than 2 orders of magnitude reduction in threading dislocation density can be surmised from a data set of this size. A finite element-based implementation of the eigenstrain model was employed to corroborate the experimentally observed data and examine a larger range of potential nanorod geometries, providing a simple map of the different regimes of dislocation filtering for this class of GaN nanorods. These results indicate that nanostructured semiconductor materials are effective at eliminating deleterious extended defects, as necessary to enhance the optoelectronic performance and device lifetimes compared to conventional planar heterostructures.

  16. Detection and Length Estimation of Linear Scratch on Solid Surfaces Using an Angle Constrained Ant Colony Technique

    NASA Astrophysics Data System (ADS)

    Pal, Siddharth; Basak, Aniruddha; Das, Swagatam

    In many manufacturing areas the detection of surface defects is one of the most important processes in quality control. Currently in order to detect small scratches on solid surfaces most of the industries working on material manufacturing rely on visual inspection primarily. In this article we propose a hybrid computational intelligence technique to automatically detect a linear scratch from a solid surface and estimate its length (in pixel unit) simultaneously. The approach is based on a swarm intelligence algorithm called Ant Colony Optimization (ACO) and image preprocessing with Wiener and Sobel filters as well as the Canny edge detector. The ACO algorithm is mostly used to compensate for the broken parts of the scratch. Our experimental results confirm that the proposed technique can be used for detecting scratches from noisy and degraded images, even when it is very difficult for conventional image processing to distinguish the scratch area from its background.

  17. Stereopsis and 3D surface perception by spiking neurons in laminar cortical circuits: a method for converting neural rate models into spiking models.

    PubMed

    Cao, Yongqiang; Grossberg, Stephen

    2012-02-01

    A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model shows how spiking neurons that interact in hierarchically organized laminar circuits of the visual cortex can generate analog properties of 3D visual percepts. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain how computationally complementary boundary and surface formation properties lead to a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The 3D sLAMINART model simulates 3D surface percepts that are consciously seen in 18 psychophysical experiments. These percepts include contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. The model hereby illustrates a general method of unlumping rate-based models that use the membrane equations of neurophysiology into models that use spiking neurons, and which may be embodied in VLSI chips that use spiking neurons to minimize heat production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. SWS grating for UV band filter by nano-imprint

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Shian; Liao, Ke-Hao; Chen, Chang-Tai; Lai, Chieh-Lung; Ko, Cheng-Hao

    2009-05-01

    Regarding to researches on manufacturing process, the fabrication of nano structures on SWS (subwavelength structured) grating are mainly produced by photo lithography. We find that UV light transmission efficiency of PET film significantly drops 50% when we put nano structures on the surface of material. In this paper, we add nano structures on the surface of PET film and create a UV band filter. Decent optical filtering effects can be achieved by combining the characteristics of PET materials with nano structures on their surfaces.

  19. A novel algorithm for determining contact area between a respirator and a headform.

    PubMed

    Lei, Zhipeng; Yang, James; Zhuang, Ziqing

    2014-01-01

    The contact area, as well as the contact pressure, is created when a respiratory protection device (a respirator or surgical mask) contacts a human face. A computer-based algorithm for determining the contact area between a headform and N95 filtering facepiece respirator (FFR) was proposed. Six N95 FFRs were applied to five sizes of standard headforms (large, medium, small, long/narrow, and short/wide) to simulate respirator donning. After the contact simulation between a headform and an N95 FFR was conducted, a contact area was determined by extracting the intersection surfaces of the headform and the N95 FFR. Using computer-aided design tools, a superimposed contact area and an average contact area, which are non-uniform rational basis spline (NURBS) surfaces, were developed for each headform. Experiments that directly measured dimensions of the contact areas between headform prototypes and N95 FFRs were used to validate the simulation results. Headform sizes influenced all contact area dimensions (P < 0.0001), and N95 FFR sizing systems influenced all contact area dimensions (P < 0.05) except the left and right chin regions. The medium headform produced the largest contact area, while the large and small headforms produced the smallest.

  20. Effects of winter manure application in Ohio on the quality of surface runoff.

    PubMed

    Owens, L B; Bonta, J V; Shipitalo, M J; Rogers, S

    2011-01-01

    Winter application of manure poses environmental risks. Seven continuous corn, instrumented watersheds (approximately 1 ha each) at the USDA-ARS North Appalachian Experimental Watershed research station near Coshocton, Ohio were used to evaluate the environmental impacts of winter manure application when using some of the Ohio Natural Resources Conservation Service recommendations. For 3 yr on frozen, sometimes snow-covered, ground in January or February, two watersheds received turkey litter, two received liquid swine manure, and three were control plots that received N fertilizer at planting (not manure). Manure was applied at an N rate for corn; the target level was 180 kg N ha(-1) with a 30-m setback from the application area to the bottom of each watershed. Four grassed plots (61 x 12 m) were used for beef slurry application (9.1 Mg ha(-1) wet weight); two plots had 61 x 12 m grassed filter areas below them, and two plots had 30 x 12 m filter areas. There were two control plots. Nutrient concentrations were sometimes high, especially in runoff soon after application. However, most events with high concentrations occurred with low flow volumes; therefore, transport was minimal. Applying manure at the N rate for crop needs resulted in excess application of P. Elevated P losses contributed to a greater potential of detrimental environmental impacts with P than with N. Filter strips reduced nutrient concentrations and transport, but the data were too limited to compare the effectiveness of the 30- and 61-m filter strips. Winter application of manure is not ideal, but by following prescribed guidelines, detrimental environmental impacts can be reduced.

  1. Electrically heated particulate filter embedded heater design

    DOEpatents

    Gonze, Eugene V.; Chapman, Mark R.

    2014-07-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  2. Initial Lithologic Mapping Results Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data

    NASA Astrophysics Data System (ADS)

    Rowan, L. C.; Mars, J. C.

    2001-05-01

    Initial analysis of ASTER data of selected areas in the Western United States shows that many important lithologic units can be mapped on the basis of spectral reflectance and spectral emittance. ASTER's most important attributes are 9 bands which record reflected-solar energy with 15 meter- and 30 meter-resolution; 5 bands of emitted energy at 90 meter- resolution; 15 meter-resolution stereoscopic images; and repetitive coverage. Particularly useful 'on-demand' ASTER data products include surface reflectance and surface emissivity images, and digital elevation models (DEM). In the solar-reflected wavelength region (0.4 to 2.5 micrometers), clays, carbonates, hydrous sulphate, and iron-oxide minerals exhibit diagnostic absorption features, whereas the emitted wavelength region (8 to 14 micrometers) provides critical information about anhydrous rock-forming minerals, such as quartz and feldspars, which lack diagnostic absorption features in the solar-reflected region. The Mountain Pass, Calf., Goldfield, Nev., and Virginia Range, Nev. study areas comprise a wide range of lithologic types for evaluating ASTER data. Calibration of the 3 bands recorded in the 0.52 to 0.86 micrometer wavelength region and the 6 bands in the 1.60 to 2.43 micrometer region was improved beyond the 'on-demand' surface reflectance standard product by using in situ spectral reflectance measurements of homogeneous field sites. Validation of this calibration was based on comparisons with spectra from calibrated AVIRIS data, and with additional field measurements. Lithologic mapping based on ASTER bands 1-9 was conducted by using endmember spectra from the image as reference spectra in matched-filter processing. The results were thresholded to display the pixels with the best match for each endmember. The results in these study areas show that Muscovite Group minerals (muscovite, illite, kaolinite) can be mapped over broad reasonably well exposed areas, and that the most intense absorption features occur in hydrothermally altered rocks. In the Mountain Pass area a few exposures containing Fe-muscovite were distinguished from the more extensive Al-mucovite-bearing rocks and soils. Advanced-argillic alteration minerals (alunite, dickite) were detected in the Goldfield mining district and in the Virginia Range. Carbonate Group minerals (calcite, dolomite) were mapped in extensive exposures in the thrust belt of the Mountain Pass area, and well exposed dolomite was distinguished from limestone in several areas. Although skarn deposits consist mainly of calcite and dolomite, their spectral shape in ASTER bands 1-9 is significantly different than typical limestone and dolomite spectra because of the presence of epidote, garnet and chrysotile in the skarn deposits. Mg-OH-bearing minerals (chlorite, biotite, hornblende) proved to be more difficult to map, although generally they were not confused with minerals of the Carbonate Group. Ferric-iron Group minerals were mapped by using a band2/band1 ratio image. Analysis of the surface emissivity standard image products relied on identification of endmember-image spectra by using the pixel-purity index procedure in the ENVI software package, and matched-filter processing. Silica-rich rocks and silica-poor rocks were recognized readily in decorrelation-stretch images, as well as matched-filter endmember images, and 2 intermediate categories were distinguished in most areas.

  3. Pozzolanic filtration/solidification of radionuclides in nuclear reactor cooling water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Englehardt, J.D.; Peng, C.

    1995-12-31

    Laboratory studies to investigate the feasibility of one- and two-step processes for precipitation/coprecipitating radionuclides from nuclear reactor cooling water, filtering with pozzolanic filter aid, and solidifying, are reported in this paper. In the one-step process, ferrocyanide salt and excess lime are added ahead of the filter, and the resulting filter cake solidifies by a pozzolanic reaction. The two-step process involves addition of solidifying agents subsequent to filtration. It was found that high surface area diatomaceous synthetic calcium silicate powders, sold commercially as functional fillers and carriers, adsorb nickel isotopes from solution at neutral and slightly basic pH. Addition of themore » silicates to cooling water allowed removal of the tested metal isotopes (nickel, iron, manganese, cobalt, and cesium) simultaneously at neutral to slightly basic pH. Lime to diatomite ratio was the most influential characteristic of composition on final strength tested, with higher lime ratios giving higher strength. Diatomaceous earth filter aids manufactured without sodium fluxes exhibited higher pozzolanic activity. Pozzolanic filter cake solidified with sodium silicate and a ratio of 0.45 parts lime to 1 part diatomite had compressive strength ranging from 470 to 595 psi at a 90% confidence level. Leachability indices of all tested metals in the solidified waste were acceptable. In light of the typical requirement of removing iron and desirability of control over process pH, a two-step process involving addition of Portland cement to the filter cake may be most generally applicable.« less

  4. Electron beam selectively seals porous metal filters

    NASA Technical Reports Server (NTRS)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  5. Combined adaptive multiple subtraction based on optimized event tracing and extended wiener filtering

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Song, Peng; Li, Jinshan; Wang, Lei; Zhong, Mengxuan; Zhang, Xiaobo

    2017-06-01

    The surface-related multiple elimination (SRME) method is based on feedback formulation and has become one of the most preferred multiple suppression methods used. However, some differences are apparent between the predicted multiples and those in the source seismic records, which may result in conventional adaptive multiple subtraction methods being barely able to effectively suppress multiples in actual production. This paper introduces a combined adaptive multiple attenuation method based on the optimized event tracing technique and extended Wiener filtering. The method firstly uses multiple records predicted by SRME to generate a multiple velocity spectrum, then separates the original record to an approximate primary record and an approximate multiple record by applying the optimized event tracing method and short-time window FK filtering method. After applying the extended Wiener filtering method, residual multiples in the approximate primary record can then be eliminated and the damaged primary can be restored from the approximate multiple record. This method combines the advantages of multiple elimination based on the optimized event tracing method and the extended Wiener filtering technique. It is an ideal method for suppressing typical hyperbolic and other types of multiples, with the advantage of minimizing damage of the primary. Synthetic and field data tests show that this method produces better multiple elimination results than the traditional multi-channel Wiener filter method and is more suitable for multiple elimination in complicated geological areas.

  6. Investigation of contamination of thin-film aluminum filters by MMH-NTO plumes exposed to UV radiation

    NASA Astrophysics Data System (ADS)

    Gupta, Vaibhav; Wieman, Seth; Didkovsky, Leonid; Haiges, Ralf; Yao, Yuhan; Wu, Wei; Gruntman, Mike; Erwin, Dan

    2015-09-01

    Thin-film aluminum filters degrade in space with significant reduction of their Extreme Ultraviolet (EUV) transmission. This degradation was observed on the EUV Spectrophotometer (ESP) onboard the Solar Dynamics Observatory's EUV Variability Experiment and the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory. One of the possible causes for deterioration of such filters over time is contamination of their surfaces from plumes coming from periodic firing of their satellite's Monomethylhydrazine (MMH) - Nitrogen Tetroxide (NTO) thrusters. When adsorbed by the filters, the contaminant molecules are exposed to solar irradiance and could lead to two possible compositions. First, they could get polymerized leading to a permanent hydrocarbon layer buildup on the filter's surface. Second, they could accelerate and increase the depth of oxidation into filter's bulk aluminum material. To study the phenomena we experimentally replicate contamination of such filters in a simulated environment by MMH-NTO plumes. We apply, Scanning Electron Microscopy and X-Ray photoelectron spectroscopy to characterize the physical and the chemical changes on these contaminated sample filter surfaces. In addition, we present our first analysis of the effects of additional protective layer coatings based on self-assembled carbon monolayers for aluminum filters. This coverage is expected to significantly decrease their susceptibility to contamination and reduce the overall degradation of filter-based EUV instruments over their mission life.

  7. Transition metal ion capture using functional mesoporous carbon made with 1,10-phenanthroline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Yantasee, Wassana; Shin, Yongsoon

    2009-11-01

    Functional mesoporous carbon has been built using 1,10-phenanthroline as the fundamental building block, resulting in a nanoporous, high surface area sorbent capable of selectively binding transition metal ions. This material had a specific surface area of 870 m2/g, an average pore size of about 30Å, and contained as much as 8.2 weight percent N. Under acidic conditions, where the 1,10-phenanthroline ligand is protonated, this material was found to be an effective anion exchange material for transition metal anions like PdCl4-2 and H2VO4-1. 1,10-phenanthroline functionalized mesoporous carbon (“Phen-FMC”) was found to have a high affinity for Cu(II), even down to amore » pH of 1. At pHs above 5, Phen-FMC was found to bind a variety of transition metal cations (e.g. Co(II), Ni(II), Zn(II), etc.) from filtered ground water, river water and seawater. Phen-FMC displayed rapid sorption kinetics with Co(II) in filtered river water, reaching equilibrium in less than an hour, and easily lowering the [Co(II)] to sub-ppb levels. Phen-FMC was found to be more effective for transition metal ion capture than ion exchange resin or activated carbon.« less

  8. Method for determining surface coverage by materials exhibiting different fluorescent properties

    NASA Technical Reports Server (NTRS)

    Chappelle, Emmett W. (Inventor); Daughtry, Craig S. T. (Inventor); Mcmurtrey, James E., III (Inventor)

    1995-01-01

    An improved method for detecting, measuring, and distinguishing crop residue, live vegetation, and mineral soil is presented. By measuring fluorescence in multiple bands, live and dead vegetation are distinguished. The surface of the ground is illuminated with ultraviolet radiation, inducing fluorescence in certain molecules. The emitted fluorescent emission induced by the ultraviolet radiation is measured by means of a fluorescence detector, consisting of a photodetector or video camera and filters. The spectral content of the emitted fluorescent emission is characterized at each point sampled, and the proportion of the sampled area covered by residue or vegetation is calculated.

  9. Study on Landslide Disaster Extraction Method Based on Spaceborne SAR Remote Sensing Images - Take Alos Palsar for AN Example

    NASA Astrophysics Data System (ADS)

    Xue, D.; Yu, X.; Jia, S.; Chen, F.; Li, X.

    2018-04-01

    In this paper, sequence ALOS PALSAR data and airborne SAR data of L-band from June 5, 2008 to September 8, 2015 are used. Based on the research of SAR data preprocessing and core algorithms, such as geocode, registration, filtering, unwrapping and baseline estimation, the improved Goldstein filtering algorithm and the branch-cut path tracking algorithm are used to unwrap the phase. The DEM and surface deformation information of the experimental area were extracted. Combining SAR-specific geometry and differential interferometry, on the basis of composite analysis of multi-source images, a method of detecting landslide disaster combining coherence of SAR image is developed, which makes up for the deficiency of single SAR and optical remote sensing acquisition ability. Especially in bad weather and abnormal climate areas, the speed of disaster emergency and the accuracy of extraction are improved. It is found that the deformation in this area is greatly affected by faults, and there is a tendency of uplift in the southeast plain and western mountainous area, while in the southwest part of the mountain area there is a tendency to sink. This research result provides a basis for decision-making for local disaster prevention and control.

  10. Monitoring of environmental effects of coal strip mining from satellite imagery

    NASA Technical Reports Server (NTRS)

    Brooks, R. L.; Parra, C. G.

    1976-01-01

    This paper evaluates satellite imagery as a means of monitoring coal strip mines and their environmental effects. The satellite imagery employed is Skylab EREP S-190A and S-190B from SL-2, SL-3 and SL-4 missions; a large variety of camera/film/filter combinations has been reviewed. The investigation includes determining the applicability of satellite imagery for detection of disturbed acreage in areas of coal surface mining as well as the much more detailed monitoring of specific surface-mining operations, including: active mines, inactive mines, highwalls, ramp roads, pits, water impoundments and their associated acidity, graded areas and types of grading, and reclamed areas. Techniques have been developed to enable mining personnel to utilize this imagery in a practical and economic manner, requiring no previous photo-interpretation background and no purchases of expensive viewing or data-analysis equipment. To corroborate the photo-interpretation results, on-site observations were made in the very active mining area near Madisonville, Kentucky.

  11. Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process

    NASA Astrophysics Data System (ADS)

    Kang, Dong Hee; Kang, Hyun Wook

    2016-11-01

    Electrospinning is a nano-scale fiber production method with various polymer materials. This technique allows simple fiber diameters control by changing the physical conditions such as applied voltage and polymer solution viscosity during the fabrication process. The electrospun polymer fibers form a thin porous film with high surface area to volume ratio. Due to these unique characteristics, it is widely used for many application fields such as photocatalyst, electric sensor, and antibacterial scaffold for tissue engineering. Filtration is one of the main applications of electrospun polymer fibers for specific application of filtering out dust particles and dehumidification. Most polymers which are commonly used in electrospinning are hard to perform the filtering and dehumidification simultaneously because of their low hygroscopic property. To overcome this obstacle, the desiccant polymers are developed such as polyacrylic acid and polysulfobetaine methacrylate. However, the desiccant polymers are generally expensive and need special solvent for electrospinning. An alternating way to solve these problems is mixing desiccant material like zeolite in polymer solution during an electrospinning process. In this study, the free surface energy characteristics of electrospun polyvinylidene fluoride (PVDF) film with various zeolite concentrations are investigated to control the hygroscopic property of general polymers. Fundamental physical property of wettability with PVDF shows hydrophobicity. The electrospun PVDF film with small weight ratio with higher than 0.1% of zeolite powder shows diminished contact angles that certifying the wettability of PVDF can be controlled using desiccant material in electrospinning process. To quantify the surface energy of electrospun PVDF films, sessile water droplets are introduced on the electrospun PVDF film surface and the contact angles are measured. The contact angles of PVDF film are 140° for without zeolite and 80° for with 5 wt% of zeolite respectively. As a result, the surface energy of PVDF film can be controlled by embedding zeolite particles in electrospinning process and applied to filtration application of dust filtering and dehumidification simultaneously with low manufacturing cost.

  12. Amphiphobic Polytetrafluoroethylene Membranes for Efficient Organic Aerosol Removal.

    PubMed

    Feng, Shasha; Zhong, Zhaoxiang; Zhang, Feng; Wang, Yong; Xing, Weihong

    2016-04-06

    Polytetrafluoroethylene (PTFE) membrane is an extensively used air filter, but its oleophilicity leads to severe fouling of the membrane surface due to organic aerosol deposition. Herein, we report the fabrication of a new amphiphobic 1H,1H,2H,2H-perfluorodecyl acrylate (PFDAE)-grafted ZnO@PTFE membrane with enhanced antifouling functionality and high removal efficiency. We use atomic-layer deposition (ALD) to uniformly coat a layer of nanosized ZnO particles onto porous PTFE matrix to increase surface area and then subsequently graft PFDAE with plasma. Consequently, the membrane surface showed both superhydrophobicity and oleophobicity with a water contact angle (WCA) and an oil contact angle (OCA) of 150° and 125°, respectively. The membrane air permeation rate of 513 (m(3) m(-2) h(-1) kPa(-1)) was lower than the pristine membrane rate of 550 (m(3) m(-2) h(-1) kPa(-1)), which indicates the surface modification slightly decreased the membrane air permeation. Significantly, the filtration resistance of this amphiphobic membrane to the oil aerosol system was much lower than the initial one. Moreover, the filter exhibited exceptional organic aerosol removal efficiencies that were greater than 99.5%. These results make the amphiphobic PTFE membranes very promising for organic aerosol-laden air-filtration applications.

  13. [Respiratory protection provided by N95 filtering facepiece respirators and disposable medicine masks against airborne bacteria in different working environments].

    PubMed

    Lu, W; Zhu, X C; Zhang, X Y; Chen, Y T; Chen, W H

    2016-09-20

    Objective: To determine the relative protection provided by N95 filtering facepiece respirators (FFR) and disposable medicine masks (DMM) against airborne bacteria in different working environments. Methods: The field study was performed with 12 subjects wearing an N95 filtering facepiece respirator and a disposable medicine mask for 1h, respectively. Airborne microorganisms and bacteria samples from both the external (Ce) and the inner (Ci) surface of N95 FFR and DMM are collected. The Ce: Ci ratio was used to calculate the bacterial filtering proportion. Bacterial filtering efficiency (BFE) was measured using the JWL-2A Sampler. Results: The bacterial filtration efficiency of N95 FFR and DMM were 99.93% and 91.53%, respectively. There was significant difference between the two materials ( P <0.05). In summer, airborne bacterial concentration was higher than that in winter. In the same season, airborne bacterial concentration in hospital environment is higher than that in campus. The higher the airborne bacterial concentration, the greater bacterial contaminated on the external surface of the used masks. To all masks used in different working environment, bacterial contamination on the external surface was much greater than the inner surface ( P <0.01). Compared to N95 FFR, DMM had slighter bacterial contamination on the external surface and greater bacterial contamination on the inner surface. However, this difference was not significant ( P >0.05). The bacterial filtering proportion of N95 FFR is higher than DMM. These differences were significant in samples tested in summer ( P <0.05) , but were not significant in samples tested in winter ( P >0.05). Conclusion: Bacterial filtering efficiency of N95 respirator is superior to medicine mask, and this advantage become more obvious in high airborne bacterial concentration levels.

  14. Performances of biological aerated filter employing hollow fiber membrane segments of surface-improved poly (sulfone) as biofilm carriers.

    PubMed

    Shen, Ying-Jie; Wu, Guang-Xia; Fan, Yao-Bo; Zhong, Hui; Wu, Lin-Lin; Zhang, Shao-Lai; Zhao, Xian-Hong; Zhang, Wei-Jun

    2007-01-01

    Using the surface of poly (sulfone) hollow fiber membrane segments as grafted layer, the hydrophilic acrylamide chain was grafted on by UV-photoinduced grafting polymerization. The gained improvement of surface wettability for the modified membrane was tested by measuring the contact-angle as well as FTIR spectra. Then correlation between the hydrophilic ability of support material and the biofilm adherence ability was demonstrated by comparing the pollutant removal rates from urban wastewater via two identical lab-scale up-flow biological aerated filters, one employed the surface wettability modified poly (sulfone) hollow fiber membrane segment as biofilm carrier and the other employed unmodified membrane segment as biofilm carrier. The experimental results showed that under the conditions of influent flux 5 L/h, hydraulic retention time 9 h and gas to liquid ratio (G/L) 10:1, the removal rates of chemical oxygen demand (COD) and ammonium nitrogen (NH4(+)-N) for the modified packing filter and the unmodified packing filter was averaged at 83.64% and 96.25%, respectively, with the former filter being 5%-20% more than the latter. The effluent concentration of COD, NH4(+)-N and turbidity for the modified packing filter was 25.25 mg/L, 2 mg/L and 8 NTU, respectively. Moreover, the ammonium nitrogen removal performance of the filter packing the modified PSF was compared with the other bioreactor packing of an efficient floating medium. The biomass test indicated that the modified membrane matrixes provided better specific adhesion (3310-5653 mg TSS/L support), which gave a mean of 1000 mg TSS/L more than the unmodified membrane did. In addition, the phenomenon of simultaneous denitrification on the inner surface of the support and nitrification on the outer surface was found in this work.

  15. Highly Selective and Rapid Breath Isoprene Sensing Enabled by Activated Alumina Filter.

    PubMed

    van den Broek, Jan; Güntner, Andreas T; Pratsinis, Sotiris E

    2018-03-23

    Isoprene is a versatile breath marker for noninvasive monitoring of high blood cholesterol levels as well as for influenza, end-stage renal disease, muscle activity, lung cancer, and liver disease with advanced fibrosis. Its selective detection in complex human breath by portable devices (e.g., metal-oxide gas sensors), however, is still challenging. Here, we present a new filter concept based on activated alumina powder enabling fast and highly selective detection of isoprene at the ppb level and high humidity. The filter contains high surface area adsorbents that retain hydrophilic compounds (e.g., ketones, alcohols, ammonia) representing major interferants in breath while hydrophobic isoprene is not affected. As a proof-of-concept, filters of commercial activated alumina powder are combined with highly sensitive but rather nonspecific, nanostructured Pt-doped SnO 2 sensors. This results in fast (10 s) measurement of isoprene down to 5 ppb at 90% relative humidity with outstanding selectivity (>100) to breath-relevant acetone, ammonia, ethanol, and methanol, superior to state-of-the-art isoprene sensors. Most importantly, when exposed continuously to simulated breath mixtures (four analytes) for 8 days, this filter-sensor system showed stable performance. It can be incorporated readily into a portable breath isoprene analyzer promising for simple-in-use monitoring of blood cholesterol or other patho/physiological conditions.

  16. Optimal speckle noise reduction filter for range gated laser illuminated imaging

    NASA Astrophysics Data System (ADS)

    Dayton, David; Gonglewski, John; Lasche, James; Hassall, Arthur

    2016-09-01

    Laser illuminated imaging has a number of applications in the areas of night time air-to-ground target surveillance, ID, and pointing and tracking. Using a laser illuminator, the illumination intensity and thus the signal to noise ratio can be controlled. With the advent of high performance range gated cameras in the short-wave infra-red band, higher spatial resolution can be achieved over passive thermal night imaging cameras in the mid-wave infra-red due to the shorter wave-length. If a coherent illuminator is used the resulting imagery often suffers from speckle noise due to the scattering off of a rough target surface, which gives it a grainy "salt and pepper" appearance. The probability density function for the intensity of focal plane speckle is well understood to follow a negative exponential distribution. This can be exploited to develop a Bayesian speckle noise filter. The filter has the advantage over simple frame averaging approaches in that it preserves target features and motion while reducing speckle noise without smearing or blurring the images. The resulting filtered images have the appearance of passive imagery and so are more amenable to sensor fusion with simultaneous mid-wave infra-red thermal images for enhanced target ID. The noise filter improvement is demonstrated using examples from real world laser imaging tests on tactical targets.

  17. Guide to Air Cleaners in the Home

    MedlinePlus

    ... In-duct Particle Removal Flat or panel air filters Pleated or extended surface filters In-duct Gaseous Pollutant Removal In-duct Pollutant ... can remove particles from the air — mechanical air filters and electronic air cleaners. Mechanical air filters remove ...

  18. Estimation of glacier surface motion by robust phase correlation and point like features of SAR intensity images

    NASA Astrophysics Data System (ADS)

    Fang, Li; Xu, Yusheng; Yao, Wei; Stilla, Uwe

    2016-11-01

    For monitoring of glacier surface motion in pole and alpine areas, radar remote sensing is becoming a popular technology accounting for its specific advantages of being independent of weather conditions and sunlight. In this paper we propose a method for glacier surface motion monitoring using phase correlation (PC) based on point-like features (PLF). We carry out experiments using repeat-pass TerraSAR X-band (TSX) and Sentinel-1 C-band (S1C) intensity images of the Taku glacier in Juneau icefield located in southeast Alaska. The intensity imagery is first filtered by an improved adaptive refined Lee filter while the effect of topographic reliefs is removed via SRTM-X DEM. Then, a robust phase correlation algorithm based on singular value decomposition (SVD) and an improved random sample consensus (RANSAC) algorithm is applied to sequential PLF pairs generated by correlation using a 2D sinc function template. The approaches for glacier monitoring are validated by both simulated SAR data and real SAR data from two satellites. The results obtained from these three test datasets confirm the superiority of the proposed approach compared to standard correlation-like methods. By the use of the proposed adaptive refined Lee filter, we achieve a good balance between the suppression of noise and the preservation of local image textures. The presented phase correlation algorithm shows the accuracy of better than 0.25 pixels, when conducting matching tests using simulated SAR intensity images with strong noise. Quantitative 3D motions and velocities of the investigated Taku glacier during a repeat-pass period are obtained, which allows a comprehensive and reliable analysis for the investigation of large-scale glacier surface dynamics.

  19. Variable optical filters for earth-observation imaging minispectrometers

    NASA Astrophysics Data System (ADS)

    Piegari, A.; Bulir, J.; Krasilnikova, A.; Dami, M.; Harnisch, B.

    2017-11-01

    Small-dimension, low-mass spectrometers are useful for both Earth observation and planetary missions. A very compact multi-spectral mini-spectrometer that contains no moving parts, can be constructed combining a graded-thickness filter, having a spatially variable narrow-band transmission, to a CCD array detector. The peak wavelength of the transmission filter is moving along one direction of the filter surface, such that each line of a two-dimensional array detector, equipped with this filter, will detect radiation in a different pass band. The spectrum of interest for image spectrometry of the Earth surface is very wide, 400-1000nm. This requirement along with the need of a very small dimension, makes this filter very difficult to manufacture. Preliminary results on metal-dielectric wedge filters, with a gradient of the transmission peak wavelength equal to 60nm/mm, are reported.

  20. Filtering Non-Linear Transfer Functions on Surfaces.

    PubMed

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few lines of shader code (provided in supplemental material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2013.102), is high performance, and has a negligible memory footprint.

  1. A design aid for sizing filter strips using buffer area ratio

    Treesearch

    M.G. Dosskey; M.J. Helmers; D.E. Eisenhauer

    2011-01-01

    Nonuniform field runoff can reduce the effectiveness of filter strips that are a uniform size along a field margin. Effectiveness can be improved by placing more filter strip where the runoff load is greater and less where the load is smaller. A modeling analysis was conducted of the relationship between pollutant trapping efficiency and the ratio of filter strip area...

  2. Eigenvector Spatial Filtering Regression Modeling of Ground PM2.5 Concentrations Using Remotely Sensed Data.

    PubMed

    Zhang, Jingyi; Li, Bin; Chen, Yumin; Chen, Meijie; Fang, Tao; Liu, Yongfeng

    2018-06-11

    This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF) method to estimate ground PM 2.5 concentrations. Covariates are derived from remotely sensed data including aerosol optical depth, normal differential vegetation index, surface temperature, air pressure, relative humidity, height of planetary boundary layer and digital elevation model. In addition, cultural variables such as factory densities and road densities are also used in the model. With the Yangtze River Delta region as the study area, we constructed ESF-based Regression (ESFR) models at different time scales, using data for the period between December 2015 and November 2016. We found that the ESFR models effectively filtered spatial autocorrelation in the OLS residuals and resulted in increases in the goodness-of-fit metrics as well as reductions in residual standard errors and cross-validation errors, compared to the classic OLS models. The annual ESFR model explained 70% of the variability in PM 2.5 concentrations, 16.7% more than the non-spatial OLS model. With the ESFR models, we performed detail analyses on the spatial and temporal distributions of PM 2.5 concentrations in the study area. The model predictions are lower than ground observations but match the general trend. The experiment shows that ESFR provides a promising approach to PM 2.5 analysis and prediction.

  3. Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology.

    PubMed

    Kalinovich, Indra; Rutter, Allison; Poland, John S; Cairns, Graham; Rowe, R Kerry

    2008-12-15

    The site BAF-5 is located on the summit of Resolution Island, Nunavut, just southeast of Baffin Island at 61 degrees 35'N and 60 degrees 40'W. The site was part of a North American military defense system established in the 1950s that became heavily contaminated with PCBs during and subsequent, its operational years. Remediation through excavation of the PCB contaminated soil at Resolution Island began in 1999 and at its completion in 2006 approximately 5 tonnes of pure PCBs in approximately 20,000 m3 of soil were remediated. Remediation strategies were based on both quantity of soil and level of contamination in the soil. Excavation removed 96% of the PCB contaminated soil on site. In 2003, a surface funnel-and-gate permeable reactive barrier was design and constructed to treat the remaining contamination left in rock crevices and inaccessible areas of the site. Excavation had destabilized contaminated soil in the area, enabling contaminant migration through erosion and runoff pathways. The barrier was designed to maximize sedimentation through settling ponds. This bulk removal enabled the treatment of highly contaminated fines and water through a permeable gate. The increased sediment loading during excavation required both modifications to the funnel and a shift to a more permeable, granular system. Granulated activated charcoal was chosen for its ability to both act as a particle retention filter and adsorptive filter. The reduction in mass of PCB and volume of soils trapped by the funnel of the barrier indicate that soils are re-stabilizing. In 2007, nonwoven geotextiles were re-introduced back into the filtration system as fine filtering could be achieved without clogging. Monitoring sites downstream indicate that the barrier system is effective. This paper describes the field progress of PCB remediation at Resolution Island.

  4. Concentration and Detection of Cryptosporidium Oocysts in Surface Water Samples by Method 1622 Using Ultrafiltration and Capsule Filtration

    USGS Publications Warehouse

    Simmons, O. D.; Sobsey, M.D.; Heaney, C.D.; Schaefer, F. W.; Francy, D.S.

    2001-01-01

    The protozoan parasite Cryptosporidium parvum is known to occur widely in both source and drinking water and has caused waterborne outbreaks of gastroenteritis. To improve monitoring, the U.S. Environmental Protection Agency developed method 1622 for isolation and detection of Cryptosporidium oocysts in water. Method 1622 is performance based and involves filtration, concentration, immunomagnetic separation, fluorescent-antibody staining and 4???,6-diamidino-2-phenylindole (DAPI) counterstaining, and microscopic evaluation. The capsule filter system currently recommended for method 1622 was compared to a hollow-fiber ultrafilter system for primary concentration of C. parvum oocysts in seeded reagent water and untreated surface waters. Samples were otherwise processed according to method 1622. Rates of C. parvum oocyst recovery from seeded 10-liter volumes of reagent water in precision and recovery experiments with filter pairs were 42% (standard deviation [SD], 24%) and 46% (SD, 18%) for hollow-fiber ultrafilters and capsule filters, respectively. Mean oocyst recovery rates in experiments testing both filters on seeded surface water samples were 42% (SD, 27%) and 15% (SD, 12%) for hollow-fiber ultrafilters and capsule filters, respectively. Although C. parvum oocysts were recovered from surface waters by using the approved filter of method 1622, the recovery rates were significantly lower and more variable than those from reagent grade water. In contrast, the disposable hollow-fiber ultrafilter system was compatible with subsequent method 1622 processing steps, and it recovered C. parvum oocysts from seeded surface waters with significantly greater efficiency and reliability than the filter suggested for use in the version of method 1622 tested.

  5. Shallow groundwater mercury supply in a coastal plain stream

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.; Lowery, Mark A.; Brigham, Mark E.; Burns, Douglas A.; Button, Daniel T.; Chapelle, Francis H.; Lutz, Michelle A.; Marvin-DiPasquale, Mark C.; Riva-Murray, Karen

    2012-01-01

    Fluvial methylmercury (MeHg) is attributed to methylation in up-gradient wetland areas. This hypothesis depends on efficient wetland-to-stream hydraulic transport under nonflood and flood conditions. Fluxes of water and dissolved (filtered) mercury (Hg) species (FMeHg and total Hg (FTHg)) were quantified in April and July of 2009 in a reach at McTier Creek, South Carolina to determine the relative importance of tributary surface water and shallow groundwater Hg transport from wetland/floodplain areas to the stream under nonflood conditions. The reach represented less than 6% of upstream main-channel distance and 2% of upstream basin area. Surface-water discharge increased within the reach by approximately 10%. Mean FMeHg and FTHg fluxes increased within the reach by 23–27% and 9–15%, respectively. Mass balances indicated that, under nonflood conditions, the primary supply of water, FMeHg, and FTHg within the reach (excluding upstream surface water influx) was groundwater discharge, rather than tributary transport from wetlands, in-stream MeHg production, or atmospheric Hg deposition. These results illustrate the importance of riparian wetland/floodplain areas as sources of fluvial MeHg and of groundwater Hg transport as a fundamental control on Hg supply to Coastal Plain streams.

  6. Shallow Groundwater Mercury Supply in a Coastal Plain Stream

    PubMed Central

    2012-01-01

    Fluvial methylmercury (MeHg) is attributed to methylation in up-gradient wetland areas. This hypothesis depends on efficient wetland-to-stream hydraulic transport under nonflood and flood conditions. Fluxes of water and dissolved (filtered) mercury (Hg) species (FMeHg and total Hg (FTHg)) were quantified in April and July of 2009 in a reach at McTier Creek, South Carolina to determine the relative importance of tributary surface water and shallow groundwater Hg transport from wetland/floodplain areas to the stream under nonflood conditions. The reach represented less than 6% of upstream main-channel distance and 2% of upstream basin area. Surface-water discharge increased within the reach by approximately 10%. Mean FMeHg and FTHg fluxes increased within the reach by 23–27% and 9–15%, respectively. Mass balances indicated that, under nonflood conditions, the primary supply of water, FMeHg, and FTHg within the reach (excluding upstream surface water influx) was groundwater discharge, rather than tributary transport from wetlands, in-stream MeHg production, or atmospheric Hg deposition. These results illustrate the importance of riparian wetland/floodplain areas as sources of fluvial MeHg and of groundwater Hg transport as a fundamental control on Hg supply to Coastal Plain streams. PMID:22734594

  7. Application of cigarette filter rods as biofilm carrier in an integrated fixed-film activated sludge reactor.

    PubMed

    Sabzali, Ahmad; Nikaeen, Mahnaz; Bina, Bijan

    2013-01-01

    Bio-carriers are an important component of integrated fixed-film activated sludge (IFAS) processes. In this study, the capability of cigarette filter rods (CFRs) as a bio-carrier in IFAS processes was evaluated. Two similar laboratory-scale IFAS systems were operated over a 4-month period using Kaldnes-K3 and CFRs as IFAS media. The process performance was studied by using chemical oxygen demand (COD). The organic loading rate was in the range 0.5-2.8 kgCOD/(m(3)·d). The COD average removal efficiencies were 89.3 and 93.9% for Kaldnes-K3 (reactor A) and cigarette filters (reactor B), respectively. The results demonstrate that the performance of the IFAS reactor containing CFRs was comparable to the reactor using Kaldnes. The CFRs, which have a high porous surface area and entrapment ability for microbial cells, could be successfully used in biofilm reactors as a bio-carrier.

  8. Understanding the factors influencing the removal of heavy metals in urban stormwater runoff.

    PubMed

    Maniquiz-Redillas, Marla C; Kim, Lee-Hyung

    2016-01-01

    In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (<2 mm) had the most significant amount of heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.

  9. Morphology studies of hydrophobic silica on filter surface prepared via spray technique

    NASA Astrophysics Data System (ADS)

    Shahfiq Zulkifli, Nazrul; Zaini Yunos, Muhamad; Ahmad, Azlinnorazia; Harun, Zawati; Akhair, Siti Hajar Mohd; Adibah Raja Ahmad, Raja; Hafeez Azhar, Faiz; Rashid, Abdul Qaiyyum Abd; Ismail, Al Emran

    2017-08-01

    This study investigated the effect of the hydrophobic surface treatment effect of air filter performance by using silica aerogel powder as an additive by using spray coating techniques. The membrane characterization tests were carried out on a filter prepared from different additive concentration. Studies on the cross-section and the distribution of particles on the membrane were carried out using a scanning electron microscope (SEM), and the surface morphology was investigated by x-ray spectroscopy (EDS). The results are shown by SEM and EDS that the microstructure filter, especially in the upper layer and sub-layer has been changed. The results also show an increase of hydrophobicity due to the increased quantity of silica aerogel powder.

  10. Photogrammetric DSM denoising

    NASA Astrophysics Data System (ADS)

    Nex, F.; Gerke, M.

    2014-08-01

    Image matching techniques can nowadays provide very dense point clouds and they are often considered a valid alternative to LiDAR point cloud. However, photogrammetric point clouds are often characterized by a higher level of random noise compared to LiDAR data and by the presence of large outliers. These problems constitute a limitation in the practical use of photogrammetric data for many applications but an effective way to enhance the generated point cloud has still to be found. In this paper we concentrate on the restoration of Digital Surface Models (DSM), computed from dense image matching point clouds. A photogrammetric DSM, i.e. a 2.5D representation of the surface is still one of the major products derived from point clouds. Four different algorithms devoted to DSM denoising are presented: a standard median filter approach, a bilateral filter, a variational approach (TGV: Total Generalized Variation), as well as a newly developed algorithm, which is embedded into a Markov Random Field (MRF) framework and optimized through graph-cuts. The ability of each algorithm to recover the original DSM has been quantitatively evaluated. To do that, a synthetic DSM has been generated and different typologies of noise have been added to mimic the typical errors of photogrammetric DSMs. The evaluation reveals that standard filters like median and edge preserving smoothing through a bilateral filter approach cannot sufficiently remove typical errors occurring in a photogrammetric DSM. The TGV-based approach much better removes random noise, but large areas with outliers still remain. Our own method which explicitly models the degradation properties of those DSM outperforms the others in all aspects.

  11. [Denitrification water treatment with zeolite composite filter by intermittent operation].

    PubMed

    Qing, Cheng-Song; Bao, Tao; Chen, Tian-Hu; Chen, Dong; Xie, Jing-Jing

    2012-12-01

    The zeolite composite filters (ZCF) with the size of4-8 mm were prepared using raw zeolite (0.15-0.18 mm) as the main material and the cement as binder. After a combination of material characterizations, such as the void fraction, apparent density, compression strength and surface area, the optimal prepared conditions of composite filters were obtained as follow: weight ratio of m (zeolite): m (cement) = 7 : 3, curing for 15 d under the moisture condition and ambient temperature. Through upflow low-concentration ammonia nitrogen wastewater, ZCF filled in the experimental column was hung with the biological membrane. Thus, intermittent dynamic experiments were conducted, the intermittent operation cycle included adsorption, biological regeneration and drip washing. Until concentration of ammonia nitrogen was more than 2 mg x L(-1) of effluent standards, water in experiment column was firstly emptied, and then blast biological regeneration was conducted. After the filters were bathed with water, the zeolite adsorption-biological regeneration cycle was performed repeatedly. The experimental results show that under conditions of 24 h blast and 5 d of continuous operation period, ammonia nitrogen removal rate is up to 87.6% on average, total nitrogen removal rate reaches 51.2% on average.

  12. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  13. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  14. Visualization of flow during cleaning process on a liquid nanofibrous filter

    NASA Astrophysics Data System (ADS)

    Bílek, P.

    2017-10-01

    This paper deals with visualization of flow during cleaning process on a nanofibrous filter. Cleaning of a filter is very important part of the filtration process which extends lifetime of the filter and improve filtration properties. Cleaning is carried out on flat-sheet filters, where particles are deposited on the filter surface and form a filtration cake. The cleaning process dislodges the deposited filtration cake, which is loose from the membrane surface to the retentate flow. The blocked pores in the filter are opened again and hydrodynamic properties are restored. The presented optical method enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. The local concentration of solid particles is possible to estimate and achieve new information about the cleaning process. In the article is described the cleaning process on nanofibrous membranes for waste water treatment. The hydrodynamic data were compared to the images of the cleaning process.

  15. Design of surface acoustic wave filters for the multiplex transmission system of multilevel inverter circuits

    NASA Astrophysics Data System (ADS)

    Kubo, Keita; Kanai, Nanae; Kobayashi, Fumiya; Goka, Shigeyoshi; Wada, Keiji; Kakio, Shoji

    2017-07-01

    We designed surface acoustic wave (SAW) filters for a multiplex transmission system of multilevel inverter circuits, and applied them to a single-phase three-level inverter. To reduce the transmission delay time of the SAW filters, a four-channel SAW filter array was fabricated and its characteristics were measured. The delay time of the SAW filters was <350 ns, and the delay time difference was reduced to ≤184 ns, less than half that previously reported. The SAW filters withstood up to 990 V, which is sufficient for the inverters used in most domestic appliances. A single-phase three-level inverter with the fabricated SAW filters worked with a total delay time shorter than our target delay time of 2.5 µs. The delay time difference of the proposed system was 0.26 µs, which is sufficient for preventing the inverter circuit from short-circuiting. The SAW filters controlled a multilevel inverter system with simple signal wiring and high dielectric withstanding voltages.

  16. Water washable stainless steel HEPA filter

    DOEpatents

    Phillips, Terrance D.

    2001-01-01

    The invention is a high efficiency particulate (HEPA) filter apparatus and system, and method for assaying particulates. The HEPA filter provides for capture of 99.99% or greater of particulates from a gas stream, with collection of particulates on the surface of the filter media. The invention provides a filter system that can be cleaned and regenerated in situ.

  17. DNA accumulation on ventilation system filters in university buildings in Singapore

    PubMed Central

    Luhung, Irvan; Wu, Yan; Xu, Siyu; Yamamoto, Naomichi; Nazaroff, William W.

    2017-01-01

    Introduction Biological particles deposit on air handling system filters as they process air. This study reports and interprets abundance and diversity information regarding biomass accumulation on ordinarily used filters acquired from several locations in a university environment. Methods DNA-based analysis was applied both to quantify (via DNA fluorometry and qPCR) and to characterize (via high-throughput sequencing) the microbial material on filters, which mainly processed recirculated indoor air. Results were interpreted in relation to building occupancy and ventilation system operational parameters. Results Based on accumulated biomass, average DNA concentrations per AHU filter surface area across nine indoor locations after twelve weeks of filter use were in the respective ranges 1.1 to 41 ng per cm2 for total DNA, 0.02 to 3.3 ng per cm2 for bacterial DNA and 0.2 to 2.0 ng DNA per cm2 for fungal DNA. The most abundant genera detected on the AHU filter samples were Clostridium, Streptophyta, Bacillus, Acinetobacter and Ktedonobacter for bacteria and Aspergillus, Cladosporium, Nigrospora, Rigidoporus and Lentinus for fungi. Conditional indoor airborne DNA concentrations (median (range)) were estimated to be 13 (2.6–107) pg/m3 for total DNA, 0.4 (0.05–8.4) pg/m3 for bacterial DNA and 2.3 (1.0–5.1) pg/m3 for fungal DNA. Conclusion Conditional airborne concentrations and the relative abundances of selected groups of genera correlate well with occupancy level. Bacterial DNA was found to be more responsive than fungal DNA to differences in occupancy level and indoor environmental conditions. PMID:29023520

  18. 18. Process area room. Incinerator to the left. Filter boxes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Process area room. Incinerator to the left. Filter boxes on the right. Looking north towards change room. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  19. SEPHYDRO: An Integrated Multi-Filter Web-Based Tool for Baseflow Separation

    NASA Astrophysics Data System (ADS)

    Serban, D.; MacQuarrie, K. T. B.; Popa, A.

    2017-12-01

    Knowledge of baseflow contributions to streamflow is important for understanding watershed scale hydrology, including groundwater-surface water interactions, impact of geology and landforms on baseflow, estimation of groundwater recharge rates, etc. Baseflow (or hydrograph) separation methods can be used as supporting tools in many areas of environmental research, such as the assessment of the impact of agricultural practices, urbanization and climate change on surface water and groundwater. Over the past few decades various digital filtering and graphically-based methods have been developed in an attempt to improve the assessment of the dynamics of the various sources of streamflow (e.g. groundwater, surface runoff, subsurface flow); however, these methods are not available under an integrated platform and, individually, often require significant effort for implementation. Here we introduce SEPHYDRO, an open access, customizable web-based tool, which integrates 11 algorithms allowing for separation of streamflow hydrographs. The streamlined interface incorporates a reference guide as well as additional information that allows users to import their own data, customize the algorithms, and compare, visualise and export results. The tool includes one-, two- and three-parameter digital filters as well as graphical separation methods and has been successfully applied in Atlantic Canada, in studies dealing with nutrient loading to fresh water and coastal water ecosystems. Future developments include integration of additional separation algorithms as well as incorporation of geochemical separation methods. SEPHYDRO has been developed through a collaborative research effort between the Canadian Rivers Institute, University of New Brunswick (Fredericton, New Brunswick, Canada), Agriculture and Agri-Food Canada and Environment and Climate Change Canada and is currently available at http://canadianriversinstitute.com/tool/

  20. Apollo 9 Mission image - S0-65 Multispectral Photography - Georgia

    NASA Image and Video Library

    2009-02-19

    AS09-26A-3792A (11 March 1969) --- Color infrared photograph of the Atlanta, Georgia area taken on March 11, 1969, by one of the four synchronized cameras of the Apollo 9 Earth Resources Survey (SO-65) experiment. At 11:21 a.m. (EST) when this picture was taken, the Apollo 9 spacecraft was at an altitude of 106 nautical miles, and the sun elevation was 47 degrees above the horizon. The location of the point on Earth's surface at which the four-camera combination was aimed was 33 degrees 10 minutes north latitude, and 84 degrees and 40 minutes west longitude. The other three cameras used: (B) black and white film with a red filter; (C) black and white infrared film; and (D) black and white film with a green filter.

  1. Learning-based 3D surface optimization from medical image reconstruction

    NASA Astrophysics Data System (ADS)

    Wei, Mingqiang; Wang, Jun; Guo, Xianglin; Wu, Huisi; Xie, Haoran; Wang, Fu Lee; Qin, Jing

    2018-04-01

    Mesh optimization has been studied from the graphical point of view: It often focuses on 3D surfaces obtained by optical and laser scanners. This is despite the fact that isosurfaced meshes of medical image reconstruction suffer from both staircases and noise: Isotropic filters lead to shape distortion, while anisotropic ones maintain pseudo-features. We present a data-driven method for automatically removing these medical artifacts while not introducing additional ones. We consider mesh optimization as a combination of vertex filtering and facet filtering in two stages: Offline training and runtime optimization. In specific, we first detect staircases based on the scanning direction of CT/MRI scanners, and design a staircase-sensitive Laplacian filter (vertex-based) to remove them; and then design a unilateral filtered facet normal descriptor (uFND) for measuring the geometry features around each facet of a given mesh, and learn the regression functions from a set of medical meshes and their high-resolution reference counterparts for mapping the uFNDs to the facet normals of the reference meshes (facet-based). At runtime, we first perform staircase-sensitive Laplacian filter on an input MC (Marching Cubes) mesh, and then filter the mesh facet normal field using the learned regression functions, and finally deform it to match the new normal field for obtaining a compact approximation of the high-resolution reference model. Tests show that our algorithm achieves higher quality results than previous approaches regarding surface smoothness and surface accuracy.

  2. Improving Image Matching by Reducing Surface Reflections Using Polarising Filter Techniques

    NASA Astrophysics Data System (ADS)

    Conen, N.; Hastedt, H.; Kahmen, O.; Luhmann, T.

    2018-05-01

    In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results. However, the filter may influence the camera's orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002) using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (Δc ≤ 4 μm) with the polarising filter in use. Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.

  3. A Novel Algorithm for Determining Contact Area Between a Respirator and a Headform

    PubMed Central

    Lei, Zhipeng; Yang, James; Zhuang, Ziqing

    2016-01-01

    The contact area, as well as the contact pressure, is created when a respiratory protection device (a respirator or surgical mask) contacts a human face. A computer-based algorithm for determining the contact area between a headform and N95 filtering facepiece respirator (FFR) was proposed. Six N95 FFRs were applied to five sizes of standard headforms (large, medium, small, long/narrow, and short/wide) to simulate respirator donning. After the contact simulation between a headform and an N95 FFR was conducted, a contact area was determined by extracting the intersection surfaces of the headform and the N95 FFR. Using computer-aided design tools, a superimposed contact area and an average contact area, which are non-uniform rational basis spline (NURBS) surfaces, were developed for each headform. Experiments that directly measured dimensions of the contact areas between headform prototypes and N95 FFRs were used to validate the simulation results. Headform sizes influenced all contact area dimensions (P < 0.0001), and N95 FFR sizing systems influenced all contact area dimensions (P < 0.05) except the left and right chin regions. The medium headform produced the largest contact area, while the large and small headforms produced the smallest. PMID:24579752

  4. Nano-textured fluidic biochip as biological filter for selective survival of neuronal cells.

    PubMed

    Han, Hsieh-Cheng; Lo, Hung-Chun; Wu, Chia-Yu; Chen, Kuei-Hsien; Chen, Li-Chyong; Ou, Keng-Liang; Hosseinkhani, Hossein

    2015-06-01

    This is an innovative study to engineer biological filter to evaluate the effect of template surface structure and physiochemical properties that can be used for wide variety of applications in biological, health care as well as environmental protection. Specifically, planar silicon (Si) wafer and arrayed Si nano-tips (SiNT) templates were fabricated and coated with gold for various lengths of time to study the effect of surface charge, surface roughness, and hydrophilicity on biological activity of rat pheochromocytoma cell lines PC12. The initial growth and proliferation of PC12 cells on Si and SiNT templates showed an antipathy for the ultra-sharp SiNTs templates. In contrast, the same cells demonstrated a preferable adherence to and proliferation on planar Si templates, resulting in higher cell densities by three orders of magnitude than those on SiNT templates. It is hypothesized that SiNTs array does generate nano-fluidic effect such that the effective contact region for aqueous solution on SiNTs is lower than that on planar Si templates, thus decreasing adsorbable area for cell viability and survival. Moreover, the effect of the gold coating on cell number density was analyzed in terms of the surface roughness, zeta potential and wetting properties of the templates. It was determined that surface charge, as measured by the zeta potential, strongly correlated with the trend observed in the surface cell density, whereas no such correlation was observed for surface roughness or wetting properties in the ranges of our experiment conditions. © 2014 Wiley Periodicals, Inc.

  5. Integrated Processing of High Resolution Topographic Data for Soil Erosion Assessment Considering Data Acquisition Schemes and Surface Properties

    NASA Astrophysics Data System (ADS)

    Eltner, A.; Schneider, D.; Maas, H.-G.

    2016-06-01

    Soil erosion is a decisive earth surface process strongly influencing the fertility of arable land. Several options exist to detect soil erosion at the scale of large field plots (here 600 m²), which comprise different advantages and disadvantages depending on the applied method. In this study, the benefits of unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanning (TLS) are exploited to quantify soil surface changes. Beforehand data combination, TLS data is co-registered to the DEMs generated with UAV photogrammetry. TLS data is used to detect global as well as local errors in the DEMs calculated from UAV images. Additionally, TLS data is considered for vegetation filtering. Complimentary, DEMs from UAV photogrammetry are utilised to detect systematic TLS errors and to further filter TLS point clouds in regard to unfavourable scan geometry (i.e. incidence angle and footprint) on gentle hillslopes. In addition, surface roughness is integrated as an important parameter to evaluate TLS point reliability because of the increasing footprints and thus area of signal reflection with increasing distance to the scanning device. The developed fusion tool allows for the estimation of reliable data points from each data source, considering the data acquisition geometry and surface properties, to finally merge both data sets into a single soil surface model. Data fusion is performed for three different field campaigns at a Mediterranean field plot. Successive DEM evaluation reveals continuous decrease of soil surface roughness, reappearance of former wheel tracks and local soil particle relocation patterns.

  6. Evaluation of Existing Image Matching Methods for Deriving Glacier Surface Displacements Globally from Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Heid, T.; Kääb, A.

    2011-12-01

    Automatic matching of images from two different times is a method that is often used to derive glacier surface velocity. Nearly global repeat coverage of the Earth's surface by optical satellite sensors now opens the possibility for global-scale mapping and monitoring of glacier flow with a number of applications in, for example, glacier physics, glacier-related climate change and impact assessment, and glacier hazard management. The purpose of this study is to compare and evaluate different existing image matching methods for glacier flow determination over large scales. The study compares six different matching methods: normalized cross-correlation (NCC), the phase correlation algorithm used in the COSI-Corr software, and four other Fourier methods with different normalizations. We compare the methods over five regions of the world with different representative glacier characteristics: Karakoram, the European Alps, Alaska, Pine Island (Antarctica) and southwest Greenland. Landsat images are chosen for matching because they expand back to 1972, they cover large areas, and at the same time their spatial resolution is as good as 15 m for images after 1999 (ETM+ pan). Cross-correlation on orientation images (CCF-O) outperforms the three similar Fourier methods, both in areas with high and low visual contrast. NCC experiences problems in areas with low visual contrast, areas with thin clouds or changing snow conditions between the images. CCF-O has problems on narrow outlet glaciers where small window sizes (about 16 pixels by 16 pixels or smaller) are needed, and it also obtains fewer correct matches than COSI-Corr in areas with low visual contrast. COSI-Corr has problems on narrow outlet glaciers and it obtains fewer correct matches compared to CCF-O when thin clouds cover the surface, or if one of the images contains snow dunes. In total, we consider CCF-O and COSI-Corr to be the two most robust matching methods for global-scale mapping and monitoring of glacier velocities. If combining CCF-O with locally adaptive template sizes and by filtering the matching results automatically by comparing the displacement matrix to its low pass filtered version, the matching process can be automated to a large degree. This allows the derivation of glacier velocities with minimal (but not without!) user interaction and hence also opens up the possibility of global-scale mapping and monitoring of glacier flow.

  7. Rigorous covariance propagation of geoid errors to geodetic MDT estimates

    NASA Astrophysics Data System (ADS)

    Pail, R.; Albertella, A.; Fecher, T.; Savcenko, R.

    2012-04-01

    The mean dynamic topography (MDT) is defined as the difference between the mean sea surface (MSS) derived from satellite altimetry, averaged over several years, and the static geoid. Assuming geostrophic conditions, from the MDT the ocean surface velocities as important component of global ocean circulation can be derived from it. Due to the availability of GOCE gravity field models, for the very first time MDT can now be derived solely from satellite observations (altimetry and gravity) down to spatial length-scales of 100 km and even below. Global gravity field models, parameterized in terms of spherical harmonic coefficients, are complemented by the full variance-covariance matrix (VCM). Therefore, for the geoid component a realistic statistical error estimate is available, while the error description of the altimetric component is still an open issue and is, if at all, attacked empirically. In this study we make the attempt to perform, based on the full gravity VCM, rigorous error propagation to derived geostrophic surface velocities, thus also considering all correlations. For the definition of the static geoid we use the third release of the time-wise GOCE model, as well as the satellite-only combination model GOCO03S. In detail, we will investigate the velocity errors resulting from the geoid component in dependence of the harmonic degree, and the impact of using/no using covariances on the MDT errors and its correlations. When deriving an MDT, it is spectrally filtered to a certain maximum degree, which is usually driven by the signal content of the geoid model, by applying isotropic or non-isotropic filters. Since this filtering is acting also on the geoid component, the consistent integration of this filter process into the covariance propagation shall be performed, and its impact shall be quantified. The study will be performed for MDT estimates in specific test areas of particular oceanographic interest.

  8. Diesel particulate filter regeneration via resistive surface heating

    DOEpatents

    Gonze, Eugene V; Ament, Frank

    2013-10-08

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine; and a grid of electrically resistive material that is applied to an exterior upstream surface of the PF and that selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  9. Radar Measurements of Ocean Surface Waves using Proper Orthogonal Decomposition

    DTIC Science & Technology

    2017-03-30

    rely on use of Fourier transforms (FFT) and filtering spectra on the linear dispersion relationship for ocean surface waves. This report discusses...the measured signal (e.g., Young et al., 1985). In addition, the methods often rely on filtering the FFT of radar backscatter or Doppler velocities...to those obtained with conventional FFT and dispersion curve filtering techniques (iv) Compare both results of(iii) to ground truth sensors (i .e

  10. Storage containers for radioactive material

    DOEpatents

    Groh, E.F.; Cassidy, D.A.; Dates, L.R.

    1980-07-31

    A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

  11. Martian Plain in Late Summer

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Mars Phoenix Lander acquired this view of the textured plain near the lander at about 11 a.m. local Mars solar time during the mission's 124th Martian day, or sol (Sept. 29, 2008).

    The image was taken through an infrared filter. The brighter patches are dustier than darker areas of the surface.

    The last signal from the lander came on Nov. 2, 2008.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Apparatus and filtering systems relating to combustors in combustion turbine engines

    DOEpatents

    Johnson, Thomas Edward [Greer, SC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC

    2012-07-24

    A combustor for a combustion turbine engine, the combustor that includes: a chamber defined by an outer wall and forming a channel between windows defined through the outer wall toward a forward end of the chamber and at least one fuel injector positioned toward an aft end of the chamber; a screen; and a standoff comprising a raised area on an outer surface of the outer wall near the periphery of the windows; wherein the screen extends over the windows and is supported by the standoff in a raised position in relation to the outer surface of the outer wall and the windows.

  13. Use of Nuclepore filters for ambient and workplace nanoparticle exposure assessment-Spherical particles

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Chieh; Wang, Jing; Fissan, Heinz; Pui, David Y. H.

    2013-10-01

    Nuclepore filter collection with subsequent electron microscopy analysis for nanoparticles was carried out to examine the feasibility of the method to assess the nanoparticle exposure. The number distribution of nanoparticles collected on the filter surface was counted visually and converted to the distribution in the air using existing filtration models for Nuclepore filters. To search for a proper model, this paper studied the overall penetrations of three different nanoparticles (PSL, Ag and NaCl), covering a wide range of particle sizes (20-800 nm) and densities (1.05-10.5 g cm-3), through Nuclepore filters with two different pore diameters (1 and 3 μm) and different face velocities (2-15 cm s-1). The data were compared with existing particle deposition models and modified models proposed by this study, which delivered different results because of different deposition processes considered. It was found that a parameter associated with flow condition and filter geometry (density of fluid medium, particle density, filtration face velocity, filter porosity and pore diameter) should be taken into account to verify the applicability of the models. The data of the overall penetration were in very good agreement with the properly applied models. A good agreement of filter surface collection between the validated model and the SEM analysis was obtained, indicating a correct nanoparticle number distribution in the air can be converted from the Nuclepore filter surface collection and this method can be applied for nanoparticle exposure assessment.

  14. Highly Concentrated Seed-Mediated Synthesis of Monodispersed Gold Nanorods (Postprint)

    DTIC Science & Technology

    2017-07-17

    imaging, therapeutics and sensors, to large area coatings, filters , and optical attenuators. Development of the latter technologies has been hindered by...sensors, to large area coatings, filters , and optical attenuators. Development of the latter technologies has been hindered by the lack of cost-effective...challenges the utilization of Au-NRs in a diverse array of technologies, ranging from therapeutics, imaging and sensors, to large area coatings, filters and

  15. Data on surface-water, streambed-interstitial water, and bed-sediment quality for selected locations in the small arms impact area of central Fort Gordon, Georgia, September 4-6, 2001

    USGS Publications Warehouse

    Priest, Sheryln; Stamey, Timothy C.; Lawrence, Stephen J.

    2002-01-01

    In September 2001, the U.S. Geological Survey, in cooperation with the Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon (U.S. Department of the Army), conducted a chemical assessment of surface water, streambed-interstitial water, and bed sediments within the small arms impact area of Fort Gordon Military Installation. The study was conducted in support of the development of an Integrated Natural Resources Management Plan (INRMP) for Fort Gordon, Georgia. An effective INRMP ensures that natural resources conservation measures and U.S. Army activities on the military base are integrated and consistent with Federal requirements to manage military installations on an ecosystem basis. Filtered water samples were collected from five sites along South Prong Creek and three sites along Marcum Branch Creek for chemical analyses of major ions, nutrients, and selected trace elements. On-site measurements of pH, temperature, specific conductance, and dissolved oxygen were made at the eight sites. Filtered water collected showed varying concentrations in both surface- and streambed-interstitial water. Bed-sediment samples collected from South Prong Creek contain elevated levels of arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, selenium, vanadium, and total organic carbon relative to previous concentrations (McConnell and others, 2000). Bed-sediment samples collected from Marcum Branch Creek contain elevated levels of beryllium, copper, lead, manganese, mercury, selenium, and total organic carbon relative to previous concentrations (McConnell and others, 2000).

  16. Drinking water turbidity and emergency department visits for gastrointestinal illness in Atlanta, 1993-2004.

    PubMed

    Tinker, Sarah C; Moe, Christine L; Klein, Mitchel; Flanders, W Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E

    2010-01-01

    The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the United States, and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant. We examined the relationship between turbidity levels of raw and filtered surface water measured at eight major drinking water treatment plants in the metropolitan area of Atlanta, Georgia, and over 240,000 emergency department visits for gastrointestinal illness during 1993-2004 among the population served by these plants. We fit Poisson time-series statistical regression models that included turbidity in a 21-day distributed lag and that controlled for meteorological factors and long-term time trends. For filtered water turbidity, the results were consistent with no association with emergency department visits for gastrointestinal illness. We observed a modest association between raw water turbidity and emergency department visits for gastrointestinal illness. Our results suggest that source water quality may contribute modestly to endemic gastrointestinal illness in the study area. The association between turbidity and emergency department visits for gastrointestinal illness was only observed when raw water turbidity was considered; filtered water turbidity may not serve as a reliable indicator of modest pathogen risk at all treatment plants.

  17. Phytofilter - environmental friendly solution for purification of surface plate from urbanized territories

    NASA Astrophysics Data System (ADS)

    Ruchkinova, O.; Shchuckin, I.

    2017-06-01

    Its proved, that phytofilters are environmental friendly solution of problem of purification of surface plate from urbanized territories. Phytofilters answer the nowadays purposes to systems of purification of land drainage. The main problem of it is restrictions, connecter with its use in the conditions of cold temperature. Manufactured a technology and mechanism, which provide a whole-year purification of surface plate and its storage. Experimentally stated optimal makeup of filtering load: peat, zeolite and sand in per cent of volume, which provides defined hydraulic characteristics. Stated sorbate and ion-selective volume of complex filtering load of ordered composition in dynamic conditions. Estimated dependences of exit concentrations of oil products and heavy metals on temperature by filtering through complex filtering load of ordered composition. Defined effectiveness of purification at phytofiltering installation. Fixed an influence of embryophytes on process of phytogeneration and capacity of filtering load. Recommended swamp iris, mace reed and reed grass. Manufactured phytofilter calculation methodology. Calculated economic effect from use of phytofiltration technology in comparison with traditional block-modular installations.

  18. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement

    PubMed Central

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M. Suleman; Krammer, Gernot

    2011-01-01

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefore, understanding formation and detachment of filter cake is important. In this regard, the filter media is the key component in the system. Needle felts are the most commonly used media in bag filters. Cake formation studies with heat treated and membrane coated needle felts in pilot scale pulse jet bag filter were carried out. The data is processed according to the procedures that were published already [Powder Technology, Volume 173, Issue 2, 19 April 2007, Pages 93–106]. Pressure drop evolution, cake height distribution evolution, cake patches area distribution and their characterization using fractal analysis on different needle felts are presented here. It is observed that concavity of pressure drop curve for membrane coated needle felt is principally caused by presence of inhomogeneous cake area load whereas it is inherent for heat treated media. Presence of residual cake enhances the concavity of pressure drop at the start of filtration cycle. Patchy cleaning is observed only when jet pulse pressure is too low and unable to provide the necessary force to detach the cake. The border line is very sharp. Based on experiments with limestone dust and three types of needle felts, for the jet pulse pressure above 4 bar and filtration velocity below 50 mm/s, cake is detached completely except a thin residual layer (100–200 μm). Uniformity and smoothness of residual cake depends on the surface characteristics of the filter media. Cake height distribution of residual cake and newly formed cake during filtration prevails. The patch size analysis and fractal analysis reveal that residual cake grow in size (latterly) following regeneration initially on the base with edges smearing out, however, the cake heights are not leveled off. Fractal dimension of cake patches boundary falls in the range of 1–1.4 and depends on vertical position as well as time of filtration. Cake height measurements with Polyimide (PI) needle felts were hampered on account of its photosensitive nature. PMID:24415801

  19. Evaluation of the Effect of the Volume Throughput and Maximum Flux of Low-Surface-Tension Fluids on Bacterial Penetration of 0.2 Micron-Rated Filters during Process-Specific Filter Validation Testing.

    PubMed

    Folmsbee, Martha

    2015-01-01

    Approximately 97% of filter validation tests result in the demonstration of absolute retention of the test bacteria, and thus sterile filter validation failure is rare. However, while Brevundimonas diminuta (B. diminuta) penetration of sterilizing-grade filters is rarely detected, the observation that some fluids (such as vaccines and liposomal fluids) may lead to an increased incidence of bacterial penetration of sterilizing-grade filters by B. diminuta has been reported. The goal of the following analysis was to identify important drivers of filter validation failure in these rare cases. The identification of these drivers will hopefully serve the purpose of assisting in the design of commercial sterile filtration processes with a low risk of filter validation failure for vaccine, liposomal, and related fluids. Filter validation data for low-surface-tension fluids was collected and evaluated with regard to the effect of bacterial load (CFU/cm(2)), bacterial load rate (CFU/min/cm(2)), volume throughput (mL/cm(2)), and maximum filter flux (mL/min/cm(2)) on bacterial penetration. The data set (∼1162 individual filtrations) included all instances of process-specific filter validation failures performed at Pall Corporation, including those using other filter media, but did not include all successful retentive filter validation bacterial challenges. It was neither practical nor necessary to include all filter validation successes worldwide (Pall Corporation) to achieve the goals of this analysis. The percentage of failed filtration events for the selected total master data set was 27% (310/1162). Because it is heavily weighted with penetration events, this percentage is considerably higher than the actual rate of failed filter validations, but, as such, facilitated a close examination of the conditions that lead to filter validation failure. In agreement with our previous reports, two of the significant drivers of bacterial penetration identified were the total bacterial load and the bacterial load rate. In addition to these parameters, another three possible drivers of failure were also identified: volume throughput, maximum filter flux, and pressure. Of the data for which volume throughput information was available, 24% (249/1038) of the filtrations resulted in penetration. However, for the volume throughput range of 680-2260 mL/cm(2), only 9 out of 205 bacterial challenges (∼4%) resulted in penetration. Of the data for which flux information was available, 22% (212/946) resulted in bacterial penetration. However, in the maximum filter flux range from 7 to 18 mL/min/cm(2), only one out of 121 filtrations (0.6%) resulted in penetration. A slight increase in filter failure was observed in filter bacterial challenges with a differential pressure greater than 30 psid. When designing a commercial process for the sterile filtration of a low-surface-tension fluid (or any other potentially high-risk fluid), targeting the volume throughput range of 680-2260 mL/cm(2) or flux range of 7-18 mL/min/cm(2), and maintaining the differential pressure below 30 psid, could significantly decrease the risk of validation filter failure. However, it is important to keep in mind that these are general trends described in this study and some test fluids may not conform to the general trends described here. Ultimately, it is important to evaluate both filterability and bacterial retention of the test fluid under proposed process conditions prior to finalizing the manufacturing process to ensure successful process-specific filter validation of low-surface-tension fluids. An overwhelming majority of process-specific filter validation (qualification) tests result in the demonstration of absolute retention of test bacteria by sterilizing-grade membrane filters. As such, process-specific filter validation failure is rare. However, while bacterial penetration of sterilizing-grade filters during process-specific filter validation is rarely detected, some fluids (such as vaccines and liposomal fluids) have been associated with an increased incidence of bacterial penetration. The goal of the following analysis was to identify important drivers of process-specific filter validation failure. The identification of these drivers will possibly serve to assist in the design of commercial sterile filtration processes with a low risk of filter validation failure. Filter validation data for low-surface-tension fluids was collected and evaluated with regard to bacterial concentration and rates, as well as filtered fluid volume and rate (Pall Corporation). The master data set (∼1160 individual filtrations) included all recorded instances of process-specific filter validation failures but did not include all successful filter validation bacterial challenge tests. This allowed for a close examination of the conditions that lead to process-specific filter validation failure. As previously reported, two significant drivers of bacterial penetration were identified: the total bacterial load (the total number of bacteria per filter) and the bacterial load rate (the rate at which bacteria were applied to the filter). In addition to these parameters, another three possible drivers of failure were also identified: volumetric throughput, filter flux, and pressure. When designing a commercial process for the sterile filtration of a low-surface-tension fluid (or any other penetrative-risk fluid), targeting the identified bacterial challenge loads, volume throughput, and corresponding flux rates could decrease, and possibly eliminate, the risk of validation filter failure. However, it is important to keep in mind that these are general trends described in this study and some test fluids may not conform to the general trends described here. Ultimately, it is important to evaluate both filterability and bacterial retention of the test fluid under proposed process conditions prior to finalizing the manufacturing process to ensure successful filter validation of low-surface-tension fluids. © PDA, Inc. 2015.

  20. The effect of packing hydrophilization on bacterial attachment and the relationship with the performance of biotrickling filters.

    PubMed

    Prado, Oscar J; Popat, Sudeep C; Chen, Gexin; Walker, Sharon L; Lafuente, Javier; Gabriel, David; Deshusses, Marc A

    2009-08-15

    Many bioprocesses depend on the effective formation of a biofilm on a solid support. In the present study, three different surface treatments (sandblasting, pure-O(2) plasma, and He-O(2) plasma treatments) were conducted on polypropylene (PP) Pall rings used as a support in biotrickling filters for air pollution control. The intent was to modify the ring surface and/or electrochemical properties in order to possibly improve cell adhesion, wetting properties, and possibly reduce the start-up time and increase the performance of the biotrickling filters. The surface treatments were found to generally increase the hydrophilicity and the zeta potential of the surfaces. However, the startup and performance of lab-scale biotrickling filters packed with treated Pall rings were not significantly different than the control with untreated rings. Cell and colloid deposition experiments conducted in flow cells showed that the treated surfaces and the hydrodynamic conditions were not favorable for cell deposition indicating that there could be significant opportunities for improving packings used in environmental bioprocess applications. Copyright 2009 Wiley Periodicals, Inc.

  1. Methods to enhance seismic faults and construct fault surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Xinming; Zhu, Zhihui

    2017-10-01

    Faults are often apparent as reflector discontinuities in a seismic volume. Numerous types of fault attributes have been proposed to highlight fault positions from a seismic volume by measuring reflection discontinuities. These attribute volumes, however, can be sensitive to noise and stratigraphic features that are also apparent as discontinuities in a seismic volume. We propose a matched filtering method to enhance a precomputed fault attribute volume, and simultaneously estimate fault strikes and dips. In this method, a set of efficient 2D exponential filters, oriented by all possible combinations of strike and dip angles, are applied to the input attribute volume to find the maximum filtering responses at all samples in the volume. These maximum filtering responses are recorded to obtain the enhanced fault attribute volume while the corresponding strike and dip angles, that yield the maximum filtering responses, are recoded to obtain volumes of fault strikes and dips. By doing this, we assume that a fault surface is locally planar, and a 2D smoothing filter will yield a maximum response if the smoothing plane coincides with a local fault plane. With the enhanced fault attribute volume and the estimated fault strike and dip volumes, we then compute oriented fault samples on the ridges of the enhanced fault attribute volume, and each sample is oriented by the estimated fault strike and dip. Fault surfaces can be constructed by directly linking the oriented fault samples with consistent fault strikes and dips. For complicated cases with missing fault samples and noisy samples, we further propose to use a perceptual grouping method to infer fault surfaces that reasonably fit the positions and orientations of the fault samples. We apply these methods to 3D synthetic and real examples and successfully extract multiple intersecting fault surfaces and complete fault surfaces without holes.

  2. Design parameters for rotating cylindrical filtration

    NASA Technical Reports Server (NTRS)

    Schwille, John A.; Mitra, Deepanjan; Lueptow, Richard M.

    2002-01-01

    Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions. c2002 Elsevier Science B.V. All rights reserved.

  3. Wavelet theory applied to the study of spectra of trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Souza-Feliciano, A. C.; Alvarez-Candal, A.; Jiménez-Teja, Y.

    2018-06-01

    Context. Reflection spectroscopy in the near-infrared (NIR) is used to investigate the surface composition of trans-Neptunian objects (TNOs). In general, these spectra are difficult to interpret due to the low apparent brightness of the TNOs, causing low signal-to-noise ratio even in spectra obtained with the largest telescopes available on Earth, making it necessary to use filtering techniques to analyze and interpret them. Aims: The purpose of this paper is to present a methodology to analyze the spectra of TNOs. Specifically, our aim was to filter these spectra in the best possible way: maximizing noise removal, while minimizing the loss of signal. Methods: We used wavelets to filter the spectra. Wavelets are a mathematical tool that decompose the signal into its constituent parts, allowing us to analyze the data in different areas of frequencies with the resolution of each component tied to its scale. To check the reliability of our method, we compared the filtered spectra with the spectra of water and methanol ices to identify some common structures between them. Results: Of the 50 TNOs in our sample, we identify traces of water ices and methanol in the spectra of several of them, some with previous reports, while for other objects there were no previous reports. Conclusions: We conclude that the wavelet technique is successful in filtering spectra of TNOs.

  4. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles.

    PubMed

    Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela

    2017-08-01

    Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5  UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.

  5. Three-step interferometric method with blind phase shifts by use of interframe correlation between interferograms

    NASA Astrophysics Data System (ADS)

    Muravsky, Leonid I.; Kmet', Arkady B.; Stasyshyn, Ihor V.; Voronyak, Taras I.; Bobitski, Yaroslav V.

    2018-06-01

    A new three-step interferometric method with blind phase shifts to retrieve phase maps (PMs) of smooth and low-roughness engineering surfaces is proposed. Evaluating of two unknown phase shifts is fulfilled by using the interframe correlation between interferograms. The method consists of two stages. The first stage provides recording of three interferograms of a test object and their processing including calculation of unknown phase shifts, and retrieval of a coarse PM. The second stage implements firstly separation of high-frequency and low-frequency PMs and secondly producing of a fine PM consisting of areal surface roughness and waviness PMs. Extraction of the areal surface roughness and waviness PMs is fulfilled by using a linear low-pass filter. The computer simulation and experiments fulfilled to retrieve a gauge block surface area and its areal surface roughness and waviness have confirmed the reliability of the proposed three-step method.

  6. Rapid fabrication of TiO2@carboxymethyl cellulose coatings capable of shielding UV, antifog and delaying support aging.

    PubMed

    Li, Xiaozhou; Lv, Junping; Li, Dehuai; Wang, Lin

    2017-08-01

    Agricultural plastic films capable of shielding UV, filtering visible light and antifog are important to prolong their life and protect safeties of agriculturists and crops. In this work, high stable and small size TiO 2 @polymer nanoparticles (NPs) were prepared by an efficient one-pot microwave synthesis using titanic sulfate as Ti resource, carboxymethyl cellulose sodium (CMC) as complexing agent and stabilizer. The TiO 2 @CMC NPs obtained were then utilized to fabricate poly(ethylene imine) (PEI)/TiO 2 @CMC coatings on the surface of polypropylene films by a layer-by-layer assembly technique. The TiO 2 @CMC NPs show rapid deposition rate because small, spherical and anion-rich TiO 2 @CMC NPs possess large specific surface area and fast diffusion rate. More importantly, property experiments confirm that (PEI/TiO 2 @CMC)*15 coatings can not only effectively shield UV rays, filter visible light and prevent fogging but also delay the aging of their supports. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Filters for Submillimeter Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1986-01-01

    New manufacturing process produces filters strong, yet have small, precise dimensions and smooth surface finish essential for dichroic filtering at submillimeter wavelengths. Many filters, each one essentially wafer containing fine metal grid made at same time. Stacked square wires plated, fused, and etched to form arrays of holes. Grid of nickel and tin held in brass ring. Wall thickness, thickness of filter (hole depth) and lateral hole dimensions all depend upon operating frequency and filter characteristics.

  8. Silicon etch with chromium ions generated by a filtered or non-filtered cathodic arc discharge

    PubMed Central

    Scopece, Daniele; Döbeli, Max; Passerone, Daniele; Maeder, Xavier; Neels, Antonia; Widrig, Beno; Dommann, Alex; Müller, Ulrich; Ramm, Jürgen

    2016-01-01

    Abstract The pre-treatment of substrate surfaces prior to deposition is important for the adhesion of physical vapour deposition coatings. This work investigates Si surfaces after the bombardment by energetic Cr ions which are created in cathodic arc discharges. The effect of the pre-treatment is analysed by X-ray diffraction, Rutherford backscattering spectroscopy, scanning electron microscopy and in-depth X-ray photoemission spectroscopy and compared for Cr vapour produced from a filtered and non-filtered cathodic arc discharge. Cr coverage as a function of ion energy was also predicted by TRIDYN Monte Carlo calculations. Discrepancies between measured and simulated values in the transition regime between layer growth and surface removal can be explained by the chemical reactions between Cr ions and the Si substrate or between the substrate surface and the residual gases. Simulations help to find optimum and more stable parameters for specific film and substrate combinations faster than trial-and-error procedure. PMID:27877854

  9. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodin, A.; Laloo, R.; Abeilhou, P.

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The resultsmore » obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.« less

  10. Microbiological Characterization of the International Space Station Water Processor Assembly External Filter Assembly S/N 01

    NASA Technical Reports Server (NTRS)

    Weir, Natalee; Wilson, Mark; Yoets, Airan; Yoets, Airan; Molina, Thomas; Bruce, Rebekah; Sitler, Glenn; Carter, Layne

    2012-01-01

    The External Filter Assembly (EFA) S/N 01 is a mesh screen filter with a pore size of approximately 300 micron that was installed in the International Space Station (ISS) Water Processor Assembly (WPA) between the Waste Tank and the Mostly Liquid Separator (MLS) on February 11, 2010 to protect clearances in the MLS solenoid valve SV_1121_3. A removal & replacement of the EFA Filter was performed on March 22, 2011 in response to increasing pressure across the Waste Tank solenoid valve SV_1121_1 and the EFA Filter. The EFA Filter was returned on ULF6 and received in the Boeing Huntsville Laboratory on June 13, 2011. The filter was aseptically removed from the housing, and the residual water was collected for enumeration and identification of bacteria and fungi. Swab samples of the filter surface were also collected for microbiological enumeration and identification. Sample analyses were performed by Boeing Huntsville Laboratory and NASA Johnson Space Center Microbiology for comparison. Photographic documentation of the EFA filter was performed using a stereo microscope and environmental scanning electron microscope. This paper characterizes the amount and types of microorganisms on the filter surface and in the residual water from the filter housing following 1 year of utilization in the ISS WPA.

  11. 78 FR 16196 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... corrugated washer in the middle of the main transmission filter housing upper part and modifying the main... revealed the bypass inlet in the oil filter area was not manufactured in accordance with applicable design... revealed the bypass inlet in the oil filter area had not been manufactured in accordance with the...

  12. 7. SAND FILTERS, CANAL TO LEFT. CONCRETE OVERFLOW AREA TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SAND FILTERS, CANAL TO LEFT. CONCRETE OVERFLOW AREA TO LEFT OF CANAL ORIGINALLY PLANNED AS A STORAGE LAKE. VIEW LOOKING DUE WEST OF HINDS COMPLEX IN BACKGROUND OF SAND FILTERS. - Hinds Pump Plant, East of Joshua Tree National Monument, 5 miles north of Route 10, Hayfield, Riverside County, CA

  13. Preprocessing of SAR interferometric data using anisotropic diffusion filter

    NASA Astrophysics Data System (ADS)

    Sartor, Kenneth; Allen, Josef De Vaughn; Ganthier, Emile; Tenali, Gnana Bhaskar

    2007-04-01

    The most commonly used smoothing algorithms for complex data processing are blurring functions (i.e., Hanning, Taylor weighting, Gaussian, etc.). Unfortunately, the filters so designed blur the edges in a Synthetic Aperture Radar (SAR) scene, reduce the accuracy of features, and blur the fringe lines in an interferogram. For the Digital Surface Map (DSM) extraction, the blurring of these fringe lines causes inaccuracies in the height of the unwrapped terrain surface. Our goal here is to perform spatially non-uniform smoothing to overcome the above mentioned disadvantages. This is achieved by using a Complex Anisotropic Non-Linear Diffuser (CANDI) filter that is a spatially varying. In particular, an appropriate choice of the convection function in the CANDI filter is able to accomplish the non-uniform smoothing. This boundary sharpening intra-region smoothing filter acts on interferometric SAR (IFSAR) data with noise to produce an interferogram with significantly reduced noise contents and desirable local smoothing. Results of CANDI filtering will be discussed and compared with those obtained by using the standard filters on simulated data.

  14. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber

    NASA Astrophysics Data System (ADS)

    Yan, Bei; Wang, Anran; Liu, Exian; Tan, Wei; Xie, Jianlan; Ge, Rui; Liu, Jianjun

    2018-04-01

    A novel polarization filter based on a sunflower-type photonic quasi-crystal fiber (PQF) is proposed in this paper. We also discuss different methods to tune the filter wavelength. The proposed filter can efficiently produce polarized light with visible wavelengths by using the resonance between the second-order surface plasmon polariton mode and the core mode of the PQF. The filtered wavelength can be tuned between 0.55 µm and 0.68 µm by adjusting the thickness of the gold film. When the thickness of the gold film is 25.3 nm, the resonance loss in the y-polarized direction reaches 11707 dB m‑1 for a wavelength of 0.6326 µm, and the full width at half maximum is only 5 nm. Due to the flexible design and absence of both polarization coupling and polarization dispersion, this polarization filter can be used in devices that require narrow-band filtering.

  15. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  16. Optimized method for atmospheric signal reduction in irregular sampled InSAR time series assisted by external atmospheric information

    NASA Astrophysics Data System (ADS)

    Gong, W.; Meyer, F. J.

    2013-12-01

    It is well known that spatio-temporal the tropospheric phase signatures complicate the interpretation and detection of smaller magnitude deformation signals or unstudied motion fields. Several advanced time-series InSAR techniques were developed in the last decade that make assumptions about the stochastic properties of the signal components in interferometric phases to reduce atmospheric delay effects on surface deformation estimates. However, their need for large datasets to successfully separate the different phase contributions limits their performance if data is scarce and irregularly sampled. Limited SAR data coverage is true for many areas affected by geophysical deformation. This is either due to their low priority in mission programming, unfavorable ground coverage condition, or turbulent seasonal weather effects. In this paper, we present new adaptive atmospheric phase filtering algorithms that are specifically designed to reconstruct surface deformation signals from atmosphere-affected and irregularly sampled InSAR time series. The filters take advantage of auxiliary atmospheric delay information that is extracted from various sources, e.g. atmospheric weather models. They are embedded into a model-free Persistent Scatterer Interferometry (PSI) approach that was selected to accommodate non-linear deformation patterns that are often observed near volcanoes and earthquake zones. Two types of adaptive phase filters were developed that operate in the time dimension and separate atmosphere from deformation based on their different temporal correlation properties. Both filter types use the fact that atmospheric models can reliably predict the spatial statistics and signal power of atmospheric phase delay fields in order to automatically optimize the filter's shape parameters. In essence, both filter types will attempt to maximize the linear correlation between a-priori and the extracted atmospheric phase information. Topography-related phase components, orbit errors and the master atmospheric delays are first removed in a pre-processing step before the atmospheric filters are applied. The first adaptive filter type is using a filter kernel of Gaussian shape and is adaptively adjusting the width (defined in days) of this filter until the correlation of extracted and modeled atmospheric signal power is maximized. If atmospheric properties vary along the time series, this approach will lead to filter setting that are adapted to best reproduce atmospheric conditions at a certain observation epoch. Despite the superior performance of this first filter design, its Gaussian shape imposes non-physical relative weights onto acquisitions that ignore the known atmospheric noise in the data. Hence, in our second approach we are using atmospheric a-priori information to adaptively define the full shape of the atmospheric filter. For this process, we use a so-called normalized convolution (NC) approach that is often used in image reconstruction. Several NC designs will be presented in this paper and studied for relative performance. A cross-validation of all developed algorithms was done using both synthetic and real data. This validation showed designed filters are outperforming conventional filter methods that particularly useful for regions with limited data coverage or lack of a deformation field prior.

  17. Discrimination of Nosiheptide Sources with Plasmonic Filters.

    PubMed

    Wang, Delong; Ni, Haibin; Wang, Zhongqiang; Liu, Bing; Chen, Hongyuan; Gu, Zhongze; Zhao, Xiangwei

    2017-04-19

    Bacteria identification plays a vital role in the field of clinical diagnosis, food industry, and environmental monitoring, which is in great demand of point of care detection methods. In this paper, in order to discriminate the source of nosiheptide product, a plasmonic filter was fabricated to filtrate, capture and identify Streptomycete spores with Surface enhanced Raman Scattering (SERS). Since the plasmonic filter was derived from self-assembled photonic crystal coated with silver, the plasmonic "hot spots" on the filter surface was distributed evenly in a fare good density and the SERS enhancement factor was 7.49 × 10 7 . With this filter, a stain- and PCR-free detection was realized with only 5 μL sample solution and 5 min in a manner of "filtration and measure". Comparison to traditional Gram stain method and silver-plated nylon filter membrane, the plasmonic filter showed good sensitivity and efficiency in the discrimination of nosiheptide prepared with chemical and biological methods. It is anticipated that this simple SERS detection method with plasmonic filter has promising potentials in food safety, environmental, or clinical applications.

  18. Trickling Filters. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Richwine, Reynold D.

    The textual material for a unit on trickling filters is presented in this student manual. Topic areas discussed include: (1) trickling filter process components (preliminary treatment, media, underdrain system, distribution system, ventilation, and secondary clarifier); (2) operational modes (standard rate filters, high rate filters, roughing…

  19. Structure of solar coronal streamers

    NASA Astrophysics Data System (ADS)

    Schultz, C. G.

    The present, direct method for the solution of generalized potential problems works outward from an O-point, under an assumption of the existence of flux surfaces. At each flux surface, a Fourier filter is used for the flux surface length variable to prevent numerical error amplifications, and the value of the inverse curvature radius and the normal direction are filtered to avoid the effects of local wrinkles.

  20. Gaussian pre-filtering for uncertainty minimization in digital image correlation using numerically-designed speckle patterns

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Paolo; Matta, Fabio; Zappa, Emanuele; Sutton, Michael A.; Cigada, Alfredo

    2015-03-01

    This paper discusses the effect of pre-processing image blurring on the uncertainty of two-dimensional digital image correlation (DIC) measurements for the specific case of numerically-designed speckle patterns having particles with well-defined and consistent shape, size and spacing. Such patterns are more suitable for large measurement surfaces on large-scale specimens than traditional spray-painted random patterns without well-defined particles. The methodology consists of numerical simulations where Gaussian digital filters with varying standard deviation are applied to a reference speckle pattern. To simplify the pattern application process for large areas and increase contrast to reduce measurement uncertainty, the speckle shape, mean size and on-center spacing were selected to be representative of numerically-designed patterns that can be applied on large surfaces through different techniques (e.g., spray-painting through stencils). Such 'designer patterns' are characterized by well-defined regions of non-zero frequency content and non-zero peaks, and are fundamentally different from typical spray-painted patterns whose frequency content exhibits near-zero peaks. The effect of blurring filters is examined for constant, linear, quadratic and cubic displacement fields. Maximum strains between ±250 and ±20,000 με are simulated, thus covering a relevant range for structural materials subjected to service and ultimate stresses. The robustness of the simulation procedure is verified experimentally using a physical speckle pattern subjected to constant displacements. The stability of the relation between standard deviation of the Gaussian filter and measurement uncertainty is assessed for linear displacement fields at varying image noise levels, subset size, and frequency content of the speckle pattern. It is shown that bias error as well as measurement uncertainty are minimized through Gaussian pre-filtering. This finding does not apply to typical spray-painted patterns without well-defined particles, for which image blurring is only beneficial in reducing bias errors.

  1. Optical Measurement Center Status

    NASA Technical Reports Server (NTRS)

    Rodriguez, H.; Abercromby, K.; Mulrooney, M.; Barker, E.

    2007-01-01

    Beginning in 2005, an optical measurement center (OMC) was created to measure the photometric signatures of debris pieces. Initially, the OMC was equipped with a 300 W xenon arc lamp, a SBIG 512 x 512 ST8X MEI CCD camera with standard Johnson filters, and a Lynx 6 robotic arm with five degrees of freedom. As research progressed, modifications were made to the equipment. A customized rotary table was built to overcome the robot s limitation of 180 degree wrist rotation and provide complete 360 degree rotation with little human interaction. This change allowed an initial phase angle (source-object-camera angle) of roughly 5 degrees to be adjusted to 7, 10, 15, 18, 20, 25, or 28 degrees. Additionally, the Johnson R and I CCD filters were replaced with the standard astronomical filters suite (Bessell R,I). In an effort to reduce object saturation, the two generic aperture stops were replaced with neutral density filters. Initially data were taken with aluminum debris pieces from the European Space Operations Centre ESOC2 ground test and more recently with samples from a thermal multi-layered insulation (MLI) commonly used on rocket bodies and satellites. The ESOC2 data provided light curve analysis for one type of material but many different shapes, including flat, bent, curled, folded, and torn. The MLI samples are roughly the same size and shape, but have different surfaces that give rise to interesting photometric light curves. In addition, filter photometry was conducted on the MLI pieces, a process that also will be used on the ESOC2 samples. While obtaining light curve data an anomalous drop in intensity was observed when the table revolved through the second 180 degree rotation. Investigation revealed that the robot s wrist rotation is not reliable past 80 degrees, thus the object may be at slightly different angles at the 180 degree transition. To limit this effect, the initial rotation position begins with the object s minimal surface area facing the camera.

  2. Comparative bioaccumulation of trace metals using six filter feeder organisms in a coastal lagoon ecosystem (of the central-east Gulf of California).

    PubMed

    Jara-Marini, M E; Tapia-Alcaraz, J N; Dumer-Gutiérrez, J A; García-Rico, L; García-Hernández, J; Páez-Osuna, F

    2013-02-01

    The Tobari Lagoon, located in the central-east coast of the Gulf of California, receives effluents from the Yaqui Valley, one of the most extensive agricultural areas of México. The Tobari Lagoon also receives effluents from nearby shrimp farms and untreated municipal sewage. Surface sediment samples and six different species of filter feeders (Crassostrea corteziensis, Crassostrea gigas, Chione gnidia, Anadara tuberculosa, Chione fluctifraga, and Fistulobalanus dentivarians) were collected during the dry and the rainy seasons and analyzed to determine concentrations of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn). Seasonal variations in metal concentrations in sediment were evident, especially for Cd, Cu, Hg, and Zn. The total and bioavailable concentrations of the five metals are not elevated in comparison to other areas around the world. The percentages of bioavailable respect to total concentrations of the metals varied from 0.6 % in Hg to 50.2 % for Cu. In the organisms, Hg showed the lowest concentrations (ranged from 0.22 to 0.65 μg/g) while Zn showed the highest (ranged from 36.6 to 1,702 μg/g). Linear correlations between the levels of Cu, Pb, and Zn in the soft tissues of C. fluctifraga and C. gnidia, and A. tuberculosa and C. gnidia were found. Seasonal and interspecies variations in the metal levels in filter feeders were found; F. dentivarians, C. corteziensis, and C. gigas exhibited the highest levels, could be used as biomonitors of metals contamination in this area.

  3. Secondary Pollutants from Ozone Reaction with Ventilation Filters and Degradation of Filter Media Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael

    Prior research suggests that chemical processes taking place on the surface of particle filters employed in buildings may lead to the formation of harmful secondary byproducts. We investigated ozone reactions with fiberglass, polyester, cotton/polyester and polyolefin filter media, as well as hydrolysis of filter media additives. Studies were carried out on unused media, and on filters that were installed for 3 months in buildings at two different locations in the San Francisco Bay Area. Specimens from each filter media were exposed to {approx}150 ppbv ozone in a flow tube under a constant flow of dry or humidified air (50percent RH).more » Ozone breakthrough was recorded for each sample over periods of {approx}1000 min; the ozone uptake rate was calculated for an initial transient period and for steady-state conditions. While ozone uptake was observed in all cases, we did not observe significant differences in the uptake rate and capacity for the various types of filter media tested. Most experiments were performed at an airflow rate of 1.3 L/min (face velocity = 0.013 m/s), and a few tests were also run at higher rates (8 to 10 L/min). Formaldehyde and acetaldehyde, two oxidation byproducts, were quantified downstream of each sample. Those aldehydes (m/z 31 and 45) and other volatile byproducts (m/z 57, 59, 61 and 101) were also detected in real-time using Proton-Transfer Reaction - Mass Spectrometry (PTR-MS). Low-ppbv byproduct emissions were consistently higher under humidified air than under dry conditions, and were higher when the filters were loaded with particles, as compared with unused filters. No significant differences were observed when ozone reacted over various types of filter media. Fiberglass filters heavily coated with impaction oil (tackifier) showed higher formaldehyde emissions than other samples. Those emissions were particularly high in the case of used filters, and were observed even in the absence of ozone, suggesting that hydrolysis of additives, rather than ozonolysis, is the main formaldehyde source in those filters. Emission rates of formaldehyde and acetaldehyde were not found to be large enough to substantially increase indoor concentrations in typical building scenarios. Nevertheless, ozone reactions on HVAC filters cannot be ignored as a source of low levels of indoor irritants.« less

  4. Spectral methods to detect cometary minerals with OSIRIS on board Rosetta

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Vincent, J.-B.; Sierks, H.

    2013-09-01

    Comet 67P/Churyumov-Gerasimenko is going to be observed by the OSIRIS scientific imager (Keller et al. 2007) on board ESA's spacecraft Rosetta in the wavelength range of 250-1000 nm with a combination of 12 filters for the narrow angle camera (NAC) and 14 combination of 12 filters for the narrow angle camera (NAC) and 14 filters in the wavelength range of 240-720 nm for the wide angle camera (WAC). NAC filters are suitable to surface composition studies, while WAC filters are designed for gas and radical emission studies. In order to investigate the composition of the comet surface from the observed images, we need to understand how to detect different minerals and which compositional information can be derived from the NAC filters. Therefore, the most common cometary silicates e.g. enstatite, forsterite are investigated with two hydrated silicates (serpentine and smectite) for the determina- tion of the spectral methods. Laboratory data of those selected minerals are collected from RELAB database (http://www.planetary.brown.edu/relabdocs/relab.htm) and absolute spectra of the minerals observed by OSIRIS NAC filters are calculated. Due to the limited spectral range of the laboratory data, Far-UV and Neutral density filters of NAC are excluded from this analysis. Considered NAC filters in this study are represented in Table 1 and the number of collected laboratory data are presented in Table 2. Detection and separation of the minerals will not only allow us to study the surface composition but also to study observed composition changes due to the cometary activity during the mission.

  5. Atmospheric Correction at AERONET Locations: A New Science and Validation Data Set

    NASA Technical Reports Server (NTRS)

    Wang, Yujie; Lyapustin, Alexei; Privette, Jeffery L.; Morisette, Jeffery T.; Holben, Brent

    2008-01-01

    This paper describes an AERONET-based Surface Reflectance Validation Network (ASRVN) and its dataset of spectral surface bidirectional reflectance and albedo based on MODIS TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50x50 square kilometer subsets of MODIS L1B data from MODAPS and AERONET aerosol and water vapor information. Then it performs an accurate atmospheric correction for about 100 AERONET sites based on accurate radiative transfer theory with high quality control of the input data. The ASRVN processing software consists of L1B data gridding algorithm, a new cloud mask algorithm based on a time series analysis, and an atmospheric correction algorithm. The atmospheric correction is achieved by fitting the MODIS top of atmosphere measurements, accumulated for 16-day interval, with theoretical reflectance parameterized in terms of coefficients of the LSRT BRF model. The ASRVN takes several steps to ensure high quality of results: 1) cloud mask algorithm filters opaque clouds; 2) an aerosol filter has been developed to filter residual semi-transparent and sub-pixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing requirement of consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of seasonal back-up spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixels. The ASRVN products include three parameters of LSRT model (k(sup L), k(sup G), k(sup V)), surface albedo, NBRF (a normalized BRF computed for a standard viewing geometry, VZA=0 deg., SZA=45 deg.), and IBRF (instantaneous, or one angle, BRF value derived from the last day of MODIS measurement for specific viewing geometry) for MODIS 500m bands 1-7. The results are produced daily at resolution of 1 km in gridded format. We also provide cloud mask, quality flag and a browse bitmap image. The new dataset can be used for a wide range of applications including validation analysis and science research.

  6. Microwave mode shifting antenna system for regenerating particulate filters

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2011-04-26

    A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.

  7. Investigation of the applications of GEOS-3 radar altimeter data in remote sensing of land and sea features

    NASA Technical Reports Server (NTRS)

    Miller, L. S.

    1977-01-01

    A number of GEOS-3 passes over the Atlantic Ocean and Southeastern U.S. are examined. Surface-truth and radar altimeter data comparisons are given in terms of surface correlation length, signal fluctuation characteristics, and altitude tracker dynamic response. Detailed analyses are given regarding spatial resolution and its dependency on angular backscatter behavior. These analyses include data from passes over ocean (diffuse scatter), land (large body scatter), and mirror-like inland water areas (pseudo-specular scatter). Altimeter data are examined for a pass over a large reservoir and marsh area of differing water levels; this geometry represents a stepchange in altitude which is usable in determination of the transient response of the tracker. The extent to which pulse-length limited operation pertains over-land is examined. A Wiener filter altitude algorithm is discussed which permits specification of tracker variance and geoidal spectral characteristics during operation.

  8. ZnO nanoparticles and organic chemical UV-filters are equally well tolerated by human immune cells.

    PubMed

    O'Keefe, Sean J; Feltis, Bryce N; Piva, Terrence J; Turney, Terence W; Wright, Paul F A

    2016-11-01

    An important part of assessing the toxic potential of nanoparticles for specific applications should be the direct comparison of biological activities with those of alternative materials for the same application. Nanoparticulate inorganic ultraviolet (UV) filters, such as zinc oxide (ZnO), are commonly incorporated into transparent sunscreen and cosmetic formulations. However, concerns have been raised about potential unwanted effects, despite their negligible skin penetration and inherent advantages over organic chemical UV-filters. To provide useful application-relevant assessments of their potential hazard with/without UVA co-exposure, we directly compared cytotoxic and immune response profiles of human THP-1 monocytic cells to ZnO nanoparticles (30 nm) with bulk ZnO particulates (200 nm) and five conventional organic chemical UV-filters - butylmethoxydibenzoylmethane (avobenzone), octylmethoxycinnamate, octylsalicylate, homosalate and 4-methylbenzylidene camphor. High exposure concentrations of both organic and particulate UV-filters were required to cause cytotoxicity in monocyte and macrophage cultures after 24 h. Co-exposure with UVA (6.7 J/cm(2)) did not alter cytotoxicity profiles. Particle surface area-based dose responses showed that ZnO NPs were better tolerated than bulk ZnO. Organic and particulate UV-filters increased apoptosis at similar doses. Only particulates increased the generation of reactive oxygen species. Interleukin-8 (IL-8) release was increased by all particulates, avobenzone, homosalate and octylsalicylate. IL-1β release was only increased in macrophages by exposure to avobenzone and homosalate. In conclusion, direct effects were caused in monocytes and macrophages at similar concentrations of both organic UV-filters and ZnO nanoparticulates - indicating that their intrinsic cytotoxicity is similar. With their lower skin penetration, ZnO nanoparticles are expected to have lower bioactivity when used in sunscreens.

  9. Automatic detection system of shaft part surface defect based on machine vision

    NASA Astrophysics Data System (ADS)

    Jiang, Lixing; Sun, Kuoyuan; Zhao, Fulai; Hao, Xiangyang

    2015-05-01

    Surface physical damage detection is an important part of the shaft parts quality inspection and the traditional detecting methods are mostly human eye identification which has many disadvantages such as low efficiency, bad reliability. In order to improve the automation level of the quality detection of shaft parts and establish its relevant industry quality standard, a machine vision inspection system connected with MCU was designed to realize the surface detection of shaft parts. The system adopt the monochrome line-scan digital camera and use the dark-field and forward illumination technology to acquire images with high contrast; the images were segmented to Bi-value images through maximum between-cluster variance method after image filtering and image enhancing algorithms; then the mainly contours were extracted based on the evaluation criterion of the aspect ratio and the area; then calculate the coordinates of the centre of gravity of defects area, namely locating point coordinates; At last, location of the defects area were marked by the coding pen communicated with MCU. Experiment show that no defect was omitted and false alarm error rate was lower than 5%, which showed that the designed system met the demand of shaft part on-line real-time detection.

  10. 'Santa Anita' Panorama

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for 'Santa Anita' Panorama (QTVR)

    This color mosaic taken on May 21, 25 and 26, 2004, by the panoramic camera on NASA's Mars Exploration Rover Spirit was acquired from a position roughly three-fourths the way between 'Bonneville Crater' and the base of the 'Columbia Hills.' The area is within a low thermal inertia unit (an area that heats up and cools off quickly) identified from orbit by the Mars Odyssey thermal emission imaging system instrument. The rover was roughly 600 meters (1,968 feet) from the base of the hills.

    This mosaic, referred to as the 'Santa Anita Panorama,' is comprised of 64 pointings, acquired with six of the panoramic camera's color filters, including one designed specifically to allow comparisons between orbital and surface brightness data. A total of 384 images were acquired as part of this panorama. The mosaic is an approximate true-color rendering constructed from images using the camera's 750-, 530- and and 480-nanometer filters, and is presented at the full resolution of the camera.

  11. Filtration device for rapid separation of biological particles from complex matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sangil; Naraghi-Arani, Pejman; Liou, Megan

    2018-01-09

    Methods and systems for filtering of biological particles are disclosed. Filtering membranes separate adjacent chambers. Through osmotic or electrokinetic processes, flow of particles is carried out through the filtering membranes. Cells, viruses and cell waste can be filtered depending on the size of the pores of the membrane. A polymer brush can be applied to a surface of the membrane to enhance filtering and prevent fouling.

  12. Apollo 9 Mission image - S0-65 Multispectral Photography - New Mexico and Texas

    NASA Image and Video Library

    1969-03-12

    AS09-26A-3807A (12 March 1969) --- Color infrared photograph of the Texas-New Mexico border area, between Lubbock and Roswell, taken on March 12, 1969, by one of the four synchronized cameras of the Apollo 9 Earth Resources Survey (SO65). At 11:30 a.m. (EST) when this picture was made the Apollo 9 spacecraft was at an altitude of 119 nautical miles, and the sun elevation was 38 degrees above the horizon. The location of the point on Earth's surface at which the four-camera combination was aimed was 33 degrees 42 minutes north latitude, and 103 degrees 1 minute west longitude. The other three cameras used: (B) black and white film with a red filter; (C) black and white infrared film; and (D) black and white film with a green filter.

  13. Imager for Mars Pathfinder (IMF)

    NASA Technical Reports Server (NTRS)

    Smith, Peter H.

    1994-01-01

    The IMP camera is a near-surface sensing experiment with many capabilities beyond those normally associated with an imager. It is fully pointable in both elevation and azimuth with a protected, stowed position looking straight down. Stereo separation is provided with two optical paths; each has a 12-position filter wheel. The primary function of the camera, strongly tied to mission success, is to take a color panorama of the surrounding terrain. IMP requires approximately 120 images to give a complete downward hemisphere from the deployed position. IMP provides the geologist, and everyone else, a view of the local morphology with millimeter-tometer-scale resolution over a broad area. In addition to the general morphology of the scale, IMP has a large compliment of specially chosen filters to aid in both the identification of the mineral types and their degree of weathering.

  14. Apollo 9 Mission image - S0-65 Multispectral Photography - Georgia

    NASA Image and Video Library

    2009-02-19

    AS09-26A-3816A (12 March 1969) --- Color infrared photograph of the Atlantic coast of Georgia, Brunswick area, taken on March 12, 1969, by one of the four synchronized cameras of the Apollo 9 Earth Resources Survey SO65 Experiment. At 11:35 a.m. (EST) when this picture was made the Apollo 9 spacecraft was at an altitude of 102 nautical miles, and the sun elevation was 51 degrees above the horizon. The location of the point on Earth's surface at which the four-camera combination was aimed 31 degrees 16 minutes north latitude, and 81 degrees 17 minutes west longitude. The other three cameras used: (B) black and white film with a red filter; (C) black and white infrared film; and (D) black and white film with a green filter.

  15. State-of-the-Art: DTM Generation Using Airborne LIDAR Data

    PubMed Central

    Chen, Ziyue; Gao, Bingbo; Devereux, Bernard

    2017-01-01

    Digital terrain model (DTM) generation is the fundamental application of airborne Lidar data. In past decades, a large body of studies has been conducted to present and experiment a variety of DTM generation methods. Although great progress has been made, DTM generation, especially DTM generation in specific terrain situations, remains challenging. This research introduces the general principles of DTM generation and reviews diverse mainstream DTM generation methods. In accordance with the filtering strategy, these methods are classified into six categories: surface-based adjustment; morphology-based filtering, triangulated irregular network (TIN)-based refinement, segmentation and classification, statistical analysis and multi-scale comparison. Typical methods for each category are briefly introduced and the merits and limitations of each category are discussed accordingly. Despite different categories of filtering strategies, these DTM generation methods present similar difficulties when implemented in sharply changing terrain, areas with dense non-ground features and complicated landscapes. This paper suggests that the fusion of multi-sources and integration of different methods can be effective ways for improving the performance of DTM generation. PMID:28098810

  16. Astrometric and Photometric Data Fusion for Mass and Surface Material Estimation using Refined Bidirectional Reflectance Distribution Functions-Solar Radiation Pressure Model

    DTIC Science & Technology

    2013-09-01

    model and the BRDF in the SRP model are not consistent with each other, then the resulting estimated albedo-areas and mass are inaccurate and biased...This work studies the use of physically consistent BRDF -SRP models for mass estimation. Simulation studies are used to provide an indication of the...benefits of using these new models . An unscented Kalman filter approach that includes BRDF and mass parameters in the state vector is used. The

  17. SAW chirp filter technology for satellite on-board processing applications

    NASA Astrophysics Data System (ADS)

    Shaw, M. D.; Miller, N. D. J.; Malarky, A. P.; Warne, D. H.

    1989-11-01

    Market growth in the area of thin route satellite communications services has led to consideration of nontraditional system architectures requiring sophisticated on-board processing functions. Surface acoustic wave (SAW) technology exists today which can provide implementation of key on-board processing subsystems by using multicarrier demodulators. This paper presents a review of this signal processing technology, along with a brief review of dispersive SAW device technology as applied to the implementation of multicarrier demodulators for on-board signal processing.

  18. How Well Can We Estimate Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission in an Atlantic Coastal Area?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.

    Areal-averaged albedos are particularly difficult to measure in coastal regions, because the surface is not homogenous, consisting of a sharp demarcation between land and water. With this difficulty in mind, we evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone under fully overcast conditions. To illustrate the performance of our retrieval, we find the areal-averaged albedo using measurements from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (415, 500, 615, 673, and 870 nm). These MFRSR data are collected at a coastal site in Graciosa Island, Azores supported by the U.S. Department ofmore » Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program. The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo at four nominal wavelengths (470, 560, 670 and 860 nm). These comparisons are made during a 19-month period (June 2009 - December 2010). We also calculate composite-based spectral values of surface albedo by a weighted-average approach using estimated fractions of major surface types observed in an area surrounding this coastal site. Taken as a whole, these three methods of finding albedo show spectral and temporal similarities, and suggest that our simple, transmission-based technique holds promise, but with estimated errors of about ±0.03. Additional work is needed to reduce this uncertainty in areas with inhomogeneous surfaces.« less

  19. Nutrient release and ammonium sorption by poultry litter and wood biochars in stormwater treatment.

    PubMed

    Tian, Jing; Miller, Valentina; Chiu, Pei C; Maresca, Julia A; Guo, Mingxin; Imhoff, Paul T

    2016-05-15

    The feasibility of using biochar as a filter medium in stormwater treatment facilities was evaluated with a focus on ammonium retention. Successive batch extractions and batch ammonium sorption experiments were conducted in both deionized (DI) water and artificial stormwater using poultry litter (PL) and hardwood (HW) biochars pyrolyzed at 400°C and 500°C. No measureable nitrogen leached from HW biochars except 0.07 μmol/g of org-N from 400°C HW biochar. PL biochar pyrolyzed at 400°C leached 120-127 μmol/g of nitrogen but only 7.1-8.6 μmol/g of nitrogen when pyrolyzed at 500°C. Ammonium sorption was significant for all biochars. At a typical ammonium concentration of 2mg/L in stormwater, the maximum sorption was 150 mg/kg for PL biochar pryolyzed at 400°C. In stormwater, ion competition (e.g. Ca(2+)) suppressed ammonium sorption compared to DI water. Surprisingly, ammonium sorption was negatively correlated to the BET surface area of the tested biochars, but increased linearly with cation exchange capacity. Cation exchange capacity was the primary mechanism controlling ammonium sorption and was enhanced by pyrolysis at 400°C, while BET surface area was enhanced by pyrolysis at 500°C. The optimal properties (BET surface area, CEC, etc.) of biochar as a sorbent are not fixed but depend on the target pollutant. Stormwater infiltration column experiments in sand with 10% biochar removed over 90% of ammonium with influent ammonium concentration of 2mg/L, compared to only 1.7% removal in a sand-only column, indicating that kinetic limitations on sorption were minor for the storm conditions studied. Hardwood and poultry litter biochar pyrolyzed at 500°C and presumably higher temperature may be viable filter media for stormwater treatment facilities, as they showed limited release of organic and inorganic nutrients and acceptable ammonium sorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy

    NASA Astrophysics Data System (ADS)

    Hu, Han; Ding, Yulin; Zhu, Qing; Wu, Bo; Lin, Hui; Du, Zhiqiang; Zhang, Yeting; Zhang, Yunsheng

    2014-06-01

    The filtering of point clouds is a ubiquitous task in the processing of airborne laser scanning (ALS) data; however, such filtering processes are difficult because of the complex configuration of the terrain features. The classical filtering algorithms rely on the cautious tuning of parameters to handle various landforms. To address the challenge posed by the bundling of different terrain features into a single dataset and to surmount the sensitivity of the parameters, in this study, we propose an adaptive surface filter (ASF) for the classification of ALS point clouds. Based on the principle that the threshold should vary in accordance to the terrain smoothness, the ASF embeds bending energy, which quantitatively depicts the local terrain structure to self-adapt the filter threshold automatically. The ASF employs a step factor to control the data pyramid scheme in which the processing window sizes are reduced progressively, and the ASF gradually interpolates thin plate spline surfaces toward the ground with regularization to handle noise. Using the progressive densification strategy, regularization and self-adaption, both performance improvement and resilience to parameter tuning are achieved. When tested against the benchmark datasets provided by ISPRS, the ASF performs the best in comparison with all other filtering methods, yielding an average total error of 2.85% when optimized and 3.67% when using the same parameter set.

  1. Improved selectivity towards NO₂ of phthalocyanine-based chemosensors by means of original indigo/nanocarbons hybrid material.

    PubMed

    Brunet, J; Pauly, A; Dubois, M; Rodriguez-Mendez, M L; Ndiaye, A L; Varenne, C; Guérin, K

    2014-09-01

    A new and original gas sensor-system dedicated to the selective monitoring of nitrogen dioxide in air and in the presence of ozone, has been successfully achieved. Because of its high sensitivity and its partial selectivity towards oxidizing pollutants (nitrogen dioxide and ozone), copper phthalocyanine-based chemoresistors are relevant. The selectivity towards nitrogen dioxide results from the implementation of a high efficient and selective ozone filter upstream the sensing device. Thus, a powdered indigo/nanocarbons hybrid material has been developed and investigated for such an application. If nanocarbonaceous material acts as a highly permeable matrix with a high specific surface area, immobilized indigo nanoparticles are involved into an ozonolysis reaction with ozone leading to the selective removal of this analytes from air sample. The filtering yields towards each gas have been experimentally quantified and establish the complete removal of ozone while having the concentration of nitrogen dioxide unchanged. Long-term gas exposures reveal the higher durability of hybrid material as compared to nanocarbons and indigo separately. Synthesis, characterizations by many complementary techniques and tests of hybrid filters are detailed. Results on sensor-system including CuPc-based chemoresistors and indigo/carbon nanotubes hybrid material as in-line filter are illustrated. Sensing performances will be especially discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Use of shredded tire chips and tire crumbs as packing media in trickling filter systems for landfill leachate treatment.

    PubMed

    Mondal, B; Warith, M A

    2008-08-01

    Scrap tire stockpiles are breeding grounds for pests, mosquitoes and west Nile viruses and, thereby, become a potential health risk. This experimental study was carried out in six stages to determine the suitability of shredded tire materials in a trickling filter system to treat landfill leachate. Biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and NH3-N removals were obtained in the range of 81 to 96%, 76 to 90% and 15 to 68%, respectively. The removal of organics appears to be largely related to total dissolved solids reduction in leachate. A sudden increase, from time to time, in organic content of effluent could be attributed to biomass sloughing and clogging in the trickling filters. However, tire crumbs exhibited more consistent organics removal throughout the experimental program. Due to the high surface area of shredded tire chips and crumbs, a layer of biomass, 1-2 mm thick, was attached to them and was sloughed off at an interval of 21 days. Apart from that, as shredded tires are comparatively cheaper than any other usable packing material, tire chips and tire crumbs appeared to be quite promising as packing media in trickling filters for landfill leachate treatment.

  3. Phenytoin overdose treated with hemodialysis using a high cut-off dialyzer.

    PubMed

    Cormier, Monique J; Desmeules, Simon; St-Onge, Maude; Ghannoum, Marc

    2017-01-01

    We describe the case of a 52-year-old man who presented after having ingested an unknown quantity of phenytoin. Peak phenytoin concentration was 51.2 mg/L (therapeutic range 10-20 mg/L). Five days after admission, the patient became comatose and was intubated. Because of persistent toxic phenytoin levels and unchanged clinical status for 12 days, hemodialysis (HD) was prescribed to enhance elimination of phenytoin. HD was performed using a Gambro Theralite TM filter (Baxter International Inc., Deerfield, USA), a high cut-off filter that allows the removal of molecules of up to 45 kDa. Phenytoin concentration readily decreased during the 8-hour HD treatment from 38.9 mg/L to 27.8 mg/L (28.5% decrease); during HD, phenytoin half-life was 18.5h (compared to 1109.8h before HD and 56.3h after HD), phentyoin clearance averaged 80.1 mL/min and a total of 1.1 g of phenytoin was removed. Albumin removal from the Theralite filter was most important at the beginning of HD. The high clearance of phenytoin obtained with this filter was likely due to its high surface area rather than its capacity to remove the albumin-phenytoin complex. © 2016 International Society for Hemodialysis.

  4. Direct analysis of in-gel proteins by carbon nanotubes-modified paper spray ambient mass spectrometry.

    PubMed

    Han, Feifei; Yang, Yuhan; Ouyang, Jin; Na, Na

    2015-02-07

    The in situ and direct extraction, desorption and ionization of in-gel intact proteins after electrophoresis has been achieved by carbon nanotubes (CNTs)-modified paper spray mass spectrometry at ambient conditions. Characteristics of CNTs (including larger surface area, smaller pore diameter and enhanced conductivity) were endowed to the porous filter paper substrate by uniformly dispersing the CNTs on the filter paper. Upon applying electric potential to the CNTs-modified paper, the in-gel proteins were extracted from the gel and subsequently migrated to the tip of the filter paper by electrophoresis-like behavior for paper spray ionization, which was monitored by extracted ion chronograms. The characterizations of modified filter papers and CNTs nanoparticles further confirmed the role of CNTs in in-gel protein extraction, protein migration as well as spray ionization at the paper tip. Under optimized conditions, a mixture of cytochrome c, lysozyme and myoglobin was successfully separated by native electrophoresis and subsequently analysed by the present method, showing a limit of detection of 10 ng per gel band. The present strategy offers a new pathway for the direct detection of in-gel intact proteins at ambient conditions without any pre-treatment (e.g. digestion, chemical extraction and desalting), which exhibits potential applications in top-down proteomics.

  5. Terrain shape estimation from optical flow, using Kalman filtering

    NASA Astrophysics Data System (ADS)

    Hoff, William A.; Sklair, Cheryl W.

    1990-01-01

    As one moves through a static environment, the visual world as projected on the retina seems to flow past. This apparent motion, called optical flow, can be an important source of depth perception for autonomous robots. An important application is in planetary exploration -the landing vehicle must find a safe landing site in rugged terrain, and an autonomous rover must be able to navigate safely through this terrain. In this paper, we describe a solution to this problem. Image edge points are tracked between frames of a motion sequence, and the range to the points is calculated from the displacement of the edge points and the known motion of the camera. Kalman filtering is used to incrementally improve the range estimates to those points, and provide an estimate of the uncertainty in each range. Errors in camera motion and image point measurement can also be modelled with Kalman filtering. A surface is then interpolated to these points, providing a complete map from which hazards such as steeply sloping areas can be detected. Using the method of extended Kalman filtering, our approach allows arbitrary camera motion. Preliminary results of an implementation are presented, and show that the resulting range accuracy is on the order of 1-2% of the range.

  6. Multinuclear NMR studies of single lipid bilayers supported in cylindrical aluminum oxide nanopores.

    PubMed

    Gaede, Holly C; Luckett, Keith M; Polozov, Ivan V; Gawrisch, Klaus

    2004-08-31

    Lipid bilayers were deposited inside the 0.2 microm pores of anodic aluminum oxide (AAO) filters by extrusion of multilamellar liposomes and their properties studied by 2H, 31P, and 1H solid-state NMR. Only the first bilayer adhered strongly to the inner surface of the pores. Additional layers were washed out easily by a flow of water as demonstrated by 1H magic angle spinning NMR experiments with addition of Pr3+ ions to shift accessible lipid headgroup resonances. A 13 mm diameter Anopore filter of 60 microm thickness oriented approximately 2.5 x 10(-7) mol of lipid as a single bilayer, corresponding to a total membrane area of about 500 cm2. The 2H NMR spectra of chain deuterated POPC are consistent with adsorption of wavy, tubular bilayers to the inner pore surface. By NMR diffusion experiments, we determined the average length of those lipid tubules to be approximately 0.4 microm. There is evidence for a thick water layer between lipid tubules and the pore surface. The ends of tubules are well sealed against the pore such that Pr3+ ions cannot penetrate into the water underneath the bilayers. We successfully trapped poly(ethylene glycol) (PEG) with a molecular weight of 8000 in this water layer. From the quantity of trapped PEG, we calculated an average water layer thickness of 3 nm. Lipid order parameters and motional properties are unperturbed by the solid support, in agreement with existence of a water layer. Such unperturbed, solid supported membranes are ideal for incorporation of membrane-spanning proteins with large intra- and extracellular domains. The experiments suggest the promise of such porous filters as membrane support in biosensors.

  7. Global surface density of water mass variations by using a two-step inversion by cumulating daily satellite gravity information

    NASA Astrophysics Data System (ADS)

    Ramillien, Guillaume; Frappart, Frédéric; Seoane, Lucia

    2016-04-01

    We propose a new method to produce time series of global maps of surface mass variations by progressive integration of daily geopotential variations measured by orbiting satellites. In the case of the GRACE mission, these geopotential variations can be determined from very accurate inter-satellite K-Band Range Rate (KBRR) measurements of 5-second daily orbits. In particular, the along-track gravity contribution of hydrological mass changes is extracted by removing de-aliasing models for static field, atmosphere, oceans mass variations (including periodical tides), as well as polar movements. Our determination of surface mass sources is composed of two successive dependent Kalman filter stages. The first one consists of reducing the satellite-based potential anomalies by adjusting the longest spatial wavelengths (i.e., low-degree spherical harmonics lower than 2). In the second stage, the residual potential anomalies from the previous stage are used to recover surface mass density changes - in terms of Equivalent-Water Height (EWH) - over a global network of juxtaposed triangular elements. These surface tiles of ~100,000 km x km (or equivalently 330 km by 330 km) are defined to be of equal areas over the terrestrial sphere. However they can be adapted to the local geometry of the surface mass. Our global approach was tested by inverting geopotential data, and successfully applied to estimate time-varying surface mass densities from real GRACE-based residuals. This strategy of combined Kalman filter-type inversions can also be useful for exploring the possibility of improving time and space resolutions for ocean and land studies that would be hopefully brought by future low altitude geodetic missions.

  8. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zong, Yichen; Zhang, Yingying; Yang, Mengmeng; Zhang, Rufan; Li, Shuiqing; Wei, Fei

    2013-03-01

    We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions.We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions. Electronic supplementary information (ESI) available: Schematic of the synthesis process of the CNT/QF filter; typical size distribution of atomized polydisperse NaCl aerosols used for air filtration testing; images of a QF filter and a CNT/QF filter; SEM image of a CNT/QF filter after 5 minutes of sonication in ethanol; calculation of porosity and filter specific area. See DOI: 10.1039/c3nr34325a

  9. Interpretation of high resolution airborne magnetic data (HRAMD) of Ilesha and its environs, Southwest Nigeria, using Euler deconvolution method

    NASA Astrophysics Data System (ADS)

    Olurin, Oluwaseun Tolutope

    2017-12-01

    Interpretation of high resolution aeromagnetic data of Ilesha and its environs within the basement complex of the geological setting of Southwestern Nigeria was carried out in the study. The study area is delimited by geographic latitudes 7°30'-8°00'N and longitudes 4°30'-5°00'E. This investigation was carried out using Euler deconvolution on filtered digitised total magnetic data (Sheet Number 243) to delineate geological structures within the area under consideration. The digitised airborne magnetic data acquired in 2009 were obtained from the archives of the Nigeria Geological Survey Agency (NGSA). The airborne magnetic data were filtered, processed and enhanced; the resultant data were subjected to qualitative and quantitative magnetic interpretation, geometry and depth weighting analyses across the study area using Euler deconvolution filter control file in Oasis Montag software. Total magnetic intensity distribution in the field ranged from -77.7 to 139.7 nT. Total magnetic field intensities reveal high-magnitude magnetic intensity values (high-amplitude anomaly) and magnetic low intensities (low-amplitude magnetic anomaly) in the area under consideration. The study area is characterised with high intensity correlated with lithological variation in the basement. The sharp contrast is enhanced due to the sharp contrast in magnetic intensity between the magnetic susceptibilities of the crystalline and sedimentary rocks. The reduced-to-equator (RTE) map is characterised by high frequencies, short wavelengths, small size, weak intensity, sharp low amplitude and nearly irregular shaped anomalies, which may due to near-surface sources, such as shallow geologic units and cultural features. Euler deconvolution solution indicates a generally undulating basement, with a depth ranging from -500 to 1000 m. The Euler deconvolution results show that the basement relief is generally gentle and flat, lying within the basement terrain.

  10. Image quality enhancement for skin cancer optical diagnostics

    NASA Astrophysics Data System (ADS)

    Bliznuks, Dmitrijs; Kuzmina, Ilona; Bolocko, Katrina; Lihachev, Alexey

    2017-12-01

    The research presents image quality analysis and enhancement proposals in biophotonic area. The sources of image problems are reviewed and analyzed. The problems with most impact in biophotonic area are analyzed in terms of specific biophotonic task - skin cancer diagnostics. The results point out that main problem for skin cancer analysis is the skin illumination problems. Since it is often not possible to prevent illumination problems, the paper proposes image post processing algorithm - low frequency filtering. Practical results show diagnostic results improvement after using proposed filter. Along that, filter do not reduces diagnostic results' quality for images without illumination defects. Current filtering algorithm requires empirical tuning of filter parameters. Further work needed to test the algorithm in other biophotonic applications and propose automatic filter parameter selection.

  11. Impact of submesoscales on surface material distribution in a gulf of Mexico mesoscale eddy

    NASA Astrophysics Data System (ADS)

    Haza, A. C.; Özgökmen, T. M.; Hogan, P.

    2016-11-01

    Understanding material distribution at the ocean's surface is important for a number of applications, in particular for buoyant pollutants such as oil spills. The main tools to estimate surface flows are satellite altimeters, as well as data-assimilative ocean general circulation models (OGCMs). Current-generation altimeter products rely on the geostrophic approximation to derive surface currents. Recent modeling and experimental work revealed existence of ageostrophic submesoscale motions within the upper ocean boundary layer. The next frontier is how submesoscales influence transport pathways in the upper ocean, which is a multi-scale problem involving the interaction of submesoscale and mesoscale coherent structures. Here we focus on a mesoscale eddy that exhibits submesoscale fluctuations along its rim. The high-resolution OCGM fields are then treated with two filters. A Lanczos filter is applied to velocity fields to remove the kinetic energy over the submesoscales. Then a Gaussian filter is used for the modeled sea surface height to simulate a geostrophic velocity field that would be available from gridded satellite altimeter data. Lagrangian Coherent Structures (LCS) are then generated from full-resolution and filtered fields to compare Lagrangian characteristics corresponding to different realizations of the surface velocity fields. It is found that while mesoscale currents exert a general control over the pathways of the tracer initially launched in the mesoscale eddy, there is a leak across the mesoscale transport barriers, induced by submesoscale motions. This leak is quantified as 20% of the tracer when using the submesoscale filter over one month of advection, while it increases to 50% using the geostrophic velocity field. We conclude that LCS computed from mesoscale surface velocity fields can be considered as a good first-order proxy, but the leakage of material across them in the presence of submesoscales can be significant.

  12. Photometric study of the Moon with SMART-1/AMIE

    NASA Astrophysics Data System (ADS)

    Naranen, Jyri; Parviainen, Hannu; Muinonen, Karri; Josset, Jean-Luc; Beauvivre, Stephane; Koschny, Detlef; Foing, Bernard H.; Krieger, Bjoern; Amie Team

    The Advanced Moon micro-Imager Experiment (AMIE) onboard the ESA SMART-1 lunar mission performed imaging of the Moon between November 2004 and September 2006, when the mission was ended by crashing the spacecraft into the lunar surface. AMIE was a 1024X1024 pixel miniaturized CCD camera with three colour filters and a panchromatic channel (clear filter). The images are of medium-to-high resolution, e.g. at 300 km pericenter altitude the resolution was 27 m/pix. We selected four different regions on the lunar surface imaged by AMIE for the photometric investigation reported here. These regions were selected so that as large phase angle coverage as possible was available, including the opposition geometry. Each of the regions cover a few hundred square kilometers of the lunar surface and were imaged by AMIE several tens of times. The regions examined include, e.g., Reiner gamma and Oceanus Procellarum near the crater Mairan. We utilized the latest in-flight calibration data available and we also georetrified the images to account for the aspect distortions. For the study reported here, the panchromatic filter was chosen since it is the best calibrated channel at the moment. The data was analyzed by implementing a numerical light scattering model with which we have inverted the regolith porosity and macroscopic surface roughness properties for the target areas. The model computes the bidirectional reflectance function using the geometric-optics approximation from a particulate medium constrained by a self-affine fractal random fields mimicking the regolith-covered lunar surface. Fractal description of the surface roughness is used, since it gives a more realistic way to model the true macroscopic surface roughness than the often used Gaussian correlation-model. Unlike in the previous studies, the azimuthal shadowing effects are taken into account, allowing for a more reliable inversion of surface statistics from images with large phase angles. In addition, we have fitted an empirical photometric function to the data which can be used to perform photometric correction to the images in, e.g., image mosaicking. A comparison with the results from the relevant previous photometric studies of the Moon is given. We end by presenting plans for future studies, especially the possible multi-colour photometry.

  13. Airborne Spectral Measurements of Surface-Atmosphere Anisotropy for Skukuza and Mongu Sites

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; King, Michael D.; Arnold, G. T.; Li, J. Y.

    2001-01-01

    The Cloud Absorption Radiometer (CAR) was flown aboard the University of Washington Convair CV-580 research aircraft and took measurements on 23 flights between August 15 and September 16. On 12 of those flights, BRF (bidirectional reflection function) measurements were obtained over different natural surfaces and ecosystems in southern Africa. The BRF measurements were done to characterize surface anisotropy in support of SAFARI 2000 science objectives principally to validate products from NASA's EOS (Earth Observing System) satellites, and to parameterize and validate BRF models. In this paper we present results of BRFs taken over two EOS validation sites: Skukuza tower, South Africa (25.0 S, 31.5 E) and Mongu tower, Zambia (15.4 S, 23.3 E). The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 microns), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 microns). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to bank at a comfortable roll angle of approximately 20 degrees and fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were acquired over selected surfaces so that average BRF smooth out small-scale surface and atmospheric inhomogeneities. At an altitude of 600 m above the targeted surface area and with a 1 degree IFOV, the pixel resolution is about 10 m at nadir and about 270 m at an 80 degree viewing angle from the CAR.

  14. Hot gas filter and system assembly

    DOEpatents

    Lippert, Thomas Edwin; Palmer, Kathryn Miles; Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.; Bachovchin, Dennis Michael

    1999-01-01

    A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

  15. Hot gas filter and system assembly

    DOEpatents

    Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

    1999-08-31

    A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

  16. Evaluation of a Cubature Kalman Filtering-Based Phase Unwrapping Method for Differential Interferograms with High Noise in Coal Mining Areas

    PubMed Central

    Liu, Wanli; Bian, Zhengfu; Liu, Zhenguo; Zhang, Qiuzhao

    2015-01-01

    Differential interferometric synthetic aperture radar has been shown to be effective for monitoring subsidence in coal mining areas. Phase unwrapping can have a dramatic influence on the monitoring result. In this paper, a filtering-based phase unwrapping algorithm in combination with path-following is introduced to unwrap differential interferograms with high noise in mining areas. It can perform simultaneous noise filtering and phase unwrapping so that the pre-filtering steps can be omitted, thus usually retaining more details and improving the detectable deformation. For the method, the nonlinear measurement model of phase unwrapping is processed using a simplified Cubature Kalman filtering, which is an effective and efficient tool used in many nonlinear fields. Three case studies are designed to evaluate the performance of the method. In Case 1, two tests are designed to evaluate the performance of the method under different factors including the number of multi-looks and path-guiding indexes. The result demonstrates that the unwrapped results are sensitive to the number of multi-looks and that the Fisher Distance is the most suitable path-guiding index for our study. Two case studies are then designed to evaluate the feasibility of the proposed phase unwrapping method based on Cubature Kalman filtering. The results indicate that, compared with the popular Minimum Cost Flow method, the Cubature Kalman filtering-based phase unwrapping can achieve promising results without pre-filtering and is an appropriate method for coal mining areas with high noise. PMID:26153776

  17. DRINKING WATER TURBIDITY AND EMERGENCY DEPARTMENT VISITS FOR GASTROINTESTINAL ILLNESS IN ATLANTA, 1993 – 2004

    PubMed Central

    Tinker, Sarah C.; Moe, Christine L.; Klein, Mitchel; Flanders, W. Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E.

    2013-01-01

    Background The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well-understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the U.S., and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant. Methods We examined the relationship between turbidity levels of raw and filtered surface water measured at eight major drinking water treatment plants in the metropolitan area of Atlanta, Georgia, and over 240 000 emergency department visits for gastrointestinal illness during 1993–2004 among the population served by these plants. We fit Poisson time-series statistical regression models that included turbidity in a 21-day distributed lag and that controlled for meteorological factors and long-term time trends. Results For filtered water turbidity, the results were consistent with no association with emergency department visits for gastrointestinal illness. We observed a modest association between raw water turbidity and emergency department visits for gastrointestinal illness. This association was not observed for all treatment plants in plant-specific analyses. Conclusions Our results suggest that source water quality may contribute modestly to endemic gastrointestinal illness in the study area. The association between turbidity and emergency department visits for gastrointestinal illness was only observed when raw water turbidity was considered; filtered water turbidity may not serve as a reliable indicator of modest pathogen risk at all treatment plants. PMID:18941478

  18. ELDAR, a new method to identify AGN in multi-filter surveys: the ALHAMBRA test case

    NASA Astrophysics Data System (ADS)

    Chaves-Montero, Jonás; Bonoli, Silvia; Salvato, Mara; Greisel, Natascha; Díaz-García, Luis A.; López-Sanjuan, Carlos; Viironen, Kerttu; Fernández-Soto, Alberto; Pović, Mirjana; Ascaso, Begoña; Arnalte-Mur, Pablo; Masegosa, Josefa; Matute, Israel; Márquez, Isabel; Cenarro, A. Javier; Abramo, L. Raul; Ederoclite, Alessandro; Alfaro, Emilio J.; Marin-Franch, Antonio; Varela, Jesus; Cristobal-Hornillos, David

    2017-12-01

    We present ELDAR, a new method that exploits the potential of medium- and narrow-band filter surveys to securely identify active galactic nuclei (AGN) and determine their redshifts. Our methodology improves on traditional approaches by looking for AGN emission lines expected to be identified against the continuum, thanks to the width of the filters. To assess its performance, we apply ELDAR to the data of the ALHAMBRA (Advance Large Homogeneous Area Medium Band Redshift Astronomical) survey, which covered an effective area of 2.38 deg2 with 20 contiguous medium-band optical filters down to F814W ≃ 24.5. Using two different configurations of ELDAR in which we require the detection of at least two and three emission lines, respectively, we extract two catalogues of type-I AGN. The first is composed of 585 sources (79 per cent of them spectroscopically unknown) down to F814W = 22.5 at zphot > 1, which corresponds to a surface density of 209 deg-2. In the second, the 494 selected sources (83 per cent of them spectroscopically unknown) reach F814W = 23 at zphot > 1.5, for a corresponding number density of 176 deg-2. Then, using samples of spectroscopically known AGN in the ALHAMBRA fields, for the two catalogues we estimate a completeness of 73 per cent and 67 per cent, and a redshift precision of 1.01 per cent and 0.86 per cent (with outliers fractions of 8.1 per cent and 5.8 per cent). At z > 2, where our selection performs best, we reach 85 per cent and 77 per cent completeness and we find no contamination from galaxies.

  19. Propagation of relativistic surface harmonics radiation in free space

    NASA Astrophysics Data System (ADS)

    an der Brügge, Daniel; Pukhov, Alexander

    2007-09-01

    Relativistic high-harmonics generation from overdense plasma surfaces is studied using three-dimensional particle-in-cell simulations. It is shown that the simple vacuum propagation in the real three-dimensional geometry strongly affects the harmonics spectrum on the optical axis. It may even lead to the formation of attosecond pulses without any special optical filters. To make good use of these effects it is necessary to shape either the laser pulse focal spot, or the surface material in such a way that the S-number of the interaction [see Gordienko and Pukhov, Phys. Plasmas 12, 043109 (2005)] is preserved over the largest possible area. The three-dimensional simulations are carefully compared with the one-dimensional ones. It is shown that the one-dimensional models work well even in cases where the laser is focused to a quite small spot on the harmonics generating surface (σ≈λ).

  20. Carbon speciation and surface tension of fog

    USGS Publications Warehouse

    Capel, P.D.; Gunde, R.; Zurcher, F.; Giger, W.

    1990-01-01

    The speciation of carbon (dissolved/particulate, organic/inorganic) and surface tension of a number of radiation fogs from the urban area of Zurich, Switzerland, were measured. The carbon species were dominated by "dissolved" organic carbon (DOC; i.e., the fraction that passes through a filter), which was typically present at levels of 40-200 mg/L. Less than 10% of the DOC was identified as specific individual organic compounds. Particulate organic carbon (POC) accounted for 26-41% of the mass of the particles, but usually less than 10% of the total organic carbon mass. Inorganic carbon species were relatively minor. The surface tensions of all the measured samples were less than pure water and were correlated with their DOC concentrations. The combination of high DOC and POC and low surface tension suggests a mechanism for the concentration of hydrophobic organic contaminants in the fog droplet, which have been observed by numerous investigators. ?? 1990 American Chemical Society.

  1. AOTF near-IR spectrometers for study of Lunar and Martian surface composition

    NASA Astrophysics Data System (ADS)

    Korablev, O.; Kiselev, A.; Vyazovetskiy, N.; Fedorova, A.; Evdokimova, N.; Stepanov, A.; Titov, A.; Kalinnikov, Y.; Kuzmin, R. O.; Bazilevsky, A. T.; Bondarenko, A.; Moiseev, P.

    2013-09-01

    The series of the AOTF near-IR spectrometers is developed in Moscow Space Research Institute for study of Lunar and Martian surface composition in the vicinity of a lander or a rover. Lunar Infrared Spectrometer (LIS) is an experiment onboard Luna-Glob (launch in 2015) and Luna-Resurs (launch in 2017) Russian surface missions. The LIS is mounted on the mechanic arm of landing module in the field of view (45°) of stereo TV camera. Infrared Spectrometer for ExoMars (ISEM) is an experiment onboard ExoMars (launch in 2018) ESARoscosmos rover. The ISEM instrument is mounted on the rover's mast together with High Resolution camera (HRC). Spectrometers will provide measurements of selected surface area in the spectral range of 1.15-3.3 μm. The electrically commanded acousto-optic filter scans sequentially at a desired sampling, with random access, over the entire spectral range.

  2. A flexible curvilinear electromagnetic filter for direct current cathodic arc source.

    PubMed

    Dai, Hua; Shen, Yao; Li, Liuhe; Li, Xiaoling; Cai, Xun; Chu, Paul K

    2007-09-01

    Widespread applications of direct current (dc) cathodic arc deposition are hampered by macroparticle (MP) contamination, although a cathodic arc offers many unique merits such as high ionization rate, high deposition rate, etc. In this work, a flexible curvilinear electromagnetic filter is described to eliminate MPs from a dc cathodic arc source. The filter which has a relatively large size with a minor radius of about 85 mm is suitable for large cathodes. The filter is open and so the MPs do not rebound inside the filter. The flexible design allows the ions to be transported from the cathode to the sample surface optimally. Our measurements with a saturated ion current probe show that the efficiency of this flexible filter reaches about 2.0% (aluminum cathode) when the filter current is about 250 A. The MP density measured from TiN films deposited using this filter is two to three orders of magnitude less than that from films deposited with a 90 degrees duct magnetic filter and three to four orders of magnitude smaller than those deposited without a filter. Furthermore, our experiments reveal that the potential of the filter coil and the magnetic field on the surface of the cathode are two important factors affecting the efficacy of the filter. Different biasing potentials can enhance the efficiency to up to 12-fold, and a magnetic field at about 4.0 mT can improve it by a factor of 2 compared to 5.4 mT.

  3. A new carbon-based magnetic material for the dispersive solid-phase extraction of UV filters from water samples before liquid chromatography-tandem mass spectrometry analysis.

    PubMed

    Piovesana, Susy; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2017-07-01

    Magnetic solid-phase extraction is one of the most promising new extraction methods for liquid samples before ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. Several types of materials, including carbonaceous ones, have been prepared for this purpose. In this paper, for the first time, the preparation, characterization, and sorption capability of Fe 3 O 4 -graphitized carbon black (mGCB) composite toward some compounds of environmental interest were investigated. The synthesized mGCB consisted of micrometric GCB particles with 55 m 2  g -1 surface area bearing some carbonyl and hydroxyl functionalities and the surface partially decorated by Fe 3 O 4 microparticles. The prepared mGCB was firstly tested as an adsorbent for the extraction from surface water of 50 pollutants, including estrogens, perfluoroalkyl compounds, UV filters, and quinolones. The material showed good affinity to many of the tested compounds, except carboxylates and glucoronates; however, some compounds were difficult to desorb. Ten UV filters belonging to the chemical classes of benzophenones and p-aminobenzoates were selected, and parameters were optimized for the extraction of these compounds from surface water before UHPLC-MS/MS determination. Then, the method was validated in terms of linearity, trueness, intra-laboratory precision, and detection and quantification limits. In summary, the method performance (trueness, expressed as analytical recovery, 85-114%; RSD 5-15%) appears suitable for the determination of the selected compounds at the level of 10-100 ng L -1 , with detection limits in the range of 1-5 ng L -1 . Finally, the new method was compared with a published one, based on conventional solid-phase extraction with GCB, showing similar performance in real sample analysis. Graphical Abstract Workflow of the analytical method based on magnetic solid-phase extraction followed by LC-MS/MS determination.

  4. Surface plasmon resonance-based highly sensitive optical touch sensor with a hybrid noise rejection scheme.

    PubMed

    Sumriddetchkajorn, Sarun; Chaitavon, Kosom

    2006-01-01

    A surface plasmon resonance (SPR)-based optical touch sensor structure is proposed that provides high switch sensitivity and requires a weak activating force. Our proposed SPR-based optical touch sensor is arranged in a compact Kretschmann-Raether configuration in which the prism acting as our sensor head is coated with a metal nanofilm. Our optical-based noise rejection scheme relies on wavelength filtering, spatial filtering, and high reflectivity of the metal nanofilm, whereas our electrical-based noise reduction is obtained by means of an electrical signal filtering process. In our experimental proof of concept, a visible laser diode at a 655 nm centered wavelength and a prism made from BK7 with a 50 nm thick gold layer on the touching surface are used, showing a 7.85 dB optical contrast ratio for the first touch. An estimated weak mechanical force of <0.1 N is also observed that sufficiently activates the desired electrical load. It is tested for 51 operations without sensor malfunction under typical and very high illumination of 342 and 3000 lx, respectively. In this case, a measured average optical contrast of 0.80 dB is obtained with a +/-0.47 dB fluctuation, implying that the refractive index change in a small 3.2% of the overall active area is enough for our SPR-based optical touch sensor to function properly. Increasing optical contrast in our SPR-based optical touch sensor can be accomplished by using a higher polarization-extinction ratio and a narrower-bandwidth optical beam. A controlled environment and gold-coated surface using the thin-film sputtering technique can help improve the reliability and the durability of our SPR-based optical touch sensor. Other key features include ease of implementation, prevention of a light beam becoming incident on the user, and the ability to accept both strong and weak activating forces.

  5. Influence of Acidification on the Partitioning of Steroid Hormones among Filtrate, Filter Media, and Retained Particulate Matter.

    PubMed

    Havens, Sonya M; Hedman, Curtis J; Hemming, Jocelyn D C; Mieritz, Mark G; Shafer, Martin M; Schauer, James J

    2016-09-01

    Hormone contamination of aquatic systems has been shown to have deleterious effects on aquatic biota. However, the assessment of hormone contamination of aquatic environments requires a quantitative evaluation of the potential effects of sample preservation on hormone concentrations. This study investigated the influence of acidification (pH 2) of surface water samples on the partitioning of hormones among filtrate, filter media, and filter-retained particulate matter. Hormones were spiked into unpreserved and sulfuric acid-preserved ultrapure water and surface water runoff samples. The samples were filtered, and hormones were extracted from the filter and filtrate and analyzed by high-performance liquid chromatography. Acidification did not influence the partitioning of hormones onto the filter media. For the majority of the hormones investigated in this study, the partitioning of hormones to the filter-retained particulate matter was not influenced by acidification. Acidification increased the partitioning of progesterone and melengestrol acetate onto the retained particulate matter (about 25% for both analytes). Incorporation of an isotopically labeled internal standard (ISTD) for progesterone accounted for the loss of progesterone to the filter-retained particulates and resulted in accurate concentrations of progesterone in the filtrate. The incorporation of an ISTD for melengestrol acetate, however, was unable to account for the loss of melengestrol acetate to the retained particulates and resulted in underestimations of melengestrol acetate in the filtrate. Our results indicate that the analysis of melengestrol acetate in acid preserved surface runoff samples should be conducted on the filter-retained particulates as well as the filtrate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Extraction of gelatin from catfish bone using NaOH and its utilization as a template on mesoporous silica alumina

    NASA Astrophysics Data System (ADS)

    Nuryanto, R.; Trisunaryanti, W.; Falah, I. I.; Triyono

    2018-04-01

    Gelatin extraction from catfish bone using NaOH and its utilization as a template on a synthesis of mesoporous silica-alumina had been investigated. The extraction was prepared by immersing 25 g catfish bone in 125 mL of NaOH in concentration of 0.0; 0.05; 0.10; 0.15 and 0.20 M for 24 h, then washing with demineralized water until pH 7, followed by immersed the bone into 125 mL of 1 M HCl for 1 h, then washed using demineralized water into pH 5. To produce gelatin the bone was refluxed with 100 mL demineralized water at 70°C for 5 h then evaporated at 50°C. The dry gelatin was characterized using FTIR and electrophoresis (SDS-PAGE). The best performance of gelatin was produced by NaOH 0.10 M. The gelatin consists of amide A, B, I, II, III and molecular weight of 25-200kDa. Silica and Alumina material prepared from Lapindo mud extraction. Dry Lapindo mud crushed and filtered until pass 100 mesh, then reflux using 6 M HCl (1:4 w/V) at 90°C for 5h then filtered. The filtrate was consisting alumina solution adding with 6 M NaOH (2/3 V/V) them filtered. The filtrate then injected by CO2 gas for 30 minutes and filtered, the residue was calcined at 500°C for 5h. The residual of Lapindo mud dried and refluxed with 6 M NaOH (1:4 w/v) at 90 °C. After 5h filtered and the filtrate added by HCl to pH 8 and filtered, the residual then dried. The Si and Al were then analyzed by XRF and consist of silica and alumina for 99.1 and 87.73%, respectively. Silica-alumina was prepared using silica and alumina extracted from Lapindo mud. 6 g of SiO2 and 2 g of NaOH was immersed in 62 mL of demineralized water then added with alumina solution (0.204 g alumina in 30 mL demineralized water). The gelatin solution (5 g gelatin in 70 mL demineralized water) was dropped into the silica-alumina while stirring at 50°C for 4 h and aging for 24 h. The synthesized silica alumina was analysed using FTIR and surface area analyser. The FT-IR spectra indicated the TO4 (T=Si, Al) vibration at wave number of 1049.28 and 1103.23 cm-1. The synthesized silica-alumina showed mesoporous characters with a pore diameter of 41.18 nm and surface area of 32.76 m2/g

  7. A series of compact rejection filters based on the interaction between spoof SPPs and CSRRs.

    PubMed

    Zhang, Qian; Zhang, Hao Chi; Yin, Jia Yuan; Pan, Bai Cao; Cui, Tie Jun

    2016-06-21

    We propose a method to synthesize several band-rejection filters by etching split-ring resonators (SRRs) on the transmission line for spoof surface plasmon polaritons (SPPs), which is made of double-side or single-side corrugated metal strips. From dispersion relations, the corrugated strips can support spoof SPP modes when the operating frequency is less than the cutoff frequency. The electric field component perpendicular to the strip surface of the SPP modes can excite the complementary SRRs (CSRRs), leading to resonant modes preventing the SPP propagation near the resonant frequencies. Using this principle, single-frequency rejection filters, double-frequency rejection filters, and broad band-stop filters with bandwidth of 1.5 GHz have been designed and fabricated using the single- and/or double-side corrugated strips. Both measured results and numerical simulations demonstrate the excellent filtering characteristics of all design, which are in good agreements. The isolation of all filters can be less than -20 dB, and even reach to -38 dB at rejection frequencies. The proposed rejection and stop-band filters give important potentials to develop integrated plasmonic functional devices and circuits at microwave and terahertz frequencies.

  8. Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater.

    PubMed

    Lau, Abbe Y T; Tsang, Daniel C W; Graham, Nigel J D; Ok, Yong Sik; Yang, Xin; Li, Xiang-Dong

    2017-02-01

    Bioretention systems have been recommended as one of the best management practices for low impact development for water recycling/reuse systems. Although improvement of the stormwater quality has been reported regarding pollutants eliminations such as suspended solids and heavy metals, a substantial removal of indicator bacteria is required for possible non-potable reuse. This study investigated the efficiency of wood biochar with H 2 SO 4 -, H 3 PO 4 -, KOH-, and amino-modifications for E. coli removal from synthetic stormwater under intermittent flow. The H 2 SO 4 -modified biochar showed a specific surface area of 234.7 m 2  g -1 (approximately double the area of original biochar), whereas a substantial reduction in surface area was found with amino-modified biochar. The E. coli removal (initial concentration of 0.3-3.2 × 10 6  CFU mL -1 ) by modified biochars as filter media was very promising with, for example, over 98% removal efficiency in the first 20 pore volumes of stormwater infiltration and over 92% removal by the end of the second infiltration cycle. Only a small portion of E. coli attached on the modified biochars (<0.3%, except KOH- and amino-modified biochars) was remobilized during the drainage phase of intermittent flow. The high removal capacity and stability against drainage were attributed to the high surface area, porous structure, and surface characteristics (e.g. hydrophobicity and O-containing functional groups) of the biochars. Thus, the H 2 SO 4 -modified biochar appeared to give the best treatment performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1999-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses tha_ may not be important in longer wavelength designs. This paper describes the design of multi-bandwidth filters operating in the I-5 micrometer wavelength range. This work follows on previous design [1,2]. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using micro-lithographic techniques and used ir spectral imaging applications will be presented.

  10. Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.

    1998-01-01

    Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses that may not be important in longer wavelength designs. This paper describes the design of multi- bandwidth filters operating in the 1-5 micrometer wavelength range. This work follows on a previous design. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using microlithographic techniques and used in spectral imaging applications will be presented.

  11. Angle-resolved and polarization-dependent investigation of cross-shaped frequency-selective surface terahertz filters

    NASA Astrophysics Data System (ADS)

    Ferraro, A.; Zografopoulos, D. C.; Caputo, R.; Beccherelli, R.

    2017-04-01

    The spectral response of a terahertz (THz) filter is investigated in detail for different angles of incidence and polarization of the incoming THz wave. The filter is fabricated by patterning an aluminum frequency-selective surface of cross-shaped apertures on a thin foil of the low-loss cyclo-olefin polymer Zeonor. Two different types of resonances are observed, namely, a broadline resonance stemming from the transmittance of the slot apertures and a series of narrowline guided-mode resonances, with the latter being investigated by employing the grating theory. Numerical simulations of the filter transmittance based on the finite-element method agree with experimental measurements by means of THz time domain spectroscopy (THz-TDS). The results reveal extensive possibilities for tuning the guided-mode resonances by mechanically adjusting the incidence or polarization angle, while the fundamental broadline resonance is not significantly affected. Such filters are envisaged as functional elements in emerging THz systems for filtering or sensing applications.

  12. Synthetic ultraviolet light filtering chemical contamination of coastal waters of Virgin Islands National Park, St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Bargar, Timothy A.; Alvarez, David; Garrison, Virginia H.

    2015-01-01

    Contamination of surface waters by synthetic ultraviolet light (UV) filtering chemicals is a concern for the Virgin Islands National Park (VINP). Discrete water samples were collected from VINP bays to determine UV filter chemical presence in the coastal waters. Spatial distribution and the potential for partitioning between subsurface waters and the sea surface microlayer (SML) were also examined. The UV filter chemicals 4-methylbenzylidene camphor, benzophenone-3, octinoxate, homosalate, and octocrylene were detected at concentrations up to 6073 ng/L (benzophenone-3). Concentrations for benzophenone-3 and homosalate declined exponentially (r2 = 0.86 to 0.98) with distance from the beach. Limited data indicate that some UV filter chemicals may partition to the SML relative to the subsurface waters. Contamination of VINP coastal waters by UV filter chemicals may be a significant issue, but an improved understanding of the temporal and spatial variability of their concentrations would be necessary to better understand the risk they present.

  13. An ultra-compact rejection filter based on spoof surface plasmon polaritons.

    PubMed

    Zhao, Shumin; Zhang, Hao Chi; Zhao, Jiahao; Tang, Wen Xuan

    2017-09-05

    In this paper, we propose a scheme to construct a new type of ultra-compact rejection filter by loading split-ring resonators (SRRs) on the transmission line of spoof surface plasmon polaritons (SPPs). From the dispersion analysis of the spoof SPP transmission line with and without the SRR loading, we clearly reveal the mechanism of the rejection characteristic for this compact filter. Meanwhile, we fabricate two spoof SPPs waveguides loaded with different amounts of metamaterials particles, and experimentally test them using an Agilent Vector Network Analyzer (VNA) and a homemade near-field scanning system. Both the simulated and measured results agree well with our theoretical analysis and demonstrate the excellent filtering characteristics of our design. The isolation of both filters can be less than -20 dB, and even reach -40 dB at rejection frequencies. The proposed rejection and stop-band filters show important potentials to develop integrated plasmonic functional devices and circuits at microwave and terahertz frequencies.

  14. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    NASA Astrophysics Data System (ADS)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified Split Based Approach (MSBA) is used in order to focus on surface water areas automatically and facilitate the estimation of class models for water and non-water areas. A Finite Mixture Model is employed as the underlying statistical model to produce probabilistic maps. Subsequently, bilateral filtering is applied to take into account spatial neighborhood relationships in the generation of final map. The elimination of shadows effect is performed in a post-processing step. The processing chain is tested on three case studies. The first case is a flood event in central Ireland, the second case is located in Yorkshire county / Great Britain, and the third test case covers a recent flood event in northern Italy. The tests showed that the modified SBA step and the Finite Mixture Models can be applied for the automatic surface water detection in a variety of test cases. An evaluation again Copernicus products derived from very-high resolution imagery was performed, and showed a high overall accuracy and F-measure of the obtained maps. This evaluation also showed that the use of probability maps and bilateral filtering improved the accuracy of classification results significantly. Based on this quantitative evaluation, it is concluded that the processing chain can be applied for flood mapping from Sentinel-1 data. To estimate robust statistical distributions the method requires sufficient surface waters areas in the observed zone and sufficient contrast between surface waters and other land use classes. Ongoing research addresses the fusion of Sentinel-1 and passive remote sensing data (e.g. Sentinel-2) in order to reduce the current shortcomings in the developed processing chain. In this work, fusion is performed at the feature level to better account for the difference image properties of SAR and optical sensors. Further, the processing chain is currently being optimized in terms of calculation time for a further integration as a flood mapping service on the A2S (Alsace Aval Sentinel) high-performance computing infrastructure of University of Strasbourg.

  15. Studies on the behavior of ammonia and ammonium salts in the atmosphere (1) - Fractional collection of ammonia gas and particulate ammonium

    NASA Technical Reports Server (NTRS)

    Kiin, K.; Fujimura, M.; Hashimoto, Y.

    1981-01-01

    Methods for the fractional collection of trace amounts of atmospheric ammonia gas and ammonium particles on a two staged glass fiber filter are summarized. A standard glass fiber filter washed with distilled water and dried at 120 to 130 C was used. A second filter was impregnated with a mixture of 3% boric acid and 25% glycerin solution. The blank of glass fiber filters impregnated with a mixture of the above solution was very low for ammonia, i.e. 0.06 micrograms in a filter of 47 mm in diameter. The mean concentrations of ammonia and ammonium in air at Kawasaki, a polluted area, were 7.6 and 2.3 micrograms cu m, and those at Sanriku, an unpolluted area 0.9 and 0.2 micrograms cu m, respectively. Ratios of concentration levels of ammonium to total ammonia in the atmosphere were 0.3 and 0.2 for the polluted and unpolluted areas, respectively. Ammonium salts in air at both areas were not correlated with relative humidity. Variations in time of ammonia concentrations and sources in surrounding areas are also considered.

  16. An analytical method for computing atomic contact areas in biomolecules.

    PubMed

    Mach, Paul; Koehl, Patrice

    2013-01-15

    We propose a new analytical method for detecting and computing contacts between atoms in biomolecules. It is based on the alpha shape theory and proceeds in three steps. First, we compute the weighted Delaunay triangulation of the union of spheres representing the molecule. In the second step, the Delaunay complex is filtered to derive the dual complex. Finally, contacts between spheres are collected. In this approach, two atoms i and j are defined to be in contact if their centers are connected by an edge in the dual complex. The contact areas between atom i and its neighbors are computed based on the caps formed by these neighbors on the surface of i; the total area of all these caps is partitioned according to their spherical Laguerre Voronoi diagram on the surface of i. This method is analytical and its implementation in a new program BallContact is fast and robust. We have used BallContact to study contacts in a database of 1551 high resolution protein structures. We show that with this new definition of atomic contacts, we generate realistic representations of the environments of atoms and residues within a protein. In particular, we establish the importance of nonpolar contact areas that complement the information represented by the accessible surface areas. This new method bears similarity to the tessellation methods used to quantify atomic volumes and contacts, with the advantage that it does not require the presence of explicit solvent molecules if the surface of the protein is to be considered. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  17. Comparison of a new inorganic membrane filter (Anopore) with a track-etched polycarbonate membrane filter (Nuclepore) for direct counting of bacteria.

    PubMed Central

    Jones, S E; Ditner, S A; Freeman, C; Whitaker, C J; Lock, M A

    1989-01-01

    Bacterial counts obtained by using a new Anopore inorganic membrane filter were 21 to 33% higher than those obtained by using a Nuclepore polycarbonate membrane filter. In addition, the inorganic filter had higher flow rates, permitting lower vacuum pressures to be used, while the intrinsically flat, rigid surface resulted in easier focusing and sharp definition of bacteria across the whole field of view. Images PMID:2655539

  18. The effect of short ground vegetation on terrestrial laser scans at a local scale

    NASA Astrophysics Data System (ADS)

    Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert

    2014-09-01

    Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.

  19. Surface-Wave Tomography of Yucca Flat, Nevada

    NASA Astrophysics Data System (ADS)

    Toney, L. D.; Abbott, R. E.; Knox, H. A.; Preston, L. A.; Hoots, C. R.

    2016-12-01

    In 2015, Sandia National Laboratories conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. The Yucca Flat basin hosted over 900 nuclear tests between 1951 and 1992. Data from this survey will help characterize seismic propagation effects of the area, informing models for the next phase of the Source Physics Experiments. The survey source was a 13,000-kg weight-drop at 91 locations along a 19-km N-S transect and 56 locations along an 11-km E-W transect. Over 350 three-component 2-Hz geophones were variably spaced at 10, 20, and 100 m along each line. We employed roll-along survey geometry to ensure 10-m receiver spacing within 2 km of the source. Phase velocity surface-wave analysis via the refraction-microtremor (ReMi) method was previously performed on this data in order to obtain an S-wave velocity model of the subsurface. However, the results of this approach were significantly impacted in areas where ray paths were proximate to underground nuclear tests, resulting in a spatially incomplete model. We have processed the same data utilizing group velocities and the multiple filter technique (MFT), with the hope that the propagation of wave groups is less impacted by the disrupted media surrounding former tests. We created a set of 30 Gaussian band-pass filters with scaled relative passbands and central frequencies ranging from 1 to 50 Hz. We picked fundamental Rayleigh wave arrivals from the filtered data; these picks were then inverted for 2D S-wave velocity along the transects. The new S-wave velocity model will be integrated with previous P-wave tomographic results to yield a more complete model of the subsurface structure of Yucca Flat. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Use of fish species from different trophic levels to control algae and water quality: An enclosure experiment in eutrophic area of Xiaojiang River.

    PubMed

    Hu, Lian; Yang, Zhi; Pan, Xiaojie; Zhao, Na; Peng, Jianhua; Wan, Chengyan

    2017-01-01

    The effects of stocking both filter-feeding fish and piscivorous fish were compared to the effects of stocking only filter-feeding fish for suppressing algal blooms and improving water quality in the impoundment area of Xiaojiang River where catfish were dominant. Using only filter-feeding fish for algal suppression and water quality control was more effective in the short-term, but use of both filter-feeding fish and piscivorous fish was better in the long-term. Obvious suppression of phytoplankton biomass (PB) only occurred during the first 14 days regardless of the fish stocked. Adding fish to the enclosure clearly alters phytoplankton community structure and introducing piscivorous fish to an enclosure stocked with filter-feeding fish changed the relative densities of dominant algae species. While stocking filter-feeding fish decreased total nitrogen concentration by removing phytoplankton, it did not effectively decrease total phosphorus and Chlorophyll a concentrations. Introducing piscivorous fish to the enclosure weakened the relationship between nutrients and phytoplankton. Results indicate that stocking only filter-feeding fish to improve water quality and suppress phytoplankton in an impoundment area is insufficient and other technologies and means should be applied simultaneously.

  1. Confocal laser scanning microscopy and area-scale analysis used to quantify enamel surface textural changes from citric acid demineralization and salivary remineralization in vitro.

    PubMed

    Austin, R S; Giusca, C L; Macaulay, G; Moazzez, R; Bartlett, D W

    2016-02-01

    This paper investigates the application of confocal laser scanning microscopy to determine the effect of acid-mediated erosive enamel wear on the micro-texture of polished human enamel in vitro. Twenty polished enamel samples were prepared and subjected to a citric acid erosion and pooled human saliva remineralization model. Enamel surface microhardness was measured using a Knoop hardness tester, which confirmed that an early enamel erosion lesion was formed which was then subsequently completely remineralized. A confocal laser scanning microscope was used to capture high-resolution images of the enamel surfaces undergoing demineralization and remineralization. Area-scale analysis was used to identify the optimal feature size following which the surface texture was determined using the 3D (areal) texture parameter Sa. The Sa successfully characterized the enamel erosion and remineralization for the polished enamel samples (P<0.001). Areal surface texture characterization of the surface events occurring during enamel demineralization and remineralization requires optical imaging instrumentation with lateral resolution <2.5 μm, applied in combination with appropriate filtering in order to remove unwanted waviness and roughness. These techniques will facilitate the development of novel methods for measuring early enamel erosion lesions in natural enamel surfaces in vivo. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx

    NASA Astrophysics Data System (ADS)

    Ody, A.; Poulet, F.; Langevin, Y.; Bibring, J.-P.; Bellucci, G.; Altieri, F.; Gondet, B.; Vincendon, M.; Carter, J.; Manaud, N.

    2012-09-01

    We here reassess the global distribution of several key mineral species using the entire OMEGA/Mars Express VIS-NIR imaging spectrometer data set, acquired from orbit insertion in January 2004 to August 2010. Thirty-two pixels per degree global maps of ferric oxides, pyroxenes and olivines have been derived. A significant filtering process was applied in order to exclude data acquired with unfavorable observation geometries or partial surface coverage with water and CO2 frosts. Because of strong atmospheric variations over the 3.6 Martian years of observations primarily due to the interannual variability of the aerosol opacity, a new filter based on the atmospheric dust opacity calibrated by the Mars Exploration Rovers measurements has also been implemented. The Fe3+ absorption features are present everywhere on the surface, with a variety of intensities indicating distinct formation processes. The pyroxene-bearing regions are localized in low albedo regions, while the bright regions are spectrally comparable to anhydrous nanophase ferric oxides. The expanded data set increases by a factor of about 2, the number of olivine detections reported in previous OMEGA-based studies. Olivine is mainly detected in three types of areas over the Martian surface: discontinuous patches on the terraces of the three main basins; smooth inter-crater plains and smooth crater floors throughout the southern highlands; and crater sand dunes, crater ejectas and extended bedrock exposures in the northern plains. Olivine is also detected in the low albedo pyroxene-bearing dunes surrounding the northern polar cap.

  3. ARC-1979-AC79-7026

    NASA Image and Video Library

    1979-02-26

    Range : 5 million miles (8.025 million kilometers) This is a morning shot of Ganymede, largest of Jupiter's 13 satellites. It's slightly larger than Mercury with a density about twice that of water. It's believed to be made of rock and ice with a surface of water and ice. Ganymede is 4 times brighter than our Moon with the bright spot in center of photo 5 times brighter than the Moon, and may contain more ice than surrounding areas. The bright pattern around the spot seems like ray craters on the Moon and Mercury and the area may in fact be an impact crater that has exposed fresh, underlying ice. Photo taken through blue, green and orange filters.

  4. ARC-1979-A79-7026

    NASA Image and Video Library

    1979-02-26

    Range : 5 million miles (8.025 million kilometers) This is a morning shot of Ganymede, largest of Jupiter's 13 satellites. It's slightly larger than Mercury with a density about twice that of water. It's believed to be made of rock and ice with a surface of water and ice. Ganymede is 4 times brighter than our Moon with the bright spot in center of photo 5 times brighter than the Moon, and may contain more ice than surrounding areas. The bright pattern around the spot seems like ray craters on the Moon and Mercury and the area may in fact be an impact crater that has exposed fresh, underlying ice. Photo taken through blue, green and orange filters.

  5. Water resources of Clallam County, Washington; Phase I report

    USGS Publications Warehouse

    Drost, B.W.

    1983-01-01

    An inventory of the water resources of Clallam County, Washington, showed that sufficient water is available to supply all present demands. Domestic water supplies can be obtained from wells drilled 100 ft or less into glacial and alluvial deposits; in areas underlain by bedrock, wells more than 100 ft deep can generally supply one home per well. Surface water is abundant, and is the source for most public water systems. Extreme low flows were observed only in small drainage basins in bedrock in the mountainous interior and along parts of the coastline in the Strait of Juan de Fuca. The quality of ground and surface waters is generally excellent. In coastal areas, some wells may yield water with large concentrations of chloride and dissolved solids. A quarter of the wells tested had excessive concentrations of iron and (or) manganese. High values of turbidity, color, and coliform bacteria are widespread surface water problems, but standard filtering and chlorination treatment make the water suitable for public supplies. High concentrations of coliform bacteria apparently originate naturally in soils. High ammonia concentration observed at one site is probably caused by sewage disposal practices. (USGS)

  6. Interaction between surface water areas and groundwater in Hanoi city, Viet Nam

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Kuroda, K.; Do Thuan, A.; Tran Thi Viet, N.; Takizawa, S.

    2012-12-01

    Hanoi is the capital of Viet Nam and the second largest city in this country (population: 6.45 million in 2009). Hanoi city has developed along the Red River and has many lakes, ponds and canals. However, recent rapid urbanization of this city has reduced number of natural water areas such as ponds and lakes by reclamation not only in the central area but the suburban area. Canals also have been reclaimed or cut into pieces. Contrary, number of artificial water areas such as fish cultivation pond has rapidly increased. On the other hand, various kind of waste water flows into these natural and artificial water areas and induces pollution and eutrophication. These waste waters also have possibility of pollution of groundwater that is one of major water resources in this city. In addition, groundwater in this area has high concentrations of Arsenic, Fe and NH4. Thus, groundwater use may causes re-circulation of Arsenic. However, studies on the interaction between surface water areas and groundwater and on the role of surface water areas for solute transport with water cycle are a few. Therefore, we focused on these points and took water samples of river, pond and groundwater from four communities in suburban areas: two communities are located near the Red River and other two are far from the River. Also, columnar sediment samples of these ponds were taken and pore water was abstracted. Major dissolved ions, metals and stable isotopes of oxygen and hydrogen of water samples were analyzed. As for water cycle, from the correlation between δ18O and δD, the Red River water (after GNIR) were distributed along the LMWL (δD=8.2δ18O+14.1, calculated from precipitation (after GNIP)). On the other hand, although the pond waters in rainy season were distributed along the LMWL, that in dry season were distributed along the local evaporation line (LEL, slope=5.6). The LEL crossed with the LMWL at around the point of weighted mean values of precipitation in rainy season and of the Red river. Groundwater samples were also distributed along the LEL and there was no seasonal change. Thus, groundwater in these communities was mainly recharged by mixing of precipitation/the Red River and evaporated water bodies. Considering the land use in these communities, evaporated water bodies were considered to be not only ponds but also paddy fields. As for solute transport, concentration of dissolved Arsenic (filtered by 0.45μm) of the pond water (3 - 10 μg/L) was slightly higher than the Red River (~ 3 μg/L) and was much lower than that of groundwater (~ 60 μg/L). On the other hand, concentration of dissolved Arsenic in the pore water of sediments (10 - 85 μg/L) was close to groundwater. Also, other metal elements showed the same trend. Therefore, Arsenic and other metal elements recharged to these ponds were considered to be adsorbed by sediments (including organic matters). That is, pond sediments played an important role as a filter of metal elements. The results of this study strongly suggested that the surface water areas such as ponds and paddy fields are one of main groundwater sources. Also, ponds play important role for solute transport of metal elements. Therefore, management of these surface water areas is important to conserve groundwater environment.

  7. A highly linear baseband Gm—C filter for WLAN application

    NASA Astrophysics Data System (ADS)

    Lijun, Yang; Zheng, Gong; Yin, Shi; Zhiming, Chen

    2011-09-01

    A low voltage, highly linear transconductan—C (Gm—C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed. This transmitter (Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev low pass prototype and achieves 35 dB stop-band attenuation at 30 MHz frequency. By utilizing pseudo-differential linear-region MOS transconductors, the filter IIP3 is measured to be as high as 9.5 dBm. Fabricated in a 0.35 μm standard CMOS technology, the proposed filter chip occupies a 0.41 × 0.17 mm2 die area and consumes 3.36 mA from a 3.3-V power supply.

  8. Modelling prehistoric terrain Models using LiDAR-data: a geomorphological approach

    NASA Astrophysics Data System (ADS)

    Höfler, Veit; Wessollek, Christine; Karrasch, Pierre

    2015-10-01

    Terrain surfaces conserve human activities in terms of textures and structures. With reference to archaeological questions, the geological archive is investigated by means of models regarding anthropogenic traces. In doing so, the high-resolution digital terrain model is of inestimable value for the decoding of the archive. The evaluation of these terrain models and the reconstruction of historical surfaces is still a challenging issue. Due to the data collection by means of LiDAR systems (light detection and ranging) and despite their subsequent pre-processing and filtering, recently anthropogenic artefacts are still present in the digital terrain model. Analysis have shown that elements, such as contour lines and channels, can well be extracted from a high-resolution digital terrain model. This way, channels in settlement areas show a clear anthropogenic character. This fact can also be observed for contour lines. Some contour lines representing a possibly natural ground surface and avoid anthropogenic artefacts. Comparable to channels, noticeable patterns of contour lines become visible in areas with anthropogenic artefacts. The presented workflow uses functionalities of ArcGIS and the programming language R.1 The method starts with the extraction of contour lines from the digital terrain model. Through macroscopic analyses based on geomorphological expert knowledge, contour lines are selected representing the natural geomorphological character of the surface. In a first step, points are determined along each contour line in regular intervals. This points and the corresponding height information which is taken from an original digital terrain model is saved as a point cloud. Using the programme library gstat, a variographic analysis and the use of a Kriging-procedure based on this follow.2-4 The result is a digital terrain model filtered considering geomorphological expert knowledge showing no human degradation in terms of artefacts, preserving the landscape-genetic character and can be called a prehistoric terrain model.

  9. Plasma discharge self-cleaning filtration system

    DOEpatents

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  10. Electrocatalytic water treatment using carbon nanotube filters modified with metal oxides.

    PubMed

    Yang, So Young; Vecitis, Chad D; Park, Hyunwoong

    2017-01-28

    This study examined the electrocatalytic activity of multi-walled carbon nanotube (CNT) filters for remediation of aqueous phenol in a sodium sulfate electrolyte. CNT filters were loaded with antimony-doped tin oxide (Sb-SnO 2 ; SS) and bismuth- and antimony-codoped tin oxide (Bi-Sb-SnO 2 ; BSS) via electrosorption at 2 V for 1 h and then assembled into a flow-through batch reactor as anode-cathode couples with perforated titanium foils. The as-synthesized pristine CNT filters were composed of 50-60-nm-thick tubular carbons with smooth surfaces, whereas the tubes composing the SS-CNT and BSS-CNT filters were slightly thicker and bumpy, because they were coated with SS and BSS particles ~50 nm in size. Electrochemical characterization of the samples indicated a positive shift in the onset potential and a decrease in the current magnitude in the modified CNT filters due to passivation and oxidation inhibition of the bare CNT filters. These filters exhibited a similar adsorption capacity for phenol (5-8%), whereas loadings of SS and BSS enhanced the degradation rate of phenol by ~1.5 and 2.1 times, respectively. In particular, the total organic carbon removal performance and mineralization efficiency of the BSS-CNT filters were approximately twice those of the bare CNT filters. The BSS-CNT filters also exhibited an enhanced oxidation of ferrocyanide [Fe II (CN) 6 4- ], which was not adsorbed onto the CNT filters. The enhanced electrocatalytic performance of the modified CNT filters was attributed to an effective generation of OH radicals. The surfaces of the filters were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy.

  11. Accurate Ultrasonic Measurement of Surface Profile Using Phase Shift of Echo and Inverse Filtering

    NASA Astrophysics Data System (ADS)

    Arihara, Chihiro; Hasegawa, Hideyuki; Kanai, Hiroshi

    2006-05-01

    Atherosclerosis is the main cause of circulatory diseases such as myocardial infarction and cerebral infarction, and it is very important to diagnose atherosclerosis in its early stage. In the early stage of atherosclerosis, the luminal surface of an arterial wall becomes rough because of the injury of the endothelium [R. Ross: New Engl. J. Med. 340 (2004) 115]. Conventional ultrasonic diagnostic equipments cannot detect such roughness on the order of micrometer because of their low resolution of approximately 0.1 mm. In this study, for the accurate detection of surface roughness, an ultrasonic beam was scanned in the direction that is parallel to the surface of an object. When there is a gap on the surface, the phase of the echo from the surface changes because the distance between the probe and the surface changes during the scanning. Therefore, surface roughness can be assessed by estimating the phase shift of echoes obtained during the beam scanning. Furthermore, lateral resolution, which is deteriorated by a finite diameter of the ultrasound beam, was improved by an inverse filter. By using the proposed method, the surface profile of a phantom, which had surface roughness on the micrometer order, was detected, and the estimated surface profiles became more precise by applying the inverse filter.

  12. Filter vapor trap

    DOEpatents

    Guon, Jerold

    1976-04-13

    A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.

  13. ARC-1979-AC79-7104

    NASA Image and Video Library

    1979-07-07

    Range : 1,094,666 km (677,000 mi.) This false color picture of Callisto was taken by Voyager 2 and is centered on 11 degrees N and 171 degrees W. This rendition uses an ultraviolet image for the blue component. Because the surface displays regional contrast in UV, variations in surface materials are apparent. Notice in particular the dark blue haloes which surround bright craters in the eastern hemisphere. The surface of Callisto is the most heavily cratered of the Galilean satellites and resembles ancient heavily cratered terrains on the moon, Mercury and Mars. The bright areas are ejecta thrown out by relatively young impact craters. A large ringed structure, probably an impact basin, is shown in the upper left part of the picture. The color version of this picture was constructed by compositing black and white images taken through the ultraviolet, clear and orange filters.

  14. Health hazard evaluation report HETA 90-168-2248, Independence Police Department Indoor Range, Independence, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinehart, R.D.; Almaguer, D.; Klein, M.K.

    1992-08-01

    On February 14, 1990, the National Institute for Occupational Safety and Health (NIOSH) received a request from a management representative of the Independence, Missouri, Police Department Headquarters for a Health Hazard Evaluation. The Police Department requested NIOSH to evaluate the effectiveness of a newly redesigned air handling system installed inside their indoor firing range. On August 6, 1991, NIOSH investigators met with the firing range supervisor and toured the facility. On August 8, ten personal breathing-zone (PBZ) air samples and 3 area air samples were collected on filters inside the range and the filters were subsequently analyzed for lead bymore » atomic absorption spectroscopy (AAS). Surface lead contamination inside the firing range was measured in two locations and hand (dermal) lead contamination was measured on two instructors and two field officers. These samples were also analyzed for lead by AAS.« less

  15. Edge-Oriented Graphene on Carbon Nanofiber for High-Frequency Supercapacitors

    NASA Astrophysics Data System (ADS)

    Islam, Nazifah; Warzywoda, Juliusz; Fan, Zhaoyang

    2018-03-01

    High-frequency supercapacitors are being studied with the aim to replace the bulky electrolytic capacitors for current ripple filtering and other functions used in power systems. Here, 3D edge-oriented graphene (EOG) was grown encircling carbon nanofiber (CNF) framework to form a highly conductive electrode with a large surface area. Such EOG/CNF electrodes were tested in aqueous and organic electrolytes for high-frequency supercapacitor development. For the aqueous and the organic cell, the characteristic frequency at - 45° phase angle was found to be as high as 22 and 8.5 kHz, respectively. At 120 Hz, the electrode capacitance density was 0.37 and 0.16 mF cm-2 for the two cells. In particular, the 3 V high-frequency organic cell was successfully tested as filtering capacitor used in AC/DC converter, suggesting the promising potential of this technology for compact power supply design and other applications. [Figure not available: see fulltext.

  16. Study of gravity and magnetic anomalies using MAGSAT data

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    The results of modeling satellite-elevation magnetic and gravity data using the constraints imposed by near surface data and seismic evidence shows that the magnetic minimum can be accounted for by either an intracrustal lithologic variation or by an upwarp of the Curie point isotherm. The long wavelength anomalies of the NOO's-vector magnetic survey of the conterminous U.S. were contoured and processed by various frequency filters to enhance particular characteristics. A preliminary inversion of the data was completed and the anomaly field calculated at 450 km from the equivalent magnet sources to compare with the POGO satellite data. Considerable progress was made in studing the satellite magnetic data of South America and adjacent marine areas. Preliminary versions of the 1 deg free-air gravity anomaly map (20 m gal contour interval) and the high cut (lambda approximately 8 deg) filtered anomaly maps are included.

  17. The use of multiwavelets for uncertainty estimation in seismic surface wave dispersion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poppeliers, Christian

    This report describes a new single-station analysis method to estimate the dispersion and uncer- tainty of seismic surface waves using the multiwavelet transform. Typically, when estimating the dispersion of a surface wave using only a single seismic station, the seismogram is decomposed into a series of narrow-band realizations using a bank of narrow-band filters. By then enveloping and normalizing the filtered seismograms and identifying the maximum power as a function of frequency, the group velocity can be estimated if the source-receiver distance is known. However, using the filter bank method, there is no robust way to estimate uncertainty. In thismore » report, I in- troduce a new method of estimating the group velocity that includes an estimate of uncertainty. The method is similar to the conventional filter bank method, but uses a class of functions, called Slepian wavelets, to compute a series of wavelet transforms of the data. Each wavelet transform is mathematically similar to a filter bank, however, the time-frequency tradeoff is optimized. By taking multiple wavelet transforms, I form a population of dispersion estimates from which stan- dard statistical methods can be used to estimate uncertainty. I demonstrate the utility of this new method by applying it to synthetic data as well as ambient-noise surface-wave cross-correlelograms recorded by the University of Nevada Seismic Network.« less

  18. Airborne Spectral Measurements of Ocean Anisotropy during CLAMS

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; King, M. D.; Arnold, G. T.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The Cloud Absorption Radiometer (CAR) aboard the University of Washington Convair CV-580 research aircraft obtained bidirectional reflectance-distribution function (BRDF) of Atlantic Ocean and Dismal Swamp between July 10 and August 2, 2001. The BRDF measurements (15 in total, 8 uncontaminated by clouds) obtained under a variety of sun angles and wind conditions, will be used to characterize ocean anisotropy in support of Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) science objectives principally to validate products from NASA's EOS satellites, and to parameterize and validate BRDF models of the ocean. In this paper we present results of BRDF of the Ocean under different sun angles and wind conditions. The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 micron), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 micron). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were acquired over selected surfaces so that average BRF smooth out small-scale surface and atmospheric inhomogeneities. At an altitude of 600 m above the targeted surface area and with a 1 degree IFOV, the pixel resolution is about 10 m at nadir and about 270 m at an 80 deg. viewing angle from the CAR.

  19. Oxidation Resistant, Cr Retaining, Electrically Conductive Coatings on Metallic Alloys for SOFC Interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vladimir Gorokhovsky

    2008-03-31

    This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantialmore » increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.« less

  20. Stabilized Alkali-Metal Ultraviolet-Band-Pass Filters

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Fraschetti, George A.; Mccann, Timothy; Mayall, Sherwood D.; Dunn, Donald E.; Trauger, John T.

    1995-01-01

    Layers of bismuth 5 to 10 angstrom thick incorporated into alkali-metal ultraviolet-band-pass optical filters by use of advanced fabrication techniques. In new filters layer of bismuth helps to reduce surface migration of sodium. Sodium layer made more stable and decreased tendency to form pinholes by migration.

  1. Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alexander; Wong, Victor

    Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing ormore » preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.« less

  2. Comparison of Nonlinear Filtering Techniques for Lunar Surface Roving Navigation

    NASA Technical Reports Server (NTRS)

    Kimber, Lemon; Welch, Bryan W.

    2008-01-01

    Leading up to the Apollo missions the Extended Kalman Filter, a modified version of the Kalman Filter, was developed to estimate the state of a nonlinear system. Throughout the Apollo missions, Potter's Square Root Filter was used for lunar navigation. Now that NASA is returning to the Moon, the filters used during the Apollo missions must be compared to the filters that have been developed since that time, the Bierman-Thornton Filter (UD) and the Unscented Kalman Filter (UKF). The UD Filter involves factoring the covariance matrix into UDUT and has similar accuracy to the Square Root Filter; however it requires less computation time. Conversely, the UKF, which uses sigma points, is much more computationally intensive than any of the filters; however it produces the most accurate results. The Extended Kalman Filter, Potter's Square Root Filter, the Bierman-Thornton UD Filter, and the Unscented Kalman Filter each prove to be the most accurate filter depending on the specific conditions of the navigation system.

  3. Aqueous gradient by balancing diffusive and convective mass transport (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Habhab, Mohammed-Baker I.; Ismail, Tania; Lo, Joe F.; Haque, Arefa

    2016-03-01

    In wounds, cells secret biomolecules such as vascular endothelial growth factor (VEGF), a protein that controls many processes in healing. VEGF protein is expressed in a gradient in tissue, and its shape will be affected by the tissue injury sustained during wounding. In order to study the responses of keratinocyte cell migration to VEGF gradients and the geometric factors on wound healing, we designed a microfluidic gradient device that can generate large area gradients (1.5 cm in diameter) capable of mimicking arbitrary wound shapes. Microfluidic devices offer novel techniques to address biological and biomedical issues. Different from other gradient microfluidics, our device balances diffusion of biomolecules versus the convective clearance by a buffer flow on the opposite ends of the gradient. This allows us to create a large area gradient within shorter time scales by actively driving mass transport. In addition, the microfluidic device makes use of a porous filter membrane to create this balance as well as to deliver the resulting gradient to a culture of cells. The culture of cells are seeded above the gradient in a gasket chamber. However, Keratinocytes do not migrate effectively on filter paper. Therefore, in order to improve the motility of cells on the surface, we coated the filter paper with a 30m thick layer of gelatin type B. after observation under the microscope we found that the gelatin coated sample showed cells with more spread out morphology, with 97% viability, suggesting better adhesion than the non-coated sample.

  4. Process for making ceramic hot gas filter

    DOEpatents

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    2001-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  5. Ceramic hot-gas filter

    DOEpatents

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  6. Ceramic hot-gas filter

    DOEpatents

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  7. The Time-Domain Matched Filter and the Spectral-Domain Matched Filter in 1-Dimensional NMR Spectroscopy.

    PubMed

    Spencer, Richard G

    2010-09-01

    A type of "matched filter" (MF), used extensively in the processing of one-dimensional spectra, is defined by multiplication of a free-induction decay (FID) by a decaying exponential with the same time constant as that of the FID. This maximizes, in a sense to be defined, the signal-to-noise ratio (SNR) in the spectrum obtained after Fourier transformation. However, a different entity known also as the matched filter was introduced by van Vleck in the context of pulse detection in the 1940's and has become widely integrated into signal processing practice. These two types of matched filters appear to be quite distinct. In the NMR case, the "filter", that is, the exponential multiplication, is defined by the characteristics of, and applied to, a time domain signal in order to achieve improved SNR in the spectral domain. In signal processing, the filter is defined by the characteristics of a signal in the spectral domain, and applied in order to improve the SNR in the temporal (pulse) domain. We reconcile these two distinct implementations of the matched filter, demonstrating that the NMR "matched filter" is a special case of the matched filter more rigorously defined in the signal processing literature. In addition, two limitations in the use of the MF are highlighted. First, application of the MF distorts resonance ratios as defined by amplitudes, although not as defined by areas. Second, the MF maximizes SNR with respect to resonance amplitude, while intensities are often more appropriately defined by areas. Maximizing the SNR with respect to area requires a somewhat different approach to matched filtering.

  8. Comparison of the structure and composition of the branchial filters in suspension feeding elasmobranchs.

    PubMed

    Misty Paig-Tran, E W; Summers, A P

    2014-04-01

    The four, evolutionarily independent, lineages of suspension feeding elasmobranchs have two types of branchial filters. The first is a robust, flattened filter pad akin to a colander (e.g., whale sharks, mantas and devil rays) while the second more closely resembles the comb-like gill raker structure found in bony fishes (e.g., basking and megamouth sharks). The structure and the presence of mucus on the filter elements will determine the mechanical function of the filter and subsequent particle transport. Using histology and scanning electron microscopy, we investigated the anatomy of the branchial filters in 12 of the 14 species of Chondrichthyian filter-feeding fishes. We hypothesized that mucus producing cells would be abundant along the filter epithelium and perform as a sticky mechanism to retain and transport particles; however, we found that only three species had mucus producing goblet cells. Two of these (Mobula kuhlii and Mobula tarapacana) also had branchial cilia, indicating sticky retention and transport. The remaining filter-feeding elasmobranchs did not have a sticky surface along the filter for particles to collect and instead must employ alternative mechanisms of filtration (e.g., direct sieving, inertial impaction or cross-flow). With the exception of basking sharks, the branchial filter is composed of a hyaline cartilage skeleton surrounded by a layer of highly organized connective tissue that may function as a support. Megamouth sharks and most of the mobulid rays have denticles along the surface of the filter, presumably to protect against damage from large particle impactions. Basking sharks have branchial filters that lack a cartilaginous core; instead they are composed entirely of smooth keratin. Copyright © 2014 Wiley Periodicals, Inc.

  9. Comparative Study of Speckle Filtering Methods in PolSAR Radar Images

    NASA Astrophysics Data System (ADS)

    Boutarfa, S.; Bouchemakh, L.; Smara, Y.

    2015-04-01

    Images acquired by polarimetric SAR (PolSAR) radar systems are characterized by the presence of a noise called speckle. This noise has a multiplicative nature, corrupts both the amplitude and phase images, which complicates data interpretation, degrades segmentation performance and reduces the detectability of targets. Hence, the need to preprocess the images by adapted filtering methods before analysis.In this paper, we present a comparative study of implemented methods for reducing speckle in PolSAR images. These developed filters are: refined Lee filter based on the estimation of the minimum mean square error MMSE, improved Sigma filter with detection of strong scatterers based on the calculation of the coherency matrix to detect the different scatterers in order to preserve the polarization signature and maintain structures that are necessary for image interpretation, filtering by stationary wavelet transform SWT using multi-scale edge detection and the technique for improving the wavelet coefficients called SSC (sum of squared coefficients), and Turbo filter which is a combination between two complementary filters the refined Lee filter and the wavelet transform SWT. One filter can boost up the results of the other.The originality of our work is based on the application of these methods to several types of images: amplitude, intensity and complex, from a satellite or an airborne radar, and on the optimization of wavelet filtering by adding a parameter in the calculation of the threshold. This parameter will control the filtering effect and get a good compromise between smoothing homogeneous areas and preserving linear structures.The methods are applied to the fully polarimetric RADARSAT-2 images (HH, HV, VH, VV) acquired on Algiers, Algeria, in C-band and to the three polarimetric E-SAR images (HH, HV, VV) acquired on Oberpfaffenhofen area located in Munich, Germany, in P-band.To evaluate the performance of each filter, we used the following criteria: smoothing homogeneous areas, preserving edges and polarimetric information.Experimental results are included to illustrate the different implemented methods.

  10. Airborne spectral Measurements of Surface-Atmosphere Anisotropy for Several Surfaces and Ecosystem over Southern Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; King, M. D.; Arnold, G. T.; Li, J. Y.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The Cloud Absorption Radiometer (CAR) was flown aboard the University of Washington Convair CV-580 research aircraft and took measurements on 23 flights between August 15 and September 16. On 12 of those flights, BRF measurements were obtained over different natural surfaces and ecosystem in southern Africa. The BRF measurements were done to characterize surface anisotropy in support of SAFARI 2000 science objectives principally to validate products from NASA's EOS satellites, and to parameterize and validate BRF models. In this paper we present results of BRFs taken over two EOS validation sites: Skukuza tower, South Africa (25.0 deg S, 31.5 deg E) and Mongu tower, Zambia (15.4 deg S, 23.3 deg E). Additional sites are also considered and include, Maun tower, Botswana (20.0 deg S, 23.5 deg E), Sowa Pan, Botswana (20.6 deg S, 26.2 deg E) and Etosha Pan, Namibia (19.0 deg S, 16.0 deg E). The CAR is capable of measuring scattered light in fourteen spectral bands. The scan mirror, rotating at 100 rpm, directs the light into a Dall-Kirkham telescope where the beam is split into nine paths. Eight light beams pass through beam splitters, dichroics, and lenses to individual detectors (0.34-1.27 micrometers), and finally are registered by eight data channels. They are sampled simultaneously and continuously. The ninth beam passes through a spinning filter wheel to an InSb detector cooled by a Stirling cycle cooler. Signals registered by the ninth data channel are selected from among six spectral channels (1.55-2.30 micrometers). The filter wheel can either cycle through all six spectral bands at a prescribed interval (usually changing filter every fifth scan line), or lock onto any one of the six spectral bands and sample it continuously. To measure the BRF of the surface-atmosphere system, the University of Washington CV-580 had to bank at a comfortable roll angle of approximately 20 degrees and fly in a circle about 3 km in diameter above the surface for roughly two minutes. Replicated observations (multiple circular orbits) were acquired over selected surfaces so that average BRF smooth out small-scale surface and atmospheric inhomogeneities. At an altitude of 600 m above the targeted surface area and with a 1 deg IFOV, the pixel resolution is about 10 m at nadir and about 270 m at an 80 deg viewing angle from the CAR.

  11. Deflectometry using a Hartmann screen to measure tilt, decentering and focus errors in a spherical surface

    NASA Astrophysics Data System (ADS)

    Muñoz-Potosi, A. F.; Granados-Agustín, F.; Campos-García, M.; Valdivieso-González, L. G.; Percino-Zacarias, M. E.

    2017-11-01

    Among the various techniques that can be used to assess the quality of optical surfaces, deflectometry evaluates the reflection experienced by rays impinging on a surface whose topography is under study. We propose the use of a screen spatial filter to select rays from a light source. The screen must be placed at a distance shorter than the radius of curvature of the surface under study. The location of the screen depends on the exit pupil of the system and the caustic area. The reflected rays are measured using an observation plane/screen/CCD located beyond the point of convergence of the rays. To implement an experimental design of the proposed technique and determine the topography of the surface under study, it is necessary to measure tilt, decentering and focus errors caused by mechanical misalignment, which could influence the results of this technique but are not related to the quality of the surface. The aim of this study is to analyze an ideal spherical surface with known radius of curvature to identify the variations introduced by such misalignment errors.

  12. Application of acoustic surface wave filter-beam lead component technology to deep space multimission hardware design

    NASA Technical Reports Server (NTRS)

    Kermode, A. W.; Boreham, J. F.

    1974-01-01

    This paper discusses the utilization of acoustic surface wave filters, beam lead components, and thin film metallized ceramic substrate technology as applied to the design of deep space, long-life, multimission transponder. The specific design to be presented is for a second mixer local oscillator module, operating at frequencies as high as 249 MHz.

  13. Mapping of explosive contamination using GC/chemiluminescence and ion mobility spectrometry techniques

    NASA Astrophysics Data System (ADS)

    Miller, Carla J.; Glenn, D. F.; Hartenstein, Steven D.; Hallowell, Susan F.

    1998-12-01

    Recent efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have included mapping explosive contamination resulting from manufacturing and carrying improvised explosive devices (IEDs). Two types of trace detection equipment were used to determine levels of contamination from designated sampling areas. A total of twenty IEDs were constructed: ten using TNT and ten using C-4. Two test scenarios were used. The first scenario tracked the activities of a manufacturer who straps the device onto an independent courier. The courier then performed a series of activities to simulate waiting in an airport. The second scenario tracked the activities of a manufacturer who also served as the courier. A sample set for each test consisted of thirty samples from various locations on each IED manufacturer, thirty from each IED courier, twenty-five from the manufacturing area, and twenty-five from the courier area. Pre-samples and post-samples were collected for analysis with each detection technique. Samples analyzed by gc/chemiluminescence were taken by swiping a teflon- coated sampling swipe across the surface of the sampling area to pick up any explosive particles. Samples analyzed by ion mobility spectrometry (IMS) were taken from the clothing of the manufacturer and courier by vacuuming the surface and collecting particulates on a fiberglass filter. Samples for IMS analysis from the manufacturing and courier rooms were taken by wiping a cotton sampling swipe across the surface area. Currently, building IEDs and monitoring the explosive contamination is being directed toward detection with portal monitors.

  14. Oil Spill AISA+ Hyperspectral Data Detection Based on Different Sea Surface Glint Suppression Methods

    NASA Astrophysics Data System (ADS)

    Yang, J.; Ren, G.; Ma, Y.; Dong, L.; Wan, J.

    2018-04-01

    The marine oil spill is a sudden event, and the airborne hyperspectral means to detect the oil spill is an important part of the rapid response. Sun glint, the specular reflection of sun light from water surface to sensor, is inevitable due to the limitation of observation geometry, which makes so much bright glint in image that it is difficult to extract oil spill feature information from the remote sensing data. This paper takes AISA+ airborne hyperspectral oil spill image as data source, using multi-scale wavelet transform, enhanced Lee filter, enhanced Frost filter and mean filter method for sea surface glint suppression of images. And then the classical SVM method is used for the oil spill information detection, and oil spill information distribution map obtained by human-computer interactive interpretation is used to verify the accuracy of oil spill detection. The results show that the above methods can effectively suppress the sea surface glints and improve the accuracy of oil spill detection. The enhanced Lee filter method has the highest detection accuracy of 88.28 %, which is 12.2 % higher than that of the original image.

  15. Filter Enhances Fluorescent-Penetrant-Inspecting Borescope

    NASA Technical Reports Server (NTRS)

    Molina, Orlando G.

    1990-01-01

    Slip-on eyepiece for commercial ultraviolet-light borescope reduces both amount of short-wave ultraviolet light that reaches viewer's eye and apparent intensity of unwanted reflections of white light from surfaces undergoing inspection. Fits on stock eyepiece of borescope, which illuminates surface inspected with intense ultraviolet light. Surface, which is treated with fluorescent dye, emits bright-green visible light wherever dye penetrates - in cracks and voids. Eyepiece contains deep-yellow Wratten 15 (G) filter, which attenuates unwanted light strongly but passes yellow-green fluorescence so defects seen clearly.

  16. Updating the OMERACT filter: core areas as a basis for defining core outcome sets.

    PubMed

    Kirwan, John R; Boers, Maarten; Hewlett, Sarah; Beaton, Dorcas; Bingham, Clifton O; Choy, Ernest; Conaghan, Philip G; D'Agostino, Maria-Antonietta; Dougados, Maxime; Furst, Daniel E; Guillemin, Francis; Gossec, Laure; van der Heijde, Désirée M; Kloppenburg, Margreet; Kvien, Tore K; Landewé, Robert B M; Mackie, Sarah L; Matteson, Eric L; Mease, Philip J; Merkel, Peter A; Ostergaard, Mikkel; Saketkoo, Lesley Ann; Simon, Lee; Singh, Jasvinder A; Strand, Vibeke; Tugwell, Peter

    2014-05-01

    The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes that are universal to all studies of the effects of intervention effects. There is no published outline for instrument choice or development that is aimed at measuring outcome, was derived from broad consensus over its underlying philosophy, or includes a structured and documented critique. Therefore, a new proposal for defining core areas of measurement ("Filter 2.0 Core Areas of Measurement") was presented at OMERACT 11 to explore areas of consensus and to consider whether already endorsed core outcome sets fit into this newly proposed framework. Discussion groups critically reviewed the extent to which case studies of current OMERACT Working Groups complied with or negated the proposed framework, whether these observations had a more general application, and what issues remained to be resolved. Although there was broad acceptance of the framework in general, several important areas of construction, presentation, and clarity of the framework were questioned. The discussion groups and subsequent feedback highlighted 20 such issues. These issues will require resolution to reach consensus on accepting the proposed Filter 2.0 framework of Core Areas as the basis for the selection of Core Outcome Domains and hence appropriate Core Outcome Sets for clinical trials.

  17. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    PubMed

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  18. Technical and social evaluation of arsenic mitigation in rural Bangladesh.

    PubMed

    Shafiquzzaman, Md; Azam, Md Shafiul; Mishima, Iori; Nakajima, Jun

    2009-10-01

    Technical and social performances of an arsenic-removal technology--the sono arsenic filter--in rural areas of Bangladesh were investigated. Results of arsenic field-test showed that filtered water met the Bangladesh standard (< 50 microg/L) after two years of continuous use. A questionnaire was administrated among 198 sono arsenic filter-user and 230 non-user families. Seventy-two percent of filters (n = 198) were working at the time of the survey. Another 28% of the filters were abandoned due to breakage. The abandonment percentage (28%) was lower than other mitigation options currently implemented in Bangladesh. Households were reluctant to repair the broken filters on their own. High cost, problems with maintenance of filters, weak sludge-disposal guidance, and slow flow rate were the other demerits of the filter. These results indicate that the implementation approaches of the sono arsenic filter suffered from lack of ownership and long-term sustainability. Continuous use of arsenic-contaminated tubewells by the non-user households demonstrated the lack of alternative water supply in the survey area. Willingness of households to pay (about 30%) and preference of household filter (50%) suggest the need to develop a low-cost household arsenic filter. Development of community-based organization would be also necessary to implement a long-term, sustainable plan for household-based technology.

  19. One-dimensional error-diffusion technique adapted for binarization of rotationally symmetric pupil filters

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Marek; Martínez-Corral, Manuel; Cichocki, Tomasz; Andrés, Pedro

    1995-02-01

    Two novel algorithms for the binarization of continuous rotationally symmetric real and positive pupil filters are presented. Both algorithms are based on the one-dimensional error diffusion concept. In our numerical experiment an original gray-tone apodizer is substituted by a set of transparent and opaque concentric annular zones. Depending on the algorithm the resulting binary mask consists of either equal width or equal area zones. The diffractive behavior of binary filters is evaluated. It is shown that the filter with equal width zones gives Fraunhofer diffraction pattern more similar to that of the original gray-tone apodizer than that with equal area zones, assuming in both cases the same resolution limit of device used to print both filters.

  20. Laser removal of loose uranium compound contamination from metal surfaces

    NASA Astrophysics Data System (ADS)

    Roberts, D. E.; Modise, T. S.

    2007-04-01

    Pulsed laser removal of surface contamination of uranyl nitrate and uranium dioxide from stainless steel has been studied. Most of the loosely bound contamination has been removed at fluence levels below 0.5 J cm -2, leaving about 5% fixed contamination for uranyl nitrate and 15% for uranium dioxide. Both alpha and beta activities are then sufficiently low that contaminated objects can be taken out of a restricted radiation area for re-use. The ratio of beta to alpha activity is found to be a function of particle size and changes during laser removal. In a separate experiment using technetium-99m, the collection of removed radioactivity in the filter was studied and an inventory made of removed and collected contamination.

  1. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    We have fabricated aerogels containing gold, silver, and platinum nanoparticles for gas catalysis applications. By applying the concept of an average or effective dielectric constant to the heterogeneous interlayer surrounding each particle, we extend the technique of immersion spectroscopy to porous or heterogeneous media. Specifically, we apply the predominant effective medium theories for the determination of the average fractional composition of each component in this inhomogeneous layer. Hence, the surface area of metal available for catalytic gas reaction is determined. The technique is satisfactory for statistically random metal particle distributions but needs further modification for aggregated or surfactant modified systems. Additionally, the kinetics suggest that collective particle interactions in coagulated clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  2. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy.

    PubMed

    Oßmann, Barbara E; Sarau, George; Schmitt, Sebastian W; Holtmannspötter, Heinrich; Christiansen, Silke H; Dicke, Wilhelm

    2017-06-01

    When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 μm. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 μm becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified. Graphical abstract A newly developed aluminium coated polycarbonate membrane filter enables automatic particle detection and generation of high qualitative Raman spectra allowing identification of small microplastics.

  3. ENVIRONMENTAL RADIOACTIVITY AT ARGONNE NATIONAL LABORATORY. Report for the Year 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlet, J.

    1959-08-01

    Data are tabulated on the radioactive content of samples of surface water, lake and stream bottom silt, soil, plants, and air filters from the environs of the Argonne National Laboratory. Results are compared with those for similar samples collected from the area from 1952 through 1958. Fission prcduct activity from nuclear detocations was found in most samples from all locations. Fall-out activity was greatest during the spring and fall, and was particularly noticeable in air, precipitation, and plant samples. (For preceding period see ANL-5934.) (C.H.)

  4. Eliminate background interference from latent fingerprints using ultraviolet multispectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Xiaojing; Wang, Guiqiang

    2014-02-01

    Fingerprints are the most important evidence in crime scene. The technology of developing latent fingerprints is one of the hottest research areas in forensic science. Recently, multispectral imaging which has shown great capability in fingerprints development, questioned document detection and trace evidence examination is used in detecting material evidence. This paper studied how to eliminate background interference from non-porous and porous surface latent fingerprints by rotating filter wheel ultraviolet multispectral imaging. The results approved that background interference could be removed clearly from latent fingerprints by using multispectral imaging in ultraviolet bandwidth.

  5. Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands.

    PubMed

    Tietz, Alexandra; Kirschner, Alexander; Langergraber, Günter; Sleytr, Kirsten; Haberl, Raimund

    2007-07-15

    In this study a quantitative description of the microbial biocoenosis in subsurface vertical flow constructed wetlands fed with municipal wastewater was carried out. Three different methods (substrate induced respiration, ATP measurement and fumigation-extraction) were applied to measure the microbial biomass at different depths of planted and unplanted systems. Additionally, bacterial biomass was determined by epifluorescence microscopy and productivity was measured via (14)C leucine incorporation into bacterial biomass. All methods showed that >50% of microbial biomass and bacterial activity could be found in the first cm and about 95% in the first 10 cm of the filter layer. Bacterial biomass in the first 10 cm of the filter body accounted only for 16-19% of the total microbial biomass. Whether fungi or methodical uncertainties are mainly responsible for the difference between microbial and bacterial biomass remains to be examined. A comparison between the purification performance of planted and unplanted pilot-scale subsurface vertical flow constructed wetlands (PSCWs) showed no significant difference with the exception of the reduction of enterococci. The microbial biomass in all depths of the filter body was also not different in planted and unplanted systems. Compared with data from soils the microbial biomass in the PSCWs was high, although the specific surface area of the used sandy filter material available for biofilm growth was lower, especially in the beginning of the set-up of the PSCWs, due to missing clay and silt fraction.

  6. A Controlled Design of Ripple-Like Polyamide-6 Nanofiber/Nets Membrane for High-Efficiency Air Filter.

    PubMed

    Zhang, Shichao; Liu, Hui; Zuo, Fenglei; Yin, Xia; Yu, Jianyong; Ding, Bin

    2017-03-01

    The filtration capacity of fibrous media for airborne particles is restricted by their thick diameter, low porosity, and limited frontal area. The ability to solve this problem would have broad technological implications for various air filtration applications; despite many past efforts, it remains a great challenge to achieve. Herein, a facile and scalable strategy to fabricate the ripple-like polyamide-6 nanofiber/nets (PA-6 NF/N) air filter via combining electrospinning/netting technique with receiving substrate design is demonstrated. This proposed approach allows the scaffold filaments to orderly embed into 2D PA-6 nanonets layer with Steiner-tree structures and nanoscale diameter of ≈20 nm, resulting in the ripple-like membrane with extremely small pore size, highly porous structure, and hugely extended frontal surface, by facilely adjusting its pleat span and pleat pitch. These unique structural advantages enable the ripple-like PA-6 NF/N filter to filtrate the ultrafine particles with high removal efficiency of 99.996%, low air resistance of 95 Pa, and robust quality factor of >0.11 Pa -1 ; using its superlight weight of 0.9 g m -2 and physical sieving manner. This approach has the potentialities to give rise to a novel generation of filter media displaying enhanced filtration capacity for various applications thanks to their nanoscale features and designed macrostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comment on "Irreversible sorption of trace concentrations of perfluorocarboxylic acids to fiber filters used for air sampling" by Arp and Goss (Atmospheric Environment 42, 6869-6872, 2008)

    NASA Astrophysics Data System (ADS)

    Barton, Catherine A.; Kaiser, Mary A.; Butler, Larry E.; Botelho, Miguel A.

    This discussion paper reflects concerns as to the technical arguments set forth in the Arp and Goss paper. The authors of the paper, Arp and Goss, hypothesize that vapor phase perfluorocarboxylic acids (PFAs) are irreversibly sorbed to the surface of air sampling filters, and that this sorption erroneously biases vapor/particle speciation measurements toward the particle phase. These authors also suggest a surface treatment of the filters is necessary. As authors of some of the experimental data used in the Arp paper, we believe Arp and Goss have misstated the case for irreversible adsorption, and that untreated filters provide adequate vapor/particle speciation results for PFAs. Additional field data are offered to help prove the point.

  8. Filtered cathodic arc deposition apparatus and method

    DOEpatents

    Krauss, Alan R.

    1999-01-01

    A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  9. Edge detection of magnetic anomalies using analytic signal of tilt angle (ASTA)

    NASA Astrophysics Data System (ADS)

    Alamdar, K.; Ansari, A. H.; Ghorbani, A.

    2009-04-01

    Magnetic is a commonly used geophysical technique to identify and image potential subsurface targets. Interpretation of magnetic anomalies is a complex process due to the superposition of multiple magnetic sources, presence of geologic and cultural noise and acquisition and positioning error. Both the vertical and horizontal derivatives of potential field data are useful; horizontal derivative, enhance edges whereas vertical derivative narrow the width of anomaly and so locate source bodies more accurately. We can combine vertical and horizontal derivative of magnetic field to achieve analytic signal which is independent to body magnetization direction and maximum value of this lies over edges of body directly. Tilt angle filter is phased-base filter and is defined as angle between vertical derivative and total horizontal derivative. Tilt angle value differ from +90 degree to -90 degree and its zero value lies over body edge. One of disadvantage of this filter is when encountering with deep sources the detected edge is blurred. For overcome this problem many authors introduced new filters such as total horizontal derivative of tilt angle or vertical derivative of tilt angle which Because of using high-order derivative in these filters results may be too noisy. If we combine analytic signal and tilt angle, a new filter termed (ASTA) is produced which its maximum value lies directly over body edge and is easer than tilt angle to delineate body edge and no complicity of tilt angle. In this work new filter has been demonstrated on magnetic data from an area in Sar- Cheshme region in Iran. This area is located in 55 degree longitude and 32 degree latitude and is a copper potential region. The main formation in this area is Andesith and Trachyandezite. Magnetic surveying was employed to separate the boundaries of Andezite and Trachyandezite from adjacent area. In this regard a variety of filters such as analytic signal, tilt angle and ASTA filter have been applied which new ASTA filter determined Andezite boundaries from surrounded more accurately than other filters. Keywords: Horizontal derivative, Vertical derivative, Tilt angle, Analytic signal, ASTA, Sar-Cheshme.

  10. Forced-air warming blowers: An evaluation of filtration adequacy and airborne contamination emissions in the operating room.

    PubMed

    Albrecht, Mark; Gauthier, Robert L; Belani, Kumar; Litchy, Mark; Leaper, David

    2011-05-01

    Forced-air warming (FAW) is widely used to prevent hypothermia during surgical procedures. The airflow from these blowers is often vented near the operative site and should be free of contaminants to minimize the risk of surgical site infection. Popular FAW blowers contain a 0.2-μm rated intake filter to reduce these risks. However, there is little evidence that the efficiency of the intake filter is adequate to prevent airborne contamination emissions or protect the internal air path from microbial contamination buildup. Five new intake filters were obtained directly from the manufacturer (Bair Hugger 505, model 200708D; Arizant Healthcare, Eden Prairie, MN), and 5 model 200708C filters currently in hospital use were removed from FAW devices. The retention efficiency of these filters was assessed using a monodisperse sodium chloride aerosol. In the same hospitals, internal air path surface swabs and hose outlet particle counts were performed on 52 forced-air warming devices (all with the model 200708C filter) to assess internal microbial buildup and airborne contamination emissions. Intake filter retention efficiency at 0.2 μm was 93.8% for the 200708C filter and 61.3% at for the 200708D filter. The 200708D filter obtained directly from the manufacturer has a thinner filtration media than the 200708C filter in current hospital use, suggesting that the observed differences in retention efficiency were due to design changes. Fifty-eight percent of the FAW blowers evaluated were internally generating and emitting airborne contaminants, with microorganisms detected on the internal air path surfaces of 92.3% of these blowers. Isolates of Staphylococcus aureus, coagulase-negative Staphylococcus, and methicillin-resistant S aureus were detected in 13.5%, 3.9%, and 1.9% of FAW blowers, respectively. The design of popular FAW devices using the 200708C filter was found to be inadequate for preventing the internal buildup and emission of microbial contaminants into the operating room. Substandard intake filtration allowed airborne contaminants (both viable and nonviable) to penetrate the intake filter and reversibly attach to the internal surfaces within the FAW blowers. The reintroduction of these contaminants into the FAW blower air stream was detected and could contribute to the risk of cross-infection. Given the deficiencies identified with the 200708C intake filter, the introduction of a new filter (model 200708D) with substantially lower retention efficiency is of concern. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  11. Precise and versatile formula for birefringent filters

    NASA Astrophysics Data System (ADS)

    Shao, Zhongxing

    1996-07-01

    In an investigation of extraordinary-(E-) ray behavior and the index of refraction for E waves in a uniaxial crystal, a precise and versatile formula for birefringent filters, based on the exact construction of the optical path difference, is set up with neither the approximation Delta n = no - ne less than or equals no (or n e), nor the ambiguity sin( theta )/sin(rw) = ne. The exact construction gives the correct variation of the position and the dimension in each path, yielding the path difference while the filter is tuning. The formula is applicable not only to a filter with its optical axis parallel to the entrance surface (FAPS) but also to a filter with its axis inclined to the surface (FAIS). Also, the formula indicates that a FAIS allows laser wavelengths to be tuned over a wider range than does a FAPS. The origin of the wider range is interpreted to be the greater variation in the index for the FAIS while the filter is tuning. With the help of the formula we design a FAIS for tuning a cw 42.25.Lc.

  12. An extended Kalman filter for mouse tracking.

    PubMed

    Choi, Hongjun; Kim, Mingi; Lee, Onseok

    2018-05-19

    Animal tracking is an important tool for observing behavior, which is useful in various research areas. Animal specimens can be tracked using dynamic models and observation models that require several types of data. Tracking mouse has several barriers due to the physical characteristics of the mouse, their unpredictable movement, and cluttered environments. Therefore, we propose a reliable method that uses a detection stage and a tracking stage to successfully track mouse. The detection stage detects the surface area of the mouse skin, and the tracking stage implements an extended Kalman filter to estimate the state variables of a nonlinear model. The changes in the overall shape of the mouse are tracked using an oval-shaped tracking model to estimate the parameters for the ellipse. An experiment is conducted to demonstrate the performance of the proposed tracking algorithm using six video images showing various types of movement, and the ground truth values for synthetic images are compared to the values generated by the tracking algorithm. A conventional manual tracking method is also applied to compare across eight experimenters. Furthermore, the effectiveness of the proposed tracking method is also demonstrated by applying the tracking algorithm with actual images of mouse. Graphical abstract.

  13. Mercury and arsenic in the gold mining regions of the Ankobra River basin in Ghana

    NASA Astrophysics Data System (ADS)

    Bannerman, W.; Potin-Gautier, M.; Amoureux, D.; Tellier, S.; Rambaud, A.; Babut, M.; Adimado, A.; Beinhoff, C.

    2003-05-01

    The river Ankobra flows through the principal gold mining centres in Western Ghana, draining a total area of 8272 km^2 to join the Atlantic ocean. Mercury is used by thousands of small-scale miners in the region to amalgamate gold. Ores mined in some deep shafts and surface mines are arsenopyrites and the region is marked by the presence of heaps of arsenic - rich mine tailings from both past and recent activities. This study was conducted to assess the impact of mining activities on the distribution and speciation of arsenic and mercury in the aquatic environment of the Ankobra River. In all, water (filtered and non-filtered) and bed sediments were collected from various locations within the watershed. Principal parameters investigated include total mercury, arsenic (III), arsenic (V), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA). Seasonal and spatial variations of these parameters were investigated. Quality control systems were adopted at both the environmental and analytical stages of the study. ln general, areas close to the mining centres are the most pollilited. As (V)/As (III) ratios in water are reversed after the first 100-km of the river length with the onset of industrial influence downstream.

  14. Escherichia coli Removal in Biochar-Modified Biofilters: Effects of Biofilm

    PubMed Central

    Afrooz, A. R. M. Nabiul; Boehm, Alexandria B.

    2016-01-01

    The presence of microbial contaminants in urban stormwater is a significant concern for public health; however, their removal by traditional stormwater biofilters has been reported as inconsistent and inadequate. Recent work has explored the use of biochar to improve performance of stormwater biofilters under simplified conditions that do not consider potential effects of biofilm development on filter media. The present study investigates the role of biofilm on microbial contaminant removal performance of stormwater biofilters. Pseudomonas aeruginosa biofilms were formed in laboratory-scale sand and biochar-modified sand packed columns, which were then challenged with Escherichia coli laden synthetic stormwater containing natural organic matter. Results suggests that the presence of biofilm influences the removal of E. coli. However, the nature of the influence depends on the specific surface area and the relative hydrophobicity of filter media. The distribution of attached bacteria within the columns indicates that removal by filter media varies along the length of the column: the inlet was the primary removal zone regardless of experimental conditions. Findings from this research inform the design of field-scale biofilters for better and consistent performance in removing microbial contaminants from urban stormwater. PMID:27907127

  15. Effect of spatial filtering on crosstalk reduction in surface EMG recordings.

    PubMed

    Mesin, Luca; Smith, Stuart; Hugo, Suzanne; Viljoen, Suretha; Hanekom, Tania

    2009-04-01

    Increasing the selectivity of the detection system in surface electromyography (EMG) is beneficial in the collection of information of a specific portion of the investigated muscle and to reduce the contribution of undesired components, such as non-propagating components (due to generation or end-of-fibre effects) or crosstalk from nearby muscles. A comparison of the ability of different spatial filters to reduce the amount of crosstalk in surface EMG measurements was conducted in this paper using simulated signals. It focused on the influence of different properties of the muscle anatomy (changing subcutaneous layer thickness, skin conductivity, fibre length) and detection system (single, double and normal double differential, with two inter-electrode distances - IED) on the amount of crosstalk present in the measurements. A cylindrical multilayer (skin, subcutaneous tissue, muscle, bone) analytical model was used to simulate single fibre action potentials (SFAPs). Fibres were grouped together in motor units (MUs) and motor unit action potentials (MUAPs) were obtained by adding the SFAPs of the corresponding fibres. Interference surface EMG signals were obtained, modelling the recruitment of MUs and rate coding. The average rectified value (ARV) and mean frequency (MNF) content of the EMG signals were studied and used as a basis for determining the selectivity of each spatial filter. From these results it was found that the selectivity of each spatial filter varies depending on the transversal location of the measurement electrodes and on the anatomy. An increase in skin conductivity favourably affects the selectivity of normal double differential filters as does an increase in subcutaneous layer thickness. An increase in IED decreases the selectivity of all the analysed filters.

  16. Hardware-efficient implementation of digital FIR filter using fast first-order moment algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Li; Liu, Jianguo; Xiong, Jun; Zhang, Jing

    2018-03-01

    As the digital finite impulse response (FIR) filter can be transformed into the shift-add form of multiple small-sized firstorder moments, based on the existing fast first-order moment algorithm, this paper presents a novel multiplier-less structure to calculate any number of sequential filtering results in parallel. The theoretical analysis on its hardware and time-complexities reveals that by appropriately setting the degree of parallelism and the decomposition factor of a fixed word width, the proposed structure may achieve better area-time efficiency than the existing two-dimensional (2-D) memoryless-based filter. To evaluate the performance concretely, the proposed designs for different taps along with the existing 2-D memoryless-based filters, are synthesized by Synopsys Design Compiler with 0.18-μm SMIC library. The comparisons show that the proposed design has less area-time complexity and power consumption when the number of filter taps is larger than 48.

  17. Reduction of bacteria and somatic coliphages in constructed wetlands for the treatment of combined sewer overflow (retention soil filters).

    PubMed

    Ruppelt, Jan P; Tondera, Katharina; Schreiber, Christiane; Kistemann, Thomas; Pinnekamp, Johannes

    2018-05-01

    Combined sewer overflows (CSOs) introduce numerous pathogens from fecal contamination, such as bacteria and viruses, into surface waters, thus endangering human health. In Germany, retention soil filters (RSFs) treat CSOs at sensitive discharge points and can contribute to reducing these hygienically relevant microorganisms. In this study, we evaluated the extent of how dry period, series connection and filter layer thickness influence the reduction efficiency of RSFs for Escherichia coli (E. coli), intestinal enterococci (I. E.) and somatic coliphages. To accomplish this, we had four pilot scale RSFs built on a test field at the wastewater treatment plant Aachen-Soers. While two filters were replicates, the other two filters were installed in a series connection. Moreover, one filter had a thinner filtration layer than the other three. Between April 2015 and December 2016, the RSFs were loaded in 37 trials with pre-conditioned CSO after dry periods ranging from 4 to 40 days. During 17 trials, samples for microbial analysis were taken and analyzed. The series connection of two filters showed that the removal increases when two systems with a filter layer of the same height are operated in series. Since the microorganisms are exposed twice to the environmental conditions on the filter surface and in the upper filter layers, there is a greater chance for abiotic adsorption increase. The same effect could be shown when filters with different depths were compared: the removal efficiency increases as filter thickness increases. This study provides new evidence that regardless of seasonal effects and dry period, RSFs can improve hygienic situation significantly. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Analysis of the selected mechanical parameters of coating of filters protecting against hazardous infrared radiation.

    PubMed

    Gralewicz, Grzegorz; Owczarek, Grzegorz; Kubrak, Janusz

    2017-03-01

    This article presents a comparison of the test results of selected mechanical parameters (hardness, Young's modulus, critical force for delamination) for protective filters intended for eye protection against harmful infrared radiation. Filters with reflective metallic films were studied, as well as interference filters developed at the Central Institute for Labour Protection - National Research Institute (CIOP-PIB). The test results of the selected mechanical parameters were compared with the test results, conducted in accordance with a standardised method, of simulating filter surface destruction that occurs during use.

  19. Improvement of stability of polidocanol foam for nonsurgical permanent contraception.

    PubMed

    Guo, Jian Xin; Lucchesi, Lisa; Gregory, Kenton W

    2015-08-01

    Polidocanol foam (PF), used clinically as a venous sclerosant, has recently been studied as a safe and inexpensive means for permanent contraception. Delivering the sclerosant to the fallopian tubes as a foam rather than a liquid increases the surface areas and thus enhances the desired epithelial disrupting activity of the agent. However, the foam is inherently unstable and degrades with time. Therefore, increasing foam stability and thus duration of the agent exposure time could increase epithelial effect while allowing reduction in agent concentration and potential toxicity. We studied methods to improve foam properties that might improve safety and efficacy of PF for intrauterine application. Several types of microporous filters adapted to a syringe-based foaming device were used to study the effect of pore structures on the formation of PF. The foam drainage time and bubble size were characterized. The addition of benzalkonium chloride (BZK) to polidocanol was also investigated for its effects on foam characteristics. A syringe-based foaming device adapted with an inline filter produced smaller bubble PF with a longer foam drainage time. PF generated with a circular pore filter lasts longer than with a noncircular pore filter. The addition of 0.01% of BZK also improved the stability of PF. The stability of PF is affected by the pore characteristics of the filter used for foam generation and enhanced by the presence of a small amount of BZK. The improved foam, if shown to be efficacious in animal models of contraception, could lead to a safe, simple and inexpensive method alternative to surgical contraception. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Adequate model complexity for scenario analysis of VOC stripping in a trickling filter.

    PubMed

    Vanhooren, H; Verbrugge, T; Boeije, G; Demey, D; Vanrolleghem, P A

    2001-01-01

    Two models describing the stripping of volatile organic contaminants (VOCs) in an industrial trickling filter system are developed. The aim of the models is to investigate the effect of different operating conditions (VOC loads and air flow rates) on the efficiency of VOC stripping and the resulting concentrations in the gas and liquid phases. The first model uses the same principles as the steady-state non-equilibrium activated sludge model Simple Treat, in combination with an existing biofilm model. The second model is a simple mass balance based model only incorporating air and liquid and thus neglecting biofilm effects. In a first approach, the first model was incorporated in a five-layer hydrodynamic model of the trickling filter, using the carrier material design specifications for porosity, water hold-up and specific surface area. A tracer test with lithium was used to validate this approach, and the gas mixing in the filters was studied using continuous CO2 and O2 measurements. With the tracer test results, the biodegradation model was adapted, and it became clear that biodegradation and adsorption to solids can be neglected. On this basis, a simple dynamic mass balance model was built. Simulations with this model reveal that changing the air flow rate in the trickling filter system has little effect on the VOC stripping efficiency at steady state. However, immediately after an air flow rate change, quite high flux and concentration peaks of VOCs can be expected. These phenomena are of major importance for the design of an off-gas treatment facility.

  1. Assimilation of SMOS Retrieved Soil Moisture into the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Case, Jonathan; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) instrument are assimilated into the Noah land surface model (LSM) within the NASA Land Information System (LIS). Before assimilation, SMOS retrievals are bias-corrected to match the model climatological distribution using a Cumulative Distribution Function (CDF) matching approach. Data assimilation is done via the Ensemble Kalman Filter. The goal is to improve the representation of soil moisture within the LSM, and ultimately to improve numerical weather forecasts through better land surface initialization. We present a case study showing a large area of irrigation in the lower Mississippi River Valley, in an area with extensive rice agriculture. High soil moisture value in this region are observed by SMOS, but not captured in the forcing data. After assimilation, the model fields reflect the observed geographic patterns of soil moisture. Plans for a modeling experiment and operational use of the data are given. This work helps prepare for the assimilation of Soil Moisture Active/Passive (SMAP) retrievals in the near future.

  2. A high selective methanol gas sensor based on molecular imprinted Ag-LaFeO3 fibers.

    PubMed

    Rong, Qian; Zhang, Yumin; Wang, Chao; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2017-09-21

    Ag-LaFeO 3 molecularly imprinted polymers (ALMIPs) were fabricated, which provided special recognition sites to methanol. Then ALMIPs fiber 1, fiber 2 and fiber 3 were prepared using filter paper, silk and carbon fibers template, respectively. Based on the observation of X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Nitrogen adsorption surface area analyzer (BET), the structure, morphology and surface area of the fibers were characterized. The ALMIPs fibers (fiber 1, fiber 2 and fiber 3) show excellent selectivity and good response to methanol. The responses to 5 ppm methanol and the optimal operating temperature of ALMIPs fibers are 23.5 and 175 °C (fiber 1), 19.67 and 125 °C (fiber 2), 17.59 and 125 °C (fiber 3), and a lower response (≤10, 3, 2) to other test gases including formaldehyde, acetone, ethanol, ammonia, gasoline and benzene was measured, respectively.

  3. Fabrication of dense wavelength division multiplexing filters with large useful area

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Chung; Chen, Sheng-Hui; Hsu, Jin-Cherng; Kuo, Chien-Cheng

    2006-08-01

    Dense Wavelength Division Multiplexers (DWDM), a kind of narrow band-pass filter, are extremely sensitive to the optical thickness error in each composite layer. Therefore to have a large useful coating area is extreme difficult because of the uniformity problem. To enlarge the useful coating area it is necessary to improve their design and their fabrication. In this study, we discuss how the tooling factors at different positions and for different materials are related to the optical performance of the design. 100GHz DWDM filters were fabricated by E-gun evaporation with ion-assisted deposition (IAD). To improve the coating uniformity, an analysis technique called shaping tooling factor (STF) was used to analyze the deviation of the optical thickness in different materials so as to enlarge the useful coating area. Also a technique of etching the deposited layers with oxygen ions was introduced. When the above techniques were applied in the fabrication of 100 GHz DWDM filters, the uniformity was better than +/-0.002% over an area of 72 mm in diameter and better than +/-0.0006% over 20mm in diameter.

  4. Ecological risks of home and personal care products in the riverine environment of a rural region in South China without domestic wastewater treatment facilities.

    PubMed

    Zhang, Nai-Sheng; Liu, You-sheng; Van den Brink, Paul J; Price, Oliver R; Ying, Guang-Guo

    2015-12-01

    Home and personal care products (HPCPs) including biocides, benzotriazoles (BTs) and ultraviolet (UV) filters are widely used in our daily life. After use, they are discharged with domestic wastewater into the receiving environment. This study investigated the occurrence of 29 representative HPCPs, including biocides, BTs and UV filters, in the riverine environment of a rural region of South China where no wastewater treatment plants were present, and assessed their potential ecological risks to aquatic organisms. The results showed the detection of 11 biocides and 4 BTs in surface water, and 9 biocides, 3 BTs and 4 UV filters in sediment. In surface water, methylparaben (MeP), triclocarban (TCC), and triclosan (TCS) were detected at all sites with median concentrations of 9.23 ng/L, 2.64 ng/L and 5.39 ng/L, respectively. However, the highest median concentrations were found for clotrimazole (CLOT), 5-methyl-1H-benzotriazole (MBT) and carbendazim (CARB) at 55.6 ng/L, 33.7 ng/L and 13.8 ng/L, respectively. In sediment, TCC, TCS, and UV-326 were detected with their maximum concentrations up to 353 ng/g, 155 ng/g, and 133 ng/g, respectively. The concentrations for those detected HPCPs in surface water and sediment were generally lower in the upper reach (rural area) of Sha River than in the lower reach of Sha River with close proximity to Dongjiang River (Pt-test<0.05), indicating other input sources of HPCPs in the lower reach. Biocides showed significantly higher levels in surface water in the wet season than in the dry and intermediate seasons. Preliminary risk assessment demonstrated that the majority of HPCPs monitored represented low risk in surface waters. There are potentially greater risks to aquatic organisms from the use of TCS and TCC in the wet season than in dry and intermediate seasons in surface waters. This preliminary assessment also indicates potential concerns associated with TCC, TCS, DEET, CARB, and CLOT in sediments, although additional data should be generated to assess this fully. Thus future research is needed to investigate ecological effects of these HPCPs on benthic organisms in sediment of rural rivers receiving untreated wastewater discharge. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Improved aethalometer

    DOEpatents

    Hansen, A.D.

    1988-01-25

    An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nur, Adrian; Rahmawati, Alifah; Ilmi, Noor Izzati

    Synthesis of nanosized of hydroxyapatite (HA) by electrochemical pulsed direct current (PDC) method has been studied. The aim of this work is to study the influence of various PDC parameters (pH initial, electrode distance, duty cycle, frequency, and amplitude) on particle surface area of HA powders. The electrochemical synthesis was prepared in solution Ca{sup 2+}/EDTA{sup 4−}/PO{sub 4}{sup 3+} at concentration 0.25/0.25/0.15 M for 24 h. The electrochemical cell was consisted of two carbon rectangular electrodes connected to a function generator to produce PDC. There were two treatments for particles after electrosynthesized, namely without aging and aged for 2 days atmore » 40 °C. For both cases, the particles were filtered and washed by demineralized water to eliminate the impurities and unreacted reactants. Then, the particles were dried at 100 °C for 2 days. The dried particles were characterized by X-ray diffraction, surface area analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectra and thermogravimetric and differential thermal analysis. HA particles can be produced when the initial pH > 6. The aging process has significant effect on the produced HA particles. SEM images of HA particles showed that the powders consisted of agglomerates composed of fine crystallites and have morphology plate-like and sphere. The surface area of HA particles is in the range of 25 – 91 m{sup 2}/g. The largest particle surface area of HA was produced at 4 cm electrode distance, 80% cycle duty, frequency 0.1 Hz, amplitude 9 V and with aging process.« less

  7. Excitation of multiple surface-plasmon-polariton waves using a compound surface-relief grating

    NASA Astrophysics Data System (ADS)

    Faryad, Muhammad; Lakhtakia, Akhlesh

    2012-01-01

    The excitation of multiple surface-plasmon-polariton waves, all of the same frequency but different polarization states, phase speeds, spatial profiles and degrees of localization, by a compound surface-relief grating formed by a metal and a rugate filter, both of finite thickness, was studied using the rigorous coupled-wave approach. Each period of the compound surface-relief grating was chosen to have an integral number of periods of two different simple surface-relief gratings. The excitation of different SPP waves was inferred from the absorptance peaks that were independent of the thickness of the rugate filter. The excitation of each SPP wave could be attributed to either a simple surface-relief grating present in the compound surface-relief grating or to the compound surface-relief grating itself. However, the excitation of SPP waves was found to be less efficient with the compound surface-relief grating than with a simple surface-relief grating.

  8. An exponential filter model predicts lightness illusions

    PubMed Central

    Zeman, Astrid; Brooks, Kevin R.; Ghebreab, Sennay

    2015-01-01

    Lightness, or perceived reflectance of a surface, is influenced by surrounding context. This is demonstrated by the Simultaneous Contrast Illusion (SCI), where a gray patch is perceived lighter against a black background and vice versa. Conversely, assimilation is where the lightness of the target patch moves toward that of the bounding areas and can be demonstrated in White's effect. Blakeslee and McCourt (1999) introduced an oriented difference-of-Gaussian (ODOG) model that is able to account for both contrast and assimilation in a number of lightness illusions and that has been subsequently improved using localized normalization techniques. We introduce a model inspired by image statistics that is based on a family of exponential filters, with kernels spanning across multiple sizes and shapes. We include an optional second stage of normalization based on contrast gain control. Our model was tested on a well-known set of lightness illusions that have previously been used to evaluate ODOG and its variants, and model lightness values were compared with typical human data. We investigate whether predictive success depends on filters of a particular size or shape and whether pooling information across filters can improve performance. The best single filter correctly predicted the direction of lightness effects for 21 out of 27 illusions. Combining two filters together increased the best performance to 23, with asymptotic performance at 24 for an arbitrarily large combination of filter outputs. While normalization improved prediction magnitudes, it only slightly improved overall scores in direction predictions. The prediction performance of 24 out of 27 illusions equals that of the best performing ODOG variant, with greater parsimony. Our model shows that V1-style orientation-selectivity is not necessary to account for lightness illusions and that a low-level model based on image statistics is able to account for a wide range of both contrast and assimilation effects. PMID:26157381

  9. Neuro-inspired smart image sensor: analog Hmax implementation

    NASA Astrophysics Data System (ADS)

    Paindavoine, Michel; Dubois, Jérôme; Musa, Purnawarman

    2015-03-01

    Neuro-Inspired Vision approach, based on models from biology, allows to reduce the computational complexity. One of these models - The Hmax model - shows that the recognition of an object in the visual cortex mobilizes V1, V2 and V4 areas. From the computational point of view, V1 corresponds to the area of the directional filters (for example Sobel filters, Gabor filters or wavelet filters). This information is then processed in the area V2 in order to obtain local maxima. This new information is then sent to an artificial neural network. This neural processing module corresponds to area V4 of the visual cortex and is intended to categorize objects present in the scene. In order to realize autonomous vision systems (consumption of a few milliwatts) with such treatments inside, we studied and realized in 0.35μm CMOS technology prototypes of two image sensors in order to achieve the V1 and V2 processing of Hmax model.

  10. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  11. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  12. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  13. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  14. 40 CFR 63.11423 - What are the standards and compliance requirements for new and existing sources?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Lead Acid Battery Manufacturing Area Sources Standards and Compliance Requirements § 63.11423 What are.... Fabric filters equipped with a high efficiency particulate air (HEPA) filter or other secondary filter...

  15. Anti-clogging filter system

    DOEpatents

    Brown, Erik P.

    2015-05-19

    An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain that preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.

  16. Anti-clogging filter system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Erik P.

    An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain thatmore » preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.« less

  17. Ultrasonic tracking of shear waves using a particle filter.

    PubMed

    Ingle, Atul N; Ma, Chi; Varghese, Tomy

    2015-11-01

    This paper discusses an application of particle filtering for estimating shear wave velocity in tissue using ultrasound elastography data. Shear wave velocity estimates are of significant clinical value as they help differentiate stiffer areas from softer areas which is an indicator of potential pathology. Radio-frequency ultrasound echo signals are used for tracking axial displacements and obtaining the time-to-peak displacement at different lateral locations. These time-to-peak data are usually very noisy and cannot be used directly for computing velocity. In this paper, the denoising problem is tackled using a hidden Markov model with the hidden states being the unknown (noiseless) time-to-peak values. A particle filter is then used for smoothing out the time-to-peak curve to obtain a fit that is optimal in a minimum mean squared error sense. Simulation results from synthetic data and finite element modeling suggest that the particle filter provides lower mean squared reconstruction error with smaller variance as compared to standard filtering methods, while preserving sharp boundary detail. Results from phantom experiments show that the shear wave velocity estimates in the stiff regions of the phantoms were within 20% of those obtained from a commercial ultrasound scanner and agree with estimates obtained using a standard method using least-squares fit. Estimates of area obtained from the particle filtered shear wave velocity maps were within 10% of those obtained from B-mode ultrasound images. The particle filtering approach can be used for producing visually appealing SWV reconstructions by effectively delineating various areas of the phantom with good image quality properties comparable to existing techniques.

  18. Milestone Completion Report WBS 1.3.5.05 ECP/VTK-m FY17Q3 [MS-17/02] Faceted Surface Normals STDA05-3.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, Kenneth D.

    2017-07-01

    The FY17Q3 milestone of the ECP/VTK-m project includes the completion of a VTK-m filter that computes normal vectors for surfaces. Normal vectors are those that point perpendicular to the surface and are an important direction when rendering the surface. The implementation includes the parallel algorithm itself, a filter module to simplify integrating it into other software, and documentation in the VTK-m Users’ Guide. With the completion of this milestone, we are able to necessary information to rendering systems to provide appropriate shading of surfaces. This milestone also feeds into subsequent milestones that progressively improve the approximation of surface direction.

  19. Callisto False Color

    NASA Image and Video Library

    1996-09-26

    This false color picture of Callisto was taken by NASA's Voyager 2 on July 7, 1979 at a range of 1,094,666 kilometers (677,000 miles) and is centered on 11 degrees N and 171 degrees W. This rendition uses an ultraviolet image for the blue component. Because the surface displays regional contrast in UV, variations in surface materials are apparent. Notice in particular the dark blue haloes which surround bright craters in the eastern hemisphere. The surface of Callisto is the most heavily cratered of the Galilean satellites and resembles ancient heavily cratered terrains on the moon, Mercury and Mars. The bright areas are ejecta thrown out by relatively young impact craters. A large ringed structure, probably an impact basin, is shown in the upper left part of the picture. The color version of this picture was constructed by compositing black and white images taken through the ultraviolet, clear and orange filters. http://photojournal.jpl.nasa.gov/catalog/PIA00457

  20. Artificial neural network (ANN)-based prediction of depth filter loading capacity for filter sizing.

    PubMed

    Agarwal, Harshit; Rathore, Anurag S; Hadpe, Sandeep Ramesh; Alva, Solomon J

    2016-11-01

    This article presents an application of artificial neural network (ANN) modelling towards prediction of depth filter loading capacity for clarification of a monoclonal antibody (mAb) product during commercial manufacturing. The effect of operating parameters on filter loading capacity was evaluated based on the analysis of change in the differential pressure (DP) as a function of time. The proposed ANN model uses inlet stream properties (feed turbidity, feed cell count, feed cell viability), flux, and time to predict the corresponding DP. The ANN contained a single output layer with ten neurons in hidden layer and employed a sigmoidal activation function. This network was trained with 174 training points, 37 validation points, and 37 test points. Further, a pressure cut-off of 1.1 bar was used for sizing the filter area required under each operating condition. The modelling results showed that there was excellent agreement between the predicted and experimental data with a regression coefficient (R 2 ) of 0.98. The developed ANN model was used for performing variable depth filter sizing for different clarification lots. Monte-Carlo simulation was performed to estimate the cost savings by using different filter areas for different clarification lots rather than using the same filter area. A 10% saving in cost of goods was obtained for this operation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1436-1443, 2016. © 2016 American Institute of Chemical Engineers.

  1. Laboratory and airborne techniques for measuring fluoresence of natural surfaces

    NASA Technical Reports Server (NTRS)

    Stoertz, G. E.; Hemphill, W. R.

    1972-01-01

    Techniques are described for obtaining fluorescence spectra from samples of natural surfaces that can be used to predict spectral regions in which these surfaces would emit solar-stimulated or laser-stimulated fluorescence detectable by remote sensor. Scattered or reflected stray light caused large errors in spectrofluorometer analysis or natural sample surfaces. Most spurious light components can be eliminated by recording successive fluorescence spectra for each sample, using identical instrument settings, first with an appropriate glass or gelatin filter on the excitation side of the sample, and subsequently with the same filter on the emission side of the sample. This technique appears more accurate than any alternative technique for testing the fluorescence of natural surfaces.

  2. 75 FR 364 - Notice of a Project Waiver of Section 1605 (Buy American Requirement) of the American Recovery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... City, ND for the Zenon ZeeWeed 1000 membrane filter manufactured by General Electric Water & Process... membrane filters are manufactured in Canada, and meet Valley City's performance specifications and... the purchase of the Zenon ZeeWeed 1000 membrane filter for the Surface Water Treatment Plant upgrades...

  3. 10 CFR 70.39 - Specific licenses for the manufacture or initial transfer of calibration or reference sources.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... The entire radioactive surface of the source shall be wiped with filter paper, moistened with water... shall be wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or...

  4. 10 CFR 32.102 - Schedule C-prototype tests for calibration or reference sources containing americium-241 or...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... entire radioactive surface of the source shall be wiped with filter paper, moistened with water, with the... wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or by...

  5. 10 CFR 70.39 - Specific licenses for the manufacture or initial transfer of calibration or reference sources.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... The entire radioactive surface of the source shall be wiped with filter paper, moistened with water... shall be wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or...

  6. 10 CFR 70.39 - Specific licenses for the manufacture or initial transfer of calibration or reference sources.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... The entire radioactive surface of the source shall be wiped with filter paper, moistened with water... shall be wiped with filter paper with the application of moderate finger pressure. Removal of radioactive material from the source shall be determined by measuring the radioactivity on the filter paper or...

  7. Combined laser heating and tandem acousto-optical filter for two-dimensional temperature distribution on the surface of the heated microobject

    NASA Astrophysics Data System (ADS)

    Bykov, A. A.; Kutuza, I. B.; Zinin, P. V.; Machikhin, A. S.; Troyan, I. A.; Bulatov, K. M.; Batshev, V. I.; Mantrova, Y. V.; Gaponov, M. I.; Prakapenka, V. B.; Sharma, S. K.

    2018-01-01

    Recently it has been shown that it is possible to measure the two-dimensional distribution of the surface temperature of microscopic specimens. The main component of the system is a tandem imaging acousto-optical tunable filter synchronized with a video camera. In this report, we demonstrate that combining the laser heating system with a tandem imaging acousto-optical tunable filter allows measurement of the temperature distribution under laser heating of the platinum plates as well as a visualization of the infrared laser beam, that is widely used for laser heating in diamond anvil cells.

  8. Improving Simulated Soil Moisture Fields Through Assimilation of AMSR-E Soil Moisture Retrievals with an Ensemble Kalman Filter and a Mass Conservation Constraint

    NASA Technical Reports Server (NTRS)

    Li, Bailing; Toll, David; Zhan, Xiwu; Cosgrove, Brian

    2011-01-01

    Model simulated soil moisture fields are often biased due to errors in input parameters and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to reduce model bias (at locations near the surface) through data assimilation techniques. While assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced by the model governing equation because water is removed from or added to the soil by the assimilation algorithm. In addition, studies have shown that assimilation of surface observations can adversely impact soil moisture estimates in the lower soil layers due to imperfect model physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve the mean of simulated soil moisture fields by the Noah land surface model. Assimilation results using the conventional and the mass conservation updating scheme in the Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the bias in the shallow root zone, the mass conservation scheme provided better estimates in the deeper profile. The mass conservation scheme also yielded physically consistent estimates of fluxes and maintained the water budget. Impacts of model physics on the assimilation results are discussed.

  9. Infrared image background modeling based on improved Susan filtering

    NASA Astrophysics Data System (ADS)

    Yuehua, Xia

    2018-02-01

    When SUSAN filter is used to model the infrared image, the Gaussian filter lacks the ability of direction filtering. After filtering, the edge information of the image cannot be preserved well, so that there are a lot of edge singular points in the difference graph, increase the difficulties of target detection. To solve the above problems, the anisotropy algorithm is introduced in this paper, and the anisotropic Gauss filter is used instead of the Gauss filter in the SUSAN filter operator. Firstly, using anisotropic gradient operator to calculate a point of image's horizontal and vertical gradient, to determine the long axis direction of the filter; Secondly, use the local area of the point and the neighborhood smoothness to calculate the filter length and short axis variance; And then calculate the first-order norm of the difference between the local area of the point's gray-scale and mean, to determine the threshold of the SUSAN filter; Finally, the built SUSAN filter is used to convolution the image to obtain the background image, at the same time, the difference between the background image and the original image is obtained. The experimental results show that the background modeling effect of infrared image is evaluated by Mean Squared Error (MSE), Structural Similarity (SSIM) and local Signal-to-noise Ratio Gain (GSNR). Compared with the traditional filtering algorithm, the improved SUSAN filter has achieved better background modeling effect, which can effectively preserve the edge information in the image, and the dim small target is effectively enhanced in the difference graph, which greatly reduces the false alarm rate of the image.

  10. Design certification tests: High Pressure Oxygen Filter (HPOF) program. Summary report

    NASA Technical Reports Server (NTRS)

    Smith, I. D.

    1976-01-01

    Design and acceptance certification test procedures and results are presented for a high pressure oxygen filter developed to protect the sealing surfaces in emergency oxygen systems. Equipment specifications are included.

  11. Influence of hydrophobic surface treatment toward performance of air filter

    NASA Astrophysics Data System (ADS)

    Shahfiq Zulkifli, Nazrul; Zaini Yunos, Muhamad; Ahmad, Azlinnorazia; Harun, Zawati; Akhair, Siti Hajar Mohd; Adibah Raja Ahmad, Raja; Hafeez Azhar, Faiz; Rashid, Abdul Qaiyyum Abd; Ismail, Al Emran

    2017-08-01

    This study investigated the performance of hydrophobic surface treatment by using silica aerogel powder via spray coating techniques. Hydrophobic properties were determined by measuring the level of the contact angle. Meanwhile, performance was evaluated in term of the hydrogen gas flow and humidity rejection. The results are shown by contact angle that the microstructure filter, especially in the upper layer and sub-layer has been changed. The results also show an increase of hydrophobicity due to the increased quantity of silica aerogel powder. Results also showed that the absorption and rejection filter performance filter has increased after the addition of silica aerogel powder. The results showed that with the addition of 5 grams of powder of silica aerogel have the highest result of wetting angle 134.11°. The highest humidity rejection found with 5 grams of powder of silica aerogel.

  12. Surface waves in the western Taiwan coastal plain from an aftershock of the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Wang, G.-Q.; Tang, G.-Q.; Boore, D.M.; Van Ness, Burbach; Jackson, C.R.; Zhou, X.-Y.; Lin, Q.-L.

    2006-01-01

    Significant surface waves were recorded in the western coastal plain (WCP) of Taiwan during the 1999 Chi-Chi, Taiwan, earthquake and its series of aftershocks. We study in detail the surface waves produced by one aftershock (20 September 1999, 18hr 03m 41.16sec, M 6.2) in this paper. We take the Chelungpu-Chukou fault to be the eastern edge of the WCP because it marks a distinct lateral contrast in seismic wave velocities in the upper few kilometers of the surface. For many records from stations within the WCP, body waves and surface waves separate well in both the time domain and the period domain. Long-period (e.g., >2 sec) ground motions in the plain are dominated by surface waves. Significant prograde Rayleigh wave particle motions were observed in the WCP. The observed peak ground velocities are about 3-5 times larger than standard predictions in the central and western part of the plain. Observed response spectra at 3 sec, 4 sec, and 5 sec at the center of the plain can be 15 times larger than standard predictions and 10 times larger than the predictions of Joyner (2000) based on surface wave data from the Los Angeles basin. The strong surface waves were probably generated at the boundary of the WCP and then propagated toward the west, largely along radial directions relative to the epicenter. The geometry of the boundary may have had a slight effect on propagation directions of surface waves. Group velocities of fundamental mode Rayleigh and Love waves are estimated using the multiple filter analysis (MFA) technique and are refined with phase matched filtering (PMF). Group velocities of fundamental mode surface waves range from about 0.7 km/sec to 1.5 km/sec for the phases at periods from 3 sec to 10 sec. One important observation from this study is that the strongest surface waves were recorded in the center of the plain. The specific location of the strongest motions depends largely on the period of surface waves rather than on specific site conditions or plain structures. Accordingly, we conjecture that surface waves could be generated in a wide area close to boundaries of low-velocity sedimentary wave guides. In the case studied in this article the area can be as wide as 30 km (from the Chelungpu fault to the center of the plain). Surface waves converted by P and S waves at different locations would overlap each other and add constructively along their propagation paths. As a result, the surface waves would get stronger and stronger. Beyond a certain distance to the boundary, no more surface waves would be generated. Consequently, no more local surface waves would be superimposed into the invasive surface waves, and the surface waves would tend to decay in amplitude with distance.

  13. Light-attenuating effect of dentin on the polymerization of light-activated restorative resins.

    PubMed

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji; Takahashi, Hideo

    2004-12-01

    The light-attenuating effect of dentin on the mechanical properties of light-activated composite resins was evaluated using a simple experimental filter. The filter was designed to simulate the light transmittance and light diffusion characteristics of 1.0-mm thick dentin. The depth of cure, surface hardness, and flexural strength for 13 shades of three light-activated restorative resins were examined. These resins were cured either using direct irradiation with a light source, or indirect irradiation through the filter. The attenuation of light intensity by 1.0-mm thick dentin reached 85-90% in the 400-550 nm wavelength region. For all materials, the values of depth of cure, surface hardness on the top and bottom surfaces, and flexural strength of specimens irradiated indirectly through the simulated 1.0-mm thick dentin filter decreased by 37-60%, 16-55%, 50-83%, and 44-82% in comparison with those by direct irradiation, respectively. Recovery from mechanical properties' reduction was achieved when materials were irradiated 1.5-4 times longer than the standard irradiation time.

  14. Photometric Studies of Orbital Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Hortsman, Matt

    2009-01-01

    Orbital debris represents a significant and increasing risk to operational spacecraft. Here we report on photometric observations made in standard BVRI filters at the Cerro Tololo Inter-American Observatory (CTIO) in an effort to determine the physical characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan s 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. For a sample of 50 objects, calibrated sequences in RB- V-I-R filters have been obtained with the CTIO/SMARTS 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO/SMARTS 0.9-m observes in B, and the Schmidt in R. The CCD cameras are electronically linked together so that the start time and duration of observations are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece for that observation.

  15. High temperature superconducting YBCO microwave filters

    NASA Astrophysics Data System (ADS)

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  16. Magnetic and SEM-EDS analyses of Tilia cordata leaves and PM10 filters as a complementary source of information on polluted air: Results from the city of Parma (Northern Italy).

    PubMed

    Mantovani, Luciana; Tribaudino, Mario; Solzi, Massimo; Barraco, Vera; De Munari, Eriberto; Pironi, Claudia

    2018-08-01

    In this work, both PM 10 filters and leaves have been collected, on a daily basis, over a period of five months and compared systematically. Filters were taken from an air-quality monitoring station and leaves from two Tilia cordata trees, both located near the railway station of Parma. SEM-EDS analysis on the surface and across the leaves shows that magnetic particles are almost entirely made of magnetite, and that they are found invariably on the leaves surface. The saturation isothermal magnetic remanence (SIRM) shows that for both filters and leaves the magnetic fraction mainly consists of a low coercivity, magnetite-like phase. The magnetic signals of filter and leaves and atmospheric PM concentrations are compared. The correlation is better for filters, mostly with parameters related to vehicular pollution, and improved for both filters and leaves once data were averaged on a 10 days basis. Filters and leaves equally show an increase in magnetic signal during the fall-winter period together with PM 10 content. The comparison between leaves and filters shows that: 1) leaves give a qualitative picture, and in our case they could be used as environmental proxies after averaging the results over multiple days; 2) the correlation with PM 10 is weaker, indicating that there is a PM 10 contribution from non-magnetic particles, like calcite and clay minerals, pollen and spores; 3) multidomain particles contribution from filters indicates a strong relation with vehicular polluters, suggesting the important role of larger particles; 4) magnetization from leaves and filters are weakly related, due to the different sampling lapse. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. SWIR hyperspectral imaging detector for surface residues

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew P.; Mangold, Paul; Gomer, Nathaniel; Klueva, Oksana; Treado, Patrick

    2013-05-01

    ChemImage has developed a SWIR Hyperspectral Imaging (HSI) sensor which uses hyperspectral imaging for wide area surveillance and standoff detection of surface residues. Existing detection technologies often require close proximity for sensing or detecting, endangering operators and costly equipment. Furthermore, most of the existing sensors do not support autonomous, real-time, mobile platform based detection of threats. The SWIR HSI sensor provides real-time standoff detection of surface residues. The SWIR HSI sensor provides wide area surveillance and HSI capability enabled by liquid crystal tunable filter technology. Easy-to-use detection software with a simple, intuitive user interface produces automated alarms and real-time display of threat and type. The system has potential to be used for the detection of variety of threats including chemicals and illicit drug substances and allows for easy updates in the field for detection of new hazardous materials. SWIR HSI technology could be used by law enforcement for standoff screening of suspicious locations and vehicles in pursuit of illegal labs or combat engineers to support route-clearance applications- ultimately to save the lives of soldiers and civilians. In this paper, results from a SWIR HSI sensor, which include detection of various materials in bulk form, as well as residue amounts on vehicles, people and other surfaces, will be discussed.

  18. Aerosol tests conducted at Aberdeen Proving Grounds MD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brockmann, John E.; Lucero, Daniel A.; Servantes, Brandon Lee

    Test data are reported that demonstrate the deposition from a spray dispersion system (Illinois Tool Works inductively charging rotary atomization nozzle) for application of decontamination solution to various surfaces in the passenger cabin of a Boeing 737 aircraft. The decontamination solution (EnviroTru) was tagged with a known concentration of fluorescein permitting determination of both airborne decontaminant concentration and surface deposited decontaminant solution so that the effective deposition rates and surface coverage could be determined and correlated with the amount of material sprayed. Six aerosol dispersion tests were conducted. In each test, aluminum foil deposition coupons were set out throughout themore » passenger area and the aerosol was dispersed. The aerosol concentration was measured with filter samplers as well as with optical techniques Average aerosol deposition ranged from 3 to 15 grams of decontamination solution per square meter. Some disagreement was observed between various instruments utilizing different measurement principles. These results demonstrate a potentially effective method to disperse decontaminant to interior surfaces of a passenger aircraft.« less

  19. The Craik-Leibovich Vortex Force as a Skin Effect

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Chini, Gregory; Julien, Keith

    2013-11-01

    The Craik-Leibovich (CL) equations are a surface-wave filtered version of the instantaneous Navier-Stokes equations in which the rectified effects of the surface waves are captured through a so-called ``vortex force'' term: the cross-product of the Stokes, or Lagrangian, mass drift associated with the filtered surface waves and the filtered vorticity vector. For locally generated wind waves, the Stokes drift is very strongly surface confined. In this scenario, the induced body force may be represented as a surface, or skin, effect. Using matched asymptotic analysis in this limit, we derive effective boundary conditions (BCs) for the flow beneath the Stokes drift layer (i.e. in the bulk of the mixed layer). We establish the regime of validity of the resulting formulation by performing linear stability analyses and numerical simulations of both the asymptotic model and the full CL equations for a variety of vertical Stokes drift profiles. The effective BC formulation offers both theoretical and computational advantages, and should be particularly useful for LES of Langmuir turbulence for which the need to resolve very small scale near-surface flow structures imposes severe computational constraints. GPC would like to acknowledge funding from the NSF award 0934827, administered by the Physical Oceanography Program.

  20. A Refinement of the McMillen (1988) Recursive Digital Filter for the Analysis of Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Falocchi, Marco; Giovannini, Lorenzo; Franceschi, Massimiliano de; Zardi, Dino

    2018-05-01

    We present a refinement of the recursive digital filter proposed by McMillen (Boundary-Layer Meteorol 43:231-245, 1988), for separating surface-layer turbulence from low-frequency fluctuations affecting the mean flow, especially over complex terrain. In fact, a straightforward application of the filter causes both an amplitude attenuation and a forward phase shift in the filtered signal. As a consequence turbulence fluctuations, evaluated as the difference between the original series and the filtered one, as well as higher-order moments calculated from them, may be affected by serious inaccuracies. The new algorithm (i) produces a rigorous zero-phase filter, (ii) restores the amplitude of the low-frequency signal, and (iii) corrects all filter-induced signal distortions.

  1. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    NASA Astrophysics Data System (ADS)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  2. Application of classification methods for mapping Mercury's surface composition: analysis on Rudaki's Area

    NASA Astrophysics Data System (ADS)

    Zambon, F.; De Sanctis, M. C.; Capaccioni, F.; Filacchione, G.; Carli, C.; Ammanito, E.; Friggeri, A.

    2011-10-01

    During the first two MESSENGER flybys (14th January 2008 and 6th October 2008) the Mercury Dual Imaging System (MDIS) has extended the coverage of the Mercury surface, obtained by Mariner 10 and now we have images of about 90% of the Mercury surface [1]. MDIS is equipped with a Narrow Angle Camera (NAC) and a Wide Angle Camera (WAC). The NAC uses an off-axis reflective design with a 1.5° field of view (FOV) centered at 747 nm. The WAC has a re- fractive design with a 10.5° FOV and 12-position filters that cover a 395-1040 nm spectral range [2]. The color images can be used to infer information on the surface composition and classification meth- ods are an interesting technique for multispectral image analysis which can be applied to the study of the planetary surfaces. Classification methods are based on clustering algorithms and they can be divided in two categories: unsupervised and supervised. The unsupervised classifiers do not require the analyst feedback, and the algorithm automatically organizes pixels values into classes. In the supervised method, instead, the analyst must choose the "training area" that define the pixels value of a given class [3]. Here we will describe the classification in different compositional units of the region near the Rudaki Crater on Mercury.

  3. Inhibition of biofilm formation on the surface of water storage containers using biosand zeolite silver-impregnated clay granular and silver impregnated porous pot filtration systems

    PubMed Central

    Moropeng, Resoketswe Charlotte; Mpenyana-Monyatsi, Lizzy; Momba, Maggie Ndombo Benteke

    2018-01-01

    Development of biofilms occurring on the inner surface of storage vessels offers a suitable medium for the growth of microorganisms and consequently contributes to the deterioration of treated drinking water quality in homes. The aim of this study was to determine whether the two point-of-use technologies (biosand zeolite silver-impregnated clay granular (BSZ-SICG) filter and silver-impregnated porous pot (SIPP) filter) deployed in a rural community of South Africa could inhibit the formation of biofilm on the surface of plastic-based containers generally used by rural households for the storage of their drinking water. Culture-based methods and molecular techniques were used to detect the indicator bacteria (Total coliforms, faecal coliform, E. coli) and pathogenic bacteria (Salmonella spp., Shigella spp. and Vibrio cholerae) in intake water and on the surface of storage vessels containing treated water. Scanning electron microscopy was also used to visualize the development of biofilm. Results revealed that the surface water source used by the Makwane community was heavily contaminated and harboured unacceptably high counts of bacteria (heterotrophic plate count: 4.4–4.3 Log10 CFU/100mL, total coliforms: 2.2 Log10 CFU/100 mL—2.1 Log10 CFU/100 mL, faecal coliforms: 1.9 Log10 CFU/100 mL—1.8 Log10 CFU/100 mL, E. coli: 1.7 Log10 CFU/100 mL—1.6 Log10 CFU/100 mL, Salmonella spp.: 3 Log10 CFU/100 mL -8 CFU/100 mL; Shigella spp. and Vibrio cholerae had 1.0 Log10 CFU/100 mL and 0.8 Log10 CFU/100 mL respectively). Biofilm formation was apparent on the surface of the storage containers with untreated water within 24 h. The silver nanoparticles embedded in the clay of the filtration systems provided an effective barrier for the inhibition of biofilm formation on the surface of household water storage containers. Biofilm formation occurred on the surface of storage plastic vessels containing drinking water treated with the SIPP filter between 14 and 21 days, and on those containing drinking water treated with the BSZ-SICG filter between 3 and 14 days. The attachment of target bacteria on the surface of the coupons inoculated in storage containers ranged from (0.07 CFU/cm2–227.8 CFU/cm2). To effectively prevent the development of biofilms on the surface of container-stored water, which can lead to the recontamination of treated water, plastic storage containers should be washed within 14 days for water treated with the SIPP filter and within 3 days for water treated with the BSZ-SICG filter. PMID:29621296

  4. Inhibition of biofilm formation on the surface of water storage containers using biosand zeolite silver-impregnated clay granular and silver impregnated porous pot filtration systems.

    PubMed

    Budeli, Phumudzo; Moropeng, Resoketswe Charlotte; Mpenyana-Monyatsi, Lizzy; Momba, Maggie Ndombo Benteke

    2018-01-01

    Development of biofilms occurring on the inner surface of storage vessels offers a suitable medium for the growth of microorganisms and consequently contributes to the deterioration of treated drinking water quality in homes. The aim of this study was to determine whether the two point-of-use technologies (biosand zeolite silver-impregnated clay granular (BSZ-SICG) filter and silver-impregnated porous pot (SIPP) filter) deployed in a rural community of South Africa could inhibit the formation of biofilm on the surface of plastic-based containers generally used by rural households for the storage of their drinking water. Culture-based methods and molecular techniques were used to detect the indicator bacteria (Total coliforms, faecal coliform, E. coli) and pathogenic bacteria (Salmonella spp., Shigella spp. and Vibrio cholerae) in intake water and on the surface of storage vessels containing treated water. Scanning electron microscopy was also used to visualize the development of biofilm. Results revealed that the surface water source used by the Makwane community was heavily contaminated and harboured unacceptably high counts of bacteria (heterotrophic plate count: 4.4-4.3 Log10 CFU/100mL, total coliforms: 2.2 Log10 CFU/100 mL-2.1 Log10 CFU/100 mL, faecal coliforms: 1.9 Log10 CFU/100 mL-1.8 Log10 CFU/100 mL, E. coli: 1.7 Log10 CFU/100 mL-1.6 Log10 CFU/100 mL, Salmonella spp.: 3 Log10 CFU/100 mL -8 CFU/100 mL; Shigella spp. and Vibrio cholerae had 1.0 Log10 CFU/100 mL and 0.8 Log10 CFU/100 mL respectively). Biofilm formation was apparent on the surface of the storage containers with untreated water within 24 h. The silver nanoparticles embedded in the clay of the filtration systems provided an effective barrier for the inhibition of biofilm formation on the surface of household water storage containers. Biofilm formation occurred on the surface of storage plastic vessels containing drinking water treated with the SIPP filter between 14 and 21 days, and on those containing drinking water treated with the BSZ-SICG filter between 3 and 14 days. The attachment of target bacteria on the surface of the coupons inoculated in storage containers ranged from (0.07 CFU/cm2-227.8 CFU/cm2). To effectively prevent the development of biofilms on the surface of container-stored water, which can lead to the recontamination of treated water, plastic storage containers should be washed within 14 days for water treated with the SIPP filter and within 3 days for water treated with the BSZ-SICG filter.

  5. Rare earth element analysis indicates micropollutants in an urban estuary

    NASA Astrophysics Data System (ADS)

    Mohajerin, T. J.; Johannesson, K. H.; Kolker, A.; Burdige, D. J.; Chevis, D.

    2011-12-01

    Rare earth element analysis of Bayou Bienvenue waters shows anomalously high gadolinium, Gd, concentrations relative to its nearest neighbors in the REE series, europium and terbium. The anomalously high Gd concentrations indicate anthropogenic input from waste-water treatment plants in the area as anthropogenic Gd input can be traced back to its use as a contrast agent in magnetic resonance imaging in hospitals. Others have shown that anomalously high levels of Gd in natural waters are likely to be associated with other micropollutants that also occur in hospital effluent and that are not removed in the wastewater treatment process, including pharmaceuticals in the form of steroids, antihistamines, and antibiotics. Estuaries serve as many important ecological roles and have been shown to act as a filter for pollutants. To better understand the transport, biogeochemical cycling, and ultimate fate of trace elements in estuaries, I collected surface water samples from Bayou Bienvenue, a wetland triangle that covers an area of 427 acres directly adjacent to New Orleans, Louisiana. Water samples from Bayou Bienvenue were collected along the salinity gradient and subsequently filtered through progressively smaller pore-size filters. The resulting fractions were analyzed for trace element concentions, including the REEs, by magnetic sector ICP-MS. The attached figure shows the Gd anomaly present in the particulate (>0.45μm) fraction. Upper continental crust (UCC)-normalized plots of colloidal REEs (0.02μm - 0.45μm) fraction is lacking this anomaly indicating anthropogenic Gd is found chiefly in the particulate fraction in Bayou Bienvenue. No clear relationship between Gd concentration and salinity was apparent.

  6. Improved characterization of slow-moving landslides by means of adaptive NL-InSAR filtering

    NASA Astrophysics Data System (ADS)

    Albiol, David; Iglesias, Rubén.; Sánchez, Francisco; Duro, Javier

    2014-10-01

    Advanced remote sensing techniques based on space-borne Synthetic Aperture Radar (SAR) have been developed during the last decade showing their applicability for the monitoring of surface displacements in landslide areas. This paper presents an advanced Persistent Scatterer Interferometry (PSI) processing based on the Stable Point Network (SPN) technique, developed by the company Altamira-Information, for the monitoring of an active slowmoving landslide in the mountainous environment of El Portalet, Central Spanish Pyrenees. For this purpose, two TerraSAR-X data sets acquired in ascending mode corresponding to the period from April to November 2011, and from August to November 2013, respectively, are employed. The objective of this work is twofold. On the one hand, the benefits of employing Nonlocal Interferomtric SAR (NL-InSAR) adaptive filtering techniques over vegetated scenarios to maximize the chances of detecting natural distributed scatterers, such as bare or rocky areas, and deterministic point-like scatterers, such as man-made structures or poles, is put forward. In this context, the final PSI displacement maps retrieved with the proposed filtering technique are compared in terms of pixels' density and quality with classical PSI, showing a significant improvement. On the other hand, since SAR systems are only sensitive to detect displacements in the line-of-sight (LOS) direction, the importance of projecting the PSI displacement results retrieved along the steepest gradient of the terrain slope is discussed. The improvements presented in this paper are particularly interesting in these type of applications since they clearly allow to better determine the extension and dynamics of complex landslide phenomena.

  7. Preparation and performance of manganese-oxide-coated zeolite for the removal of manganese-contamination in groundwater.

    PubMed

    Lyu, Cong; Yang, Xuejiao; Zhang, Shengyu; Zhang, Qihui; Su, Xiaosi

    2017-12-29

    A promising and easily prepared catalytic filler media, manganese-oxide-coated zeolite (MOCZ), for the removal of Mn (II) contamination in groundwater was studied. The optimal condition for MOCZ preparation was given as follows: acid activation of zeolite with 5% HCl mass percent for 12 h, then soaking of acid-activated zeolite with 7% KMnO 4 mass percent for 8 h, and finally calcination at 300°C for 5 h. Acid activation significantly enlarged the specific surface area of the zeolite (>79 m 2  g -1 ), subsequently enhancing the coating of manganese oxides onto the surface of the zeolite. This was further supported by the manganese-to-zeolite ratio (γ Mn ) and Energy dispersive analysis-mapping. The γ Mn was over 12.26 mg Mn g -1 zeolite, representing more active sites for the adsorption and catalytic-oxidation of Mn (II). As such, great performance of Mn (II) removal by MOCZ was obtained in the filter experiment. An estimated 98-100% removal efficiency of Mn (II) was achieved in a greatly short startup time (only 2 h). During the filtration process, newborn flocculent manganese oxides with a mixed-valence of manganese (Mn (II) and Mn (IV)) were generated on the MOCZ surface, further facilitating the adsorption and catalytic-oxidation of Mn (II). The filter with MOCZ as adsorbent had a great performance on the Mn (II) removal in a wide range of hydraulic retention time (HRT) (4-40 min), particularly in a short HRT. Besides, the filter prolonged the filtration period (60 days), which would significantly reduce the frequency of backwash. Thus, it could be concluded that MOCZ prepared in this study showed a good performance in terms of Mn (II) removal in waterworks, especially small waterworks in the villages/towns.

  8. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiments (A0056)

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hunneman, R.; Whatley, A.; Lipscombe, D. R.

    1984-01-01

    Infrared multilayer interface filter which were used in satellite radiometers were examined. The ability of the filters to withstand the space environment in these applications is critical. An experiment on the LDEF subjects the filters to authoritative spectral measurements following space exposure to ascertain their suitability for spacecraft use and to permit an understanding of degradation mechanisms. The understanding of the effects of prolonged space exposure on spacecraft materials, surface finishes, and adhesive systems is important to the spacecraft designer. Materials technology experiments and experiment on infrared multilayer filters are discussed.

  9. Optical monitoring of film pollution on sea surface

    NASA Astrophysics Data System (ADS)

    Pavlov, Andrey; Konstantinov, Oleg; Shmirko, Konstantin

    2017-11-01

    The organic films form a brightness contrast on the sea surface. It makes possible to use cheap simple and miniature systems for video monitoring of pollution of coastal marine areas by oil products in the bunkering of ships, emergency situations at oil terminals, gas and oil pipelines, hydrocarbon production platforms on the shelf, etc.1-16 A panoramic video system with a polarization filter on the lens, located at an altitude of 90 m above sea level, can provide effective control of the water area within a radius of 7 kilometers,17-19 and modern photogrammetry technologies allow not only to register the fact of pollution and get a portrait of the offender, but also with a high Spatial and temporal resolution to estimate the dimensions and trace the dynamics of movement and transformation of the film in a geographic coordinate system. Of particular relevance is the optical method of controlling the pollution of the sea surface at the present time with the development of unmanned aerial vehicles that are already equipped with video cameras and require only a minor upgrade of their video system to enhance the contrast of images of organic films.

  10. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: An example from the Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele

    2016-05-01

    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constraints on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  11. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: an example from the Ethiopian Highlands.

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele

    2016-04-01

    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constrains on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  12. Applications of high-frequency radar

    NASA Astrophysics Data System (ADS)

    Headrick, J. M.; Thomason, J. F.

    1998-07-01

    Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.

  13. Integrated photocatalytic filtration array for indoor air quality control.

    PubMed

    Denny, Frans; Permana, Eric; Scott, Jason; Wang, Jing; Pui, David Y H; Amal, Rose

    2010-07-15

    Photocatalytic and filtration technologies were integrated to develop a hybrid system capable of removing and oxidizing organic pollutants from an air stream. A fluidized bed aerosol generator (FBAG) was adapted to prepare TiO(2)-loaded ventilation filters for the photodegradation of gas phase ethanol. Compared to a manually loaded filter, the ethanol photodegradation rate constant for the FBAG coated filter increased by 361%. Additionally, the presence of the photogenerated intermediate product, acetaldehyde, was reduced and the time for mineralization to CO(2) was accelerated. These improvements were attributed to the FBAG system providing a more uniform distribution of TiO(2) particles across the filter surface leading to greater accessibility by the UV light. A dual-UV-lamp system, as opposed to a single-lamp system, enhanced photocatalytic filter performance demonstrating the importance of high light irradiance and light distribution across the filter surface. Substituting the blacklight blue lamps with a UV-light-emitting-diode (UV-LED) array led to further improvement as well as suppressed the electrical energy per order (EE/O) by a factor of 6. These improvements derived from the more uniform distribution of light irradiance as well as the higher efficiency of UV-LEDs in converting electrical energy to photons.

  14. A Filter-based Surface Enhanced Raman Spectroscopic Assay for Rapid Detection of Chemical Contaminants.

    PubMed

    Gao, Siyue; Glasser, Jessica; He, Lili

    2016-02-19

    We demonstrate a method to fabricate highly sensitive surface-enhanced Raman spectroscopic (SERS) substrates using a filter syringe system that can be applied to the detection of various chemical contaminants. Silver nanoparticles (Ag NPs) are synthesized via reduction of silver nitrate by sodium citrate. Then the NPs are aggregated by sodium chloride to form nanoclusters that could be trapped in the pores of the filter membrane. A syringe is connected to the filter holder, with a filter membrane inside. By loading the nanoclusters into the syringe and passing through the membrane, the liquid goes through the membrane but not the nanoclusters, forming a SERS-active membrane. When testing the analyte, the liquid sample is loaded into the syringe and flowed through the Ag NPs coated membrane. The analyte binds and concentrates on the Ag NPs coated membrane. Then the membrane is detached from the filter holder, air dried and measured by a Raman instrument. Here we present the study of the volume effect of Ag NPs and sample on the detection sensitivity as well as the detection of 10 ppb ferbam and 1 ppm ampicillin using the developed assay.

  15. Al-Coated Conductive Fiber Filters for High-Efficiency Electrostatic Filtration: Effects of Electrical and Fiber Structural Properties.

    PubMed

    Choi, Dong Yun; An, Eun Jeong; Jung, Soo-Ho; Song, Dong Keun; Oh, Yong Suk; Lee, Hyung Woo; Lee, Hye Moon

    2018-04-10

    Through the direct decomposition of an Al precursor ink AlH 3 {O(C 4 H 9 ) 2 }, we fabricated an Al-coated conductive fiber filter for the efficient electrostatic removal of airborne particles (>99%) with a low pressure drop (~several Pascals). The effects of the electrical and structural properties of the filters were investigated in terms of collection efficiency, pressure drop, and particle deposition behavior. The collection efficiency did not show a significant correlation with the extent of electrical conductivity, as the filter is electrostatically charged by the metallic Al layers forming electrical networks throughout the fibers. Most of the charged particles were collected via surface filtration by Coulombic interactions; consequently, the filter thickness had little effect on the collection efficiency. Based on simulations of various fiber structures, we found that surface filtration can transition to depth filtration depending on the extent of interfiber distance. Therefore, the effects of structural characteristics on collection efficiency varied depending on the degree of the fiber packing density. This study will offer valuable information pertaining to the development of a conductive metal/polymer composite air filter for an energy-efficient and high-performance electrostatic filtration system.

  16. Zone heated diesel particulate filter electrical connection

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-03-30

    An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

  17. Spatial filters for high-peak-power multistage laser amplifiers.

    PubMed

    Potemkin, A K; Barmashova, T V; Kirsanov, A V; Martyanov, M A; Khazanov, E A; Shaykin, A A

    2007-07-10

    We describe spatial filters used in a Nd:glass laser with an output pulse energy up to 300 J and a pulse duration of 1 ns. This laser is designed for pumping of a chirped-pulse optical parametric amplifier. We present data required to choose the shape and diameter of a spatial filter lens, taking into account aberrations caused by spherical surfaces. Calculation of the optimal pinhole diameter is presented. Design features of the spatial filters and the procedure of their alignment are discussed in detail.

  18. Few layered vanadyl phosphate nano sheets-MWCNT hybrid as an electrode material for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Dutta, Shibsankar; De, Sukanta

    2016-05-01

    It have been already seen that 2-dimensional nano materials are the suitable choice for the supercapacitor application due to their large specific surface area, electrochemical active sites, micromechanical flexibility, expedite ion migration channel properties. Free standing hybrid films of functionalized MWCNT (- COOH group) and α-Vanadyl phosphates (VOPO42H2O) are prepared by vacuum filtering. The surface morphology and microstructure of the samples are studied by transmission electron microscope, field emission scanning electron microscope, XRD, Electrochemical properties of hybrid films have been investigated systematically in 1M Na2SO4 aqueous electrolyte. The hybrid material exhibits a high specific capacitance 236 F/g with high energy density of 65.6 Wh/Kg and a power density of 1476 W/Kg.

  19. The Interplay between Environmental Filtering and Spatial Processes in Structuring Communities: The Case of Neotropical Snake Communities

    PubMed Central

    Cavalheri, Hamanda; Both, Camila; Martins, Marcio

    2015-01-01

    Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community were also related to habitat type, showing that communities from non-forest areas tend to be more clustered. Our study showed that both environmental filtering and spatial gradients play important roles in shaping the composition of Neotropical snake communities. PMID:26061038

  20. The Interplay between Environmental Filtering and Spatial Processes in Structuring Communities: The Case of Neotropical Snake Communities.

    PubMed

    Cavalheri, Hamanda; Both, Camila; Martins, Marcio

    2015-01-01

    Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community were also related to habitat type, showing that communities from non-forest areas tend to be more clustered. Our study showed that both environmental filtering and spatial gradients play important roles in shaping the composition of Neotropical snake communities.

  1. Ultrasonic tracking of shear waves using a particle filter

    PubMed Central

    Ingle, Atul N.; Ma, Chi; Varghese, Tomy

    2015-01-01

    Purpose: This paper discusses an application of particle filtering for estimating shear wave velocity in tissue using ultrasound elastography data. Shear wave velocity estimates are of significant clinical value as they help differentiate stiffer areas from softer areas which is an indicator of potential pathology. Methods: Radio-frequency ultrasound echo signals are used for tracking axial displacements and obtaining the time-to-peak displacement at different lateral locations. These time-to-peak data are usually very noisy and cannot be used directly for computing velocity. In this paper, the denoising problem is tackled using a hidden Markov model with the hidden states being the unknown (noiseless) time-to-peak values. A particle filter is then used for smoothing out the time-to-peak curve to obtain a fit that is optimal in a minimum mean squared error sense. Results: Simulation results from synthetic data and finite element modeling suggest that the particle filter provides lower mean squared reconstruction error with smaller variance as compared to standard filtering methods, while preserving sharp boundary detail. Results from phantom experiments show that the shear wave velocity estimates in the stiff regions of the phantoms were within 20% of those obtained from a commercial ultrasound scanner and agree with estimates obtained using a standard method using least-squares fit. Estimates of area obtained from the particle filtered shear wave velocity maps were within 10% of those obtained from B-mode ultrasound images. Conclusions: The particle filtering approach can be used for producing visually appealing SWV reconstructions by effectively delineating various areas of the phantom with good image quality properties comparable to existing techniques. PMID:26520761

  2. Photometric Separation of Stellar Properties Using SDSS Filters

    NASA Astrophysics Data System (ADS)

    Lenz, Dawn D.; Newberg, Jo; Rosner, Robert; Richards, Gordon T.; Stoughton, Chris

    1998-12-01

    Using synthetic photometry of Kurucz model spectra, we explore the colors of stars as a function of temperature, metallicity, and surface gravity with Sloan Digital Sky Survey (SDSS) filters, u'g'r'i'z'. The synthetic colors show qualitative agreement with the few published observations in these filters. We find that the locus of synthetic stars is basically two-dimensional for 4500 < T < 8000 K, which precludes simultaneous color separation of the three basic stellar characteristics we consider. Colors including u' contain the most information about normal stellar properties; measurements in this filter are also important for selecting white dwarfs. We identify two different subsets of the locus in which the loci separate by either metallicity or surface gravity. For 0.5 < g' - r' < 0.8 (corresponding roughly to G stars), the locus separates by metallicity; for photometric error of a few percent, we estimate metallicity to within ~0.5 dex in this range. In the range -0.15 < g' - r' < 0.00 (corresponding roughly to A stars), the locus shows separation by surface gravity. In both cases, we show that it is advantageous to use more than two colors when determining stellar properties by color. Strategic observations in SDSS filters are required to resolve the source of a ~5% discrepancy between synthetic colors of Gunn-Stryker stars, Kurucz models, and external determinations of the metallicities and surface gravities. The synthetic star colors can be used to investigate the properties of any normal star and to construct analytic expressions for the photometric prediction of stellar properties in special cases.

  3. Apparatus and method for removing particulate deposits from high temperature filters

    DOEpatents

    Nakaishi, Curtis V.; Holcombe, Norman T.; Micheli, Paul L.

    1992-01-01

    A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.

  4. Europa Stunning Surface

    NASA Image and Video Library

    2014-11-21

    The puzzling, fascinating surface of Jupiter icy moon Europa looms large in this newly-reprocessed [sic] color view, made from images taken by NASA Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution. The view was previously released as a mosaic with lower resolution and strongly enhanced color (see PIA02590). To create this new version, the images were assembled into a realistic color view of the surface that approximates how Europa would appear to the human eye. The scene shows the stunning diversity of Europa's surface geology. Long, linear cracks and ridges crisscross the surface, interrupted by regions of disrupted terrain where the surface ice crust has been broken up and re-frozen into new patterns. Color variations across the surface are associated with differences in geologic feature type and location. For example, areas that appear blue or white contain relatively pure water ice, while reddish and brownish areas include non-ice components in higher concentrations. The polar regions, visible at the left and right of this view, are noticeably bluer than the more equatorial latitudes, which look more white. This color variation is thought to be due to differences in ice grain size in the two locations. Images taken through near-infrared, green and violet filters have been combined to produce this view. The images have been corrected for light scattered outside of the image, to provide a color correction that is calibrated by wavelength. Gaps in the images have been filled with simulated color based on the color of nearby surface areas with similar terrain types. This global color view consists of images acquired by the Galileo Solid-State Imaging (SSI) experiment on the spacecraft's first and fourteenth orbits through the Jupiter system, in 1995 and 1998, respectively. Image scale is 1 mile (1.6 kilometers) per pixel. North on Europa is at right. http://photojournal.jpl.nasa.gov/catalog/PIA19048

  5. Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR.

    PubMed

    Cincinelli, Alessandra; Scopetani, Costanza; Chelazzi, David; Lombardini, Emilia; Martellini, Tania; Katsoyiannis, Athanasios; Fossi, Maria Cristina; Corsolini, Simonetta

    2017-05-01

    This is the first survey to investigate the occurrence and extent of microplastic (MPs) contamination in sub surface waters collected near-shore and off-shore the coastal area of the Ross Sea (Antarctica). Moreover, a non-invasive method to analyze MPs, consisting in filtration after water sampling and analysis of the dried filter through Fourier Transform Infrared Spectroscopy (FTIR) 2D Imaging, using an FPA detector, was proposed. The non-invasiveness of analytical set-up reduces potential bias and allows subsequent analysis of the filter sample for determination of other classes of contaminants. MPs ranged from 0.0032 to 1.18 particle per m 3 of seawater, with a mean value of 0.17 ± 0.34 particle m -3 , showing concentrations lower than those found in the oceans worldwide. MPs included fragments (mean 71.9 ± 21.6%), fibers (mean 12.7 ± 14.3%), and others (mean 15.4 ± 12.8%). The presence of different types of MPs was confirmed by FTIR spectroscopy, with predominant abundance of polyethylene and polypropylene. The potential environmental impact arising from scientific activities, such as marine activities for scientific purposes, and from the sewage treatment plant, was also evidenced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Nanofiber adsorbents for high productivity downstream processing.

    PubMed

    Hardick, Oliver; Dods, Stewart; Stevens, Bob; Bracewell, Daniel G

    2013-04-01

    Electrospun polymeric nanofiber adsorbents offer an alternative ligand support surface for bioseparations. Their non-woven fiber structure with diameters in the sub-micron range creates a remarkably high surface area. To improve the purification productivity of biological molecules by chromatography, cellulose nanofiber adsorbents were fabricated and assembled into a cartridge and filter holder format with a volume of 0.15 mL, a bed height of 0.3 mm and diameter of 25 mm. The present study investigated the performance of diethylaminoethyl (DEAE) derivatized regenerated cellulose nanofiber adsorbents based on criteria including mass transfer and flow properties, binding capacity, and fouling effects. Our results show that nanofibers offer higher flow and mass transfer properties. The non-optimized DEAE-nanofiber adsorbents indicate a binding capacity of 10% that of packed bed systems with BSA as a single component system. However, they operate reproducibly at flowrates of a hundred times that of packed beds, resulting in a potential productivity increase of 10-fold. Lifetime studies showed that this novel adsorbent material operated reproducibly with complex feed material (centrifuged and 0.45 µm filtered yeast homogenate) and harsh cleaning-in-place conditions over multiple cycles. DEAE nanofibers showed superior operating performance in permeability and fouling over conventional adsorbents indicating their potential for bioseparation applications. Copyright © 2012 Wiley Periodicals, Inc.

  7. False Color Surface

    NASA Image and Video Library

    2014-12-26

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the region near Nili Fossae.

  8. 76 FR 45794 - Public Water System Supervision Program Revision for the State of Louisiana

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ..., Filter Backwash Recycling Rule, Long Term 1 Enhanced Surface Water Treatment Rule, Radionuclides Rule... Register at 72 FR 57782 on October 10, 2007. Louisiana has adopted the Public Notification Rule, Filter...

  9. Frequency-selective surfaces for infrared imaging

    NASA Astrophysics Data System (ADS)

    Lesmanne, Emeline; Boulard, François; Espiau Delamaestre, Roch; Bisotto, Sylvette; Badano, Giacomo

    2017-09-01

    Bayer filter arrays are commonly added to visible detectors to achieve multicolor sensitivity. To extend this approach to the infrared range, we present frequency selective surfaces that work in the mid-infrared range (MWIR). They are easily integrated in the device fabrication process and are based on a simple operating principle. They consist of a thin metallic sheet perforated with apertures filled with a high-index dielectric material. Each aperture behaves as a separate resonator. Its size determines the transmission wavelength λ. Using an original approach based on the temporal coupled mode theory, we show that metallic loss is negligible in the infrared range, as long as the filter bandwidth is large enough (typically <λ/10). We develop closed-form expressions for the radiative and dissipative loss rates and show that the transmission of the filter depends solely on their ratio. We present a prototype infrared detector functionalized with one such array of filters and characterize it by electro-optical measurements.

  10. Multiphoton endoscopy based on a mode-filtered single-mode fiber

    NASA Astrophysics Data System (ADS)

    Moon, Sucbei; Liu, Gangjun; Chen, Zhongping

    2011-03-01

    We present a new low-nonlinearity fiber of mode-filtered large-core fiber for flexible beam delivery of intense pulsed light aiming at multi-photon endoscopy application. A multimode fiber of a large core diameter (20 μm) equips a mode filtering means in the middle of the fiber link to suppress the high-order modes selectively. A large effective core area of ~200 μm2 has been achieved at 0.8-μm and 1.0-μm bands. This is 8 times larger than the core area of a conventional SMF used for those spectral bands. Various advantages of our large-mode area fiber will be demonstrated and discussed in this report.

  11. Lunar surface chemistry: A new imaging technique

    USGS Publications Warehouse

    Andre, C.G.; Bielefeld, M.J.; Eliason, E.; Soderblom, L.A.; Adler, I.; Philpotts, J.A.

    1977-01-01

    Detailed chemical maps of the lunar surface have been constructed by applying a new weighted-filter imaging technique to Apollo 15 and Apollo 16 x-ray fluorescence data. The data quality improvement is amply demonstrated by (i) modes in the frequency distribution, representing highland and mare soil suites, which are not evident before data filtering and (ii) numerous examples of chemical variations which are correlated with small-scale (about 15 kilometer) lunar topographic features.

  12. Lunar surface chemistry - A new imaging technique

    NASA Technical Reports Server (NTRS)

    Andre, C. G.; Adler, I.; Bielefeld, M. J.; Eliason, E.; Soderblom, L. A.; Philpotts, J. A.

    1977-01-01

    Detailed chemical maps of the lunar surface have been constructed by applying a new weighted-filter imaging technique to Apollo 15 and Apollo 16 X-ray fluorescence data. The data quality improvement is amply demonstrated by (1) modes in the frequency distribution, representing highland and mare soil suites, which are not evident before data filtering, and (2) numerous examples of chemical variations which are correlated with small-scale (about 15 kilometer) lunar topographic features.

  13. The Volumetric Imaging System for the Ionosphere (VISION)

    DTIC Science & Technology

    2011-01-01

    telescope mirror is an 80 mm focal length, 50 mm diameter, first surface mirror with magnesium fluoride over aluminum coating on a zerodur blank...will be either a wedge–and–strip anode or a codacon. The telescope mirror is an 80 mm focal length, 2.5 cm diameter, first surface mirror with...magnesium fluoride over aluminum coating on a zerodur blank. The filters are the three reflection bandpass filters developed for and flown on

  14. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

  15. A multiresolution hierarchical classification algorithm for filtering airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Chen, Chuanfa; Li, Yanyan; Li, Wei; Dai, Honglei

    2013-08-01

    We presented a multiresolution hierarchical classification (MHC) algorithm for differentiating ground from non-ground LiDAR point cloud based on point residuals from the interpolated raster surface. MHC includes three levels of hierarchy, with the simultaneous increase of cell resolution and residual threshold from the low to the high level of the hierarchy. At each level, the surface is iteratively interpolated towards the ground using thin plate spline (TPS) until no ground points are classified, and the classified ground points are used to update the surface in the next iteration. 15 groups of benchmark dataset, provided by the International Society for Photogrammetry and Remote Sensing (ISPRS) commission, were used to compare the performance of MHC with those of the 17 other publicized filtering methods. Results indicated that MHC with the average total error and average Cohen’s kappa coefficient of 4.11% and 86.27% performs better than all other filtering methods.

  16. Filtering of the Radon transform to enhance linear signal features via wavelet pyramid decomposition

    NASA Astrophysics Data System (ADS)

    Meckley, John R.

    1995-09-01

    The information content in many signal processing applications can be reduced to a set of linear features in a 2D signal transform. Examples include the narrowband lines in a spectrogram, ship wakes in a synthetic aperture radar image, and blood vessels in a medical computer-aided tomography scan. The line integrals that generate the values of the projections of the Radon transform can be characterized as a bank of matched filters for linear features. This localization of energy in the Radon transform for linear features can be exploited to enhance these features and to reduce noise by filtering the Radon transform with a filter explicitly designed to pass only linear features, and then reconstructing a new 2D signal by inverting the new filtered Radon transform (i.e., via filtered backprojection). Previously used methods for filtering the Radon transform include Fourier based filtering (a 2D elliptical Gaussian linear filter) and a nonlinear filter ((Radon xfrm)**y with y >= 2.0). Both of these techniques suffer from the mismatch of the filter response to the true functional form of the Radon transform of a line. The Radon transform of a line is not a point but is a function of the Radon variables (rho, theta) and the total line energy. This mismatch leads to artifacts in the reconstructed image and a reduction in achievable processing gain. The Radon transform for a line is computed as a function of angle and offset (rho, theta) and the line length. The 2D wavelet coefficients are then compared for the Haar wavelets and the Daubechies wavelets. These filter responses are used as frequency filters for the Radon transform. The filtering is performed on the wavelet pyramid decomposition of the Radon transform by detecting the most likely positions of lines in the transform and then by convolving the local area with the appropriate response and zeroing the pyramid coefficients outside of the response area. The response area is defined to contain 95% of the total wavelet coefficient energy. The detection algorithm provides an estimate of the line offset, orientation, and length that is then used to index the appropriate filter shape. Additional wavelet pyramid decomposition is performed in areas of high energy to refine the line position estimate. After filtering, the new Radon transform is generated by inverting the wavelet pyramid. The Radon transform is then inverted by filtered backprojection to produce the final 2D signal estimate with the enhanced linear features. The wavelet-based method is compared to both the Fourier and the nonlinear filtering with examples of sparse and dense shapes in imaging, acoustics and medical tomography with test images of noisy concentric lines, a real spectrogram of a blow fish (a very nonstationary spectrum), and the Shepp Logan Computer Tomography phantom image. Both qualitative and derived quantitative measures demonstrate the improvement of wavelet-based filtering. Additional research is suggested based on these results. Open questions include what level(s) to use for detection and filtering because multiple-level representations exist. The lower levels are smoother at reduced spatial resolution, while the higher levels provide better response to edges. Several examples are discussed based on analytical and phenomenological arguments.

  17. Land surface phenology and land surface temperature changes along an urban-rural gradient in Yangtze River Delta, china.

    PubMed

    Han, Guifeng; Xu, Jianhua

    2013-07-01

    Using SPOT/VGT NDVI time series images (2002-2009) and MODIS/LST images (2002-2009) smoothed by a Savitzky-Golay filter, the land surface phenology (LSP) and land surface temperature (LST), respectively, are extracted for six cities in the Yangtze River Delta, China, including Shanghai, Hangzhou, Nanjing, Changzhou, Wuxi, and Suzhou. The trends of the averaged LSP and LST are analyzed, and the relationship between these values is revealed along the urban-rural gradient. The results show that urbanization advances the start of the growing season, postpones the end of the growing season, prolongs the growing season length (GSL), and reduces the difference between maximal NDVI and minimal NDVI in a year (NDVIamp). More obvious changes occur in surface vegetation phenology as the urbanized area is approached. The LST drops monotonously and logarithmically along the urban-rural gradient. Urbanization generally affects the LSP of the surrounding vegetation within 6 km to the urban edge. Except for GSL, the difference in the LSP between urban and rural areas has a significant logarithmic relationship with the distance to the urban edge. In addition, there is a very strong linear relationship between the LSP and the LST along the urban-rural gradient, especially within 6 km to the urban edge. The correlations between LSP and gross domestic product and population density reveal that human activities have considerable influence on the land surface vegetation growth.

  18. Io's Sodium Cloud (Clear and Green-Yellow Filters)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The green-yellow filter and clear filter images of Io which were released over the past two days were originally exposed on the same frame. The camera pointed in slightly different directions for the two exposures, placing a clear filter image of Io on the top half of the frame, and a green-yellow filter image of Io on the bottom half of the frame. This picture shows that entire original frame in false color, the most intense emission appearing white.

    East is to the right. Most of Io's visible surface is in shadow, though one can see part of an illuminated crescent on its western side. The burst of white light near Io's eastern equatorial edge (most distinctive in the green filter image) is sunlight scattered by the plume of the volcano Prometheus.

    There is much more bright light near Io in the clear filter image, since that filter's wider wavelength range admits more scattered light from Prometheus' sunlit plume and Io's illuminated crescent. Thus in the clear filter image especially, Prometheus's plume was bright enough to produce several white spikes which extend radially outward from the center of the plume emission. These spikes are artifacts produced by the optics of the camera. Two of the spikes in the clear filter image appear against Io's shadowed surface, and the lower of these is pointing towards a bright round spot. That spot corresponds to thermal emission from the volcano Pele.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  19. Analyses of surface coloration on TiO 2 film irradiated with excimer laser

    NASA Astrophysics Data System (ADS)

    Zheng, H. Y.; Qian, H. X.; Zhou, W.

    2008-01-01

    TiO 2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm 2. Microcracks at medium laser fluence of 1000 mJ/cm 2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm 2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO 2 film might be used for adjustable filters.

  20. Design of a contrast-enhanced dual-energy tomosynthesis system for breast cancer imaging

    NASA Astrophysics Data System (ADS)

    Hörnig, M. D.; Bätz, L.; Mertelmeier, T.

    2012-03-01

    Digital breast tomosynthesis (DBT) is a three-dimensional X-ray imaging modality that has the potential to decrease the superimposition effect of breast structural noise, thereby increasing lesion conspicuity. To further improve breast cancer detection, our work has been devoted to develop a prototype for contrast-enhanced dual-energy tomosynthesis (CEDET). CEDET involves the injection of an iodinated contrast agent and measures the relative increase in uptake of contrast in the suspected breast cancer lesion. Either temporal or dual-energy subtraction techniques may be used to implement CEDET. Both 2D contrast-enhanced dual-energy mammography and 3D tomosynthesis can be applied. Here we present the design of a prototype CEDET system based on the Siemens MAMMOMAT Inspiration and employing two additional high-energy filters in addition to the standard Rh filter, the latter being used for the low-energy acquisitions. A quality factor of squared signal-difference-to-noise-ratio of iodine per pixel area and average glandular dose as a function of breast thickness is used to optimize the filter material, the filter thickness, and the tube voltage. The average glandular dose can be calculated from the entrance surface air kerma using computed conversion coefficients DgN for the used X-ray spectra. We also present the results of DQE measurements of the amorphous selenium detector involved. Finally, results of phantom tests for tomosynthesis acquisition and first clinical data in the 2D mode will be shown.

  1. Filters for cathodic arc plasmas

    DOEpatents

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  2. Simulation of the Interaction Between Flywheel Energy Storage and Battery Energy Storage on the International Space Station

    NASA Technical Reports Server (NTRS)

    Trouong, Long V.; Wolff, Frederic J.; Dravid, Narayan V.; Li, Ponlee

    2000-01-01

    Replacement of one module of the battery charge discharge unit (BCDU) of the International Space Station (ISS) by a flywheel energy storage unit (FESU) is under consideration. Integration of these two dissimilar systems is likely to surface difficulties in areas of system stability and fault protection. Other issues that need to be addressed include flywheel charge and discharge profiles and their effect on the ISS power system as well as filter sizing for power Ability purposes. This paper describes a SABER based simulation to study these issues.

  3. New Low Temperature Processing for Boron Carbide/Aluminum Based Composite Armor

    DTIC Science & Technology

    1990-06-01

    cases. The aluminum powder was finer than 325 mesh (nominal 4 ptm diameter). The titanium diboride powder also had a median particle diameter of 4 g ~m...Al Before Heat Treatment. Sample Density Hardness Flex ( g /mL) (Rockwell A) Strength 70/30 B4 C/Al/dry 2.62±.03 81±3 57±5 ksi 70/30 B4 C/AI/wet/A 2.57...0.4 w/o nitrogen, 160 ppm calcium, 140 ppm chromium. 270 ppm iron, and 330 ppm nickel. The surface area was 7 m 2 / g . Initial dispersion and filter

  4. Simulation of noise involved in synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Grandchamp, Myriam; Cavassilas, Jean-Francois

    1996-08-01

    The synthetic aperture radr (SAR) returns from a linear distribution of scatterers are simulated and processed in order to estimate the reflectivity coefficients of the ground. An original expression of this estimate is given, which establishes the relation between the terms of signal and noise. Both are compared. One application of this formulation consists of detecting a surface ship wake on a complex SAR image. A smoothing is first accomplished on the complex image. The choice of the integration area is determined by the preceding mathematical formulation. Then a differential filter is applied, and results are shown for two parts of the wake.

  5. Freeze drying vs microwave drying-methods for synthesis of sinteractive thoria powders

    NASA Astrophysics Data System (ADS)

    Annie, D.; Chandramouli, V.; Anthonysamy, S.; Ghosh, Chanchal; Divakar, R.

    2017-02-01

    Thoria powders were synthesized by oxalate precipitation from an aqueous solution of the nitrate. The filtered precipitates were freeze dried or microwave dried before being calcined at 1073 K. The thoria powders obtained were characterized for crystallite size, specific surface area, bulk density, particle size distribution and residual carbon. Microstructure of the product was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Sinterability of the synthesized powders was studied by measuring the density of the sintered compacts. Powders that can be consolidated and sintered to densities ∼96% theoretical density (TD) at 1773 K were obtained.

  6. Classification and analysis of the Rudaki's Area

    NASA Astrophysics Data System (ADS)

    Zambon, F.; De sanctis, M.; Capaccioni, F.; Filacchione, G.; Carli, C.; Ammannito, E.; Frigeri, A.

    2011-12-01

    During the first two MESSENGER flybys the Mercury Dual Imaging System (MDIS) has mapped 90% of the Mercury's surface. An effective way to study the different terrain on planetary surfaces is to apply classification methods. These are based on clustering algorithms and they can be divided in two categories: unsupervised and supervised. The unsupervised classifiers do not require the analyst feedback and the algorithm automatically organizes pixels values into classes. In the supervised method, instead, the analyst must choose the "training area" that define the pixels value of a given class. We applied an unsupervised classifier, ISODATA, to the WAC filter images of the Rudaki's area where several kind of terrain have been identified showing differences in albedo, topography and crater density. ISODATA classifier divides this region in four classes: 1) shadow regions, 2) rough regions, 3) smooth plane, 4) highest reflectance area. ISODATA can not distinguish the high albedo regions from highly reflective illuminated edge of the craters, however the algorithm identify four classes that can be considered different units mainly on the basis of their reflectances at the various wavelengths. Is not possible, instead, to extrapolate compositional information because of the absence of clear spectral features. An additional analysis was made using ISODATA to choose the "training area" for further supervised classifications. These approach would allow, for example, to separate more accurately the edge of the craters from the high reflectance areas and the low reflectance regions from the shadow areas.

  7. Final Report for Geometric Observers and Particle Filtering for Controlled Active Vision

    DTIC Science & Technology

    2016-12-15

    code) 15-12-2016 Final Report 01Sep06 - 09May11 Final Report for Geometric Observers & Particle Filtering for Controlled Active Vision 49414-NS.1Allen...Observers and Particle Filtering for Controlled Active Vision by Allen R. Tannenbaum School of Electrical and Computer Engineering Georgia Institute of...7 2.2.4 Conformal Area Minimizing Flows . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Particle Filters

  8. Assessing mass change trends in GRACE models

    NASA Astrophysics Data System (ADS)

    Siemes, C.; Liu, X.; Ditmar, P.; Revtova, E.; Slobbe, C.; Klees, R.; Zhao, Q.

    2009-04-01

    The DEOS Mass Transport model, release 1 (DMT-1), has been recently presented to the scientific community. The model is based on GRACE data and consists of sets of spherical harmonic coefficients to degree 120, which are estimated once per month. Currently, the DMT-1 model covers the time span from Feb. 2003 to Dec. 2006. The high spatial resolution of the model could be achieved by applying a statistically optimal Wiener-type filter, which is superior to standard filtering techniques. The optimal Wiener-type filter is a regularization-type filter which makes full use of the variance/covariance matrices of the sets of spherical harmonic coefficients. It can be shown that applying this filter is equivalent to introducing an additional set of observations: Each set of spherical harmonic coefficients is assumed to be zero. The variance/covariance matrix of this information is chosen according to the signal contained within the sets of spherical harmonic coefficients, expressed in terms of equivalent water layer thickness in the spatial domain, with respect to its variations in time. It will be demonstrated that DMT-1 provides a much better localization and more realistic amplitudes than alternative filtered models. In particular, we will consider a lower maximum degree of the spherical harmonic expansion (e.g. 70), as well as standard filters like an isotropic Gaussian filter. For the sake of a fair comparison, we will use the same GRACE observations as well as the same method for the inversion of the observations to obtain the alternative filtered models. For the inversion method, we will choose the three-point range combination approach. Thus, we will compare four different models: (1) GRACE solution with maximum degree 120, filtered by optimal Wiener-type filter (the DMT-1 model) (2) GRACE solution with maximum degree 120, filtered by standard filter (3) GRACE solution with maximum degree 70, filtered by optimal Wiener-type filter (4) GRACE solution with maximum degree 70, filtered by standard filter Within the comparison, we will focus on the amplitude of long-term mass change signals with respect to spatial resolution. The challenge for the recovery of such signals from GRACE based solutions results from the fact that the solutions must be filtered and that filtering of always smoothes not only noise, but also to some extend signal. Since the observation density is much higher near the poles than at the equator, which is due to the orbits of the GRACE satellites, we expect that the magnitude of estimated mass change signals in polar areas is less underestimated than in equatorial areas. For this reason will investigate trends at locations in equatorial areas as well as trends at locations in polar areas. In particular, we will investigate Lake Victoria, Lake Malawi and Lake Tanganyika, which are all located in Eastern Africa, near to the equator. Furthermore, we will show trends of two locations at the South-East coast of Greenland, Abbot Ice-Shelf and Marie-Byrd-Land in Antarctica For validation, we use water level variations in Lake Victoria (69000 km2), Lake Malawi (29000 km2) and Lake Tanganyika (33000 km2) as ground truth. The water level, which is measured by satellite radar altimetry, decreases at a rate of approximately 47 cm in Lake Victoria, 42 cm in Lake Malawi and 30 cm in Lake Tanganyika over the period from Feb. 2003 to Dec. 2006. Because all three lakes are located in tropical and subtropical clime, the mass change signal will consist of large seasonal variations in addition to the trend component we are interested in. However, also the amplitude of estimated seasonal variations can be used as an indicator of the quality of the models within the comparison. Since the lakes' areas are at the edge of the spatial resolution GRACE data can provide, they are a good example of the advantages of high-resolution mass change models like DMT-1.

  9. Protein Adsorption to In-Line Filters of Intravenous Administration Sets.

    PubMed

    Besheer, Ahmed

    2017-10-01

    Ensuring compatibility of administered therapeutic proteins with intravenous administration sets is an important regulatory requirement. A low-dose recovery during administration of low protein concentrations is among the commonly observed incompatibilities, and it is mainly due to adsorption to in-line filters. To better understand this phenomenon, we studied the adsorption of 4 different therapeutic proteins (2 IgG1s, 1 IgG4, and 1 Fc fusion protein) diluted to 0.01 mg/mL in 5% glucose (B. Braun EcoFlac; B. Braun Melsungen AG, Melsungen, Germany) or 0.9% sodium chloride (NaCl; Freeflex; Fresenius Kabi, Friedberg, Germany) solutions to 8 in-line filters (5 positively charged and 3 neutral filters made of different polymers and by different suppliers). The results show certain patterns of protein adsorption, which depend to a large extent on the dilution solution and filter material, and to a much lower extent on the proteins' biophysical properties. Investigation of the filter membranes' zeta potential showed a correlation between the observed adsorption pattern in 5% glucose solution and the filter's surface charge, with higher protein adsorption for the strongly negatively charged membranes. In 0.9% NaCl solution, the surface charges are masked, leading to different adsorption patterns. These results contribute to the general understanding of the protein adsorption to IV infusion filters and allow the design of more efficient compatibility studies. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Absorption/Transmission Measurements of PSAP Particle-Laden Filters from the Biomass Burning Observation Project (BBOP) Field Campaign

    PubMed Central

    Presser, Cary; Nazarian, Ashot; Conny, Joseph M.; Chand, Duli; Sedlacek, Arthur; Hubbe, John M.

    2017-01-01

    Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) non-reacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). The particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques). Advantages of the LDTR approach include 1) direct estimation of material absorption from temperature measurements (as opposed to resolving the difference between the measured reflection/scattering and transmission), 2) information on the filter optical properties, and 3) identification of the filter material effects on particle absorption (e.g., leading to particle absorption enhancement or shadowing). For measurements carried out under ambient conditions, the particle absorptivity is obtained with a thermocouple placed flush with the filter back surface and the laser probe beam impinging normal to the filter particle-laden surface. Thus, in principle one can employ a simple experimental arrangement to measure simultaneously both the transmissivity and absorptivity (at different discrete wavelengths) and ascertain the particle absorption coefficient. For this investigation, LDTR measurements were carried out with PSAP filters (pairs with both blank and exposed filters) from eight different days during the campaign, having relatively light but different particle loadings. The observed particles coating the filters were found to be carbonaceous (having broadband absorption characteristics). The LDTR absorption coefficient compared well with results from the PSAP. The analysis was also expanded to account for the filter fiber scattering on particle absorption in assessing particle absorption enhancement and shadowing effects. The results indicated that absorption enhancement effects were significant, and diminished with increased filter particle loading. PMID:28690360

  11. Absorption/Transmission Measurements of PSAP Particle-Laden Filters from the Biomass Burning Observation Project (BBOP) Field Campaign.

    PubMed

    Presser, Cary; Nazarian, Ashot; Conny, Joseph M; Chand, Duli; Sedlacek, Arthur; Hubbe, John M

    2017-01-01

    Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) non-reacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). The particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques). Advantages of the LDTR approach include 1) direct estimation of material absorption from temperature measurements (as opposed to resolving the difference between the measured reflection/scattering and transmission), 2) information on the filter optical properties, and 3) identification of the filter material effects on particle absorption (e.g., leading to particle absorption enhancement or shadowing). For measurements carried out under ambient conditions, the particle absorptivity is obtained with a thermocouple placed flush with the filter back surface and the laser probe beam impinging normal to the filter particle-laden surface. Thus, in principle one can employ a simple experimental arrangement to measure simultaneously both the transmissivity and absorptivity (at different discrete wavelengths) and ascertain the particle absorption coefficient. For this investigation, LDTR measurements were carried out with PSAP filters (pairs with both blank and exposed filters) from eight different days during the campaign, having relatively light but different particle loadings. The observed particles coating the filters were found to be carbonaceous (having broadband absorption characteristics). The LDTR absorption coefficient compared well with results from the PSAP. The analysis was also expanded to account for the filter fiber scattering on particle absorption in assessing particle absorption enhancement and shadowing effects. The results indicated that absorption enhancement effects were significant, and diminished with increased filter particle loading.

  12. Zone heated inlet ignited diesel particulate filter regeneration

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2012-06-26

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that is disposed downstream of the engine and that filters particulates from the exhaust; and a grid that includes electrically resistive material that is segmented by non-conductive material into a plurality of zones and wherein the grid is applied to an exterior upstream surface of the PF.

  13. Multichannel Nephelometer.

    DTIC Science & Technology

    1986-10-01

    consists of two near-hemispheric shells bolted to a mounted plate housing the sampling system. Its walls are anodized black to decrease 13 surface...a distinct advantage when the test aerosol contains a significant quantity of liquid. Membrane filters tend to load and reduce throughout while...Table 6. As indicated, these filters can be estremely efficient. Should absolute retention be required, the AAO grade filter with a pore size of 0.3

  14. PECAM-1 and Angiogenesis

    DTIC Science & Technology

    2009-12-01

    activated ERK (e.g., MLCK, FAK, and calpain) whose phosphorylation pro- motes processes required for efficient cell locomotion (12, 14, 22). For certain...stimulate endothelial cell motility by pro- moting the formation of filopodia. Materials and Methods Reagents and Chemicals All reagents and...filter. After incubation the wells were removed, washed, and the top surface of the filter wiped with a cotton swab. The filters were then carefully

  15. Mountains to the sea: River study of plastic and non-plastic microfiber pollution in the northeast USA.

    PubMed

    Miller, Rachael Z; Watts, Andrew J R; Winslow, Brooke O; Galloway, Tamara S; Barrows, Abigail P W

    2017-11-15

    Aquatic environments are sinks for anthropogenic contamination, whether chemical or solid pollutants. Microfibers shed from clothing and other textiles contribute to this problem. These can be plastic or non-plastic origin. Our aim was to investigate the presence and distribution of both types of anthropogenic microfibers along the length of the Hudson River, USA. Surface grab samples were collected and filtered through a 0.45μm filter paper. Abundance of fibers was determined after subtraction of potential contamination. 233 microfibers were recorded in 142 samples, averaging 0.98microfibersL -1 . Subsequent micro-FTIR showed half of the fibers were plastic while the other half were non-plastic, but of anthropogenic origin. There was no relationship between fiber abundance, wastewater treatment plant location or population density. Extrapolating from this data, and using available hydrographic data, 34.4% of the Hudson River's watershed drainage area contributes an average 300 million anthropogenic microfibers into the Atlantic Ocean per day. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Advanced optical systems for ultra high energy cosmic rays detection

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Pace, E.; Mazzinghi, P.

    2017-11-01

    A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.

  17. Data Assimilation in the ADAPT Photospheric Flux Transport Model

    DOE PAGES

    Hickmann, Kyle S.; Godinez, Humberto C.; Henney, Carl J.; ...

    2015-03-17

    Global maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind and therefore are important predictors of geoeffective events. However, observations of the solar photosphere are only made intermittently over approximately half of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time, this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF)more » to accomplish data assimilation, allowing the covariance structure of the flux-transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the implementation of the LETKF into ADAPT. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.« less

  18. Terra Sabaea - False Color

    NASA Image and Video Library

    2016-02-05

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows a variety of surface materials in the plains of Sabaea Terra.

  19. Replaceable filters and cones for flared-tubing connectors

    NASA Technical Reports Server (NTRS)

    Grant, L. E.; Howland, B. T.

    1970-01-01

    Connector is modified by machining the cone from one end before the fitting is bored to accommodate a metallic-filament type of slip-in filter. Thus, when surface of the cone is damaged, only the cone needs replacement.

  20. A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation.

    PubMed

    Ye, Sen; Cao, Qiang; Wang, Qingsong; Wang, Tianyuan; Peng, Qing

    2016-11-21

    It has been a long standing challenge to efficiently separate oil and water since prehistoric times, and now it has become even more desirable in oily wastewater purification and oil spill cleanup. Here we introduce a super oil-water separation filter with superhydrophilicity and underwater superoleophobicity, fabricated using femtosecond laser micro-hole drilling of a titanium foil. Such a simply-made filter, without any modification, can achieve a separation efficiency exceeding 99% in eight typical oil-water mixtures. It remains highly efficient after 40 cycles of recycling and after suffering erosion by corrosive media. Furthermore, the used filter, polluted with oil, could be recovered by ultraviolet illumination. The flux of filtered water is tunable by simply selecting the aperture of the microhole or the spacing between adjacent microholes. Such advanced functionality is due to roughness and the TiO 2 layers on the ablated surface during fabrication. With superhydrophilic and superoleophobic surfaces, this oil-water filer is also suitable for applications in anti-fouling, anti-smudge, anti-fog, and self-cleaning.

  1. A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation

    PubMed Central

    Ye, Sen; Cao, Qiang; Wang, Qingsong; Wang, Tianyuan; Peng, Qing

    2016-01-01

    It has been a long standing challenge to efficiently separate oil and water since prehistoric times, and now it has become even more desirable in oily wastewater purification and oil spill cleanup. Here we introduce a super oil–water separation filter with superhydrophilicity and underwater superoleophobicity, fabricated using femtosecond laser micro-hole drilling of a titanium foil. Such a simply-made filter, without any modification, can achieve a separation efficiency exceeding 99% in eight typical oil–water mixtures. It remains highly efficient after 40 cycles of recycling and after suffering erosion by corrosive media. Furthermore, the used filter, polluted with oil, could be recovered by ultraviolet illumination. The flux of filtered water is tunable by simply selecting the aperture of the microhole or the spacing between adjacent microholes. Such advanced functionality is due to roughness and the TiO2 layers on the ablated surface during fabrication. With superhydrophilic and superoleophobic surfaces, this oil-water filer is also suitable for applications in anti-fouling, anti-smudge, anti-fog, and self-cleaning. PMID:27869194

  2. Separation of man-made and natural patterns in high-altitude imagery of agricultural areas

    NASA Technical Reports Server (NTRS)

    Samulon, A. S.

    1975-01-01

    A nonstationary linear digital filter is designed and implemented which extracts the natural features from high-altitude imagery of agricultural areas. Essentially, from an original image a new image is created which displays information related to soil properties, drainage patterns, crop disease, and other natural phenomena, and contains no information about crop type or row spacing. A model is developed to express the recorded brightness in a narrow-band image in terms of man-made and natural contributions and which describes statistically the spatial properties of each. The form of the minimum mean-square error linear filter for estimation of the natural component of the scene is derived and a suboptimal filter is implemented. Nonstationarity of the two-dimensional random processes contained in the model requires a unique technique for deriving the optimum filter. Finally, the filter depends on knowledge of field boundaries. An algorithm for boundary location is proposed, discussed, and implemented.

  3. Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns

    NASA Astrophysics Data System (ADS)

    Kishino, Katsumi; Ishizawa, Shunsuke

    2015-06-01

    The growth of highly uniform arrays of GaN nanocolumns with diameters from 122 to 430 nm on Si (111) substrates was demonstrated. The employment of GaN film templates with flat surfaces (root mean square surface roughness of 0.84 nm), which were obtained using an AlN/GaN superlattice (SL) buffer on Si, contributed to the high-quality selective-area growth of nanocolumns using a thin Ti mask of 5 nm thickness by rf-plasma-assisted molecular beam epitaxy. Although the GaN template included a large number of dislocations (dislocation density ˜1011 cm-2), the dislocation filtering effect of nanocolumns was enhanced with decreasing nanocolumn diameters (D). Systematic transmission electron microscopy (TEM) observation enabled us to explain the dependence of the dislocation propagation behavior in nanocolumns on the nanocolumn diameter for the first time. Plan-view TEM analysis was performed for nanocolumns with D = 120-324 nm by slicing the nanocolumns horizontally at a height of ˜300 nm above their bottoms and dislocation propagation through the nanocolumns was analyzed by the cross-sectional TEM observation of nanocolumns with D ˜ 200 nm. It was clarified that dislocations were effectively filtered in the bottom 300 nm region of the nanocolumns, the dislocation density of the nanocolumns decreased with decreasing D, and for narrow nanocolumns with D < 200 nm, dislocation-free crystals were obtained in the upper part of the nanocolumns. The dramatic improvement in the emission properties of GaN nanocolumns observed with decreasing diameter is discussed in relation to the decreased dislocation density. The laser action of InGaN/GaN-based nanocolumn arrays with a nanocolumn diameter of 170 nm and a period of 200 nm on Si under optical excitation was obtained with an emission wavelength of 407 nm. We also fabricated red-emitting InGaN-based nanocolumn light-emitting diodes on Si that operated at a wavelength of 652 nm, demonstrating vertical conduction through the AlN/GaN SL buffer to the Si substrate.

  4. Effect of metal oxide nanoparticles on Godavari river water treatment

    NASA Astrophysics Data System (ADS)

    Goud, Ravi Kumar; Ajay Kumar, V.; Reddy, T. Rakesh; Vinod, B.; Shravani, S.

    2018-05-01

    Nowadays there is a continuously increasing worldwide concern for the development of water treatment technologies. In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Nanomaterials reveal good results than other techniques used in water treatment because of its high surface area to volume ratio. In the present work, iron oxide and copper oxide nanoparticles were synthesized by simple heating method. The synthesized nanoparticles were used to purify Godavari river water. The effect of nanoparticles at 70°C temperature, 12 centimeter of sand bed height and pH of 8 shows good results as compared to simple sand bed filter. The attained values of BOD5, COD and Turbidity were in permissible limit of world health organization.

  5. Tuneable porous carbonaceous materials from renewable resources.

    PubMed

    White, Robin J; Budarin, Vitaly; Luque, Rafael; Clark, James H; Macquarrie, Duncan J

    2009-12-01

    Porous carbon materials are ubiquitous with a wide range of technologically important applications, including separation science, heterogeneous catalyst supports, water purification filters, stationary phase materials, as well as the developing future areas of energy generation and storage applications. Hard template routes to ordered mesoporous carbons are well established, but whilst offering different mesoscopic textural phases, the surface of the material is difficult to chemically post-modify and processing is energy, resource and step intensive. The production of carbon materials from biomass (i.e. sugars or polysaccharides) is a relatively new but rapidly expanding research area. In this tutorial review, we compare and contrast recently reported routes to the preparation of porous carbon materials derived from renewable resources, with examples of our previously reported mesoporous polysaccharide-derived "Starbon" carbonaceous material technology.

  6. Photographer : JPL Range : 5 million miles (8.025 million kilometers) This is a morning shot of

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 5 million miles (8.025 million kilometers) This is a morning shot of Ganymede, largest of Jupiter's 13 satellites. It's slightly larger than Mercury with a density about twice that of water. It's believed to be made of rock and ice with a surface of water and ice. Ganymede is 4 times brighter than our Moon with the bright spot in center of photo 5 times brighter than the Moon, and may contain more ice than surrounding areas. The bright pattern around the spot seems like ray craters on the Moon and Mercury and the area may in fact be an impact crater that has exposed fresh, underlying ice. Photo taken through blue, green and orange filters.

  7. Effect of filter on average glandular dose and image quality in digital mammography

    NASA Astrophysics Data System (ADS)

    Songsaeng, C.; Krisanachinda, A.; Theerakul, K.

    2016-03-01

    To determine the average glandular dose and entrance surface air kerma in both phantoms and patients to assess image quality for different target-filters (W/Rh and W/Ag) in digital mammography system. The compressed breast thickness, compression force, average glandular dose, entrance surface air kerma, peak kilovoltage and tube current time were recorded and compared between W/Rh and W/Ag target filter. The CNR and the figure of merit were used to determine the effect of target filter on image quality. The mean AGD of the W/Rh target filter was 1.75 mGy, the mean ESAK was 6.67 mGy, the mean CBT was 54.1 mm, the mean CF was 14 1bs. The mean AGD of W/Ag target filter was 2.7 mGy, the mean ESAK was 12.6 mGy, the mean CBT was 75.5 mm, the mean CF was 15 1bs. In phantom study, the AGD was 1.2 mGy at 4 cm, 3.3 mGy at 6 cm and 3.83 mGy at 7 cm thickness. The FOM was 24.6, CNR was 9.02 at thickness 6 cm. The FOM was 18.4, CNR was 8.6 at thickness 7 cm. The AGD from Digital Mammogram system with W/Rh of thinner CBT was lower than the AGD from W/Ag target filter.

  8. 78 FR 54383 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... the main transmission filter housing upper part and modifying the main transmission housing upper part... filter area was not manufactured in accordance with applicable design specifications. The actions of this... a corrugated washer in the filter housing of the housing upper part and modifying each affected main...

  9. Impact of Air Filter Material on Metal Oxide Semiconductor (MOS) Device Characteristics in HF Vapor Environment

    NASA Astrophysics Data System (ADS)

    Hsiao, Chih-Wen; Lou, Jen-Chung; Yeh, Ching-Fa; Hsieh, Chih-Ming; Lin, Shiuan-Jeng; Kusumi, Toshio

    2004-05-01

    Airborne molecular contamination (AMC) is becoming increasingly important as devices are scaled down to the nanometer generation. Optimum ultra low penetration air (ULPA) filter technology can eliminate AMC. In a cleanroom, however, the acid vapor generated from the cleaning process may degrade the ULPA filter, releasing AMC to the air and the surface of wafers, degrading the electrical characteristics of devices. This work proposes the new PTFE ULPA filter, which is resistant to acid vapor corrosion, to solve this problem. Experimental results demonstrate that the PTFE ULPA filter can effectively eliminate the AMC and provide a very clean cleanroom environment.

  10. Transmittance measurements of ultra violet and visible wavelength interference filters flown aboard LDEF

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.; Smajkiewicz, Ali

    1991-01-01

    A set of ten interference filters for the UV and VIS spectral region were flown on the surface of the Long Duration Exposure Facility (LDEF) Tray B-8 along with earth radiation budget (ERB) components from the Eppley Laboratory. Transmittance changes and other degradation observed after the return of the filters to Barr are reported. Substrates, coatings, and (where applicable) cement materials are identified. In general, all filters except those containing lead compounds survived well. Metal dielectric filters for the UV developed large numbers of pinholes which caused an increase in transmittance. Band shapes and spectral positioning, however, did not change.

  11. Hollow-fiber ultrafiltration of Cryptosporidium parvum oocysts from a wide variety of 10-L surface water samples.

    PubMed

    Kuhn, Ryan C; Oshima, Kevin H

    2002-06-01

    An optimized hollow-fiber ultrafiltration system (50 000 MWCO) was developed to concentrate Cryptosporidium oocysts from 10-L samples of environmental water. Seeded experiments were conducted using a number of surface-water samples from the southwestern U.S.A. and source water from four water districts with histories of poor oocyst recovery. Ultrafiltration produced a mean recovery of 47.9% from 19 water samples (55.3% from 39 individual tests). We also compared oocyst recoveries using the hollow-fiber ultrafiltration system with those using the Envirochek filter. In limited comparison tests, the hollow-fiber ultrafiltration system produced recoveries similar to those of the Envirochek filter (hollow fiber, 74.1% (SD = 2.8); Envirochek, 71.9% (SD = 5.2)) in low-turbidity (3.9 NTU) samples and performed better than the Envirochek filter in high-turbidity (159.0 NTU) samples (hollow fiber, 27.5%; Envirochek, 0.4%). These results indicate that hollow-fiber ultrafiltration can efficiently recover oocysts from a wide variety of surface waters and may be a cost-effective alternative for concentrating Cryptosporidium from water, given the reusable nature of the filter.

  12. Modelling the dependence of contrast sensitivity on grating area and spatial frequency.

    PubMed

    Rovamo, J; Luntinen, O; Näsänen, R

    1993-12-01

    We modelled the human foveal visual system in a detection task as a simple image processor comprising (i) low-pass filtering due to the optical transfer function of the eye, (ii) high-pass filtering of neural origin, (iii) addition of internal neural noise, and (iv) detection by a local matched filter. Its detection efficiency for gratings was constant up to a critical area but then decreased with increasing area. To test the model we measured Michelson contrast sensitivity as a function of grating area at spatial frequencies of 0.125-32 c/deg for simple vertical and circular cosine gratings. In circular gratings luminance was sinusoidally modulated as a function of the radius of the grating field. In agreement with the model, contrast sensitivity at all spatial frequencies increased in proportion to the square-root of grating area at small areas. When grating area exceeded critical area, the increase saturated and contrast sensitivity became independent of area at large grating areas. Spatial integration thus obeyed Piper's law at small grating areas. The critical area of spatial integration, marking the cessation of Piper's law, was constant in solid degrees at low spatial frequencies but inversely proportional to spatial frequency squared at medium and high spatial frequencies. At low spatial frequencies the maximum contrast sensitivity obtainable by spatial integration increased in proportion to spatial frequency but at high spatial frequencies it decreased in proportion to the cube of the increasing spatial frequency. The increase was due to high-pass filtering of neural origin (lateral inhibition) and the decrease was mainly due to the optical transfer function of the eye. Our model explained 95% of the total variance of the contrast sensitivity data.

  13. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR EXTRACTION OF METALS FROM SOIL, DUST, AIR FILTER, AND SURFACE AND DERMAL WIPE SAMPLES FOR AA (GRAPHITE FURNACE OR FLAME) OR ICP-AES ANALYSIS (BCO-L-3.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the acid digestion of soil, house dust, air filter, and surface or dermal wipe samples for analysis using inductively coupled plasma atomic emissions spectrometry (ICP-AES) and/or graphite furnace atomic absorption spectrometry (GFAAS) or fl...

  14. CFD modeling of catheter-based Chemofilter device for filtering chemotherapy drugs from venous flow

    NASA Astrophysics Data System (ADS)

    Maani, Nazanin; Yee, Daryl; Nosonovsky, Michael; Greer, Julia; Hetts, Steven; Rayz, Vitaliy

    2017-11-01

    Purpose: Intra-arterial chemotherapy, a procedure where drugs are injected into arteries supplying a tumor, may cause systemic toxicity. The Chemofilter device, deployed in a vein downstream of the tumor, can chemically filter the excessive drugs from the circulation. In our study, CFD modeling of blood flow through the Chemofilter is used to optimize its hemodynamic performance. Methods:The Chemofilter consists of a porous membrane attached to a stent-like frame of the RX Accunet distal protection filters used for capturing blood clots. The membrane is formed by a lattice of symmetric micro-cells. This design provides a large surface area for the drug binding, and allows blood cells to pass through the lattice. A two-scale modeling approach is used, where the flow through individual micro-cells is simulated to determine the lattice permeability and then the entire device is modeled as a porous membrane. Results: The simulations detected regions of flow stagnation and recirculation caused by the membrane and its supporting frame. The effect of the membrane's leading angle on the velocity and pressure fields was determined. The device optimization will help the efficacy of drug absorption, while the risk of blood clotting reduces. NIH NCI R01CA194533.

  15. Modeling of a field-widened Michelson interferometric filter for application in a high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Hostetler, Chris; Cook, Anthony; Miller, Ian; Hair, Johnathan

    2011-11-01

    High spectral resolution lidars (HSRLs) are increasingly being deployed on aircraft and called for on future space-based missions. The HSRL technique relies on spectral discrimination of the atmospheric backscatter signals to enable independent, unambiguous retrieval of aerosol extinction and backscatter. A compact, monolithic field-widened Michelson interferometer is being developed as the spectral discrimination filter for an HSRL system at NASA Langley Research Center. The interferometer consists of a cubic beam splitter, a solid glass arm, and an air arm. The spacer that connects the air arm mirror to the main part of the interferometer is designed to optimize thermal compensation such that the maximum interference can be tuned with great precision to the transmitted laser wavelength. In this paper, a comprehensive radiometric model for the field-widened Michelson interferometeric spectral filter is presented. The model incorporates the angular distribution and finite cross sectional area of the light source, reflectance of all surfaces, loss of absorption, and lack of parallelism between the air-arm and solid arm, etc. The model can be used to assess the performance of the interferometer and thus it is a useful tool to evaluate performance budgets and to set optical specifications for new designs of the same basic interferometer type.

  16. Impact of physical properties on ozone removal by several porous materials.

    PubMed

    Gall, Elliott T; Corsi, Richard L; Siegel, Jeffrey A

    2014-04-01

    Models of reactive uptake of ozone in indoor environments generally describe materials through aerial (horizontal) projections of surface area, a potentially limiting assumption for porous materials. We investigated the effect of changing porosity/pore size, material thickness, and chamber fluid mechanic conditions on the reactive uptake of ozone to five materials: two cellulose filter papers, two cementitious materials, and an activated carbon cloth. Results include (1) material porosity and pore size distributions, (2) effective diffusion coefficients for ozone in materials, and (3) material-ozone deposition velocities and reaction probabilities. At small length scales (0.02-0.16 cm) increasing thickness caused increases in estimated reaction probabilities from 1 × 10(-6) to 5 × 10(-6) for one type of filter paper and from 1 × 10(-6) to 1 × 10(-5) for a second type of filter paper, an effect not observed for materials tested at larger thicknesses. For high porosity materials, increasing chamber transport-limited deposition velocities resulted in increases in reaction probabilities by factors of 1.4-2.0. The impact of physical properties and transport effects on values of the Thiele modulus, ranging across all materials from 0.03 to 13, is discussed in terms of the challenges in estimating reaction probabilities to porous materials in scenarios relevant to indoor environments.

  17. Fractionation and removal of dissolved organic carbon in a full-scale granular activated carbon filter used for drinking water production.

    PubMed

    Gibert, Oriol; Lefèvre, Benoît; Fernández, Marc; Bernat, Xavier; Paraira, Miquel; Pons, Marc

    2013-05-15

    The removal of natural organic matter (NOM) and, more particularly, its individual fractions by two different GACs was investigated in full-scale filters in a drinking water treatment plant (DWTP). Fractionation of NOM was performed by high performance size exclusion chromatography (HPSEC) into biopolymers, humic substances, building blocks and low molecular weight organics. The sorption capacity of GAC in terms of iodine number (IN) and apparent surface area (SBET), as well as the filling of narrow- and super-microporosity were monitored over the 1-year operation of the filters. Both GACs demonstrated to be effective at removing NOM over a wide range of fractions, especially the low and intermediate molecular weight fractions. TOC removal initially occurred via adsorption, and smaller (lighter) fractions were more removed as they could enter and diffuse more easily through the pores of the adsorbent. As time progressed, biodegradation also played a role in the TOC removal, and lighter fractions continued to be preferentially removed due to their higher biodegradability. The gained knowledge would assist drinking water utilities in selecting a proper GAC for the removal of NOM from water and, therefore, complying more successfully the latest water regulations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. An improved three-dimension reconstruction method based on guided filter and Delaunay

    NASA Astrophysics Data System (ADS)

    Liu, Yilin; Su, Xiu; Liang, Haitao; Xu, Huaiyuan; Wang, Yi; Chen, Xiaodong

    2018-01-01

    Binocular stereo vision is becoming a research hotspot in the area of image processing. Based on traditional adaptive-weight stereo matching algorithm, we improve the cost volume by averaging the AD (Absolute Difference) of RGB color channels and adding x-derivative of the grayscale image to get the cost volume. Then we use guided filter in the cost aggregation step and weighted median filter for post-processing to address the edge problem. In order to get the location in real space, we combine the deep information with the camera calibration to project each pixel in 2D image to 3D coordinate matrix. We add the concept of projection to region-growing algorithm for surface reconstruction, its specific operation is to project all the points to a 2D plane through the normals of clouds and return the results back to 3D space according to these connection relationship among the points in 2D plane. During the triangulation in 2D plane, we use Delaunay algorithm because it has optimal quality of mesh. We configure OpenCV and pcl on Visual Studio for testing, and the experimental results show that the proposed algorithm have higher computational accuracy of disparity and can realize the details of the real mesh model.

  19. Polyaniline-coated cigarette filters as a solid-phase extraction sorbent for the extraction and enrichment of polycyclic aromatic hydrocarbon in water samples.

    PubMed

    Bunkoed, Opas; Rueankaew, Thanaschaphorn; Nurerk, Piyaluk; Kanatharana, Proespichaya

    2016-06-01

    Polyaniline coated cigarette filters were successfully synthesized and used as a solid-phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π-π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5-10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost-effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85-98%) and a relative standard deviation <10%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Integrating Radarsat-2, Lidar, and Worldview-3 Imagery to maximize detection of forested inundation extent in the Delmarva Peninsula, USA

    USGS Publications Warehouse

    Vanderhoof, Melanie; Distler, Hayley; Mendiola, Di Ana; Lang, Megan

    2017-01-01

    Natural variability in surface-water extent and associated characteristics presents a challenge to gathering timely, accurate information, particularly in environments that are dominated by small and/or forested wetlands. This study mapped inundation extent across the Upper Choptank River Watershed on the Delmarva Peninsula, occurring within both Maryland and Delaware. We integrated six quad-polarized Radarsat-2 images, Worldview-3 imagery, and an enhanced topographic wetness index in a random forest model. Output maps were filtered using light detection and ranging (lidar)-derived depressions to maximize the accuracy of forested inundation extent. Overall accuracy within the integrated and filtered model was 94.3%, with 5.5% and 6.0% errors of omission and commission for inundation, respectively. Accuracy of inundation maps obtained using Radarsat-2 alone were likely detrimentally affected by less than ideal angles of incidence and recent precipitation, but were likely improved by targeting the period between snowmelt and leaf-out for imagery collection. Across the six Radarsat-2 dates, filtering inundation outputs by lidar-derived depressions slightly elevated errors of omission for water (+1.0%), but decreased errors of commission (−7.8%), resulting in an average increase of 5.4% in overall accuracy. Depressions were derived from lidar datasets collected under both dry and average wetness conditions. Although antecedent wetness conditions influenced the abundance and total area mapped as depression, the two versions of the depression datasets showed a similar ability to reduce error in the inundation maps. Accurate mapping of surface water is critical to predicting and monitoring the effect of human-induced change and interannual variability on water quantity and quality.

Top