Sample records for filtering microarray correlations

  1. Microarray labeling extension values: laboratory signatures for Affymetrix GeneChips

    PubMed Central

    Lee, Yun-Shien; Chen, Chun-Houh; Tsai, Chi-Neu; Tsai, Chia-Lung; Chao, Angel; Wang, Tzu-Hao

    2009-01-01

    Interlaboratory comparison of microarray data, even when using the same platform, imposes several challenges to scientists. RNA quality, RNA labeling efficiency, hybridization procedures and data-mining tools can all contribute variations in each laboratory. In Affymetrix GeneChips, about 11–20 different 25-mer oligonucleotides are used to measure the level of each transcript. Here, we report that ‘labeling extension values (LEVs)’, which are correlation coefficients between probe intensities and probe positions, are highly correlated with the gene expression levels (GEVs) on eukayotic Affymetrix microarray data. By analyzing LEVs and GEVs in the publicly available 2414 cel files of 20 Affymetrix microarray types covering 13 species, we found that correlations between LEVs and GEVs only exist in eukaryotic RNAs, but not in prokaryotic ones. Surprisingly, Affymetrix results of the same specimens that were analyzed in different laboratories could be clearly differentiated only by LEVs, leading to the identification of ‘laboratory signatures’. In the examined dataset, GSE10797, filtering out high-LEV genes did not compromise the discovery of biological processes that are constructed by differentially expressed genes. In conclusion, LEVs provide a new filtering parameter for microarray analysis of gene expression and it may improve the inter- and intralaboratory comparability of Affymetrix GeneChips data. PMID:19295132

  2. Cancer diagnosis marker extraction for soft tissue sarcomas based on gene expression profiling data by using projective adaptive resonance theory (PART) filtering method

    PubMed Central

    Takahashi, Hiro; Nemoto, Takeshi; Yoshida, Teruhiko; Honda, Hiroyuki; Hasegawa, Tadashi

    2006-01-01

    Background Recent advances in genome technologies have provided an excellent opportunity to determine the complete biological characteristics of neoplastic tissues, resulting in improved diagnosis and selection of treatment. To accomplish this objective, it is important to establish a sophisticated algorithm that can deal with large quantities of data such as gene expression profiles obtained by DNA microarray analysis. Results Previously, we developed the projective adaptive resonance theory (PART) filtering method as a gene filtering method. This is one of the clustering methods that can select specific genes for each subtype. In this study, we applied the PART filtering method to analyze microarray data that were obtained from soft tissue sarcoma (STS) patients for the extraction of subtype-specific genes. The performance of the filtering method was evaluated by comparison with other widely used methods, such as signal-to-noise, significance analysis of microarrays, and nearest shrunken centroids. In addition, various combinations of filtering and modeling methods were used to extract essential subtype-specific genes. The combination of the PART filtering method and boosting – the PART-BFCS method – showed the highest accuracy. Seven genes among the 15 genes that are frequently selected by this method – MIF, CYFIP2, HSPCB, TIMP3, LDHA, ABR, and RGS3 – are known prognostic marker genes for other tumors. These genes are candidate marker genes for the diagnosis of STS. Correlation analysis was performed to extract marker genes that were not selected by PART-BFCS. Sixteen genes among those extracted are also known prognostic marker genes for other tumors, and they could be candidate marker genes for the diagnosis of STS. Conclusion The procedure that consisted of two steps, such as the PART-BFCS and the correlation analysis, was proposed. The results suggest that novel diagnostic and therapeutic targets for STS can be extracted by a procedure that includes the PART filtering method. PMID:16948864

  3. Modified signal-to-noise: a new simple and practical gene filtering approach based on the concept of projective adaptive resonance theory (PART) filtering method.

    PubMed

    Takahashi, Hiro; Honda, Hiroyuki

    2006-07-01

    Considering the recent advances in and the benefits of DNA microarray technologies, many gene filtering approaches have been employed for the diagnosis and prognosis of diseases. In our previous study, we developed a new filtering method, namely, the projective adaptive resonance theory (PART) filtering method. This method was effective in subclass discrimination. In the PART algorithm, the genes with a low variance in gene expression in either class, not both classes, were selected as important genes for modeling. Based on this concept, we developed novel simple filtering methods such as modified signal-to-noise (S2N') in the present study. The discrimination model constructed using these methods showed higher accuracy with higher reproducibility as compared with many conventional filtering methods, including the t-test, S2N, NSC and SAM. The reproducibility of prediction was evaluated based on the correlation between the sets of U-test p-values on randomly divided datasets. With respect to leukemia, lymphoma and breast cancer, the correlation was high; a difference of >0.13 was obtained by the constructed model by using <50 genes selected by S2N'. Improvement was higher in the smaller genes and such higher correlation was observed when t-test, NSC and SAM were used. These results suggest that these modified methods, such as S2N', have high potential to function as new methods for marker gene selection in cancer diagnosis using DNA microarray data. Software is available upon request.

  4. Exploring homogeneity of correlation structures of gene expression datasets within and between etiological disease categories.

    PubMed

    Jong, Victor L; Novianti, Putri W; Roes, Kit C B; Eijkemans, Marinus J C

    2014-12-01

    The literature shows that classifiers perform differently across datasets and that correlations within datasets affect the performance of classifiers. The question that arises is whether the correlation structure within datasets differ significantly across diseases. In this study, we evaluated the homogeneity of correlation structures within and between datasets of six etiological disease categories; inflammatory, immune, infectious, degenerative, hereditary and acute myeloid leukemia (AML). We also assessed the effect of filtering; detection call and variance filtering on correlation structures. We downloaded microarray datasets from ArrayExpress for experiments meeting predefined criteria and ended up with 12 datasets for non-cancerous diseases and six for AML. The datasets were preprocessed by a common procedure incorporating platform-specific recommendations and the two filtering methods mentioned above. Homogeneity of correlation matrices between and within datasets of etiological diseases was assessed using the Box's M statistic on permuted samples. We found that correlation structures significantly differ between datasets of the same and/or different etiological disease categories and that variance filtering eliminates more uncorrelated probesets than detection call filtering and thus renders the data highly correlated.

  5. The Choice of the Filtering Method in Microarrays Affects the Inference Regarding Dosage Compensation of the Active X-Chromosome

    PubMed Central

    Zeller, Tanja; Wild, Philipp S.; Truong, Vinh; Trégouët, David-Alexandre; Munzel, Thomas; Ziegler, Andreas; Cambien, François; Blankenberg, Stefan; Tiret, Laurence

    2011-01-01

    Background The hypothesis of dosage compensation of genes of the X chromosome, supported by previous microarray studies, was recently challenged by RNA-sequencing data. It was suggested that microarray studies were biased toward an over-estimation of X-linked expression levels as a consequence of the filtering of genes below the detection threshold of microarrays. Methodology/Principal Findings To investigate this hypothesis, we used microarray expression data from circulating monocytes in 1,467 individuals. In total, 25,349 and 1,156 probes were unambiguously assigned to autosomes and the X chromosome, respectively. Globally, there was a clear shift of X-linked expressions toward lower levels than autosomes. We compared the ratio of expression levels of X-linked to autosomal transcripts (X∶AA) using two different filtering methods: 1. gene expressions were filtered out using a detection threshold irrespective of gene chromosomal location (the standard method in microarrays); 2. equal proportions of genes were filtered out separately on the X and on autosomes. For a wide range of filtering proportions, the X∶AA ratio estimated with the first method was not significantly different from 1, the value expected if dosage compensation was achieved, whereas it was significantly lower than 1 with the second method, leading to the rejection of the hypothesis of dosage compensation. We further showed in simulated data that the choice of the most appropriate method was dependent on biological assumptions regarding the proportion of actively expressed genes on the X chromosome comparative to the autosomes and the extent of dosage compensation. Conclusion/Significance This study shows that the method used for filtering out lowly expressed genes in microarrays may have a major impact according to the hypothesis investigated. The hypothesis of dosage compensation of X-linked genes cannot be firmly accepted or rejected using microarray-based data. PMID:21912656

  6. Differential prioritization between relevance and redundancy in correlation-based feature selection techniques for multiclass gene expression data.

    PubMed

    Ooi, Chia Huey; Chetty, Madhu; Teng, Shyh Wei

    2006-06-23

    Due to the large number of genes in a typical microarray dataset, feature selection looks set to play an important role in reducing noise and computational cost in gene expression-based tissue classification while improving accuracy at the same time. Surprisingly, this does not appear to be the case for all multiclass microarray datasets. The reason is that many feature selection techniques applied on microarray datasets are either rank-based and hence do not take into account correlations between genes, or are wrapper-based, which require high computational cost, and often yield difficult-to-reproduce results. In studies where correlations between genes are considered, attempts to establish the merit of the proposed techniques are hampered by evaluation procedures which are less than meticulous, resulting in overly optimistic estimates of accuracy. We present two realistically evaluated correlation-based feature selection techniques which incorporate, in addition to the two existing criteria involved in forming a predictor set (relevance and redundancy), a third criterion called the degree of differential prioritization (DDP). DDP functions as a parameter to strike the balance between relevance and redundancy, providing our techniques with the novel ability to differentially prioritize the optimization of relevance against redundancy (and vice versa). This ability proves useful in producing optimal classification accuracy while using reasonably small predictor set sizes for nine well-known multiclass microarray datasets. For multiclass microarray datasets, especially the GCM and NCI60 datasets, DDP enables our filter-based techniques to produce accuracies better than those reported in previous studies which employed similarly realistic evaluation procedures.

  7. CrossQuery: a web tool for easy associative querying of transcriptome data.

    PubMed

    Wagner, Toni U; Fischer, Andreas; Thoma, Eva C; Schartl, Manfred

    2011-01-01

    Enormous amounts of data are being generated by modern methods such as transcriptome or exome sequencing and microarray profiling. Primary analyses such as quality control, normalization, statistics and mapping are highly complex and need to be performed by specialists. Thereafter, results are handed back to biomedical researchers, who are then confronted with complicated data lists. For rather simple tasks like data filtering, sorting and cross-association there is a need for new tools which can be used by non-specialists. Here, we describe CrossQuery, a web tool that enables straight forward, simple syntax queries to be executed on transcriptome sequencing and microarray datasets. We provide deep-sequencing data sets of stem cell lines derived from the model fish Medaka and microarray data of human endothelial cells. In the example datasets provided, mRNA expression levels, gene, transcript and sample identification numbers, GO-terms and gene descriptions can be freely correlated, filtered and sorted. Queries can be saved for later reuse and results can be exported to standard formats that allow copy-and-paste to all widespread data visualization tools such as Microsoft Excel. CrossQuery enables researchers to quickly and freely work with transcriptome and microarray data sets requiring only minimal computer skills. Furthermore, CrossQuery allows growing association of multiple datasets as long as at least one common point of correlated information, such as transcript identification numbers or GO-terms, is shared between samples. For advanced users, the object-oriented plug-in and event-driven code design of both server-side and client-side scripts allow easy addition of new features, data sources and data types.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Deanna Lynn; Coleman, Matthew A; Lane, Stephen M

    A hand-held portable microarray reader for biodetection includes a microarray reader engineered to be small enough for portable applications. The invention includes a high-powered light-emitting diode that emits excitation light, an excitation filter positioned to receive the excitation light, a slide, a slide holder assembly for positioning the slide to receive the excitation light from the excitation filter, an emission filter positioned to receive the excitation light from the slide, a lens positioned to receive the excitation light from the emission filter, and a CCD camera positioned to receive the excitation light from the lens.

  9. Volcano plots in analyzing differential expressions with mRNA microarrays.

    PubMed

    Li, Wentian

    2012-12-01

    A volcano plot displays unstandardized signal (e.g. log-fold-change) against noise-adjusted/standardized signal (e.g. t-statistic or -log(10)(p-value) from the t-test). We review the basic and interactive use of the volcano plot and its crucial role in understanding the regularized t-statistic. The joint filtering gene selection criterion based on regularized statistics has a curved discriminant line in the volcano plot, as compared to the two perpendicular lines for the "double filtering" criterion. This review attempts to provide a unifying framework for discussions on alternative measures of differential expression, improved methods for estimating variance, and visual display of a microarray analysis result. We also discuss the possibility of applying volcano plots to other fields beyond microarray.

  10. DNA Microarray Data Analysis: A Novel Biclustering Algorithm Approach

    NASA Astrophysics Data System (ADS)

    Tchagang, Alain B.; Tewfik, Ahmed H.

    2006-12-01

    Biclustering algorithms refer to a distinct class of clustering algorithms that perform simultaneous row-column clustering. Biclustering problems arise in DNA microarray data analysis, collaborative filtering, market research, information retrieval, text mining, electoral trends, exchange analysis, and so forth. When dealing with DNA microarray experimental data for example, the goal of biclustering algorithms is to find submatrices, that is, subgroups of genes and subgroups of conditions, where the genes exhibit highly correlated activities for every condition. In this study, we develop novel biclustering algorithms using basic linear algebra and arithmetic tools. The proposed biclustering algorithms can be used to search for all biclusters with constant values, biclusters with constant values on rows, biclusters with constant values on columns, and biclusters with coherent values from a set of data in a timely manner and without solving any optimization problem. We also show how one of the proposed biclustering algorithms can be adapted to identify biclusters with coherent evolution. The algorithms developed in this study discover all valid biclusters of each type, while almost all previous biclustering approaches will miss some.

  11. Optimization of cDNA microarrays procedures using criteria that do not rely on external standards.

    PubMed

    Bruland, Torunn; Anderssen, Endre; Doseth, Berit; Bergum, Hallgeir; Beisvag, Vidar; Laegreid, Astrid

    2007-10-18

    The measurement of gene expression using microarray technology is a complicated process in which a large number of factors can be varied. Due to the lack of standard calibration samples such as are used in traditional chemical analysis it may be a problem to evaluate whether changes done to the microarray procedure actually improve the identification of truly differentially expressed genes. The purpose of the present work is to report the optimization of several steps in the microarray process both in laboratory practices and in data processing using criteria that do not rely on external standards. We performed a cDNA microarry experiment including RNA from samples with high expected differential gene expression termed "high contrasts" (rat cell lines AR42J and NRK52E) compared to self-self hybridization, and optimized a pipeline to maximize the number of genes found to be differentially expressed in the "high contrasts" RNA samples by estimating the false discovery rate (FDR) using a null distribution obtained from the self-self experiment. The proposed high-contrast versus self-self method (HCSSM) requires only four microarrays per evaluation. The effects of blocking reagent dose, filtering, and background corrections methodologies were investigated. In our experiments a dose of 250 ng LNA (locked nucleic acid) dT blocker, no background correction and weight based filtering gave the largest number of differentially expressed genes. The choice of background correction method had a stronger impact on the estimated number of differentially expressed genes than the choice of filtering method. Cross platform microarray (Illumina) analysis was used to validate that the increase in the number of differentially expressed genes found by HCSSM was real. The results show that HCSSM can be a useful and simple approach to optimize microarray procedures without including external standards. Our optimizing method is highly applicable to both long oligo-probe microarrays which have become commonly used for well characterized organisms such as man, mouse and rat, as well as to cDNA microarrays which are still of importance for organisms with incomplete genome sequence information such as many bacteria, plants and fish.

  12. Optimization of cDNA microarrays procedures using criteria that do not rely on external standards

    PubMed Central

    Bruland, Torunn; Anderssen, Endre; Doseth, Berit; Bergum, Hallgeir; Beisvag, Vidar; Lægreid, Astrid

    2007-01-01

    Background The measurement of gene expression using microarray technology is a complicated process in which a large number of factors can be varied. Due to the lack of standard calibration samples such as are used in traditional chemical analysis it may be a problem to evaluate whether changes done to the microarray procedure actually improve the identification of truly differentially expressed genes. The purpose of the present work is to report the optimization of several steps in the microarray process both in laboratory practices and in data processing using criteria that do not rely on external standards. Results We performed a cDNA microarry experiment including RNA from samples with high expected differential gene expression termed "high contrasts" (rat cell lines AR42J and NRK52E) compared to self-self hybridization, and optimized a pipeline to maximize the number of genes found to be differentially expressed in the "high contrasts" RNA samples by estimating the false discovery rate (FDR) using a null distribution obtained from the self-self experiment. The proposed high-contrast versus self-self method (HCSSM) requires only four microarrays per evaluation. The effects of blocking reagent dose, filtering, and background corrections methodologies were investigated. In our experiments a dose of 250 ng LNA (locked nucleic acid) dT blocker, no background correction and weight based filtering gave the largest number of differentially expressed genes. The choice of background correction method had a stronger impact on the estimated number of differentially expressed genes than the choice of filtering method. Cross platform microarray (Illumina) analysis was used to validate that the increase in the number of differentially expressed genes found by HCSSM was real. Conclusion The results show that HCSSM can be a useful and simple approach to optimize microarray procedures without including external standards. Our optimizing method is highly applicable to both long oligo-probe microarrays which have become commonly used for well characterized organisms such as man, mouse and rat, as well as to cDNA microarrays which are still of importance for organisms with incomplete genome sequence information such as many bacteria, plants and fish. PMID:17949480

  13. Upregulated expression of La ribonucleoprotein domain family member 6 and collagen type I gene following water-filtered broad-spectrum near-infrared irradiation in a 3-dimensional human epidermal tissue culture model as revealed by microarray analysis.

    PubMed

    Tanaka, Yohei; Nakayama, Jun

    2018-05-01

    Water-filtered broad-spectrum near-infrared irradiation can induce various biological effects, as our previous clinical, histological, and biochemical investigations have shown. However, few studies that examined the changes thus induced in gene expression. The aim was to investigate the changes in gene expression in a 3-dimensional reconstructed epidermal tissue culture exposed to water-filtered broad-spectrum near-infrared irradiation. DNA microarray and quantitative real-time polymerase chain reaction (PCR) analysis was used to assess gene expression levels in a 3-dimensional reconstructed epidermal model composed of normal human epidermal cells exposed to water-filtered broad-spectrum near-infrared irradiation. The water filter allowed 1000-1800 nm wavelengths and excluded 1400-1500 nm wavelengths, and cells were exposed to 5 or 10 rounds of near-infrared irradiation at 10 J/cm 2 . A DNA microarray with over 50 000 different probes showed 18 genes that were upregulated or downregulated by at least twofold after irradiation. Quantitative real-time PCR revealed that, relative to control cells, the gene encoding La ribonucleoprotein domain family member 6 (LARP6), which regulates collagen expression, was significantly and dose-dependently upregulated (P < 0.05) by water-filtered broad-spectrum near-infrared exposure. Gene encoding transcripts of collagen type I were significantly upregulated compared with controls (P < 0.05). This study demonstrates the ability of water-filtered broad-spectrum near-infrared irradiation to stimulate the production of type I collagen. © 2017 The Australasian College of Dermatologists.

  14. RECOVERING FILTER-BASED MICROARRAY DATA FOR PATHWAYS ANALYSIS USING A MULTIPOINT ALIGNMENT STRATEGY

    EPA Science Inventory

    The use of commercial microarrays are rapidly becoming the method of choice for profiling gene expression and assessing various disease states. Research Genetics has provided a series of well defined biological and software tools to the research community for these analyses. Th...

  15. Fuzzy support vector machine for microarray imbalanced data classification

    NASA Astrophysics Data System (ADS)

    Ladayya, Faroh; Purnami, Santi Wulan; Irhamah

    2017-11-01

    DNA microarrays are data containing gene expression with small sample sizes and high number of features. Furthermore, imbalanced classes is a common problem in microarray data. This occurs when a dataset is dominated by a class which have significantly more instances than the other minority classes. Therefore, it is needed a classification method that solve the problem of high dimensional and imbalanced data. Support Vector Machine (SVM) is one of the classification methods that is capable of handling large or small samples, nonlinear, high dimensional, over learning and local minimum issues. SVM has been widely applied to DNA microarray data classification and it has been shown that SVM provides the best performance among other machine learning methods. However, imbalanced data will be a problem because SVM treats all samples in the same importance thus the results is bias for minority class. To overcome the imbalanced data, Fuzzy SVM (FSVM) is proposed. This method apply a fuzzy membership to each input point and reformulate the SVM such that different input points provide different contributions to the classifier. The minority classes have large fuzzy membership so FSVM can pay more attention to the samples with larger fuzzy membership. Given DNA microarray data is a high dimensional data with a very large number of features, it is necessary to do feature selection first using Fast Correlation based Filter (FCBF). In this study will be analyzed by SVM, FSVM and both methods by applying FCBF and get the classification performance of them. Based on the overall results, FSVM on selected features has the best classification performance compared to SVM.

  16. Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.

    PubMed

    Yao, Jianchao; Chang, Chunqi; Salmi, Mari L; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J

    2008-06-18

    Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. This study shows that SCC is an alternative to the Pearson correlation coefficient and the SD-weighted correlation coefficient, and is particularly useful for clustering replicated microarray data. This computational approach should be generally useful for proteomic data or other high-throughput analysis methodology.

  17. A close examination of double filtering with fold change and t test in microarray analysis

    PubMed Central

    2009-01-01

    Background Many researchers use the double filtering procedure with fold change and t test to identify differentially expressed genes, in the hope that the double filtering will provide extra confidence in the results. Due to its simplicity, the double filtering procedure has been popular with applied researchers despite the development of more sophisticated methods. Results This paper, for the first time to our knowledge, provides theoretical insight on the drawback of the double filtering procedure. We show that fold change assumes all genes to have a common variance while t statistic assumes gene-specific variances. The two statistics are based on contradicting assumptions. Under the assumption that gene variances arise from a mixture of a common variance and gene-specific variances, we develop the theoretically most powerful likelihood ratio test statistic. We further demonstrate that the posterior inference based on a Bayesian mixture model and the widely used significance analysis of microarrays (SAM) statistic are better approximations to the likelihood ratio test than the double filtering procedure. Conclusion We demonstrate through hypothesis testing theory, simulation studies and real data examples, that well constructed shrinkage testing methods, which can be united under the mixture gene variance assumption, can considerably outperform the double filtering procedure. PMID:19995439

  18. Emergent FDA biodefense issues for microarray technology: process analytical technology.

    PubMed

    Weinberg, Sandy

    2004-11-01

    A successful biodefense strategy relies upon any combination of four approaches. A nation can protect its troops and citizenry first by advanced mass vaccination, second, by responsive ring vaccination, and third, by post-exposure therapeutic treatment (including vaccine therapies). Finally, protection can be achieved by rapid detection followed by exposure limitation (suites and air filters) or immediate treatment (e.g., antibiotics, rapid vaccines and iodine pills). All of these strategies rely upon or are enhanced by microarray technologies. Microarrays can be used to screen, engineer and test vaccines. They are also used to construct early detection tools. While effective biodefense utilizes a variety of tactical tools, microarray technology is a valuable arrow in that quiver.

  19. Construction of diagnosis system and gene regulatory networks based on microarray analysis.

    PubMed

    Hong, Chun-Fu; Chen, Ying-Chen; Chen, Wei-Chun; Tu, Keng-Chang; Tsai, Meng-Hsiun; Chan, Yung-Kuan; Yu, Shyr Shen

    2018-05-01

    A microarray analysis generally contains expression data of thousands of genes, but most of them are irrelevant to the disease of interest, making analyzing the genes concerning specific diseases complicated. Therefore, filtering out a few essential genes as well as their regulatory networks is critical, and a disease can be easily diagnosed just depending on the expression profiles of a few critical genes. In this study, a target gene screening (TGS) system, which is a microarray-based information system that integrates F-statistics, pattern recognition matching, a two-layer K-means classifier, a Parameter Detection Genetic Algorithm (PDGA), a genetic-based gene selector (GBG selector) and the association rule, was developed to screen out a small subset of genes that can discriminate malignant stages of cancers. During the first stage, F-statistic, pattern recognition matching, and a two-layer K-means classifier were applied in the system to filter out the 20 critical genes most relevant to ovarian cancer from 9600 genes, and the PDGA was used to decide the fittest values of the parameters for these critical genes. Among the 20 critical genes, 15 are associated with cancer progression. In the second stage, we further employed a GBG selector and the association rule to screen out seven target gene sets, each with only four to six genes, and each of which can precisely identify the malignancy stage of ovarian cancer based on their expression profiles. We further deduced the gene regulatory networks of the 20 critical genes by applying the Pearson correlation coefficient to evaluate the correlationship between the expression of each gene at the same stages and at different stages. Correlationships between gene pairs were calculated, and then, three regulatory networks were deduced. Their correlationships were further confirmed by the Ingenuity pathway analysis. The prognostic significances of the genes identified via regulatory networks were examined using online tools, and most represented biomarker candidates. In summary, our proposed system provides a new strategy to identify critical genes or biomarkers, as well as their regulatory networks, from microarray data. Copyright © 2018. Published by Elsevier Inc.

  20. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.

    PubMed

    Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi

    2013-01-01

    The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.

  1. Microarray Data Processing Techniques for Genome-Scale Network Inference from Large Public Repositories.

    PubMed

    Chockalingam, Sriram; Aluru, Maneesha; Aluru, Srinivas

    2016-09-19

    Pre-processing of microarray data is a well-studied problem. Furthermore, all popular platforms come with their own recommended best practices for differential analysis of genes. However, for genome-scale network inference using microarray data collected from large public repositories, these methods filter out a considerable number of genes. This is primarily due to the effects of aggregating a diverse array of experiments with different technical and biological scenarios. Here we introduce a pre-processing pipeline suitable for inferring genome-scale gene networks from large microarray datasets. We show that partitioning of the available microarray datasets according to biological relevance into tissue- and process-specific categories significantly extends the limits of downstream network construction. We demonstrate the effectiveness of our pre-processing pipeline by inferring genome-scale networks for the model plant Arabidopsis thaliana using two different construction methods and a collection of 11,760 Affymetrix ATH1 microarray chips. Our pre-processing pipeline and the datasets used in this paper are made available at http://alurulab.cc.gatech.edu/microarray-pp.

  2. Learning a single-hidden layer feedforward neural network using a rank correlation-based strategy with application to high dimensional gene expression and proteomic spectra datasets in cancer detection.

    PubMed

    Belciug, Smaranda; Gorunescu, Florin

    2018-06-08

    Methods based on microarrays (MA), mass spectrometry (MS), and machine learning (ML) algorithms have evolved rapidly in recent years, allowing for early detection of several types of cancer. A pitfall of these approaches, however, is the overfitting of data due to large number of attributes and small number of instances -- a phenomenon known as the 'curse of dimensionality'. A potentially fruitful idea to avoid this drawback is to develop algorithms that combine fast computation with a filtering module for the attributes. The goal of this paper is to propose a statistical strategy to initiate the hidden nodes of a single-hidden layer feedforward neural network (SLFN) by using both the knowledge embedded in data and a filtering mechanism for attribute relevance. In order to attest its feasibility, the proposed model has been tested on five publicly available high-dimensional datasets: breast, lung, colon, and ovarian cancer regarding gene expression and proteomic spectra provided by cDNA arrays, DNA microarray, and MS. The novel algorithm, called adaptive SLFN (aSLFN), has been compared with four major classification algorithms: traditional ELM, radial basis function network (RBF), single-hidden layer feedforward neural network trained by backpropagation algorithm (BP-SLFN), and support vector-machine (SVM). Experimental results showed that the classification performance of aSLFN is competitive with the comparison models. Copyright © 2018. Published by Elsevier Inc.

  3. The Cross-Entropy Based Multi-Filter Ensemble Method for Gene Selection.

    PubMed

    Sun, Yingqiang; Lu, Chengbo; Li, Xiaobo

    2018-05-17

    The gene expression profile has the characteristics of a high dimension, low sample, and continuous type, and it is a great challenge to use gene expression profile data for the classification of tumor samples. This paper proposes a cross-entropy based multi-filter ensemble (CEMFE) method for microarray data classification. Firstly, multiple filters are used to select the microarray data in order to obtain a plurality of the pre-selected feature subsets with a different classification ability. The top N genes with the highest rank of each subset are integrated so as to form a new data set. Secondly, the cross-entropy algorithm is used to remove the redundant data in the data set. Finally, the wrapper method, which is based on forward feature selection, is used to select the best feature subset. The experimental results show that the proposed method is more efficient than other gene selection methods and that it can achieve a higher classification accuracy under fewer characteristic genes.

  4. Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm.

    PubMed

    Saberkari, Hamidreza; Bahrami, Sheyda; Shamsi, Mousa; Amoshahy, Mohammad Javad; Ghavifekr, Habib Badri; Sedaaghi, Mohammad Hossein

    2015-01-01

    DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.

  5. SoFoCles: feature filtering for microarray classification based on gene ontology.

    PubMed

    Papachristoudis, Georgios; Diplaris, Sotiris; Mitkas, Pericles A

    2010-02-01

    Marker gene selection has been an important research topic in the classification analysis of gene expression data. Current methods try to reduce the "curse of dimensionality" by using statistical intra-feature set calculations, or classifiers that are based on the given dataset. In this paper, we present SoFoCles, an interactive tool that enables semantic feature filtering in microarray classification problems with the use of external, well-defined knowledge retrieved from the Gene Ontology. The notion of semantic similarity is used to derive genes that are involved in the same biological path during the microarray experiment, by enriching a feature set that has been initially produced with legacy methods. Among its other functionalities, SoFoCles offers a large repository of semantic similarity methods that are used in order to derive feature sets and marker genes. The structure and functionality of the tool are discussed in detail, as well as its ability to improve classification accuracy. Through experimental evaluation, SoFoCles is shown to outperform other classification schemes in terms of classification accuracy in two real datasets using different semantic similarity computation approaches.

  6. Advantages of RNA-seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears.

    PubMed

    Rai, Muhammad Farooq; Tycksen, Eric D; Sandell, Linda J; Brophy, Robert H

    2018-01-01

    Microarrays and RNA-seq are at the forefront of high throughput transcriptome analyses. Since these methodologies are based on different principles, there are concerns about the concordance of data between the two techniques. The concordance of RNA-seq and microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed in clinically derived ligament tissues. To demonstrate the concordance between RNA-seq and microarrays and to assess potential benefits of RNA-seq over microarrays, we assessed differences in transcript expression in anterior cruciate ligament (ACL) tissues based on time-from-injury. ACL remnants were collected from patients with an ACL tear at the time of ACL reconstruction. RNA prepared from torn ACL remnants was subjected to Agilent microarrays (N = 24) and RNA-seq (N = 8). The correlation of biological replicates in RNA-seq and microarrays data was similar (0.98 vs. 0.97), demonstrating that each platform has high internal reproducibility. Correlations between the RNA-seq data and the individual microarrays were low, but correlations between the RNA-seq values and the geometric mean of the microarrays values were moderate. The cross-platform concordance for differentially expressed transcripts or enriched pathways was linearly correlated (r = 0.64). RNA-Seq was superior in detecting low abundance transcripts and differentiating biologically critical isoforms. Additional independent validation of transcript expression was undertaken using microfluidic PCR for selected genes. PCR data showed 100% concordance (in expression pattern) with RNA-seq and microarrays data. These findings demonstrate that RNA-seq has advantages over microarrays for transcriptome profiling of ligament tissues when available and affordable. Furthermore, these findings are likely transferable to other musculoskeletal tissues where tissue collection is challenging and cells are in low abundance. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:484-497, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. The statistics of identifying differentially expressed genes in Expresso and TM4: a comparison

    PubMed Central

    Sioson, Allan A; Mane, Shrinivasrao P; Li, Pinghua; Sha, Wei; Heath, Lenwood S; Bohnert, Hans J; Grene, Ruth

    2006-01-01

    Background Analysis of DNA microarray data takes as input spot intensity measurements from scanner software and returns differential expression of genes between two conditions, together with a statistical significance assessment. This process typically consists of two steps: data normalization and identification of differentially expressed genes through statistical analysis. The Expresso microarray experiment management system implements these steps with a two-stage, log-linear ANOVA mixed model technique, tailored to individual experimental designs. The complement of tools in TM4, on the other hand, is based on a number of preset design choices that limit its flexibility. In the TM4 microarray analysis suite, normalization, filter, and analysis methods form an analysis pipeline. TM4 computes integrated intensity values (IIV) from the average intensities and spot pixel counts returned by the scanner software as input to its normalization steps. By contrast, Expresso can use either IIV data or median intensity values (MIV). Here, we compare Expresso and TM4 analysis of two experiments and assess the results against qRT-PCR data. Results The Expresso analysis using MIV data consistently identifies more genes as differentially expressed, when compared to Expresso analysis with IIV data. The typical TM4 normalization and filtering pipeline corrects systematic intensity-specific bias on a per microarray basis. Subsequent statistical analysis with Expresso or a TM4 t-test can effectively identify differentially expressed genes. The best agreement with qRT-PCR data is obtained through the use of Expresso analysis and MIV data. Conclusion The results of this research are of practical value to biologists who analyze microarray data sets. The TM4 normalization and filtering pipeline corrects microarray-specific systematic bias and complements the normalization stage in Expresso analysis. The results of Expresso using MIV data have the best agreement with qRT-PCR results. In one experiment, MIV is a better choice than IIV as input to data normalization and statistical analysis methods, as it yields as greater number of statistically significant differentially expressed genes; TM4 does not support the choice of MIV input data. Overall, the more flexible and extensive statistical models of Expresso achieve more accurate analytical results, when judged by the yardstick of qRT-PCR data, in the context of an experimental design of modest complexity. PMID:16626497

  8. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency.

    PubMed

    Yeh, Hsiang-Yuan; Cheng, Shih-Wu; Lin, Yu-Chun; Yeh, Cheng-Yu; Lin, Shih-Fang; Soo, Von-Wun

    2009-12-21

    Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN) algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD) as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2) regulated by RUNX1 and STAT3 is correlated to the pathological stage. We provide a computational framework to reconstruct the genetic regulatory network from the microarray data using biological knowledge and constraint-based inferences. Our method is helpful in verifying possible interaction relations in gene regulatory networks and filtering out incorrect relations inferred by imperfect methods. We predicted not only individual gene related to cancer but also discovered significant gene regulation networks. Our method is also validated in several enriched published papers and databases and the significant gene regulatory networks perform critical biological functions and processes including cell adhesion molecules, androgen and estrogen metabolism, smooth muscle contraction, and GO-annotated processes. Those significant gene regulations and the critical concept of tumor progression are useful to understand cancer biology and disease treatment.

  9. Multi-task feature selection in microarray data by binary integer programming.

    PubMed

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  10. Rational design of DNA sequences for nanotechnology, microarrays and molecular computers using Eulerian graphs.

    PubMed

    Pancoska, Petr; Moravek, Zdenek; Moll, Ute M

    2004-01-01

    Nucleic acids are molecules of choice for both established and emerging nanoscale technologies. These technologies benefit from large functional densities of 'DNA processing elements' that can be readily manufactured. To achieve the desired functionality, polynucleotide sequences are currently designed by a process that involves tedious and laborious filtering of potential candidates against a series of requirements and parameters. Here, we present a complete novel methodology for the rapid rational design of large sets of DNA sequences. This method allows for the direct implementation of very complex and detailed requirements for the generated sequences, thus avoiding 'brute force' filtering. At the same time, these sequences have narrow distributions of melting temperatures. The molecular part of the design process can be done without computer assistance, using an efficient 'human engineering' approach by drawing a single blueprint graph that represents all generated sequences. Moreover, the method eliminates the necessity for extensive thermodynamic calculations. Melting temperature can be calculated only once (or not at all). In addition, the isostability of the sequences is independent of the selection of a particular set of thermodynamic parameters. Applications are presented for DNA sequence designs for microarrays, universal microarray zip sequences and electron transfer experiments.

  11. Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts.

    PubMed

    Dashtban, M; Balafar, Mohammadali

    2017-03-01

    Gene selection is a demanding task for microarray data analysis. The diverse complexity of different cancers makes this issue still challenging. In this study, a novel evolutionary method based on genetic algorithms and artificial intelligence is proposed to identify predictive genes for cancer classification. A filter method was first applied to reduce the dimensionality of feature space followed by employing an integer-coded genetic algorithm with dynamic-length genotype, intelligent parameter settings, and modified operators. The algorithmic behaviors including convergence trends, mutation and crossover rate changes, and running time were studied, conceptually discussed, and shown to be coherent with literature findings. Two well-known filter methods, Laplacian and Fisher score, were examined considering similarities, the quality of selected genes, and their influences on the evolutionary approach. Several statistical tests concerning choice of classifier, choice of dataset, and choice of filter method were performed, and they revealed some significant differences between the performance of different classifiers and filter methods over datasets. The proposed method was benchmarked upon five popular high-dimensional cancer datasets; for each, top explored genes were reported. Comparing the experimental results with several state-of-the-art methods revealed that the proposed method outperforms previous methods in DLBCL dataset. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Identification of differentially expressed genes and false discovery rate in microarray studies.

    PubMed

    Gusnanto, Arief; Calza, Stefano; Pawitan, Yudi

    2007-04-01

    To highlight the development in microarray data analysis for the identification of differentially expressed genes, particularly via control of false discovery rate. The emergence of high-throughput technology such as microarrays raises two fundamental statistical issues: multiplicity and sensitivity. We focus on the biological problem of identifying differentially expressed genes. First, multiplicity arises due to testing tens of thousands of hypotheses, rendering the standard P value meaningless. Second, known optimal single-test procedures such as the t-test perform poorly in the context of highly multiple tests. The standard approach of dealing with multiplicity is too conservative in the microarray context. The false discovery rate concept is fast becoming the key statistical assessment tool replacing the P value. We review the false discovery rate approach and argue that it is more sensible for microarray data. We also discuss some methods to take into account additional information from the microarrays to improve the false discovery rate. There is growing consensus on how to analyse microarray data using the false discovery rate framework in place of the classical P value. Further research is needed on the preprocessing of the raw data, such as the normalization step and filtering, and on finding the most sensitive test procedure.

  13. LS Bound based gene selection for DNA microarray data.

    PubMed

    Zhou, Xin; Mao, K Z

    2005-04-15

    One problem with discriminant analysis of DNA microarray data is that each sample is represented by quite a large number of genes, and many of them are irrelevant, insignificant or redundant to the discriminant problem at hand. Methods for selecting important genes are, therefore, of much significance in microarray data analysis. In the present study, a new criterion, called LS Bound measure, is proposed to address the gene selection problem. The LS Bound measure is derived from leave-one-out procedure of LS-SVMs (least squares support vector machines), and as the upper bound for leave-one-out classification results it reflects to some extent the generalization performance of gene subsets. We applied this LS Bound measure for gene selection on two benchmark microarray datasets: colon cancer and leukemia. We also compared the LS Bound measure with other evaluation criteria, including the well-known Fisher's ratio and Mahalanobis class separability measure, and other published gene selection algorithms, including Weighting factor and SVM Recursive Feature Elimination. The strength of the LS Bound measure is that it provides gene subsets leading to more accurate classification results than the filter method while its computational complexity is at the level of the filter method. A companion website can be accessed at http://www.ntu.edu.sg/home5/pg02776030/lsbound/. The website contains: (1) the source code of the gene selection algorithm; (2) the complete set of tables and figures regarding the experimental study; (3) proof of the inequality (9). ekzmao@ntu.edu.sg.

  14. Development and characterization of a disposable plastic microarray printhead.

    PubMed

    Griessner, Matthias; Hartig, Dave; Christmann, Alexander; Pohl, Carsten; Schellhase, Michaela; Ehrentreich-Förster, Eva

    2011-06-01

    During the last decade microarrays have become a powerful analytical tool. Commonly microarrays are produced in a non-contact manner using silicone printheads. However, silicone printheads are expensive and not able to be used as a disposable. Here, we show the development and functional characterization of 8-channel plastic microarray printheads that overcome both disadvantages of their conventional silicone counterparts. A combination of injection-molding and laser processing allows us to produce a high quantity of cheap, customizable and disposable microarray printheads. The use of plastics (e.g., polystyrene) minimizes the need for surface modifications required previously for proper printing results. Time-consuming regeneration processes, cleaning procedures and contaminations caused by residual samples are avoided. The utilization of plastic printheads for viscous liquids, such as cell suspensions or whole blood, is possible. Furthermore, functional parts within the plastic printhead (e.g., particle filters) can be included. Our printhead is compatible with commercially available TopSpot devices but provides additional economic and technical benefits as compared to conventional TopSpot printheads, while fulfilling all requirements demanded on the latter. All in all, this work describes how the field of traditional microarray spotting can be extended significantly by low cost plastic printheads.

  15. Enhancing interdisciplinary mathematics and biology education: a microarray data analysis course bridging these disciplines.

    PubMed

    Tra, Yolande V; Evans, Irene M

    2010-01-01

    BIO2010 put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on microarray data analysis. We started using Genome Consortium for Active Teaching (GCAT) materials and Microarray Genome and Clustering Tool software and added R statistical software along with Bioconductor packages. In response to student feedback, one microarray data set was fully analyzed in class, starting from preprocessing to gene discovery to pathway analysis using the latter software. A class project was to conduct a similar analysis where students analyzed their own data or data from a published journal paper. This exercise showed the impact that filtering, preprocessing, and different normalization methods had on gene inclusion in the final data set. We conclude that this course achieved its goals to equip students with skills to analyze data from a microarray experiment. We offer our insight about collaborative teaching as well as how other faculty might design and implement a similar interdisciplinary course.

  16. Enhancing Interdisciplinary Mathematics and Biology Education: A Microarray Data Analysis Course Bridging These Disciplines

    PubMed Central

    Evans, Irene M.

    2010-01-01

    BIO2010 put forth the goal of improving the mathematical educational background of biology students. The analysis and interpretation of microarray high-dimensional data can be very challenging and is best done by a statistician and a biologist working and teaching in a collaborative manner. We set up such a collaboration and designed a course on microarray data analysis. We started using Genome Consortium for Active Teaching (GCAT) materials and Microarray Genome and Clustering Tool software and added R statistical software along with Bioconductor packages. In response to student feedback, one microarray data set was fully analyzed in class, starting from preprocessing to gene discovery to pathway analysis using the latter software. A class project was to conduct a similar analysis where students analyzed their own data or data from a published journal paper. This exercise showed the impact that filtering, preprocessing, and different normalization methods had on gene inclusion in the final data set. We conclude that this course achieved its goals to equip students with skills to analyze data from a microarray experiment. We offer our insight about collaborative teaching as well as how other faculty might design and implement a similar interdisciplinary course. PMID:20810954

  17. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency

    PubMed Central

    2009-01-01

    Background Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. Results To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN) algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD) as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2) regulated by RUNX1 and STAT3 is correlated to the pathological stage. Conclusions We provide a computational framework to reconstruct the genetic regulatory network from the microarray data using biological knowledge and constraint-based inferences. Our method is helpful in verifying possible interaction relations in gene regulatory networks and filtering out incorrect relations inferred by imperfect methods. We predicted not only individual gene related to cancer but also discovered significant gene regulation networks. Our method is also validated in several enriched published papers and databases and the significant gene regulatory networks perform critical biological functions and processes including cell adhesion molecules, androgen and estrogen metabolism, smooth muscle contraction, and GO-annotated processes. Those significant gene regulations and the critical concept of tumor progression are useful to understand cancer biology and disease treatment. PMID:20025723

  18. Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.

    PubMed

    Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben

    2017-06-06

    Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.

  19. Comprehensive analysis of correlation coefficients estimated from pooling heterogeneous microarray data

    PubMed Central

    2013-01-01

    Background The synthesis of information across microarray studies has been performed by combining statistical results of individual studies (as in a mosaic), or by combining data from multiple studies into a large pool to be analyzed as a single data set (as in a melting pot of data). Specific issues relating to data heterogeneity across microarray studies, such as differences within and between labs or differences among experimental conditions, could lead to equivocal results in a melting pot approach. Results We applied statistical theory to determine the specific effect of different means and heteroskedasticity across 19 groups of microarray data on the sign and magnitude of gene-to-gene Pearson correlation coefficients obtained from the pool of 19 groups. We quantified the biases of the pooled coefficients and compared them to the biases of correlations estimated by an effect-size model. Mean differences across the 19 groups were the main factor determining the magnitude and sign of the pooled coefficients, which showed largest values of bias as they approached ±1. Only heteroskedasticity across the pool of 19 groups resulted in less efficient estimations of correlations than did a classical meta-analysis approach of combining correlation coefficients. These results were corroborated by simulation studies involving either mean differences or heteroskedasticity across a pool of N > 2 groups. Conclusions The combination of statistical results is best suited for synthesizing the correlation between expression profiles of a gene pair across several microarray studies. PMID:23822712

  20. Microarray image analysis: background estimation using quantile and morphological filters.

    PubMed

    Bengtsson, Anders; Bengtsson, Henrik

    2006-02-28

    In a microarray experiment the difference in expression between genes on the same slide is up to 103 fold or more. At low expression, even a small error in the estimate will have great influence on the final test and reference ratios. In addition to the true spot intensity the scanned signal consists of different kinds of noise referred to as background. In order to assess the true spot intensity background must be subtracted. The standard approach to estimate background intensities is to assume they are equal to the intensity levels between spots. In the literature, morphological opening is suggested to be one of the best methods for estimating background this way. This paper examines fundamental properties of rank and quantile filters, which include morphological filters at the extremes, with focus on their ability to estimate between-spot intensity levels. The bias and variance of these filter estimates are driven by the number of background pixels used and their distributions. A new rank-filter algorithm is implemented and compared to methods available in Spot by CSIRO and GenePix Pro by Axon Instruments. Spot's morphological opening has a mean bias between -47 and -248 compared to a bias between 2 and -2 for the rank filter and the variability of the morphological opening estimate is 3 times higher than for the rank filter. The mean bias of Spot's second method, morph.close.open, is between -5 and -16 and the variability is approximately the same as for morphological opening. The variability of GenePix Pro's region-based estimate is more than ten times higher than the variability of the rank-filter estimate and with slightly more bias. The large variability is because the size of the background window changes with spot size. To overcome this, a non-adaptive region-based method is implemented. Its bias and variability are comparable to that of the rank filter. The performance of more advanced rank filters is equal to the best region-based methods. However, in order to get unbiased estimates these filters have to be implemented with great care. The performance of morphological opening is in general poor with a substantial spatial-dependent bias.

  1. Functional Analyses of NSF1 in Wine Yeast Using Interconnected Correlation Clustering and Molecular Analyses

    PubMed Central

    Bessonov, Kyrylo; Walkey, Christopher J.; Shelp, Barry J.; van Vuuren, Hennie J. J.; Chiu, David; van der Merwe, George

    2013-01-01

    Analyzing time-course expression data captured in microarray datasets is a complex undertaking as the vast and complex data space is represented by a relatively low number of samples as compared to thousands of available genes. Here, we developed the Interdependent Correlation Clustering (ICC) method to analyze relationships that exist among genes conditioned on the expression of a specific target gene in microarray data. Based on Correlation Clustering, the ICC method analyzes a large set of correlation values related to gene expression profiles extracted from given microarray datasets. ICC can be applied to any microarray dataset and any target gene. We applied this method to microarray data generated from wine fermentations and selected NSF1, which encodes a C2H2 zinc finger-type transcription factor, as the target gene. The validity of the method was verified by accurate identifications of the previously known functional roles of NSF1. In addition, we identified and verified potential new functions for this gene; specifically, NSF1 is a negative regulator for the expression of sulfur metabolism genes, the nuclear localization of Nsf1 protein (Nsf1p) is controlled in a sulfur-dependent manner, and the transcription of NSF1 is regulated by Met4p, an important transcriptional activator of sulfur metabolism genes. The inter-disciplinary approach adopted here highlighted the accuracy and relevancy of the ICC method in mining for novel gene functions using complex microarray datasets with a limited number of samples. PMID:24130853

  2. Building gene co-expression networks using transcriptomics data for systems biology investigations: Comparison of methods using microarray data

    PubMed Central

    Kadarmideen, Haja N; Watson-haigh, Nathan S

    2012-01-01

    Gene co-expression networks (GCN), built using high-throughput gene expression data are fundamental aspects of systems biology. The main aims of this study were to compare two popular approaches to building and analysing GCN. We use real ovine microarray transcriptomics datasets representing four different treatments with Metyrapone, an inhibitor of cortisol biosynthesis. We conducted several microarray quality control checks before applying GCN methods to filtered datasets. Then we compared the outputs of two methods using connectivity as a criterion, as it measures how well a node (gene) is connected within a network. The two GCN construction methods used were, Weighted Gene Co-expression Network Analysis (WGCNA) and Partial Correlation and Information Theory (PCIT) methods. Nodes were ranked based on their connectivity measures in each of the four different networks created by WGCNA and PCIT and node ranks in two methods were compared to identify those nodes which are highly differentially ranked (HDR). A total of 1,017 HDR nodes were identified across one or more of four networks. We investigated HDR nodes by gene enrichment analyses in relation to their biological relevance to phenotypes. We observed that, in contrast to WGCNA method, PCIT algorithm removes many of the edges of the most highly interconnected nodes. Removal of edges of most highly connected nodes or hub genes will have consequences for downstream analyses and biological interpretations. In general, for large GCN construction (with > 20000 genes) access to large computer clusters, particularly those with larger amounts of shared memory is recommended. PMID:23144540

  3. Application of the Gini correlation coefficient to infer regulatory relationships in transcriptome analysis.

    PubMed

    Ma, Chuang; Wang, Xiangfeng

    2012-09-01

    One of the computational challenges in plant systems biology is to accurately infer transcriptional regulation relationships based on correlation analyses of gene expression patterns. Despite several correlation methods that are applied in biology to analyze microarray data, concerns regarding the compatibility of these methods with the gene expression data profiled by high-throughput RNA transcriptome sequencing (RNA-Seq) technology have been raised. These concerns are mainly due to the fact that the distribution of read counts in RNA-Seq experiments is different from that of fluorescence intensities in microarray experiments. Therefore, a comprehensive evaluation of the existing correlation methods and, if necessary, introduction of novel methods into biology is appropriate. In this study, we compared four existing correlation methods used in microarray analysis and one novel method called the Gini correlation coefficient on previously published microarray-based and sequencing-based gene expression data in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). The comparisons were performed on more than 11,000 regulatory relationships in Arabidopsis, including 8,929 pairs of transcription factors and target genes. Our analyses pinpointed the strengths and weaknesses of each method and indicated that the Gini correlation can compensate for the shortcomings of the Pearson correlation, the Spearman correlation, the Kendall correlation, and the Tukey's biweight correlation. The Gini correlation method, with the other four evaluated methods in this study, was implemented as an R package named rsgcc that can be utilized as an alternative option for biologists to perform clustering analyses of gene expression patterns or transcriptional network analyses.

  4. Application of the Gini Correlation Coefficient to Infer Regulatory Relationships in Transcriptome Analysis[W][OA

    PubMed Central

    Ma, Chuang; Wang, Xiangfeng

    2012-01-01

    One of the computational challenges in plant systems biology is to accurately infer transcriptional regulation relationships based on correlation analyses of gene expression patterns. Despite several correlation methods that are applied in biology to analyze microarray data, concerns regarding the compatibility of these methods with the gene expression data profiled by high-throughput RNA transcriptome sequencing (RNA-Seq) technology have been raised. These concerns are mainly due to the fact that the distribution of read counts in RNA-Seq experiments is different from that of fluorescence intensities in microarray experiments. Therefore, a comprehensive evaluation of the existing correlation methods and, if necessary, introduction of novel methods into biology is appropriate. In this study, we compared four existing correlation methods used in microarray analysis and one novel method called the Gini correlation coefficient on previously published microarray-based and sequencing-based gene expression data in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). The comparisons were performed on more than 11,000 regulatory relationships in Arabidopsis, including 8,929 pairs of transcription factors and target genes. Our analyses pinpointed the strengths and weaknesses of each method and indicated that the Gini correlation can compensate for the shortcomings of the Pearson correlation, the Spearman correlation, the Kendall correlation, and the Tukey’s biweight correlation. The Gini correlation method, with the other four evaluated methods in this study, was implemented as an R package named rsgcc that can be utilized as an alternative option for biologists to perform clustering analyses of gene expression patterns or transcriptional network analyses. PMID:22797655

  5. An efficient pseudomedian filter for tiling microrrays.

    PubMed

    Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B

    2007-06-07

    Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn) from O(n2logn). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic feature density. This result not only speeds the current standard analyses, but also makes possible ones where many iterations of the filter may be required, such as might be required in a bootstrap or parameter estimation setting. Source code and executables are available at http://tiling.gersteinlab.org/pseudomedian/.

  6. An efficient pseudomedian filter for tiling microrrays

    PubMed Central

    Royce, Thomas E; Carriero, Nicholas J; Gerstein, Mark B

    2007-01-01

    Background Tiling microarrays are becoming an essential technology in the functional genomics toolbox. They have been applied to the tasks of novel transcript identification, elucidation of transcription factor binding sites, detection of methylated DNA and several other applications in several model organisms. These experiments are being conducted at increasingly finer resolutions as the microarray technology enjoys increasingly greater feature densities. The increased densities naturally lead to increased data analysis requirements. Specifically, the most widely employed algorithm for tiling array analysis involves smoothing observed signals by computing pseudomedians within sliding windows, a O(n2logn) calculation in each window. This poor time complexity is an issue for tiling array analysis and could prove to be a real bottleneck as tiling microarray experiments become grander in scope and finer in resolution. Results We therefore implemented Monahan's HLQEST algorithm that reduces the runtime complexity for computing the pseudomedian of n numbers to O(nlogn) from O(n2logn). For a representative tiling microarray dataset, this modification reduced the smoothing procedure's runtime by nearly 90%. We then leveraged the fact that elements within sliding windows remain largely unchanged in overlapping windows (as one slides across genomic space) to further reduce computation by an additional 43%. This was achieved by the application of skip lists to maintaining a sorted list of values from window to window. This sorted list could be maintained with simple O(log n) inserts and deletes. We illustrate the favorable scaling properties of our algorithms with both time complexity analysis and benchmarking on synthetic datasets. Conclusion Tiling microarray analyses that rely upon a sliding window pseudomedian calculation can require many hours of computation. We have eased this requirement significantly by implementing efficient algorithms that scale well with genomic feature density. This result not only speeds the current standard analyses, but also makes possible ones where many iterations of the filter may be required, such as might be required in a bootstrap or parameter estimation setting. Source code and executables are available at . PMID:17555595

  7. What is the best reference RNA? And other questions regarding the design and analysis of two-color microarray experiments.

    PubMed

    Kerr, Kathleen F; Serikawa, Kyle A; Wei, Caimiao; Peters, Mette A; Bumgarner, Roger E

    2007-01-01

    The reference design is a practical and popular choice for microarray studies using two-color platforms. In the reference design, the reference RNA uses half of all array resources, leading investigators to ask: What is the best reference RNA? We propose a novel method for evaluating reference RNAs and present the results of an experiment that was specially designed to evaluate three common choices of reference RNA. We found no compelling evidence in favor of any particular reference. In particular, a commercial reference showed no advantage in our data. Our experimental design also enabled a new way to test the effectiveness of pre-processing methods for two-color arrays. Our results favor using intensity normalization and foregoing background subtraction. Finally, we evaluate the sensitivity and specificity of data quality filters, and we propose a new filter that can be applied to any experimental design and does not rely on replicate hybridizations.

  8. Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation.

    PubMed

    Richard, Arianne C; Lyons, Paul A; Peters, James E; Biasci, Daniele; Flint, Shaun M; Lee, James C; McKinney, Eoin F; Siegel, Richard M; Smith, Kenneth G C

    2014-08-04

    Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray users lack important information regarding the complexities introduced in real-world experimental settings. The recent development of a multiplexed, digital technology for nucleic acid measurement enables counting of individual RNA molecules without amplification and, for the first time, permits such a study. Using a set of human leukocyte subset RNA samples, we compared previously acquired microarray expression values with RNA molecule counts determined by the nCounter Analysis System (NanoString Technologies) in selected genes. We found that gene measurements across samples correlated well between the two platforms, particularly for high-variance genes, while genes deemed unexpressed by the nCounter generally had both low expression and low variance on the microarray. Confirming previous findings from spike-in and dilution datasets, this "gold-standard" comparison demonstrated signal compression that varied dramatically by expression level and, to a lesser extent, by dataset. Most importantly, examination of three different cell types revealed that noise levels differed across tissues. Microarray measurements generally correlate with relative RNA molecule counts within optimal ranges but suffer from expression-dependent accuracy bias and precision that varies across datasets. We urge microarray users to consider expression-level effects in signal interpretation and to evaluate noise properties in each dataset independently.

  9. Selection of optimal oligonucleotide probes for microarrays usingmultiple criteria, global alignment and parameter estimation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xingyuan; He, Zhili; Zhou, Jizhong

    2005-10-30

    The oligonucleotide specificity for microarray hybridizationcan be predicted by its sequence identity to non-targets, continuousstretch to non-targets, and/or binding free energy to non-targets. Mostcurrently available programs only use one or two of these criteria, whichmay choose 'false' specific oligonucleotides or miss 'true' optimalprobes in a considerable proportion. We have developed a software tool,called CommOligo using new algorithms and all three criteria forselection of optimal oligonucleotide probes. A series of filters,including sequence identity, free energy, continuous stretch, GC content,self-annealing, distance to the 3'-untranslated region (3'-UTR) andmelting temperature (Tm), are used to check each possibleoligonucleotide. A sequence identity is calculated based onmore » gapped globalalignments. A traversal algorithm is used to generate alignments for freeenergy calculation. The optimal Tm interval is determined based on probecandidates that have passed all other filters. Final probes are pickedusing a combination of user-configurable piece-wise linear functions andan iterative process. The thresholds for identity, stretch and freeenergy filters are automatically determined from experimental data by anaccessory software tool, CommOligo_PE (CommOligo Parameter Estimator).The program was used to design probes for both whole-genome and highlyhomologous sequence data. CommOligo and CommOligo_PE are freely availableto academic users upon request.« less

  10. Cross-omics comparison of stress responses in mesothelial cells exposed to heat- versus filter-sterilized peritoneal dialysis fluids.

    PubMed

    Kratochwill, Klaus; Bender, Thorsten O; Lichtenauer, Anton M; Herzog, Rebecca; Tarantino, Silvia; Bialas, Katarzyna; Jörres, Achim; Aufricht, Christoph

    2015-01-01

    Recent research suggests that cytoprotective responses, such as expression of heat-shock proteins, might be inadequately induced in mesothelial cells by heat-sterilized peritoneal dialysis (PD) fluids. This study compares transcriptome data and multiple protein expression profiles for providing new insight into regulatory mechanisms. Two-dimensional difference gel electrophoresis (2D-DIGE) based proteomics and topic defined gene expression microarray-based transcriptomics techniques were used to evaluate stress responses in human omental peritoneal mesothelial cells in response to heat- or filter-sterilized PD fluids. Data from selected heat-shock proteins were validated by 2D western-blot analysis. Comparison of proteomics and transcriptomics data discriminated differentially regulated protein abundance into groups depending on correlating or noncorrelating transcripts. Inadequate abundance of several heat-shock proteins following exposure to heat-sterilized PD fluids is not reflected on the mRNA level indicating interference beyond transcriptional regulation. For the first time, this study describes evidence for posttranscriptional inadequacy of heat-shock protein expression by heat-sterilized PD fluids as a novel cytotoxic property. Cross-omics technologies introduce a novel way of understanding PDF bioincompatibility and searching for new interventions to reestablish adequate cytoprotective responses.

  11. AccuTyping: new algorithms for automated analysis of data from high-throughput genotyping with oligonucleotide microarrays

    PubMed Central

    Hu, Guohong; Wang, Hui-Yun; Greenawalt, Danielle M.; Azaro, Marco A.; Luo, Minjie; Tereshchenko, Irina V.; Cui, Xiangfeng; Yang, Qifeng; Gao, Richeng; Shen, Li; Li, Honghua

    2006-01-01

    Microarray-based analysis of single nucleotide polymorphisms (SNPs) has many applications in large-scale genetic studies. To minimize the influence of experimental variation, microarray data usually need to be processed in different aspects including background subtraction, normalization and low-signal filtering before genotype determination. Although many algorithms are sophisticated for these purposes, biases are still present. In the present paper, new algorithms for SNP microarray data analysis and the software, AccuTyping, developed based on these algorithms are described. The algorithms take advantage of a large number of SNPs included in each assay, and the fact that the top and bottom 20% of SNPs can be safely treated as homozygous after sorting based on their ratios between the signal intensities. These SNPs are then used as controls for color channel normalization and background subtraction. Genotype calls are made based on the logarithms of signal intensity ratios using two cutoff values, which were determined after training the program with a dataset of ∼160 000 genotypes and validated by non-microarray methods. AccuTyping was used to determine >300 000 genotypes of DNA and sperm samples. The accuracy was shown to be >99%. AccuTyping can be downloaded from . PMID:16982644

  12. STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data

    PubMed Central

    Jupiter, Daniel; Chen, Hailin; VanBuren, Vincent

    2009-01-01

    Background Although expression microarrays have become a standard tool used by biologists, analysis of data produced by microarray experiments may still present challenges. Comparison of data from different platforms, organisms, and labs may involve complicated data processing, and inferring relationships between genes remains difficult. Results STARNET 2 is a new web-based tool that allows post hoc visual analysis of correlations that are derived from expression microarray data. STARNET 2 facilitates user discovery of putative gene regulatory networks in a variety of species (human, rat, mouse, chicken, zebrafish, Drosophila, C. elegans, S. cerevisiae, Arabidopsis and rice) by graphing networks of genes that are closely co-expressed across a large heterogeneous set of preselected microarray experiments. For each of the represented organisms, raw microarray data were retrieved from NCBI's Gene Expression Omnibus for a selected Affymetrix platform. All pairwise Pearson correlation coefficients were computed for expression profiles measured on each platform, respectively. These precompiled results were stored in a MySQL database, and supplemented by additional data retrieved from NCBI. A web-based tool allows user-specified queries of the database, centered at a gene of interest. The result of a query includes graphs of correlation networks, graphs of known interactions involving genes and gene products that are present in the correlation networks, and initial statistical analyses. Two analyses may be performed in parallel to compare networks, which is facilitated by the new HEATSEEKER module. Conclusion STARNET 2 is a useful tool for developing new hypotheses about regulatory relationships between genes and gene products, and has coverage for 10 species. Interpretation of the correlation networks is supported with a database of previously documented interactions, a test for enrichment of Gene Ontology terms, and heat maps of correlation distances that may be used to compare two networks. The list of genes in a STARNET network may be useful in developing a list of candidate genes to use for the inference of causal networks. The tool is freely available at , and does not require user registration. PMID:19828039

  13. Shrinkage regression-based methods for microarray missing value imputation.

    PubMed

    Wang, Hsiuying; Chiu, Chia-Chun; Wu, Yi-Ching; Wu, Wei-Sheng

    2013-01-01

    Missing values commonly occur in the microarray data, which usually contain more than 5% missing values with up to 90% of genes affected. Inaccurate missing value estimation results in reducing the power of downstream microarray data analyses. Many types of methods have been developed to estimate missing values. Among them, the regression-based methods are very popular and have been shown to perform better than the other types of methods in many testing microarray datasets. To further improve the performances of the regression-based methods, we propose shrinkage regression-based methods. Our methods take the advantage of the correlation structure in the microarray data and select similar genes for the target gene by Pearson correlation coefficients. Besides, our methods incorporate the least squares principle, utilize a shrinkage estimation approach to adjust the coefficients of the regression model, and then use the new coefficients to estimate missing values. Simulation results show that the proposed methods provide more accurate missing value estimation in six testing microarray datasets than the existing regression-based methods do. Imputation of missing values is a very important aspect of microarray data analyses because most of the downstream analyses require a complete dataset. Therefore, exploring accurate and efficient methods for estimating missing values has become an essential issue. Since our proposed shrinkage regression-based methods can provide accurate missing value estimation, they are competitive alternatives to the existing regression-based methods.

  14. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    PubMed Central

    Chakravarty, Swapnajit; Yang, Chun-Ju; Wang, Zheng; Tang, Naimei; Fan, Donglei; Chen, Ray T.

    2015-01-01

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed. PMID:25829549

  15. Global gene expression in channel catfish after vaccination with an attenuated Edwardsiella ictaluri

    USDA-ARS?s Scientific Manuscript database

    To understand the global gene expression in channel catfish after immersion vaccination with an attenuated Edwardsiella ictaluri (AquaVac ESCTM), microarray analysis of 65,182 UniGene transcripts were performed. With a filter of false-discovery rate less than 0.05 and fold change greater than 2, a t...

  16. Experimental analysis of oligonucleotide microarray design criteria to detect deletions by comparative genomic hybridization.

    PubMed

    Flibotte, Stephane; Moerman, Donald G

    2008-10-21

    Microarray comparative genomic hybridization (CGH) is currently one of the most powerful techniques to measure DNA copy number in large genomes. In humans, microarray CGH is widely used to assess copy number variants in healthy individuals and copy number aberrations associated with various diseases, syndromes and disease susceptibility. In model organisms such as Caenorhabditis elegans (C. elegans) the technique has been applied to detect mutations, primarily deletions, in strains of interest. Although various constraints on oligonucleotide properties have been suggested to minimize non-specific hybridization and improve the data quality, there have been few experimental validations for CGH experiments. For genomic regions where strict design filters would limit the coverage it would also be useful to quantify the expected loss in data quality associated with relaxed design criteria. We have quantified the effects of filtering various oligonucleotide properties by measuring the resolving power for detecting deletions in the human and C. elegans genomes using NimbleGen microarrays. Approximately twice as many oligonucleotides are typically required to be affected by a deletion in human DNA samples in order to achieve the same statistical confidence as one would observe for a deletion in C. elegans. Surprisingly, the ability to detect deletions strongly depends on the oligonucleotide 15-mer count, which is defined as the sum of the genomic frequency of all the constituent 15-mers within the oligonucleotide. A similarity level above 80% to non-target sequences over the length of the probe produces significant cross-hybridization. We recommend the use of a fairly large melting temperature window of up to 10 degrees C, the elimination of repeat sequences, the elimination of homopolymers longer than 5 nucleotides, and a threshold of -1 kcal/mol on the oligonucleotide self-folding energy. We observed very little difference in data quality when varying the oligonucleotide length between 50 and 70, and even when using an isothermal design strategy. We have determined experimentally the effects of varying several key oligonucleotide microarray design criteria for detection of deletions in C. elegans and humans with NimbleGen's CGH technology. Our oligonucleotide design recommendations should be applicable for CGH analysis in most species.

  17. Protein microarray with horseradish peroxidase chemiluminescence for quantification of serum α-fetoprotein.

    PubMed

    Zhao, Yuanshun; Zhang, Yonghong; Lin, Dongdong; Li, Kang; Yin, Chengzeng; Liu, Xiuhong; Jin, Boxun; Sun, Libo; Liu, Jinhua; Zhang, Aiying; Li, Ning

    2015-10-01

    To develop and evaluate a protein microarray assay with horseradish peroxidase (HRP) chemiluminescence for quantification of α-fetoprotein (AFP) in serum from patients with hepatocellular carcinoma (HCC). A protein microarray assay for AFP was developed. Serum was collected from patients with HCC and healthy control subjects. AFP was quantified using protein microarray and enzyme-linked immunosorbent assay (ELISA). Serum AFP concentrations determined via protein microarray were positively correlated (r = 0.973) with those determined via ELISA in patients with HCC (n = 60) and healthy control subjects (n = 30). Protein microarray showed 80% sensitivity and 100% specificity for HCC diagnosis. ELISA had 83.3% sensitivity and 100% specificity. Protein microarray effectively distinguished between patients with HCC and healthy control subjects (area under ROC curve 0.974; 95% CI 0.000, 1.000). Protein microarray is a rapid, simple and low-cost alternative to ELISA for detecting AFP in human serum. © The Author(s) 2015.

  18. An effect size filter improves the reproducibility in spectral counting-based comparative proteomics.

    PubMed

    Gregori, Josep; Villarreal, Laura; Sánchez, Alex; Baselga, José; Villanueva, Josep

    2013-12-16

    The microarray community has shown that the low reproducibility observed in gene expression-based biomarker discovery studies is partially due to relying solely on p-values to get the lists of differentially expressed genes. Their conclusions recommended complementing the p-value cutoff with the use of effect-size criteria. The aim of this work was to evaluate the influence of such an effect-size filter on spectral counting-based comparative proteomic analysis. The results proved that the filter increased the number of true positives and decreased the number of false positives and the false discovery rate of the dataset. These results were confirmed by simulation experiments where the effect size filter was used to evaluate systematically variable fractions of differentially expressed proteins. Our results suggest that relaxing the p-value cut-off followed by a post-test filter based on effect size and signal level thresholds can increase the reproducibility of statistical results obtained in comparative proteomic analysis. Based on our work, we recommend using a filter consisting of a minimum absolute log2 fold change of 0.8 and a minimum signal of 2-4 SpC on the most abundant condition for the general practice of comparative proteomics. The implementation of feature filtering approaches could improve proteomic biomarker discovery initiatives by increasing the reproducibility of the results obtained among independent laboratories and MS platforms. Quality control analysis of microarray-based gene expression studies pointed out that the low reproducibility observed in the lists of differentially expressed genes could be partially attributed to the fact that these lists are generated relying solely on p-values. Our study has established that the implementation of an effect size post-test filter improves the statistical results of spectral count-based quantitative proteomics. The results proved that the filter increased the number of true positives whereas decreased the false positives and the false discovery rate of the datasets. The results presented here prove that a post-test filter applying a reasonable effect size and signal level thresholds helps to increase the reproducibility of statistical results in comparative proteomic analysis. Furthermore, the implementation of feature filtering approaches could improve proteomic biomarker discovery initiatives by increasing the reproducibility of results obtained among independent laboratories and MS platforms. This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Hierarchical Gene Selection and Genetic Fuzzy System for Cancer Microarray Data Classification

    PubMed Central

    Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid

    2015-01-01

    This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice. PMID:25823003

  20. Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification.

    PubMed

    Nguyen, Thanh; Khosravi, Abbas; Creighton, Douglas; Nahavandi, Saeid

    2015-01-01

    This paper introduces a novel approach to gene selection based on a substantial modification of analytic hierarchy process (AHP). The modified AHP systematically integrates outcomes of individual filter methods to select the most informative genes for microarray classification. Five individual ranking methods including t-test, entropy, receiver operating characteristic (ROC) curve, Wilcoxon and signal to noise ratio are employed to rank genes. These ranked genes are then considered as inputs for the modified AHP. Additionally, a method that uses fuzzy standard additive model (FSAM) for cancer classification based on genes selected by AHP is also proposed in this paper. Traditional FSAM learning is a hybrid process comprising unsupervised structure learning and supervised parameter tuning. Genetic algorithm (GA) is incorporated in-between unsupervised and supervised training to optimize the number of fuzzy rules. The integration of GA enables FSAM to deal with the high-dimensional-low-sample nature of microarray data and thus enhance the efficiency of the classification. Experiments are carried out on numerous microarray datasets. Results demonstrate the performance dominance of the AHP-based gene selection against the single ranking methods. Furthermore, the combination of AHP-FSAM shows a great accuracy in microarray data classification compared to various competing classifiers. The proposed approach therefore is useful for medical practitioners and clinicians as a decision support system that can be implemented in the real medical practice.

  1. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experimentmore » showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.« less

  2. Distributional fold change test – a statistical approach for detecting differential expression in microarray experiments

    PubMed Central

    2012-01-01

    Background Because of the large volume of data and the intrinsic variation of data intensity observed in microarray experiments, different statistical methods have been used to systematically extract biological information and to quantify the associated uncertainty. The simplest method to identify differentially expressed genes is to evaluate the ratio of average intensities in two different conditions and consider all genes that differ by more than an arbitrary cut-off value to be differentially expressed. This filtering approach is not a statistical test and there is no associated value that can indicate the level of confidence in the designation of genes as differentially expressed or not differentially expressed. At the same time the fold change by itself provide valuable information and it is important to find unambiguous ways of using this information in expression data treatment. Results A new method of finding differentially expressed genes, called distributional fold change (DFC) test is introduced. The method is based on an analysis of the intensity distribution of all microarray probe sets mapped to a three dimensional feature space composed of average expression level, average difference of gene expression and total variance. The proposed method allows one to rank each feature based on the signal-to-noise ratio and to ascertain for each feature the confidence level and power for being differentially expressed. The performance of the new method was evaluated using the total and partial area under receiver operating curves and tested on 11 data sets from Gene Omnibus Database with independently verified differentially expressed genes and compared with the t-test and shrinkage t-test. Overall the DFC test performed the best – on average it had higher sensitivity and partial AUC and its elevation was most prominent in the low range of differentially expressed features, typical for formalin-fixed paraffin-embedded sample sets. Conclusions The distributional fold change test is an effective method for finding and ranking differentially expressed probesets on microarrays. The application of this test is advantageous to data sets using formalin-fixed paraffin-embedded samples or other systems where degradation effects diminish the applicability of correlation adjusted methods to the whole feature set. PMID:23122055

  3. A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization.

    PubMed

    Vafaee Sharbaf, Fatemeh; Mosafer, Sara; Moattar, Mohammad Hossein

    2016-06-01

    This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Robust gene selection methods using weighting schemes for microarray data analysis.

    PubMed

    Kang, Suyeon; Song, Jongwoo

    2017-09-02

    A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of significant genes has been essential in analyzing the data. However, the performances of many gene selection techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a limited number of sample replicates. We have proposed new filter-based gene selection techniques, by applying a simple modification to significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In particular, our methods are much better when the given data are noisy and sample size is small. They showed relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with traditional methods in classification tasks for microarrays. The results of simulation study and real data analysis have demonstrated that our proposed methods are effective for detecting significant genes and classification tasks, especially when the given data are noisy or have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for microarray data analysis.

  5. Design of nucleic acid sequences for DNA computing based on a thermodynamic approach

    PubMed Central

    Tanaka, Fumiaki; Kameda, Atsushi; Yamamoto, Masahito; Ohuchi, Azuma

    2005-01-01

    We have developed an algorithm for designing multiple sequences of nucleic acids that have a uniform melting temperature between the sequence and its complement and that do not hybridize non-specifically with each other based on the minimum free energy (ΔGmin). Sequences that satisfy these constraints can be utilized in computations, various engineering applications such as microarrays, and nano-fabrications. Our algorithm is a random generate-and-test algorithm: it generates a candidate sequence randomly and tests whether the sequence satisfies the constraints. The novelty of our algorithm is that the filtering method uses a greedy search to calculate ΔGmin. This effectively excludes inappropriate sequences before ΔGmin is calculated, thereby reducing computation time drastically when compared with an algorithm without the filtering. Experimental results in silico showed the superiority of the greedy search over the traditional approach based on the hamming distance. In addition, experimental results in vitro demonstrated that the experimental free energy (ΔGexp) of 126 sequences correlated well with ΔGmin (|R| = 0.90) than with the hamming distance (|R| = 0.80). These results validate the rationality of a thermodynamic approach. We implemented our algorithm in a graphic user interface-based program written in Java. PMID:15701762

  6. BoolFilter: an R package for estimation and identification of partially-observed Boolean dynamical systems.

    PubMed

    Mcclenny, Levi D; Imani, Mahdi; Braga-Neto, Ulisses M

    2017-11-25

    Gene regulatory networks govern the function of key cellular processes, such as control of the cell cycle, response to stress, DNA repair mechanisms, and more. Boolean networks have been used successfully in modeling gene regulatory networks. In the Boolean network model, the transcriptional state of each gene is represented by 0 (inactive) or 1 (active), and the relationship among genes is represented by logical gates updated at discrete time points. However, the Boolean gene states are never observed directly, but only indirectly and incompletely through noisy measurements based on expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays. The Partially-Observed Boolean Dynamical System (POBDS) signal model is distinct from other deterministic and stochastic Boolean network models in removing the requirement of a directly observable Boolean state vector and allowing uncertainty in the measurement process, addressing the scenario encountered in practice in transcriptomic analysis. BoolFilter is an R package that implements the POBDS model and associated algorithms for state and parameter estimation. It allows the user to estimate the Boolean states, network topology, and measurement parameters from time series of transcriptomic data using exact and approximated (particle) filters, as well as simulate the transcriptomic data for a given Boolean network model. Some of its infrastructure, such as the network interface, is the same as in the previously published R package for Boolean Networks BoolNet, which enhances compatibility and user accessibility to the new package. We introduce the R package BoolFilter for Partially-Observed Boolean Dynamical Systems (POBDS). The BoolFilter package provides a useful toolbox for the bioinformatics community, with state-of-the-art algorithms for simulation of time series transcriptomic data as well as the inverse process of system identification from data obtained with various expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays.

  7. Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses

    USDA-ARS?s Scientific Manuscript database

    To analyze transcriptome response to virus infection, we have assembled currently available microarray data on changes in gene expression levels in compatible Arabidopsis-virus interactions. We used the mean r (Pearson’s correlation coefficient) for neighboring pairs to estimate pairwise local simil...

  8. Fully invariant wavelet enhanced minimum average correlation energy filter for object recognition in cluttered and occluded environments

    NASA Astrophysics Data System (ADS)

    Tehsin, Sara; Rehman, Saad; Riaz, Farhan; Saeed, Omer; Hassan, Ali; Khan, Muazzam; Alam, Muhammad S.

    2017-05-01

    A fully invariant system helps in resolving difficulties in object detection when camera or object orientation and position are unknown. In this paper, the proposed correlation filter based mechanism provides the capability to suppress noise, clutter and occlusion. Minimum Average Correlation Energy (MACE) filter yields sharp correlation peaks while considering the controlled correlation peak value. Difference of Gaussian (DOG) Wavelet has been added at the preprocessing stage in proposed filter design that facilitates target detection in orientation variant cluttered environment. Logarithmic transformation is combined with a DOG composite minimum average correlation energy filter (WMACE), capable of producing sharp correlation peaks despite any kind of geometric distortion of target object. The proposed filter has shown improved performance over some of the other variant correlation filters which are discussed in the result section.

  9. Searching for links in the biotic characteristics and abiotic parameters of nine different biogas plants

    PubMed Central

    Walter, Andreas; Knapp, Brigitte A.; Farbmacher, Theresa; Ebner, Christian; Insam, Heribert; Franke‐Whittle, Ingrid H.

    2012-01-01

    Summary To find links between the biotic characteristics and abiotic process parameters in anaerobic digestion systems, the microbial communities of nine full‐scale biogas plants in South Tyrol (Italy) and Vorarlberg (Austria) were investigated using molecular techniques and the physical and chemical properties were monitored. DNA from sludge samples was subjected to microarray hybridization with the ANAEROCHIP microarray and results indicated that sludge samples grouped into two main clusters, dominated either by Methanosarcina or by Methanosaeta, both aceticlastic methanogens. Hydrogenotrophic methanogens were hardly detected or if detected, gave low hybridization signals. Results obtained using denaturing gradient gel electrophoresis (DGGE) supported the findings of microarray hybridization. Real‐time PCR targeting Methanosarcina and Methanosaeta was conducted to provide quantitative data on the dominating methanogens. Correlation analysis to determine any links between the microbial communities found by microarray analysis, and the physicochemical parameters investigated was conducted. It was shown that the sludge samples dominated by the genus Methanosarcina were positively correlated with higher concentrations of acetate, whereas sludge samples dominated by representatives of the genus Methanosaeta had lower acetate concentrations. No other correlations between biotic characteristics and abiotic parameters were found. Methanogenic communities in each reactor were highly stable and resilient over the whole year. PMID:22950603

  10. Evaluating reproducibility of differential expression discoveries in microarray studies by considering correlated molecular changes.

    PubMed

    Zhang, Min; Zhang, Lin; Zou, Jinfeng; Yao, Chen; Xiao, Hui; Liu, Qing; Wang, Jing; Wang, Dong; Wang, Chenguang; Guo, Zheng

    2009-07-01

    According to current consistency metrics such as percentage of overlapping genes (POG), lists of differentially expressed genes (DEGs) detected from different microarray studies for a complex disease are often highly inconsistent. This irreproducibility problem also exists in other high-throughput post-genomic areas such as proteomics and metabolism. A complex disease is often characterized with many coordinated molecular changes, which should be considered when evaluating the reproducibility of discovery lists from different studies. We proposed metrics percentage of overlapping genes-related (POGR) and normalized POGR (nPOGR) to evaluate the consistency between two DEG lists for a complex disease, considering correlated molecular changes rather than only counting gene overlaps between the lists. Based on microarray datasets of three diseases, we showed that though the POG scores for DEG lists from different studies for each disease are extremely low, the POGR and nPOGR scores can be rather high, suggesting that the apparently inconsistent DEG lists may be highly reproducible in the sense that they are actually significantly correlated. Observing different discovery results for a disease by the POGR and nPOGR scores will obviously reduce the uncertainty of the microarray studies. The proposed metrics could also be applicable in many other high-throughput post-genomic areas.

  11. Seasonal dynamics of freshwater pathogens as measured by microarray at Lake Sapanca, a drinking water source in the north-eastern part of Turkey.

    PubMed

    Akçaalan, Reyhan; Albay, Meric; Koker, Latife; Baudart, Julia; Guillebault, Delphine; Fischer, Sabine; Weigel, Wilfried; Medlin, Linda K

    2017-12-22

    Monitoring drinking water quality is an important public health issue. Two objectives from the 4 years, six nations, EU Project μAqua were to develop hierarchically specific probes to detect and quantify pathogens in drinking water using a PCR-free microarray platform and to design a standardised water sampling program from different sources in Europe to obtain sufficient material for downstream analysis. Our phylochip contains barcodes (probes) that specifically identify freshwater pathogens that are human health risks in a taxonomic hierarchical fashion such that if species is present, the entire taxonomic hierarchy (genus, family, order, phylum, kingdom) leading to it must also be present, which avoids false positives. Molecular tools are more rapid, accurate and reliable than traditional methods, which means faster mitigation strategies with less harm to humans and the community. We present microarray results for the presence of freshwater pathogens from a Turkish lake used drinking water and inferred cyanobacterial cell equivalents from samples concentrated from 40 into 1 L in 45 min using hollow fibre filters. In two companion studies from the same samples, cyanobacterial toxins were analysed using chemical methods and those dates with highest toxin values also had highest cell equivalents as inferred from this microarray study.

  12. Correlation Filter Learning Toward Peak Strength for Visual Tracking.

    PubMed

    Sui, Yao; Wang, Guanghui; Zhang, Li

    2018-04-01

    This paper presents a novel visual tracking approach to correlation filter learning toward peak strength of correlation response. Previous methods leverage all features of the target and the immediate background to learn a correlation filter. Some features, however, may be distractive to tracking, like those from occlusion and local deformation, resulting in unstable tracking performance. This paper aims at solving this issue and proposes a novel algorithm to learn the correlation filter. The proposed approach, by imposing an elastic net constraint on the filter, can adaptively eliminate those distractive features in the correlation filtering. A new peak strength metric is proposed to measure the discriminative capability of the learned correlation filter. It is demonstrated that the proposed approach effectively strengthens the peak of the correlation response, leading to more discriminative performance than previous methods. Extensive experiments on a challenging visual tracking benchmark demonstrate that the proposed tracker outperforms most state-of-the-art methods.

  13. GeneXplorer: an interactive web application for microarray data visualization and analysis.

    PubMed

    Rees, Christian A; Demeter, Janos; Matese, John C; Botstein, David; Sherlock, Gavin

    2004-10-01

    When publishing large-scale microarray datasets, it is of great value to create supplemental websites where either the full data, or selected subsets corresponding to figures within the paper, can be browsed. We set out to create a CGI application containing many of the features of some of the existing standalone software for the visualization of clustered microarray data. We present GeneXplorer, a web application for interactive microarray data visualization and analysis in a web environment. GeneXplorer allows users to browse a microarray dataset in an intuitive fashion. It provides simple access to microarray data over the Internet and uses only HTML and JavaScript to display graphic and annotation information. It provides radar and zoom views of the data, allows display of the nearest neighbors to a gene expression vector based on their Pearson correlations and provides the ability to search gene annotation fields. The software is released under the permissive MIT Open Source license, and the complete documentation and the entire source code are freely available for download from CPAN http://search.cpan.org/dist/Microarray-GeneXplorer/.

  14. Improvement of experimental testing and network training conditions with genome-wide microarrays for more accurate predictions of drug gene targets

    PubMed Central

    2014-01-01

    Background Genome-wide microarrays have been useful for predicting chemical-genetic interactions at the gene level. However, interpreting genome-wide microarray results can be overwhelming due to the vast output of gene expression data combined with off-target transcriptional responses many times induced by a drug treatment. This study demonstrates how experimental and computational methods can interact with each other, to arrive at more accurate predictions of drug-induced perturbations. We present a two-stage strategy that links microarray experimental testing and network training conditions to predict gene perturbations for a drug with a known mechanism of action in a well-studied organism. Results S. cerevisiae cells were treated with the antifungal, fluconazole, and expression profiling was conducted under different biological conditions using Affymetrix genome-wide microarrays. Transcripts were filtered with a formal network-based method, sparse simultaneous equation models and Lasso regression (SSEM-Lasso), under different network training conditions. Gene expression results were evaluated using both gene set and single gene target analyses, and the drug’s transcriptional effects were narrowed first by pathway and then by individual genes. Variables included: (i) Testing conditions – exposure time and concentration and (ii) Network training conditions – training compendium modifications. Two analyses of SSEM-Lasso output – gene set and single gene – were conducted to gain a better understanding of how SSEM-Lasso predicts perturbation targets. Conclusions This study demonstrates that genome-wide microarrays can be optimized using a two-stage strategy for a more in-depth understanding of how a cell manifests biological reactions to a drug treatment at the transcription level. Additionally, a more detailed understanding of how the statistical model, SSEM-Lasso, propagates perturbations through a network of gene regulatory interactions is achieved. PMID:24444313

  15. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification

    PubMed Central

    Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC2), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible. PMID:29666661

  16. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.

    PubMed

    Xu, Jiucheng; Mu, Huiyu; Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC 2 ), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible.

  17. Quadratic correlation filters for optical correlators

    NASA Astrophysics Data System (ADS)

    Mahalanobis, Abhijit; Muise, Robert R.; Vijaya Kumar, Bhagavatula V. K.

    2003-08-01

    Linear correlation filters have been implemented in optical correlators and successfully used for a variety of applications. The output of an optical correlator is usually sensed using a square law device (such as a CCD array) which forces the output to be the squared magnitude of the desired correlation. It is however not a traditional practice to factor the effect of the square-law detector in the design of the linear correlation filters. In fact, the input-output relationship of an optical correlator is more accurately modeled as a quadratic operation than a linear operation. Quadratic correlation filters (QCFs) operate directly on the image data without the need for feature extraction or segmentation. In this sense, the QCFs retain the main advantages of conventional linear correlation filters while offering significant improvements in other respects. Not only is more processing required to detect peaks in the outputs of multiple linear filters, but choosing a winner among them is an error prone task. In contrast, all channels in a QCF work together to optimize the same performance metric and produce a combined output that leads to considerable simplification of the post-processing. In this paper, we propose a novel approach to the design of quadratic correlation based on the Fukunaga Koontz transform. Although quadratic filters are known to be optimum when the data is Gaussian, it is expected that they will perform as well as or better than linear filters in general. Preliminary performance results are provided that show that quadratic correlation filters perform better than their linear counterparts.

  18. Report for the NGFA-5 project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, C; Jackson, P; Thissen, J

    The objective of this project is to provide DHS a comprehensive evaluation of the current genomic technologies including genotyping, TaqMan PCR, multiple locus variable tandem repeat analysis (MLVA), microarray and high-throughput DNA sequencing in the analysis of biothreat agents from complex environmental samples. To effectively compare the sensitivity and specificity of the different genomic technologies, we used SNP TaqMan PCR, MLVA, microarray and high-throughput illumine and 454 sequencing to test various strains from B. anthracis, B. thuringiensis, BioWatch aerosol filter extracts or soil samples that were spiked with B. anthracis, and samples that were previously collected during DHS and EPAmore » environmental release exercises that were known to contain B. thuringiensis spores. The results of all the samples against the various assays are discussed in this report.« less

  19. A novel approach for discovering condition-specific correlations of gene expressions within biological pathways by using cloud computing technology.

    PubMed

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions.

  20. Endothelial Inflammatory Transcriptional Responses Induced by Plasma Following Inhalation of Diesel Emissions

    PubMed Central

    Schisler, Jonathan C.; Ronnebaum, Sarah M.; Madden, Michael; Channell, Meghan M.; Campen, Matthew J.; Willis, Monte S.

    2016-01-01

    Background Air pollution, especially emissions derived from traffic sources, is associated with adverse cardiovascular outcomes. However, it remains unclear how inhaled factors drive extrapulmonary pathology. Objectives Previously, we found that canonical inflammatory response transcripts were elevated in cultured endothelial cells treated with plasma obtained after exposure compared with pre-exposure samples or filtered air (sham) exposures. While the findings confirmed the presence of bioactive factor(s) in the plasma after diesel inhalation, we wanted to better examine the complete genomic response to investigate 1) major responsive transcripts and 2) collected response pathways and ontogeny that may help to refine this method and inform the pathogenesis. Methods We assayed endothelial RNA with gene expression microarrays, examining the responses of cultured endothelial cells to plasma obtained from 6 healthy human subjects exposed to 100 μg/m3 diesel exhaust or filtered air for 2 h on separate occasions. In addition to pre-exposure baseline samples, we investigated samples obtained immediately-post and 24h-post exposure. Results Microarray analysis of the coronary artery endothelial cells challenged with plasma identified 855 probes that changed over time following diesel exhaust exposure. Over-representation analysis identified inflammatory cytokine pathways were upregulated both at the 2 and 24 h condition. Novel pathways related to FOX transcription factors and secreted extracellular factors were also identified in the microarray analysis. Conclusions These outcomes are consistent with our recent findings that plasma contains bioactive and inflammatory factors following pollutant inhalation. The specific study design implicates a novel pathway related to inflammatory blood borne components that may drive the extrapulmonary toxicity of ambient air pollutants. PMID:25942053

  1. Construction of a cDNA microarray derived from the ascidian Ciona intestinalis.

    PubMed

    Azumi, Kaoru; Takahashi, Hiroki; Miki, Yasufumi; Fujie, Manabu; Usami, Takeshi; Ishikawa, Hisayoshi; Kitayama, Atsusi; Satou, Yutaka; Ueno, Naoto; Satoh, Nori

    2003-10-01

    A cDNA microarray was constructed from a basal chordate, the ascidian Ciona intestinalis. The draft genome of Ciona has been read and inferred to contain approximately 16,000 protein-coding genes, and cDNAs for transcripts of 13,464 genes have been characterized and compiled as the "Ciona intestinalis Gene Collection Release I". In the present study, we constructed a cDNA microarray of these 13,464 Ciona genes. A preliminary experiment with Cy3- and Cy5-labeled probes showed extensive differential gene expression between fertilized eggs and larvae. In addition, there was a good correlation between results obtained by the present microarray analysis and those from previous EST analyses. This first microarray of a large collection of Ciona intestinalis cDNA clones should facilitate the analysis of global gene expression and gene networks during the embryogenesis of basal chordates.

  2. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset

    PubMed Central

    2012-01-01

    Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO). MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. However, MIMGO has not yet been validated on a real microarray dataset using all available GO terms. Findings We combined Gene Set Enrichment Analysis (GSEA) with MIMGO to identify differentially expressed GO terms in a yeast cell cycle microarray dataset. GSEA followed by MIMGO (GSEA + MIMGO) correctly identified (p < 0.05) microarray data in which genes annotated to differentially expressed GO terms are upregulated. We found that GSEA + MIMGO was slightly less effective than, or comparable to, GSEA (Pearson), a method that uses Pearson’s correlation as a metric, at detecting true differentially expressed GO terms. However, unlike other methods including GSEA (Pearson), GSEA + MIMGO can comprehensively identify the microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. Conclusions MIMGO is a reliable method to identify differentially expressed GO terms comprehensively. PMID:23232071

  3. Characterization Of Improved Binary Phase-Only Filters In A Real-Time Coherent Optical Correlation System

    NASA Astrophysics Data System (ADS)

    Flannery, D.; Keller, P.; Cartwright, S.; Loomis, J.

    1987-06-01

    Attractive correlation system performance potential is possible using magneto-optic spatial light modulators (SLM) to implement binary phase-only reference filters at high rates, provided the correlation performance of such reduced-information-content filters is adequate for the application. In the case studied here, the desired filter impulse response is a rectangular shape, which cannot be achieved with the usual binary phase-only filter formulation. The correlation application problem is described and techniques for synthesizing improved filter impulse response are considered. A compromise solution involves the cascading of a fixed amplitude-only weighting mask with the binary phase-only SLM. Based on simulations presented, this approach provides improved impulse responses and good correlation performance, while retaining the critical feature of real-time variations of the size, shape, and orientation of the rectangle by electronic programming of the phase pattern in the SLM. Simulations indicate that, for at least one very challenging input scene clutter situation, these filters provide higher correlation signal-to-noise than does "ideal" correlation, i.e. using a perfect rectangle filter response.

  4. Linking microarray reporters with protein functions.

    PubMed

    Gaj, Stan; van Erk, Arie; van Haaften, Rachel I M; Evelo, Chris T A

    2007-09-26

    The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways. This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt) entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways. Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/.

  5. Optical calculation of correlation filters for a robotic vision system

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome

    1989-01-01

    A method is presented for designing optical correlation filters based on measuring three intensity patterns: the Fourier transform of a filter object, a reference wave and the interference pattern produced by the sum of the object transform and the reference. The method can produce a filter that is well matched to both the object, its transforming optical system and the spatial light modulator used in the correlator input plane. A computer simulation was presented to demonstrate the approach for the special case of a conventional binary phase-only filter. The simulation produced a workable filter with a sharp correlation peak.

  6. Meta-analytic framework for liquid association.

    PubMed

    Wang, Lin; Liu, Silvia; Ding, Ying; Yuan, Shin-Sheng; Ho, Yen-Yi; Tseng, George C

    2017-07-15

    Although coexpression analysis via pair-wise expression correlation is popularly used to elucidate gene-gene interactions at the whole-genome scale, many complicated multi-gene regulations require more advanced detection methods. Liquid association (LA) is a powerful tool to detect the dynamic correlation of two gene variables depending on the expression level of a third variable (LA scouting gene). LA detection from single transcriptomic study, however, is often unstable and not generalizable due to cohort bias, biological variation and limited sample size. With the rapid development of microarray and NGS technology, LA analysis combining multiple gene expression studies can provide more accurate and stable results. In this article, we proposed two meta-analytic approaches for LA analysis (MetaLA and MetaMLA) to combine multiple transcriptomic studies. To compensate demanding computing, we also proposed a two-step fast screening algorithm for more efficient genome-wide screening: bootstrap filtering and sign filtering. We applied the methods to five Saccharomyces cerevisiae datasets related to environmental changes. The fast screening algorithm reduced 98% of running time. When compared with single study analysis, MetaLA and MetaMLA provided stronger detection signal and more consistent and stable results. The top triplets are highly enriched in fundamental biological processes related to environmental changes. Our method can help biologists understand underlying regulatory mechanisms under different environmental exposure or disease states. A MetaLA R package, data and code for this article are available at http://tsenglab.biostat.pitt.edu/software.htm. ctseng@pitt.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  7. Replication dynamics of the yeast genome.

    PubMed

    Raghuraman, M K; Winzeler, E A; Collingwood, D; Hunt, S; Wodicka, L; Conway, A; Lockhart, D J; Davis, R W; Brewer, B J; Fangman, W L

    2001-10-05

    Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.

  8. Real-valued composite filters for correlation-based optical pattern recognition

    NASA Technical Reports Server (NTRS)

    Rajan, P. K.; Balendra, Anushia

    1992-01-01

    Advances in the technology of optical devices such as spatial light modulators (SLMs) have influenced the research and growth of optical pattern recognition. In the research leading to this report, the design of real-valued composite filters that can be implemented using currently available SLMs for optical pattern recognition and classification was investigated. The design of real-valued minimum average correlation energy (RMACE) filter was investigated. Proper selection of the phase of the output response was shown to reduce the correlation energy. The performance of the filter was evaluated using computer simulations and compared with the complex filters. It was found that the performance degraded only slightly. Continuing the above investigation, the design of a real filter that minimizes the output correlation energy and the output variance due to noise was developed. Simulation studies showed that this filter had better tolerance to distortion and noise compared to that of the RMACE filter. Finally, the space domain design of RMACE filter was developed and implemented on the computer. It was found that the sharpness of the correlation peak was slightly reduced but the filter design was more computationally efficient than the complex filter.

  9. Assessing Global Transcriptome Changes in Response to South African Cassava Mosaic Virus [ZA-99] Infection in Susceptible Arabidopsis thaliana.

    PubMed

    Pierce, Erica J; Rey, M E Chrissie

    2013-01-01

    In susceptible plant hosts, co-evolution has favoured viral strategies to evade host defenses and utilize resources to their own benefit. The degree of manipulation of host gene expression is dependent on host-virus specificity and certain abiotic factors. In order to gain insight into global transcriptome changes for a geminivirus pathosystem, South African cassava mosaic virus [ZA:99] and Arabidopsis thaliana, 4×44K Agilent microarrays were adopted. After normalization, a log2 fold change filtering of data (p<0.05) identified 1,743 differentially expressed genes in apical leaf tissue. A significant increase in differential gene expression over time correlated with an increase in SACMV accumulation, as virus copies were 5-fold higher at 24 dpi and 6-fold higher at 36 dpi than at 14 dpi. Many altered transcripts were primarily involved in stress and defense responses, phytohormone signalling pathways, cellular transport, cell-cycle regulation, transcription, oxidation-reduction, and other metabolic processes. Only forty-one genes (2.3%) were shown to be continuously expressed across the infection period, indicating that the majority of genes were transient and unique to a particular time point during infection. A significant number of pathogen-responsive genes were suppressed during the late stages of pathogenesis, while during active systemic infection (14 to 24 dpi), there was an increase in up-regulated genes in several GO functional categories. An adaptive response was initiated to divert energy from growth-related processes to defense, leading to disruption of normal biological host processes. Similarities in cell-cycle regulation correlated between SACMV and Cabbage leaf curl virus (CaLCuV), but differences were also evident. Differences in gene expression between the two geminiviruses clearly demonstrated that, while some global transcriptome responses are generally common in plant virus infections, temporal host-specific interactions are required for successful geminivirus infection. To our knowledge this is the first geminivirus microarray study identifying global differentially expressed transcripts at 3 time points.

  10. Assessing Global Transcriptome Changes in Response to South African Cassava Mosaic Virus [ZA-99] Infection in Susceptible Arabidopsis thaliana

    PubMed Central

    Pierce, Erica J.; Rey, M. E. Chrissie

    2013-01-01

    In susceptible plant hosts, co-evolution has favoured viral strategies to evade host defenses and utilize resources to their own benefit. The degree of manipulation of host gene expression is dependent on host-virus specificity and certain abiotic factors. In order to gain insight into global transcriptome changes for a geminivirus pathosystem, South African cassava mosaic virus [ZA:99] and Arabidopsis thaliana, 4×44K Agilent microarrays were adopted. After normalization, a log2 fold change filtering of data (p<0.05) identified 1,743 differentially expressed genes in apical leaf tissue. A significant increase in differential gene expression over time correlated with an increase in SACMV accumulation, as virus copies were 5-fold higher at 24 dpi and 6-fold higher at 36 dpi than at 14 dpi. Many altered transcripts were primarily involved in stress and defense responses, phytohormone signalling pathways, cellular transport, cell-cycle regulation, transcription, oxidation-reduction, and other metabolic processes. Only forty-one genes (2.3%) were shown to be continuously expressed across the infection period, indicating that the majority of genes were transient and unique to a particular time point during infection. A significant number of pathogen-responsive genes were suppressed during the late stages of pathogenesis, while during active systemic infection (14 to 24 dpi), there was an increase in up-regulated genes in several GO functional categories. An adaptive response was initiated to divert energy from growth-related processes to defense, leading to disruption of normal biological host processes. Similarities in cell-cycle regulation correlated between SACMV and Cabbage leaf curl virus (CaLCuV), but differences were also evident. Differences in gene expression between the two geminiviruses clearly demonstrated that, while some global transcriptome responses are generally common in plant virus infections, temporal host-specific interactions are required for successful geminivirus infection. To our knowledge this is the first geminivirus microarray study identifying global differentially expressed transcripts at 3 time points. PMID:23826319

  11. Optical Correlation of Images With Signal-Dependent Noise Using Constrained-Modulation Filter Devices

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    Images with signal-dependent noise present challenges beyond those of images with additive white or colored signal-independent noise in terms of designing the optimal 4-f correlation filter that maximizes correlation-peak signal-to-noise ratio, or combinations of correlation-peak metrics. Determining the proper design becomes more difficult when the filter is to be implemented on a constrained-modulation spatial light modulator device. The design issues involved for updatable optical filters for images with signal-dependent film-grain noise and speckle noise are examined. It is shown that although design of the optimal linear filter in the Fourier domain is impossible for images with signal-dependent noise, proper nonlinear preprocessing of the images allows the application of previously developed design rules for optimal filters to be implemented on constrained-modulation devices. Thus the nonlinear preprocessing becomes necessary for correlation in optical systems with current spatial light modulator technology. These results are illustrated with computer simulations of images with signal-dependent noise correlated with binary-phase-only filters and ternary-phase-amplitude filters.

  12. Prognostic value of matrix metalloproteinase 9 expression in patients with juvenile nasopharyngeal angiofibroma: tissue microarray analysis.

    PubMed

    Sun, Xicai; Guo, Limin; Wang, Jingjing; Wang, Huan; Liu, Zhuofu; Liu, Juan; Yu, Huapeng; Hu, Li; Li, Han; Wang, Dehui

    2014-08-01

    Although JNA is a benign neoplasm histopathologically, it has a propensity for locally destructive growth and remains a higher postoperative recurrence rate. The aim of this study was to analyze the expression and localization of MMP-9 in JNA using tissue microarray to elucidate its correlation with clinicopathological features and recurrence. The expression of MMP-9 was assessed by immunohistochemistry in a tissue microarray from 70 patients with JNA and 10 control subjects. Correlation between the levels of MMP-9 expression and clinicopathologic variables, as well as tumor recurrence, were analyzed. MMP-9 was detected in perivascular and extravascular less differentiated cells and stromal cells of patients with JNA but not in the matured vascular endothelial cells of these patients. The presence of MMP-9 expression in JNA was correlated with patient's age (p=0.001). Spearman correlation analysis suggested that high expression of MMP-9 in JNA had negative correlation with patient's age (r=-0.412, p<0.001). The recurrence rate in JNA patients with high MMP-9 expression was significantly higher than those with low MMP-9 expression (p=0.002). In multivariate and ROC curve analysis, MMP-9 was a good prognostic factor for tumor recurrence of JNA. Higher MMP-9 expression is a poor prognostic factor for patients with JNA who have been surgically treated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Stanniocalcin 2 is an estrogen-responsive gene coexpressed with the estrogen receptor in human breast cancer.

    PubMed

    Bouras, Toula; Southey, Melissa C; Chang, Andy C; Reddel, Roger R; Willhite, Dorian; Glynne, Richard; Henderson, Michael A; Armes, Jane E; Venter, Deon J

    2002-03-01

    Differences in gene expression are likely to explain the phenotypic variation between hormone-responsive and hormone-unresponsive breast cancers. In this study, DNA microarray analysis of approximately 10,000 known genes and 25,000 expressed sequence tag clusters was performed to identify genes induced by estrogen and repressed by the pure antiestrogen ICI 182 780 in vitro that correlated with estrogen receptor (ER) expression in primary breast carcinomas in vivo. Stanniocalcin (STC) 2 was identified as one of the genes that fulfilled these criteria. DNA microarray hybridization showed a 3-fold induction of STC2 mRNA expression in MCF-7 cells in < or = 3 h of estrogen exposure and a 3-fold repression in the presence of antiestrogen (one-way ANOVA, P < 0.0005). In 13 ER-positive and 12 ER-negative breast carcinomas, the microarray-derived mRNA levels observed for STC2 correlated with tumor ER mRNA (Pearson's correlation, r = 0.85; P < 0.0001) and ER protein status (Spearman's rank correlation, r = 0.73; P < 0.0001). The expression profile of STC2 was further confirmed by in situ hybridization and immunohistochemistry on a larger cohort of 236 unselected breast carcinomas using tissue microarrays. STC2 mRNA and protein expression were found to be associated with tumor ER status (Fisher's exact test, P < 0.005). The related gene, STC1, was also examined and shown to be associated with ER status in breast carcinomas (Fisher's exact test, P < 0.05). This study demonstrates the feasibility of using global gene expression data derived from an in vitro model to pinpoint novel estrogen-responsive genes of potential clinical relevance.

  14. Partial removal of correlated noise in thermal imagery

    NASA Astrophysics Data System (ADS)

    Borel, Christoph C.; Cooke, Bradly J.; Laubscher, Bryan E.

    1996-05-01

    Correlated noise occurs in many imaging systems such as scanners and push-broom imagers. The sources of correlated noise can be from the detectors, pre-amplifiers and sampling circuits. Correlated noise appears as streaking along the scan direction of a scanner or in the along track direction of a push-broom imager. We have developed algorithms to simulate correlated noise and pre-filter to reduce the amount of streaking while not destroying the scene content. The pre-filter in the Fourier domain consists of the product of two filters. One filter models the correlated noise spectrum, the other is a windowing function, e.g. Gaussian or Hanning window with variable width to block high frequency noise away from the origin of the Fourier Transform of the image data. We have optimized the filter parameters for various scenes and find improvements of the RMS error of the original minus the pre-filtered noisy image.

  15. Crossword: A Fully Automated Algorithm for the Segmentation and Quality Control of Protein Microarray Images

    PubMed Central

    2015-01-01

    Biological assays formatted as microarrays have become a critical tool for the generation of the comprehensive data sets required for systems-level understanding of biological processes. Manual annotation of data extracted from images of microarrays, however, remains a significant bottleneck, particularly for protein microarrays due to the sensitivity of this technology to weak artifact signal. In order to automate the extraction and curation of data from protein microarrays, we describe an algorithm called Crossword that logically combines information from multiple approaches to fully automate microarray segmentation. Automated artifact removal is also accomplished by segregating structured pixels from the background noise using iterative clustering and pixel connectivity. Correlation of the location of structured pixels across image channels is used to identify and remove artifact pixels from the image prior to data extraction. This component improves the accuracy of data sets while reducing the requirement for time-consuming visual inspection of the data. Crossword enables a fully automated protocol that is robust to significant spatial and intensity aberrations. Overall, the average amount of user intervention is reduced by an order of magnitude and the data quality is increased through artifact removal and reduced user variability. The increase in throughput should aid the further implementation of microarray technologies in clinical studies. PMID:24417579

  16. Synthesis of correlation filters: a generalized space-domain approach for improved filter characteristics

    NASA Astrophysics Data System (ADS)

    Sudharsanan, Subramania I.; Mahalanobis, Abhijit; Sundareshan, Malur K.

    1990-12-01

    Discrete frequency domain design of Minimum Average Correlation Energy filters for optical pattern recognition introduces an implementational limitation of circular correlation. An alternative methodology which uses space domain computations to overcome this problem is presented. The technique is generalized to construct an improved synthetic discriminant function which satisfies the conflicting requirements of reduced noise variance and sharp correlation peaks to facilitate ease of detection. A quantitative evaluation of the performance characteristics of the new filter is conducted and is shown to compare favorably with the well known Minimum Variance Synthetic Discriminant Function and the space domain Minimum Average Correlation Energy filter, which are special cases of the present design.

  17. An integrated approach for identifying wrongly labelled samples when performing classification in microarray data.

    PubMed

    Leung, Yuk Yee; Chang, Chun Qi; Hung, Yeung Sam

    2012-01-01

    Using hybrid approach for gene selection and classification is common as results obtained are generally better than performing the two tasks independently. Yet, for some microarray datasets, both classification accuracy and stability of gene sets obtained still have rooms for improvement. This may be due to the presence of samples with wrong class labels (i.e. outliers). Outlier detection algorithms proposed so far are either not suitable for microarray data, or only solve the outlier detection problem on their own. We tackle the outlier detection problem based on a previously proposed Multiple-Filter-Multiple-Wrapper (MFMW) model, which was demonstrated to yield promising results when compared to other hybrid approaches (Leung and Hung, 2010). To incorporate outlier detection and overcome limitations of the existing MFMW model, three new features are introduced in our proposed MFMW-outlier approach: 1) an unbiased external Leave-One-Out Cross-Validation framework is developed to replace internal cross-validation in the previous MFMW model; 2) wrongly labeled samples are identified within the MFMW-outlier model; and 3) a stable set of genes is selected using an L1-norm SVM that removes any redundant genes present. Six binary-class microarray datasets were tested. Comparing with outlier detection studies on the same datasets, MFMW-outlier could detect all the outliers found in the original paper (for which the data was provided for analysis), and the genes selected after outlier removal were proven to have biological relevance. We also compared MFMW-outlier with PRAPIV (Zhang et al., 2006) based on same synthetic datasets. MFMW-outlier gave better average precision and recall values on three different settings. Lastly, artificially flipped microarray datasets were created by removing our detected outliers and flipping some of the remaining samples' labels. Almost all the 'wrong' (artificially flipped) samples were detected, suggesting that MFMW-outlier was sufficiently powerful to detect outliers in high-dimensional microarray datasets.

  18. DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data

    PubMed Central

    Glez-Peña, Daniel; Álvarez, Rodrigo; Díaz, Fernando; Fdez-Riverola, Florentino

    2009-01-01

    Background Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (i) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (ii) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models. Results DFP is a new Bioconductor R package that implements a method for discretizing and selecting differentially expressed genes based on the application of fuzzy logic. DFP takes advantage of fuzzy membership functions to assign linguistic labels to gene expression levels. The technique builds a reduced set of relevant genes (FP, Fuzzy Pattern) able to summarize and represent each underlying class (pathology). A last step constructs a biased set of genes (DFP, Discriminant Fuzzy Pattern) by intersecting existing fuzzy patterns in order to detect discriminative elements. In addition, the software provides new functions and visualisation tools that summarize achieved results and aid in the interpretation of differentially expressed genes from multiple microarray experiments. Conclusion DFP integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It has the advantage that its parameters are highly configurable, facilitating the discovery of biologically relevant connections between sets of genes belonging to different pathologies. This information makes it possible to automatically filter irrelevant genes thereby reducing the large volume of data supplied by microarray experiments. Based on these contributions GENECBR, a successful tool for cancer diagnosis using microarray datasets, has recently been released. PMID:19178723

  19. Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB.

    PubMed

    Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N

    2009-10-27

    The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime. Gene ARMADA provides a highly adaptable, integrative, yet flexible tool which can be used for automated quality control, analysis, annotation and visualization of microarray data, constituting a starting point for further data interpretation and integration with numerous other tools.

  20. DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data.

    PubMed

    Glez-Peña, Daniel; Alvarez, Rodrigo; Díaz, Fernando; Fdez-Riverola, Florentino

    2009-01-29

    Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (i) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (ii) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models. DFP is a new Bioconductor R package that implements a method for discretizing and selecting differentially expressed genes based on the application of fuzzy logic. DFP takes advantage of fuzzy membership functions to assign linguistic labels to gene expression levels. The technique builds a reduced set of relevant genes (FP, Fuzzy Pattern) able to summarize and represent each underlying class (pathology). A last step constructs a biased set of genes (DFP, Discriminant Fuzzy Pattern) by intersecting existing fuzzy patterns in order to detect discriminative elements. In addition, the software provides new functions and visualisation tools that summarize achieved results and aid in the interpretation of differentially expressed genes from multiple microarray experiments. DFP integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It has the advantage that its parameters are highly configurable, facilitating the discovery of biologically relevant connections between sets of genes belonging to different pathologies. This information makes it possible to automatically filter irrelevant genes thereby reducing the large volume of data supplied by microarray experiments. Based on these contributions GENECBR, a successful tool for cancer diagnosis using microarray datasets, has recently been released.

  1. The genomic response of skeletal muscle to methylprednisolone using microarrays: tailoring data mining to the structure of the pharmacogenomic time series

    PubMed Central

    DuBois, Debra C; Piel, William H; Jusko, William J

    2008-01-01

    High-throughput data collection using gene microarrays has great potential as a method for addressing the pharmacogenomics of complex biological systems. Similarly, mechanism-based pharmacokinetic/pharmacodynamic modeling provides a tool for formulating quantitative testable hypotheses concerning the responses of complex biological systems. As the response of such systems to drugs generally entails cascades of molecular events in time, a time series design provides the best approach to capturing the full scope of drug effects. A major problem in using microarrays for high-throughput data collection is sorting through the massive amount of data in order to identify probe sets and genes of interest. Due to its inherent redundancy, a rich time series containing many time points and multiple samples per time point allows for the use of less stringent criteria of expression, expression change and data quality for initial filtering of unwanted probe sets. The remaining probe sets can then become the focus of more intense scrutiny by other methods, including temporal clustering, functional clustering and pharmacokinetic/pharmacodynamic modeling, which provide additional ways of identifying the probes and genes of pharmacological interest. PMID:15212590

  2. Linking microarray reporters with protein functions

    PubMed Central

    Gaj, Stan; van Erk, Arie; van Haaften, Rachel IM; Evelo, Chris TA

    2007-01-01

    Background The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways. Results This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt) entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways. Conclusion Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/. PMID:17897448

  3. High-Throughput Tabular Data Processor - Platform independent graphical tool for processing large data sets.

    PubMed

    Madanecki, Piotr; Bałut, Magdalena; Buckley, Patrick G; Ochocka, J Renata; Bartoszewski, Rafał; Crossman, David K; Messiaen, Ludwine M; Piotrowski, Arkadiusz

    2018-01-01

    High-throughput technologies generate considerable amount of data which often requires bioinformatic expertise to analyze. Here we present High-Throughput Tabular Data Processor (HTDP), a platform independent Java program. HTDP works on any character-delimited column data (e.g. BED, GFF, GTF, PSL, WIG, VCF) from multiple text files and supports merging, filtering and converting of data that is produced in the course of high-throughput experiments. HTDP can also utilize itemized sets of conditions from external files for complex or repetitive filtering/merging tasks. The program is intended to aid global, real-time processing of large data sets using a graphical user interface (GUI). Therefore, no prior expertise in programming, regular expression, or command line usage is required of the user. Additionally, no a priori assumptions are imposed on the internal file composition. We demonstrate the flexibility and potential of HTDP in real-life research tasks including microarray and massively parallel sequencing, i.e. identification of disease predisposing variants in the next generation sequencing data as well as comprehensive concurrent analysis of microarray and sequencing results. We also show the utility of HTDP in technical tasks including data merge, reduction and filtering with external criteria files. HTDP was developed to address functionality that is missing or rudimentary in other GUI software for processing character-delimited column data from high-throughput technologies. Flexibility, in terms of input file handling, provides long term potential functionality in high-throughput analysis pipelines, as the program is not limited by the currently existing applications and data formats. HTDP is available as the Open Source software (https://github.com/pmadanecki/htdp).

  4. High-Throughput Tabular Data Processor – Platform independent graphical tool for processing large data sets

    PubMed Central

    Bałut, Magdalena; Buckley, Patrick G.; Ochocka, J. Renata; Bartoszewski, Rafał; Crossman, David K.; Messiaen, Ludwine M.; Piotrowski, Arkadiusz

    2018-01-01

    High-throughput technologies generate considerable amount of data which often requires bioinformatic expertise to analyze. Here we present High-Throughput Tabular Data Processor (HTDP), a platform independent Java program. HTDP works on any character-delimited column data (e.g. BED, GFF, GTF, PSL, WIG, VCF) from multiple text files and supports merging, filtering and converting of data that is produced in the course of high-throughput experiments. HTDP can also utilize itemized sets of conditions from external files for complex or repetitive filtering/merging tasks. The program is intended to aid global, real-time processing of large data sets using a graphical user interface (GUI). Therefore, no prior expertise in programming, regular expression, or command line usage is required of the user. Additionally, no a priori assumptions are imposed on the internal file composition. We demonstrate the flexibility and potential of HTDP in real-life research tasks including microarray and massively parallel sequencing, i.e. identification of disease predisposing variants in the next generation sequencing data as well as comprehensive concurrent analysis of microarray and sequencing results. We also show the utility of HTDP in technical tasks including data merge, reduction and filtering with external criteria files. HTDP was developed to address functionality that is missing or rudimentary in other GUI software for processing character-delimited column data from high-throughput technologies. Flexibility, in terms of input file handling, provides long term potential functionality in high-throughput analysis pipelines, as the program is not limited by the currently existing applications and data formats. HTDP is available as the Open Source software (https://github.com/pmadanecki/htdp). PMID:29432475

  5. Symmetric Phase Only Filtering for Improved DPIV Data Processing

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2006-01-01

    The standard approach in Digital Particle Image Velocimetry (DPIV) data processing is to use Fast Fourier Transforms to obtain the cross-correlation of two single exposure subregions, where the location of the cross-correlation peak is representative of the most probable particle displacement across the subregion. This standard DPIV processing technique is analogous to Matched Spatial Filtering, a technique commonly used in optical correlators to perform the crosscorrelation operation. Phase only filtering is a well known variation of Matched Spatial Filtering, which when used to process DPIV image data yields correlation peaks which are narrower and up to an order of magnitude larger than those obtained using traditional DPIV processing. In addition to possessing desirable correlation plane features, phase only filters also provide superior performance in the presence of DC noise in the correlation subregion. When DPIV image subregions contaminated with surface flare light or high background noise levels are processed using phase only filters, the correlation peak pertaining only to the particle displacement is readily detected above any signal stemming from the DC objects. Tedious image masking or background image subtraction are not required. Both theoretical and experimental analyses of the signal-to-noise ratio performance of the filter functions are presented. In addition, a new Symmetric Phase Only Filtering (SPOF) technique, which is a variation on the traditional phase only filtering technique, is described and demonstrated. The SPOF technique exceeds the performance of the traditionally accepted phase only filtering techniques and is easily implemented in standard DPIV FFT based correlation processing with no significant computational performance penalty. An "Automatic" SPOF algorithm is presented which determines when the SPOF is able to provide better signal to noise results than traditional PIV processing. The SPOF based optical correlation processing approach is presented as a new paradigm for more robust cross-correlation processing of low signal-to-noise ratio DPIV image data."

  6. Profiling In Situ Microbial Community Structure with an Amplification Microarray

    PubMed Central

    Knickerbocker, Christopher; Bryant, Lexi; Golova, Julia; Wiles, Cory; Williams, Kenneth H.; Peacock, Aaron D.; Long, Philip E.

    2013-01-01

    The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO3−) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO3, but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications. PMID:23160129

  7. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma

    PubMed Central

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-01-01

    Objective This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Methods Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Results Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification (P=0.009) or deletion (P=0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly (P=1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Conclusion Chromosomal CNVs may contribute to their transcript expression in cervical cancer. PMID:29312578

  8. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma.

    PubMed

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-12-12

    This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification ( P =0.009) or deletion ( P =0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly ( P =1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Chromosomal CNVs may contribute to their transcript expression in cervical cancer.

  9. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array

    PubMed Central

    Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R.; Kulaveerasingam, Harikrishna

    2014-01-01

    Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r2 = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield. PMID:27600348

  10. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array.

    PubMed

    Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna

    2014-11-13

    Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r² = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r² = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield.

  11. SigReannot-mart: a query environment for expression microarray probe re-annotations.

    PubMed

    Moreews, François; Rauffet, Gaelle; Dehais, Patrice; Klopp, Christophe

    2011-01-01

    Expression microarrays are commonly used to study transcriptomes. Most of the arrays are now based on oligo-nucleotide probes. Probe design being a tedious task, it often takes place once at the beginning of the project. The oligo set is then used for several years. During this time period, the knowledge gathered by the community on the genome and the transcriptome increases and gets more precise. Therefore re-annotating the set is essential to supply the biologists with up-to-date annotations. SigReannot-mart is a query environment populated with regularly updated annotations for different oligo sets. It stores the results of the SigReannot pipeline that has mainly been used on farm and aquaculture species. It permits easy extraction in different formats using filters. It is used to compare probe sets on different criteria, to choose the set for a given experiment to mix probe sets in order to create a new one.

  12. Visual object tracking by correlation filters and online learning

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Xia, Gui-Song; Lu, Qikai; Shen, Weiming; Zhang, Liangpei

    2018-06-01

    Due to the complexity of background scenarios and the variation of target appearance, it is difficult to achieve high accuracy and fast speed for object tracking. Currently, correlation filters based trackers (CFTs) show promising performance in object tracking. The CFTs estimate the target's position by correlation filters with different kinds of features. However, most of CFTs can hardly re-detect the target in the case of long-term tracking drifts. In this paper, a feature integration object tracker named correlation filters and online learning (CFOL) is proposed. CFOL estimates the target's position and its corresponding correlation score using the same discriminative correlation filter with multi-features. To reduce tracking drifts, a new sampling and updating strategy for online learning is proposed. Experiments conducted on 51 image sequences demonstrate that the proposed algorithm is superior to the state-of-the-art approaches.

  13. Biomarker selection and classification of "-omics" data using a two-step bayes classification framework.

    PubMed

    Assawamakin, Anunchai; Prueksaaroon, Supakit; Kulawonganunchai, Supasak; Shaw, Philip James; Varavithya, Vara; Ruangrajitpakorn, Taneth; Tongsima, Sissades

    2013-01-01

    Identification of suitable biomarkers for accurate prediction of phenotypic outcomes is a goal for personalized medicine. However, current machine learning approaches are either too complex or perform poorly. Here, a novel two-step machine-learning framework is presented to address this need. First, a Naïve Bayes estimator is used to rank features from which the top-ranked will most likely contain the most informative features for prediction of the underlying biological classes. The top-ranked features are then used in a Hidden Naïve Bayes classifier to construct a classification prediction model from these filtered attributes. In order to obtain the minimum set of the most informative biomarkers, the bottom-ranked features are successively removed from the Naïve Bayes-filtered feature list one at a time, and the classification accuracy of the Hidden Naïve Bayes classifier is checked for each pruned feature set. The performance of the proposed two-step Bayes classification framework was tested on different types of -omics datasets including gene expression microarray, single nucleotide polymorphism microarray (SNParray), and surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) proteomic data. The proposed two-step Bayes classification framework was equal to and, in some cases, outperformed other classification methods in terms of prediction accuracy, minimum number of classification markers, and computational time.

  14. Log-polar mapping-based scale space tracking with adaptive target response

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Wen, Gongjian; Kuai, Yangliu; Zhang, Ximing

    2017-05-01

    Correlation filter-based tracking has exhibited impressive robustness and accuracy in recent years. Standard correlation filter-based trackers are restricted to translation estimation and equipped with fixed target response. These trackers produce an inferior performance when encountered with a significant scale variation or appearance change. We propose a log-polar mapping-based scale space tracker with an adaptive target response. This tracker transforms the scale variation of the target in the Cartesian space into a shift along the logarithmic axis in the log-polar space. A one-dimensional scale correlation filter is learned online to estimate the shift along the logarithmic axis. With the log-polar representation, scale estimation is achieved accurately without a multiresolution pyramid. To achieve an adaptive target response, a variance of the Gaussian function is computed from the response map and updated online with a learning rate parameter. Our log-polar mapping-based scale correlation filter and adaptive target response can be combined with any correlation filter-based trackers. In addition, the scale correlation filter can be extended to a two-dimensional correlation filter to achieve joint estimation of the scale variation and in-plane rotation. Experiments performed on an OTB50 benchmark demonstrate that our tracker achieves superior performance against state-of-the-art trackers.

  15. Denoising Algorithm for CFA Image Sensors Considering Inter-Channel Correlation.

    PubMed

    Lee, Min Seok; Park, Sang Wook; Kang, Moon Gi

    2017-05-28

    In this paper, a spatio-spectral-temporal filter considering an inter-channel correlation is proposed for the denoising of a color filter array (CFA) sequence acquired by CCD/CMOS image sensors. Owing to the alternating under-sampled grid of the CFA pattern, the inter-channel correlation must be considered in the direct denoising process. The proposed filter is applied in the spatial, spectral, and temporal domain, considering the spatio-tempo-spectral correlation. First, nonlocal means (NLM) spatial filtering with patch-based difference (PBD) refinement is performed by considering both the intra-channel correlation and inter-channel correlation to overcome the spatial resolution degradation occurring with the alternating under-sampled pattern. Second, a motion-compensated temporal filter that employs inter-channel correlated motion estimation and compensation is proposed to remove the noise in the temporal domain. Then, a motion adaptive detection value controls the ratio of the spatial filter and the temporal filter. The denoised CFA sequence can thus be obtained without motion artifacts. Experimental results for both simulated and real CFA sequences are presented with visual and numerical comparisons to several state-of-the-art denoising methods combined with a demosaicing method. Experimental results confirmed that the proposed frameworks outperformed the other techniques in terms of the objective criteria and subjective visual perception in CFA sequences.

  16. Trends in Correlation-Based Pattern Recognition and Tracking in Forward-Looking Infrared Imagery

    PubMed Central

    Alam, Mohammad S.; Bhuiyan, Sharif M. A.

    2014-01-01

    In this paper, we review the recent trends and advancements on correlation-based pattern recognition and tracking in forward-looking infrared (FLIR) imagery. In particular, we discuss matched filter-based correlation techniques for target detection and tracking which are widely used for various real time applications. We analyze and present test results involving recently reported matched filters such as the maximum average correlation height (MACH) filter and its variants, and distance classifier correlation filter (DCCF) and its variants. Test results are presented for both single/multiple target detection and tracking using various real-life FLIR image sequences. PMID:25061840

  17. An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase

    PubMed Central

    Kohlmann, Alexander; Kipps, Thomas J; Rassenti, Laura Z; Downing, James R; Shurtleff, Sheila A; Mills, Ken I; Gilkes, Amanda F; Hofmann, Wolf-Karsten; Basso, Giuseppe; Dell’Orto, Marta Campo; Foà, Robin; Chiaretti, Sabina; De Vos, John; Rauhut, Sonja; Papenhausen, Peter R; Hernández, Jesus M; Lumbreras, Eva; Yeoh, Allen E; Koay, Evelyn S; Li, Rachel; Liu, Wei-min; Williams, Paul M; Wieczorek, Lothar; Haferlach, Torsten

    2008-01-01

    Gene expression profiling has the potential to enhance current methods for the diagnosis of haematological malignancies. Here, we present data on 204 analyses from an international standardization programme that was conducted in 11 laboratories as a prephase to the Microarray Innovations in LEukemia (MILE) study. Each laboratory prepared two cell line samples, together with three replicate leukaemia patient lysates in two distinct stages: (i) a 5-d course of protocol training, and (ii) independent proficiency testing. Unsupervised, supervised, and r2 correlation analyses demonstrated that microarray analysis can be performed with remarkably high intra-laboratory reproducibility and with comparable quality and reliability. PMID:18573112

  18. Gene expression profiling of whole blood: Comparison of target preparation methods for accurate and reproducible microarray analysis

    PubMed Central

    Vartanian, Kristina; Slottke, Rachel; Johnstone, Timothy; Casale, Amanda; Planck, Stephen R; Choi, Dongseok; Smith, Justine R; Rosenbaum, James T; Harrington, Christina A

    2009-01-01

    Background Peripheral blood is an accessible and informative source of transcriptomal information for many human disease and pharmacogenomic studies. While there can be significant advantages to analyzing RNA isolated from whole blood, particularly in clinical studies, the preparation of samples for microarray analysis is complicated by the need to minimize artifacts associated with highly abundant globin RNA transcripts. The impact of globin RNA transcripts on expression profiling data can potentially be reduced by using RNA preparation and labeling methods that remove or block globin RNA during the microarray assay. We compared four different methods for preparing microarray hybridization targets from human whole blood collected in PAXGene tubes. Three of the methods utilized the Affymetrix one-cycle cDNA synthesis/in vitro transcription protocol but varied treatment of input RNA as follows: i. no treatment; ii. treatment with GLOBINclear; or iii. treatment with globin PNA oligos. In the fourth method cDNA targets were prepared with the Ovation amplification and labeling system. Results We find that microarray targets generated with labeling methods that reduce globin mRNA levels or minimize the impact of globin transcripts during hybridization detect more transcripts in the microarray assay compared with the standard Affymetrix method. Comparison of microarray results with quantitative PCR analysis of a panel of genes from the NF-kappa B pathway shows good correlation of transcript measurements produced with all four target preparation methods, although method-specific differences in overall correlation were observed. The impact of freezing blood collected in PAXGene tubes on data reproducibility was also examined. Expression profiles show little or no difference when RNA is extracted from either fresh or frozen blood samples. Conclusion RNA preparation and labeling methods designed to reduce the impact of globin mRNA transcripts can significantly improve the sensitivity of the DNA microarray expression profiling assay for whole blood samples. While blockage of globin transcripts during first strand cDNA synthesis with globin PNAs resulted in the best overall performance in this study, we conclude that selection of a protocol for expression profiling studies in blood should depend on several factors, including implementation requirements of the method and study design. RNA isolated from either freshly collected or frozen blood samples stored in PAXGene tubes can be used without altering gene expression profiles. PMID:19123946

  19. Simulating Optical Correlation on a Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Denning, Bryan

    1998-04-01

    Optical Correlation is a useful tool for recognizing objects in video scenes. In this paper, we explore the characteristics of a composite filter known as the equal correlation peak synthetic discriminant function (ECP SDF). Although the ECP SDF is commonly used in coherent optical correlation systems, the authors simulated the operation of a correlator using an EPIX frame grabber/image processor board to complete this work. Issues pertaining to simulating correlation using an EPIX board will be discussed. Additionally, the ability of the ECP SDF to detect objects that have been subjected to inplane rotation and small scale changes will be addressed by correlating filters against true-class objects placed randomly within a scene. To test the robustness of the filters, the results of correlating the filter against false-class objects that closely resemble the true class will also be presented.

  20. Revisiting adverse effects of cross-hybridization in Affymetrix gene expression data: do they matter for correlation analysis?

    PubMed

    Klebanov, Lev; Chen, Linlin; Yakovlev, Andrei

    2007-11-07

    This work was undertaken in response to a recently published paper by Okoniewski and Miller (BMC Bioinformatics 2006, 7: Article 276). The authors of that paper came to the conclusion that the process of multiple targeting in short oligonucleotide microarrays induces spurious correlations and this effect may deteriorate the inference on correlation coefficients. The design of their study and supporting simulations cast serious doubt upon the validity of this conclusion. The work by Okoniewski and Miller drove us to revisit the issue by means of experimentation with biological data and probabilistic modeling of cross-hybridization effects. We have identified two serious flaws in the study by Okoniewski and Miller: (1) The data used in their paper are not amenable to correlation analysis; (2) The proposed simulation model is inadequate for studying the effects of cross-hybridization. Using two other data sets, we have shown that removing multiply targeted probe sets does not lead to a shift in the histogram of sample correlation coefficients towards smaller values. A more realistic approach to mathematical modeling of cross-hybridization demonstrates that this process is by far more complex than the simplistic model considered by the authors. A diversity of correlation effects (such as the induction of positive or negative correlations) caused by cross-hybridization can be expected in theory but there are natural limitations on the ability to provide quantitative insights into such effects due to the fact that they are not directly observable. The proposed stochastic model is instrumental in studying general regularities in hybridization interaction between probe sets in microarray data. As the problem stands now, there is no compelling reason to believe that multiple targeting causes a large-scale effect on the correlation structure of Affymetrix gene expression data. Our analysis suggests that the observed long-range correlations in microarray data are of a biological nature rather than a technological flaw.

  1. Transcriptomics as a tool for assessing the scalability of mammalian cell perfusion systems.

    PubMed

    Jayapal, Karthik P; Goudar, Chetan T

    2014-01-01

    DNA microarray-based transcriptomics have been used to determine the time course of laboratory and manufacturing-scale perfusion bioreactors in an attempt to characterize cell physiological state at these two bioreactor scales. Given the limited availability of genomic data for baby hamster kidney (BHK) cells, a Chinese hamster ovary (CHO)-based microarray was used following a feasibility assessment of cross-species hybridization. A heat shock experiment was performed using both BHK and CHO cells and resulting DNA microarray data were analyzed using a filtering criteria of perfect match (PM)/single base mismatch (MM) > 1.5 and PM-MM > 50 to exclude probes with low specificity or sensitivity for cross-species hybridizations. For BHK cells, 8910 probe sets (39 %) passed the cutoff criteria, whereas 12,961 probe sets (56 %) passed the cutoff criteria for CHO cells. Yet, the data from BHK cells allowed distinct clustering of heat shock and control samples as well as identification of biologically relevant genes as being differentially expressed, indicating the utility of cross-species hybridization. Subsequently, DNA microarray analysis was performed on time course samples from laboratory- and manufacturing-scale perfusion bioreactors that were operated under the same conditions. A majority of the variability (37 %) was associated with the first principal component (PC-1). Although PC-1 changed monotonically with culture duration, the trends were very similar in both the laboratory and manufacturing-scale bioreactors. Therefore, despite time-related changes to the cell physiological state, transcriptomic fingerprints were similar across the two bioreactor scales at any given instance in culture. Multiple genes were identified with time-course expression profiles that were very highly correlated (> 0.9) with bioprocess variables of interest. Although the current incomplete annotation limits the biological interpretation of these observations, their full potential may be realized in due course when richer genomic data become available. By taking a pragmatic approach of transcriptome fingerprinting, we have demonstrated the utility of systems biology to support the comparability of laboratory and manufacturing-scale perfusion systems. Scale-down model qualification is the first step in process characterization and hence is an integral component of robust regulatory filings. Augmenting the current paradigm, which relies primarily on cell culture and product quality information, with gene expression data can help make a substantially stronger case for similarity. With continued advances in systems biology approaches, we expect them to be seamlessly integrated into bioprocess development, which can translate into more robust and high yielding processes that can ultimately reduce cost of care for patients.

  2. HOXB9 Expression Correlates with Histological Grade and Prognosis in LSCC

    PubMed Central

    2017-01-01

    The purpose of this study was to investigate the HOX gene expression profile in laryngeal squamous cell carcinoma (LSCC) and assess whether some genes are associated with the clinicopathological features and prognosis in LSCC patients. The HOX gene levels were tested by microarray and validated by qRT-PCR in paired cancerous and adjacent noncancerous LSCC tissue samples. The microarray testing data of 39 HOX genes revealed 15 HOX genes that were at least 2-fold upregulated and 2 that were downregulated. After qRT-PCR evaluation, the three most upregulated genes (HOXB9, HOXB13, and HOXD13) were selected for tissue microarray (TMA) analysis. The correlations between the HOXB9, HOXB13, and HOXD13 expression levels and both clinicopathological features and prognosis were analyzed. Three HOX gene expression levels were markedly increased in LSCC tissues compared with adjacent noncancerous tissues (P < 0.001). HOXB9 was found to correlate with histological grade (P < 0.01) and prognosis (P < 0.01) in LSCC. In conclusion, this study revealed that HOXB9, HOXB13, and HOXD13 were upregulated and may play important roles in LSCC. Moreover, HOXB9 may serve as a novel marker of poor prognosis and a potential therapeutic target in LSCC patients. PMID:28808656

  3. A comparative study of RNA-Seq and microarray data analysis on the two examples of rectal-cancer patients and Burkitt Lymphoma cells.

    PubMed

    Wolff, Alexander; Bayerlová, Michaela; Gaedcke, Jochen; Kube, Dieter; Beißbarth, Tim

    2018-01-01

    Pipeline comparisons for gene expression data are highly valuable for applied real data analyses, as they enable the selection of suitable analysis strategies for the dataset at hand. Such pipelines for RNA-Seq data should include mapping of reads, counting and differential gene expression analysis or preprocessing, normalization and differential gene expression in case of microarray analysis, in order to give a global insight into pipeline performances. Four commonly used RNA-Seq pipelines (STAR/HTSeq-Count/edgeR, STAR/RSEM/edgeR, Sailfish/edgeR, TopHat2/Cufflinks/CuffDiff)) were investigated on multiple levels (alignment and counting) and cross-compared with the microarray counterpart on the level of gene expression and gene ontology enrichment. For these comparisons we generated two matched microarray and RNA-Seq datasets: Burkitt Lymphoma cell line data and rectal cancer patient data. The overall mapping rate of STAR was 98.98% for the cell line dataset and 98.49% for the patient dataset. Tophat's overall mapping rate was 97.02% and 96.73%, respectively, while Sailfish had only an overall mapping rate of 84.81% and 54.44%. The correlation of gene expression in microarray and RNA-Seq data was moderately worse for the patient dataset (ρ = 0.67-0.69) than for the cell line dataset (ρ = 0.87-0.88). An exception were the correlation results of Cufflinks, which were substantially lower (ρ = 0.21-0.29 and 0.34-0.53). For both datasets we identified very low numbers of differentially expressed genes using the microarray platform. For RNA-Seq we checked the agreement of differentially expressed genes identified in the different pipelines and of GO-term enrichment results. In conclusion the combination of STAR aligner with HTSeq-Count followed by STAR aligner with RSEM and Sailfish generated differentially expressed genes best suited for the dataset at hand and in agreement with most of the other transcriptomics pipelines.

  4. Design of coupled mace filters for optical pattern recognition using practical spatial light modulators

    NASA Technical Reports Server (NTRS)

    Rajan, P. K.; Khan, Ajmal

    1993-01-01

    Spatial light modulators (SLMs) are being used in correlation-based optical pattern recognition systems to implement the Fourier domain filters. Currently available SLMs have certain limitations with respect to the realizability of these filters. Therefore, it is necessary to incorporate the SLM constraints in the design of the filters. The design of a SLM-constrained minimum average correlation energy (SLM-MACE) filter using the simulated annealing-based optimization technique was investigated. The SLM-MACE filter was synthesized for three different types of constraints. The performance of the filter was evaluated in terms of its recognition (discrimination) capabilities using computer simulations. The correlation plane characteristics of the SLM-MACE filter were found to be reasonably good. The SLM-MACE filter yielded far better results than the analytical MACE filter implemented on practical SLMs using the constrained magnitude technique. Further, the filter performance was evaluated in the presence of noise in the input test images. This work demonstrated the need to include the SLM constraints in the filter design. Finally, a method is suggested to reduce the computation time required for the synthesis of the SLM-MACE filter.

  5. Five omic technologies are concordant in differentiating the biochemical characteristics of the berries of five grapevine (Vitis vinifera L.) cultivars.

    PubMed

    Ghan, Ryan; Van Sluyter, Steven C; Hochberg, Uri; Degu, Asfaw; Hopper, Daniel W; Tillet, Richard L; Schlauch, Karen A; Haynes, Paul A; Fait, Aaron; Cramer, Grant R

    2015-11-16

    Grape cultivars and wines are distinguishable by their color, flavor and aroma profiles. Omic analyses (transcripts, proteins and metabolites) are powerful tools for assessing biochemical differences in biological systems. Berry skins of red- (Cabernet Sauvignon, Merlot, Pinot Noir) and white-skinned (Chardonnay, Semillon) wine grapes were harvested near optimum maturity (°Brix-to-titratable acidity ratio) from the same experimental vineyard. The cultivars were exposed to a mild, seasonal water-deficit treatment from fruit set until harvest in 2011. Identical sample aliquots were analyzed for transcripts by grapevine whole-genome oligonucleotide microarray and RNAseq technologies, proteins by nano-liquid chromatography-mass spectroscopy, and metabolites by gas chromatography-mass spectroscopy and liquid chromatography-mass spectroscopy. Principal components analysis of each of five Omic technologies showed similar results across cultivars in all Omic datasets. Comparison of the processed data of genes mapped in RNAseq and microarray data revealed a strong Pearson's correlation (0.80). The exclusion of probesets associated with genes with potential for cross-hybridization on the microarray improved the correlation to 0.93. The overall concordance of protein with transcript data was low with a Pearson's correlation of 0.27 and 0.24 for the RNAseq and microarray data, respectively. Integration of metabolite with protein and transcript data produced an expected model of phenylpropanoid biosynthesis, which distinguished red from white grapes, yet provided detail of individual cultivar differences. The mild water deficit treatment did not significantly alter the abundance of proteins or metabolites measured in the five cultivars, but did have a small effect on gene expression. The five Omic technologies were consistent in distinguishing cultivar variation. There was high concordance between transcriptomic technologies, but generally protein abundance did not correlate well with transcript abundance. The integration of multiple high-throughput Omic datasets revealed complex biochemical variation amongst five cultivars of an ancient and economically important crop species.

  6. A whole blood gene expression-based signature for smoking status

    PubMed Central

    2012-01-01

    Background Smoking is the leading cause of preventable death worldwide and has been shown to increase the risk of multiple diseases including coronary artery disease (CAD). We sought to identify genes whose levels of expression in whole blood correlate with self-reported smoking status. Methods Microarrays were used to identify gene expression changes in whole blood which correlated with self-reported smoking status; a set of significant genes from the microarray analysis were validated by qRT-PCR in an independent set of subjects. Stepwise forward logistic regression was performed using the qRT-PCR data to create a predictive model whose performance was validated in an independent set of subjects and compared to cotinine, a nicotine metabolite. Results Microarray analysis of whole blood RNA from 209 PREDICT subjects (41 current smokers, 4 quit ≤ 2 months, 64 quit > 2 months, 100 never smoked; NCT00500617) identified 4214 genes significantly correlated with self-reported smoking status. qRT-PCR was performed on 1,071 PREDICT subjects across 256 microarray genes significantly correlated with smoking or CAD. A five gene (CLDND1, LRRN3, MUC1, GOPC, LEF1) predictive model, derived from the qRT-PCR data using stepwise forward logistic regression, had a cross-validated mean AUC of 0.93 (sensitivity=0.78; specificity=0.95), and was validated using 180 independent PREDICT subjects (AUC=0.82, CI 0.69-0.94; sensitivity=0.63; specificity=0.94). Plasma from the 180 validation subjects was used to assess levels of cotinine; a model using a threshold of 10 ng/ml cotinine resulted in an AUC of 0.89 (CI 0.81-0.97; sensitivity=0.81; specificity=0.97; kappa with expression model = 0.53). Conclusion We have constructed and validated a whole blood gene expression score for the evaluation of smoking status, demonstrating that clinical and environmental factors contributing to cardiovascular disease risk can be assessed by gene expression. PMID:23210427

  7. Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm

    NASA Astrophysics Data System (ADS)

    Salameh Shreem, Salam; Abdullah, Salwani; Nazri, Mohd Zakree Ahmad

    2016-04-01

    Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers in normal tissues. This technology has received increasing attention from the bioinformatics community because of its potential in designing powerful decision-making tools for cancer diagnosis. However, the presence of thousands or tens of thousands of genes affects the predictive accuracy of this technology from the perspective of classification. Thus, a key issue in microarray data is identifying or selecting the smallest possible set of genes from the input data that can achieve good predictive accuracy for classification. In this work, we propose a two-stage selection algorithm for gene selection problems in microarray data-sets called the symmetrical uncertainty filter and harmony search algorithm wrapper (SU-HSA). Experimental results show that the SU-HSA is better than HSA in isolation for all data-sets in terms of the accuracy and achieves a lower number of genes on 6 out of 10 instances. Furthermore, the comparison with state-of-the-art methods shows that our proposed approach is able to obtain 5 (out of 10) new best results in terms of the number of selected genes and competitive results in terms of the classification accuracy.

  8. Microarray missing data imputation based on a set theoretic framework and biological knowledge.

    PubMed

    Gan, Xiangchao; Liew, Alan Wee-Chung; Yan, Hong

    2006-01-01

    Gene expressions measured using microarrays usually suffer from the missing value problem. However, in many data analysis methods, a complete data matrix is required. Although existing missing value imputation algorithms have shown good performance to deal with missing values, they also have their limitations. For example, some algorithms have good performance only when strong local correlation exists in data while some provide the best estimate when data is dominated by global structure. In addition, these algorithms do not take into account any biological constraint in their imputation. In this paper, we propose a set theoretic framework based on projection onto convex sets (POCS) for missing data imputation. POCS allows us to incorporate different types of a priori knowledge about missing values into the estimation process. The main idea of POCS is to formulate every piece of prior knowledge into a corresponding convex set and then use a convergence-guaranteed iterative procedure to obtain a solution in the intersection of all these sets. In this work, we design several convex sets, taking into consideration the biological characteristic of the data: the first set mainly exploit the local correlation structure among genes in microarray data, while the second set captures the global correlation structure among arrays. The third set (actually a series of sets) exploits the biological phenomenon of synchronization loss in microarray experiments. In cyclic systems, synchronization loss is a common phenomenon and we construct a series of sets based on this phenomenon for our POCS imputation algorithm. Experiments show that our algorithm can achieve a significant reduction of error compared to the KNNimpute, SVDimpute and LSimpute methods.

  9. Comparison of mucosal lining fluid sampling methods and influenza-specific IgA detection assays for use in human studies of influenza immunity.

    PubMed

    de Silva, Thushan I; Gould, Victoria; Mohammed, Nuredin I; Cope, Alethea; Meijer, Adam; Zutt, Ilse; Reimerink, Johan; Kampmann, Beate; Hoschler, Katja; Zambon, Maria; Tregoning, John S

    2017-10-01

    We need greater understanding of the mechanisms underlying protection against influenza virus to develop more effective vaccines. To do this, we need better, more reproducible methods of sampling the nasal mucosa. The aim of the current study was to compare levels of influenza virus A subtype-specific IgA collected using three different methods of nasal sampling. Samples were collected from healthy adult volunteers before and after LAIV immunization by nasal wash, flocked swabs and Synthetic Absorptive Matrix (SAM) strips. Influenza A virus subtype-specific IgA levels were measured by haemagglutinin binding ELISA or haemagglutinin binding microarray and the functional response was assessed by microneutralization. Nasosorption using SAM strips lead to the recovery of a more concentrated sample of material, with a significantly higher level of total and influenza H1-specific IgA. However, an equivalent percentage of specific IgA was observed with all sampling methods when normalized to the total IgA. Responses measured using a recently developed antibody microarray platform, which allows evaluation of binding to multiple influenza strains simultaneously with small sample volumes, were compared to ELISA. There was a good correlation between ELISA and microarray values. Material recovered from SAM strips was weakly neutralizing when used in an in vitro assay, with a modest correlation between the level of IgA measured by ELISA and neutralization, but a greater correlation between microarray-measured IgA and neutralizing activity. In conclusion we have tested three different methods of nasal sampling and show that flocked swabs and novel SAM strips are appropriate alternatives to traditional nasal washes for assessment of mucosal influenza humoral immunity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. ExprAlign - the identification of ESTs in non-model species by alignment of cDNA microarray expression profiles

    PubMed Central

    2009-01-01

    Background Sequence identification of ESTs from non-model species offers distinct challenges particularly when these species have duplicated genomes and when they are phylogenetically distant from sequenced model organisms. For the common carp, an environmental model of aquacultural interest, large numbers of ESTs remained unidentified using BLAST sequence alignment. We have used the expression profiles from large-scale microarray experiments to suggest gene identities. Results Expression profiles from ~700 cDNA microarrays describing responses of 7 major tissues to multiple environmental stressors were used to define a co-expression landscape. This was based on the Pearsons correlation coefficient relating each gene with all other genes, from which a network description provided clusters of highly correlated genes as 'mountains'. We show that these contain genes with known identities and genes with unknown identities, and that the correlation constitutes evidence of identity in the latter. This procedure has suggested identities to 522 of 2701 unknown carp ESTs sequences. We also discriminate several common carp genes and gene isoforms that were not discriminated by BLAST sequence alignment alone. Precision in identification was substantially improved by use of data from multiple tissues and treatments. Conclusion The detailed analysis of co-expression landscapes is a sensitive technique for suggesting an identity for the large number of BLAST unidentified cDNAs generated in EST projects. It is capable of detecting even subtle changes in expression profiles, and thereby of distinguishing genes with a common BLAST identity into different identities. It benefits from the use of multiple treatments or contrasts, and from the large-scale microarray data. PMID:19939286

  11. Accurate mask-based spatially regularized correlation filter for visual tracking

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodong; Xu, Xinping

    2017-01-01

    Recently, discriminative correlation filter (DCF)-based trackers have achieved extremely successful results in many competitions and benchmarks. These methods utilize a periodic assumption of the training samples to efficiently learn a classifier. However, this assumption will produce unwanted boundary effects, which severely degrade the tracking performance. Correlation filters with limited boundaries and spatially regularized DCFs were proposed to reduce boundary effects. However, their methods used the fixed mask or predesigned weights function, respectively, which was unsuitable for large appearance variation. We propose an accurate mask-based spatially regularized correlation filter for visual tracking. Our augmented objective can reduce the boundary effect even in large appearance variation. In our algorithm, the masking matrix is converted into the regularized function that acts on the correlation filter in frequency domain, which makes the algorithm fast convergence. Our online tracking algorithm performs favorably against state-of-the-art trackers on OTB-2015 Benchmark in terms of efficiency, accuracy, and robustness.

  12. Adapted all-numerical correlator for face recognition applications

    NASA Astrophysics Data System (ADS)

    Elbouz, M.; Bouzidi, F.; Alfalou, A.; Brosseau, C.; Leonard, I.; Benkelfat, B.-E.

    2013-03-01

    In this study, we suggest and validate an all-numerical implementation of a VanderLugt correlator which is optimized for face recognition applications. The main goal of this implementation is to take advantage of the benefits (detection, localization, and identification of a target object within a scene) of correlation methods and exploit the reconfigurability of numerical approaches. This technique requires a numerical implementation of the optical Fourier transform. We pay special attention to adapt the correlation filter to this numerical implementation. One main goal of this work is to reduce the size of the filter in order to decrease the memory space required for real time applications. To fulfil this requirement, we code the reference images with 8 bits and study the effect of this coding on the performances of several composite filters (phase-only filter, binary phase-only filter). The saturation effect has for effect to decrease the performances of the correlator for making a decision when filters contain up to nine references. Further, an optimization is proposed based for an optimized segmented composite filter. Based on this approach, we present tests with different faces demonstrating that the above mentioned saturation effect is significantly reduced while minimizing the size of the learning data base.

  13. Separate-channel analysis of two-channel microarrays: recovering inter-spot information.

    PubMed

    Smyth, Gordon K; Altman, Naomi S

    2013-05-26

    Two-channel (or two-color) microarrays are cost-effective platforms for comparative analysis of gene expression. They are traditionally analysed in terms of the log-ratios (M-values) of the two channel intensities at each spot, but this analysis does not use all the information available in the separate channel observations. Mixed models have been proposed to analyse intensities from the two channels as separate observations, but such models can be complex to use and the gain in efficiency over the log-ratio analysis is difficult to quantify. Mixed models yield test statistics for the null distributions can be specified only approximately, and some approaches do not borrow strength between genes. This article reformulates the mixed model to clarify the relationship with the traditional log-ratio analysis, to facilitate information borrowing between genes, and to obtain an exact distributional theory for the resulting test statistics. The mixed model is transformed to operate on the M-values and A-values (average log-expression for each spot) instead of on the log-expression values. The log-ratio analysis is shown to ignore information contained in the A-values. The relative efficiency of the log-ratio analysis is shown to depend on the size of the intraspot correlation. A new separate channel analysis method is proposed that assumes a constant intra-spot correlation coefficient across all genes. This approach permits the mixed model to be transformed into an ordinary linear model, allowing the data analysis to use a well-understood empirical Bayes analysis pipeline for linear modeling of microarray data. This yields statistically powerful test statistics that have an exact distributional theory. The log-ratio, mixed model and common correlation methods are compared using three case studies. The results show that separate channel analyses that borrow strength between genes are more powerful than log-ratio analyses. The common correlation analysis is the most powerful of all. The common correlation method proposed in this article for separate-channel analysis of two-channel microarray data is no more difficult to apply in practice than the traditional log-ratio analysis. It provides an intuitive and powerful means to conduct analyses and make comparisons that might otherwise not be possible.

  14. Identification of Correlated GRACE Monthly Harmonic Coefficients Using Pattern Recognition and Neural Networks

    NASA Astrophysics Data System (ADS)

    Piretzidis, D.; Sra, G.; Sideris, M. G.

    2016-12-01

    This study explores new methods for identifying correlation errors in harmonic coefficients derived from monthly solutions of the Gravity Recovery and Climate Experiment (GRACE) satellite mission using pattern recognition and neural network algorithms. These correlation errors are evidenced in the differences between monthly solutions and can be suppressed using a de-correlation filter. In all studies so far, the implementation of the de-correlation filter starts from a specific minimum order (i.e., 11 for RL04 and 38 for RL05) until the maximum order of the monthly solution examined. This implementation method has two disadvantages, namely, the omission of filtering correlated coefficients of order less than the minimum order and the filtering of uncorrelated coefficients of order higher than the minimum order. In the first case, the filtered solution is not completely free of correlated errors, whereas the second case results in a monthly solution that suffers from loss of geophysical signal. In the present study, a new method of implementing the de-correlation filter is suggested, by identifying and filtering only the coefficients that show indications of high correlation. Several numerical and geometric properties of the harmonic coefficient series of all orders are examined. Extreme cases of both correlated and uncorrelated coefficients are selected, and their corresponding properties are used to train a two-layer feed-forward neural network. The objective of the neural network is to identify and quantify the correlation by providing the probability of an order of coefficients to be correlated. Results show good performance of the neural network, both in the validation stage of the training procedure and in the subsequent use of the trained network to classify independent coefficients. The neural network is also capable of identifying correlated coefficients even when a small number of training samples and neurons are used (e.g.,100 and 10, respectively).

  15. Semimajor Axis Estimation Strategies

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Alfriend, Kyle T.; Breger, Louis; Mitchell, Megan

    2004-01-01

    This paper extends previous analysis on the impact of sensing noise for the navigation and control aspects of formation flying spacecraft. We analyze the use of Carrier-phase Differential GPS (CDGPS) in relative navigation filters, with a particular focus on the filter correlation coefficient. This work was motivated by previous publications which suggested that a "good" navigation filter would have a strong correlation (i.e., coefficient near -1) to reduce the semimajor axis (SMA) error, and therefore, the overall fuel use. However, practical experience with CDGPS-based filters has shown this strong correlation seldom occurs (typical correlations approx. -0.1), even when the estimation accuracies are very good. We derive an analytic estimate of the filter correlation coefficient and demonstrate that, for the process and sensor noises levels expected with CDGPS, the expected value will be very low. It is also demonstrated that this correlation can be improved by increasing the time step of the discrete Kalman filter, but since the balance condition is not satisfied, the SMA error also increases. These observations are verified with several linear simulations. The combination of these simulations and analysis provide new insights on the crucial role of the process noise in determining the semimajor axis knowledge.

  16. Optical correlation based pose estimation using bipolar phase grayscale amplitude spatial light modulators

    NASA Astrophysics Data System (ADS)

    Outerbridge, Gregory John, II

    Pose estimation techniques have been developed on both optical and digital correlator platforms to aid in the autonomous rendezvous and docking of spacecraft. This research has focused on the optical architecture, which utilizes high-speed bipolar-phase grayscale-amplitude spatial light modulators as the image and correlation filter devices. The optical approach has the primary advantage of optical parallel processing: an extremely fast and efficient way of performing complex correlation calculations. However, the constraints imposed on optically implementable filters makes optical correlator based posed estimation technically incompatible with the popular weighted composite filter designs successfully used on the digital platform. This research employs a much simpler "bank of filters" approach to optical pose estimation that exploits the inherent efficiency of optical correlation devices. A novel logarithmically mapped optically implementable matched filter combined with a pose search algorithm resulted in sub-degree standard deviations in angular pose estimation error. These filters were extremely simple to generate, requiring no complicated training sets and resulted in excellent performance even in the presence of significant background noise. Common edge detection and scaling of the input image was the only image pre-processing necessary for accurate pose detection at all alignment distances of interest.

  17. Grayscale Optical Correlator Workbench

    NASA Technical Reports Server (NTRS)

    Hanan, Jay; Zhou, Hanying; Chao, Tien-Hsin

    2006-01-01

    Grayscale Optical Correlator Workbench (GOCWB) is a computer program for use in automatic target recognition (ATR). GOCWB performs ATR with an accurate simulation of a hardware grayscale optical correlator (GOC). This simulation is performed to test filters that are created in GOCWB. Thus, GOCWB can be used as a stand-alone ATR software tool or in combination with GOC hardware for building (target training), testing, and optimization of filters. The software is divided into three main parts, denoted filter, testing, and training. The training part is used for assembling training images as input to a filter. The filter part is used for combining training images into a filter and optimizing that filter. The testing part is used for testing new filters and for general simulation of GOC output. The current version of GOCWB relies on the mathematical software tools from MATLAB binaries for performing matrix operations and fast Fourier transforms. Optimization of filters is based on an algorithm, known as OT-MACH, in which variables specified by the user are parameterized and the best filter is selected on the basis of an average result for correct identification of targets in multiple test images.

  18. Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.

    2008-04-15

    In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patternsmore » but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements.« less

  19. Change Detection via Selective Guided Contrasting Filters

    NASA Astrophysics Data System (ADS)

    Vizilter, Y. V.; Rubis, A. Y.; Zheltov, S. Y.

    2017-05-01

    Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample) as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (difference map) could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some smoothing operator (SO) is applied for elimination of test image details; at the second step all matched details are restored with local contrast proportional to the value of some local similarity coefficient (LSC). The guided contrasting filter was proposed based on local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, morphological correlation coefficient (MCC), mutual information, mean square MCC and geometrical correlation coefficients are applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided contrasting filters. All implemented filters provide the robustness relative to weak geometrical discrepancy of compared images. Selective guided contrasting based on morphological opening/closing and thresholded morphological correlation demonstrates the best change detection result.

  20. Detection of circuit-board components with an adaptive multiclass correlation filter

    NASA Astrophysics Data System (ADS)

    Diaz-Ramirez, Victor H.; Kober, Vitaly

    2008-08-01

    A new method for reliable detection of circuit-board components is proposed. The method is based on an adaptive multiclass composite correlation filter. The filter is designed with the help of an iterative algorithm using complex synthetic discriminant functions. The impulse response of the filter contains information needed to localize and classify geometrically distorted circuit-board components belonging to different classes. Computer simulation results obtained with the proposed method are provided and compared with those of known multiclass correlation based techniques in terms of performance criteria for recognition and classification of objects.

  1. The Diagnostic Yield of Array Comparative Genomic Hybridization Is High Regardless of Severity of Intellectual Disability/Developmental Delay in Children.

    PubMed

    D'Arrigo, Stefano; Gavazzi, Francesco; Alfei, Enrico; Zuffardi, Orsetta; Montomoli, Cristina; Corso, Barbara; Buzzi, Erika; Sciacca, Francesca L; Bulgheroni, Sara; Riva, Daria; Pantaleoni, Chiara

    2016-05-01

    Microarray-based comparative genomic hybridization is a method of molecular analysis that identifies chromosomal anomalies (or copy number variants) that correlate with clinical phenotypes. The aim of the present study was to apply a clinical score previously designated by de Vries to 329 patients with intellectual disability/developmental disorder (intellectual disability/developmental delay) referred to our tertiary center and to see whether the clinical factors are associated with a positive outcome of aCGH analyses. Another goal was to test the association between a positive microarray-based comparative genomic hybridization result and the severity of intellectual disability/developmental delay. Microarray-based comparative genomic hybridization identified structural chromosomal alterations responsible for the intellectual disability/developmental delay phenotype in 16% of our sample. Our study showed that causative copy number variants are frequently found even in cases of mild intellectual disability (30.77%). We want to emphasize the need to conduct microarray-based comparative genomic hybridization on all individuals with intellectual disability/developmental delay, regardless of the severity, because the degree of intellectual disability/developmental delay does not predict the diagnostic yield of microarray-based comparative genomic hybridization. © The Author(s) 2015.

  2. Development of a single nucleotide polymorphism DNA microarray for the detection and genotyping of the SARS coronavirus.

    PubMed

    Guo, Xi; Geng, Peng; Wang, Quan; Cao, Boyang; Liu, Bin

    2014-10-01

    Severe acute respiratory syndrome (SARS), a disease that spread widely in the world during late 2002 to 2004, severely threatened public health. Although there have been no reported infections since 2004, the extremely pathogenic SARS coronavirus (SARS-CoV), as the causative agent of SARS, has recently been identified in animals, showing the potential for the re-emergence of this disease. Previous studies showed that 27 single nucleotide polymorphism (SNP) mutations among the spike (S) gene of this virus are correlated closely with the SARS pathogenicity and epidemicity. We have developed a SNP DNA microarray in order to detect and genotype these SNPs, and to obtain related information on the pathogenicity and epidemicity of a given strain. The microarray was hybridized with PCR products amplified from cDNAs obtained from different SARS-CoV strains. We were able to detect 24 SNPs and determine the type of a given strain. The hybridization profile showed that 19 samples were detected and genotyped correctly by using our microarray, with 100% accuracy. Our microarray provides a novel method for the detection and epidemiological surveillance of SARS-CoV.

  3. Automatic Identification and Quantification of Extra-Well Fluorescence in Microarray Images.

    PubMed

    Rivera, Robert; Wang, Jie; Yu, Xiaobo; Demirkan, Gokhan; Hopper, Marika; Bian, Xiaofang; Tahsin, Tasnia; Magee, D Mitchell; Qiu, Ji; LaBaer, Joshua; Wallstrom, Garrick

    2017-11-03

    In recent studies involving NAPPA microarrays, extra-well fluorescence is used as a key measure for identifying disease biomarkers because there is evidence to support that it is better correlated with strong antibody responses than statistical analysis involving intraspot intensity. Because this feature is not well quantified by traditional image analysis software, identification and quantification of extra-well fluorescence is performed manually, which is both time-consuming and highly susceptible to variation between raters. A system that could automate this task efficiently and effectively would greatly improve the process of data acquisition in microarray studies, thereby accelerating the discovery of disease biomarkers. In this study, we experimented with different machine learning methods, as well as novel heuristics, for identifying spots exhibiting extra-well fluorescence (rings) in microarray images and assigning each ring a grade of 1-5 based on its intensity and morphology. The sensitivity of our final system for identifying rings was found to be 72% at 99% specificity and 98% at 92% specificity. Our system performs this task significantly faster than a human, while maintaining high performance, and therefore represents a valuable tool for microarray image analysis.

  4. Development of a low-cost detection method for miRNA microarray.

    PubMed

    Li, Wei; Zhao, Botao; Jin, Youxin; Ruan, Kangcheng

    2010-04-01

    MicroRNA (miRNA) microarray is a powerful tool to explore the expression profiling of miRNA. The current detection method used in miRNA microarray is mainly fluorescence based, which usually requires costly detection system such as laser confocal scanner of tens of thousands of dollars. Recently, we developed a low-cost yet sensitive detection method for miRNA microarray based on enzyme-linked assay. In this approach, the biotinylated miRNAs were captured by the corresponding oligonucleotide probes immobilized on microarray slide; and then the biotinylated miRNAs would capture streptavidin-conjugated alkaline phosphatase. A purple-black precipitation on each biotinylated miRNA spot was produced by the enzyme catalytic reaction. It could be easily detected by a charge-coupled device digital camera mounted on a microscope, which lowers the detection cost more than 100 fold compared with that of fluorescence method. Our data showed that signal intensity of the spot correlates well with the biotinylated miRNA concentration and the detection limit for miRNAs is at least 0.4 fmol and the detection dynamic range spans about 2.5 orders of magnitude, which is comparable to that of fluorescence method.

  5. Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data.

    PubMed

    Łastowska, M; Viprey, V; Santibanez-Koref, M; Wappler, I; Peters, H; Cullinane, C; Roberts, P; Hall, A G; Tweddle, D A; Pearson, A D J; Lewis, I; Burchill, S A; Jackson, M S

    2007-11-22

    Identifying genes, whose expression is consistently altered by chromosomal gains or losses, is an important step in defining genes of biological relevance in a wide variety of tumour types. However, additional criteria are needed to discriminate further among the large number of candidate genes identified. This is particularly true for neuroblastoma, where multiple genomic copy number changes of proven prognostic value exist. We have used Affymetrix microarrays and a combination of fluorescent in situ hybridization and single nucleotide polymorphism (SNP) microarrays to establish expression profiles and delineate copy number alterations in 30 primary neuroblastomas. Correlation of microarray data with patient survival and analysis of expression within rodent neuroblastoma cell lines were then used to define further genes likely to be involved in the disease process. Using this approach, we identify >1000 genes within eight recurrent genomic alterations (loss of 1p, 3p, 4p, 10q and 11q, 2p gain, 17q gain, and the MYCN amplicon) whose expression is consistently altered by copy number change. Of these, 84 correlate with patient survival, with the minimal regions of 17q gain and 4p loss being enriched significantly for such genes. These include genes involved in RNA and DNA metabolism, and apoptosis. Orthologues of all but one of these genes on 17q are overexpressed in rodent neuroblastoma cell lines. A significant excess of SNPs whose copy number correlates with survival is also observed on proximal 4p in stage 4 tumours, and we find that deletion of 4p is associated with improved outcome in an extended cohort of tumours. These results define the major impact of genomic copy number alterations upon transcription within neuroblastoma, and highlight genes on distal 17q and proximal 4p for downstream analyses. They also suggest that integration of discriminators, such as survival and comparative gene expression, with microarray data may be useful in the identification of critical genes within regions of loss or gain in many human cancers.

  6. Development and validation of a gene expression oligo microarray for the gilthead sea bream (Sparus aurata).

    PubMed

    Ferraresso, Serena; Vitulo, Nicola; Mininni, Alba N; Romualdi, Chiara; Cardazzo, Barbara; Negrisolo, Enrico; Reinhardt, Richard; Canario, Adelino V M; Patarnello, Tomaso; Bargelloni, Luca

    2008-12-03

    Aquaculture represents the most sustainable alternative of seafood supply to substitute for the declining marine fisheries, but severe production bottlenecks remain to be solved. The application of genomic technologies offers much promise to rapidly increase our knowledge on biological processes in farmed species and overcome such bottlenecks. Here we present an integrated platform for mRNA expression profiling in the gilthead sea bream (Sparus aurata), a marine teleost of great importance for aquaculture. A public data base was constructed, consisting of 19,734 unique clusters (3,563 contigs and 16,171 singletons). Functional annotation was obtained for 8,021 clusters. Over 4,000 sequences were also associated with a GO entry. Two 60mer probes were designed for each gene and in-situ synthesized on glass slides using Agilent SurePrint technology. Platform reproducibility and accuracy were assessed on two early stages of sea bream development (one-day and four days old larvae). Correlation between technical replicates was always > 0.99, with strong positive correlation between paired probes. A two class SAM test identified 1,050 differentially expressed genes between the two developmental stages. Functional analysis suggested that down-regulated transcripts (407) in older larvae are mostly essential/housekeeping genes, whereas tissue-specific genes are up-regulated in parallel with the formation of key organs (eye, digestive system). Cross-validation of microarray data was carried out using quantitative qRT-PCR on 11 target genes, selected to reflect the whole range of fold-change and both up-regulated and down-regulated genes. A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates. Good concordance between qRT-PCR and microarray data was observed between 2- and 7-fold change, while fold-change compression in the microarray was present for differences greater than 10-fold in the qRT-PCR. A highly reliable oligo-microarray platform was developed and validated for the gilthead sea bream despite the presently limited knowledge of the species transcriptome. Because of the flexible design this array will be able to accommodate additional probes as soon as novel unique transcripts are available.

  7. Spectral optimized asymmetric segmented phase-only correlation filter.

    PubMed

    Leonard, I; Alfalou, A; Brosseau, C

    2012-05-10

    We suggest a new type of optimized composite filter, i.e., the asymmetric segmented phase-only filter (ASPOF), for improving the effectiveness of a VanderLugt correlator (VLC) when used for face identification. Basically, it consists in merging several reference images after application of a specific spectral optimization method. After segmentation of the spectral filter plane to several areas, each area is assigned to a single winner reference according to a new optimized criterion. The point of the paper is to show that this method offers a significant performance improvement on standard composite filters for face identification. We first briefly revisit composite filters [adapted, phase-only, inverse, compromise optimal, segmented, minimum average correlation energy, optimal trade-off maximum average correlation, and amplitude-modulated phase-only (AMPOF)], which are tools of choice for face recognition based on correlation techniques, and compare their performances with those of the ASPOF. We illustrate some of the drawbacks of current filters for several binary and grayscale image identifications. Next, we describe the optimization steps and introduce the ASPOF that can overcome these technical issues to improve the quality and the reliability of the correlation-based decision. We derive performance measures, i.e., PCE values and receiver operating characteristic curves, to confirm consistency of the results. We numerically find that this filter increases the recognition rate and decreases the false alarm rate. The results show that the discrimination of the ASPOF is comparable to that of the AMPOF, but the ASPOF is more robust than the trade-off maximum average correlation height against rotation and various types of noise sources. Our method has several features that make it amenable to experimental implementation using a VLC.

  8. MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus.

    PubMed

    Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild

    2009-07-01

    Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions.

  9. A proposed metric for assessing the measurement quality of individual microarrays

    PubMed Central

    Kim, Kyoungmi; Page, Grier P; Beasley, T Mark; Barnes, Stephen; Scheirer, Katherine E; Allison, David B

    2006-01-01

    Background High-density microarray technology is increasingly applied to study gene expression levels on a large scale. Microarray experiments rely on several critical steps that may introduce error and uncertainty in analyses. These steps include mRNA sample extraction, amplification and labeling, hybridization, and scanning. In some cases this may be manifested as systematic spatial variation on the surface of microarray in which expression measurements within an individual array may vary as a function of geographic position on the array surface. Results We hypothesized that an index of the degree of spatiality of gene expression measurements associated with their physical geographic locations on an array could indicate the summary of the physical reliability of the microarray. We introduced a novel way to formulate this index using a statistical analysis tool. Our approach regressed gene expression intensity measurements on a polynomial response surface of the microarray's Cartesian coordinates. We demonstrated this method using a fixed model and presented results from real and simulated datasets. Conclusion We demonstrated the potential of such a quantitative metric for assessing the reliability of individual arrays. Moreover, we showed that this procedure can be incorporated into laboratory practice as a means to set quality control specifications and as a tool to determine whether an array has sufficient quality to be retained in terms of spatial correlation of gene expression measurements. PMID:16430768

  10. Gas filter correlation radiometry: Report of panel

    NASA Technical Reports Server (NTRS)

    Reichle, Henry G., Jr.; Barringer, A. A.; Nichols, Ralph; Russell, James M., III

    1987-01-01

    To measure the concentration of a gas in the troposphere, the gas filter radiometer correlates the pattern of the spectral lines of a sample of gas contained within the instrument with the pattern of the spectral lines in the upwelling radiation. A schematic diagram of a generalized gas filter radiometer is shown. Three instruments (the Gas Filter Radiometer, GFR; the Halogen Occultation Experiment, HALOE; and the Gas Filter Correlation Spectrometer, GASCOFIL) that have application to remotely measuring tropospheric constituents are described. A set of preliminary calculations to determine the feasibility of performing a multiple-layer, tropospheric carbon monoxide measurement experiment was performed. It can be seen that a three-layer measurement in the troposphere is possible.

  11. Gas filter correlation radiometry: Report of panel

    NASA Astrophysics Data System (ADS)

    Reichle, Henry G., Jr.; Barringer, A. A.; Nichols, Ralph; Russell, James M., III

    1987-02-01

    To measure the concentration of a gas in the troposphere, the gas filter radiometer correlates the pattern of the spectral lines of a sample of gas contained within the instrument with the pattern of the spectral lines in the upwelling radiation. A schematic diagram of a generalized gas filter radiometer is shown. Three instruments (the Gas Filter Radiometer, GFR; the Halogen Occultation Experiment, HALOE; and the Gas Filter Correlation Spectrometer, GASCOFIL) that have application to remotely measuring tropospheric constituents are described. A set of preliminary calculations to determine the feasibility of performing a multiple-layer, tropospheric carbon monoxide measurement experiment was performed. It can be seen that a three-layer measurement in the troposphere is possible.

  12. Comparative Analysis of CNV Calling Algorithms: Literature Survey and a Case Study Using Bovine High-Density SNP Data.

    PubMed

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Song, Jiuzhou; Liu, George E

    2013-06-25

    Copy number variations (CNVs) are gains and losses of genomic sequence between two individuals of a species when compared to a reference genome. The data from single nucleotide polymorphism (SNP) microarrays are now routinely used for genotyping, but they also can be utilized for copy number detection. Substantial progress has been made in array design and CNV calling algorithms and at least 10 comparison studies in humans have been published to assess them. In this review, we first survey the literature on existing microarray platforms and CNV calling algorithms. We then examine a number of CNV calling tools to evaluate their impacts using bovine high-density SNP data. Large incongruities in the results from different CNV calling tools highlight the need for standardizing array data collection, quality assessment and experimental validation. Only after careful experimental design and rigorous data filtering can the impacts of CNVs on both normal phenotypic variability and disease susceptibility be fully revealed.

  13. Relationships between the transcriptome and physiological indicators of reproduction in female rainbow trout over an annual cycle.

    PubMed

    Hook, Sharon E; Nagler, James J; Cavileer, Tim; Verducci, Joseph; Liu, Yushi; Hayton, William; Schultz, Irvin R

    2011-02-01

    Normal transcriptomic patterns along the brain-pituitary-gonad-liver (BPGL) axis should be better characterized if endocrine-disrupting compound-induced changes in gene expression are to be understood. Female rainbow trout were studied over a complete year-long reproductive cycle. Tissue samples from pituitary, ovary, and liver were collected for microarray analysis using the 16K Genomic Research on Atlantic Salmon Project (GRASP) microarray and for quantitative polymerase chain reaction measures of estrogen receptor (ER) isoform messenger RNA (mRNA) levels. Plasma was collected to determine levels of circulating estradiol-17β (E2), follicle-stimulating hormone (FSH), and luteinizing hormone (LH). As an a priori hypothesis, changes in gene expression were correlated to either circulating levels of E2, FSH, and LH, or ER mRNAs quantified by quantitative polymerase chain reaction. In the liver, most transcriptomic patterns correlated to levels of either E2, LH, or ERs. Fewer ovarian transcripts could be correlated to levels of E2, ERα, or FSH. No significant associations were obvious in the pituitary. As a post hoc hypothesis, changes in transcript abundance were compared with microarray features with known roles in gonadal maturation. Many altered transcripts in the ovary correlated to transcript levels of estradiol 17-beta-dehydrogenase 8 or 17 B HSD12, or to glycoprotein alpha chain 1 or 2. In the pituitary, genes involved with the growth axis (e.g., growth hormone, insulin-related growth factor binding protein) correlated with the most transcripts. These results suggest that transcriptional networks along the BPGL axis may be regulated by factors other than circulating steroid hormones. © 2010 SETAC.

  14. A Priori Analyses of Three Subgrid-Scale Models for One-Parameter Families of Filters

    NASA Technical Reports Server (NTRS)

    Pruett, C. David; Adams, Nikolaus A.

    1998-01-01

    The decay of isotropic turbulence a compressible flow is examined by direct numerical simulation (DNS). A priori analyses of the DNS data are then performed to evaluate three subgrid-scale (SGS) models for large-eddy simulation (LES): a generalized Smagorinsky model (M1), a stress-similarity model (M2), and a gradient model (M3). The models exploit one-parameter second- or fourth-order filters of Pade type, which permit the cutoff wavenumber k(sub c) to be tuned independently of the grid increment (delta)x. The modeled (M) and exact (E) SGS-stresses are compared component-wise by correlation coefficients of the form C(E,M) computed over the entire three-dimensional fields. In general, M1 correlates poorly against exact stresses (C < 0.2), M3 correlates moderately well (C approx. 0.6), and M2 correlates remarkably well (0.8 < C < 1.0). Specifically, correlations C(E, M2) are high provided the grid and test filters are of the same order. Moreover, the highest correlations (C approx.= 1.0) result whenever the grid and test filters are identical (in both order and cutoff). Finally, present results reveal the exact SGS stresses obtained by grid filters of differing orders to be only moderately well correlated. Thus, in LES the model should not be specified independently of the filter.

  15. Identification of new autoantigens for primary biliary cirrhosis using human proteome microarrays.

    PubMed

    Hu, Chao-Jun; Song, Guang; Huang, Wei; Liu, Guo-Zhen; Deng, Chui-Wen; Zeng, Hai-Pan; Wang, Li; Zhang, Feng-Chun; Zhang, Xuan; Jeong, Jun Seop; Blackshaw, Seth; Jiang, Li-Zhi; Zhu, Heng; Wu, Lin; Li, Yong-Zhe

    2012-09-01

    Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease of unknown etiology and is considered to be an autoimmune disease. Autoantibodies are important tools for accurate diagnosis of PBC. Here, we employed serum profiling analysis using a human proteome microarray composed of about 17,000 full-length unique proteins and identified 23 proteins that correlated with PBC. To validate these results, we fabricated a PBC-focused microarray with 21 of these newly identified candidates and nine additional known PBC antigens. By screening the PBC microarrays with additional cohorts of 191 PBC patients and 321 controls (43 autoimmune hepatitis, 55 hepatitis B virus, 31 hepatitis C virus, 48 rheumatoid arthritis, 45 systematic lupus erythematosus, 49 systemic sclerosis, and 50 healthy), six proteins were confirmed as novel PBC autoantigens with high sensitivities and specificities, including hexokinase-1 (isoforms I and II), Kelch-like protein 7, Kelch-like protein 12, zinc finger and BTB domain-containing protein 2, and eukaryotic translation initiation factor 2C, subunit 1. To facilitate clinical diagnosis, we developed ELISA for Kelch-like protein 12 and zinc finger and BTB domain-containing protein 2 and tested large cohorts (297 PBC and 637 control sera) to confirm the sensitivities and specificities observed in the microarray-based assays. In conclusion, our research showed that a strategy using high content protein microarray combined with a smaller but more focused protein microarray can effectively identify and validate novel PBC-specific autoantigens and has the capacity to be translated to clinical diagnosis by means of an ELISA-based method.

  16. Systematic analysis of microarray datasets to identify Parkinson's disease‑associated pathways and genes.

    PubMed

    Feng, Yinling; Wang, Xuefeng

    2017-03-01

    In order to investigate commonly disturbed genes and pathways in various brain regions of patients with Parkinson's disease (PD), microarray datasets from previous studies were collected and systematically analyzed. Different normalization methods were applied to microarray datasets from different platforms. A strategy combining gene co‑expression networks and clinical information was adopted, using weighted gene co‑expression network analysis (WGCNA) to screen for commonly disturbed genes in different brain regions of patients with PD. Functional enrichment analysis of commonly disturbed genes was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Co‑pathway relationships were identified with Pearson's correlation coefficient tests and a hypergeometric distribution‑based test. Common genes in pathway pairs were selected out and regarded as risk genes. A total of 17 microarray datasets from 7 platforms were retained for further analysis. Five gene coexpression modules were identified, containing 9,745, 736, 233, 101 and 93 genes, respectively. One module was significantly correlated with PD samples and thus the 736 genes it contained were considered to be candidate PD‑associated genes. Functional enrichment analysis demonstrated that these genes were implicated in oxidative phosphorylation and PD. A total of 44 pathway pairs and 52 risk genes were revealed, and a risk gene pathway relationship network was constructed. Eight modules were identified and were revealed to be associated with PD, cancers and metabolism. A number of disturbed pathways and risk genes were unveiled in PD, and these findings may help advance understanding of PD pathogenesis.

  17. Edge-based correlation image registration for multispectral imaging

    DOEpatents

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  18. Construct and Compare Gene Coexpression Networks with DAPfinder and DAPview.

    PubMed

    Skinner, Jeff; Kotliarov, Yuri; Varma, Sudhir; Mine, Karina L; Yambartsev, Anatoly; Simon, Richard; Huyen, Yentram; Morgun, Andrey

    2011-07-14

    DAPfinder and DAPview are novel BRB-ArrayTools plug-ins to construct gene coexpression networks and identify significant differences in pairwise gene-gene coexpression between two phenotypes. Each significant difference in gene-gene association represents a Differentially Associated Pair (DAP). Our tools include several choices of filtering methods, gene-gene association metrics, statistical testing methods and multiple comparison adjustments. Network results are easily displayed in Cytoscape. Analyses of glioma experiments and microarray simulations demonstrate the utility of these tools. DAPfinder is a new friendly-user tool for reconstruction and comparison of biological networks.

  19. Three field tests of a gas filter correlation radiometer

    NASA Technical Reports Server (NTRS)

    Campbell, S. A.; Casas, J. C.; Condon, E. P.

    1977-01-01

    Test flights to remotely measure nonurban carbon monoxide (CO) concentrations by gas filter correlation radiometry are discussed. The inferred CO concentrations obtained through use of the Gas Filter Correlation Radiometer (GFCR) agreed with independent measurements obtained by gas chromatography air sample bottle analysis to within 20 percent. The equipment flown on board the aircraft, the flight test procedure, the gas chromatograph direct air sampling procedure, and the GFCR data analysis procedure are reported.

  20. An Efficient Microarray-Based Genotyping Platform for the Identification of Drug-Resistance Mutations in Majority and Minority Subpopulations of HIV-1 Quasispecies.

    PubMed

    Martín, Verónica; Perales, Celia; Fernández-Algar, María; Dos Santos, Helena G; Garrido, Patricia; Pernas, María; Parro, Víctor; Moreno, Miguel; García-Pérez, Javier; Alcamí, José; Torán, José Luis; Abia, David; Domingo, Esteban; Briones, Carlos

    2016-01-01

    The response of human immunodeficiency virus type 1 (HIV-1) quasispecies to antiretroviral therapy is influenced by the ensemble of mutants that composes the evolving population. Low-abundance subpopulations within HIV-1 quasispecies may determine the viral response to the administered drug combinations. However, routine sequencing assays available to clinical laboratories do not recognize HIV-1 minority variants representing less than 25% of the population. Although several alternative and more sensitive genotyping techniques have been developed, including next-generation sequencing (NGS) methods, they are usually very time consuming, expensive and require highly trained personnel, thus becoming unrealistic approaches in daily clinical practice. Here we describe the development and testing of a HIV-1 genotyping DNA microarray that detects and quantifies, in majority and minority viral subpopulations, relevant mutations and amino acid insertions in 42 codons of the pol gene associated with drug- and multidrug-resistance to protease (PR) and reverse transcriptase (RT) inhibitors. A customized bioinformatics protocol has been implemented to analyze the microarray hybridization data by including a new normalization procedure and a stepwise filtering algorithm, which resulted in the highly accurate (96.33%) detection of positive/negative signals. This microarray has been tested with 57 subtype B HIV-1 clinical samples extracted from multi-treated patients, showing an overall identification of 95.53% and 89.24% of the queried PR and RT codons, respectively, and enough sensitivity to detect minority subpopulations representing as low as 5-10% of the total quasispecies. The developed genotyping platform represents an efficient diagnostic and prognostic tool useful to personalize antiviral treatments in clinical practice.

  1. Aberrant expression of long noncoding RNAs in cumulus cells isolated from PCOS patients.

    PubMed

    Huang, Xin; Hao, Cuifang; Bao, Hongchu; Wang, Meimei; Dai, Huangguan

    2016-01-01

    To describe the long noncoding RNA (lncRNA) profiles in cumulus cells isolated from polycystic ovary syndrome (PCOS) patients by employing a microarray and in-depth bioinformatics analysis. This information will help us understand the occurrence and development of PCOS. In this study, we used a microarray to describe lncRNA profiles in cumulus cells isolated from ten patients (five PCOS and five normal women). Several differentially expressed lncRNAs were chosen to validate the microarray results by quantitative RT-PCR (qRT-PCR). Then, the differentially expressed lncRNAs were classified into three subgroups (HOX loci lncRNA, enhancer-like lncRNA, and lincRNA) to deduce their potential features. Furthermore, a lncRNA/mRNA co-expression network was constructed by using the Cytoscape software (V2.8.3, http://www.cytoscape.org/ ). We observed that 623 lncRNAs and 260 messenger RNAs (mRNAs) were significantly up- or down-regulated (≥2-fold change), and these differences could be used to discriminate cumulus cells of PCOS from those of normal patients. Five differentially expressed lncRNAs (XLOC_011402, ENST00000454271, ENST00000433673, ENST00000450294, and ENST00000432431) were selected to validate the microarray results using quantitative RT-PCR (qRT-PCR). The qRT-PCR results were consistent with the microarray data. Further analysis indicated that many differentially expressed lncRNAs were transcribed from chromosome 2 and may act as enhancers to regulate their neighboring protein-coding genes. Forty-three lncRNAs and 29 mRNAs were used to construct the coding-non-coding gene co-expression network. Most pairs positively correlated, and one mRNA correlated with one or more lncRNAs. Our study is the first to determine genome-wide lncRNA expression patterns in cumulus cells isolated from PCOS patients by microarray. The results show that clusters of lncRNAs were aberrantly expressed in cumulus cells of PCOS patients compared with those of normal women, which revealed that lncRNAs differentially expressed in PCOS and normal women may contribute to the occurrence of PCOS and affect oocyte development.

  2. METHANOL MEASUREMENT IN AUTO EXHAUST USING A GAS-FILTER CORRELATION SPECTROMETER

    EPA Science Inventory

    Spectroscopic methods offer an alternative to wet chemical methods for analysis of methanol emissions from automobiles. The gas filter correlation infrared optical analysis approach appears very promising. The report describes the gas correlation optical system constructed to ana...

  3. Optimization of OT-MACH Filter Generation for Target Recognition

    NASA Technical Reports Server (NTRS)

    Johnson, Oliver C.; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin

    2009-01-01

    An automatic Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter generator for use in a gray-scale optical correlator (GOC) has been developed for improved target detection at JPL. While the OT-MACH filter has been shown to be an optimal filter for target detection, actually solving for the optimum is too computationally intensive for multiple targets. Instead, an adaptive step gradient descent method was tested to iteratively optimize the three OT-MACH parameters, alpha, beta, and gamma. The feedback for the gradient descent method was a composite of the performance measures, correlation peak height and peak to side lobe ratio. The automated method generated and tested multiple filters in order to approach the optimal filter quicker and more reliably than the current manual method. Initial usage and testing has shown preliminary success at finding an approximation of the optimal filter, in terms of alpha, beta, gamma values. This corresponded to a substantial improvement in detection performance where the true positive rate increased for the same average false positives per image.

  4. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.

  5. Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data.

    PubMed

    Serra, Angela; Coretto, Pietro; Fratello, Michele; Tagliaferri, Roberto; Stegle, Oliver

    2018-02-15

    Microarray technology can be used to study the expression of thousands of genes across a number of different experimental conditions, usually hundreds. The underlying principle is that genes sharing similar expression patterns, across different samples, can be part of the same co-expression system, or they may share the same biological functions. Groups of genes are usually identified based on cluster analysis. Clustering methods rely on the similarity matrix between genes. A common choice to measure similarity is to compute the sample correlation matrix. Dimensionality reduction is another popular data analysis task which is also based on covariance/correlation matrix estimates. Unfortunately, covariance/correlation matrix estimation suffers from the intrinsic noise present in high-dimensional data. Sources of noise are: sampling variations, presents of outlying sample units, and the fact that in most cases the number of units is much larger than the number of genes. In this paper, we propose a robust correlation matrix estimator that is regularized based on adaptive thresholding. The resulting method jointly tames the effects of the high-dimensionality, and data contamination. Computations are easy to implement and do not require hand tunings. Both simulated and real data are analyzed. A Monte Carlo experiment shows that the proposed method is capable of remarkable performances. Our correlation metric is more robust to outliers compared with the existing alternatives in two gene expression datasets. It is also shown how the regularization allows to automatically detect and filter spurious correlations. The same regularization is also extended to other less robust correlation measures. Finally, we apply the ARACNE algorithm on the SyNTreN gene expression data. Sensitivity and specificity of the reconstructed network is compared with the gold standard. We show that ARACNE performs better when it takes the proposed correlation matrix estimator as input. The R software is available at https://github.com/angy89/RobustSparseCorrelation. aserra@unisa.it or robtag@unisa.it. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Institute for Clean Energy Technology Mississippi State University NSR&D Aged HEPA Filter Study Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacks, Robert; Stormo, Julie; Rose, Coralie

    Data have demonstrated that filter media lose tensile strength and the ability to resist the effects of moisture as a function of age. Testing of new and aged filters needs to be conducted to correlate reduction of physical strength of HEPA media to the ability of filters to withstand upset conditions. Appendix C of the Nuclear Air Cleaning Handbook provides the basis for DOE’s HEPA filter service life guidance. However, this appendix also points out the variability of data, and it does not correlate performance of aged filters to degradation of media due to age. Funding awarded by NSR&D tomore » initiate full-scale testing of aged HEPA filters addresses the issue of correlating media degradation due to age with testing of new and aged HEPA filters under a generic design basis event set of conditions. This funding has accelerated the process of describing this study via: (1) establishment of a Technical Working Group of all stakeholders, (2) development and approval of a test plan, (3) development of testing and autopsy procedures, (4) acquiring an initial set of aged filters, (5) testing the initial set of aged filters, and (6) developing the filter test report content for each filter tested. This funding was very timely and has moved the project forward by at least three years. Activities have been correlated with testing conducted under DOE-EM funding for evaluating performance envelopes for AG-1 Section FC Separator and Separatorless filters. This coordination allows correlation of results from the NSR&D Aged Filter Study with results from testing new filters of the Separator and Separatorless Filter Study. DOE-EM efforts have identified approximately 100 more filters of various ages that have been stored under Level B conditions. NSR&D funded work allows a time for rigorous review among subject matter experts before moving forward with development of the testing matrix that will be used for additional filters. The NSR&D data sets are extremely valuable in as much as establishing a selfimproving, NQA-1 program capable of advancing the service lifetime study of HEPA filters. The data and reports are available for careful and critical review by subject matter experts before the next set of filters is tested and can be found in the appendices of this final report. NSR&D funds have not only initiated the Aged HEPA Filter Study alluded to in Appendix C of the NACH, but have also enhanced the technical integrity and effectiveness of all of the follow-on testing for this long-term study.« less

  7. CLUSFAVOR 5.0: hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles

    PubMed Central

    Peterson, Leif E

    2002-01-01

    CLUSFAVOR (CLUSter and Factor Analysis with Varimax Orthogonal Rotation) 5.0 is a Windows-based computer program for hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. CLUSFAVOR 5.0 standardizes input data; sorts data according to gene-specific coefficient of variation, standard deviation, average and total expression, and Shannon entropy; performs hierarchical cluster analysis using nearest-neighbor, unweighted pair-group method using arithmetic averages (UPGMA), or furthest-neighbor joining methods, and Euclidean, correlation, or jack-knife distances; and performs principal-component analysis. PMID:12184816

  8. New Statistics for Testing Differential Expression of Pathways from Microarray Data

    NASA Astrophysics Data System (ADS)

    Siu, Hoicheong; Dong, Hua; Jin, Li; Xiong, Momiao

    Exploring biological meaning from microarray data is very important but remains a great challenge. Here, we developed three new statistics: linear combination test, quadratic test and de-correlation test to identify differentially expressed pathways from gene expression profile. We apply our statistics to two rheumatoid arthritis datasets. Notably, our results reveal three significant pathways and 275 genes in common in two datasets. The pathways we found are meaningful to uncover the disease mechanisms of rheumatoid arthritis, which implies that our statistics are a powerful tool in functional analysis of gene expression data.

  9. Combinatorial Libraries of Arrayable Single-Chain Antibodies

    NASA Astrophysics Data System (ADS)

    Benhar, Itai

    Antibodies that bind their respective targets with high affinity and specificity have proven to be essential reagents for biological research. Antibody phage display has become the leading tool for the rapid isolation of single-chain variable fragment (scFv) antibodies in vitro for research applications, but there is usually a gap between scFv isolation and its application in an array format suitable for high-throughput proteomics. In this chapter, we present our antibody phage display system where antibody isolation and scFv immobilization are facilitated by the design of the phagemid vector used as platform. In our system, the scFvs are fused at their C-termini to a cellulose-binding domain (CBD) and can be immobilized onto cellulose-based filters. This made it possible to develop a unique filter lift screen that allowed the efficient screen for multiple binding specificities, and to directly apply library-derived scFvs in an antibody spotted microarray.

  10. Multiplexed Simultaneous High Sensitivity Sensors with High-Order Mode Based on the Integration of Photonic Crystal 1 × 3 Beam Splitter and Three Different Single-Slot PCNCs.

    PubMed

    Zhou, Jian; Huang, Lijun; Fu, Zhongyuan; Sun, Fujun; Tian, Huiping

    2016-07-07

    We simulated an efficient method for the sensor array of high-sensitivity single-slot photonic crystal nanobeam cavities (PCNCs) on a silicon platform. With the combination of a well-designed photonic crystal waveguide (PhCW) filter and an elaborate single-slot PCNC, a specific high-order resonant mode was filtered for sensing. A 1 × 3 beam splitter carefully established was implemented to split channels and integrate three sensors to realize microarrays. By applying the three-dimensional finite-difference-time-domain (3D-FDTD) method, the sensitivities calculated were S₁ = 492 nm/RIU, S₂ = 244 nm/RIU, and S₃ = 552 nm/RIU, respectively. To the best of our knowledge, this is the first multiplexing design in which each sensor cite features such a high sensitivity simultaneously.

  11. Multiplexed Simultaneous High Sensitivity Sensors with High-Order Mode Based on the Integration of Photonic Crystal 1 × 3 Beam Splitter and Three Different Single-Slot PCNCs

    PubMed Central

    Zhou, Jian; Huang, Lijun; Fu, Zhongyuan; Sun, Fujun; Tian, Huiping

    2016-01-01

    We simulated an efficient method for the sensor array of high-sensitivity single-slot photonic crystal nanobeam cavities (PCNCs) on a silicon platform. With the combination of a well-designed photonic crystal waveguide (PhCW) filter and an elaborate single-slot PCNC, a specific high-order resonant mode was filtered for sensing. A 1 × 3 beam splitter carefully established was implemented to split channels and integrate three sensors to realize microarrays. By applying the three-dimensional finite-difference-time-domain (3D-FDTD) method, the sensitivities calculated were S1 = 492 nm/RIU, S2 = 244 nm/RIU, and S3 = 552 nm/RIU, respectively. To the best of our knowledge, this is the first multiplexing design in which each sensor cite features such a high sensitivity simultaneously. PMID:27399712

  12. Towards MRI microarrays.

    PubMed

    Hall, Andrew; Mundell, Victoria J; Blanco-Andujar, Cristina; Bencsik, Martin; McHale, Glen; Newton, Michael I; Cave, Gareth W V

    2010-04-14

    Superparamagnetic iron oxide nanometre scale particles have been utilised as contrast agents to image staked target binding oligonucleotide arrays using MRI to correlate the signal intensity and T(2)* relaxation times in different NMR fluids.

  13. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis.

    PubMed

    Negm, Ola H; Hamed, Mohamed R; Dilnot, Elizabeth M; Shone, Clifford C; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E; Edwards, Laura J; Tighe, Patrick J; Wilcox, Mark H; Monaghan, Tanya M

    2015-09-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis

    PubMed Central

    Negm, Ola H.; Hamed, Mohamed R.; Dilnot, Elizabeth M.; Shone, Clifford C.; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E.; Edwards, Laura J.; Tighe, Patrick J.; Wilcox, Mark H.

    2015-01-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated <10% coefficient of variation (CV). Significant correlation was observed between microarray and ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. PMID:26178385

  15. Protein microarray analysis reveals BAFF-binding autoantibodies in systemic lupus erythematosus

    PubMed Central

    Price, Jordan V.; Haddon, David J.; Kemmer, Dodge; Delepine, Guillaume; Mandelbaum, Gil; Jarrell, Justin A.; Gupta, Rohit; Balboni, Imelda; Chakravarty, Eliza F.; Sokolove, Jeremy; Shum, Anthony K.; Anderson, Mark S.; Cheng, Mickie H.; Robinson, William H.; Browne, Sarah K.; Holland, Steven M.; Baechler, Emily C.; Utz, Paul J.

    2013-01-01

    Autoantibodies against cytokines, chemokines, and growth factors inhibit normal immunity and are implicated in inflammatory autoimmune disease and diseases of immune deficiency. In an effort to evaluate serum from autoimmune and immunodeficient patients for Abs against cytokines, chemokines, and growth factors in a high-throughput and unbiased manner, we constructed a multiplex protein microarray for detection of serum factor–binding Abs and used the microarray to detect autoantibody targets in SLE. We designed a nitrocellulose-surface microarray containing human cytokines, chemokines, and other circulating proteins and demonstrated that the array permitted specific detection of serum factor–binding probes. We used the arrays to detect previously described autoantibodies against cytokines in samples from individuals with autoimmune polyendocrine syndrome type 1 and chronic mycobacterial infection. Serum profiling from individuals with SLE revealed that among several targets, elevated IgG autoantibody reactivity to B cell–activating factor (BAFF) was associated with SLE compared with control samples. BAFF reactivity correlated with the severity of disease-associated features, including IFN-α–driven SLE pathology. Our results showed that serum factor protein microarrays facilitate detection of autoantibody reactivity to serum factors in human samples and that BAFF-reactive autoantibodies may be associated with an elevated inflammatory disease state within the spectrum of SLE. PMID:24270423

  16. Design of a composite filter realizable on practical spatial light modulators

    NASA Technical Reports Server (NTRS)

    Rajan, P. K.; Ramakrishnan, Ramachandran

    1994-01-01

    Hybrid optical correlator systems use two spatial light modulators (SLM's), one at the input plane and the other at the filter plane. Currently available SLM's such as the deformable mirror device (DMD) and liquid crystal television (LCTV) SLM's exhibit arbitrarily constrained operating characteristics. The pattern recognition filters designed with the assumption that the SLM's have ideal operating characteristic may not behave as expected when implemented on the DMD or LCTV SLM's. Therefore it is necessary to incorporate the SLM constraints in the design of the filters. In this report, an iterative method is developed for the design of an unconstrained minimum average correlation energy (MACE) filter. Then using this algorithm a new approach for the design of a SLM constrained distortion invariant filter in the presence of input SLM is developed. Two different optimization algorithms are used to maximize the objective function during filter synthesis, one based on the simplex method and the other based on the Hooke and Jeeves method. Also, the simulated annealing based filter design algorithm proposed by Khan and Rajan is refined and improved. The performance of the filter is evaluated in terms of its recognition/discrimination capabilities using computer simulations and the results are compared with a simulated annealing optimization based MACE filter. The filters are designed for different LCTV SLM's operating characteristics and the correlation responses are compared. The distortion tolerance and the false class image discrimination qualities of the filter are comparable to those of the simulated annealing based filter but the new filter design takes about 1/6 of the computer time taken by the simulated annealing filter design.

  17. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE.

    PubMed

    Rao, Archana N; Grainger, David W

    2014-04-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA's persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools.

  18. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    PubMed Central

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA’s persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools. PMID:24765522

  19. Pipelined digital SAR azimuth correlator using hybrid FFT-transversal filter

    NASA Technical Reports Server (NTRS)

    Wu, C.; Liu, K. Y. (Inventor)

    1984-01-01

    A synthetic aperture radar system (SAR) having a range correlator is provided with a hybrid azimuth correlator which utilizes a block-pipe-lined fast Fourier transform (FFT). The correlator has a predetermined FFT transform size with delay elements for delaying SAR range correlated data so as to embed in the Fourier transform operation a corner-turning function as the range correlated SAR data is converted from the time domain to a frequency domain. The azimuth correlator is comprised of a transversal filter to receive the SAR data in the frequency domain, a generator for range migration compensation and azimuth reference functions, and an azimuth reference multiplier for correlation of the SAR data. Following the transversal filter is a block-pipelined inverse FFT used to restore azimuth correlated data in the frequency domain to the time domain for imaging.

  20. Comparison of global brain gene expression profiles between inbred long-sleep and inbred short-sleep mice by high-density gene array hybridization.

    PubMed

    Xu, Y; Ehringer, M; Yang, F; Sikela, J M

    2001-06-01

    Inbred long-sleep (ILS) and short-sleep (ISS) mice show significant central nervous system-mediated differences in sleep time for sedative dose of ethanol and are frequently used as a rodent model for ethanol sensitivity. In this study, we have used complementary DNA (cDNA) array hybridization methodology to identify genes that are differentially expressed between the brains of ILS and ISS mice. To carry out this analysis, we used both the gene discovery array (GDA) and the Mouse GEM 1 Microarray. GDA consists of 18,378 nonredundant mouse cDNA clones on a single nylon filter. Complex probes were prepared from total brain mRNA of ILS or ISS mice by using reverse transcription and 33P labeling. The labeled probes were hybridized in parallel to the gene array filters. Data from GDA experiments were analyzed with SQL-Plus and Oracle 8. The GEM microarray includes 8,730 sequence-verified clones on a glass chip. Two fluorescently labeled probes were used to hybridize a microarray simultaneously. Data from GEM experiments were analyzed by using the GEMTools software package (Incyte). Differentially expressed genes identified from each method were confirmed by relative quantitative reverse transcription-polymerase chain reaction (RT-PCR). A total of 41 genes or expressed sequence tags (ESTs) display significant expression level differences between brains of ILS and ISS mice after GDA, GEM1 hybridization, and quantitative RT-PCR confirmation. Among them, 18 clones were expressed higher in ILS mice, and 23 clones were expressed higher in ISS mice. The individual gene or EST's function and mapping information have been analyzed. This study identified 41 genes that are differentially expressed between brains of ILS and ISS mice. Some of them may have biological relevance in mediation of phenotypic variation between ILS and ISS mice for ethanol sensitivity. This study also demonstrates that parallel gene expression comparison with high-density cDNA arrays is a rapid and efficient way to discover potential genes and pathways involved in alcoholism and alcohol-related physiologic processes.

  1. [Expression of cell adhesion molecules in acute leukemia cell].

    PubMed

    Ju, Xiaoping; Peng, Min; Xu, Xiaoping; Lu, Shuqing; Li, Yao; Ying, Kang; Xie, Yi; Mao, Yumin; Xia, Fang

    2002-11-01

    To investigate the role of cell adhesion molecule in the development and extramedullary infiltration (EI) of acute leukemia. The expressions of neural cell adhesion molecule (NCAM) gene, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) genes in 25 acute leukemia patients bone marrow cells were detected by microarray and reverse transcriptase-polymerase chain reaction (RT-PCR). The expressions of NCAM, ICAM-1 and VCAM-1 gene were significantly higher in acute leukemia cells and leukemia cells with EI than in normal tissues and leukemia cells without EI, respectively, both by cDNA microarray and by RT-PCR. The cDNA microarray is a powerful technique in analysis of acute leukemia cells associated genes. High expressions of cell adhesion molecule genes might be correlated with leukemia pathogenesis and infiltration of acute leukemia cell.

  2. Microarray Analysis of Long Noncoding RNAs in Female Diabetic Peripheral Neuropathy Patients.

    PubMed

    Luo, Lin; Ji, Lin-Dan; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei; Xu, Jin; Zhou, Wen-Hua

    2018-01-01

    Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). Because of its controversial pathogenesis, DPN is still not diagnosed or managed properly in most patients. In this study, human lncRNA microarrays were used to identify the differentially expressed lncRNAs in DM and DPN patients, and some of the discovered lncRNAs were further validated in additional 78 samples by quantitative realtime PCR (qRT-PCR). The microarray analysis identified 446 and 1327 differentially expressed lncRNAs in DM and DPN, respectively. The KEGG pathway analysis further revealed that the differentially expressed lncRNA-coexpressed mRNAs between DPN and DM groups were significantly enriched in the MAPK signaling pathway. The lncRNA/mRNA coexpression network indicated that BDNF and TRAF2 correlated with 6 lncRNAs. The qRT-PCR confirmed the initial microarray results. These findings demonstrated that the interplay between lncRNAs and mRNA may be involved in the pathogenesis of DPN, especially the neurotrophin-MAPK signaling pathway, thus providing relevant information for future studies. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Comparison of innovative molecular approaches and standard spore assays for assessment of surface cleanliness.

    PubMed

    Cooper, Moogega; La Duc, Myron T; Probst, Alexander; Vaishampayan, Parag; Stam, Christina; Benardini, James N; Piceno, Yvette M; Andersen, Gary L; Venkateswaran, Kasthuri

    2011-08-01

    A bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarily give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces.

  4. Spotting and validation of a genome wide oligonucleotide chip with duplicate measurement of each gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomassen, Mads; Skov, Vibe; Eiriksdottir, Freyja

    2006-06-16

    The quality of DNA microarray based gene expression data relies on the reproducibility of several steps in a microarray experiment. We have developed a spotted genome wide microarray chip with oligonucleotides printed in duplicate in order to minimise undesirable biases, thereby optimising detection of true differential expression. The validation study design consisted of an assessment of the microarray chip performance using the MessageAmp and FairPlay labelling kits. Intraclass correlation coefficient (ICC) was used to demonstrate that MessageAmp was significantly more reproducible than FairPlay. Further examinations with MessageAmp revealed the applicability of the system. The linear range of the chips wasmore » three orders of magnitude, the precision was high, as 95% of measurements deviated less than 1.24-fold from the expected value, and the coefficient of variation for relative expression was 13.6%. Relative quantitation was more reproducible than absolute quantitation and substantial reduction of variance was attained with duplicate spotting. An analysis of variance (ANOVA) demonstrated no significant day-to-day variation.« less

  5. Improved methods of performing coherent optical correlation

    NASA Technical Reports Server (NTRS)

    Husain-Abidi, A. S.

    1972-01-01

    Coherent optical correlators are described in which complex spatial filters are recorded by a quasi-Fourier transform method. The high-pass spatial filtering effects (due to the dynamic range of photographic films) normally encountered in Vander Lugt type complex filters are not present in this system. Experimental results for both transmittive as well as reflective objects are presented. Experiments are also performed by illuminating the object with diffused light. A correlator using paraboloidal mirror segments as the Fourier-transforming element is also described.

  6. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M.; Herren, Kenneth A.

    2008-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  7. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Herren, Kenneth

    2007-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  8. Machine-smoking studies of cigarette filter color to estimate tar yield by visual assessment and through the use of a colorimeter.

    PubMed

    Morton, Michael J; Williams, David L; Hjorth, Heather B; Smith, Jennifer H

    2010-04-01

    This paper explores using the intensity of the stain on the end of the filter ("filter color") as a vehicle for estimating cigarette tar yield, both by instrument reading of the filter color and by visual comparison to a template. The correlation of machine-measured tar yield to filter color measured with a colorimeter was reasonably strong and was relatively unaffected by different puff volumes or different tobacco moistures. However, the correlation of filter color to machine-measured nicotine yield was affected by the moisture content of the cigarette. Filter color, as measured by a colorimeter, was generally comparable to filter extraction of either nicotine or solanesol in its correlation to machine-smoked tar yields. It was found that the color of the tar stain changes over time. Panelists could generally correctly order the filters from machine-smoked cigarettes by tar yield using the intensity of the tar stain. However, there was considerable variation in the panelist-to-panelist tar yield estimates. The wide person-to-person variation in tar yield estimates, and other factors discussed in the text could severely limit the usefulness and practicality of this approach for visually estimating the tar yield of machine-smoked cigarettes. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Fast Face-Recognition Optical Parallel Correlator Using High Accuracy Correlation Filter

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Kodate, Kashiko

    2005-11-01

    We designed and fabricated a fully automatic fast face recognition optical parallel correlator [E. Watanabe and K. Kodate: Appl. Opt. 44 (2005) 5666] based on the VanderLugt principle. The implementation of an as-yet unattained ultra high-speed system was aided by reconfiguring the system to make it suitable for easier parallel processing, as well as by composing a higher accuracy correlation filter and high-speed ferroelectric liquid crystal-spatial light modulator (FLC-SLM). In running trial experiments using this system (dubbed FARCO), we succeeded in acquiring remarkably low error rates of 1.3% for false match rate (FMR) and 2.6% for false non-match rate (FNMR). Given the results of our experiments, the aim of this paper is to examine methods of designing correlation filters and arranging database image arrays for even faster parallel correlation, underlining the issues of calculation technique, quantization bit rate, pixel size and shift from optical axis. The correlation filter has proved its excellent performance and higher precision than classical correlation and joint transform correlator (JTC). Moreover, arrangement of multi-object reference images leads to 10-channel correlation signals, as sharply marked as those of a single channel. This experiment result demonstrates great potential for achieving the process speed of 10000 face/s.

  10. Optical Correlation

    NASA Technical Reports Server (NTRS)

    Cotariu, Steven S.

    1991-01-01

    Pattern recognition may supplement or replace certain navigational aids on spacecraft in docking or landing activities. The need to correctly identify terrain features remains critical in preparation of autonomous planetary landing. One technique that may solve this problem is optical correlation. Correlation has been successfully demonstrated under ideal conditions; however, noise significantly affects the ability of the correlator to accurately identify input signals. Optical correlation in the presence of noise must be successfully demonstrated before this technology can be incorporated into system design. An optical correlator is designed and constructed using a modified 2f configuration. Liquid crystal televisions (LCTV) are used as the spatial light modulators (SLM) for both the input and filter devices. The filter LCTV is characterized and an operating curve is developed. Determination of this operating curve is critical for reduction of input noise. Correlation of live input with a programmable filter is demonstrated.

  11. Optical correlation

    NASA Astrophysics Data System (ADS)

    Cotariu, Steven S.

    1991-12-01

    Pattern recognition may supplement or replace certain navigational aids on spacecraft in docking or landing activities. The need to correctly identify terrain features remains critical in preparation of autonomous planetary landing. One technique that may solve this problem is optical correlation. Correlation has been successfully demonstrated under ideal conditions; however, noise significantly affects the ability of the correlator to accurately identify input signals. Optical correlation in the presence of noise must be successfully demonstrated before this technology can be incorporated into system design. An optical correlator is designed and constructed using a modified 2f configuration. Liquid crystal televisions (LCTV) are used as the spatial light modulators (SLM) for both the input and filter devices. The filter LCTV is characterized and an operating curve is developed. Determination of this operating curve is critical for reduction of input noise. Correlation of live input with a programmable filter is demonstrated.

  12. MEDOF - MINIMUM EUCLIDEAN DISTANCE OPTIMAL FILTER

    NASA Technical Reports Server (NTRS)

    Barton, R. S.

    1994-01-01

    The Minimum Euclidean Distance Optimal Filter program, MEDOF, generates filters for use in optical correlators. The algorithm implemented in MEDOF follows theory put forth by Richard D. Juday of NASA/JSC. This program analytically optimizes filters on arbitrary spatial light modulators such as coupled, binary, full complex, and fractional 2pi phase. MEDOF optimizes these modulators on a number of metrics including: correlation peak intensity at the origin for the centered appearance of the reference image in the input plane, signal to noise ratio including the correlation detector noise as well as the colored additive input noise, peak to correlation energy defined as the fraction of the signal energy passed by the filter that shows up in the correlation spot, and the peak to total energy which is a generalization of PCE that adds the passed colored input noise to the input image's passed energy. The user of MEDOF supplies the functions that describe the following quantities: 1) the reference signal, 2) the realizable complex encodings of both the input and filter SLM, 3) the noise model, possibly colored, as it adds at the reference image and at the correlation detection plane, and 4) the metric to analyze, here taken to be one of the analytical ones like SNR (signal to noise ratio) or PCE (peak to correlation energy) rather than peak to secondary ratio. MEDOF calculates filters for arbitrary modulators and a wide range of metrics as described above. MEDOF examines the statistics of the encoded input image's noise (if SNR or PCE is selected) and the filter SLM's (Spatial Light Modulator) available values. These statistics are used as the basis of a range for searching for the magnitude and phase of k, a pragmatically based complex constant for computing the filter transmittance from the electric field. The filter is produced for the mesh points in those ranges and the value of the metric that results from these points is computed. When the search is concluded, the values of amplitude and phase for the k whose metric was largest, as well as consistency checks, are reported. A finer search can be done in the neighborhood of the optimal k if desired. The filter finally selected is written to disk in terms of drive values, not in terms of the filter's complex transmittance. Optionally, the impulse response of the filter may be created to permit users to examine the response for the features the algorithm deems important to the recognition process under the selected metric, limitations of the filter SLM, etc. MEDOF uses the filter SLM to its greatest potential, therefore filter competence is not compromised for simplicity of computation. MEDOF is written in C-language for Sun series computers running SunOS. With slight modifications, it has been implemented on DEC VAX series computers using the DEC-C v3.30 compiler, although the documentation does not currently support this platform. MEDOF can also be compiled using Borland International Inc.'s Turbo C++ v1.0, but IBM PC memory restrictions greatly reduce the maximum size of the reference images from which the filters can be calculated. MEDOF requires a two dimensional Fast Fourier Transform (2DFFT). One 2DFFT routine which has been used successfully with MEDOF is a routine found in "Numerical Recipes in C: The Art of Scientific Programming," which is available from Cambridge University Press, New Rochelle, NY 10801. The standard distribution medium for MEDOF is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. MEDOF was developed in 1992-1993.

  13. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    DOE PAGES

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres; ...

    2014-10-23

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less

  14. Pattern recognition with composite correlation filters designed with multi-object combinatorial optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awwal, Abdul; Diaz-Ramirez, Victor H.; Cuevas, Andres

    Composite correlation filters are used for solving a wide variety of pattern recognition problems. These filters are given by a combination of several training templates chosen by a designer in an ad hoc manner. In this work, we present a new approach for the design of composite filters based on multi-objective combinatorial optimization. Given a vast search space of training templates, an iterative algorithm is used to synthesize a filter with an optimized performance in terms of several competing criteria. Furthermore, by employing a suggested binary-search procedure a filter bank with a minimum number of filters can be constructed, formore » a prespecified trade-off of performance metrics. Computer simulation results obtained with the proposed method in recognizing geometrically distorted versions of a target in cluttered and noisy scenes are discussed and compared in terms of recognition performance and complexity with existing state-of-the-art filters.« less

  15. The role of metalloendopeptidases in oropharyngeal carcinomas assessed by tissue microarray.

    PubMed

    Ribeiro, Daniel A; Nascimento, Fabio D; Fracalossi, Ana Carolina C; Noguti, Juliana; Oshima, Celina T F; Ihara, Silvia S M; Franco, Marcello F

    2011-01-01

    The goal of this study was to investigate the expression of some metalloendopeptidases in squamous cell carcinomas of the oropharynx as well as its relation to histological differentiation, staging of disease, and prognosis. Paraffin blocks from 21 primary tumors were obtained from archives of the Department of Pathology, Paulista Medical School, Federal University of Sao Paulo, UNIFESP/EPM. Immunohistochemistry was used to detect the expression of EP24.15 and EP24.16 by means of tissue microarrays. Expression of EP24.15 or EP24.16 was not correlated with the stage of disease, histopathological grading or recurrence in squamous cell carcinomas of the oropharynx. In summary, our results support the notion that EP24.15 and EP24.16 are expressed in carcinoma of the oropharynx; however, these do not appear to be suitable biomarkers for histological grading, disease stage or recurrence as depicted by tissue microarrays and immunohistochemistry.

  16. Correlational analysis for identifying genes whose regulation contributes to chronic neuropathic pain

    PubMed Central

    Persson, Anna-Karin; Gebauer, Mathias; Jordan, Suzana; Metz-Weidmann, Christiane; Schulte, Anke M; Schneider, Hans-Christoph; Ding-Pfennigdorff, Danping; Thun, Jonas; Xu, Xiao-Jun; Wiesenfeld-Hallin, Zsuzsanna; Darvasi, Ariel; Fried, Kaj; Devor, Marshall

    2009-01-01

    Background Nerve injury-triggered hyperexcitability in primary sensory neurons is considered a major source of chronic neuropathic pain. The hyperexcitability, in turn, is thought to be related to transcriptional switching in afferent cell somata. Analysis using expression microarrays has revealed that many genes are regulated in the dorsal root ganglion (DRG) following axotomy. But which contribute to pain phenotype versus other nerve injury-evoked processes such as nerve regeneration? Using the L5 spinal nerve ligation model of neuropathy we examined differential changes in gene expression in the L5 (and L4) DRGs in five mouse strains with contrasting susceptibility to neuropathic pain. We sought genes for which the degree of regulation correlates with strain-specific pain phenotype. Results In an initial experiment six candidate genes previously identified as important in pain physiology were selected for in situ hybridization to DRG sections. Among these, regulation of the Na+ channel α subunit Scn11a correlated with levels of spontaneous pain behavior, and regulation of the cool receptor Trpm8 correlated with heat hypersensibility. In a larger scale experiment, mRNA extracted from individual mouse DRGs was processed on Affymetrix whole-genome expression microarrays. Overall, 2552 ± 477 transcripts were significantly regulated in the axotomized L5DRG 3 days postoperatively. However, in only a small fraction of these was the degree of regulation correlated with pain behavior across strains. Very few genes in the "uninjured" L4DRG showed altered expression (24 ± 28). Conclusion Correlational analysis based on in situ hybridization provided evidence that differential regulation of Scn11a and Trpm8 contributes to across-strain variability in pain phenotype. This does not, of course, constitute evidence that the others are unrelated to pain. Correlational analysis based on microarray data yielded a larger "look-up table" of genes whose regulation likely contributes to pain variability. While this list is enriched in genes of potential importance for pain physiology, and is relatively free of the bias inherent in the candidate gene approach, additional steps are required to clarify which transcripts on the list are in fact of functional importance. PMID:19228393

  17. Cross-Study Homogeneity of Psoriasis Gene Expression in Skin across a Large Expression Range

    PubMed Central

    Kerkof, Keith; Timour, Martin; Russell, Christopher B.

    2013-01-01

    Background In psoriasis, only limited overlap between sets of genes identified as differentially expressed (psoriatic lesional vs. psoriatic non-lesional) was found using statistical and fold-change cut-offs. To provide a framework for utilizing prior psoriasis data sets we sought to understand the consistency of those sets. Methodology/Principal Findings Microarray expression profiling and qRT-PCR were used to characterize gene expression in PP and PN skin from psoriasis patients. cDNA (three new data sets) and cRNA hybridization (four existing data sets) data were compared using a common analysis pipeline. Agreement between data sets was assessed using varying qualitative and quantitative cut-offs to generate a DEG list in a source data set and then using other data sets to validate the list. Concordance increased from 67% across all probe sets to over 99% across more than 10,000 probe sets when statistical filters were employed. The fold-change behavior of individual genes tended to be consistent across the multiple data sets. We found that genes with <2-fold change values were quantitatively reproducible between pairs of data-sets. In a subset of transcripts with a role in inflammation changes detected by microarray were confirmed by qRT-PCR with high concordance. For transcripts with both PN and PP levels within the microarray dynamic range, microarray and qRT-PCR were quantitatively reproducible, including minimal fold-changes in IL13, TNFSF11, and TNFRSF11B and genes with >10-fold changes in either direction such as CHRM3, IL12B and IFNG. Conclusions/Significance Gene expression changes in psoriatic lesions were consistent across different studies, despite differences in patient selection, sample handling, and microarray platforms but between-study comparisons showed stronger agreement within than between platforms. We could use cut-offs as low as log10(ratio) = 0.1 (fold-change = 1.26), generating larger gene lists that validate on independent data sets. The reproducibility of PP signatures across data sets suggests that different sample sets can be productively compared. PMID:23308107

  18. Broad spectrum microarray for fingerprint-based bacterial species identification

    PubMed Central

    2010-01-01

    Background Microarrays are powerful tools for DNA-based molecular diagnostics and identification of pathogens. Most target a limited range of organisms and are based on only one or a very few genes for specific identification. Such microarrays are limited to organisms for which specific probes are available, and often have difficulty discriminating closely related taxa. We have developed an alternative broad-spectrum microarray that employs hybridisation fingerprints generated by high-density anonymous markers distributed over the entire genome for identification based on comparison to a reference database. Results A high-density microarray carrying 95,000 unique 13-mer probes was designed. Optimized methods were developed to deliver reproducible hybridisation patterns that enabled confident discrimination of bacteria at the species, subspecies, and strain levels. High correlation coefficients were achieved between replicates. A sub-selection of 12,071 probes, determined by ANOVA and class prediction analysis, enabled the discrimination of all samples in our panel. Mismatch probe hybridisation was observed but was found to have no effect on the discriminatory capacity of our system. Conclusions These results indicate the potential of our genome chip for reliable identification of a wide range of bacterial taxa at the subspecies level without laborious prior sequencing and probe design. With its high resolution capacity, our proof-of-principle chip demonstrates great potential as a tool for molecular diagnostics of broad taxonomic groups. PMID:20163710

  19. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    PubMed Central

    Viti, Federica; Merelli, Ivan; Caprera, Andrea; Lazzari, Barbara; Stella, Alessandra; Milanesi, Luciano

    2008-01-01

    Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes. PMID:18460177

  20. Multiple biomarkers in molecular oncology. II. Molecular diagnostics applications in breast cancer management.

    PubMed

    Malinowski, Douglas P

    2007-05-01

    In recent years, the application of genomic and proteomic technologies to the problem of breast cancer prognosis and the prediction of therapy response have begun to yield encouraging results. Independent studies employing transcriptional profiling of primary breast cancer specimens using DNA microarrays have identified gene expression profiles that correlate with clinical outcome in primary breast biopsy specimens. Recent advances in microarray technology have demonstrated reproducibility, making clinical applications more achievable. In this regard, one such DNA microarray device based upon a 70-gene expression signature was recently cleared by the US FDA for application to breast cancer prognosis. These DNA microarrays often employ at least 70 gene targets for transcriptional profiling and prognostic assessment in breast cancer. The use of PCR-based methods utilizing a small subset of genes has recently demonstrated the ability to predict the clinical outcome in early-stage breast cancer. Furthermore, protein-based immunohistochemistry methods have progressed from using gene clusters and gene expression profiling to smaller subsets of expressed proteins to predict prognosis in early-stage breast cancer. Beyond prognostic applications, DNA microarray-based transcriptional profiling has demonstrated the ability to predict response to chemotherapy in early-stage breast cancer patients. In this review, recent advances in the use of multiple markers for prognosis of disease recurrence in early-stage breast cancer and the prediction of therapy response will be discussed.

  1. A novel piezoelectric quartz micro-array immunosensor for detection of immunoglobulinE.

    PubMed

    Yao, Chunyan; Chen, Qinghai; Chen, Ming; Zhang, Bo; Luo, Yang; Huang, Qing; Huang, Junfu; Fu, Weiling

    2006-12-01

    A novel multi-channel 2 x 5 model of piezoelectric (PZ) micro-array immunosensor has been developed for quantitative detection of human immunoglobulinE (IgE) in serum. Every crystal unit of the fabricated piezoelectric IgE micro-array immunosensor can oscillate without interfering each other. A multi-channel 2 x 5 model micro-array immunosensor as compared with the traditional one-channel immunosensor can provide eight times higher detection speeds for IgE assay. The anti-IgE antibody is deposited on the gold electrode's surface of 10 MHz AT-cut quartz crystals by SPA (staphylococcal protein A), and serves as an antibody recognizing layer. The highly ordered antibody monolayers ensure well-controlled surface structure and offer many advantages to the performance of the sensor. The uniform amount of antibody monolayer coated by the SPA is good, and non-specific reaction caused by other immunoglobulin in sample is found. The fabricated PZ immunosensor can be used for human IgE determination in the range of 5-300 IU/ml with high precision (CV is 4%). 50 human serum samples were detected by the micro-array immunosensor, and the results agreed well with those given by the commercially ELISA test kits. The correlation coefficient is 0.94 between ELISA and PZ immunosensor. After regeneration with NaOH the coated immunosensor can be reused 6 times without appreciable loss of activity.

  2. GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature.

    PubMed

    Ye, Ning; Yin, Hengfu; Liu, Jingjing; Dai, Xiaogang; Yin, Tongming

    2015-01-01

    The huge amount of gene expression data generated by microarray and next-generation sequencing technologies present challenges to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI) toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for analyzing the gene expression signatures.

  3. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium

    PubMed Central

    2014-01-01

    We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the United States Food and Drug Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for junction discovery and differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics. At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed, for these and qPCR. Measurement performance depends on the platform and data analysis pipeline, and variation is large for transcript-level profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings. PMID:25150838

  4. Construction of robust prognostic predictors by using projective adaptive resonance theory as a gene filtering method.

    PubMed

    Takahashi, Hiro; Kobayashi, Takeshi; Honda, Hiroyuki

    2005-01-15

    For establishing prognostic predictors of various diseases using DNA microarray analysis technology, it is desired to find selectively significant genes for constructing the prognostic model and it is also necessary to eliminate non-specific genes or genes with error before constructing the model. We applied projective adaptive resonance theory (PART) to gene screening for DNA microarray data. Genes selected by PART were subjected to our FNN-SWEEP modeling method for the construction of a cancer class prediction model. The model performance was evaluated through comparison with a conventional screening signal-to-noise (S2N) method or nearest shrunken centroids (NSC) method. The FNN-SWEEP predictor with PART screening could discriminate classes of acute leukemia in blinded data with 97.1% accuracy and classes of lung cancer with 90.0% accuracy, while the predictor with S2N was only 85.3 and 70.0% or the predictor with NSC was 88.2 and 90.0%, respectively. The results have proven that PART was superior for gene screening. The software is available upon request from the authors. honda@nubio.nagoya-u.ac.jp

  5. Consistently Sampled Correlation Filters with Space Anisotropic Regularization for Visual Tracking

    PubMed Central

    Shi, Guokai; Xu, Tingfa; Luo, Jiqiang; Li, Yuankun

    2017-01-01

    Most existing correlation filter-based tracking algorithms, which use fixed patches and cyclic shifts as training and detection measures, assume that the training samples are reliable and ignore the inconsistencies between training samples and detection samples. We propose to construct and study a consistently sampled correlation filter with space anisotropic regularization (CSSAR) to solve these two problems simultaneously. Our approach constructs a spatiotemporally consistent sample strategy to alleviate the redundancies in training samples caused by the cyclical shifts, eliminate the inconsistencies between training samples and detection samples, and introduce space anisotropic regularization to constrain the correlation filter for alleviating drift caused by occlusion. Moreover, an optimization strategy based on the Gauss-Seidel method was developed for obtaining robust and efficient online learning. Both qualitative and quantitative evaluations demonstrate that our tracker outperforms state-of-the-art trackers in object tracking benchmarks (OTBs). PMID:29231876

  6. CoPub: a literature-based keyword enrichment tool for microarray data analysis.

    PubMed

    Frijters, Raoul; Heupers, Bart; van Beek, Pieter; Bouwhuis, Maurice; van Schaik, René; de Vlieg, Jacob; Polman, Jan; Alkema, Wynand

    2008-07-01

    Medline is a rich information source, from which links between genes and keywords describing biological processes, pathways, drugs, pathologies and diseases can be extracted. We developed a publicly available tool called CoPub that uses the information in the Medline database for the biological interpretation of microarray data. CoPub allows batch input of multiple human, mouse or rat genes and produces lists of keywords from several biomedical thesauri that are significantly correlated with the set of input genes. These lists link to Medline abstracts in which the co-occurring input genes and correlated keywords are highlighted. Furthermore, CoPub can graphically visualize differentially expressed genes and over-represented keywords in a network, providing detailed insight in the relationships between genes and keywords, and revealing the most influential genes as highly connected hubs. CoPub is freely accessible at http://services.nbic.nl/cgi-bin/copub/CoPub.pl.

  7. Methods for processing microarray data.

    PubMed

    Ares, Manuel

    2014-02-01

    Quality control must be maintained at every step of a microarray experiment, from RNA isolation through statistical evaluation. Here we provide suggestions for analyzing microarray data. Because the utility of the results depends directly on the design of the experiment, the first critical step is to ensure that the experiment can be properly analyzed and interpreted. What is the biological question? What is the best way to perform the experiment? How many replicates will be required to obtain the desired statistical resolution? Next, the samples must be prepared, pass quality controls for integrity and representation, and be hybridized and scanned. Also, slides with defects, missing data, high background, or weak signal must be rejected. Data from individual slides must be normalized and combined so that the data are as free of systematic bias as possible. The third phase is to apply statistical filters and tests to the data to determine genes (1) expressed above background, (2) whose expression level changes in different samples, and (3) whose RNA-processing patterns or protein associations change. Next, a subset of the data should be validated by an alternative method, such as reverse transcription-polymerase chain reaction (RT-PCR). Provided that this endorses the general conclusions of the array analysis, gene sets whose expression, splicing, polyadenylation, protein binding, etc. change in different samples can be classified with respect to function, sequence motif properties, as well as other categories to extract hypotheses for their biological roles and regulatory logic.

  8. Correlation Filters for Detection of Cellular Nuclei in Histopathology Images.

    PubMed

    Ahmad, Asif; Asif, Amina; Rajpoot, Nasir; Arif, Muhammad; Minhas, Fayyaz Ul Amir Afsar

    2017-11-21

    Nuclei detection in histology images is an essential part of computer aided diagnosis of cancers and tumors. It is a challenging task due to diverse and complicated structures of cells. In this work, we present an automated technique for detection of cellular nuclei in hematoxylin and eosin stained histopathology images. Our proposed approach is based on kernelized correlation filters. Correlation filters have been widely used in object detection and tracking applications but their strength has not been explored in the medical imaging domain up till now. Our experimental results show that the proposed scheme gives state of the art accuracy and can learn complex nuclear morphologies. Like deep learning approaches, the proposed filters do not require engineering of image features as they can operate directly on histopathology images without significant preprocessing. However, unlike deep learning methods, the large-margin correlation filters developed in this work are interpretable, computationally efficient and do not require specialized or expensive computing hardware. A cloud based webserver of the proposed method and its python implementation can be accessed at the following URL: http://faculty.pieas.edu.pk/fayyaz/software.html#corehist .

  9. A Highly Accurate Face Recognition System Using Filtering Correlation

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Ishikawa, Sayuri; Kodate, Kashiko

    2007-09-01

    The authors previously constructed a highly accurate fast face recognition optical correlator (FARCO) [E. Watanabe and K. Kodate: Opt. Rev. 12 (2005) 460], and subsequently developed an improved, super high-speed FARCO (S-FARCO), which is able to process several hundred thousand frames per second. The principal advantage of our new system is its wide applicability to any correlation scheme. Three different configurations were proposed, each depending on correlation speed. This paper describes and evaluates a software correlation filter. The face recognition function proved highly accurate, seeing that a low-resolution facial image size (64 × 64 pixels) has been successfully implemented. An operation speed of less than 10 ms was achieved using a personal computer with a central processing unit (CPU) of 3 GHz and 2 GB memory. When we applied the software correlation filter to a high-security cellular phone face recognition system, experiments on 30 female students over a period of three months yielded low error rates: 0% false acceptance rate and 2% false rejection rate. Therefore, the filtering correlation works effectively when applied to low resolution images such as web-based images or faces captured by a monitoring camera.

  10. Improved maximum average correlation height filter with adaptive log base selection for object recognition

    NASA Astrophysics Data System (ADS)

    Tehsin, Sara; Rehman, Saad; Awan, Ahmad B.; Chaudry, Qaiser; Abbas, Muhammad; Young, Rupert; Asif, Afia

    2016-04-01

    Sensitivity to the variations in the reference image is a major concern when recognizing target objects. A combinational framework of correlation filters and logarithmic transformation has been previously reported to resolve this issue alongside catering for scale and rotation changes of the object in the presence of distortion and noise. In this paper, we have extended the work to include the influence of different logarithmic bases on the resultant correlation plane. The meaningful changes in correlation parameters along with contraction/expansion in the correlation plane peak have been identified under different scenarios. Based on our research, we propose some specific log bases to be used in logarithmically transformed correlation filters for achieving suitable tolerance to different variations. The study is based upon testing a range of logarithmic bases for different situations and finding an optimal logarithmic base for each particular set of distortions. Our results show improved correlation and target detection accuracies.

  11. Bilateral filtering using the full noise covariance matrix applied to x-ray phase-contrast computed tomography.

    PubMed

    Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B

    2016-05-21

    The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.

  12. Assessing the cleanliness of surfaces: Innovative molecular approaches vs. standard spore assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, M.; Duc, M.T. La; Probst, A.

    2011-04-01

    A bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarilymore » give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces.« less

  13. Apparently low reproducibility of true differential expression discoveries in microarray studies.

    PubMed

    Zhang, Min; Yao, Chen; Guo, Zheng; Zou, Jinfeng; Zhang, Lin; Xiao, Hui; Wang, Dong; Yang, Da; Gong, Xue; Zhu, Jing; Li, Yanhui; Li, Xia

    2008-09-15

    Differentially expressed gene (DEG) lists detected from different microarray studies for a same disease are often highly inconsistent. Even in technical replicate tests using identical samples, DEG detection still shows very low reproducibility. It is often believed that current small microarray studies will largely introduce false discoveries. Based on a statistical model, we show that even in technical replicate tests using identical samples, it is highly likely that the selected DEG lists will be very inconsistent in the presence of small measurement variations. Therefore, the apparently low reproducibility of DEG detection from current technical replicate tests does not indicate low quality of microarray technology. We also demonstrate that heterogeneous biological variations existing in real cancer data will further reduce the overall reproducibility of DEG detection. Nevertheless, in small subsamples from both simulated and real data, the actual false discovery rate (FDR) for each DEG list tends to be low, suggesting that each separately determined list may comprise mostly true DEGs. Rather than simply counting the overlaps of the discovery lists from different studies for a complex disease, novel metrics are needed for evaluating the reproducibility of discoveries characterized with correlated molecular changes. Supplementaty information: Supplementary data are available at Bioinformatics online.

  14. Microarray-based DNA methylation study of Ewing's sarcoma of the bone.

    PubMed

    Park, Hye-Rim; Jung, Woon-Won; Kim, Hyun-Sook; Park, Yong-Koo

    2014-10-01

    Alterations in DNA methylation patterns are a hallmark of malignancy. However, the majority of epigenetic studies of Ewing's sarcoma have focused on the analysis of only a few candidate genes. Comprehensive studies are thus lacking and are required. The aim of the present study was to identify novel methylation markers in Ewing's sarcoma using microarray analysis. The current study reports the microarray-based DNA methylation study of 1,505 CpG sites of 807 cancer-related genes from 69 Ewing's sarcoma samples. The Illumina GoldenGate Methylation Cancer Panel I microarray was used, and with the appropriate controls (n=14), a total of 92 hypermethylated genes were identified in the Ewing's sarcoma samples. The majority of the hypermethylated genes were associated with cell adhesion, cell regulation, development and signal transduction. The overall methylation mean values were compared between patients who survived and those that did not. The overall methylation mean was significantly higher in the patients who did not survive (0.25±0.03) than in those who did (0.22±0.05) (P=0.0322). However, the overall methylation mean was not found to significantly correlate with age, gender or tumor location. GDF10 , OSM , APC and HOXA11 were the most significant differentially-methylated genes, however, their methylation levels were not found to significantly correlate with the survival rate. The DNA methylation profile of Ewing's sarcoma was characterized and 92 genes that were significantly hypermethylated were detected. A trend towards a more aggressive behavior was identified in the methylated group. The results of this study indicated that methylation may be significant in the development of Ewing's sarcoma.

  15. Microarray-based DNA methylation study of Ewing’s sarcoma of the bone

    PubMed Central

    PARK, HYE-RIM; JUNG, WOON-WON; KIM, HYUN-SOOK; PARK, YONG-KOO

    2014-01-01

    Alterations in DNA methylation patterns are a hallmark of malignancy. However, the majority of epigenetic studies of Ewing’s sarcoma have focused on the analysis of only a few candidate genes. Comprehensive studies are thus lacking and are required. The aim of the present study was to identify novel methylation markers in Ewing’s sarcoma using microarray analysis. The current study reports the microarray-based DNA methylation study of 1,505 CpG sites of 807 cancer-related genes from 69 Ewing’s sarcoma samples. The Illumina GoldenGate Methylation Cancer Panel I microarray was used, and with the appropriate controls (n=14), a total of 92 hypermethylated genes were identified in the Ewing’s sarcoma samples. The majority of the hypermethylated genes were associated with cell adhesion, cell regulation, development and signal transduction. The overall methylation mean values were compared between patients who survived and those that did not. The overall methylation mean was significantly higher in the patients who did not survive (0.25±0.03) than in those who did (0.22±0.05) (P=0.0322). However, the overall methylation mean was not found to significantly correlate with age, gender or tumor location. GDF10, OSM, APC and HOXA11 were the most significant differentially-methylated genes, however, their methylation levels were not found to significantly correlate with the survival rate. The DNA methylation profile of Ewing’s sarcoma was characterized and 92 genes that were significantly hypermethylated were detected. A trend towards a more aggressive behavior was identified in the methylated group. The results of this study indicated that methylation may be significant in the development of Ewing’s sarcoma. PMID:25202378

  16. Optimization and evaluation of T7 based RNA linear amplification protocols for cDNA microarray analysis

    PubMed Central

    Zhao, Hongjuan; Hastie, Trevor; Whitfield, Michael L; Børresen-Dale, Anne-Lise; Jeffrey, Stefanie S

    2002-01-01

    Background T7 based linear amplification of RNA is used to obtain sufficient antisense RNA for microarray expression profiling. We optimized and systematically evaluated the fidelity and reproducibility of different amplification protocols using total RNA obtained from primary human breast carcinomas and high-density cDNA microarrays. Results Using an optimized protocol, the average correlation coefficient of gene expression of 11,123 cDNA clones between amplified and unamplified samples is 0.82 (0.85 when a virtual array was created using repeatedly amplified samples to minimize experimental variation). Less than 4% of genes show changes in expression level by 2-fold or greater after amplification compared to unamplified samples. Most changes due to amplification are not systematic both within one tumor sample and between different tumors. Amplification appears to dampen the variation of gene expression for some genes when compared to unamplified poly(A)+ RNA. The reproducibility between repeatedly amplified samples is 0.97 when performed on the same day, but drops to 0.90 when performed weeks apart. The fidelity and reproducibility of amplification is not affected by decreasing the amount of input total RNA in the 0.3–3 micrograms range. Adding template-switching primer, DNA ligase, or column purification of double-stranded cDNA does not improve the fidelity of amplification. The correlation coefficient between amplified and unamplified samples is higher when total RNA is used as template for both experimental and reference RNA amplification. Conclusion T7 based linear amplification reproducibly generates amplified RNA that closely approximates original sample for gene expression profiling using cDNA microarrays. PMID:12445333

  17. Development and validation of a Luminex assay for detection of a predictive biomarker for PROSTVAC-VF therapy

    PubMed Central

    Lucas, Julie L.; Tacheny, Erin A.; Ferris, Allison; Galusha, Michelle; Srivastava, Apurva K.; Ganguly, Aniruddha; Williams, P. Mickey; Sachs, Michael C.; Thurin, Magdalena; Tricoli, James V.; Ricker, Winnie; Gildersleeve, Jeffrey C.

    2017-01-01

    Cancer therapies can provide substantially improved survival in some patients while other seemingly similar patients receive little or no benefit. Strategies to identify patients likely to respond well to a given therapy could significantly improve health care outcomes by maximizing clinical benefits while reducing toxicities and adverse effects. Using a glycan microarray assay, we recently reported that pretreatment serum levels of IgM specific to blood group A trisaccharide (BG-Atri) correlate positively with overall survival of cancer patients on PROSTVAC-VF therapy. The results suggested anti-BG-Atri IgM measured prior to treatment could serve as a biomarker for identifying patients likely to benefit from PROSTVAC-VF. For continued development and clinical application of serum IgM specific to BG-Atri as a predictive biomarker, a clinical assay was needed. In this study, we developed and validated a Luminex-based clinical assay for measuring serum IgM specific to BG-Atri. IgM levels were measured with the Luminex assay and compared to levels measured using the microarray for 126 healthy individuals and 77 prostate cancer patients. This assay provided reproducible and consistent results with low %CVs, and tolerance ranges were established for the assay. IgM levels measured using the Luminex assay were found to be highly correlated to the microarray results with R values of 0.93–0.95. This assay is a Laboratory Developed Test (LDT) and is suitable for evaluating thousands of serum samples in CLIA certified laboratories that have validated the assay. In addition, the study demonstrates that discoveries made using neoglycoprotein-based microarrays can be readily migrated to a clinical assay. PMID:28771597

  18. Melancholic depression prediction by identifying representative features in metabolic and microarray profiles with missing values.

    PubMed

    Nie, Zhi; Yang, Tao; Liu, Yashu; Li, Qingyang; Narayan, Vaibhav A; Wittenberg, Gayle; Ye, Jieping

    2015-01-01

    Recent studies have revealed that melancholic depression, one major subtype of depression, is closely associated with the concentration of some metabolites and biological functions of certain genes and pathways. Meanwhile, recent advances in biotechnologies have allowed us to collect a large amount of genomic data, e.g., metabolites and microarray gene expression. With such a huge amount of information available, one approach that can give us new insights into the understanding of the fundamental biology underlying melancholic depression is to build disease status prediction models using classification or regression methods. However, the existence of strong empirical correlations, e.g., those exhibited by genes sharing the same biological pathway in microarray profiles, tremendously limits the performance of these methods. Furthermore, the occurrence of missing values which are ubiquitous in biomedical applications further complicates the problem. In this paper, we hypothesize that the problem of missing values might in some way benefit from the correlation between the variables and propose a method to learn a compressed set of representative features through an adapted version of sparse coding which is capable of identifying correlated variables and addressing the issue of missing values simultaneously. An efficient algorithm is also developed to solve the proposed formulation. We apply the proposed method on metabolic and microarray profiles collected from a group of subjects consisting of both patients with melancholic depression and healthy controls. Results show that the proposed method can not only produce meaningful clusters of variables but also generate a set of representative features that achieve superior classification performance over those generated by traditional clustering and data imputation techniques. In particular, on both datasets, we found that in comparison with the competing algorithms, the representative features learned by the proposed method give rise to significantly improved sensitivity scores, suggesting that the learned features allow prediction with high accuracy of disease status in those who are diagnosed with melancholic depression. To our best knowledge, this is the first work that applies sparse coding to deal with high feature correlations and missing values, which are common challenges in many biomedical applications. The proposed method can be readily adapted to other biomedical applications involving incomplete and high-dimensional data.

  19. Correlation Filtering of Modal Dynamics using the Laplace Wavelet

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Lind, Rick; Brenner, Martin J.

    1997-01-01

    Wavelet analysis allows processing of transient response data commonly encountered in vibration health monitoring tasks such as aircraft flutter testing. The Laplace wavelet is formulated as an impulse response of a single mode system to be similar to data features commonly encountered in these health monitoring tasks. A correlation filtering approach is introduced using the Laplace wavelet to decompose a signal into impulse responses of single mode subsystems. Applications using responses from flutter testing of aeroelastic systems demonstrate modal parameters and stability estimates can be estimated by correlation filtering free decay data with a set of Laplace wavelets.

  20. Extending Correlation Filter-Based Visual Tracking by Tree-Structured Ensemble and Spatial Windowing.

    PubMed

    Gundogdu, Erhan; Ozkan, Huseyin; Alatan, A Aydin

    2017-11-01

    Correlation filters have been successfully used in visual tracking due to their modeling power and computational efficiency. However, the state-of-the-art correlation filter-based (CFB) tracking algorithms tend to quickly discard the previous poses of the target, since they consider only a single filter in their models. On the contrary, our approach is to register multiple CFB trackers for previous poses and exploit the registered knowledge when an appearance change occurs. To this end, we propose a novel tracking algorithm [of complexity O(D) ] based on a large ensemble of CFB trackers. The ensemble [of size O(2 D ) ] is organized over a binary tree (depth D ), and learns the target appearance subspaces such that each constituent tracker becomes an expert of a certain appearance. During tracking, the proposed algorithm combines only the appearance-aware relevant experts to produce boosted tracking decisions. Additionally, we propose a versatile spatial windowing technique to enhance the individual expert trackers. For this purpose, spatial windows are learned for target objects as well as the correlation filters and then the windowed regions are processed for more robust correlations. In our extensive experiments on benchmark datasets, we achieve a substantial performance increase by using the proposed tracking algorithm together with the spatial windowing.

  1. Excessive homozygosity identified by chromosomal microarray at a known GCDH mutation locus correlates with brain MRI abnormalities in an infant with glutaric aciduria.

    PubMed

    Peer-Zada, Abdul Ali; Al-Asmari, Ali M

    2017-08-01

    Herein, we report a conceptually novel clinical case highlighting the diagnostic implications of excessive homozygosity and its correlation with brain MRI abnormalities in an infant with GA1. The case also points a need for an extra amount of caution to be exercised when evaluating patients with "negative exomes."

  2. Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) for spaceborne measurements of CO

    NASA Astrophysics Data System (ADS)

    Johnson, Brian R.; Kampe, Thomas U.; Cook, William B.; Miecznik, Grzegorz; Novelli, Paul C.; Snell, Hilary E.; Turner-Valle, Jennifer A.

    2003-11-01

    An instrument concept for an Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) has been developed for measuring tropospheric carbon monoxide (CO) from space. The concept is based upon a correlation technique similar in nature to multi-order Fabry-Perot (FP) interferometer or gas filter radiometer techniques, which simultaneously measure atmospheric emission from several infrared vibration-rotation lines of CO. Correlation techniques provide a multiplex advantage for increased throughput, high spectral resolution and selectivity necessary for profiling tropospheric CO. Use of unconventional multilayer interference filter designs leads to improvement in CO spectral line correlation compared with the traditional FP multi-order technique, approaching the theoretical performance of gas filter correlation radiometry. In this implementation, however, the gas cell is replaced with a simple, robust solid interference filter. In addition to measuring CO, the correlation filter technique can be applied to measurements of other important gases such as carbon dioxide, nitrous oxide and methane. Imaging the scene onto a 2-D detector array enables a limited range of spectral sampling owing to the field-angle dependence of the filter transmission function. An innovative anamorphic optical system provides a relatively large instrument field-of-view for imaging along the orthogonal direction across the detector array. An important advantage of the IMOFPS concept is that it is a small, low mass and high spectral resolution spectrometer having no moving parts. A small, correlation spectrometer like IMOFPS would be well suited for global observations of CO2, CO, and CH4 from low Earth or regional observations from Geostationary orbit. A prototype instrument is in development for flight demonstration on an airborne platform with potential applications to atmospheric chemistry, wild fire and biomass burning, and chemical dispersion monitoring.

  3. Infrared target tracking via weighted correlation filter

    NASA Astrophysics Data System (ADS)

    He, Yu-Jie; Li, Min; Zhang, JinLi; Yao, Jun-Ping

    2015-11-01

    Design of an effective target tracker is an important and challenging task for many applications due to multiple factors which can cause disturbance in infrared video sequences. In this paper, an infrared target tracking method under tracking by detection framework based on a weighted correlation filter is presented. This method consists of two parts: detection and filtering. For the detection stage, we propose a sequential detection method for the infrared target based on low-rank representation. For the filtering stage, a new multi-feature weighted function which fuses different target features is proposed, which takes the importance of the different regions into consideration. The weighted function is then incorporated into a correlation filter to compute a confidence map more accurately, in order to indicate the best target location based on the detection results obtained from the first stage. Extensive experimental results on different video sequences demonstrate that the proposed method performs favorably for detection and tracking compared with baseline methods in terms of efficiency and accuracy.

  4. Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer.

    PubMed

    Beyer, Sasha J; Zhang, Xiaoli; Jimenez, Rafael E; Lee, Mei-Ling T; Richardson, Andrea L; Huang, Kun; Jhiang, Sissy M

    2011-10-11

    Na+/I- symporter (NIS)-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated. Published oligonucleotide microarray data within the National Center for Biotechnology Information Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28 human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that gene expression associated with cell surface NIS protein level could be identified. NIS mRNA levels do not vary among breast tumors or when compared to normal breast tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein levels in the ER-positive breast cancer subtype. Further investigation on genes associated with cell surface NIS protein levels within each breast cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of breast cancers patients.

  5. Evaluation of high throughput gene expression platforms using a genomic biomarker signature for prediction of skin sensitization.

    PubMed

    Forreryd, Andy; Johansson, Henrik; Albrekt, Ann-Sofie; Lindstedt, Malin

    2014-05-16

    Allergic contact dermatitis (ACD) develops upon exposure to certain chemical compounds termed skin sensitizers. To reduce the occurrence of skin sensitizers, chemicals are regularly screened for their capacity to induce sensitization. The recently developed Genomic Allergen Rapid Detection (GARD) assay is an in vitro alternative to animal testing for identification of skin sensitizers, classifying chemicals by evaluating transcriptional levels of a genomic biomarker signature. During assay development and biomarker identification, genome-wide expression analysis was applied using microarrays covering approximately 30,000 transcripts. However, the microarray platform suffers from drawbacks in terms of low sample throughput, high cost per sample and time consuming protocols and is a limiting factor for adaption of GARD into a routine assay for screening of potential sensitizers. With the purpose to simplify assay procedures, improve technical parameters and increase sample throughput, we assessed the performance of three high throughput gene expression platforms--nCounter®, BioMark HD™ and OpenArray®--and correlated their performance metrics against our previously generated microarray data. We measured the levels of 30 transcripts from the GARD biomarker signature across 48 samples. Detection sensitivity, reproducibility, correlations and overall structure of gene expression measurements were compared across platforms. Gene expression data from all of the evaluated platforms could be used to classify most of the sensitizers from non-sensitizers in the GARD assay. Results also showed high data quality and acceptable reproducibility for all platforms but only medium to poor correlations of expression measurements across platforms. In addition, evaluated platforms were superior to the microarray platform in terms of cost efficiency, simplicity of protocols and sample throughput. We evaluated the performance of three non-array based platforms using a limited set of transcripts from the GARD biomarker signature. We demonstrated that it was possible to achieve acceptable discriminatory power in terms of separation between sensitizers and non-sensitizers in the GARD assay while reducing assay costs, simplify assay procedures and increase sample throughput by using an alternative platform, providing a first step towards the goal to prepare GARD for formal validation and adaption of the assay for industrial screening of potential sensitizers.

  6. Correlation Filter Synthesis Using Neural Networks.

    DTIC Science & Technology

    1993-12-01

    trained neural networks may be understood as "smart" data interpolators, the stored filter and the filter synthesis approaches have much in common: in...the former new filters are found by searching a data bank consisting of the filters themselves; in the latter filters are formed from a distributed... data bank that contains neural network interaction strengths or weights. 1.2 Key Results and Outputs Excellent computer simulation results were

  7. Impact of HVAC filter on indoor air quality in terms of ozone removal and carbonyls generation

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Chi; Chen, Hsuan-Yu

    2014-06-01

    This study aims at detecting ozone removal rates and corresponding carbonyls generated by ozone reaction with HVAC filters from various building, i.e., shopping mall, school, and office building. Studies were conducted in a small-scale environmental chamber. By examining dust properties including organic carbon proportion and specific surface area of dusts adsorbed on filters along with ozone removal rates and carbonyls generation rate, the relationship among dust properties, ozone removal rates, and carbonyls generation was identified. The results indicate a well-defined positive correlation between ozone removal efficiency and carbonyls generation on filters, as well as a positive correlation among the mass of organic carbon on filters, ozone removal efficiency and carbonyls generations.

  8. Radiological results for samples collected on paired glass- and cellulose-fiber filters at the Sandia complex, Tonopah Test Range, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, Steve A.; Shadel, Craig A.

    Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results.more » The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.« less

  9. Designing a composite correlation filter based on iterative optimization of training images for distortion invariant face recognition

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Elbouz, M.; Alfalou, A.; Brosseau, C.

    2017-06-01

    We present a novel method to optimize the discrimination ability and noise robustness of composite filters. This method is based on the iterative preprocessing of training images which can extract boundary and detailed feature information of authentic training faces, thereby improving the peak-to-correlation energy (PCE) ratio of authentic faces and to be immune to intra-class variance and noise interference. By adding the training images directly, one can obtain a composite template with high discrimination ability and robustness for face recognition task. The proposed composite correlation filter does not involve any complicated mathematical analysis and computation which are often required in the design of correlation algorithms. Simulation tests have been conducted to check the effectiveness and feasibility of our proposal. Moreover, to assess robustness of composite filters using receiver operating characteristic (ROC) curves, we devise a new method to count the true positive and false positive rates for which the difference between PCE and threshold is involved.

  10. Real-Time Visual Tracking through Fusion Features

    PubMed Central

    Ruan, Yang; Wei, Zhenzhong

    2016-01-01

    Due to their high-speed, correlation filters for object tracking have begun to receive increasing attention. Traditional object trackers based on correlation filters typically use a single type of feature. In this paper, we attempt to integrate multiple feature types to improve the performance, and we propose a new DD-HOG fusion feature that consists of discriminative descriptors (DDs) and histograms of oriented gradients (HOG). However, fusion features as multi-vector descriptors cannot be directly used in prior correlation filters. To overcome this difficulty, we propose a multi-vector correlation filter (MVCF) that can directly convolve with a multi-vector descriptor to obtain a single-channel response that indicates the location of an object. Experiments on the CVPR2013 tracking benchmark with the evaluation of state-of-the-art trackers show the effectiveness and speed of the proposed method. Moreover, we show that our MVCF tracker, which uses the DD-HOG descriptor, outperforms the structure-preserving object tracker (SPOT) in multi-object tracking because of its high-speed and ability to address heavy occlusion. PMID:27347951

  11. Position, rotation, and intensity invariant recognizing method

    DOEpatents

    Ochoa, E.; Schils, G.F.; Sweeney, D.W.

    1987-09-15

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output plane to determine whether a particular target is present in the field of view. Preferably, a temporal pattern is imaged in the output plane with a optical detector having a plurality of pixels and a correlation coefficient for each pixel is determined by accumulating the intensity and intensity-square of each pixel. The orbiting of the constant response caused by the filter rotation is also preferably eliminated either by the use of two orthogonal mirrors pivoted correspondingly to the rotation of the filter or the attaching of a refracting wedge to the filter to remove the offset angle. Detection is preferably performed of the temporal pattern in the output plane at a plurality of different angles with angular separation sufficient to decorrelate successive frames. 1 fig.

  12. Comparison of three microarray probe annotation pipelines: differences in strategies and their effect on downstream analysis

    PubMed Central

    Neerincx, Pieter BT; Casel, Pierrot; Prickett, Dennis; Nie, Haisheng; Watson, Michael; Leunissen, Jack AM; Groenen, Martien AM; Klopp, Christophe

    2009-01-01

    Background Reliable annotation linking oligonucleotide probes to target genes is essential for functional biological analysis of microarray experiments. We used the IMAD, OligoRAP and sigReannot pipelines to update the annotation for the ARK-Genomics Chicken 20 K array as part of a joined EADGENE/SABRE workshop. In this manuscript we compare their annotation strategies and results. Furthermore, we analyse the effect of differences in updated annotation on functional analysis for an experiment involving Eimeria infected chickens and finally we propose guidelines for optimal annotation strategies. Results IMAD, OligoRAP and sigReannot update both annotation and estimated target specificity. The 3 pipelines can assign oligos to target specificity categories although with varying degrees of resolution. Target specificity is judged based on the amount and type of oligo versus target-gene alignments (hits), which are determined by filter thresholds that users can adjust based on their experimental conditions. Linking oligos to annotation on the other hand is based on rigid rules, which differ between pipelines. For 52.7% of the oligos from a subset selected for in depth comparison all pipelines linked to one or more Ensembl genes with consensus on 44.0%. In 31.0% of the cases none of the pipelines could assign an Ensembl gene to an oligo and for the remaining 16.3% the coverage differed between pipelines. Differences in updated annotation were mainly due to different thresholds for hybridisation potential filtering of oligo versus target-gene alignments and different policies for expanding annotation using indirect links. The differences in updated annotation packages had a significant effect on GO term enrichment analysis with consensus on only 67.2% of the enriched terms. Conclusion In addition to flexible thresholds to determine target specificity, annotation tools should provide metadata describing the relationships between oligos and the annotation assigned to them. These relationships can then be used to judge the varying degrees of reliability allowing users to fine-tune the balance between reliability and coverage. This is important as it can have a significant effect on functional microarray analysis as exemplified by the lack of consensus on almost one third of the terms found with GO term enrichment analysis based on updated IMAD, OligoRAP or sigReannot annotation. PMID:19615109

  13. Comparison of three microarray probe annotation pipelines: differences in strategies and their effect on downstream analysis.

    PubMed

    Neerincx, Pieter Bt; Casel, Pierrot; Prickett, Dennis; Nie, Haisheng; Watson, Michael; Leunissen, Jack Am; Groenen, Martien Am; Klopp, Christophe

    2009-07-16

    Reliable annotation linking oligonucleotide probes to target genes is essential for functional biological analysis of microarray experiments. We used the IMAD, OligoRAP and sigReannot pipelines to update the annotation for the ARK-Genomics Chicken 20 K array as part of a joined EADGENE/SABRE workshop. In this manuscript we compare their annotation strategies and results. Furthermore, we analyse the effect of differences in updated annotation on functional analysis for an experiment involving Eimeria infected chickens and finally we propose guidelines for optimal annotation strategies. IMAD, OligoRAP and sigReannot update both annotation and estimated target specificity. The 3 pipelines can assign oligos to target specificity categories although with varying degrees of resolution. Target specificity is judged based on the amount and type of oligo versus target-gene alignments (hits), which are determined by filter thresholds that users can adjust based on their experimental conditions. Linking oligos to annotation on the other hand is based on rigid rules, which differ between pipelines.For 52.7% of the oligos from a subset selected for in depth comparison all pipelines linked to one or more Ensembl genes with consensus on 44.0%. In 31.0% of the cases none of the pipelines could assign an Ensembl gene to an oligo and for the remaining 16.3% the coverage differed between pipelines. Differences in updated annotation were mainly due to different thresholds for hybridisation potential filtering of oligo versus target-gene alignments and different policies for expanding annotation using indirect links. The differences in updated annotation packages had a significant effect on GO term enrichment analysis with consensus on only 67.2% of the enriched terms. In addition to flexible thresholds to determine target specificity, annotation tools should provide metadata describing the relationships between oligos and the annotation assigned to them. These relationships can then be used to judge the varying degrees of reliability allowing users to fine-tune the balance between reliability and coverage. This is important as it can have a significant effect on functional microarray analysis as exemplified by the lack of consensus on almost one third of the terms found with GO term enrichment analysis based on updated IMAD, OligoRAP or sigReannot annotation.

  14. Kalman Filtering for Genetic Regulatory Networks with Missing Values

    PubMed Central

    Liu, Qiuhua; Lai, Tianyue; Wang, Wu

    2017-01-01

    The filter problem with missing value for genetic regulation networks (GRNs) is addressed, in which the noises exist in both the state dynamics and measurement equations; furthermore, the correlation between process noise and measurement noise is also taken into consideration. In order to deal with the filter problem, a class of discrete-time GRNs with missing value, noise correlation, and time delays is established. Then a new observation model is proposed to decrease the adverse effect caused by the missing value and to decouple the correlation between process noise and measurement noise in theory. Finally, a Kalman filtering is used to estimate the states of GRNs. Meanwhile, a typical example is provided to verify the effectiveness of the proposed method, and it turns out to be the case that the concentrations of mRNA and protein could be estimated accurately. PMID:28814967

  15. Expression profiling of cell cycle regulatory proteins in oropharyngeal carcinomas using tissue microarrays.

    PubMed

    Ribeiro, Daniel A; Nascimento, Fabio D; Fracalossi, Ana Carolina C; Gomes, Thiago S; Oshima, Celina T F; Franco, Marcello F

    2010-01-01

    The aim of this study was to investigate the expressions of cell cycle regulatory proteins such as p53, p16, p21, and Rb in squamous cell carcinoma of the oropharynx and their relation to histological differentiation, staging of disease, and prognosis. Paraffin blocks from 21 primary tumors were obtained from archives of the Department of Pathology, Paulista Medical School, Federal University of Sao Paulo, UNIFESP/EPM. Immunohistochemistry was used to detect the expression of p53, p16, p21, and Rb by means of tissue microarrays. Expression of p53, p21, p16 and Rb was not correlated with the stage of disease, histopathological grading or recurrence in squamous cell carcinoma of the oropharynx. Taken together, our results suggest that p53, p16, p21 and Rb are not reliable biomarkers for prognosis of the tumor severity or recurrence in squamous cell carcinoma of the oropharynx as depicted by tissue microarrays and immunohistochemistry.

  16. Comparison of hepatocellular carcinoma in American and Asian patients by tissue array analysis.

    PubMed

    Song, Tae-Jin; Fong, Yuman; Cho, Sung-Jin; Gönen, Mithat; Hezel, Michael; Tuorto, Scott; Choi, Sang-Yong; Kim, Young-Chul; Suh, Sung-Ock; Koo, Bum-Hwan; Chae, Yang-Seok; Jarnagin, William R; Klimstra, David S

    2012-07-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Although some epidemiologic and etiologic differences between Asian and Western HCC are known, detailed comparative studies with pathologic correlations have not been performed. Paraffin sections of resected HCC specimens from Memorial Sloan-Kettering Cancer Center and Korea University Medical Center were used to construct tissue microarrays. Immunohistochemical staining of microarray sections was performed using antibodies against markers of proliferation and regulators of cell cycle. Patient data were correlated with staining results. When comparing both cohorts, significant differences were found in expression of p53 and MDM2. In the Asian group, more frequent positive staining for p53 (24%) was observed compared with the American group (9%; P = 0.037). For MDM2, 26% of American cases stained positive compared with 2% of Asian cases (P = 0.0003). No significant differences were found in expression of Ki67, p21, p27, cyclin D1, or bcl2. Female gender, vascular invasion, and lack of viral hepatitis infection correlated with positive MDM2 staining. These data likely correlate with differences in molecular pathogenesis of HCC based on racial and regional differences. These findings may have implications in choice of molecular targeted therapies based on patient ethnicity. Copyright © 2012 Wiley Periodicals, Inc.

  17. Ultra-wideband communication system prototype using orthogonal frequency coded SAW correlators.

    PubMed

    Gallagher, Daniel R; Kozlovski, Nikolai Y; Malocha, Donald C

    2013-03-01

    This paper presents preliminary ultra-wideband (UWB) communication system results utilizing orthogonal frequency coded SAW correlators. Orthogonal frequency coding (OFC) and pseudo-noise (PN) coding provides a means for spread-spectrum UWB. The use of OFC spectrally spreads a PN sequence beyond that of CDMA; allowing for improved correlation gain. The transceiver approach is still very similar to that of the CDMA approach, but provides greater code diversity. Use of SAW correlators eliminates many of the costly components that are typically needed in the intermediate frequency (IF) section in the transmitter and receiver, and greatly reduces the signal processing requirements. Development and results of an experimental prototype system with center frequency of 250 MHz are presented. The prototype system is configured using modular RF components and benchtop pulse generator and frequency source. The SAW correlation filters used in the test setup were designed using 7 chip frequencies within the transducer. The fractional bandwidth of approximately 29% was implemented to exceed the defined UWB specification. Discussion of the filter design and results are presented and are compared with packaged device measurements. A prototype UWB system using OFC SAW correlators is demonstrated in wired and wireless configurations. OFC-coded SAW filters are used for generation of a transmitted spread-spectrum UWB and matched filter correlated reception. Autocorrelation and cross-correlation system outputs are compared. The results demonstrate the feasibility of UWB SAW correlators for use in UWB communication transceivers.

  18. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression.

    PubMed

    Zu, Xuyu; Ma, Jun; Liu, Hongxia; Liu, Feng; Tan, Chunyan; Yu, Lingling; Wang, Jue; Xie, Zhenhua; Cao, Deliang; Jiang, Yuyang

    2011-03-10

    Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P < 0.0001). ChIP and site-directed mutagenesis indicated that Pokemon induces survivin expression by binding to the GT boxes in its promoter. Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy.

  19. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression

    PubMed Central

    2011-01-01

    Introduction Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Methods Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Results Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P < 0.0001). ChIP and site-directed mutagenesis indicated that Pokemon induces survivin expression by binding to the GT boxes in its promoter. Conclusions Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy. PMID:21392388

  20. Influence of age, sex, and strength training on human muscle gene expression determined by microarray

    PubMed Central

    ROTH, STEPHEN M.; FERRELL, ROBERT E.; PETERS, DAVID G.; METTER, E. JEFFREY; HURLEY, BEN F.; ROGERS, MARC A.

    2010-01-01

    The purpose of this study was to determine the influence of age, sex, and strength training (ST) on large-scale gene expression patterns in vastus lateralis muscle biopsies using high-density cDNA microarrays and quantitative PCR. Muscle samples from sedentary young (20–30 yr) and older (65–75 yr) men and women (5 per group) were obtained before and after a 9-wk unilateral heavy resistance ST program. RNA was hybridized to cDNA filter microarrays representing ~4,000 known human genes and comparisons were made among arrays to determine differential gene expression as a result of age and sex differences, and/or response to ST. Sex had the strongest influence on muscle gene expression, with differential expression (>1.7-fold) observed for ~200 genes between men and women (~75% with higher expression in men). Age contributed to differential expression as well, as ~50 genes were identified as differentially expressed (>1.7-fold) in relation to age, representing structural, metabolic, and regulatory gene classes. Sixty-nine genes were identified as being differentially expressed (>1.7-fold) in all groups in response to ST, and the majority of these were downregulated. Quantitative PCR was employed to validate expression levels for caldesmon, SWI/SNF (BAF60b), and four-and-a-half LIM domains 1. These significant differences suggest that in the analysis of skeletal muscle gene expression issues of sex, age, and habitual physical activity must be addressed, with sex being the most critical variable. PMID:12209020

  1. Time-correlated gust loads using matched filter theory and random process theory - A new way of looking at things

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III

    1989-01-01

    This paper describes and illustrates two ways of performing time-correlated gust-load calculations. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.

  2. Time-correlated gust loads using Matched-Filter Theory and Random-Process Theory: A new way of looking at things

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Zeiler, Thomas A.; Perry, Boyd, III

    1989-01-01

    Two ways of performing time-correlated gust-load calculations are described and illustrated. The first is based on Matched Filter Theory; the second on Random Process Theory. Both approaches yield theoretically identical results and represent novel applications of the theories, are computationally fast, and may be applied to other dynamic-response problems. A theoretical development and example calculations using both Matched Filter Theory and Random Process Theory approaches are presented.

  3. Correlation of Electric Field and Critical Design Parameters for Ferroelectric Tunable Microwave Filters

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; VanKeuls, Fred W.; Miranda, Felix A.; Canedy, Chadwick L.; Aggarwal, Sanjeev; Venkatesan, Thirumalai; Ramesh, Ramamoorthy

    2000-01-01

    The correlation of electric field and critical design parameters such as the insertion loss, frequency ability return loss, and bandwidth of conductor/ferroelectric/dielectric microstrip tunable K-band microwave filters is discussed in this work. This work is based primarily on barium strontium titanate (BSTO) ferroelectric thin film based tunable microstrip filters for room temperature applications. Two new parameters which we believe will simplify the evaluation of ferroelectric thin films for tunable microwave filters, are defined. The first of these, called the sensitivity parameter, is defined as the incremental change in center frequency with incremental change in maximum applied electric field (EPEAK) in the filter. The other, the loss parameter, is defined as the incremental or decremental change in insertion loss of the filter with incremental change in maximum applied electric field. At room temperature, the Au/BSTO/LAO microstrip filters exhibited a sensitivity parameter value between 15 and 5 MHz/cm/kV. The loss parameter varied for different bias configurations used for electrically tuning the filter. The loss parameter varied from 0.05 to 0.01 dB/cm/kV at room temperature.

  4. Extrapolating target tracks

    NASA Astrophysics Data System (ADS)

    Van Zandt, James R.

    2012-05-01

    Steady-state performance of a tracking filter is traditionally evaluated immediately after a track update. However, there is commonly a further delay (e.g., processing and communications latency) before the tracks can actually be used. We analyze the accuracy of extrapolated target tracks for four tracking filters: Kalman filter with the Singer maneuver model and worst-case correlation time, with piecewise constant white acceleration, and with continuous white acceleration, and the reduced state filter proposed by Mookerjee and Reifler.1, 2 Performance evaluation of a tracking filter is significantly simplified by appropriate normalization. For the Kalman filter with the Singer maneuver model, the steady-state RMS error immediately after an update depends on only two dimensionless parameters.3 By assuming a worst case value of target acceleration correlation time, we reduce this to a single parameter without significantly changing the filter performance (within a few percent for air tracking).4 With this simplification, we find for all four filters that the RMS errors for the extrapolated state are functions of only two dimensionless parameters. We provide simple analytic approximations in each case.

  5. Core Noise Diagnostics of Turbofan Engine Noise Using Correlation and Coherence Functions

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H.

    2009-01-01

    Cross-correlation and coherence functions are used to look for periodic acoustic components in turbofan engine combustor time histories, to investigate direct and indirect combustion noise source separation based on signal propagation time delays, and to provide information on combustor acoustics. Using the cross-correlation function, time delays were identified in all cases, clearly indicating the combustor is the source of the noise. In addition, unfiltered and low-pass filtered at 400 Hz signals had a cross-correlation time delay near 90 ms, while the low-pass filtered at less than 400 Hz signals had a cross-correlation time delay longer than 90 ms. Low-pass filtering at frequencies less than 400 Hz partially removes the direct combustion noise signals. The remainder includes the indirect combustion noise signal, which travels more slowly because of the dependence on the entropy convection velocity in the combustor. Source separation of direct and indirect combustion noise is demonstrated by proper use of low-pass filters with the cross-correlation function for a range of operating conditions. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting direct and indirect combustion noise.

  6. Correlation filtering in financial time series (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Aste, T.; Di Matteo, Tiziana; Tumminello, M.; Mantegna, R. N.

    2005-05-01

    We apply a method to filter relevant information from the correlation coefficient matrix by extracting a network of relevant interactions. This method succeeds to generate networks with the same hierarchical structure of the Minimum Spanning Tree but containing a larger amount of links resulting in a richer network topology allowing loops and cliques. In Tumminello et al.,1 we have shown that this method, applied to a financial portfolio of 100 stocks in the USA equity markets, is pretty efficient in filtering relevant information about the clustering of the system and its hierarchical structure both on the whole system and within each cluster. In particular, we have found that triangular loops and 4 element cliques have important and significant relations with the market structure and properties. Here we apply this filtering procedure to the analysis of correlation in two different kind of interest rate time series (16 Eurodollars and 34 US interest rates).

  7. Towards accurate localization: long- and short-term correlation filters for tracking

    NASA Astrophysics Data System (ADS)

    Li, Minglangjun; Tian, Chunna

    2018-04-01

    Visual tracking is a challenging problem, especially using a single model. In this paper, we propose a discriminative correlation filter (DCF) based tracking approach that exploits both the long-term and short-term information of the target, named LSTDCF, to improve the tracking performance. In addition to a long-term filter learned through the whole sequence, a short-term filter is trained using only features extracted from most recent frames. The long-term filter tends to capture more semantics of the target as more frames are used for training. However, since the target may undergo large appearance changes, features extracted around the target in non-recent frames prevent the long-term filter from locating the target in the current frame accurately. In contrast, the short-term filter learns more spatial details of the target from recent frames but gets over-fitting easily. Thus the short-term filter is less robust to handle cluttered background and prone to drift. We take the advantage of both filters and fuse their response maps to make the final estimation. We evaluate our approach on a widely-used benchmark with 100 image sequences and achieve state-of-the-art results.

  8. Weighted analysis of paired microarray experiments.

    PubMed

    Kristiansson, Erik; Sjögren, Anders; Rudemo, Mats; Nerman, Olle

    2005-01-01

    In microarray experiments quality often varies, for example between samples and between arrays. The need for quality control is therefore strong. A statistical model and a corresponding analysis method is suggested for experiments with pairing, including designs with individuals observed before and after treatment and many experiments with two-colour spotted arrays. The model is of mixed type with some parameters estimated by an empirical Bayes method. Differences in quality are modelled by individual variances and correlations between repetitions. The method is applied to three real and several simulated datasets. Two of the real datasets are of Affymetrix type with patients profiled before and after treatment, and the third dataset is of two-colour spotted cDNA type. In all cases, the patients or arrays had different estimated variances, leading to distinctly unequal weights in the analysis. We suggest also plots which illustrate the variances and correlations that affect the weights computed by our analysis method. For simulated data the improvement relative to previously published methods without weighting is shown to be substantial.

  9. Linear model for fast background subtraction in oligonucleotide microarrays.

    PubMed

    Kroll, K Myriam; Barkema, Gerard T; Carlon, Enrico

    2009-11-16

    One important preprocessing step in the analysis of microarray data is background subtraction. In high-density oligonucleotide arrays this is recognized as a crucial step for the global performance of the data analysis from raw intensities to expression values. We propose here an algorithm for background estimation based on a model in which the cost function is quadratic in a set of fitting parameters such that minimization can be performed through linear algebra. The model incorporates two effects: 1) Correlated intensities between neighboring features in the chip and 2) sequence-dependent affinities for non-specific hybridization fitted by an extended nearest-neighbor model. The algorithm has been tested on 360 GeneChips from publicly available data of recent expression experiments. The algorithm is fast and accurate. Strong correlations between the fitted values for different experiments as well as between the free-energy parameters and their counterparts in aqueous solution indicate that the model captures a significant part of the underlying physical chemistry.

  10. Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA

    NASA Technical Reports Server (NTRS)

    Polacek, Denise C.; Passerini, Anthony G.; Shi, Congzhu; Francesco, Nadeene M.; Manduchi, Elisabetta; Grant, Gregory R.; Powell, Steven; Bischof, Helen; Winkler, Hans; Stoeckert, Christian J Jr; hide

    2003-01-01

    Although mRNA amplification is necessary for microarray analyses from limited amounts of cells and tissues, the accuracy of transcription profiles following amplification has not been well characterized. We tested the fidelity of differential gene expression following linear amplification by T7-mediated transcription in a well-established in vitro model of cytokine [tumor necrosis factor alpha (TNFalpha)]-stimulated human endothelial cells using filter arrays of 13,824 human cDNAs. Transcriptional profiles generated from amplified antisense RNA (aRNA) (from 100 ng total RNA, approximately 1 ng mRNA) were compared with profiles generated from unamplified RNA originating from the same homogeneous pool. Amplification accurately identified TNFalpha-induced differential expression in 94% of the genes detected using unamplified samples. Furthermore, an additional 1,150 genes were identified as putatively differentially expressed using amplified RNA which remained undetected using unamplified RNA. Of genes sampled from this set, 67% were validated by quantitative real-time PCR as truly differentially expressed. Thus, in addition to demonstrating fidelity in gene expression relative to unamplified samples, linear amplification results in improved sensitivity of detection and enhances the discovery potential of high-throughput screening by microarrays.

  11. Microarray Detection Call Methodology as a Means to Identify and Compare Transcripts Expressed within Syncytial Cells from Soybean (Glycine max) Roots Undergoing Resistant and Susceptible Reactions to the Soybean Cyst Nematode (Heterodera glycines)

    PubMed Central

    Klink, Vincent P.; Overall, Christopher C.; Alkharouf, Nadim W.; MacDonald, Margaret H.; Matthews, Benjamin F.

    2010-01-01

    Background. A comparative microarray investigation was done using detection call methodology (DCM) and differential expression analyses. The goal was to identify genes found in specific cell populations that were eliminated by differential expression analysis due to the nature of differential expression methods. Laser capture microdissection (LCM) was used to isolate nearly homogeneous populations of plant root cells. Results. The analyses identified the presence of 13,291 transcripts between the 4 different sample types. The transcripts filtered down into a total of 6,267 that were detected as being present in one or more sample types. A comparative analysis of DCM and differential expression methods showed a group of genes that were not differentially expressed, but were expressed at detectable amounts within specific cell types. Conclusion. The DCM has identified patterns of gene expression not shown by differential expression analyses. DCM has identified genes that are possibly cell-type specific and/or involved in important aspects of plant nematode interactions during the resistance response, revealing the uniqueness of a particular cell population at a particular point during its differentiation process. PMID:20508855

  12. Rapid quantification and taxonomic classification of environmentalDNA from both prokaryotic and eukaryotic origins using a microarray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSantis, Todd Z.; Stone, Carol E.; Murray, Sonya R.

    2005-02-22

    A microarray has been designed using 62,358 probes matched to both prokaryotic and eukaryotic small-subunit ribosomal RNA genes. The array categorized environmental DNA to specific phylogenetic clusters in under 9 h. To a background of DNA generated from natural outdoor aerosols, known quantities of rRNA gene copies from distinct organisms were added producing corresponding hybridization intensity scores that correlated well with their concentrations (r=0.917). Reproducible differences in microbial community composition were observed by altering the genomic DNA extraction method. Notably, gentle extractions produced peak intensities for Mycoplasmatales and Burkholderiales, whereas a vigorous disruption produced peak intensities for Vibrionales,Clostridiales, and Bacillales.

  13. Identifying presence of correlated errors in GRACE monthly harmonic coefficients using machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Piretzidis, Dimitrios; Sra, Gurveer; Karantaidis, George; Sideris, Michael G.

    2017-04-01

    A new method for identifying correlated errors in Gravity Recovery and Climate Experiment (GRACE) monthly harmonic coefficients has been developed and tested. Correlated errors are present in the differences between monthly GRACE solutions, and can be suppressed using a de-correlation filter. In principle, the de-correlation filter should be implemented only on coefficient series with correlated errors to avoid losing useful geophysical information. In previous studies, two main methods of implementing the de-correlation filter have been utilized. In the first one, the de-correlation filter is implemented starting from a specific minimum order until the maximum order of the monthly solution examined. In the second one, the de-correlation filter is implemented only on specific coefficient series, the selection of which is based on statistical testing. The method proposed in the present study exploits the capabilities of supervised machine learning algorithms such as neural networks and support vector machines (SVMs). The pattern of correlated errors can be described by several numerical and geometric features of the harmonic coefficient series. The features of extreme cases of both correlated and uncorrelated coefficients are extracted and used for the training of the machine learning algorithms. The trained machine learning algorithms are later used to identify correlated errors and provide the probability of a coefficient series to be correlated. Regarding SVMs algorithms, an extensive study is performed with various kernel functions in order to find the optimal training model for prediction. The selection of the optimal training model is based on the classification accuracy of the trained SVM algorithm on the same samples used for training. Results show excellent performance of all algorithms with a classification accuracy of 97% - 100% on a pre-selected set of training samples, both in the validation stage of the training procedure and in the subsequent use of the trained algorithms to classify independent coefficients. This accuracy is also confirmed by the external validation of the trained algorithms using the hydrology model GLDAS NOAH. The proposed method meet the requirement of identifying and de-correlating only coefficients with correlated errors. Also, there is no need of applying statistical testing or other techniques that require prior de-correlation of the harmonic coefficients.

  14. Estimation of mouth level exposure to smoke constituents of cigarettes with different tar levels using filter analysis.

    PubMed

    Hyodo, T; Minagawa, K; Inoue, T; Fujimoto, J; Minami, N; Bito, R; Mikita, A

    2013-12-01

    A nicotine part-filter method can be applied to estimate smokers' mouth level exposure (MLE) to smoke constituents. The objectives of this study were (1) to generate calibration curves for 47 smoke constituents, (2) to estimate MLE to selected smoke constituents using Japanese smokers of commercially available cigarettes covering a wide range of International Organization for Standardization tar yields (1-21mg/cigarette), and (3) to investigate relationships between MLE estimates and various machine-smoking yields. Five cigarette brands were machine-smoked under 7 different smoking regimes and smoke constituents and nicotine content in part-filters were measured. Calibration curves were then generated. Spent cigarette filters were collected from a target of 50 smokers for each of the 15 brands and a total of 780 filters were obtained. Nicotine content in part-filters was then measured and MLE to each smoke constituent was estimated. Strong correlations were identified between nicotine content in part-filters and 41 out of the 47 smoke constituent yields. Estimates of MLE to acetaldehyde, acrolein, 1,3-butadiene, benzene, benzo[a]pyrene, carbon monoxide, and tar showed significant negative correlations with corresponding constituent yields per mg nicotine under the Health Canada Intense smoking regime, whereas significant positive correlations were observed for N-nitrosonornicotine and (4-methylnitrosoamino)-1-(3-pyridyl)-1-butanone. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Calling Biomarkers in Milk Using a Protein Microarray on Your Smartphone

    PubMed Central

    Ludwig, Susann K. J.; Tokarski, Christian; Lang, Stefan N.; van Ginkel, Leendert A.; Zhu, Hongying; Ozcan, Aydogan; Nielen, Michel W. F.

    2015-01-01

    Here we present the concept of a protein microarray-based fluorescence immunoassay for multiple biomarker detection in milk extracts by an ordinary smartphone. A multiplex immunoassay was designed on a microarray chip, having built-in positive and negative quality controls. After the immunoassay procedure, the 48 microspots were labelled with Quantum Dots (QD) depending on the protein biomarker levels in the sample. QD-fluorescence was subsequently detected by the smartphone camera under UV light excitation from LEDs embedded in a simple 3D-printed opto-mechanical smartphone attachment. The somewhat aberrant images obtained under such conditions, were corrected by newly developed Android-based software on the same smartphone, and protein biomarker profiles were calculated. The indirect detection of recombinant bovine somatotropin (rbST) in milk extracts based on altered biomarker profile of anti-rbST antibodies was selected as a real-life challenge. RbST-treated and untreated cows clearly showed reproducible treatment-dependent biomarker profiles in milk, in excellent agreement with results from a flow cytometer reference method. In a pilot experiment, anti-rbST antibody detection was multiplexed with the detection of another rbST-dependent biomarker, insulin-like growth factor 1 (IGF-1). Milk extract IGF-1 levels were found to be increased after rbST treatment and correlated with the results obtained from the reference method. These data clearly demonstrate the potential of the portable protein microarray concept towards simultaneous detection of multiple biomarkers. We envisage broad application of this ‘protein microarray on a smartphone’-concept for on-site testing, e.g., in food safety, environment and health monitoring. PMID:26308444

  16. Biomarkers of the Hedgehog/Smoothened pathway in healthy volunteers

    PubMed Central

    Kadam, Sunil K; Patel, Bharvin K R; Jones, Emma; Nguyen, Tuan S; Verma, Lalit K; Landschulz, Katherine T; Stepaniants, Sergey; Li, Bin; Brandt, John T; Brail, Leslie H

    2012-01-01

    The Hedgehog (Hh) pathway is involved in oncogenic transformation and tumor maintenance. The primary objective of this study was to select surrogate tissue to measure messenger ribonucleic acid (mRNA) levels of Hh pathway genes for measurement of pharmacodynamic effect. Expression of Hh pathway specific genes was measured by quantitative real time polymerase chain reaction (qRT-PCR) and global gene expression using Affymetrix U133 microarrays. Correlations were made between the expression of specific genes determined by qRT-PCR and normalized microarray data. Gene ontology analysis using microarray data for a broader set of Hh pathway genes was performed to identify additional Hh pathway-related markers in the surrogate tissue. RNA extracted from blood, hair follicle, and skin obtained from healthy subjects was analyzed by qRT-PCR for 31 genes, whereas 8 samples were analyzed for a 7-gene subset. Twelve sample sets, each with ≤500 ng total RNA derived from hair, skin, and blood, were analyzed using Affymetrix U133 microarrays. Transcripts for several Hh pathway genes were undetectable in blood using qRT-PCR. Skin was the most desirable matrix, followed by hair follicle. Whether processed by robust multiarray average or microarray suite 5 (MAS5), expression patterns of individual samples showed co-clustered signals; both normalization methods were equally effective for unsupervised analysis. The MAS5- normalized probe sets appeared better suited for supervised analysis. This work provides the basis for selection of a surrogate tissue and an expression analysis-based approach to evaluate pathway-related genes as markers of pharmacodynamic effect with novel inhibitors of the Hh pathway. PMID:22611475

  17. Optical Implementation Of The Synthetic Discrimination Function

    NASA Astrophysics Data System (ADS)

    Butler, Steve; Riggins, James

    1985-01-01

    Computer-generated holograms of geometrical shape and synthetic discriminant function (SDF) matched filters are modeled and produced. The models include ideal correlations and Allebach-Keegan binary holograms. A distinction between Phase-Only-Information and Phase-Only-Material Filters is demonstrated. Signal-to-noise and efficiency measurements were made on the resultant correlation planes.

  18. Texture analysis of intermediate-advanced hepatocellular carcinoma: prognosis and patients' selection of transcatheter arterial chemoembolization and sorafenib

    PubMed Central

    Fu, Sirui; Chen, Shuting; Liang, Changhong; Liu, Zaiyi; Zhu, Yanjie; Li, Yong; Lu, Ligong

    2017-01-01

    Transcatheter arterial chemoembolization (TACE) and sorafenib combination treatment for unselected hepatocellular carcinoma (HCC) is controversial. We explored the potential of texture analysis for appropriate patient selection. There were 261 HCCs included (TACE group: n = 197; TACE plus sorafenib (TACE+Sorafenib) group n = 64). We applied a Gabor filter and wavelet transform with 3 band-width responses (filter 0, 1.0, and 1.5) to portal-phase computed tomography (CT) images of the TACE group. Twenty-one textural parameters per filter were extracted from the region of interests delineated around tumor outline. After testing survival correlations, the TACE group was subdivided according to parameter thresholds in receiver operating characteristic curves and compared to TACE+Sorafenib group survival. The Gabor-1-90 (filter 0) was most significantly correlated with TTP. The TACE group was accordingly divided into the TACE-1 (Gabor-1-90 ≤ 3.6190) and TACE-2 (Gabor-1-90 > 3.6190) subgroups; TTP was similar in the TACE-1 subgroup and TACE+Sorafenib group, but shorter in the TACE-2 subgroup. Only wavelet-3-D (filter 1.0) correlated with overall survival (OS), and was used for subgrouping. The TACE-5 (wavelet-3-D ≤ 12.2620) subgroup and the TACE+Sorafenib group showed similar OS, while the TACE-6 (wavelet-3-D > 12.2620) subgroup had shorter OS. Gabor-1-90 and wavelet-3-D were consistent. In dependent of tumor number or size, CT textural parameters are correlated with TTP and OS. Patients with lower Gabor-1-90 (filter 0) and wavelet-3-D (filter 1.0) should be treated with TACE and sorafenib. Texture analysis holds promise for appropriate selection of HCCs for this combination therapy. PMID:27911268

  19. Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray

    PubMed Central

    2010-01-01

    Background Flax (Linum usitatissimum L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Results Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties. Conclusion All results suggest that our high-density flax oligo-microarray platform can be used as a very sensitive tool for analyzing gene expression in a large variety of tissues as well as in different cultivars. Moreover, this highly reliable platform can also be used for the quantification of mRNA transcriptional profiling in different flax tissues. PMID:20964859

  20. Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray.

    PubMed

    Fenart, Stéphane; Ndong, Yves-Placide Assoumou; Duarte, Jorge; Rivière, Nathalie; Wilmer, Jeroen; van Wuytswinkel, Olivier; Lucau, Anca; Cariou, Emmanuelle; Neutelings, Godfrey; Gutierrez, Laurent; Chabbert, Brigitte; Guillot, Xavier; Tavernier, Reynald; Hawkins, Simon; Thomasset, Brigitte

    2010-10-21

    Flax (Linum usitatissimum L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties. All results suggest that our high-density flax oligo-microarray platform can be used as a very sensitive tool for analyzing gene expression in a large variety of tissues as well as in different cultivars. Moreover, this highly reliable platform can also be used for the quantification of mRNA transcriptional profiling in different flax tissues.

  1. Relaxation method of compensation in an optical correlator

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Daiuto, Brian J.

    1987-01-01

    An iterative method is proposed for the sharpening of programmable filters in a 4-f optical correlator. Continuously variable spatial light modulators (SLMs) permit the fine adjustment of optical processing filters so as to compensate for the departures from ideal behavior of a real optical system. Although motivated by the development of continuously variable phase-only SLMs, the proposed sharpening method is also applicable to amplitude modulators and, with appropriate adjustments, to binary modulators as well. A computer simulation is presented that illustrates the potential effectiveness of the method: an image is placed on the input to the correlator, and its corresponding phase-only filter is adjusted (allowed to relax) so as to produce a progressively brighter and more centralized peak in the correlation plane. The technique is highly robust against the form of the system's departure from ideal behavior.

  2. On the relationship between matched filter theory as applied to gust loads and phased design loads analysis

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Pototzky, Anthony S.

    1989-01-01

    A theoretical basis and example calculations are given that demonstrate the relationship between the Matched Filter Theory approach to the calculation of time-correlated gust loads and Phased Design Load Analysis in common use in the aerospace industry. The relationship depends upon the duality between Matched Filter Theory and Random Process Theory and upon the fact that Random Process Theory is used in Phased Design Loads Analysis in determining an equiprobable loads design ellipse. Extensive background information describing the relevant points of Phased Design Loads Analysis, calculating time-correlated gust loads with Matched Filter Theory, and the duality between Matched Filter Theory and Random Process Theory is given. It is then shown that the time histories of two time-correlated gust load responses, determined using the Matched Filter Theory approach, can be plotted as parametric functions of time and that the resulting plot, when superposed upon the design ellipse corresponding to the two loads, is tangent to the ellipse. The question is raised of whether or not it is possible for a parametric load plot to extend outside the associated design ellipse. If it is possible, then the use of the equiprobable loads design ellipse will not be a conservative design practice in some circumstances.

  3. Symmetric Phase-Only Filtering in Particle-Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Wemet, Mark P.

    2008-01-01

    Symmetrical phase-only filtering (SPOF) can be exploited to obtain substantial improvements in the results of data processing in particle-image velocimetry (PIV). In comparison with traditional PIV data processing, SPOF PIV data processing yields narrower and larger amplitude correlation peaks, thereby providing more-accurate velocity estimates. The higher signal-to-noise ratios associated with the higher amplitude correlation peaks afford greater robustness and reliability of processing. SPOF also affords superior performance in the presence of surface flare light and/or background light. SPOF algorithms can readily be incorporated into pre-existing algorithms used to process digitized image data in PIV, without significantly increasing processing times. A summary of PIV and traditional PIV data processing is prerequisite to a meaningful description of SPOF PIV processing. In PIV, a pulsed laser is used to illuminate a substantially planar region of a flowing fluid in which particles are entrained. An electronic camera records digital images of the particles at two instants of time. The components of velocity of the fluid in the illuminated plane can be obtained by determining the displacements of particles between the two illumination pulses. The objective in PIV data processing is to compute the particle displacements from the digital image data. In traditional PIV data processing, to which the present innovation applies, the two images are divided into a grid of subregions and the displacements determined from cross-correlations between the corresponding sub-regions in the first and second images. The cross-correlation process begins with the calculation of the Fourier transforms (or fast Fourier transforms) of the subregion portions of the images. The Fourier transforms from the corresponding subregions are multiplied, and this product is inverse Fourier transformed, yielding the cross-correlation intensity distribution. The average displacement of the particles across a subregion results in a displacement of the correlation peak from the center of the correlation plane. The velocity is then computed from the displacement of the correlation peak and the time between the recording of the two images. The process as described thus far is performed for all the subregions. The resulting set of velocities in grid cells amounts to a velocity vector map of the flow field recorded on the image plane. In traditional PIV processing, surface flare light and bright background light give rise to a large, broad correlation peak, at the center of the correlation plane, that can overwhelm the true particle- displacement correlation peak. This has made it necessary to resort to tedious image-masking and background-subtraction procedures to recover the relatively small amplitude particle-displacement correlation peak. SPOF is a variant of phase-only filtering (POF), which, in turn, is a variant of matched spatial filtering (MSF). In MSF, one projects a first image (denoted the input image) onto a second image (denoted the filter) as part of a computation to determine how much and what part of the filter is present in the input image. MSF is equivalent to cross-correlation. In POF, the frequency-domain content of the MSF filter is modified to produce a unitamplitude (phase-only) object. POF is implemented by normalizing the Fourier transform of the filter by its magnitude. The advantage of POFs is that they yield correlation peaks that are sharper and have higher signal-to-noise ratios than those obtained through traditional MSF. In the SPOF, these benefits of POF can be extended to PIV data processing. The SPOF yields even better performance than the POF approach, which is uniquely applicable to PIV type image data. In SPOF as now applied to PIV data processing, a subregion of the first image is treated as the input image and the corresponding subregion of the second image is treated as the filter. The Fourier transforms from both the firs and second- image subregions are normalized by the square roots of their respective magnitudes. This scheme yields optimal performance because the amounts of normalization applied to the spatial-frequency contents of the input and filter scenes are just enough to enhance their high-spatial-frequency contents while reducing their spurious low-spatial-frequency content. As a result, in SPOF PIV processing, particle-displacement correlation peaks can readily be detected above spurious background peaks, without need for masking or background subtraction.

  4. Relevance of TNBS-Colitis in Rats: A Methodological Study with Endoscopic, Histologic and Transcriptomic Characterization and Correlation to IBD

    PubMed Central

    Brenna, Øystein; Furnes, Marianne W.; Drozdov, Ignat; van Beelen Granlund, Atle; Flatberg, Arnar; Sandvik, Arne K.; Zwiggelaar, Rosalie T. M.; Mårvik, Ronald; Nordrum, Ivar S.; Kidd, Mark; Gustafsson, Björn I.

    2013-01-01

    Background Rectal instillation of trinitrobenzene sulphonic acid (TNBS) in ethanol is an established model for inflammatory bowel disease (IBD). We aimed to 1) set up a TNBS-colitis protocol resulting in an endoscopic and histologic picture resembling IBD, 2) study the correlation between endoscopic, histologic and gene expression alterations at different time points after colitis induction, and 3) compare rat and human IBD mucosal transcriptomic data to evaluate whether TNBS-colitis is an appropriate model of IBD. Methodology/Principal Findings Five female Sprague Daley rats received TNBS diluted in 50% ethanol (18 mg/0.6 ml) rectally. The rats underwent colonoscopy with biopsy at different time points. RNA was extracted from rat biopsies and microarray was performed. PCR and in situ hybridization (ISH) were done for validation of microarray results. Rat microarray profiles were compared to human IBD expression profiles (25 ulcerative colitis Endoscopic score demonstrated mild to moderate colitis after three and seven days, but declined after twelve days. Histologic changes corresponded with the endoscopic appearance. Over-represented Gene Ontology Biological Processes included: Cell Adhesion, Immune Response, Lipid Metabolic Process, and Tissue Regeneration. IL-1α, IL-1β, TLR2, TLR4, PRNP were all significantly up-regulated, while PPARγ was significantly down-regulated. Among genes with highest fold change (FC) were SPINK4, LBP, ADA, RETNLB and IL-1α. The highest concordance in differential expression between TNBS and IBD transcriptomes was three days after colitis induction. ISH and PCR results corresponded with the microarray data. The most concordantly expressed biologically relevant pathways included TNF signaling, Cell junction organization, and Interleukin-1 processing. Conclusions/Significance Endoscopy with biopsies in TNBS-colitis is useful to follow temporal changes of inflammation visually and histologically, and to acquire tissue for gene expression analyses. TNBS-colitis is an appropriate model to study specific biological processes in IBD. PMID:23382912

  5. Plasma long noncoding RNA expression profile identified by microarray in patients with Crohn's disease.

    PubMed

    Chen, Dong; Liu, Jiang; Zhao, Hui-Ying; Chen, Yi-Peng; Xiang, Zun; Jin, Xi

    2016-05-21

    To investigate the expression pattern of plasma long noncoding RNAs (lncRNAs) in Chrohn's disease (CD) patients. Microarray screening and qRT-PCR verification of lncRNAs and mRNAs were performed in CD and control subjects, followed by hierarchy clustering, GO and KEGG pathway analyses. Significantly dysregulated lncRNAs were categorized into subgroups of antisense lncRNAs, enhancer lncRNAs and lincRNAs. To predict the regulatory effect of lncRNAs on mRNAs, a CNC network analysis was performed and cross linked with significantly changed lncRNAs. The overlapping lncRNAs were randomly selected and verified by qRT-PCR in a larger cohort. Initially, there were 1211 up-regulated and 777 down-regulated lncRNAs as well as 1020 up-regulated and 953 down-regulated mRNAs after microarray analysis; a heat map based on these results showed good categorization into the CD and control groups. GUSBP2 and AF113016 had the highest fold change of the up- and down-regulated lncRNAs, whereas TBC1D17 and CCL3L3 had the highest fold change of the up- and down-regulated mRNAs. Six (SNX1, CYFIP2, CD6, CMTM8, STAT4 and IGFBP7) of 10 mRNAs and 8 (NR_033913, NR_038218, NR_036512, NR_049759, NR_033951, NR_045408, NR_038377 and NR_039976) of 14 lncRNAs showed the same change trends on the microarray and qRT-PCR results with statistical significance. Based on the qRT-PCR verified mRNAs, 1358 potential lncRNAs with 2697 positive correlations and 2287 negative correlations were predicted by the CNC network. The plasma lncRNAs profiles provide preliminary data for the non-invasive diagnosis of CD and a resource for further specific lncRNA-mRNA pathway exploration.

  6. Identification of Differentially Expressed IGFBP5-Related Genes in Breast Cancer Tumor Tissues Using cDNA Microarray Experiments.

    PubMed

    Akkiprik, Mustafa; Peker, İrem; Özmen, Tolga; Amuran, Gökçe Güllü; Güllüoğlu, Bahadır M; Kaya, Handan; Özer, Ayşe

    2015-11-10

    IGFBP5 is an important regulatory protein in breast cancer progression. We tried to identify differentially expressed genes (DEGs) between breast tumor tissues with IGFBP5 overexpression and their adjacent normal tissues. In this study, thirty-eight breast cancer and adjacent normal breast tissue samples were used to determine IGFBP5 expression by qPCR. cDNA microarrays were applied to the highest IGFBP5 overexpressed tumor samples compared to their adjacent normal breast tissue. Microarray analysis revealed that a total of 186 genes were differentially expressed in breast cancer compared with normal breast tissues. Of the 186 genes, 169 genes were downregulated and 17 genes were upregulated in the tumor samples. KEGG pathway analyses showed that protein digestion and absorption, focal adhesion, salivary secretion, drug metabolism-cytochrome P450, and phenylalanine metabolism pathways are involved. Among these DEGs, the prominent top two genes (MMP11 and COL1A1) which potentially correlated with IGFBP5 were selected for validation using real time RT-qPCR. Only COL1A1 expression showed a consistent upregulation with IGFBP5 expression and COL1A1 and MMP11 were significantly positively correlated. We concluded that the discovery of coordinately expressed genes related with IGFBP5 might contribute to understanding of the molecular mechanism of the function of IGFBP5 in breast cancer. Further functional studies on DEGs and association with IGFBP5 may identify novel biomarkers for clinical applications in breast cancer.

  7. Technical Note: Kinect V2 surface filtering during gantry motion for radiotherapy applications.

    PubMed

    Nazir, Souha; Rihana, Sandy; Visvikis, Dimitris; Fayad, Hadi

    2018-04-01

    In radiotherapy, the Kinect V2 camera, has recently received a lot of attention concerning many clinical applications including patient positioning, respiratory motion tracking, and collision detection during the radiotherapy delivery phase. However, issues associated with such applications are related to some materials and surfaces reflections generating an offset in depth measurements especially during gantry motion. This phenomenon appears in particular when the collimator surface is observed by the camera; resulting in erroneous depth measurements, not only in Kinect surfaces itself, but also as a large peak when extracting a 1D respiratory signal from these data. In this paper, we proposed filtering techniques to reduce the noise effect in the Kinect-based 1D respiratory signal, using a trend removal filter, and in associated 2D surfaces, using a temporal median filter. Filtering process was validated using a phantom, in order to simulate a patient undergoing radiotherapy treatment while having the ground truth. Our results indicate a better correlation between the reference respiratory signal and its corresponding filtered signal (Correlation coefficient of 0.76) than that of the nonfiltered signal (Correlation coefficient of 0.13). Furthermore, surface filtering results show a decrease in the mean square distance error (85%) between the reference and the measured point clouds. This work shows a significant noise compensation and surface restitution after surface filtering and therefore a potential use of the Kinect V2 camera for different radiotherapy-based applications, such as respiratory tracking and collision detection. © 2018 American Association of Physicists in Medicine.

  8. Optimizing binary phase and amplitude filters for PCE, SNR, and discrimination

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1992-01-01

    Binary phase-only filters (BPOFs) have generated much study because of their implementation on currently available spatial light modulator devices. On polarization-rotating devices such as the magneto-optic spatial light modulator (SLM), it is also possible to encode binary amplitude information into two SLM transmission states, in addition to the binary phase information. This is done by varying the rotation angle of the polarization analyzer following the SLM in the optical train. Through this parameter, a continuum of filters may be designed that span the space of binary phase and amplitude filters (BPAFs) between BPOFs and binary amplitude filters. In this study, we investigate the design of optimal BPAFs for the key correlation characteristics of peak sharpness (through the peak-to-correlation energy (PCE) metric), signal-to-noise ratio (SNR), and discrimination between in-class and out-of-class images. We present simulation results illustrating improvements obtained over conventional BPOFs, and trade-offs between the different performance criteria in terms of the filter design parameter.

  9. Qualitative assessment of gene expression in affymetrix genechip arrays

    NASA Astrophysics Data System (ADS)

    Nagarajan, Radhakrishnan; Upreti, Meenakshi

    2007-01-01

    Affymetrix Genechip microarrays are used widely to determine the simultaneous expression of genes in a given biological paradigm. Probes on the Genechip array are atomic entities which by definition are randomly distributed across the array and in turn govern the gene expression. In the present study, we make several interesting observations. We show that there is considerable correlation between the probe intensities across the array which defy the independence assumption. While the mechanism behind such correlations is unclear, we show that scaling behavior and the profiles of perfect match (PM) as well as mismatch (MM) probes are similar and immune-to-background subtraction. We believe that the observed correlations are possibly an outcome of inherent non-stationarities or patchiness in the array devoid of biological significance. This is demonstrated by inspecting their scaling behavior and profiles of the PM and MM probe intensities obtained from publicly available Genechip arrays from three eukaryotic genomes, namely: Drosophila melanogaster (fruit fly), Homo sapiens (humans) and Mus musculus (house mouse) across distinct biological paradigms and across laboratories, with and without background subtraction. The fluctuation functions were estimated using detrended fluctuation analysis (DFA) with fourth-order polynomial detrending. The results presented in this study provide new insights into correlation signatures of PM and MM probe intensities and suggests the choice of DFA as a tool for qualitative assessment of Affymetrix Genechip microarrays prior to their analysis. A more detailed investigation is necessary in order to understand the source of these correlations.

  10. Dual linear structured support vector machine tracking method via scale correlation filter

    NASA Astrophysics Data System (ADS)

    Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen

    2018-01-01

    Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.

  11. Feasibility Analysis and Demonstration of High-Speed Digital Imaging Using Micro-Arrays of Vertical Cavity Surface-Emitting Lasers

    DTIC Science & Technology

    2011-04-01

    Proceedings, Bristol, UK (2006). 5. M. A. Mentzer, Applied Optics Fundamentals and Device Applications: Nano, MOEMS , and Biotechnology, CRC Taylor...ballistic sensing, flash x-ray cineradiography, digital image correlation, image processing al- gorithms, and applications of MOEMS to nano- and

  12. EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery.

    PubMed

    Liu, Quan; Chen, Yi-Feng; Fan, Shou-Zen; Abbod, Maysam F; Shieh, Jiann-Shing

    2017-08-01

    Electroencephalography (EEG) has been widely utilized to measure the depth of anaesthesia (DOA) during operation. However, the EEG signals are usually contaminated by artifacts which have a consequence on the measured DOA accuracy. In this study, an effective and useful filtering algorithm based on multivariate empirical mode decomposition and multiscale entropy (MSE) is proposed to measure DOA. Mean entropy of MSE is used as an index to find artifacts-free intrinsic mode functions. The effect of different levels of artifacts on the performances of the proposed filtering is analysed using simulated data. Furthermore, 21 patients' EEG signals are collected and analysed using sample entropy to calculate the complexity for monitoring DOA. The correlation coefficients of entropy and bispectral index (BIS) results show 0.14 ± 0.30 and 0.63 ± 0.09 before and after filtering, respectively. Artificial neural network (ANN) model is used for range mapping in order to correlate the measurements with BIS. The ANN method results show strong correlation coefficient (0.75 ± 0.08). The results in this paper verify that entropy values and BIS have a strong correlation for the purpose of DOA monitoring and the proposed filtering method can effectively filter artifacts from EEG signals. The proposed method performs better than the commonly used wavelet denoising method. This study provides a fully adaptive and automated filter for EEG to measure DOA more accuracy and thus reduce risk related to maintenance of anaesthetic agents.

  13. In-Silico Identification Of Micro-Loops In Myelodysplastic Syndromes

    NASA Astrophysics Data System (ADS)

    Beck, Dominik; Brandl, Miriam; Pham, Tuan D.; Chang, Chung-Che; Zhou, Xiaobo

    2011-06-01

    Micro-loops are regulatory network motifs that leverage transcriptional and posttranscriptional control to effectively regulate the transcriptome. In this paper a regulatory network for Myelodysplastic Syndromes (MDSs) was constructed from the literature and publicly available data sources. The network was filtered using data from deep-sequencing of small RNAs, exon and microarrays. Motif discovery showed that micro-loops might exist in MDS. We further used the identified micro-loops and performed basic network analysis to identify the known disease gene RUNX1/AML, as well as miRNA family hsa-mir-181. This suggested that the concept of micro-loops can be applied to enhance disease gene identification and biomarker discovery.

  14. oneChannelGUI: a graphical interface to Bioconductor tools, designed for life scientists who are not familiar with R language.

    PubMed

    Sanges, Remo; Cordero, Francesca; Calogero, Raffaele A

    2007-12-15

    OneChannelGUI is an add-on Bioconductor package providing a new set of functions extending the capability of the affylmGUI package. This library provides a graphical interface (GUI) for Bioconductor libraries to be used for quality control, normalization, filtering, statistical validation and data mining for single channel microarrays. Affymetrix 3' expression (IVT) arrays as well as the new whole transcript expression arrays, i.e. gene/exon 1.0 ST, are actually implemented. oneChannelGUI is available for most platforms on which R runs, i.e. Windows and Unix-like machines. http://www.bioconductor.org/packages/2.0/bioc/html/oneChannelGUI.html

  15. Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms.

    PubMed

    Maggioni, Matteo; Boracchi, Giacomo; Foi, Alessandro; Egiazarian, Karen

    2012-09-01

    We propose a powerful video filtering algorithm that exploits temporal and spatial redundancy characterizing natural video sequences. The algorithm implements the paradigm of nonlocal grouping and collaborative filtering, where a higher dimensional transform-domain representation of the observations is leveraged to enforce sparsity, and thus regularize the data: 3-D spatiotemporal volumes are constructed by tracking blocks along trajectories defined by the motion vectors. Mutually similar volumes are then grouped together by stacking them along an additional fourth dimension, thus producing a 4-D structure, termed group, where different types of data correlation exist along the different dimensions: local correlation along the two dimensions of the blocks, temporal correlation along the motion trajectories, and nonlocal spatial correlation (i.e., self-similarity) along the fourth dimension of the group. Collaborative filtering is then realized by transforming each group through a decorrelating 4-D separable transform and then by shrinkage and inverse transformation. In this way, the collaborative filtering provides estimates for each volume stacked in the group, which are then returned and adaptively aggregated to their original positions in the video. The proposed filtering procedure addresses several video processing applications, such as denoising, deblocking, and enhancement of both grayscale and color data. Experimental results prove the effectiveness of our method in terms of both subjective and objective visual quality, and show that it outperforms the state of the art in video denoising.

  16. Solar generated quasi-biennial geomagnetic variation

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Poros, D. J.

    1977-01-01

    The existence of highly correlated quasi-biennial variations in the geomagnetic field and in solar activity is demonstrated. The analysis uses a numerical filter technique applied to monthly averages of the geomagnetic horizontal component and of the Zurich relative sunspot number. Striking correlations are found between the quasi-biennial geomagnetic variations determined from several magnetic observatories located at widely different longitudes, indicating a worldwide nature of the obtained variation. The correlation coefficient between the filtered Dst index and the filtered relative sunspot number is found to be -0.79 at confidence level greater than 99% with a time-lag of 4 months, with solar activity preceding the Dst variation. The correlation between the unfiltered data of Dst and of the sunspot number is also high with a similar time-lag. Such a timelag has not been discussed in the literature, and a further study is required to establish the mode of sun-earth relationship that gives this time delay.

  17. Determining object orientation with a hierarchical database of binary synthetic discriminant function filters

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Ma, Paul W.; Downie, John D.

    1990-01-01

    An optical correlation-based system is demonstrated which recognizes an object and determines its angular orientation by traversing a hierarchical data base of binary filters. The data-base architecture is made possible by the development of binary synthetic discriminant function filters.

  18. Wiener Chaos and Nonlinear Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lototsky, S.V.

    2006-11-15

    The paper discusses two algorithms for solving the Zakai equation in the time-homogeneous diffusion filtering model with possible correlation between the state process and the observation noise. Both algorithms rely on the Cameron-Martin version of the Wiener chaos expansion, so that the approximate filter is a finite linear combination of the chaos elements generated by the observation process. The coefficients in the expansion depend only on the deterministic dynamics of the state and observation processes. For real-time applications, computing the coefficients in advance improves the performance of the algorithms in comparison with most other existing methods of nonlinear filtering. Themore » paper summarizes the main existing results about these Wiener chaos algorithms and resolves some open questions concerning the convergence of the algorithms in the noise-correlated setting. The presentation includes the necessary background on the Wiener chaos and optimal nonlinear filtering.« less

  19. Network-based de-noising improves prediction from microarray data.

    PubMed

    Kato, Tsuyoshi; Murata, Yukio; Miura, Koh; Asai, Kiyoshi; Horton, Paul B; Koji, Tsuda; Fujibuchi, Wataru

    2006-03-20

    Prediction of human cell response to anti-cancer drugs (compounds) from microarray data is a challenging problem, due to the noise properties of microarrays as well as the high variance of living cell responses to drugs. Hence there is a strong need for more practical and robust methods than standard methods for real-value prediction. We devised an extended version of the off-subspace noise-reduction (de-noising) method to incorporate heterogeneous network data such as sequence similarity or protein-protein interactions into a single framework. Using that method, we first de-noise the gene expression data for training and test data and also the drug-response data for training data. Then we predict the unknown responses of each drug from the de-noised input data. For ascertaining whether de-noising improves prediction or not, we carry out 12-fold cross-validation for assessment of the prediction performance. We use the Pearson's correlation coefficient between the true and predicted response values as the prediction performance. De-noising improves the prediction performance for 65% of drugs. Furthermore, we found that this noise reduction method is robust and effective even when a large amount of artificial noise is added to the input data. We found that our extended off-subspace noise-reduction method combining heterogeneous biological data is successful and quite useful to improve prediction of human cell cancer drug responses from microarray data.

  20. Energy normalization of TV viewed optical correlation (automated correlation plane analyzer for an optical processor)

    NASA Technical Reports Server (NTRS)

    Grumet, A.

    1981-01-01

    An automatic correlation plane processor that can rapidly acquire, identify, and locate the autocorrelation outputs of a bank of multiple optical matched filters is described. The read-only memory (ROM) stored digital silhouette of each image associated with each matched filter allows TV video to be used to collect image energy to provide accurate normalization of autocorrelations. The resulting normalized autocorrelations are independent of the illumination of the matched input. Deviation from unity of a normalized correlation can be used as a confidence measure of correct image identification. Analog preprocessing circuits permit digital conversion and random access memory (RAM) storage of those video signals with the correct amplitude, pulse width, rising slope, and falling slope. TV synchronized addressing of 3 RAMs permits on-line storage of: (1) the maximum unnormalized amplitude, (2) the image x location, and (3) the image y location of the output of each of up to 99 matched filters. A fourth RAM stores all normalized correlations. A normalization approach, normalization for cross correlations, a system's description with block diagrams, and system's applications are discussed.

  1. Correlated-Intensity velocimeter for Arbitrary Reflector

    DOEpatents

    Wang, Zhehui; Luo, Shengnian; Barnes, Cris W.; Paul, Stephen F.

    2008-11-11

    A velocimetry apparatus and method comprising splitting incoming reflected laser light and directing the laser light into first and second arms, filtering the laser light with passband filters in the first and second arms, one having a positive passband slope and the other having a negative passband slope, and detecting the filtered laser light via light intensity detectors following the passband filters in the first and second arms

  2. Microarray analysis of laser capture microdissected-anulus cells from the human intervertebral disc.

    PubMed

    Gruber, Helen E; Mougeot, Jean-Luc; Hoelscher, Gretchen; Ingram, Jane A; Hanley, Edward N

    2007-05-15

    Five Thompson Grade I/II discs (Group 1), 7 Grade III discs (Group 2), and 3 Grade IV discs (Group IV) were studied here in a project approved by the authors' Human Subjects Institutional Review Board. Our objective was to use laser capture microdissection (LCM) to harvest cells from the human anulus and to derive gene expression profiles using microarray analysis. Appropriate gene expression is essential in the intervertebral disc for maintenance of extracellular matrix (ECM), ECM remodeling, and maintenance of a viable disc cell population. During disc degeneration, cell numbers drop, making gene expression studies challenging. LCM was used to harvest cells from paraffin-embedded sections of human anulus tissue. Gene profiling used Affymetrix GeneChip Human X3P arrays. ANOVA and SAM permutation analysis were applied to dCHIP normalized, filtered, and log-transformed gene expression data ( approximately 33,500 probes), and data analyzed to identify genes that were significantly differentially expressed between the 3 groups. We identified 47 genes that were significantly differentially expressed between the 3 groups (P < 0.001 and lowest q values). Compared with the healthiest discs (Grade I/II), 13 genes were up-regulated and 19 down-regulated in both the Grade III and the Grade IV discs. Genes with biologic significance regulated during degeneration involved cell senescence, low cell division rates, hypoxia-related genes, heat-shock protein 70 interacting protein, neuropilin 2, and interleukin-23p19 (interleukin-12 family). Results expand our understanding of disc aging and degeneration and show that LCM is a valuable technique that can be used to collect mRNA amounts adequate for microarray analysis from the sparse cell population of the human anulus.

  3. Protein Microarray Analysis in Patients With Asthma*

    PubMed Central

    Kim, Hyo-Bin; Kim, Chang-Keun; Iijima, Koji; Kobayashi, Takao; Kita, Hirohito

    2010-01-01

    Background Microarray technology offers a new opportunity to gain insight into global gene and protein expression profiles in asthma. To identify novel factors produced in the asthmatic airway, we analyzed sputum samples by using a membrane-based human cytokine microarray technology in patients with bronchial asthma (BA). Methods Induced sputum was obtained from 28 BA subjects, 20 nonasthmatic atopic control (AC) subjects, and 38 nonasthmatic nonatopic normal control (NC) subjects. The microarray samples of subjects were randomly selected from nine BA subjects, three AC subjects, and six NC subjects. Sputum supernatants were analyzed using a custom human cytokine array (RayBio Custom Human Cytokine Array; RayBiotech; Norcross, GA) designed to analyze 79 specific cytokines simultaneously. The levels of growth-regulated oncogene (GRO)-α, eotaxin-2, and pulmonary and activation-regulated chemokine (PARC)/CCL18 were measured by sandwich enzyme-linked immunosorbent assays (ELISAs), and eosinophil-derived neurotoxin (EDN) was measured by radioimmunoassay. Results By microarray, the signal intensities for GRO-α, eotaxin-2, and PARC were significantly higher in BA subjects than in AC and NC subjects (p = 0.036, p = 0.042, and p = 0.033, respectively). By ELISA, the sputum PARC protein levels were significantly higher in BA subjects than in AC and NC subjects (p < 0.0001). Furthermore, PARC levels correlated significantly with sputum eosinophil percentages (r = 0.570, p < 0.0001) and the levels of EDN(r = 0.633, p < 0.0001), the regulated upon activation, normal T cell expressed and secreted cytokine (r = 0.440, p < 0.001), interleukin-4 (r = 0.415, p < 0.01), and interferon-γ (r = 0.491, p < 0.001). Conclusions By a nonbiased screening approach, a chemokine, PARC, is elevated in sputum specimens from patients with asthma. PARC may play important roles in development of airway eosinophilic inflammation in asthma. PMID:19017877

  4. Application of speed-enhanced spatial domain correlation filters for real-time security monitoring

    NASA Astrophysics Data System (ADS)

    Gardezi, Akber; Bangalore, Nagachetan; Al-Kandri, Ahmed; Birch, Philip; Young, Rupert; Chatwin, Chris

    2011-11-01

    A speed enhanced space variant correlation filer which has been designed to be invariant to change in orientation and scale of the target object but also to be spatially variant, i.e. the filter function becoming dependant on local clutter conditions within the image. The speed enhancement of the filter is due to the use of optimization techniques employing low-pass filtering to restrict kernel movement to be within regions of interest. The detection and subsequent identification capability of the two-stage process has been evaluated in highly cluttered backgrounds using both visible and thermal imagery acquired from civil and defense domains along with associated training data sets for target detection and classification. In this paper a series of tests have been conducted in multiple scenarios relating to situations that pose a security threat. Performance matrices comprised of peak-to-correlation energy (PCE) and peak-to-side lobe ratio (PSR) measurements of the correlation output have been calculated to allow the definition of a recognition criterion. The hardware implementation of the system has been discussed in terms of Field Programmable Gate Array (FPGA) chipsets with implementation bottle necks and their solution being considered.

  5. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Realisation of video-frequency filters on the basis of a new mode of operation of an acousto-optical correlator with spatial integration

    NASA Astrophysics Data System (ADS)

    Ushakov, V. N.

    1995-10-01

    A video-frequency acousto-optical correlator with spatial integration, which widens the functional capabilities of correlation-type acousto-optical processors, is described. The correlator is based on a two-dimensional reference transparency and it can filter arbitrary video signals of spectral width limited by the pass band of an acousto-optical modulator. The calculated pulse characteristic is governed by the structure of the reference transparency. A procedure for the synthesis of this transparency is considered and experimental results are reported.

  6. Passive IFF: Autonomous Nonintrusive Rapid Identification of Friendly Assets

    NASA Technical Reports Server (NTRS)

    Moynihan, Philip; Steenburg, Robert Van; Chao, Tien-Hsin

    2004-01-01

    A proposed optoelectronic instrument would identify targets rapidly, without need to radiate an interrogating signal, apply identifying marks to the targets, or equip the targets with transponders. The instrument was conceived as an identification, friend or foe (IFF) system in a battlefield setting, where it would be part of a targeting system for weapons, by providing rapid identification for aimed weapons to help in deciding whether and when to trigger them. The instrument could also be adapted to law-enforcement and industrial applications in which it is necessary to rapidly identify objects in view. The instrument would comprise mainly an optical correlator and a neural processor (see figure). The inherent parallel-processing speed and capability of the optical correlator would be exploited to obtain rapid identification of a set of probable targets within a scene of interest and to define regions within the scene for the neural processor to analyze. The neural processor would then concentrate on each region selected by the optical correlator in an effort to identify the target. Depending on whether or not a target was recognized by comparison of its image data with data in an internal database on which the neural processor was trained, the processor would generate an identifying signal (typically, friend or foe ). The time taken for this identification process would be less than the time needed by a human or robotic gunner to acquire a view of, and aim at, a target. An optical correlator that has been under development for several years and that has been demonstrated to be capable of tracking a cruise missile might be considered a prototype of the optical correlator in the proposed IFF instrument. This optical correlator features a 512-by-512-pixel input image frame and operates at an input frame rate of 60 Hz. It includes a spatial light modulator (SLM) for video-to-optical image conversion, a pair of precise lenses to effect Fourier transforms, a filter SLM for digital-to-optical correlation-filter data conversion, and a charge-coupled device (CCD) for detection of correlation peaks. In operation, the input scene grabbed by a video sensor is streamed into the input SLM. Precomputed correlation-filter data files representative of known targets are then downloaded and sequenced into the filter SLM at a rate of 1,000 Hz. When there occurs a match between the input target data and one of the known-target data files, the CCD detects a correlation peak at the location of the target. Distortion- invariant correlation filters from a bank of such filters are then sequenced through the optical correlator for each input frame. The net result is the rapid preliminary recognition of one or a few targets.

  7. The composite classification problem in optical information processing

    NASA Technical Reports Server (NTRS)

    Hall, Eric B.

    1995-01-01

    Optical pattern recognition allows objects to be recognized from their images and permits their positional parameters to be estimated accurately in real time. The guiding principle behind optical pattern recognition is that a lens focusing a beam of coherent light modulated with an image produces the two-dimensinal Fourier transform of that image. When the resulting output is further transformed by the matched filter corresponding to the original image, one obtains the autocorrelation function of the original image, which has a peak at the origin. Such a device is called an optical correlator and may be used to recognize the locate the image for which it is designed. (From a practical perspective, an approximation to the matched filter must be used since the spatial light modulator (SLM) on which the filter is implemented usually does not allow one to independently control both the magnitude and phase of the filter.) Generally, one is not just concerned with recognizing a single image but is interested in recognizing a variety of rotated and scaled views of a particular image. In order to recognize these different views using an optical correlator, one may select a subset of these views (whose elements are called training images) and then use a composite filter that is designed to produce a correlation peak for each training image. Presumably, these peaks should be sharp and easily distinguishable from the surrounding correlation plane values. In this report we consider two areas of research regarding composite optical correlators. First, we consider the question of how best to choose the training images that are used to design the composite filter. With regard to quantity, the number of training images should be large enough to adequately represent all possible views of the targeted object yet small enough to ensure that the resolution of the filter is not exhausted. As for the images themselves, they should be distinct enough to avoid numerical difficulties yet similar enough to avoid gaps in which certain views of the target will be unrecognized. One method that we introduce to study this problem is called probing and involves the creation of the artificial imagery. The second problem we consider involves the clasification of the composite filter's correlation plane data. In particular, we would like to determine not only whether or not we are viewing a training image, but, in the former case, we would like to determine which training image is being viewed. This second problem is investigated using traditional M-ary hypothesis testing techniques.

  8. Sinogram noise reduction for low-dose CT by statistics-based nonlinear filters

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Lu, Hongbing; Li, Tianfang; Liang, Zhengrong

    2005-04-01

    Low-dose CT (computed tomography) sinogram data have been shown to be signal-dependent with an analytical relationship between the sample mean and sample variance. Spatially-invariant low-pass linear filters, such as the Butterworth and Hanning filters, could not adequately handle the data noise and statistics-based nonlinear filters may be an alternative choice, in addition to other choices of minimizing cost functions on the noisy data. Anisotropic diffusion filter and nonlinear Gaussian filters chain (NLGC) are two well-known classes of nonlinear filters based on local statistics for the purpose of edge-preserving noise reduction. These two filters can utilize the noise properties of the low-dose CT sinogram for adaptive noise reduction, but can not incorporate signal correlative information for an optimal regularized solution. Our previously-developed Karhunen-Loeve (KL) domain PWLS (penalized weighted least square) minimization considers the signal correlation via the KL strategy and seeks the PWLS cost function minimization for an optimal regularized solution for each KL component, i.e., adaptive to the KL components. This work compared the nonlinear filters with the KL-PWLS framework for low-dose CT application. Furthermore, we investigated the nonlinear filters for post KL-PWLS noise treatment in the sinogram space, where the filters were applied after ramp operation on the KL-PWLS treated sinogram data prior to backprojection operation (for image reconstruction). By both computer simulation and experimental low-dose CT data, the nonlinear filters could not outperform the KL-PWLS framework. The gain of post KL-PWLS edge-preserving noise filtering in the sinogram space is not significant, even the noise has been modulated by the ramp operation.

  9. Discovering Hidden Connections among Diseases, Genes and Drugs Based on Microarray Expression Profiles with Negative-Term Filtering

    PubMed Central

    2014-01-01

    Microarrays based on gene expression profiles (GEPs) can be tailored specifically for a variety of topics to provide a precise and efficient means with which to discover hidden information. This study proposes a novel means of employing existing GEPs to reveal hidden relationships among diseases, genes, and drugs within a rich biomedical database, PubMed. Unlike the co-occurrence method, which considers only the appearance of keywords, the proposed method also takes into account negative relationships and non-relationships among keywords, the importance of which has been demonstrated in previous studies. Three scenarios were conducted to verify the efficacy of the proposed method. In Scenario 1, disease and drug GEPs (disease: lymphoma cancer, lymph node cancer, and drug: cyclophosphamide) were used to obtain lists of disease- and drug-related genes. Fifteen hidden connections were identified between the diseases and the drug. In Scenario 2, we adopted different diseases and drug GEPs (disease: AML-ALL dataset and drug: Gefitinib) to obtain lists of important diseases and drug-related genes. In this case, ten hidden connections were identified. In Scenario 3, we obtained a list of disease-related genes from the disease-related GEP (liver cancer) and the drug (Capecitabine) on the PharmGKB website, resulting in twenty-two hidden connections. Experimental results demonstrate the efficacy of the proposed method in uncovering hidden connections among diseases, genes, and drugs. Following implementation of the weight function in the proposed method, a large number of the documents obtained in each of the scenarios were judged to be related: 834 of 4028 documents, 789 of 1216 documents, and 1928 of 3791 documents in Scenarios 1, 2, and 3, respectively. The negative-term filtering scheme also uncovered a large number of negative relationships as well as non-relationships among these connections: 97 of 834, 38 of 789, and 202 of 1928 in Scenarios 1, 2, and 3, respectively. PMID:24915461

  10. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model.

    PubMed

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000-1,800 nm wavelengths and excluded 1,400-1,500 nm wavelengths. A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm(2) irradiation (P<0.05). We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage.

  11. Endoglin (CD105) expression on microvessel endothelial cells in juvenile nasopharyngeal angiofibroma: tissue microarray analysis and association with prognostic significance.

    PubMed

    Wang, Jing-Jing; Sun, Xi-Cai; Hu, Li; Liu, Zhuo-Fu; Yu, Hua-Peng; Li, Han; Wang, Shu-Yi; Wang, De-Hui

    2013-12-01

    The purpose of this study was to examine endoglin (CD105) expression on microvessel endothelial cells (ECs) in juvenile nasopharyngeal angiofibroma (JNA) and its relationship with recurrence. Immunohistochemistry was performed to detect CD105 expression in a tissue microarray from 70 patients with JNA. Correlation between CD105 expression on microvessel ECs and clinicopathological features, as well as tumor recurrence, were analyzed. Immunohistochemistry revealed CD105 expression on ECs but not in stroma of patients with JNA. Chi-square analysis indicated CD105-based microvessel density (MVD) was correlated with JNA recurrence (p = .013). Univariate and multivariate analyses determined that MVD was a significant predictor of time to recurrence (p = .009). The CD105-based MVD was better for predicting disease recurrence (AUROC: 0.673; p = .036) than other clinicopathological features. MVD is a useful predictor for poor prognosis of patients with JNA after curative resection. Angiogenesis, which may play an important role in the occurrence and development of JNA, is therefore a potential therapeutic target for JNA. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  12. Diffuse myogenin expression by immunohistochemistry is an independent marker of poor survival in pediatric rhabdomyosarcoma: a tissue microarray study of 71 primary tumors including correlation with molecular phenotype.

    PubMed

    Heerema-McKenney, Amy; Wijnaendts, Liliane C D; Pulliam, Joseph F; Lopez-Terrada, Dolores; McKenney, Jesse K; Zhu, Shirley; Montgomery, Kelli; Mitchell, Janet; Marinelli, Robert J; Hart, Augustinus A M; van de Rijn, Matt; Linn, Sabine C

    2008-10-01

    The pathologic classification of rhabdomyosarcoma (RMS) into embryonal or alveolar subtype is an important prognostic factor guiding the therapeutic protocol chosen for an individual patient. Unfortunately, this classification is not always straightforward, and the diagnostic criteria are controversial in a subset of cases. Ancillary studies are used to aid in the classification, but their potential use as independent prognostic factors is rarely studied. The aim of this study is to identify immunohistochemical markers of potential prognostic significance in pediatric RMS and to correlate their expression with PAX-3/FKHR and PAX-7/FKHR fusion status. A single tissue microarray containing 71 paraffin-embedded pediatric RMSs was immunostained with antibodies against p53, bcl-2, Ki-67, CD44, myogenin, and MyoD1. The tissue microarray and whole paraffin blocks were studied for PAX-3/FKHR and PAX-7/FKHR gene fusions by fluorescence in situ hybridization and reverse transcription-polymerase chain reaction. Clinical follow-up data were available for each patient. Immunohistochemical staining results and translocation status were correlated with recurrence-free interval (RFI) and overall survival (OS) using the Kaplan-Meier method, the log-rank test, and Cox proportional hazard regression. The minimum clinical follow-up interval was 24 months (median follow-up=57 mo). On univariable analysis, immunohistochemical expression of myogenin, bcl-2, and identification of a gene fusion were associated with decreased 5-year RFI and 10-year OS (myogenin RFI P=0.0028, OS P=0.0021; bcl-2 RFI P=0.037, OS P=0.032; gene fusion RFI P=0.0001, OS P=0.0058). After adjustment for Intergroup Rhabdomyosarcoma Study-TNM stage, tumor site, age, tumor histology, and translocation status by multivariable analysis, only myogenin retained an independent association with RFI (P=0.034) and OS (P=0.0069). In this retrospective analysis, diffuse immunohistochemical reactivity for myogenin in RMS correlates with decreased RFI and OS, independent of histologic subtype, translocation status, tumor site, or stage.

  13. The role of habitat filtering in the leaf economics spectrum and plant susceptibility to pathogen infection

    USGS Publications Warehouse

    Welsh, Miranda E; Cronin, James P.; Mitchell, Charles E.

    2016-01-01

    5.Synthesis. Our results suggest that habitat filtering plays a fundamental role in strengthening the trait correlations of the LES, and that trait-based models may be less accurate when communities have not been filtered by the current environment, for example, following rapid environmental change.

  14. Multi-Beam Radio Frequency (RF) Aperture Arrays Using Multiplierless Approximate Fast Fourier Transform (FFT)

    DTIC Science & Technology

    2017-08-01

    filtering, correlation and radio- astronomy . In this report approximate transforms that closely follow the DFT have been studied and found. The approximate...communications, data networks, sensor networks, cognitive radio, radar and beamforming, imaging, filtering, correlation and radio- astronomy . FFTs efficiently...public release; distribution is unlimited. 4.3 Digital Hardware and Design Architectures Collaboration for Astronomy Signal Processing and Electronics

  15. Impact of Physician Education and a Dedicated Inferior Vena Cava Filter Tracking System on Inferior Vena Cava Filter Use and Retrieval Rates Across a Large US Health Care Region.

    PubMed

    Wang, Stephen L; Cha, Hsien-Hwa A; Lin, James R; Francis, Bolanos; Elizabeth, Wakley; Martin, Porras; Rajan, Sudhir

    2016-05-01

    To evaluate the effects of physician familiarity with current evidence and guidelines on inferior vena cava (IVC) filter use and the availability of IVC filter tracking infrastructure on retrieval rates. Fourteen continuing medical education-approved in-hospital grand rounds covering evidence-based review of the literature on IVC filter efficacy, patient-centered outcomes, guidelines for IVC filter indications, and complications were performed across a large United States (US) health care region serving more than 3.5 million members. A computer-based IVC filter tracking system was deployed simultaneously. IVC filter use, rates of attempted retrieval, and fulfillment of guidelines for IVC filter indications were retrospectively evaluated at each facility for 12 months before intervention (n = 427) and for 12 months after intervention (n = 347). After education, IVC filter use decreased 18.7%, with a member enrollment-adjusted decrease of 22.2%, despite an increasing IVC filter use trend for 4 years. Reduction in IVC filter use at each facility strongly correlated with physician attendance at grand rounds (r = -0.69; P = .007). Rates of attempted retrieval increased from 38.9% to 54.0% (P = .0006), with similar rates of successful retrieval (82.3% before education and 85.8% after education on first attempt). Improvement in IVC filter retrieval attempts correlated with physician attendance at grand rounds (r = 0.51; P = .051). IVC filter dwell times at first retrieval attempt were similar (10.2 wk before and 10.8 wk after). Physician education dramatically reduced IVC filter use across a large US health care region, and represents a learning opportunity for physicians who request and place them. Education and a novel tracking system improved rates of retrieval for IVC filter devices. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  16. Correlated tuning of the speckle pattern in an interferometer based on a multimode fiber-optic waveguide

    NASA Astrophysics Data System (ADS)

    Bykovskii, Iu. A.; Kul'Chin, Iu. N.; Obukh, V. F.; Smirnov, V. L.

    1990-08-01

    The correlated tuning of the speckle pattern in the radiation field of a single-fiber multimode interferometer is investigated experimentally and analytically in the presence of external action. It is found that correlated changes in the speckle pattern are observed in both the near and the far emission fields of the waveguide. An expression is obtained which provides a way to determine the maximum size of the speckle correlation region. The use of spatial filtering for isolating the effect of correlated speckle pattern tuning is suggested. It is shown that the use of a spatial filter makes it possible to increase the efficiency of fiber-optic transducers.

  17. Identification of the Key Genes and Pathways in Esophageal Carcinoma.

    PubMed

    Su, Peng; Wen, Shiwang; Zhang, Yuefeng; Li, Yong; Xu, Yanzhao; Zhu, Yonggang; Lv, Huilai; Zhang, Fan; Wang, Mingbo; Tian, Ziqiang

    2016-01-01

    Objective . Esophageal carcinoma (EC) is a frequently common malignancy of gastrointestinal cancer in the world. This study aims to screen key genes and pathways in EC and elucidate the mechanism of it. Methods . 5 microarray datasets of EC were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened by bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction were performed to obtain the biological roles of DEGs in EC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression level of DEGs in EC. Results . A total of 1955 genes were filtered as DEGs in EC. The upregulated genes were significantly enriched in cell cycle and the downregulated genes significantly enriched in Endocytosis. PPI network displayed CDK4 and CCT3 were hub proteins in the network. The expression level of 8 dysregulated DEGs including CDK4, CCT3, THSD4, SIM2, MYBL2, CENPF, CDCA3, and CDKN3 was validated in EC compared to adjacent nontumor tissues and the results were matched with the microarray analysis. Conclusion . The significantly DEGs including CDK4, CCT3, THSD4, and SIM2 may play key roles in tumorigenesis and development of EC involved in cell cycle and Endocytosis.

  18. Molecular characterization of endocarditis-associated Staphylococcus aureus.

    PubMed

    Nethercott, Cara; Mabbett, Amanda N; Totsika, Makrina; Peters, Paul; Ortiz, Juan C; Nimmo, Graeme R; Coombs, Geoffrey W; Walker, Mark J; Schembri, Mark A

    2013-07-01

    Infective endocarditis (IE) is a life-threatening infection of the heart endothelium and valves. Staphylococcus aureus is a predominant cause of severe IE and is frequently associated with infections in health care settings and device-related infections. Multilocus sequence typing (MLST), spa typing, and virulence gene microarrays are frequently used to classify S. aureus clinical isolates. This study examined the utility of these typing tools to investigate S. aureus epidemiology associated with IE. Ninety-seven S. aureus isolates were collected from patients diagnosed with (i) IE, (ii) bloodstream infection related to medical devices, (iii) bloodstream infection not related to medical devices, and (iv) skin or soft-tissue infections. The MLST clonal complex (CC) for each isolate was determined and compared to the CCs of members of the S. aureus population by eBURST analysis. The spa type of all isolates was also determined. A null model was used to determine correlations of IE with CC and spa type. DNA microarray analysis was performed, and a permutational analysis of multivariate variance (PERMANOVA) and principal coordinates analysis were conducted to identify genotypic differences between IE and non-IE strains. CC12, CC20, and spa type t160 were significantly associated with IE S. aureus. A subset of virulence-associated genes and alleles, including genes encoding staphylococcal superantigen-like proteins, fibrinogen-binding protein, and a leukocidin subunit, also significantly correlated with IE isolates. MLST, spa typing, and microarray analysis are promising tools for monitoring S. aureus epidemiology associated with IE. Further research to determine a role for the S. aureus IE-associated virulence genes identified in this study is warranted.

  19. Molecular Characterization of Endocarditis-Associated Staphylococcus aureus

    PubMed Central

    Nethercott, Cara; Mabbett, Amanda N.; Totsika, Makrina; Peters, Paul; Ortiz, Juan C.; Nimmo, Graeme R.; Coombs, Geoffrey W.

    2013-01-01

    Infective endocarditis (IE) is a life-threatening infection of the heart endothelium and valves. Staphylococcus aureus is a predominant cause of severe IE and is frequently associated with infections in health care settings and device-related infections. Multilocus sequence typing (MLST), spa typing, and virulence gene microarrays are frequently used to classify S. aureus clinical isolates. This study examined the utility of these typing tools to investigate S. aureus epidemiology associated with IE. Ninety-seven S. aureus isolates were collected from patients diagnosed with (i) IE, (ii) bloodstream infection related to medical devices, (iii) bloodstream infection not related to medical devices, and (iv) skin or soft-tissue infections. The MLST clonal complex (CC) for each isolate was determined and compared to the CCs of members of the S. aureus population by eBURST analysis. The spa type of all isolates was also determined. A null model was used to determine correlations of IE with CC and spa type. DNA microarray analysis was performed, and a permutational analysis of multivariate variance (PERMANOVA) and principal coordinates analysis were conducted to identify genotypic differences between IE and non-IE strains. CC12, CC20, and spa type t160 were significantly associated with IE S. aureus. A subset of virulence-associated genes and alleles, including genes encoding staphylococcal superantigen-like proteins, fibrinogen-binding protein, and a leukocidin subunit, also significantly correlated with IE isolates. MLST, spa typing, and microarray analysis are promising tools for monitoring S. aureus epidemiology associated with IE. Further research to determine a role for the S. aureus IE-associated virulence genes identified in this study is warranted. PMID:23616460

  20. A cluster merging method for time series microarray with production values.

    PubMed

    Chira, Camelia; Sedano, Javier; Camara, Monica; Prieto, Carlos; Villar, Jose R; Corchado, Emilio

    2014-09-01

    A challenging task in time-course microarray data analysis is to cluster genes meaningfully combining the information provided by multiple replicates covering the same key time points. This paper proposes a novel cluster merging method to accomplish this goal obtaining groups with highly correlated genes. The main idea behind the proposed method is to generate a clustering starting from groups created based on individual temporal series (representing different biological replicates measured in the same time points) and merging them by taking into account the frequency by which two genes are assembled together in each clustering. The gene groups at the level of individual time series are generated using several shape-based clustering methods. This study is focused on a real-world time series microarray task with the aim to find co-expressed genes related to the production and growth of a certain bacteria. The shape-based clustering methods used at the level of individual time series rely on identifying similar gene expression patterns over time which, in some models, are further matched to the pattern of production/growth. The proposed cluster merging method is able to produce meaningful gene groups which can be naturally ranked by the level of agreement on the clustering among individual time series. The list of clusters and genes is further sorted based on the information correlation coefficient and new problem-specific relevant measures. Computational experiments and results of the cluster merging method are analyzed from a biological perspective and further compared with the clustering generated based on the mean value of time series and the same shape-based algorithm.

  1. Random matrix theory filters in portfolio optimisation: A stability and risk assessment

    NASA Astrophysics Data System (ADS)

    Daly, J.; Crane, M.; Ruskin, H. J.

    2008-07-01

    Random matrix theory (RMT) filters, applied to covariance matrices of financial returns, have recently been shown to offer improvements to the optimisation of stock portfolios. This paper studies the effect of three RMT filters on the realised portfolio risk, and on the stability of the filtered covariance matrix, using bootstrap analysis and out-of-sample testing. We propose an extension to an existing RMT filter, (based on Krzanowski stability), which is observed to reduce risk and increase stability, when compared to other RMT filters tested. We also study a scheme for filtering the covariance matrix directly, as opposed to the standard method of filtering correlation, where the latter is found to lower the realised risk, on average, by up to 6.7%. We consider both equally and exponentially weighted covariance matrices in our analysis, and observe that the overall best method out-of-sample was that of the exponentially weighted covariance, with our Krzanowski stability-based filter applied to the correlation matrix. We also find that the optimal out-of-sample decay factors, for both filtered and unfiltered forecasts, were higher than those suggested by Riskmetrics [J.P. Morgan, Reuters, Riskmetrics technical document, Technical Report, 1996. http://www.riskmetrics.com/techdoc.html], with those for the latter approaching a value of α=1. In conclusion, RMT filtering reduced the realised risk, on average, and in the majority of cases when tested out-of-sample, but increased the realised risk on a marked number of individual days-in some cases more than doubling it.

  2. Convalescent Plasmodium falciparum-specific seroreactivity does not correlate with paediatric malaria severity or Plasmodium antigen exposure.

    PubMed

    Kessler, Anne; Campo, Joseph J; Harawa, Visopo; Mandala, Wilson L; Rogerson, Stephen J; Mowrey, Wenzhu B; Seydel, Karl B; Kim, Kami

    2018-04-25

    Antibody immunity is thought to be essential to prevent severe Plasmodium falciparum infection, but the exact correlates of protection are unknown. Over time, children in endemic areas acquire non-sterile immunity to malaria that correlates with development of antibodies to merozoite invasion proteins and parasite proteins expressed on the surface of infected erythrocytes. A 1000 feature P. falciparum 3D7 protein microarray was used to compare P. falciparum-specific seroreactivity during acute infection and 30 days after infection in 23 children with uncomplicated malaria (UM) and 25 children with retinopathy-positive cerebral malaria (CM). All children had broad P. falciparum antibody reactivity during acute disease. IgM reactivity decreased and IgG reactivity increased in convalescence. Antibody reactivity to CIDR domains of "virulent" PfEMP1 proteins was low with robust reactivity to the highly conserved, intracellular ATS domain of PfEMP1 in both groups. Although children with UM and CM differed markedly in parasite burden and PfEMP1 exposure during acute disease, neither acute nor convalescent PfEMP1 seroreactivity differed between groups. Greater seroprevalence to a conserved Group A-associated ICAM binding extracellular domain was observed relative to linked extracellular CIDRα1 domains in both case groups. Pooled immune IgG from Malawian adults revealed greater reactivity to PfEMP1 than observed in children. Children with uncomplicated and cerebral malaria have similar breadth and magnitude of P. falciparum antibody reactivity. The utility of protein microarrays to measure serological recognition of polymorphic PfEMP1 antigens needs to be studied further, but the study findings support the hypothesis that conserved domains of PfEMP1 are more prominent targets of cross reactive antibodies than variable domains in children with symptomatic malaria. Protein microarrays represent an additional tool to identify cross-reactive Plasmodium antigens including PfEMP1 domains that can be investigated as strain-transcendent vaccine candidates.

  3. Approximate bandpass and frequency response models of the difference of Gaussian filter

    NASA Astrophysics Data System (ADS)

    Birch, Philip; Mitra, Bhargav; Bangalore, Nagachetan M.; Rehman, Saad; Young, Rupert; Chatwin, Chris

    2010-12-01

    The Difference of Gaussian (DOG) filter is widely used in optics and image processing as, among other things, an edge detection and correlation filter. It has important biological applications and appears to be part of the mammalian vision system. In this paper we analyse the filter and provide details of the full width half maximum, bandwidth and frequency response in order to aid the full characterisation of its performance.

  4. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays

    PubMed Central

    2012-01-01

    Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These two factors are sequence dependent and have a large impact on probe intensity. The results presented here provide novel insight into the effect of probe synthesis errors on Affymetrix microarrays; furthermore, the algorithms developed in this work provide useful tools for the analysis of cross-hybridization, probe synthesis efficiency, fragmentation, wash stringency, temperature, and salt concentration on microarray intensities. PMID:23270536

  5. Minimum Bayes risk image correlation

    NASA Technical Reports Server (NTRS)

    Minter, T. C., Jr.

    1980-01-01

    In this paper, the problem of designing a matched filter for image correlation will be treated as a statistical pattern recognition problem. It is shown that, by minimizing a suitable criterion, a matched filter can be estimated which approximates the optimum Bayes discriminant function in a least-squares sense. It is well known that the use of the Bayes discriminant function in target classification minimizes the Bayes risk, which in turn directly minimizes the probability of a false fix. A fast Fourier implementation of the minimum Bayes risk correlation procedure is described.

  6. High amplification levels of MDM2 and CDK4 correlate with poor outcome in patients with dedifferentiated liposarcoma: A cytogenomic microarray analysis of 47 cases.

    PubMed

    Ricciotti, Robert W; Baraff, Aaron J; Jour, George; Kyriss, McKenna; Wu, Yu; Liu, Yuhua; Li, Shao-Chun; Hoch, Benjamin; Liu, Yajuan J

    2017-12-01

    Dedifferentiated liposarcoma (DDLS) is characterized at the molecular level by amplification of genes within 12q13-15 including MDM2 and CDK4. However, other than FNCLCC grade, prognostic markers are limited. We aim to identify molecular prognostic markers for DDLS to help risk stratify patients. To this end, we studied 49 cases of DDLS in our institutional archives and performed cytogenomic microarray analysis on 47 cases. Gene copy numbers for 12 loci were evaluated and correlated with outcome data retrieved from our institutional electronic medical records. Using cut point analysis and comparison of Kaplan-Meier survival curves by log rank tests, high amplification levels of MDM2 (>38 copies) and CDK4 (>30 copies) correlated with decreased disease free survival (DFS) (P = .0168 and 0.0169 respectively) and disease specific survival (DSS) (P = .0082 and 0.0140 respectively). Additionally, MDM2 and CDK4 showed evidence of a synergistic effect so that each additional copy of one enhances the effect on prognosis of each additional copy of the other for decreased DFS (P = .0227, 0.1% hazard). High amplification of JUN (>16 copies) also correlated with decreased DFS (P = .0217), but not DSS. The presence of copy number alteration at 3q29 correlated with decreased DSS (P = .0192). The presence of >10 mitoses per 10 high power fields and FNCLCC grade 3 also correlated with decreased DFS (P = .0310 and 0.0254 respectively). MDM2 and CDK4 gene amplification levels, along with JUN amplification and copy alterations at 3q29, can be utilized for predicting outcome in patients with DDLS. Published by Elsevier Inc.

  7. Mercury cycling in stream ecosystems. 1. Water column chemistry and transport

    USGS Publications Warehouse

    Brigham, M.E.; Wentz, D.A.; Aiken, G.R.; Krabbenhoft, D.P.

    2009-01-01

    We studied total mercury (THg) and methylmercury (MeHg) in eight streams, located in Oregon, Wisconsin, and Florida, that span large ranges in climate, landscape characteristics, atmospheric Hg deposition, and water chemistry. While atmospheric deposition was the source of Hg at each site, basin characteristics appeared to mediate this source by providing controls on methylation and fluvial THg and MeHg transport. Instantaneous concentrations of filtered total mercury (FTHg) and filtered methylmercury (FMeHg) exhibited strong positive correlations with both dissolved organic carbon (DOC) concentrations and streamflow for most streams, whereas mean FTHg and FMeHg concentrations were correlated with wetland density of the basins. For all streams combined, whole water concentrations (sum of filtered and particulate forms) of THg and MeHg correlated strongly with DOC and suspended sediment concentrations in the water column. ?? 2009 American Chemical Society.

  8. Multiple Optical Filter Design Simulation Results

    NASA Astrophysics Data System (ADS)

    Mendelsohn, J.; Englund, D. C.

    1986-10-01

    In this paper we continue our investigation of the application of matched filters to robotic vision problems. Specifically, we are concerned with the tray-picking problem. Our principal interest in this paper is the examination of summation affects which arise from attempting to reduce the matched filter memory size by averaging of matched filters. While the implementation of matched filtering theory to applications in pattern recognition or machine vision is ideally through the use of optics and optical correlators, in this paper the results were obtained through a digital simulation of the optical process.

  9. New distributed fusion filtering algorithm based on covariances over sensor networks with random packet dropouts

    NASA Astrophysics Data System (ADS)

    Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.

    2017-07-01

    This paper studies the distributed fusion estimation problem from multisensor measured outputs perturbed by correlated noises and uncertainties modelled by random parameter matrices. Each sensor transmits its outputs to a local processor over a packet-erasure channel and, consequently, random losses may occur during transmission. Different white sequences of Bernoulli variables are introduced to model the transmission losses. For the estimation, each lost output is replaced by its estimator based on the information received previously, and only the covariances of the processes involved are used, without requiring the signal evolution model. First, a recursive algorithm for the local least-squares filters is derived by using an innovation approach. Then, the cross-correlation matrices between any two local filters is obtained. Finally, the distributed fusion filter weighted by matrices is obtained from the local filters by applying the least-squares criterion. The performance of the estimators and the influence of both sensor uncertainties and transmission losses on the estimation accuracy are analysed in a numerical example.

  10. Implementation theory of distortion-invariant pattern recognition for optical and digital signal processing systems

    NASA Astrophysics Data System (ADS)

    Lhamon, Michael Earl

    A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase-only implementation with lower detection performance than full complex electronic systems. Our study includes pseudo-random pixel encoding techniques for approximating full complex filtering. Optical filter bank implementation is possible and they have the advantage of time averaging the entire filter bank at real time rates. Time-averaged optical filtering is computational comparable to billions of digital operations-per-second. For this reason, we believe future trends in high speed pattern recognition will involve hybrid architectures of both optical and DSP elements.

  11. Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters

    PubMed Central

    Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun

    2017-01-01

    Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved. PMID:28241475

  12. Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters.

    PubMed

    Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun

    2017-02-23

    Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved.

  13. Correlation of antispermatozoal antibody with infertility in immunized female rabbits using /sup 14/C-protein A in a filter radioassay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eng, L.A.; Metz, C.B.

    1986-09-01

    The meaningful detection of antisperm antibody in immunologically infertile females has been confounded by the many methods of assay that exist. With many of these methods there is poor correlation of assay results with infertility. In this report, female rabbits were rendered partially or completely infertile by immunization with sperm fractions. A filter radioassay for antisperm antibody was developed that consists of incubating 10(7) sperm with sperm from immunized rabbits and /sup 14/C-Protein A, a long-lived and versatile indirect radiolabel for many antibodies of the IgG class. The spermatozoa are washed by rapid vacuum filtration on polycarbonate membrane filters insteadmore » of by time-consuming centrifugation. The filters with the collected spermatozoa are then counted in a liquid scintillation counter. Sera from female rabbits isoimmunized with sperm antigens show a highly significant correlation (r = -0.904; p less than 0.001) between assay results and infertility as measured by the percentage of eggs that underwent cleavage after artificial insemination.« less

  14. 16S rRNA based microarray analysis of ten periodontal bacteria in patients with different forms of periodontitis.

    PubMed

    Topcuoglu, Nursen; Kulekci, Guven

    2015-10-01

    DNA microarray analysis is a computer based technology, that a reverse capture, which targets 10 periodontal bacteria (ParoCheck) is available for rapid semi-quantitative determination. The aim of this three-year retrospective study was to display the microarray analysis results for the subgingival biofilm samples taken from patient cases diagnosed with different forms of periodontitis. A total of 84 patients with generalized aggressive periodontitis (GAP,n:29), generalized chronic periodontitis (GCP, n:25), peri-implantitis (PI,n:14), localized aggressive periodontitis (LAP,n:8) and refractory chronic periodontitis (RP,n:8) were consecutively selected from the archives of the Oral Microbiological Diagnostic Laboratory. The subgingival biofilm samples were analyzed by the microarray-based identification of 10 selected species. All the tested species were detected in the samples. The red complex bacteria were the most prevalent with very high levels in all groups. Fusobacterium nucleatum was detected in all samples at high levels. The green and blue complex bacteria were less prevalent compared with red and orange complex, except Aggregatibacter actinomycetemcomitas was detected in all LAP group. Positive correlations were found within all the red complex bacteria and between red and orange complex bacteria especially in GCP and GAP groups. Parocheck enables to monitoring of periodontal pathogens in all forms of periodontal disease and can be alternative to other guiding and reliable microbiologic tests. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term.

    PubMed

    Romero, Roberto; Tarca, Adi L; Chaemsaithong, Piya; Miranda, Jezid; Chaiworapongsa, Tinnakorn; Jia, Hui; Hassan, Sonia S; Kalita, Cynthia A; Cai, Juan; Yeo, Lami; Lipovich, Leonard

    2014-09-01

    To identify differentially expressed long non-coding RNA (lncRNA) genes in human myometrium in women with spontaneous labor at term. Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n = 19) and women in spontaneous labor at term (n = 20). RNA was extracted and profiled using an Illumina® microarray platform. We have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. We identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an experimental method completely independent of the microarray analysis. Intriguingly, one of the two lncRNA genes differentially expressed in term labor had a key genomic structure element, a splice site, that lacked evolutionary conservation beyond primates. We provide, for the first time, evidence for coordinated differential expression and correlation of cis-encoded antisense lncRNAs and protein-coding genes with known as well as novel roles in pregnancy in the myometrium of women in spontaneous labor at term.

  16. 3D Wavelet-Based Filter and Method

    DOEpatents

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  17. Scene-Aware Adaptive Updating for Visual Tracking via Correlation Filters

    PubMed Central

    Zhang, Sirou; Qiao, Xiaoya

    2017-01-01

    In recent years, visual object tracking has been widely used in military guidance, human-computer interaction, road traffic, scene monitoring and many other fields. The tracking algorithms based on correlation filters have shown good performance in terms of accuracy and tracking speed. However, their performance is not satisfactory in scenes with scale variation, deformation, and occlusion. In this paper, we propose a scene-aware adaptive updating mechanism for visual tracking via a kernel correlation filter (KCF). First, a low complexity scale estimation method is presented, in which the corresponding weight in five scales is employed to determine the final target scale. Then, the adaptive updating mechanism is presented based on the scene-classification. We classify the video scenes as four categories by video content analysis. According to the target scene, we exploit the adaptive updating mechanism to update the kernel correlation filter to improve the robustness of the tracker, especially in scenes with scale variation, deformation, and occlusion. We evaluate our tracker on the CVPR2013 benchmark. The experimental results obtained with the proposed algorithm are improved by 33.3%, 15%, 6%, 21.9% and 19.8% compared to those of the KCF tracker on the scene with scale variation, partial or long-time large-area occlusion, deformation, fast motion and out-of-view. PMID:29140311

  18. Video-signal improvement using comb filtering techniques.

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Stuber, F. M.; Panneton, R. J.

    1973-01-01

    Significant improvement in the signal-to-noise performance of television signals has been obtained through the application of comb filtering techniques. This improvement is achieved by removing the inherent redundancy in the television signal through linear prediction and by utilizing the unique noise-rejection characteristics of the receiver comb filter. Theoretical and experimental results describe the signal-to-noise ratio and picture-quality improvement obtained through the use of baseband comb filters and the implementation of a comb network as the loop filter in a phase-lock-loop demodulator. Attention is given to the fact that noise becomes correlated when processed by the receiver comb filter.

  19. Transcriptional Correlates of Memory Maintenance Following Long-Term Sensitization of "Aplysia Californica"

    ERIC Educational Resources Information Center

    Conte, Catherine; Herdegen, Samantha; Kamal, Saman; Patel, Jency; Patel, Ushma; Perez, Leticia; Rivota, Marissa; Calin-Jageman, Robert J.; Calin-Jageman, Irina E.

    2017-01-01

    We characterized the transcriptional response accompanying maintenance of long-term sensitization (LTS) memory in the pleural ganglia of "Aplysia californica" using microarray (N = 8) and qPCR (N = 11 additional samples). We found that 24 h after memory induction there is strong regulation of 1198 transcripts (748 up and 450 down) in a…

  20. The civRT operon is important for Campylobacter jejuni strain 81-176 host cell interactions through regulation of the formate dehydrogenase operon

    USDA-ARS?s Scientific Manuscript database

    C. jejuni colonizes the intestinal mucosa, and the severity of disease in different strains is correlated with host cell interaction and invasion. A microarray screen to identify genes differentially regulated during C. jejuni interaction with tissue culture cells revealed the up-regulation of a two...

  1. Intelligent vision system for autonomous vehicle operations

    NASA Technical Reports Server (NTRS)

    Scholl, Marija S.

    1991-01-01

    A complex optical system consisting of a 4f optical correlator with programmatic filters under the control of a digital on-board computer that operates at video rates for filter generation, storage, and management is described.

  2. Comparing transformation methods for DNA microarray data

    PubMed Central

    Thygesen, Helene H; Zwinderman, Aeilko H

    2004-01-01

    Background When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing (to account for nonlinear measurement effects), and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. Results We used the ratio between biological variance and measurement variance (which is an F-like statistic) as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. Conclusions The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method. PMID:15202953

  3. Comparing transformation methods for DNA microarray data.

    PubMed

    Thygesen, Helene H; Zwinderman, Aeilko H

    2004-06-17

    When DNA microarray data are used for gene clustering, genotype/phenotype correlation studies, or tissue classification the signal intensities are usually transformed and normalized in several steps in order to improve comparability and signal/noise ratio. These steps may include subtraction of an estimated background signal, subtracting the reference signal, smoothing (to account for nonlinear measurement effects), and more. Different authors use different approaches, and it is generally not clear to users which method they should prefer. We used the ratio between biological variance and measurement variance (which is an F-like statistic) as a quality measure for transformation methods, and we demonstrate a method for maximizing that variance ratio on real data. We explore a number of transformations issues, including Box-Cox transformation, baseline shift, partial subtraction of the log-reference signal and smoothing. It appears that the optimal choice of parameters for the transformation methods depends on the data. Further, the behavior of the variance ratio, under the null hypothesis of zero biological variance, appears to depend on the choice of parameters. The use of replicates in microarray experiments is important. Adjustment for the null-hypothesis behavior of the variance ratio is critical to the selection of transformation method.

  4. A High Throughput Protein Microarray Approach to Classify HIV Monoclonal Antibodies and Variant Antigens

    PubMed Central

    Dotsey, Emmanuel Y.; Gorlani, Andrea; Ingale, Sampat; Achenbach, Chad J.; Forthal, Donald N.; Felgner, Philip L.; Gach, Johannes S.

    2015-01-01

    In recent years, high throughput discovery of human recombinant monoclonal antibodies (mAbs) has been applied to greatly advance our understanding of the specificity, and functional activity of antibodies against HIV. Thousands of antibodies have been generated and screened in functional neutralization assays, and antibodies associated with cross-strain neutralization and passive protection in primates, have been identified. To facilitate this type of discovery, a high throughput-screening tool is needed to accurately classify mAbs, and their antigen targets. In this study, we analyzed and evaluated a prototype microarray chip comprised of the HIV-1 recombinant proteins gp140, gp120, gp41, and several membrane proximal external region peptides. The protein microarray analysis of 11 HIV-1 envelope-specific mAbs revealed diverse binding affinities and specificities across clades. Half maximal effective concentrations, generated by our chip analysis, correlated significantly (P<0.0001) with concentrations from ELISA binding measurements. Polyclonal immune responses in plasma samples from HIV-1 infected subjects exhibited different binding patterns, and reactivity against printed proteins. Examining the totality of the specificity of the humoral response in this way reveals the exquisite diversity, and specificity of the humoral response to HIV. PMID:25938510

  5. Magnetic and SEM-EDS analyses of Tilia cordata leaves and PM10 filters as a complementary source of information on polluted air: Results from the city of Parma (Northern Italy).

    PubMed

    Mantovani, Luciana; Tribaudino, Mario; Solzi, Massimo; Barraco, Vera; De Munari, Eriberto; Pironi, Claudia

    2018-08-01

    In this work, both PM 10 filters and leaves have been collected, on a daily basis, over a period of five months and compared systematically. Filters were taken from an air-quality monitoring station and leaves from two Tilia cordata trees, both located near the railway station of Parma. SEM-EDS analysis on the surface and across the leaves shows that magnetic particles are almost entirely made of magnetite, and that they are found invariably on the leaves surface. The saturation isothermal magnetic remanence (SIRM) shows that for both filters and leaves the magnetic fraction mainly consists of a low coercivity, magnetite-like phase. The magnetic signals of filter and leaves and atmospheric PM concentrations are compared. The correlation is better for filters, mostly with parameters related to vehicular pollution, and improved for both filters and leaves once data were averaged on a 10 days basis. Filters and leaves equally show an increase in magnetic signal during the fall-winter period together with PM 10 content. The comparison between leaves and filters shows that: 1) leaves give a qualitative picture, and in our case they could be used as environmental proxies after averaging the results over multiple days; 2) the correlation with PM 10 is weaker, indicating that there is a PM 10 contribution from non-magnetic particles, like calcite and clay minerals, pollen and spores; 3) multidomain particles contribution from filters indicates a strong relation with vehicular polluters, suggesting the important role of larger particles; 4) magnetization from leaves and filters are weakly related, due to the different sampling lapse. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Clonal diversity analysis using SNP microarray: a new prognostic tool for chronic lymphocytic leukemia.

    PubMed

    Zhang, Linsheng; Znoyko, Iya; Costa, Luciano J; Conlin, Laura K; Daber, Robert D; Self, Sally E; Wolff, Daynna J

    2011-12-01

    Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease. The methods currently used for monitoring CLL and determining conditions for treatment are limited in their ability to predict disease progression, patient survival, and response to therapy. Although clonal diversity and the acquisition of new chromosomal abnormalities during the disease course (clonal evolution) have been associated with disease progression, their prognostic potential has been underappreciated because cytogenetic and fluorescence in situ hybridization (FISH) studies have a restricted ability to detect genomic abnormalities and clonal evolution. We hypothesized that whole genome analysis using high resolution single nucleotide polymorphism (SNP) microarrays would be useful to detect diversity and infer clonal evolution to offer prognostic information. In this study, we used the Infinium Omni1 BeadChip (Illumina, San Diego, CA) array for the analysis of genetic variation and percent mosaicism in 25 non-selected CLL patients to explore the prognostic value of the assessment of clonal diversity in patients with CLL. We calculated the percentage of mosaicism for each abnormality by applying a mathematical algorithm to the genotype frequency data and by manual determination using the Simulated DNA Copy Number (SiDCoN) tool, which was developed from a computer model of mosaicism. At least one genetic abnormality was identified in each case, and the SNP data was 98% concordant with FISH results. Clonal diversity, defined as the presence of two or more genetic abnormalities with differing percentages of mosaicism, was observed in 12 patients (48%), and the diversity correlated with the disease stage. Clonal diversity was present in most cases of advanced disease (Rai stages III and IV) or those with previous treatment, whereas 9 of 13 patients without detected clonal diversity were asymptomatic or clinically stable. In conclusion, SNP microarray studies with simultaneous evaluation of genomic alterations and mosaic distribution of clones can be used to assess apparent clonal evolution via analysis of clonal diversity. Since clonal evolution in CLL is strongly correlated with disease progression, whole genome SNP microarray analysis provides a new comprehensive and reliable prognostic tool for CLL patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer.

    PubMed

    Kaur, Harsimar B; Guedes, Liana B; Lu, Jiayun; Maldonado, Laneisha; Reitz, Logan; Barber, John R; De Marzo, Angelo M; Tosoian, Jeffrey J; Tomlins, Scott A; Schaeffer, Edward M; Joshu, Corinne E; Sfanos, Karen S; Lotan, Tamara L

    2018-05-30

    The inflammatory microenvironment plays an important role in the pathogenesis and progression of tumors and may be associated with somatic genomic alterations. We examined the association of tumor-infiltrating T-cell density with clinical-pathologic variables, tumor molecular subtype, and oncologic outcomes in surgically treated primary prostate cancer occurring in patients of European-American or African-American ancestry. We evaluated 312 primary prostate tumors, enriched for patients with African-American ancestry and high grade disease. Tissue microarrays were immunostained for CD3, CD8, and FOXP3 and were previously immunostained for ERG and PTEN using genetically validated protocols. Image analysis for quantification of T-cell density in tissue microarray tumor spots was performed. Automated quantification of T-cell densities in tumor-containing regions of tissue microarray spots and standard histologic sections were correlated (r = 0.73, p < 0.00001) and there was good agreement between visual and automated T-cell density counts on tissue microarray spots (r = 0.93, p < 0.00001). There was a significant correlation between CD3+, CD8+, and FOXP3+ T-cell densities (p < 0.00001), but these were not associated with most clinical or pathologic variables. Increased T-cell density was significantly associated with ERG positivity (median 309 vs. 188 CD3+ T cells/mm 2 ; p = 0.0004) and also with PTEN loss (median 317 vs. 192 CD3+ T cells/mm 2 ; p = 0.001) in the combined cohort of matched European-American and African-American ancestry patients. The same association or a similar trend was present in patients of both ancestries when analyzed separately. When the African-American patients from the matched race set were combined with a separate high grade set of African-American cases, there was a weak association of increased FOXP3+ T-cell densities with increased risk of metastasis in multivariable analysis. Though high T-cell density is associated with specific molecular subclasses of prostate cancer, we did not find an association of T-cell density with racial ancestry.

  8. Position, rotation, and intensity invariant recognizing method

    DOEpatents

    Ochoa, Ellen; Schils, George F.; Sweeney, Donald W.

    1989-01-01

    A method for recognizing the presence of a particular target in a field of view which is target position, rotation, and intensity invariant includes the preparing of a target-specific invariant filter from a combination of all eigen-modes of a pattern of the particular target. Coherent radiation from the field of view is then imaged into an optical correlator in which the invariant filter is located. The invariant filter is rotated in the frequency plane of the optical correlator in order to produce a constant-amplitude rotational response in a correlation output plane when the particular target is present in the field of view. Any constant response is thus detected in the output The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the U.S. Department of Energy and AT&T Technologies, Inc.

  9. Fundamentals of digital filtering with applications in geophysical prospecting for oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesko, A.

    This book is a comprehensive work bringing together the important mathematical foundations and computing techniques for numerical filtering methods. The first two parts of the book introduce the techniques, fundamental theory and applications, while the third part treats specific applications in geophysical prospecting. Discussion is limited to linear filters, but takes in related fields such as correlational and spectral analysis.

  10. Optical ranked-order filtering using threshold decomposition

    DOEpatents

    Allebach, Jan P.; Ochoa, Ellen; Sweeney, Donald W.

    1990-01-01

    A hybrid optical/electronic system performs median filtering and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant filtering step followed by a point-to-point threshold comparison step. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant filtering step. An incoherent optical correlation system performs the linear filtering, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the filter plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum filtering of images. A totally optical system is also disclosed.

  11. Image restoration by Wiener filtering in the presence of signal-dependent noise.

    PubMed

    Kondo, K; Ichioka, Y; Suzuki, T

    1977-09-01

    An optimum filter to restore the degraded image due to blurring and the signal-dependent noise is obtained on the basis of the theory of Wiener filtering. Computer simulations of image restoration using signal-dependent noise models are carried out. It becomes clear that the optimum filter, which makes use of a priori information on the signal-dependent nature of the noise and the spectral density of the signal and the noise showing significant spatial correlation, is potentially advantageous.

  12. Real-time optical correlator using computer-generated holographic filter on a liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey

    1990-01-01

    Limitations associated with the binary phase-only filter often used in optical correlators are presently circumvented in the writing of complex-valued data on a gray-scale spatial light modulator through the use of a computer-generated hologram (CGH) algorithm. The CGH encodes complex-valued data into nonnegative real CGH data in such a way that it may be encoded in any of the available gray-scale spatial light modulators. A CdS liquid-crystal light valve is used for the complex-valued CGH encoding; computer simulations and experimental results are compared, and the use of such a CGH filter as the synapse hologram in a holographic optical neural net is discussed.

  13. 15 CFR Supplement No. 6 to Part 774 - Sensitive List

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... filtering and beamforming using Fast Fourier or other transforms or processes. (vi) 6A001.a.2.d. (vii) 6A001... processing and correlation, including spectral analysis, digital filtering and beamforming using Fast Fourier...

  14. Noise sensitivity of portfolio selection in constant conditional correlation GARCH models

    NASA Astrophysics Data System (ADS)

    Varga-Haszonits, I.; Kondor, I.

    2007-11-01

    This paper investigates the efficiency of minimum variance portfolio optimization for stock price movements following the Constant Conditional Correlation GARCH process proposed by Bollerslev. Simulations show that the quality of portfolio selection can be improved substantially by computing optimal portfolio weights from conditional covariances instead of unconditional ones. Measurement noise can be further reduced by applying some filtering method on the conditional correlation matrix (such as Random Matrix Theory based filtering). As an empirical support for the simulation results, the analysis is also carried out for a time series of S&P500 stock prices.

  15. Modified signed-digit trinary addition using synthetic wavelet filter

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, K. M.; Razzaque, M. A.

    2000-09-01

    The modified signed-digit (MSD) number system has been a topic of interest as it allows for parallel carry-free addition of two numbers for digital optical computing. In this paper, harmonic wavelet joint transform (HWJT)-based correlation technique is introduced for optical implementation of MSD trinary adder implementation. The realization of the carry-propagation-free addition of MSD trinary numerals is demonstrated using synthetic HWJT correlator model. It is also shown that the proposed synthetic wavelet filter-based correlator shows high performance in logic processing. Simulation results are presented to validate the performance of the proposed technique.

  16. Simulation of random road microprofile based on specified correlation function

    NASA Astrophysics Data System (ADS)

    Rykov, S. P.; Rykova, O. A.; Koval, V. S.; Vlasov, V. G.; Fedotov, K. V.

    2018-03-01

    The paper aims to develop a numerical simulation method and an algorithm for a random microprofile of special roads based on the specified correlation function. The paper used methods of correlation, spectrum and numerical analysis. It proves that the transfer function of the generating filter for known expressions of spectrum input and output filter characteristics can be calculated using a theorem on nonnegative and fractional rational factorization and integral transformation. The model of the random function equivalent of the real road surface microprofile enables us to assess springing system parameters and identify ranges of variations.

  17. Circulating microRNAs correlated with the level of coronary artery calcification in symptomatic patients

    PubMed Central

    Liu, Wei; Ling, Shukuan; Sun, Weijia; Liu, Tong; Li, Yuheng; Zhong, Guohui; Zhao, Dingsheng; Zhang, Pengfei; Song, Jinping; Jin, Xiaoyan; Xu, Zi; Song, Hailin; Li, Qi; Liu, Shujuan; Chai, Meng; Dai, Qinyi; He, Yi; Fan, Zhanming; Zhou, Yu Jie; Li, Yingxian

    2015-01-01

    The purpose of this study was to find the circulating microRNAs (miRNAs) co-related with the severity of coronary artery calcification (CAC), and testify whether the selected miRNAs could reflect the obstructive coronary artery disease in symptomatic patients. Patients with chest pain and moderated risk for coronary artery disease (CAD) were characterized with coronary artery calcium score (CACS) from cardiac computed tomography (CT). We analyzed plasma miRNA levels of clinical matched 11 CAC (CACS > 100) and 6 non-CAC (CACS = 0) subjects by microarray profile. Microarray analysis identified 34 differentially expressed miRNAs between CAC and non CAC groups. Eight miRNAs (miR-223, miR-3135b, miR-133a-3p, miR-2861, miR-134, miR-191-3p, miR-3679-5p, miR-1229 in CAC patients) were significantly increased in CAC plasma in an independent clinical matched cohort. Four miRNAs (miR-2861, 134, 1229 and 3135b) were correlated with the degree of CAC. Validation test in angiographic cohort showed that miR-134, miR-3135b and miR-2861 were significantly changed in patients with obstructive CAD . We identified three significantly upregulated circulating miRNAs (miR-134, miR-3135b and 2861) correlated with CAC while detected obstructive coronary disease in symptomatic patients. PMID:26537670

  18. Estimating ice-affected streamflow by extended Kalman filtering

    USGS Publications Warehouse

    Holtschlag, D.J.; Grewal, M.S.

    1998-01-01

    An extended Kalman filter was developed to automate the real-time estimation of ice-affected streamflow on the basis of routine measurements of stream stage and air temperature and on the relation between stage and streamflow during open-water (ice-free) conditions. The filter accommodates three dynamic modes of ice effects: sudden formation/ablation, stable ice conditions, and eventual elimination. The utility of the filter was evaluated by applying it to historical data from two long-term streamflow-gauging stations, St. John River at Dickey, Maine and Platte River at North Bend, Nebr. Results indicate that the filter was stable and that parameters converged for both stations, producing streamflow estimates that are highly correlated with published values. For the Maine station, logarithms of estimated streamflows are within 8% of the logarithms of published values 87.2% of the time during periods of ice effects and within 15% 96.6% of the time. Similarly, for the Nebraska station, logarithms of estimated streamflows are within 8% of the logarithms of published values 90.7% of the time and within 15% 97.7% of the time. In addition, the correlation between temporal updates and published streamflows on days of direct measurements at the Maine station was 0.777 and 0.998 for ice-affected and open-water periods, respectively; for the Nebraska station, corresponding correlations were 0.864 and 0.997.

  19. Illumination-tolerant face verification of low-bit-rate JPEG2000 wavelet images with advanced correlation filters for handheld devices

    NASA Astrophysics Data System (ADS)

    Wijaya, Surya Li; Savvides, Marios; Vijaya Kumar, B. V. K.

    2005-02-01

    Face recognition on mobile devices, such as personal digital assistants and cell phones, is a big challenge owing to the limited computational resources available to run verifications on the devices themselves. One approach is to transmit the captured face images by use of the cell-phone connection and to run the verification on a remote station. However, owing to limitations in communication bandwidth, it may be necessary to transmit a compressed version of the image. We propose using the image compression standard JPEG2000, which is a wavelet-based compression engine used to compress the face images to low bit rates suitable for transmission over low-bandwidth communication channels. At the receiver end, the face images are reconstructed with a JPEG2000 decoder and are fed into the verification engine. We explore how advanced correlation filters, such as the minimum average correlation energy filter [Appl. Opt. 26, 3633 (1987)] and its variants, perform by using face images captured under different illumination conditions and encoded with different bit rates under the JPEG2000 wavelet-encoding standard. We evaluate the performance of these filters by using illumination variations from the Carnegie Mellon University's Pose, Illumination, and Expression (PIE) face database. We also demonstrate the tolerance of these filters to noisy versions of images with illumination variations.

  20. Proximal Nephron

    PubMed Central

    Zhuo, Jia L.; Li, Xiao C.

    2013-01-01

    The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches. PMID:23897681

  1. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms

    PubMed Central

    Massange-Sánchez, Julio A.; Palmeros-Suárez, Paola A.; Espitia-Rangel, Eduardo; Rodríguez-Arévalo, Isaac; Sánchez-Segura, Lino; Martínez-Gallardo, Norma A.; Alatorre-Cobos, Fulgencio; Tiessen, Axel; Délano-Frier, John P.

    2016-01-01

    Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms. PMID:27749893

  2. A new measure for gene expression biclustering based on non-parametric correlation.

    PubMed

    Flores, Jose L; Inza, Iñaki; Larrañaga, Pedro; Calvo, Borja

    2013-12-01

    One of the emerging techniques for performing the analysis of the DNA microarray data known as biclustering is the search of subsets of genes and conditions which are coherently expressed. These subgroups provide clues about the main biological processes. Until now, different approaches to this problem have been proposed. Most of them use the mean squared residue as quality measure but relevant and interesting patterns can not be detected such as shifting, or scaling patterns. Furthermore, recent papers show that there exist new coherence patterns involved in different kinds of cancer and tumors such as inverse relationships between genes which can not be captured. The proposed measure is called Spearman's biclustering measure (SBM) which performs an estimation of the quality of a bicluster based on the non-linear correlation among genes and conditions simultaneously. The search of biclusters is performed by using a evolutionary technique called estimation of distribution algorithms which uses the SBM measure as fitness function. This approach has been examined from different points of view by using artificial and real microarrays. The assessment process has involved the use of quality indexes, a set of bicluster patterns of reference including new patterns and a set of statistical tests. It has been also examined the performance using real microarrays and comparing to different algorithmic approaches such as Bimax, CC, OPSM, Plaid and xMotifs. SBM shows several advantages such as the ability to recognize more complex coherence patterns such as shifting, scaling and inversion and the capability to selectively marginalize genes and conditions depending on the statistical significance. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae

    PubMed Central

    Nookaew, Intawat; Papini, Marta; Pornputtapong, Natapol; Scalcinati, Gionata; Fagerberg, Linn; Uhlén, Matthias; Nielsen, Jens

    2012-01-01

    RNA-seq, has recently become an attractive method of choice in the studies of transcriptomes, promising several advantages compared with microarrays. In this study, we sought to assess the contribution of the different analytical steps involved in the analysis of RNA-seq data generated with the Illumina platform, and to perform a cross-platform comparison based on the results obtained through Affymetrix microarray. As a case study for our work we, used the Saccharomyces cerevisiae strain CEN.PK 113-7D, grown under two different conditions (batch and chemostat). Here, we asses the influence of genetic variation on the estimation of gene expression level using three different aligners for read-mapping (Gsnap, Stampy and TopHat) on S288c genome, the capabilities of five different statistical methods to detect differential gene expression (baySeq, Cuffdiff, DESeq, edgeR and NOISeq) and we explored the consistency between RNA-seq analysis using reference genome and de novo assembly approach. High reproducibility among biological replicates (correlation ≥0.99) and high consistency between the two platforms for analysis of gene expression levels (correlation ≥0.91) are reported. The results from differential gene expression identification derived from the different statistical methods, as well as their integrated analysis results based on gene ontology annotation are in good agreement. Overall, our study provides a useful and comprehensive comparison between the two platforms (RNA-seq and microrrays) for gene expression analysis and addresses the contribution of the different steps involved in the analysis of RNA-seq data. PMID:22965124

  4. Duffy blood group phenotype-genotype correlations using high-resolution melting analysis PCR and microarray reveal complex cases including a new null FY*A allele: the role for sequencing in genotyping algorithms.

    PubMed

    Lopez, G H; Morrison, J; Condon, J A; Wilson, B; Martin, J R; Liew, Y-W; Flower, R L; Hyland, C A

    2015-10-01

    Duffy blood group phenotypes can be predicted by genotyping for single nucleotide polymorphisms (SNPs) responsible for the Fy(a) /Fy(b) polymorphism, for weak Fy(b) antigen, and for the red cell null Fy(a-b-) phenotype. This study correlates Duffy phenotype predictions with serotyping to assess the most reliable procedure for typing. Samples, n = 155 (135 donors and 20 patients), were genotyped by high-resolution melt PCR and by microarray. Samples were in three serology groups: 1) Duffy patterns expected n = 79, 2) weak and equivocal Fy(b) patterns n = 29 and 3) Fy(a-b-) n = 47 (one with anti-Fy3 antibody). Discrepancies were observed for five samples. For two, SNP genotyping predicted weak Fy(b) expression discrepant with Fy(b-) (Group 1 and 3). For three, SNP genotyping predicted Fy(a) , discrepant with Fy(a-b-) (Group 3). DNA sequencing identified silencing mutations in these FY*A alleles. One was a novel FY*A 719delG. One, the sample with the anti-Fy3, was homozygous for a 14-bp deletion (FY*01N.02); a true null. Both the high-resolution melting analysis and SNP microarray assays were concordant and showed genotyping, as well as phenotyping, is essential to ensure 100% accuracy for Duffy blood group assignments. Sequencing is important to resolve phenotype/genotype conflicts which here identified alleles, one novel, that carry silencing mutations. The risk of alloimmunisation may be dependent on this zygosity status. © 2015 International Society of Blood Transfusion.

  5. Hypercholesterolemia potentiates aortic endothelial response to inhaled diesel exhaust

    PubMed Central

    Maresh, J. Gregory; Campen, Matthew J.; Reed, Matthew D.; Darrow, April L.; Shohet, Ralph V.

    2012-01-01

    Background Inhalation of diesel exhaust induces vascular effects including impaired endothelial function and increased atherosclerosis. Objective To examine the in vivo effects of subchronic diesel exhaust exposure on endothelial cell transcriptional responses in the presence of hypercholesterolemia. Methods ApoE (−/−) and ApoE (+/+) mice inhaled diesel exhaust diluted to particulate matter levels of 300 or 1000 μg/m3 vs. filtered air. After 30 days, endothelial cells were harvested from dispersed aortic cells by fluorescent-activated cell sorting (FACS). Relative mRNA abundance was evaluated by microarray analysis to measure strain-specific transcriptional responses in mice exposed to dilute diesel exhaust vs. filtered air. Results Forty-nine transcripts were significantly dysregulated by >2.8-fold in the endothelium of ApoE (−/−) mice receiving diesel exhaust at 300 or 1000 μg/m3. These included transcripts with roles in plasminogen activation, endothelial permeability, inflammation, genomic stability, and atherosclerosis; similar responses were not observed in ApoE (+/+) mice. Conclusions The potentiation of diesel exhaust-related endothelial gene regulation by hypercholesterolemia helps to explain air pollution-induced vascular effects in animals and humans. The observed regulated transcripts implicate pathways important in the acceleration of atherosclerosis by air pollution. PMID:21222557

  6. Simulation of synthetic discriminant function optical implementation

    NASA Astrophysics Data System (ADS)

    Riggins, J.; Butler, S.

    1984-12-01

    The optical implementation of geometrical shape and synthetic discriminant function matched filters is computer modeled. The filter implementation utilizes the Allebach-Keegan computer-generated hologram algorithm. Signal-to-noise and efficiency measurements were made on the resultant correlation planes.

  7. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer.

    PubMed

    Gianni, Luca; Zambetti, Milvia; Clark, Kim; Baker, Joffre; Cronin, Maureen; Wu, Jenny; Mariani, Gabriella; Rodriguez, Jaime; Carcangiu, Marialuisa; Watson, Drew; Valagussa, Pinuccia; Rouzier, Roman; Symmans, W Fraser; Ross, Jeffrey S; Hortobagyi, Gabriel N; Pusztai, Lajos; Shak, Steven

    2005-10-10

    We sought to identify gene expression markers that predict the likelihood of chemotherapy response. We also tested whether chemotherapy response is correlated with the 21-gene Recurrence Score assay that quantifies recurrence risk. Patients with locally advanced breast cancer received neoadjuvant paclitaxel and doxorubicin. RNA was extracted from the pretreatment formalin-fixed paraffin-embedded core biopsies. The expression of 384 genes was quantified using reverse transcriptase polymerase chain reaction and correlated with pathologic complete response (pCR). The performance of genes predicting for pCR was tested in patients from an independent neoadjuvant study where gene expression was obtained using DNA microarrays. Of 89 assessable patients (mean age, 49.9 years; mean tumor size, 6.4 cm), 11 (12%) had a pCR. Eighty-six genes correlated with pCR (unadjusted P < .05); pCR was more likely with higher expression of proliferation-related genes and immune-related genes, and with lower expression of estrogen receptor (ER) -related genes. In 82 independent patients treated with neoadjuvant paclitaxel and doxorubicin, DNA microarray data were available for 79 of the 86 genes. In univariate analysis, 24 genes correlated with pCR with P < .05 (false discovery, four genes) and 32 genes showed correlation with P < .1 (false discovery, eight genes). The Recurrence Score was positively associated with the likelihood of pCR (P = .005), suggesting that the patients who are at greatest recurrence risk are more likely to have chemotherapy benefit. Quantitative expression of ER-related genes, proliferation genes, and immune-related genes are strong predictors of pCR in women with locally advanced breast cancer receiving neoadjuvant anthracyclines and paclitaxel.

  8. Development of an oligo DNA microarray for the European sea bass and its application to expression profiling of jaw deformity

    PubMed Central

    2010-01-01

    Background The European sea bass (Dicentrarchus labrax) is a marine fish of great importance for fisheries and aquaculture. Functional genomics offers the possibility to discover the molecular mechanisms underlying productive traits in farmed fish, and a step towards the application of marker assisted selection methods in this species. To this end, we report here on the development of an oligo DNA microarray for D. labrax. Results A database consisting of 19,048 unique transcripts was constructed, of which 12,008 (63%) could be annotated by similarity and 4,692 received a GO functional annotation. Two non-overlapping 60mer probes were designed for each unique transcript and in-situ synthesized on glass slides using Agilent SurePrint™ technology. Probe design was positively completed for 19,035 target clusters; the oligo microarray was then applied to profile gene expression in mandibles and whole-heads of fish affected by prognathism, a skeletal malformation that strongly affects sea bass production. Statistical analysis identified 242 transcripts that are significantly down-regulated in deformed individuals compared to normal fish, with a significant enrichment in genes related to nervous system development and functioning. A set of genes spanning a wide dynamic range in gene expression level were selected for quantitative RT-PCR validation. Fold change correlation between microarray and qPCR data was always significant. Conclusions The microarray platform developed for the European sea bass has a high level of flexibility, reliability, and reproducibility. Despite the well known limitations in achieving a proper functional annotation in non-model species, sufficient information was obtained to identify biological processes that are significantly enriched among differentially expressed genes. New insights were obtained on putative mechanisms involved on mandibular prognathism, suggesting that bone/nervous system development might play a role in this phenomenon. PMID:20525278

  9. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    PubMed

    Lo, Miranda; Cordwell, Stuart J; Bulach, Dieter M; Adler, Ben

    2009-12-08

    Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS). We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. This is the first study to compare transcriptional and translational responses to temperature shift in L. interrogans. The results thus provide an insight into the mechanisms used by L. interrogans to adapt to conditions encountered in the host and to cause disease. Our results suggest down-regulation of protein expression in response to temperature, and decreased expression of outer membrane proteins may facilitate minimal interaction with host immune mechanisms.

  10. Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts

    PubMed Central

    Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W

    2011-01-01

    Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's functions. PMID:21892412

  11. Measuring User Similarity Using Electric Circuit Analysis: Application to Collaborative Filtering

    PubMed Central

    Yang, Joonhyuk; Kim, Jinwook; Kim, Wonjoon; Kim, Young Hwan

    2012-01-01

    We propose a new technique of measuring user similarity in collaborative filtering using electric circuit analysis. Electric circuit analysis is used to measure the potential differences between nodes on an electric circuit. In this paper, by applying this method to transaction networks comprising users and items, i.e., user–item matrix, and by using the full information about the relationship structure of users in the perspective of item adoption, we overcome the limitations of one-to-one similarity calculation approach, such as the Pearson correlation, Tanimoto coefficient, and Hamming distance, in collaborative filtering. We found that electric circuit analysis can be successfully incorporated into recommender systems and has the potential to significantly enhance predictability, especially when combined with user-based collaborative filtering. We also propose four types of hybrid algorithms that combine the Pearson correlation method and electric circuit analysis. One of the algorithms exceeds the performance of the traditional collaborative filtering by 37.5% at most. This work opens new opportunities for interdisciplinary research between physics and computer science and the development of new recommendation systems PMID:23145095

  12. Measuring user similarity using electric circuit analysis: application to collaborative filtering.

    PubMed

    Yang, Joonhyuk; Kim, Jinwook; Kim, Wonjoon; Kim, Young Hwan

    2012-01-01

    We propose a new technique of measuring user similarity in collaborative filtering using electric circuit analysis. Electric circuit analysis is used to measure the potential differences between nodes on an electric circuit. In this paper, by applying this method to transaction networks comprising users and items, i.e., user-item matrix, and by using the full information about the relationship structure of users in the perspective of item adoption, we overcome the limitations of one-to-one similarity calculation approach, such as the Pearson correlation, Tanimoto coefficient, and Hamming distance, in collaborative filtering. We found that electric circuit analysis can be successfully incorporated into recommender systems and has the potential to significantly enhance predictability, especially when combined with user-based collaborative filtering. We also propose four types of hybrid algorithms that combine the Pearson correlation method and electric circuit analysis. One of the algorithms exceeds the performance of the traditional collaborative filtering by 37.5% at most. This work opens new opportunities for interdisciplinary research between physics and computer science and the development of new recommendation systems.

  13. Three-Axis Attitude Estimation Using Rate-Integrating Gyroscopes

    NASA Technical Reports Server (NTRS)

    Crassidis, John L.; Markley, F. Landis

    2016-01-01

    Traditionally, attitude estimation has been performed using a combination of external attitude sensors and internal three-axis gyroscopes. There are many studies of three-axis attitude estimation using gyros that read angular rates. Rate-integrating gyros measure integrated rates or angular displacements, but three-axis attitude estimation using these types of gyros has not been as fully investigated. This paper derives a Kalman filtering framework for attitude estimation using attitude sensors coupled with rate- integrating gyroscopes. In order to account for correlations introduced by using these gyros, the state vector must be augmented, compared with filters using traditional gyros that read angular rates. Two filters are derived in this paper. The first uses an augmented state-vector form that estimates attitude, gyro biases, and gyro angular displacements. The second ignores correlations, leading to a filter that estimates attitude and gyro biases only. Simulation comparisons are shown for both filters. The work presented in this paper focuses only on attitude estimation using rate-integrating gyros, but it can easily be extended to other applications such as inertial navigation, which estimates attitude and position.

  14. Correlation of gene expression and contaminat concentrations in wild largescale suckers: a field-based study

    USGS Publications Warehouse

    Christiansen, Helena E.; Mehinto, Alvine C.; Yu, Fahong; Perry, Russell W.; Denslow, Nancy D.; Maule, Alec G.; Mesa, Matthew G.

    2014-01-01

    Toxic compounds such as organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ether flame retardants (PBDEs) have been detected in fish, birds, and aquatic mammals that live in the Columbia River or use food resources from within the river. We developed a custom microarray for largescale suckers (Catostomus macrocheilus) and used it to investigate the molecular effects of contaminant exposure on wild fish in the Columbia River. Using Significance Analysis of Microarrays (SAM) we identified 72 probes representing 69 unique genes with expression patterns that correlated with hepatic tissue levels of OCs, PCBs, or PBDEs. These genes were involved in many biological processes previously shown to respond to contaminant exposure, including drug and lipid metabolism, apoptosis, cellular transport, oxidative stress, and cellular chaperone function. The relation between gene expression and contaminant concentration suggests that these genes may respond to environmental contaminant exposure and are promising candidates for further field and laboratory studies to develop biomarkers for monitoring exposure of wild fish to contaminant mixtures found in the Columbia River Basin. The array developed in this study could also be a useful tool for studies involving endangered sucker species and other sucker species used in contaminant research.

  15. Correlation peak analysis applied to a sequence of images using two different filters for eye tracking model

    NASA Astrophysics Data System (ADS)

    Patrón, Verónica A.; Álvarez Borrego, Josué; Coronel Beltrán, Ángel

    2015-09-01

    Eye tracking has many useful applications that range from biometrics to face recognition and human-computer interaction. The analysis of the characteristics of the eyes has become one of the methods to accomplish the location of the eyes and the tracking of the point of gaze. Characteristics such as the contrast between the iris and the sclera, the shape, and distribution of colors and dark/light zones in the area are the starting point for these analyses. In this work, the focus will be on the contrast between the iris and the sclera, performing a correlation in the frequency domain. The images are acquired with an ordinary camera, which with were taken images of thirty-one volunteers. The reference image is an image of the subjects looking to a point in front of them at 0° angle. Then sequences of images are taken with the subject looking at different angles. These images are processed in MATLAB, obtaining the maximum correlation peak for each image, using two different filters. Each filter were analyzed and then one was selected, which is the filter that gives the best performance in terms of the utility of the data, which is displayed in graphs that shows the decay of the correlation peak as the eye moves progressively at different angle. This data will be used to obtain a mathematical model or function that establishes a relationship between the angle of vision (AOV) and the maximum correlation peak (MCP). This model will be tested using different input images from other subject not contained in the initial database, being able to predict angle of vision using the maximum correlation peak data.

  16. Comparison of Penalty Functions for Sparse Canonical Correlation Analysis

    PubMed Central

    Chalise, Prabhakar; Fridley, Brooke L.

    2011-01-01

    Canonical correlation analysis (CCA) is a widely used multivariate method for assessing the association between two sets of variables. However, when the number of variables far exceeds the number of subjects, such in the case of large-scale genomic studies, the traditional CCA method is not appropriate. In addition, when the variables are highly correlated the sample covariance matrices become unstable or undefined. To overcome these two issues, sparse canonical correlation analysis (SCCA) for multiple data sets has been proposed using a Lasso type of penalty. However, these methods do not have direct control over sparsity of solution. An additional step that uses Bayesian Information Criterion (BIC) has also been suggested to further filter out unimportant features. In this paper, a comparison of four penalty functions (Lasso, Elastic-net, SCAD and Hard-threshold) for SCCA with and without the BIC filtering step have been carried out using both real and simulated genotypic and mRNA expression data. This study indicates that the SCAD penalty with BIC filter would be a preferable penalty function for application of SCCA to genomic data. PMID:21984855

  17. Identifying novel glioma associated pathways based on systems biology level meta-analysis.

    PubMed

    Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong

    2013-01-01

    With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.

  18. Optical ranked-order filtering using threshold decomposition

    DOEpatents

    Allebach, J.P.; Ochoa, E.; Sweeney, D.W.

    1987-10-09

    A hybrid optical/electronic system performs median filtering and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant filtering step followed by a point-to-point threshold comparison step. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant filtering step. An incoherent optical correlation system performs the linear filtering, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the filter plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum filtering of images. A totally optical system is also disclosed. 3 figs.

  19. Importing MAGE-ML format microarray data into BioConductor.

    PubMed

    Durinck, Steffen; Allemeersch, Joke; Carey, Vincent J; Moreau, Yves; De Moor, Bart

    2004-12-12

    The microarray gene expression markup language (MAGE-ML) is a widely used XML (eXtensible Markup Language) standard for describing and exchanging information about microarray experiments. It can describe microarray designs, microarray experiment designs, gene expression data and data analysis results. We describe RMAGEML, a new Bioconductor package that provides a link between cDNA microarray data stored in MAGE-ML format and the Bioconductor framework for preprocessing, visualization and analysis of microarray experiments. http://www.bioconductor.org. Open Source.

  20. Hypoxia-Inducible Factor-1α (HIF-1α) Expression on Endothelial Cells in Juvenile Nasopharyngeal Angiofibroma: A Review of 70 cases and Tissue Microarray Analysis.

    PubMed

    Song, Xiaole; Yang, Chenhe; Zhang, Huankang; Wang, Jingjing; Sun, Xicai; Hu, Li; Liu, Zhuofu; Wang, Dehui

    2018-06-01

    To examine the expression of hypoxia-inducible factor-1α (HIF-1α) and its related molecules (cellular repressor of E1A-stimulated genes [CREG], osteopontin [OPN], proto-oncogene tyrosine-protein kinase Src [c-Src], and vascular endothelial growth factor [VEGF]) in juvenile nasopharyngeal angiofibroma (JNA) and explore the correlation between clinical prognosis and HIF-1α expression. The study performed a retrospective review of the clinical records of patients with JNA treated between 2003 and 2007. Specimens were analyzed by immunohistochemistry for HIF-1α, CREG, OPN, c-Src, and VEGF expression, and microvessel density (MVD) was assessed by tissue microarray. The correlation between expression levels and clinicopathological features including age, tumor stage, intraoperative blood loss, and recurrence was analyzed. HIF-1α, CREG, OPN, c-Src, and VEGF were upregulated in endothelial cells (ECs) of patients with JNA, and strong correlations in the expression of these molecules were observed. HIF-1α expression was higher in young patients ( P = .032) and in recurrent cases ( P = .01). Survival analysis showed that low HIF-1α levels in ECs predicted longer time to recurrence (log rank test P = .006). Receiver operating characteristic curve analysis showed that HIF-1α was a prognostic factor for recurrence (area under the curve = 0.690, P = .019). No correlation was found between the expression of molecules and Radkowski stage or intraoperative blood loss. In cases of JNA treated surgically, HIF-1α expression in ECs is a useful prognostic factor for tumor recurrence.

  1. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    DOE PAGES

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-02

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. However, how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer 'how far is far enough,' we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25–2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation lengthmore » $$\\xi $$ that falls at least as fast as $${{\\tau }^{-1}}$$ . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.« less

  2. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    NASA Astrophysics Data System (ADS)

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-01

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. But how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer ‘how far is far enough,’ we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25-2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation length ξ that falls at least as fast as {{τ }-1} . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.

  3. Improved Collaborative Filtering Algorithm via Information Transformation

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Wang, Bing-Hong; Guo, Qiang

    In this paper, we propose a spreading activation approach for collaborative filtering (SA-CF). By using the opinion spreading process, the similarity between any users can be obtained. The algorithm has remarkably higher accuracy than the standard collaborative filtering using the Pearson correlation. Furthermore, we introduce a free parameter β to regulate the contributions of objects to user-user correlations. The numerical results indicate that decreasing the influence of popular objects can further improve the algorithmic accuracy and personality. We argue that a better algorithm should simultaneously require less computation and generate higher accuracy. Accordingly, we further propose an algorithm involving only the top-N similar neighbors for each target user, which has both less computational complexity and higher algorithmic accuracy.

  4. A computer program to obtain time-correlated gust loads for nonlinear aircraft using the matched-filter-based method

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III

    1994-01-01

    NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.

  5. Robotic Vision, Tray-Picking System Design Using Multiple, Optical Matched Filters

    NASA Astrophysics Data System (ADS)

    Leib, Kenneth G.; Mendelsohn, Jay C.; Grieve, Philip G.

    1986-10-01

    The optical correlator is applied to a robotic vision, tray-picking problem. Complex matched filters (MFs) are designed to provide sufficient optical memory for accepting any orientation of the desired part, and a multiple holographic lens (MHL) is used to increase the memory for continuous coverage. It is shown that with appropriate thresholding a small part can be selected using optical matched filters. A number of criteria are presented for optimizing the vision system. Two of the part-filled trays that Mendelsohn used are considered in this paper which is the analog (optical) expansion of his paper. Our view in this paper is that of the optical correlator as a cueing device for subsequent, finer vision techniques.

  6. Optical security system for the protection of personal identification information.

    PubMed

    Doh, Yang-Hoi; Yoon, Jong-Soo; Choi, Kyung-Hyun; Alam, Mohammad S

    2005-02-10

    A new optical security system for the protection of personal identification information is proposed. First, authentication of the encrypted personal information is carried out by primary recognition of a personal identification number (PIN) with the proposed multiplexed minimum average correlation energy phase-encrypted (MMACE_p) filter. The MMACE_p filter, synthesized with phase-encrypted training images, can increase the discrimination capability and prevent the leak of personal identification information. After the PIN is recognized, speedy authentication of personal information can be achieved through one-to-one optical correlation by means of the optical wavelet filter. The possibility of information counterfeiting can be significantly decreased with the double-identification process. Simulation results demonstrate the effectiveness of the proposed technique.

  7. MYCN-non-amplified metastatic neuroblastoma with good prognosis and spontaneous regression: a molecular portrait of stage 4S.

    PubMed

    Bénard, Jean; Raguénez, Gilda; Kauffmann, Audrey; Valent, Alexander; Ripoche, Hugues; Joulin, Virginie; Job, Bastien; Danglot, Gisèle; Cantais, Sabrina; Robert, Thomas; Terrier-Lacombe, Marie-José; Chassevent, Agnès; Koscielny, Serge; Fischer, Matthias; Berthold, Frank; Lipinski, Marc; Tursz, Thomas; Dessen, Philippe; Lazar, Vladimir; Valteau-Couanet, Dominique

    2008-10-01

    Stage 4 neuroblastoma (NB) are heterogeneous regarding their clinical presentations and behavior. Indeed infants (stage 4S and non-stage 4S of age <365days at diagnosis) show regression contrasting with progression in children (>365days). Our study aimed at: (i) identifying age-based genomic and gene expression profiles of stage 4 NB supporting this clinical stratification; and (ii) finding a stage 4S NB signature. Differential genome and transcriptome analyses of a learning set of MYCN-non amplified stage 4 NB tumors at diagnosis (n=29 tumors including 12 stage 4S) were performed using 1Mb BAC microarrays and Agilent 22K probes oligo-microarrays. mRNA chips data following filtering yielded informative genes before supervised hierarchical clustering to identify relationship among tumor samples. After confirmation by quantitative RT-PCR, a stage 4S NB's gene cluster was obtained and submitted to a validation set (n=22 tumors). Genomic abnormalities of infant's tumors (whole chromosomes gains or loss) differ radically from that of children (intra-chromosomal rearrangements) but could not discriminate infants with 4S from those without this presentation. In contrast, differential gene expression by looking at both individual genes and whole biological pathways leads to a molecular stage 4S NB portrait which provides new biological clues about this fascinating entity.

  8. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax)

    PubMed Central

    Calduch-Giner, Josep A.; Sitjà-Bobadilla, Ariadna; Pérez-Sánchez, Jaume

    2016-01-01

    High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts. PMID:27610085

  9. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax).

    PubMed

    Calduch-Giner, Josep A; Sitjà-Bobadilla, Ariadna; Pérez-Sánchez, Jaume

    2016-01-01

    High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts.

  10. Microarray Я US: a user-friendly graphical interface to Bioconductor tools that enables accurate microarray data analysis and expedites comprehensive functional analysis of microarray results.

    PubMed

    Dai, Yilin; Guo, Ling; Li, Meng; Chen, Yi-Bu

    2012-06-08

    Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.

  11. Microbiology of aquatic environments: Characterizations of the microbiotas of municipal water supplies, the International Space Station Internal Active Thermal Control System's heat transport fluid, and US Space Shuttle drinking water

    NASA Astrophysics Data System (ADS)

    Bernardini, James Nicholas, III

    An understanding of the microbiota within life support systems is essential for the prolonged presence of humans in space. This is because microbes may cause disease or induce biofouling and/or corrosion within spacecraft water systems. It is imperative that we develop effective high-throughput technologies for characterizing microbial populations that can eventually be used in the space environment. This dissertation describes testing and development of such methodologies, targeting both bacteria and viruses in water, and examines the bacterial and viral diversity within two spacecraft life support systems. The bacterial community of the International Space Station Internal Active Thermal Control System (IATCS) was examined using conventional culture-based and advanced molecular techniques including adenosine triphosphate (ATP) and Limulus Amebocyte Lysate (LAL) assays, direct microscopic examination, and analyses of 16S rRNA gene libraries from the community metagenome. The cultivable heterotrophs of the IATCS fluids ranged from below detection limit to 1.1x10 5/100 ml, and viable cells, measured by ATP, ranged from 1.4x10 3/100 ml to 7.7x105/100 ml. DNA extraction, cloning, sequencing, and bioinformatic analysis of the clones from 16S RNA gene libraries showed members of the firmicutes, alpha, beta, and gamma-proteobacteria to be present in the fluids. This persistent microbial bioburden and the presence of probable metal reducers, biofilm formers, and opportunistic pathogens illustrate the need for better characterization of bacterial communities present within spacecraft fluids. A new methodology was developed for detection of viruses in water using microarrays. Samples were concentrated by lyophilization, resuspended and filtered (0.22microm). Viral nucleic acids were then extracted, amplified, fluorescently labeled and hybridized onto a custom microarray with probes for ˜1000 known viruses. Numerous virus signatures were observed. Human Adenovirus C and Influenza A viruses were used to verify positive microarray hybridizations by quantitative polymerase chain reaction (PCR), reverse transcriptase PCR, and conventional PCR. Experiments were performed using municipal drinking water, IATCS fluids, and Shuttle drinking water. Thus, this dissertation describes what we believe is the first molecular analysis of the IATCS bacterial ecology and the first use and validation of a microarray-based assay for the detection of viral genetic signatures within drinking waters.

  12. RankProd Combined with Genetic Algorithm Optimized Artificial Neural Network Establishes a Diagnostic and Prognostic Prediction Model that Revealed C1QTNF3 as a Biomarker for Prostate Cancer.

    PubMed

    Hou, Qi; Bing, Zhi-Tong; Hu, Cheng; Li, Mao-Yin; Yang, Ke-Hu; Mo, Zu; Xie, Xiang-Wei; Liao, Ji-Lin; Lu, Yan; Horie, Shigeo; Lou, Ming-Wu

    2018-06-01

    Prostate cancer (PCa) is the most commonly diagnosed cancer in males in the Western world. Although prostate-specific antigen (PSA) has been widely used as a biomarker for PCa diagnosis, its results can be controversial. Therefore, new biomarkers are needed to enhance the clinical management of PCa. From publicly available microarray data, differentially expressed genes (DEGs) were identified by meta-analysis with RankProd. Genetic algorithm optimized artificial neural network (GA-ANN) was introduced to establish a diagnostic prediction model and to filter candidate genes. The diagnostic and prognostic capability of the prediction model and candidate genes were investigated in both GEO and TCGA datasets. Candidate genes were further validated by qPCR, Western Blot and Tissue microarray. By RankProd meta-analyses, 2306 significantly up- and 1311 down-regulated probes were found in 133 cases and 30 controls microarray data. The overall accuracy rate of the PCa diagnostic prediction model, consisting of a 15-gene signature, reached up to 100% in both the training and test dataset. The prediction model also showed good results for the diagnosis (AUC = 0.953) and prognosis (AUC of 5 years overall survival time = 0.808) of PCa in the TCGA database. The expression levels of three genes, FABP5, C1QTNF3 and LPHN3, were validated by qPCR. C1QTNF3 high expression was further validated in PCa tissue by Western Blot and Tissue microarray. In the GEO datasets, C1QTNF3 was a good predictor for the diagnosis of PCa (GSE6956: AUC = 0.791; GSE8218: AUC = 0.868; GSE26910: AUC = 0.972). In the TCGA database, C1QTNF3 was significantly associated with PCa patient recurrence free survival (P < .001, AUC = 0.57). In this study, we have developed a diagnostic and prognostic prediction model for PCa. C1QTNF3 was revealed as a promising biomarker for PCa. This approach can be applied to other high-throughput data from different platforms for the discovery of oncogenes or biomarkers in different kinds of diseases. Copyright © 2018. Published by Elsevier B.V.

  13. A novel iris localization algorithm using correlation filtering

    NASA Astrophysics Data System (ADS)

    Pohit, Mausumi; Sharma, Jitu

    2015-06-01

    Fast and efficient segmentation of iris from the eye images is a primary requirement for robust database independent iris recognition. In this paper we have presented a new algorithm for computing the inner and outer boundaries of the iris and locating the pupil centre. Pupil-iris boundary computation is based on correlation filtering approach, whereas iris-sclera boundary is determined through one dimensional intensity mapping. The proposed approach is computationally less extensive when compared with the existing algorithms like Hough transform.

  14. A tool for filtering information in complex systems

    PubMed Central

    Tumminello, M.; Aste, T.; Di Matteo, T.; Mantegna, R. N.

    2005-01-01

    We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties. PMID:16027373

  15. A tool for filtering information in complex systems.

    PubMed

    Tumminello, M; Aste, T; Di Matteo, T; Mantegna, R N

    2005-07-26

    We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties.

  16. An Optically Implemented Kalman Filter Algorithm.

    DTIC Science & Technology

    1983-12-01

    8b. OFFICE SYMOOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 8c. ADDRESS (City, State and ZIP Code ) 10. SOURCE OF FUNDING NOS.______ PROGRAM...are completely speci- fied for the correlation stage to perform the required corre- lation in real time, and the filter stage to perform the lin- ear...performance analy- ses indicated an enhanced ability of the nonadaptive filter to track a realistic distant point source target with an error standard

  17. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  18. Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.

    PubMed

    Stangeland, Biljana; Mughal, Awais A; Grieg, Zanina; Sandberg, Cecilie Jonsgar; Joel, Mrinal; Nygård, Ståle; Meling, Torstein; Murrell, Wayne; Vik Mo, Einar O; Langmoen, Iver A

    2015-09-22

    Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies.To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways.Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM.

  19. Local denoising of digital speckle pattern interferometry fringes by multiplicative correlation and weighted smoothing splines.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2005-05-10

    We evaluate the use of smoothing splines with a weighted roughness measure for local denoising of the correlation fringes produced in digital speckle pattern interferometry. In particular, we also evaluate the performance of the multiplicative correlation operation between two speckle patterns that is proposed as an alternative procedure to generate the correlation fringes. It is shown that the application of a normalization algorithm to the smoothed correlation fringes reduces the excessive bias generated in the previous filtering stage. The evaluation is carried out by use of computer-simulated fringes that are generated for different average speckle sizes and intensities of the reference beam, including decorrelation effects. A comparison with filtering methods based on the continuous wavelet transform is also presented. Finally, the performance of the smoothing method in processing experimental data is illustrated.

  20. MGDB: crossing the marker genes of a user microarray with a database of public-microarrays marker genes.

    PubMed

    Huerta, Mario; Munyi, Marc; Expósito, David; Querol, Enric; Cedano, Juan

    2014-06-15

    The microarrays performed by scientific teams grow exponentially. These microarray data could be useful for researchers around the world, but unfortunately they are underused. To fully exploit these data, it is necessary (i) to extract these data from a repository of the high-throughput gene expression data like Gene Expression Omnibus (GEO) and (ii) to make the data from different microarrays comparable with tools easy to use for scientists. We have developed these two solutions in our server, implementing a database of microarray marker genes (Marker Genes Data Base). This database contains the marker genes of all GEO microarray datasets and it is updated monthly with the new microarrays from GEO. Thus, researchers can see whether the marker genes of their microarray are marker genes in other microarrays in the database, expanding the analysis of their microarray to the rest of the public microarrays. This solution helps not only to corroborate the conclusions regarding a researcher's microarray but also to identify the phenotype of different subsets of individuals under investigation, to frame the results with microarray experiments from other species, pathologies or tissues, to search for drugs that promote the transition between the studied phenotypes, to detect undesirable side effects of the treatment applied, etc. Thus, the researcher can quickly add relevant information to his/her studies from all of the previous analyses performed in other studies as long as they have been deposited in public repositories. Marker-gene database tool: http://ibb.uab.es/mgdb © The Author 2014. Published by Oxford University Press.

  1. Properties of new diffusion filters for treatment of amblyopia with accurate occlusive effects.

    PubMed

    Sasaki, Makoto; Iwasaki, Tsuneto; Kondo, Hiroyuki; Tawara, Akihiko

    2016-06-01

    Our purpose is to present the characteristics of newly developed diffusion filters that can reduce the best-corrected visual acuity (BCVA) of the non-amblyopic eye to a specified value and that can be used to treat amblyopia. Silica sol is a colorless and transparent colloidal gel of different particle sizes. The silica was added to an emulsion adhesive, thoroughly mixed, and coated evenly on polyethylene terephthalate films. Twelve filters with 12 different concentrations of silica were constructed. The density of the silica particles on the films was determined by scanning electron microscopy, and the haze values and light transmittance were measured with a goniophotometer. The reduction of the BCVA by the filters was determined in 16 healthy young women (mean age, 22.0 ± 2.3 years) by attaching the filters to spectacles. Scanning electron microscopy showed a monolayer of evenly spaced silica particles. The haze values of the 12 filters were related to the concentration of silica. The total light transmittance of the 12 filters was not significantly correlated to the concentration of silica. The BCVAs measured with the 12 filters were significantly and inversely correlated with the concentration of silica for both eyes (right eye, y = 0.174x - 0.197, R(2) = 0.951; left eye, y = 0.173x - 0.212, R(2) = 0.983). These findings indicate that these diffusion filters can reduce the BCVA with no reduction of light transmittance. We conclude that they can be used to degrade the image of the dominant eye by known amounts in patients with amblyopia without affecting the overall light levels to the eye, i.e., form deprivation without light deprivation.

  2. 2008 Microarray Research Group (MARG Survey): Sensing the State of Microarray Technology

    EPA Science Inventory

    Over the past several years, the field of microarrays has grown and evolved drastically. In its continued efforts to track this evolution and transformation, the ABRF-MARG has once again conducted a survey of international microarray facilities and individual microarray users. Th...

  3. Eye gaze tracking using correlation filters

    NASA Astrophysics Data System (ADS)

    Karakaya, Mahmut; Bolme, David; Boehnen, Chris

    2014-03-01

    In this paper, we studied a method for eye gaze tracking that provide gaze estimation from a standard webcam with a zoom lens and reduce the setup and calibration requirements for new users. Specifically, we have developed a gaze estimation method based on the relative locations of points on the top of the eyelid and eye corners. Gaze estimation method in this paper is based on the distances between top point of the eyelid and eye corner detected by the correlation filters. Advanced correlation filters were found to provide facial landmark detections that are accurate enough to determine the subjects gaze direction up to angle of approximately 4-5 degrees although calibration errors often produce a larger overall shift in the estimates. This is approximately a circle of diameter 2 inches for a screen that is arm's length from the subject. At this accuracy it is possible to figure out what regions of text or images the subject is looking but it falls short of being able to determine which word the subject has looked at.

  4. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters.

    PubMed

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-09-07

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers.

  5. Genomic analysis of Fusarium verticillioides.

    PubMed

    Brown, D W; Butchko, R A E; Proctor, R H

    2008-09-01

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen-causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the sphingolipid sphinganine. Ingestion of fumonisin-contaminated maize has been associated with a number of animal diseases, including cancer in rodents, and exposure has been correlated with human oesophageal cancer in some regions of the world, and some evidence suggests that fumonisins are a risk factor for neural tube defects. A primary goal of the authors' laboratory is to eliminate fumonisin contamination of maize and maize products. Understanding how and why these toxins are made and the F. verticillioides-maize disease process will allow one to develop novel strategies to limit tissue destruction (rot) and fumonisin production. To meet this goal, genomic sequence data, expressed sequence tags (ESTs) and microarrays are being used to identify F. verticillioides genes involved in the biosynthesis of toxins and plant pathogenesis. This paper describes the current status of F. verticillioides genomic resources and three approaches being used to mine microarray data from a wild-type strain cultured in liquid fumonisin production medium for 12, 24, 48, 72, 96 and 120h. Taken together, these approaches demonstrate the power of microarray technology to provide information on different biological processes.

  6. Chromosome r(10)(p15.3q26.12) in a newborn child: case report.

    PubMed

    Gunnarsson, Cecilia; Graffmann, Barbara; Jonasson, Jon

    2009-12-07

    Ring chromosome 10 is a rare cytogenetic finding. Of the less than 10 reported cases we have found in the literature, none was characterized using high-resolution microarray analysis. Ring chromosomes are frequently unstable due to sister chromatid exchanges and mitotic failures. When mosaicism is present, the interpretation of genotype-phenotype correlations becomes extremely difficult. We report on a newborn girl with growth retardation, microcephaly, congenital heart defects, dysmorphic features and psychomotor retardation. Karyotyping revealed a non-mosaic apparently stable ring chromosome 10 replacing one of the normal homologues in all analyzed metaphases. High-resolution oligonucleotide microarray analysis showed a de novo approximately 12.5 Mb terminal deletion 10q26.12 -> qter and a corresponding 285 kb terminal deletion of 10pter -> p15.3. This case demonstrates that an increased nuchal translucency thickness detected by early ultrasonography should preferably lead to not only QF-PCR for the diagnosis of Down syndrome but also karyotyping. In the future, microarray analysis, which needs further evaluation, might become the method of choice. The clinical phenotype of our patient was in agreement with that of patients with a terminal 10q deletion. For the purpose of genotype-phenotype analysis, there seems to be no need for a "ring syndrome" concept.

  7. MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling.

    PubMed

    Glud, Martin; Klausen, Mikkel; Gniadecki, Robert; Rossing, Maria; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T

    2009-05-01

    MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate cellular differentiation, proliferation, and apoptosis. MiRNAs are expressed in a developmentally regulated and tissue-specific manner. Aberrant expression may contribute to pathological processes such as cancer, and miRNA may therefore serve as biomarkers that may be useful in a clinical environment for diagnosis of various diseases. Most miRNA profiling studies have used fresh tissue samples. However, in some types of cancer, including malignant melanoma, fresh material is difficult to obtain from primary tumors, and most surgical specimens are formalin fixed and paraffin embedded (FFPE). To explore whether FFPE material would be suitable for miRNA profiling in melanocytic lesions, we compared miRNA expression patterns in FFPE versus fresh frozen samples, obtained from 15 human melanocytic nevi. Out of microarray data, we identified 84 miRNAs that were expressed in both types of samples and represented an miRNA profile of melanocytic nevi. Our results showed a high correlation in miRNA expression (Spearman r-value of 0.80) between paired FFPE and fresh frozen material. The data were further validated by quantitative RT-PCR. In conclusion, FFPE specimens of melanocytic lesions are suitable as a source for miRNA microarray profiling.

  8. Role of Macrophage-Induced Inflammation in Mesothelioma

    DTIC Science & Technology

    2010-07-01

    in human mesothelioma tumors and correlate immune cell infiltration with histopathologic subtype (months 1-6). Using tumor tissue microarrays of... histopathologic subtype (months 1-6). • Acquired 71 fixed and paraffin-embedded mesothelioma tumor samples • Prepared mesothelioma tumor tissue...Biol., 2008. 84: p. 1-8. 5. Dave, S.S., et al., Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating

  9. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization.

    PubMed

    Oikawa, Masahiro; Yoshiura, Koh-ichiro; Kondo, Hisayoshi; Miura, Shiro; Nagayasu, Takeshi; Nakashima, Masahiro

    2011-12-07

    It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A-bomb radiation may affect the increased amount of CNA as a hallmark of GIN and, subsequently, be associated with a higher histologic grade in breast cancer found in A-bomb survivors.

  10. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization

    PubMed Central

    2011-01-01

    Background It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Methods Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. Results The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Conclusions Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A-bomb radiation may affect the increased amount of CNA as a hallmark of GIN and, subsequently, be associated with a higher histologic grade in breast cancer found in A-bomb survivors. PMID:22152285

  11. Transcriptome changes favoring intramuscular fat deposition in the longissimus muscle following castration of bulls.

    PubMed

    Jeong, J; Bong, J; Kim, G D; Joo, S T; Lee, H-J; Baik, M

    2013-10-01

    Castration increases intramuscular fat (IMF) deposition, improving beef quality in cattle. The present study was performed to determine the global transcriptome changes following castration of bulls and to identify genes associated with IMF deposition in the longissimus dorsi (LM) of Korean cattle. A customized bovine CombiMatrix oligonucleotide microarray was constructed, and transcriptome changes following castration were determined by microarray hybridization. Transcriptome comparison between bulls and steers indicated that 428 of 8,407 genes were differentially expressed in the LM by greater than two fold (P < 0.05). Gene expression profiling indicated alterations in several pathways, including adipogenesis, fatty acid oxidation, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OP), following castration. Castration upregulated transcription of adipogenic perilipin 2 (PLIN2) and visfatin, lipogenic fatty acid synthase, fatty acid esterification 1-acylglycerol-3-phosphate O-acyltransferase 5, and many fatty acid oxidation-related genes. Many TCA cycle and OP genes were also transcriptionally upregulated. Correlation analysis indicated that the IMF content in the LM was highly correlated with mRNA levels of PLIN2 (r = 0.70, P < 0.001), adenosine triphosphatase (ATPase), H(+)-transporting, lysosomal 42 kDa, V1 subunit C1 (ATP6V1C1: r = 0.66, P < 0.001), and cytochrome c oxidase assembly homolog 11 (COX11: r = 0.72, P < 0.001) genes in a pooled animal group of steers plus bulls, and significant correlations in the steer-alone group were maintained in the 3 genes, PLIN2 (r = 0.47, P < 0.05), ATP6V1C1 (r = 0.50, P < 0.05), and COX11 (r = 0.60, P < 0.01). In conclusion, our study provided evidence that castration shifts transcription of lipid metabolism genes, favoring IMF deposition by increasing adipogenesis, lipogenesis, and triglyceride synthesis. This study also indicated that castration increases transcription of genes involved in fatty acid oxidation and subsequent energy production (TCA and OP genes). Our microarray analysis provided novel information that castration alters the transcriptome associated with lipid/energy metabolism, favoring IMF deposition in the LM.

  12. A Canonical Correlation Analysis of AIDS Restriction Genes and Metabolic Pathways Identifies Purine Metabolism as a Key Cooperator.

    PubMed

    Ye, Hanhui; Yuan, Jinjin; Wang, Zhengwu; Huang, Aiqiong; Liu, Xiaolong; Han, Xiao; Chen, Yahong

    2016-01-01

    Human immunodeficiency virus causes a severe disease in humans, referred to as immune deficiency syndrome. Studies on the interaction between host genetic factors and the virus have revealed dozens of genes that impact diverse processes in the AIDS disease. To resolve more genetic factors related to AIDS, a canonical correlation analysis was used to determine the correlation between AIDS restriction and metabolic pathway gene expression. The results show that HIV-1 postentry cellular viral cofactors from AIDS restriction genes are coexpressed in human transcriptome microarray datasets. Further, the purine metabolism pathway comprises novel host factors that are coexpressed with AIDS restriction genes. Using a canonical correlation analysis for expression is a reliable approach to exploring the mechanism underlying AIDS.

  13. THE ABRF-MARG MICROARRAY SURVEY 2004: TAKING THE PULSE OF THE MICROARRAY FIELD

    EPA Science Inventory

    Over the past several years, the field of microarrays has grown and evolved drastically. In its continued efforts to track this evolution, the ABRF-MARG has once again conducted a survey of international microarray facilities and individual microarray users. The goal of the surve...

  14. Contributions to Statistical Problems Related to Microarray Data

    ERIC Educational Resources Information Center

    Hong, Feng

    2009-01-01

    Microarray is a high throughput technology to measure the gene expression. Analysis of microarray data brings many interesting and challenging problems. This thesis consists three studies related to microarray data. First, we propose a Bayesian model for microarray data and use Bayes Factors to identify differentially expressed genes. Second, we…

  15. Parallel, confocal, and complete spectrum imager for fluorescent detection of high-density microarray

    NASA Astrophysics Data System (ADS)

    Bogdanov, Valery L.; Boyce-Jacino, Michael

    1999-05-01

    Confined arrays of biochemical probes deposited on a solid support surface (analytical microarray or 'chip') provide an opportunity to analysis multiple reactions simultaneously. Microarrays are increasingly used in genetics, medicine and environment scanning as research and analytical instruments. A power of microarray technology comes from its parallelism which grows with array miniaturization, minimization of reagent volume per reaction site and reaction multiplexing. An optical detector of microarray signals should combine high sensitivity, spatial and spectral resolution. Additionally, low-cost and a high processing rate are needed to transfer microarray technology into biomedical practice. We designed an imager that provides confocal and complete spectrum detection of entire fluorescently-labeled microarray in parallel. Imager uses microlens array, non-slit spectral decomposer, and high- sensitive detector (cooled CCD). Two imaging channels provide a simultaneous detection of localization, integrated and spectral intensities for each reaction site in microarray. A dimensional matching between microarray and imager's optics eliminates all in moving parts in instrumentation, enabling highly informative, fast and low-cost microarray detection. We report theory of confocal hyperspectral imaging with microlenses array and experimental data for implementation of developed imager to detect fluorescently labeled microarray with a density approximately 103 sites per cm2.

  16. Gene Expression-Based Survival Prediction in Lung Adenocarcinoma: A Multi-Site, Blinded Validation Study

    PubMed Central

    Shedden, Kerby; Taylor, Jeremy M.G.; Enkemann, Steve A.; Tsao, Ming S.; Yeatman, Timothy J.; Gerald, William L.; Eschrich, Steve; Jurisica, Igor; Venkatraman, Seshan E.; Meyerson, Matthew; Kuick, Rork; Dobbin, Kevin K.; Lively, Tracy; Jacobson, James W.; Beer, David G.; Giordano, Thomas J.; Misek, David E.; Chang, Andrew C.; Zhu, Chang Qi; Strumpf, Dan; Hanash, Samir; Shepherd, Francis A.; Ding, Kuyue; Seymour, Lesley; Naoki, Katsuhiko; Pennell, Nathan; Weir, Barbara; Verhaak, Roel; Ladd-Acosta, Christine; Golub, Todd; Gruidl, Mike; Szoke, Janos; Zakowski, Maureen; Rusch, Valerie; Kris, Mark; Viale, Agnes; Motoi, Noriko; Travis, William; Sharma, Anupama

    2009-01-01

    Although prognostic gene expression signatures for survival in early stage lung cancer have been proposed, for clinical application it is critical to establish their performance across different subject populations and in different laboratories. Here we report a large, training-testing, multi-site blinded validation study to characterize the performance of several prognostic models based on gene expression for 442 lung adenocarcinomas. The hypotheses proposed examined whether microarray measurements of gene expression either alone or combined with basic clinical covariates (stage, age, sex) can be used to predict overall survival in lung cancer subjects. Several models examined produced risk scores that substantially correlated with actual subject outcome. Most methods performed better with clinical data, supporting the combined use of clinical and molecular information when building prognostic models for early stage lung cancer. This study also provides the largest available set of microarray data with extensive pathological and clinical annotation for lung adenocarcinomas. PMID:18641660

  17. Gaussian mixture clustering and imputation of microarray data.

    PubMed

    Ouyang, Ming; Welsh, William J; Georgopoulos, Panos

    2004-04-12

    In microarray experiments, missing entries arise from blemishes on the chips. In large-scale studies, virtually every chip contains some missing entries and more than 90% of the genes are affected. Many analysis methods require a full set of data. Either those genes with missing entries are excluded, or the missing entries are filled with estimates prior to the analyses. This study compares methods of missing value estimation. Two evaluation metrics of imputation accuracy are employed. First, the root mean squared error measures the difference between the true values and the imputed values. Second, the number of mis-clustered genes measures the difference between clustering with true values and that with imputed values; it examines the bias introduced by imputation to clustering. The Gaussian mixture clustering with model averaging imputation is superior to all other imputation methods, according to both evaluation metrics, on both time-series (correlated) and non-time series (uncorrelated) data sets.

  18. Direct multiplexed measurement of gene expression with color-coded probe pairs.

    PubMed

    Geiss, Gary K; Bumgarner, Roger E; Birditt, Brian; Dahl, Timothy; Dowidar, Naeem; Dunaway, Dwayne L; Fell, H Perry; Ferree, Sean; George, Renee D; Grogan, Tammy; James, Jeffrey J; Maysuria, Malini; Mitton, Jeffrey D; Oliveri, Paola; Osborn, Jennifer L; Peng, Tao; Ratcliffe, Amber L; Webster, Philippa J; Davidson, Eric H; Hood, Leroy; Dimitrov, Krassen

    2008-03-01

    We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509 human genes yielded a replicate correlation coefficient of 0.999, a detection limit between 0.1 fM and 0.5 fM, and a linear dynamic range of over 500-fold. Comparison of the NanoString nCounter gene expression system with microarrays and TaqMan PCR demonstrated that the nCounter system is more sensitive than microarrays and similar in sensitivity to real-time PCR. Finally, a comparison of transcript levels for 21 genes across seven samples measured by the nCounter system and SYBR Green real-time PCR demonstrated similar patterns of gene expression at all transcript levels.

  19. Membrane filtration method for enumeration and isolation of Alicyclobacillus spp. from apple juice.

    PubMed

    Lee, S-Y; Chang, S-S; Shin, J-H; Kang, D-H

    2007-11-01

    To evaluate the applicability of filtration membranes for detecting Alicyclobacillus spp. spores in apple juice. Ten types of nitrocellulose membrane filters from five manufacturers were used to collect and enumerate five Alicyclobacillus spore isolates and results were compared to conventional K agar plating. Spore recovery differed among filters with an average recovery rate of 126.2%. Recovery levels also differed among spore isolates. Although significant difference (P < 0.05) in spore sizes existed, no correlation could be determined between spore size and membrane filter recovery rate. Recovery of spores using membrane filtration is dependent on the manufacturer and filter pore size. Correlations between spore recovery rate and spore size could not be determined. Low numbers of Alicyclobacillus spores in juice can be effectively detected using membrane filtration although recovery rate differences exist among different manufacturers. Use of membrane filtration is a simple, fast alternative to the week-long enrichment procedures currently employed in most quality assurance tests.

  20. Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome.

    PubMed

    Morine, Melissa J; McMonagle, Jolene; Toomey, Sinead; Reynolds, Clare M; Moloney, Aidan P; Gormley, Isobel C; Gaora, Peadar O; Roche, Helen M

    2010-10-07

    Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways--selenoamino acid metabolism and steroid biosynthesis--illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease.

  1. Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome

    PubMed Central

    2010-01-01

    Background Currently, a number of bioinformatics methods are available to generate appropriate lists of genes from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options exist to contextualise those lists. The development and validation of such methods is crucial to the wider application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning from very large datasets. Results Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using plasma marker data with known clinical relevance to aid identification of the most important gene and pathway changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet affected diverse biological processes across the three tissues, and that the majority of pathway changes reached significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also significantly changed by the high-CLA diet. Closer inspection of two of these pathways - selenoamino acid metabolism and steroid biosynthesis - illustrated clear diet-sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease. PMID:20929581

  2. A preliminary evaluation of a failure detection filter for detecting and identifying control element failures in a transport aircraft

    NASA Technical Reports Server (NTRS)

    Bundick, W. T.

    1985-01-01

    The application of the failure detection filter to the detection and identification of aircraft control element failures was evaluated in a linear digital simulation of the longitudinal dynamics of a B-737 Aircraft. Simulation results show that with a simple correlator and threshold detector used to process the filter residuals, the failure detection performance is seriously degraded by the effects of turbulence.

  3. Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station.

    PubMed

    Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua

    2014-03-10

    A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.

  4. Simple and Efficient Single Photon Filter for a Rb-based Quantum Memory

    NASA Astrophysics Data System (ADS)

    Stack, Daniel; Li, Xiao; Quraishi, Qudsia

    2015-05-01

    Distribution of entangled quantum states over significant distances is important to the development of future quantum technologies such as long-distance cryptography, networks of atomic clocks, distributed quantum computing, etc. Long-lived quantum memories and single photons are building blocks for systems capable of realizing such applications. The ability to store and retrieve quantum information while filtering unwanted light signals is critical to the operation of quantum memories based on neutral-atom ensembles. We report on an efficient frequency filter which uses a glass cell filled with 85Rb vapor to attenuate noise photons by an order of magnitude with little loss to the single photons associated with the operation of our cold 87Rb quantum memory. An Ar buffer gas is required to differentiate between signal and noise photons or similar statement. Our simple, passive filter requires no optical pumping or external frequency references and provides an additional 18 dB attenuation of our pump laser for every 1 dB loss of the single photon signal. We observe improved non-classical correlations and our data shows that the addition of a frequency filter increases the non-classical correlations and readout efficiency of our quantum memory by ~ 35%.

  5. Composite correlation filter for O-ring detection in stationary colored noise

    NASA Astrophysics Data System (ADS)

    Hassebrook, Laurence G.

    2009-04-01

    O-rings are regularly replaced in aircraft and if they are not replaced or if they are installed improperly, they can result in catastrophic failure of the aircraft. It is critical that the o-rings be packaged correctly to avoid mistakes made by technicians during routine maintenance. For this reason, fines may be imposed on the o-ring manufacturer if the o-rings are packaged incorrectly. That is, a single o-ring must be packaged and labeled properly. No o-rings or more than one o-ring per package is not acceptable. We present an industrial inspection system based on real-time composite correlation filtering that has successfully solved this problem in spite of opaque paper o-ring packages. We present the system design including the composite filter design.

  6. Design and fabrication of SiO2/TiO2 and MgO/TiO2 based high selective optical filters for diffuse reflectance and fluorescence signals extraction.

    PubMed

    Pimenta, S; Cardoso, S; Miranda, A; De Beule, P; Castanheira, E M S; Minas, G

    2015-08-01

    This paper presents the design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 based high selective narrow bandpass optical filters. Their performance to extract diffuse reflectance and fluorescence signals from gastrointestinal tissue phantoms was successfully evaluated. The obtained results prove their feasibility to correctly extract those spectroscopic signals, through a Spearman's rank correlation test (Spearman's correlation coefficient higher than 0.981) performed between the original spectra and the ones obtained using those 16 fabricated optical filters. These results are an important step for the implementation of a miniaturized, low-cost and minimal invasive microsystem that could help in the detection of gastrointestinal dysplasia.

  7. Chemiluminescence microarrays in analytical chemistry: a critical review.

    PubMed

    Seidel, Michael; Niessner, Reinhard

    2014-09-01

    Multi-analyte immunoassays on microarrays and on multiplex DNA microarrays have been described for quantitative analysis of small organic molecules (e.g., antibiotics, drugs of abuse, small molecule toxins), proteins (e.g., antibodies or protein toxins), and microorganisms, viruses, and eukaryotic cells. In analytical chemistry, multi-analyte detection by use of analytical microarrays has become an innovative research topic because of the possibility of generating several sets of quantitative data for different analyte classes in a short time. Chemiluminescence (CL) microarrays are powerful tools for rapid multiplex analysis of complex matrices. A wide range of applications for CL microarrays is described in the literature dealing with analytical microarrays. The motivation for this review is to summarize the current state of CL-based analytical microarrays. Combining analysis of different compound classes on CL microarrays reduces analysis time, cost of reagents, and use of laboratory space. Applications are discussed, with examples from food safety, water safety, environmental monitoring, diagnostics, forensics, toxicology, and biosecurity. The potential and limitations of research on multiplex analysis by use of CL microarrays are discussed in this review.

  8. A microarray analysis of retinal transcripts that are controlled by image contrast in mice.

    PubMed

    Brand, Christine; Schaeffel, Frank; Feldkaemper, Marita Pauline

    2007-06-18

    The development of myopia is controlled by still largely unknown retinal signals. The aim of this study was to investigate the changes in retinal mRNA expression after different periods of visual deprivation in mice, while controlling for retinal illuminance. Each group consisted of three male C57BL/6 mice. Treatment periods were 30 min, 4 h, and 6+6 h. High spatial frequencies were filtered from the retinal image by frosted diffusers over one eye while the fellow eyes were covered by clear neutral density (ND) filters that exhibited similar light attenuating properties (0.1 log units) as the diffusers. For the final 30 min of the respective treatment period mice were individually placed in a clear Perspex cylinder that was positioned in the center of a rotating (60 degrees) large drum. The inside of the drum was covered with a 0.1 cyc/degree vertical square wave grating. This visual environment was chosen to standardize illuminances and contrasts seen by the mice. Labeled cRNA was prepared and hybridized to Affymetrix GeneChip Mouse Genome 430 2.0 arrays. Alterations in mRNA expression levels of candidate genes with potential biological relevance were confirmed by semi-quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). In all groups, Egr-1 mRNA expression was reduced in diffuser-treated eyes. Furthermore, the degradation of the spatial frequency spectrum also changed the cFos mRNA level, with reduced expression after 4 h of diffuser treatment. Other interesting candidates were Akt2, which was up-regulated after 30 min of deprivation and Mapk8ip3, a neuron specific JNK binding and scaffolding protein that was temporally regulated in the diffuser-treated eyes only. The microarray analysis demonstrated a pattern of differential transcriptional changes, even though differences in the retinal images were restricted to spatial features. The candidate genes may provide further insight into the biochemical short-term changes following retinal image degradation in mice. Because deprivation of spatial vision leads to increased eye growth and myopia in both animals and humans, it is believed some of the identified genes play a role in myopia development.

  9. Upregulated epidermal growth factor receptor expression following near-infrared irradiation simulating solar radiation in a three-dimensional reconstructed human corneal epithelial tissue culture model

    PubMed Central

    Tanaka, Yohei; Nakayama, Jun

    2016-01-01

    Background and objective Humans are increasingly exposed to near-infrared (NIR) radiation from both natural (eg, solar) and artificial (eg, electrical appliances) sources. Although the biological effects of sun and ultraviolet (UV) exposure have been extensively investigated, the biological effect of NIR radiation is still unclear. We previously reported that NIR as well as UV induces photoaging and standard UV-blocking materials, such as sunglasses, do not sufficiently block NIR. The objective of this study was to investigate changes in gene expression in three-dimensional reconstructed corneal epithelial tissue culture exposed to broad-spectrum NIR irradiation to simulate solar NIR radiation that reaches human tissues. Materials and methods DNA microarray and quantitative real-time polymerase chain reaction analysis were used to assess gene expression levels in a three-dimensional reconstructed corneal epithelial model composed of normal human corneal epithelial cells exposed to water-filtered broad-spectrum NIR irradiation with a contact cooling (20°C). The water-filter allowed 1,000–1,800 nm wavelengths and excluded 1,400–1,500 nm wavelengths. Results A DNA microarray with >62,000 different probes showed 25 and 150 genes that were up- or downregulated by at least fourfold and twofold, respectively, after NIR irradiation. In particular, epidermal growth factor receptor (EGFR) was upregulated by 19.4-fold relative to control cells. Quantitative real-time polymerase chain reaction analysis revealed that two variants of EGFR in human corneal epithelial tissue were also significantly upregulated after five rounds of 10 J/cm2 irradiation (P<0.05). Conclusion We found that NIR irradiation induced the upregulated expression of EGFR in human corneal cells. Since over half of the solar energy reaching the Earth is in the NIR region, which cannot be adequately blocked by eyewear and thus can induce eye damage with intensive or long-term exposure, protection from both UV and NIR radiation may prevent changes in gene expression and in turn eye damage. PMID:27536083

  10. Comparison of bandwidths in the inferior colliculus and the auditory nerve. II: Measurement using a temporally manipulated stimulus.

    PubMed

    Mc Laughlin, Myles; Chabwine, Joelle Nsimire; van der Heijden, Marcel; Joris, Philip X

    2008-10-01

    To localize low-frequency sounds, humans rely on an interaural comparison of the temporally encoded sound waveform after peripheral filtering. This process can be compared with cross-correlation. For a broadband stimulus, after filtering, the correlation function has a damped oscillatory shape where the periodicity reflects the filter's center frequency and the damping reflects the bandwidth (BW). The physiological equivalent of the correlation function is the noise delay (ND) function, which is obtained from binaural cells by measuring response rate to broadband noise with varying interaural time delays (ITDs). For monaural neurons, delay functions are obtained by counting coincidences for varying delays across spike trains obtained to the same stimulus. Previously, we showed that BWs in monaural and binaural neurons were similar. However, earlier work showed that the damping of delay functions differs significantly between these two populations. Here, we address this paradox by looking at the role of sensitivity to changes in interaural correlation. We measured delay and correlation functions in the cat inferior colliculus (IC) and auditory nerve (AN). We find that, at a population level, AN and IC neurons with similar characteristic frequencies (CF) and BWs can have different responses to changes in correlation. Notably, binaural neurons often show compression, which is not found in the AN and which makes the shape of delay functions more invariant with CF at the level of the IC than at the AN. We conclude that binaural sensitivity is more dependent on correlation sensitivity than has hitherto been appreciated and that the mechanisms underlying correlation sensitivity should be addressed in future studies.

  11. Automated Threshold Selection for Template-Based Sonar Target Detection

    DTIC Science & Technology

    2017-08-01

    test based on the distribution of the matched filter correlations. From the matched filter output we evaluate target sized areas and surrounding...synthetic aperture sonar data that were part of the evaluation . Figure 3 shows a nearly uniform seafloor. Figure 4 is more complex, with

  12. Analysis of High-Throughput ELISA Microarray Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Amanda M.; Daly, Don S.; Zangar, Richard C.

    Our research group develops analytical methods and software for the high-throughput analysis of quantitative enzyme-linked immunosorbent assay (ELISA) microarrays. ELISA microarrays differ from DNA microarrays in several fundamental aspects and most algorithms for analysis of DNA microarray data are not applicable to ELISA microarrays. In this review, we provide an overview of the steps involved in ELISA microarray data analysis and how the statistically sound algorithms we have developed provide an integrated software suite to address the needs of each data-processing step. The algorithms discussed are available in a set of open-source software tools (http://www.pnl.gov/statistics/ProMAT).

  13. Adaptive Spatial Filter Based on Similarity Indices to Preserve the Neural Information on EEG Signals during On-Line Processing

    PubMed Central

    Villa-Parra, Ana Cecilia; Bastos-Filho, Teodiano; López-Delis, Alberto; Frizera-Neto, Anselmo; Krishnan, Sridhar

    2017-01-01

    This work presents a new on-line adaptive filter, which is based on a similarity analysis between standard electrode locations, in order to reduce artifacts and common interferences throughout electroencephalography (EEG) signals, but preserving the useful information. Standard deviation and Concordance Correlation Coefficient (CCC) between target electrodes and its correspondent neighbor electrodes are analyzed on sliding windows to select those neighbors that are highly correlated. Afterwards, a model based on CCC is applied to provide higher values of weight to those correlated electrodes with lower similarity to the target electrode. The approach was applied to brain computer-interfaces (BCIs) based on Canonical Correlation Analysis (CCA) to recognize 40 targets of steady-state visual evoked potential (SSVEP), providing an accuracy (ACC) of 86.44 ± 2.81%. In addition, also using this approach, features of low frequency were selected in the pre-processing stage of another BCI to recognize gait planning. In this case, the recognition was significantly (p<0.01) improved for most of the subjects (ACC≥74.79%), when compared with other BCIs based on Common Spatial Pattern, Filter Bank-Common Spatial Pattern, and Riemannian Geometry. PMID:29186848

  14. Guenter Tulip Filter Retrieval Experience: Predictors of Successful Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turba, Ulku Cenk, E-mail: uct5d@virginia.edu; Arslan, Bulent, E-mail: ba6e@virginia.edu; Meuse, Michael, E-mail: mm5tz@virginia.edu

    We report our experience with Guenter Tulip filter placement indications, retrievals, and procedural problems, with emphasis on alternative retrieval techniques. We have identified 92 consecutive patients in whom a Guenter Tulip filter was placed and filter removal attempted. We recorded patient demographic information, filter placement and retrieval indications, procedures, standard and nonstandard filter retrieval techniques, complications, and clinical outcomes. The mean time to retrieval for those who experienced filter strut penetration was statistically significant [F(1,90) = 8.55, p = 0.004]. Filter strut(s) IVC penetration and successful retrieval were found to be statistically significant (p = 0.043). The filter hook-IVC relationshipmore » correlated with successful retrieval. A modified guidewire loop technique was applied in 8 of 10 cases where the hook appeared to penetrate the IVC wall and could not be engaged with a loop snare catheter, providing additional technical success in 6 of 8 (75%). Therefore, the total filter retrieval success increased from 88 to 95%. In conclusion, the Guenter Tulip filter has high successful retrieval rates with low rates of complication. Additional maneuvers such as a guidewire loop method can be used to improve retrieval success rates when the filter hook is endothelialized.« less

  15. Extracting the sovereigns’ CDS market hierarchy: A correlation-filtering approach

    NASA Astrophysics Data System (ADS)

    León, Carlos; Leiton, Karen; Pérez, Jhonatan

    2014-12-01

    This paper employs correlation-into-distance mapping techniques and a minimal spanning tree-based correlation-filtering methodology on 36 sovereign CDS spread time-series in order to identify the sovereigns’ informational hierarchy. The resulting hierarchy (i) concurs with sovereigns’ eigenvector centrality; (ii) confirms the importance of geographical and credit rating clustering; (iii) identifies Russia, Turkey and Brazil as regional benchmarks; (iv) reveals the idiosyncratic nature of Japan and United States; (v) confirms that a small set of common factors affects the system; (vi) suggests that lower-medium grade rated sovereigns are the most influential, but also the most prone to contagion; and (vii) suggests the existence of a “Latin American common factor”.

  16. Genetic makeup of Shiga toxin-producing Escherichia coli in relation to clinical symptoms and duration of shedding: a microarray analysis of isolates from Swedish children.

    PubMed

    Matussek, A; Jernberg, C; Einemo, I-M; Monecke, S; Ehricht, R; Engelmann, I; Löfgren, S; Mernelius, S

    2017-08-01

    Shiga toxin (Stx)-producing Escherichia coli (STECs) cause non-bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome, and are the primary cause of acute renal failure in children worldwide. This study investigated the correlation of genetic makeup of STEC strains as revealed by DNA microarray to clinical symptoms and the duration of STEC shedding. All STEC isolated (n = 96) from patients <10 years of age in Jönköping County, Sweden from 2003 to 2015 were included. Isolates were characterized by DNA microarray, including almost 280 genes. Clinical data were collected through a questionnaire and by reviewing medical records. Of the 96 virulence genes (including stx) in the microarray, 62 genes were present in at least one isolate. Statistically significant differences in prevalence were observed for 21 genes when comparing patients with bloody diarrhea (BD) and with non-bloody stool (18 of 21 associated with BD). Most genes encode toxins (e.g., stx2 alleles, astA, toxB), adhesion factors (i.e. espB_O157, tir, eae), or secretion factors (e.g., espA, espF, espJ, etpD, nleA, nleB, nleC, tccP). Seven genes were associated with prolonged stx shedding; the presence of three genes (lpfA, senB, and stx1) and the absence of four genes (espB_O157, espF, astA, and intI1). We found STEC genes that might predict severe disease outcome already at diagnosis. This can be used to develop diagnostic tools for risk assessment of disease outcome. Furthermore, genes associated with the duration of stx shedding were detected, enabling a possible better prediction of length of STEC carriage after infection.

  17. Microarray analysis of 6-mercaptopurine-induced-toxicity-related genes and microRNAs in the rat placenta.

    PubMed

    Taki, Kenji; Fukushima, Tamio; Ise, Ryota; Horii, Ikuo; Yoshida, Takemi

    2013-02-01

    MicroRNAs (miRNAs) are small single-stranded RNAs of 19-25 nucleotides and are important in posttranscriptional regulation of genes. Recently, the role of miRNAs in toxicity incidence is reported to be a regulator of key-stopper of gene expression, however the detailed mechanism of miRNAs is not well known yet. 6-Mercaptopurine (6-MP), the anti-leukemic and immunosuppressive drug, produced teratogenicity and pregnancy loss. We focused on the placenta to evaluate toxicity in embryo/fetal development produced by 6-MP treatment. MiRNA expression in the placenta was analyzed by miRNA microarray. Fifteen miRNAs were upregulated on GD13 and 5 miRNAs were downregulated on GD15 in 6-MP treatment rat placentas. Some miRNAs may have functions in apoptosis (miR-195, miR-21, miR-29c and miR-34a), inflammation (miR-146b), and ischemia (miR-144 and miR-451). In the maternal plasma, expression of miR-144 was significantly reduced by 6-MP treatment when examined by real-time RT-PCR. We determined toxicity-related gene expression in the rat placenta. Gene expression analysis was carried out by DNA oligo microarray using rat placenta total RNAs. Compared between predicted targets of miRNAs and microarray data in 6-MP-treated rat placenta, expressions of hormone receptor genes (estrogen receptor 1; Esr1, progesterone receptor; Pgr, and prolactin receptor; Prlr), xanthine oxidase (Xdh), Slc38a5 and Phlda2 genes were changed. The histopathologically found increase in trophoblastic giant cells and reduced placental growth by 6-MP treatment were well correlated to these gene expressions. These data suggest that some miRNAs may link to toxicological reactions in 6-MP-induced placental toxicity.

  18. Transcriptional Changes in Canine Distemper Virus-Induced Demyelinating Leukoencephalitis Favor a Biphasic Mode of Demyelination

    PubMed Central

    Ulrich, Reiner; Puff, Christina; Wewetzer, Konstantin; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang

    2014-01-01

    Canine distemper virus (CDV)-induced demyelinating leukoencephalitis in dogs (Canis familiaris) is suggested to represent a naturally occurring translational model for subacute sclerosing panencephalitis and multiple sclerosis in humans. The aim of this study was a hypothesis-free microarray analysis of the transcriptional changes within cerebellar specimens of five cases of acute, six cases of subacute demyelinating, and three cases of chronic demyelinating and inflammatory CDV leukoencephalitis as compared to twelve non-infected control dogs. Frozen cerebellar specimens were used for analysis of histopathological changes including demyelination, transcriptional changes employing microarrays, and presence of CDV nucleoprotein RNA and protein using microarrays, RT-qPCR and immunohistochemistry. Microarray analysis revealed 780 differentially expressed probe sets. The dominating change was an up-regulation of genes related to the innate and the humoral immune response, and less distinct the cytotoxic T-cell-mediated immune response in all subtypes of CDV leukoencephalitis as compared to controls. Multiple myelin genes including myelin basic protein and proteolipid protein displayed a selective down-regulation in subacute CDV leukoencephalitis, suggestive of an oligodendrocyte dystrophy. In contrast, a marked up-regulation of multiple immunoglobulin-like expressed sequence tags and the delta polypeptide of the CD3 antigen was observed in chronic CDV leukoencephalitis, in agreement with the hypothesis of an immune-mediated demyelination in the late inflammatory phase of the disease. Analysis of pathways intimately linked to demyelination as determined by morphometry employing correlation-based Gene Set Enrichment Analysis highlighted the pathomechanistic importance of up-regulated genes comprised by the gene ontology terms “viral replication” and “humoral immune response” as well as down-regulated genes functionally related to “metabolite and energy generation”. PMID:24755553

  19. Transcriptional changes in canine distemper virus-induced demyelinating leukoencephalitis favor a biphasic mode of demyelination.

    PubMed

    Ulrich, Reiner; Puff, Christina; Wewetzer, Konstantin; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang

    2014-01-01

    Canine distemper virus (CDV)-induced demyelinating leukoencephalitis in dogs (Canis familiaris) is suggested to represent a naturally occurring translational model for subacute sclerosing panencephalitis and multiple sclerosis in humans. The aim of this study was a hypothesis-free microarray analysis of the transcriptional changes within cerebellar specimens of five cases of acute, six cases of subacute demyelinating, and three cases of chronic demyelinating and inflammatory CDV leukoencephalitis as compared to twelve non-infected control dogs. Frozen cerebellar specimens were used for analysis of histopathological changes including demyelination, transcriptional changes employing microarrays, and presence of CDV nucleoprotein RNA and protein using microarrays, RT-qPCR and immunohistochemistry. Microarray analysis revealed 780 differentially expressed probe sets. The dominating change was an up-regulation of genes related to the innate and the humoral immune response, and less distinct the cytotoxic T-cell-mediated immune response in all subtypes of CDV leukoencephalitis as compared to controls. Multiple myelin genes including myelin basic protein and proteolipid protein displayed a selective down-regulation in subacute CDV leukoencephalitis, suggestive of an oligodendrocyte dystrophy. In contrast, a marked up-regulation of multiple immunoglobulin-like expressed sequence tags and the delta polypeptide of the CD3 antigen was observed in chronic CDV leukoencephalitis, in agreement with the hypothesis of an immune-mediated demyelination in the late inflammatory phase of the disease. Analysis of pathways intimately linked to demyelination as determined by morphometry employing correlation-based Gene Set Enrichment Analysis highlighted the pathomechanistic importance of up-regulated genes comprised by the gene ontology terms "viral replication" and "humoral immune response" as well as down-regulated genes functionally related to "metabolite and energy generation".

  20. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling.

    PubMed

    Hinchliffe, Doug J; Meredith, William R; Yeater, Kathleen M; Kim, Hee Jin; Woodward, Andrew W; Chen, Z Jeffrey; Triplett, Barbara A

    2010-05-01

    Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.

  1. On dealing with multiple correlation peaks in PIV

    NASA Astrophysics Data System (ADS)

    Masullo, A.; Theunissen, R.

    2018-05-01

    A novel algorithm to analyse PIV images in the presence of strong in-plane displacement gradients and reduce sub-grid filtering is proposed in this paper. Interrogation windows subjected to strong in-plane displacement gradients often produce correlation maps presenting multiple peaks. Standard multi-grid procedures discard such ambiguous correlation windows using a signal to noise (SNR) filter. The proposed algorithm improves the standard multi-grid algorithm allowing the detection of splintered peaks in a correlation map through an automatic threshold, producing multiple displacement vectors for each correlation area. Vector locations are chosen by translating images according to the peak displacements and by selecting the areas with the strongest match. The method is assessed on synthetic images of a boundary layer of varying intensity and a sinusoidal displacement field of changing wavelength. An experimental case of a flow exhibiting strong velocity gradients is also provided to show the improvements brought by this technique.

  2. A tool for filtering information in complex systems

    NASA Astrophysics Data System (ADS)

    Tumminello, M.; Aste, T.; Di Matteo, T.; Mantegna, R. N.

    2005-07-01

    We introduce a technique to filter out complex data sets by extracting a subgraph of representative links. Such a filtering can be tuned up to any desired level by controlling the genus of the resulting graph. We show that this technique is especially suitable for correlation-based graphs, giving filtered graphs that preserve the hierarchical organization of the minimum spanning tree but containing a larger amount of information in their internal structure. In particular in the case of planar filtered graphs (genus equal to 0), triangular loops and four-element cliques are formed. The application of this filtering procedure to 100 stocks in the U.S. equity markets shows that such loops and cliques have important and significant relationships with the market structure and properties. This paper was submitted directly (Track II) to the PNAS office.Abbreviations: MST, minimum spanning tree; PMFG, Planar Maximally Filtered Graph; r-clique, clique of r elements.

  3. Evaluation of multichannel Wiener filters applied to fine resolution passive microwave images of first-year sea ice

    NASA Technical Reports Server (NTRS)

    Full, William E.; Eppler, Duane T.

    1993-01-01

    The effectivity of multichannel Wiener filters to improve images obtained with passive microwave systems was investigated by applying Wiener filters to passive microwave images of first-year sea ice. Four major parameters which define the filter were varied: the lag or pixel offset between the original and the desired scenes, filter length, the number of lines in the filter, and the weight applied to the empirical correlation functions. The effect of each variable on the image quality was assessed by visually comparing the results. It was found that the application of multichannel Wiener theory to passive microwave images of first-year sea ice resulted in visually sharper images with enhanced textural features and less high-frequency noise. However, Wiener filters induced a slight blocky grain to the image and could produce a type of ringing along scan lines traversing sharp intensity contrasts.

  4. Introduction of Total Variation Regularization into Filtered Backprojection Algorithm

    NASA Astrophysics Data System (ADS)

    Raczyński, L.; Wiślicki, W.; Klimaszewski, K.; Krzemień, W.; Kowalski, P.; Shopa, R. Y.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B.; Jasińska, B.; Kisielewska-Kamińska, D.; Korcyl, G.; Kozik, T.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Niedźwiecki, S.; Pałka, M.; Rudy, Z.; Sharma, N. G.; Sharma, S.; Silarski, M.; Skurzok, M.; Wieczorek, A.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    In this paper we extend the state-of-the-art filtered backprojection (FBP) method with application of the concept of Total Variation regularization. We compare the performance of the new algorithm with the most common form of regularizing in the FBP image reconstruction via apodizing functions. The methods are validated in terms of cross-correlation coefficient between reconstructed and real image of radioactive tracer distribution using standard Derenzo-type phantom. We demonstrate that the proposed approach results in higher cross-correlation values with respect to the standard FBP method.

  5. A modular radiative transfer program for gas filter correlation radiometry

    NASA Technical Reports Server (NTRS)

    Casas, J. C.; Campbell, S. A.

    1977-01-01

    The fundamentals of a computer program, simulated monochromatic atmospheric radiative transfer (SMART), which calculates atmospheric path transmission, solar radiation, and thermal radiation in the 4.6 micrometer spectral region, are described. A brief outline of atmospheric absorption properties and line by line transmission calculations is explained in conjunction with an outline of the SMART computational procedures. Program flexibility is demonstrated by simulating the response of a gas filter correlation radiometer as one example of an atmospheric infrared sensor. Program limitations, input data requirements, program listing, and comparison of SMART transmission calculations are presented.

  6. PATHFINDER ATOMIC POWER PLANT. FILTRATION OF ALUMINUM CORROSION PRODUCTS PRODUCED IN HIGH-TEMPERATURE, HIGH PURITY WATER SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noble, J.H.; Davie, R.L.

    1961-05-01

    Filter tests were conducted to determine the most suitable filter for removing large quantities of aluminum corrosion product (boehmite) from reactor water. Filters tested included the following: wire-wound, sintered filter elements, sintered ceramic fllter elements, cotton stringwound filter elements, felted-cotton filter elements, cation resin, adsorption resin, diatomaceous earth precoat filter, and a wood-cellulose precoat filter. Parameters measured were flow rate, filter-influent and -effluent boehmite concentration, pressure drop, and final filter load. The pressure drop and efficiency of the filters was correlated with boehmite load. Boehmite deposits on filters as a nonporous gelatinous cake, and causes a rapidly increasing pressure drop.more » Tests indicate that the optimum load with filter elements and precoat filters is achieved at a pressure drop of 25 psi. Very little additional load can be obtained by operating to a higher pressure drop. Of the filters tested, the precoat filter snd 40 to 60 mesh cation resin were the more effective in removing boehmite. The efficiency of the precoat filter was in excess of 99%, and the efficiency of the cation resin was for the most part in excess of 95%. For various reasons, the other filters were eliminated from final consideration. The test program and available literature indicated that an element type precoat filter using wood cellulose as the precoat media would be most suitable for the proposed application. (auth)« less

  7. Assessment of Occupational Exposure to Manganese and Other Metals in Welding Fumes by Portable X-ray Fluorescence Spectrometer

    PubMed Central

    Laohaudomchok, Wisanti; Cavallari, Jennifer M.; Fang, Shona C.; Lin, Xihong; Herrick, Robert F.; Christiani, David C.; Weisskopf, Marc G.

    2011-01-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM2.5 deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman ρ = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that the portable XRF could be used as an effective and reliable tool for exposure assessment in many studies. PMID:20526948

  8. Assessment of occupational exposure to manganese and other metals in welding fumes by portable X-ray fluorescence spectrometer.

    PubMed

    Laohaudomchok, Wisanti; Cavallari, Jennifer M; Fang, Shona C; Lin, Xihong; Herrick, Robert F; Christiani, David C; Weisskopf, Marc G

    2010-08-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM(2.5) deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman rho = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that the portable XRF could be used as an effective and reliable tool for exposure assessment in many studies.

  9. Wall-based identification of coherent structures in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Sanmiguel Vila, C.; Flores, O.

    2018-04-01

    During the last decades, a number of reduced order models based on coherent structures have been proposed to describe wall-bounded turbulence. Many of these models emphasize the importance of coherent wall-normal velocity eddies (ν-eddies), which drive the generation of the very long streamwise velocity structures observed in the logarithmic and outer region. In order to use these models to improve our ability to control wall-bounded turbulence in realistic applications, these ν-eddies need to be identified from the wall in a non-intrusive way. In this paper, the possibility of using the pressure signal at the wall to identify these ν-eddies is explored, analyzing the cross-correlation between the wall-normal velocity component and the pressure fluctuations at the wall in a DNS of a turbulent channel flow at Reτ = 939. The results show that the cross-correlation has a region of negative correlation upstream, and a region of positive correlation backwards. In the spanwise direction the correlation decays monotonously, except very close to the wall where a change of sign of the correlation coefficient is observed. Moreover, filtering the pressure fluctuations at the wall in space results in an increase of the region where the cross-correlation is strong, both for the positively and the negatively correlated regions. The use of a time filter for the pressure fluctuations at the wall yields different results, displacing the regions of strong correlation without changing much their sizes. The results suggest that space-filtering the pressure at the wall is a feasible way to identify ν-eddies of different sizes, which could be used to trigger turbulent control strategies.

  10. Implications of changes in solids retention time on long term evolution of sludge filterability in anaerobic membrane bioreactors treating high strength industrial wastewater.

    PubMed

    Dereli, Recep Kaan; Grelot, Aurelie; Heffernan, Barry; van der Zee, Frank P; van Lier, Jules B

    2014-08-01

    Long-term experiments were conducted to assess the impact of changing the solids retention time (SRT) on sludge filterability in anaerobic membrane bioreactors (AnMBRs), treating corn-based bioethanol thin stillage. Well established parameters, such as capillary suction time (CST) and specific resistance to filtration (SRF), developed for sludge dewatering, were used to evaluate the SRT effect on sludge filterability. Our results clearly demonstrated that SRT is one of the most important factors influencing sludge filterability in AnMBRs. SRT effects the accumulation of fine particles and solutes, which were found to affect attainable flux and fouling, in reactor broth. A better filterability was observed at a SRT of 20 days compared to elevated SRTs, i.e. 50 days. A clear correlation between sludge filtration characteristics and membrane filtration resistance could not be established especially at short SRTs, whereas many parameters such as total suspended solids (TSS), CST, soluble microbial products (SMP) and supernatant filterability were found to be mutually correlated. Net membrane fluxes between 9 and 13 L m(-2) h(-1) were obtained at 0.5 m s(-1) cross-flow velocity and the long term fouling was controlled by using frequent filtration and backwash cycles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  12. Longitudinal Factor Score Estimation Using the Kalman Filter.

    ERIC Educational Resources Information Center

    Oud, Johan H.; And Others

    1990-01-01

    How longitudinal factor score estimation--the estimation of the evolution of factor scores for individual examinees over time--can profit from the Kalman filter technique is described. The Kalman estimates change more cautiously over time, have lower estimation error variances, and reproduce the LISREL program latent state correlations more…

  13. Finite word length effects on digital filter implementation.

    NASA Technical Reports Server (NTRS)

    Bowman, J. D.; Clark, F. H.

    1972-01-01

    This paper is a discussion of two known techniques to analyze finite word length effects on digital filters. These techniques are extended to several additional programming forms and the results verified experimentally. A correlation of the analytical weighting functions for the two methods is made through the Mason Gain Formula.

  14. Choice of threshold line angle for binary phase-only filters

    NASA Astrophysics Data System (ADS)

    Vijaya Kumar, Bhagavatula; Hendrix, Charles D.

    1993-10-01

    The choice of threshold line angle (TLA) is an important issue in designing Binary Phase-Only Filters (BPOFs). In this paper, we derive expressions that explicitly relate the TLA to correlation peak intensity. We also show some examples that illustrate the effect of choosing the wrong TLA.

  15. UPD detection using homozygosity profiling with a SNP genotyping microarray.

    PubMed

    Papenhausen, Peter; Schwartz, Stuart; Risheg, Hiba; Keitges, Elisabeth; Gadi, Inder; Burnside, Rachel D; Jaswaney, Vikram; Pappas, John; Pasion, Romela; Friedman, Kenneth; Tepperberg, James

    2011-04-01

    Single nucleotide polymorphism (SNP) based chromosome microarrays provide both a high-density whole genome analysis of copy number and genotype. In the past 21 months we have analyzed over 13,000 samples primarily referred for developmental delay using the Affymetrix SNP/CN 6.0 version array platform. In addition to copy number, we have focused on the relative distribution of allele homozygosity (HZ) throughout the genome to confirm a strong association of uniparental disomy (UPD) with regions of isoallelism found in most confirmed cases of UPD. We sought to determine whether a long contiguous stretch of HZ (LCSH) greater than a threshold value found only in a single chromosome would correlate with UPD of that chromosome. Nine confirmed UPD cases were retrospectively analyzed with the array in the study, each showing the anticipated LCSH with the smallest 13.5 Mb in length. This length is well above the average longest run of HZ in a set of control patients and was then set as the prospective threshold for reporting possible UPD correlation. Ninety-two cases qualified at that threshold, 46 of those had molecular UPD testing and 29 were positive. Including retrospective cases, 16 showed complete HZ across the chromosome, consistent with total isoUPD. The average size LCSH in the 19 cases that were not completely HZ was 46.3 Mb with a range of 13.5-127.8 Mb. Three patients showed only segmental UPD. Both the size and location of the LCSH are relevant to correlation with UPD. Further studies will continue to delineate an optimal threshold for LCSH/UPD correlation. Copyright © 2011 Wiley-Liss, Inc.

  16. Optimized method for atmospheric signal reduction in irregular sampled InSAR time series assisted by external atmospheric information

    NASA Astrophysics Data System (ADS)

    Gong, W.; Meyer, F. J.

    2013-12-01

    It is well known that spatio-temporal the tropospheric phase signatures complicate the interpretation and detection of smaller magnitude deformation signals or unstudied motion fields. Several advanced time-series InSAR techniques were developed in the last decade that make assumptions about the stochastic properties of the signal components in interferometric phases to reduce atmospheric delay effects on surface deformation estimates. However, their need for large datasets to successfully separate the different phase contributions limits their performance if data is scarce and irregularly sampled. Limited SAR data coverage is true for many areas affected by geophysical deformation. This is either due to their low priority in mission programming, unfavorable ground coverage condition, or turbulent seasonal weather effects. In this paper, we present new adaptive atmospheric phase filtering algorithms that are specifically designed to reconstruct surface deformation signals from atmosphere-affected and irregularly sampled InSAR time series. The filters take advantage of auxiliary atmospheric delay information that is extracted from various sources, e.g. atmospheric weather models. They are embedded into a model-free Persistent Scatterer Interferometry (PSI) approach that was selected to accommodate non-linear deformation patterns that are often observed near volcanoes and earthquake zones. Two types of adaptive phase filters were developed that operate in the time dimension and separate atmosphere from deformation based on their different temporal correlation properties. Both filter types use the fact that atmospheric models can reliably predict the spatial statistics and signal power of atmospheric phase delay fields in order to automatically optimize the filter's shape parameters. In essence, both filter types will attempt to maximize the linear correlation between a-priori and the extracted atmospheric phase information. Topography-related phase components, orbit errors and the master atmospheric delays are first removed in a pre-processing step before the atmospheric filters are applied. The first adaptive filter type is using a filter kernel of Gaussian shape and is adaptively adjusting the width (defined in days) of this filter until the correlation of extracted and modeled atmospheric signal power is maximized. If atmospheric properties vary along the time series, this approach will lead to filter setting that are adapted to best reproduce atmospheric conditions at a certain observation epoch. Despite the superior performance of this first filter design, its Gaussian shape imposes non-physical relative weights onto acquisitions that ignore the known atmospheric noise in the data. Hence, in our second approach we are using atmospheric a-priori information to adaptively define the full shape of the atmospheric filter. For this process, we use a so-called normalized convolution (NC) approach that is often used in image reconstruction. Several NC designs will be presented in this paper and studied for relative performance. A cross-validation of all developed algorithms was done using both synthetic and real data. This validation showed designed filters are outperforming conventional filter methods that particularly useful for regions with limited data coverage or lack of a deformation field prior.

  17. Intra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology

    PubMed Central

    Sato, Fumiaki; Tsuchiya, Soken; Terasawa, Kazuya; Tsujimoto, Gozoh

    2009-01-01

    Over the last decade, DNA microarray technology has provided a great contribution to the life sciences. The MicroArray Quality Control (MAQC) project demonstrated the way to analyze the expression microarray. Recently, microarray technology has been utilized to analyze a comprehensive microRNA expression profiling. Currently, several platforms of microRNA microarray chips are commercially available. Thus, we compared repeatability and comparability of five different microRNA microarray platforms (Agilent, Ambion, Exiqon, Invitrogen and Toray) using 309 microRNAs probes, and the Taqman microRNA system using 142 microRNA probes. This study demonstrated that microRNA microarray has high intra-platform repeatability and comparability to quantitative RT-PCR of microRNA. Among the five platforms, Agilent and Toray array showed relatively better performances than the others. However, the current lineup of commercially available microRNA microarray systems fails to show good inter-platform concordance, probably because of lack of an adequate normalization method and severe divergence in stringency of detection call criteria between different platforms. This study provided the basic information about the performance and the problems specific to the current microRNA microarray systems. PMID:19436744

  18. Living Cell Microarrays: An Overview of Concepts

    PubMed Central

    Jonczyk, Rebecca; Kurth, Tracy; Lavrentieva, Antonina; Walter, Johanna-Gabriela; Scheper, Thomas; Stahl, Frank

    2016-01-01

    Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays. PMID:27600077

  19. Efficiency analysis of color image filtering

    NASA Astrophysics Data System (ADS)

    Fevralev, Dmitriy V.; Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Abramov, Sergey K.; Egiazarian, Karen O.; Astola, Jaakko T.

    2011-12-01

    This article addresses under which conditions filtering can visibly improve the image quality. The key points are the following. First, we analyze filtering efficiency for 25 test images, from the color image database TID2008. This database allows assessing filter efficiency for images corrupted by different noise types for several levels of noise variance. Second, the limit of filtering efficiency is determined for independent and identically distributed (i.i.d.) additive noise and compared to the output mean square error of state-of-the-art filters. Third, component-wise and vector denoising is studied, where the latter approach is demonstrated to be more efficient. Fourth, using of modern visual quality metrics, we determine that for which levels of i.i.d. and spatially correlated noise the noise in original images or residual noise and distortions because of filtering in output images are practically invisible. We also demonstrate that it is possible to roughly estimate whether or not the visual quality can clearly be improved by filtering.

  20. Translating golden retriever muscular dystrophy microarray findings to novel biomarkers for cardiac/skeletal muscle function in Duchenne muscular dystrophy.

    PubMed

    Galindo, Cristi L; Soslow, Jonathan H; Brinkmeyer-Langford, Candice L; Gupte, Manisha; Smith, Holly M; Sengsayadeth, Seng; Sawyer, Douglas B; Benson, D Woodrow; Kornegay, Joe N; Markham, Larry W

    2016-04-01

    In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.

  1. Successful Application of Microarray Technology to Microdissected Formalin-Fixed, Paraffin-Embedded Tissue

    PubMed Central

    Coudry, Renata A.; Meireles, Sibele I.; Stoyanova, Radka; Cooper, Harry S.; Carpino, Alan; Wang, Xianqun; Engstrom, Paul F.; Clapper, Margie L.

    2007-01-01

    The establishment of a reliable method for using RNA from formalin-fixed, paraffin-embedded (FFPE) tissue would provide an opportunity to obtain novel gene expression data from the vast amounts of archived tissue. A custom-designed 22,000 oligonucleotide array was used in the present study to compare the gene expression profile of colonic epithelial cells isolated by laser capture microdissection from FFPE-archived samples with that of the same cell population from matched frozen samples, the preferred source of RNA. Total RNA was extracted from FFPE tissues, amplified, and labeled using the Paradise Reagent System. The quality of the input RNA was assessed by the Bioanalyzer profile, reverse transcriptase-polymerase chain reaction, and agarose gel electrophoresis. The results demonstrate that it is possible to obtain reliable microarray data from FFPE samples using RNA acquired by laser capture microdissection. The concordance between matched FFPE and frozen samples was evaluated and expressed as a Pearson’s correlation coefficient, with values ranging from 0.80 to 0.97. The presence of ribosomal RNA peaks in FFPE-derived RNA was reflected by a high correlation with paired frozen samples. A set of practical recommendations for evaluating the RNA integrity and quality in FFPE samples is reported. PMID:17251338

  2. Chromosomal microarray analysis in developmental delay and intellectual disability with comorbid conditions.

    PubMed

    Fan, Yanjie; Wu, Yanming; Wang, Lili; Wang, Yu; Gong, Zhuwen; Qiu, Wenjuan; Wang, Jingmin; Zhang, Huiwen; Ji, Xing; Ye, Jun; Han, Lianshu; Jin, Xingming; Shen, Yongnian; Li, Fei; Xiao, Bing; Liang, Lili; Zhang, Xia; Liu, Xiaomin; Gu, Xuefan; Yu, Yongguo

    2018-05-24

    Developmental delay (DD) and intellectual disability (ID) are frequently associated with a broad spectrum of additional phenotypes. Chromosomal microarray analysis (CMA) has been recommended as a first-tier test for DD/ID in general, whereas the diagnostic yield differs significantly among DD/ID patients with different comorbid conditions. To investigate the genotype-phenotype correlation, we examined the characteristics of identified pathogenic copy number variations (pCNVs) and compared the diagnostic yields among patient subgroups with different co-occurring conditions. This study is a retrospective review of CMA results generated from a mixed cohort of 710 Chinese patients with DD/ID. A total of 247 pCNVs were identified in 201 patients (28%). A large portion of these pCNVs were copy number losses, and the size of copy number losses was generally smaller than gains. The diagnostic yields were significantly higher in subgroups with co-occurring congenital heart defects (55%), facial dysmorphism (39%), microcephaly (34%) or hypotonia (35%), whereas co-occurring conditions of skeletal malformation (26%), brain malformation (24%) or epilepsy (24%) did not alter the yield. In addition, the diagnostic yield nominally correlated with ID severity. Varied yields exist in DD/ID patients with different phenotypic presentation. The presence of comorbid conditions can be among factors to consider when planning CMA.

  3. The analysis of image feature robustness using cometcloud

    PubMed Central

    Qi, Xin; Kim, Hyunjoo; Xing, Fuyong; Parashar, Manish; Foran, David J.; Yang, Lin

    2012-01-01

    The robustness of image features is a very important consideration in quantitative image analysis. The objective of this paper is to investigate the robustness of a range of image texture features using hematoxylin stained breast tissue microarray slides which are assessed while simulating different imaging challenges including out of focus, changes in magnification and variations in illumination, noise, compression, distortion, and rotation. We employed five texture analysis methods and tested them while introducing all of the challenges listed above. The texture features that were evaluated include co-occurrence matrix, center-symmetric auto-correlation, texture feature coding method, local binary pattern, and texton. Due to the independence of each transformation and texture descriptor, a network structured combination was proposed and deployed on the Rutgers private cloud. The experiments utilized 20 randomly selected tissue microarray cores. All the combinations of the image transformations and deformations are calculated, and the whole feature extraction procedure was completed in 70 minutes using a cloud equipped with 20 nodes. Center-symmetric auto-correlation outperforms all the other four texture descriptors but also requires the longest computational time. It is roughly 10 times slower than local binary pattern and texton. From a speed perspective, both the local binary pattern and texton features provided excellent performance for classification and content-based image retrieval. PMID:23248759

  4. A measure of the signal-to-noise ratio of microarray samples and studies using gene correlations.

    PubMed

    Venet, David; Detours, Vincent; Bersini, Hugues

    2012-01-01

    The quality of gene expression data can vary dramatically from platform to platform, study to study, and sample to sample. As reliable statistical analysis rests on reliable data, determining such quality is of the utmost importance. Quality measures to spot problematic samples exist, but they are platform-specific, and cannot be used to compare studies. As a proxy for quality, we propose a signal-to-noise ratio for microarray data, the "Signal-to-Noise Applied to Gene Expression Experiments", or SNAGEE. SNAGEE is based on the consistency of gene-gene correlations. We applied SNAGEE to a compendium of 80 large datasets on 37 platforms, for a total of 24,380 samples, and assessed the signal-to-noise ratio of studies and samples. This allowed us to discover serious issues with three studies. We show that signal-to-noise ratios of both studies and samples are linked to the statistical significance of the biological results. We showed that SNAGEE is an effective way to measure data quality for most types of gene expression studies, and that it often outperforms existing techniques. Furthermore, SNAGEE is platform-independent and does not require raw data files. The SNAGEE R package is available in BioConductor.

  5. Upregulation of long non-coding RNA M26317 correlates with tumor progression and poor prognosis in gastric cancer.

    PubMed

    Li, Li; Wang, Yuan-Yu; Mou, Xiao Zhou; Ye, Zai-Yuan; Zhao, Zhong-Sheng

    2018-04-23

    To investigate the expression and clinical significance of long non-coding RNA (lnc RNA) in gastric cancer, we applied microarray analysis to obtain expression profiles of protein coding genes and lncRNAs in tumor and paired adjacent non-tumor tissues. We found that 41 lncRNAs were upregulated and 31 lncRNAs were downregulated more than 2-fold in gastric cancer versus noncancerous tissues (ratio>2.0, P<.01). We established a co-expression network of the differentially expressed lncRNAs and targeted coding genes that included 17 lncRNAs and 16 coding genes. As the results of microarray analysis showed that lncRNA M26317 was upregulated in gastric cancer tissues we examined the expression level of M26317 in 103 gastric cancer tissues by RT-PCR and 436 gastric cancer tissues by in situ hybridization. Our data confirmed that M26317 was upregulated in gastric cancer tissues. Moreover, expression of M26317 correlated with patient age, size of tumor, Lauren's classification, depth of invasion, lymph node and distant metastasis, TNM stage and poor prognosis (P<.05), but was not associated with gender, location of tumor, and differentiation (P>.05). M26317 may have an important role in malignant transformation and metastasis of gastric cancer. Copyright © 2018. Published by Elsevier Inc.

  6. ELISA-BASE: An Integrated Bioinformatics Tool for Analyzing and Tracking ELISA Microarray Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Amanda M.; Collett, James L.; Seurynck-Servoss, Shannon L.

    ELISA-BASE is an open-source database for capturing, organizing and analyzing protein enzyme-linked immunosorbent assay (ELISA) microarray data. ELISA-BASE is an extension of the BioArray Soft-ware Environment (BASE) database system, which was developed for DNA microarrays. In order to make BASE suitable for protein microarray experiments, we developed several plugins for importing and analyzing quantitative ELISA microarray data. Most notably, our Protein Microarray Analysis Tool (ProMAT) for processing quantita-tive ELISA data is now available as a plugin to the database.

  7. Accurate Magnetometer/Gyroscope Attitudes Using a Filter with Correlated Sensor Noise

    NASA Technical Reports Server (NTRS)

    Sedlak, J.; Hashmall, J.

    1997-01-01

    Magnetometers and gyroscopes have been shown to provide very accurate attitudes for a variety of spacecraft. These results have been obtained, however, using a batch-least-squares algorithm and long periods of data. For use in onboard applications, attitudes are best determined using sequential estimators such as the Kalman filter. When a filter is used to determine attitudes using magnetometer and gyroscope data for input, the resulting accuracy is limited by both the sensor accuracies and errors inherent in the Earth magnetic field model. The Kalman filter accounts for the random component by modeling the magnetometer and gyroscope errors as white noise processes. However, even when these tuning parameters are physically realistic, the rate biases (included in the state vector) have been found to show systematic oscillations. These are attributed to the field model errors. If the gyroscope noise is sufficiently small, the tuned filter 'memory' will be long compared to the orbital period. In this case, the variations in the rate bias induced by field model errors are substantially reduced. Mistuning the filter to have a short memory time leads to strongly oscillating rate biases and increased attitude errors. To reduce the effect of the magnetic field model errors, these errors are estimated within the filter and used to correct the reference model. An exponentially-correlated noise model is used to represent the filter estimate of the systematic error. Results from several test cases using in-flight data from the Compton Gamma Ray Observatory are presented. These tests emphasize magnetometer errors, but the method is generally applicable to any sensor subject to a combination of random and systematic noise.

  8. New perspectives in face correlation: discrimination enhancement in face recognition based on iterative algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Alfalou, A.; Brosseau, C.

    2016-04-01

    Here, we report a brief review on the recent developments of correlation algorithms. Several implementation schemes and specific applications proposed in recent years are also given to illustrate powerful applications of these methods. Following a discussion and comparison of the implementation of these schemes, we believe that all-numerical implementation is the most practical choice for application of the correlation method because the advantages of optical processing cannot compensate the technical and/or financial cost needed for an optical implementation platform. We also present a simple iterative algorithm to optimize the training images of composite correlation filters. By making use of three or four iterations, the peak-to-correlation energy (PCE) value of correlation plane can be significantly enhanced. A simulation test using the Pointing Head Pose Image Database (PHPID) illustrates the effectiveness of this statement. Our method can be applied in many composite filters based on linear composition of training images as an optimization means.

  9. Thermodynamically optimal whole-genome tiling microarray design and validation.

    PubMed

    Cho, Hyejin; Chou, Hui-Hsien

    2016-06-13

    Microarray is an efficient apparatus to interrogate the whole transcriptome of species. Microarray can be designed according to annotated gene sets, but the resulted microarrays cannot be used to identify novel transcripts and this design method is not applicable to unannotated species. Alternatively, a whole-genome tiling microarray can be designed using only genomic sequences without gene annotations, and it can be used to detect novel RNA transcripts as well as known genes. The difficulty with tiling microarray design lies in the tradeoff between probe-specificity and coverage of the genome. Sequence comparison methods based on BLAST or similar software are commonly employed in microarray design, but they cannot precisely determine the subtle thermodynamic competition between probe targets and partially matched probe nontargets during hybridizations. Using the whole-genome thermodynamic analysis software PICKY to design tiling microarrays, we can achieve maximum whole-genome coverage allowable under the thermodynamic constraints of each target genome. The resulted tiling microarrays are thermodynamically optimal in the sense that all selected probes share the same melting temperature separation range between their targets and closest nontargets, and no additional probes can be added without violating the specificity of the microarray to the target genome. This new design method was used to create two whole-genome tiling microarrays for Escherichia coli MG1655 and Agrobacterium tumefaciens C58 and the experiment results validated the design.

  10. Identifying Functional Mechanisms of Gene and Protein Regulatory Networks in Response to a Broader Range of Environmental Stresses

    PubMed Central

    Li, Cheng-Wei; Chen, Bor-Sen

    2010-01-01

    Cellular responses to sudden environmental stresses or physiological changes provide living organisms with the opportunity for final survival and further development. Therefore, it is an important topic to understand protective mechanisms against environmental stresses from the viewpoint of gene and protein networks. We propose two coupled nonlinear stochastic dynamic models to reconstruct stress-activated gene and protein regulatory networks via microarray data in response to environmental stresses. According to the reconstructed gene/protein networks, some possible mutual interactions, feedforward and feedback loops are found for accelerating response and filtering noises in these signaling pathways. A bow-tie core network is also identified to coordinate mutual interactions and feedforward loops, feedback inhibitions, feedback activations, and cross talks to cope efficiently with a broader range of environmental stresses with limited proteins and pathways. PMID:20454442

  11. Chemical patterning on preformed porous silicon photonic crystals: towards multiplex detection of protease activity at precise positions†Electronic supplementary information (ESI) available: SEM images, XPS result and more optical reflectivity data. See DOI: 10.1039/c4tb00281dClick here for additional data file.

    PubMed

    Zhu, Ying; Soeriyadi, Alexander H; Parker, Stephen G; Reece, Peter J; Gooding, J Justin

    2014-06-21

    Porous silicon (PSi) rugate filters modified with alkyne-terminated monolayers were chemically patterned using a combination of photolithography of photoresist and click chemistry. Two chemical functionalities were obtained by conjugating, via click reactions, ethylene glycol moieties containing two different terminal groups to discrete areas towards the exterior of a PSi rugate filter. The patterning of biological species to the functionalized surface was demonstrated through the conjugation of fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA). Fluorescence microscopy showed selective positioning of FITC-BSA at discretely functionalized areas. Meanwhile, the optical information from precisely defined positions on the patterned surface was monitored by optical reflectivity measurements. The optical measurements revealed successful step-wise chemical functionalization followed by immobilization of gelatin. Multiplex detection of protease activity from different array elements on the patterned surface was demonstrated by monitoring the blue shifts in the reflectivity spectra resulted from the digestion of gelatin by subtilisin. Precise information from both individual elements and average population was acquired. This technique is important for the development of PSi into a microarray platform for highly parallel biosensing applications, especially for cell-based assays.

  12. Portable, stand-off spectral imaging camera for detection of effluents and residues

    NASA Astrophysics Data System (ADS)

    Goldstein, Neil; St. Peter, Benjamin; Grot, Jonathan; Kogan, Michael; Fox, Marsha; Vujkovic-Cvijin, Pajo; Penny, Ryan; Cline, Jason

    2015-06-01

    A new, compact and portable spectral imaging camera, employing a MEMs-based encoded imaging approach, has been built and demonstrated for detection of hazardous contaminants including gaseous effluents and solid-liquid residues on surfaces. The camera is called the Thermal infrared Reconfigurable Analysis Camera for Effluents and Residues (TRACER). TRACER operates in the long wave infrared and has the potential to detect a wide variety of materials with characteristic spectral signatures in that region. The 30 lb. camera is tripod mounted and battery powered. A touch screen control panel provides a simple user interface for most operations. The MEMS spatial light modulator is a Texas Instruments Digital Microarray Array with custom electronics and firmware control. Simultaneous 1D-spatial and 1Dspectral dimensions are collected, with the second spatial dimension obtained by scanning the internal spectrometer slit. The sensor can be configured to collect data in several modes including full hyperspectral imagery using Hadamard multiplexing, panchromatic thermal imagery, and chemical-specific contrast imagery, switched with simple user commands. Matched filters and other analog filters can be generated internally on-the-fly and applied in hardware, substantially reducing detection time and improving SNR over HSI software processing, while reducing storage requirements. Results of preliminary instrument evaluation and measurements of flame exhaust are presented.

  13. Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum)

    PubMed Central

    Shivaraj, S. M.; Deshmukh, Rupesh K.; Rai, Rhitu; Bélanger, Richard; Agrawal, Pawan K.; Dash, Prasanta K.

    2017-01-01

    Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax. PMID:28447607

  14. Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum).

    PubMed

    Shivaraj, S M; Deshmukh, Rupesh K; Rai, Rhitu; Bélanger, Richard; Agrawal, Pawan K; Dash, Prasanta K

    2017-04-27

    Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.

  15. Fine structure of spectral properties for random correlation matrices: An application to financial markets

    NASA Astrophysics Data System (ADS)

    Livan, Giacomo; Alfarano, Simone; Scalas, Enrico

    2011-07-01

    We study some properties of eigenvalue spectra of financial correlation matrices. In particular, we investigate the nature of the large eigenvalue bulks which are observed empirically, and which have often been regarded as a consequence of the supposedly large amount of noise contained in financial data. We challenge this common knowledge by acting on the empirical correlation matrices of two data sets with a filtering procedure which highlights some of the cluster structure they contain, and we analyze the consequences of such filtering on eigenvalue spectra. We show that empirically observed eigenvalue bulks emerge as superpositions of smaller structures, which in turn emerge as a consequence of cross correlations between stocks. We interpret and corroborate these findings in terms of factor models, and we compare empirical spectra to those predicted by random matrix theory for such models.

  16. Design and fabrication of SiO2/TiO2 and MgO/TiO2 based high selective optical filters for diffuse reflectance and fluorescence signals extraction

    PubMed Central

    Pimenta, S.; Cardoso, S.; Miranda, A.; De Beule, P.; Castanheira, E.M.S.; Minas, G.

    2015-01-01

    This paper presents the design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 based high selective narrow bandpass optical filters. Their performance to extract diffuse reflectance and fluorescence signals from gastrointestinal tissue phantoms was successfully evaluated. The obtained results prove their feasibility to correctly extract those spectroscopic signals, through a Spearman’s rank correlation test (Spearman’s correlation coefficient higher than 0.981) performed between the original spectra and the ones obtained using those 16 fabricated optical filters. These results are an important step for the implementation of a miniaturized, low-cost and minimal invasive microsystem that could help in the detection of gastrointestinal dysplasia. PMID:26309769

  17. Automated Processing of Two-Dimensional Correlation Spectra

    PubMed

    Sengstschmid; Sterk; Freeman

    1998-04-01

    An automated scheme is described which locates the centers of cross peaks in two-dimensional correlation spectra, even under conditions of severe overlap. Double-quantum-filtered correlation (DQ-COSY) spectra have been investigated, but the method is also applicable to TOCSY and NOESY spectra. The search criterion is the intrinsic symmetry (or antisymmetry) of cross-peak multiplets. An initial global search provides the preliminary information to build up a two-dimensional "chemical shift grid." All genuine cross peaks must be centered at intersections of this grid, a fact that reduces the extent of the subsequent search program enormously. The program recognizes cross peaks by examining the symmetry of signals in a test zone centered at a grid intersection. This "symmetry filter" employs a "lowest value algorithm" to discriminate against overlapping responses from adjacent multiplets. A progressive multiplet subtraction scheme provides further suppression of overlap effects. The processed two-dimensional correlation spectrum represents cross peaks as points at the chemical shift coordinates, with some indication of their relative intensities. Alternatively, the information is presented in the form of a correlation table. The authenticity of a given cross peak is judged by a set of "confidence criteria" expressed as numerical parameters. Experimental results are presented for the 400-MHz double-quantum-filtered COSY spectrum of 4-androsten-3,17-dione, a case where there is severe overlap. Copyright 1998 Academic Press.

  18. Improved word recognition for observers with age-related maculopathies using compensation filters

    NASA Technical Reports Server (NTRS)

    Lawton, Teri B.

    1988-01-01

    A method for improving word recognition for people with age-related maculopathies, which cause a loss of central vision, is discussed. It is found that the use of individualized compensation filters based on an person's normalized contrast sensitivity function can improve word recognition for people with age-related maculopathies. It is shown that 27-70 pct more magnification is needed for unfiltered words compared to filtered words. The improvement in word recognition is positively correlated with the severity of vision loss.

  19. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, Apostolos C.

    1983-01-01

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  20. Bacterial communities in commercial aircraft high-efficiency particulate air (HEPA) filters assessed by PhyloChip analysis.

    PubMed

    Korves, T M; Piceno, Y M; Tom, L M; Desantis, T Z; Jones, B W; Andersen, G L; Hwang, G M

    2013-02-01

    Air travel can rapidly transport infectious diseases globally. To facilitate the design of biosensors for infectious organisms in commercial aircraft, we characterized bacterial diversity in aircraft air. Samples from 61 aircraft high-efficiency particulate air (HEPA) filters were analyzed with a custom microarray of 16S rRNA gene sequences (PhyloChip), representing bacterial lineages. A total of 606 subfamilies from 41 phyla were detected. The most abundant bacterial subfamilies included bacteria associated with humans, especially skin, gastrointestinal and respiratory tracts, and with water and soil habitats. Operational taxonomic units that contain important human pathogens as well as their close, more benign relatives were detected. When compared to 43 samples of urban outdoor air, aircraft samples differed in composition, with higher relative abundance of Firmicutes and Gammaproteobacteria lineages in aircraft samples, and higher relative abundance of Actinobacteria and Betaproteobacteria lineages in outdoor air samples. In addition, aircraft and outdoor air samples differed in the incidence of taxa containing human pathogens. Overall, these results demonstrate that HEPA filter samples can be used to deeply characterize bacterial diversity in aircraft air and suggest that the presence of close relatives of certain pathogens must be taken into account in probe design for aircraft biosensors. A biosensor that could be deployed in commercial aircraft would be required to function at an extremely low false alarm rate, making an understanding of microbial background important. This study reveals a diverse bacterial background present on aircraft, including bacteria closely related to pathogens of public health concern. Furthermore, this aircraft background is different from outdoor air, suggesting different probes may be needed to detect airborne contaminants to achieve minimal false alarm rates. This study also indicates that aircraft HEPA filters could be used with other molecular techniques to further characterize background bacteria and in investigations in the wake of a disease outbreak. © 2012 John Wiley & Sons A/S.

  1. cDNA microarray analysis of esophageal cancer: discoveries and prospects.

    PubMed

    Shimada, Yutaka; Sato, Fumiaki; Shimizu, Kazuharu; Tsujimoto, Gozoh; Tsukada, Kazuhiro

    2009-07-01

    Recent progress in molecular biology has revealed many genetic and epigenetic alterations that are involved in the development and progression of esophageal cancer. Microarray analysis has also revealed several genetic networks that are involved in esophageal cancer. However, clinical application of microarray techniques and use of microarray data have not yet occurred. In this review, we focus on the recent developments and problems with microarray analysis of esophageal cancer.

  2. Manufacturing of microarrays.

    PubMed

    Petersen, David W; Kawasaki, Ernest S

    2007-01-01

    DNA microarray technology has become a powerful tool in the arsenal of the molecular biologist. Capitalizing on high precision robotics and the wealth of DNA sequences annotated from the genomes of a large number of organisms, the manufacture of microarrays is now possible for the average academic laboratory with the funds and motivation. Microarray production requires attention to both biological and physical resources, including DNA libraries, robotics, and qualified personnel. While the fabrication of microarrays is a very labor-intensive process, production of quality microarrays individually tailored on a project-by-project basis will help researchers shed light on future scientific questions.

  3. The Longhorn Array Database (LAD): An Open-Source, MIAME compliant implementation of the Stanford Microarray Database (SMD)

    PubMed Central

    Killion, Patrick J; Sherlock, Gavin; Iyer, Vishwanath R

    2003-01-01

    Background The power of microarray analysis can be realized only if data is systematically archived and linked to biological annotations as well as analysis algorithms. Description The Longhorn Array Database (LAD) is a MIAME compliant microarray database that operates on PostgreSQL and Linux. It is a fully open source version of the Stanford Microarray Database (SMD), one of the largest microarray databases. LAD is available at Conclusions Our development of LAD provides a simple, free, open, reliable and proven solution for storage and analysis of two-color microarray data. PMID:12930545

  4. Real-Time Robust Tracking for Motion Blur and Fast Motion via Correlation Filters

    PubMed Central

    Xu, Lingyun; Luo, Haibo; Hui, Bin; Chang, Zheng

    2016-01-01

    Visual tracking has extensive applications in intelligent monitoring and guidance systems. Among state-of-the-art tracking algorithms, Correlation Filter methods perform favorably in robustness, accuracy and speed. However, it also has shortcomings when dealing with pervasive target scale variation, motion blur and fast motion. In this paper we proposed a new real-time robust scheme based on Kernelized Correlation Filter (KCF) to significantly improve performance on motion blur and fast motion. By fusing KCF and STC trackers, our algorithm also solve the estimation of scale variation in many scenarios. We theoretically analyze the problem for CFs towards motions and utilize the point sharpness function of the target patch to evaluate the motion state of target. Then we set up an efficient scheme to handle the motion and scale variation without much time consuming. Our algorithm preserves the properties of KCF besides the ability to handle special scenarios. In the end extensive experimental results on benchmark of VOT datasets show our algorithm performs advantageously competed with the top-rank trackers. PMID:27618046

  5. Eye Gaze Tracking using Correlation Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakaya, Mahmut; Boehnen, Chris Bensing; Bolme, David S

    In this paper, we studied a method for eye gaze tracking that provide gaze estimation from a standard webcam with a zoom lens and reduce the setup and calibration requirements for new users. Specifically, we have developed a gaze estimation method based on the relative locations of points on the top of the eyelid and eye corners. Gaze estimation method in this paper is based on the distances between top point of the eyelid and eye corner detected by the correlation filters. Advanced correlation filters were found to provide facial landmark detections that are accurate enough to determine the subjectsmore » gaze direction up to angle of approximately 4-5 degrees although calibration errors often produce a larger overall shift in the estimates. This is approximately a circle of diameter 2 inches for a screen that is arm s length from the subject. At this accuracy it is possible to figure out what regions of text or images the subject is looking but it falls short of being able to determine which word the subject has looked at.« less

  6. Combating speckle in SAR images - Vector filtering and sequential classification based on a multiplicative noise model

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Allebach, Jan P.

    1990-01-01

    An adaptive vector linear minimum mean-squared error (LMMSE) filter for multichannel images with multiplicative noise is presented. It is shown theoretically that the mean-squared error in the filter output is reduced by making use of the correlation between image bands. The vector and conventional scalar LMMSE filters are applied to a three-band SIR-B SAR, and their performance is compared. Based on a mutliplicative noise model, the per-pel maximum likelihood classifier was derived. The authors extend this to the design of sequential and robust classifiers. These classifiers are also applied to the three-band SIR-B SAR image.

  7. Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing

    PubMed Central

    Balmaseda, Angel; Harris, Eva; DeRisi, Joseph L.

    2012-01-01

    Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness. PMID:22347512

  8. Accurate B-spline-based 3-D interpolation scheme for digital volume correlation

    NASA Astrophysics Data System (ADS)

    Ren, Maodong; Liang, Jin; Wei, Bin

    2016-12-01

    An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.

  9. Extracting the regional common-mode component of GPS station position time series from dense continuous network

    NASA Astrophysics Data System (ADS)

    Tian, Yunfeng; Shen, Zheng-Kang

    2016-02-01

    We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common-mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long-term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root-mean-square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (>13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long-range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation-based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics.

  10. The Ensemble Kalman Filter for Groundwater Plume Characterization: A Case Study.

    PubMed

    Ross, James L; Andersen, Peter F

    2018-04-17

    The Kalman filter is an efficient data assimilation tool to refine an estimate of a state variable using measured data and the variable's correlations in space and/or time. The ensemble Kalman filter (EnKF) (Evensen 2004, 2009) is a Kalman filter variant that employs Monte Carlo analysis to define the correlations that help to refine the updated state. While use of EnKF in hydrology is somewhat limited, it has been successfully applied in other fields of engineering (e.g., oil reservoir modeling, weather forecasting). Here, EnKF is used to refine a simulated groundwater tetrachloroethylene (TCE) plume that underlies the Tooele Army Depot-North (TEAD-N) in Utah, based on observations of TCE in the aquifer. The resulting EnKF-based assimilated plume is simulated forward in time to predict future plume migration. The correlations that underpin EnKF updating implicitly contain information about how the plume developed over time under the influence of complex site hydrology and variable source history, as they are predicated on multiple realizations of a well-calibrated numerical groundwater flow and transport model. The EnKF methodology is compared to an ordinary kriging-based assimilation method with respect to the accurate representation of plume concentrations in order to determine the relative efficacy of EnKF for water quality data assimilation. © 2018, National Ground Water Association.

  11. Measurements of dimethyl sulfide and SO2 during GTE/CITE 3

    NASA Technical Reports Server (NTRS)

    Ferek, Ronald J.; Hegg, Dean A.

    1993-01-01

    As part of NASA's Tropospheric Experiment Chemical Instrumentation Test and Evaluation (GTE/CITE 3) Sulfur Gas Intercomparison, we conducted measurements of dimethyl sulfide (DMS) and SO2 using two techniques well suited for sampling from an aircraft due to their simplicity of design. DMS was collected by preconcentration on gold wire preceded by a KOH-impregnated filter oxidant scrubber, and analyzed by gas chromatography with flame photometric detection. SO2 was collected on K2CO3/glycerol-impregnated filters and analyzed by ion chromatography. In blind tests, both techniques produced excellent agreement with National Institutes of Standards and Technology (NIST) standards. For field measurements, the DMS technique produced excellent correlation with the mean of the six different techniques intercompared. For SO2, the five techniques intercompared were rather poorly correlated, but correlations between the three techniques which passed NIST standards tests were somewhat better. Our SO2 filter measurements exhibited rather large uncertainties due to higher than normal variabiltiy of the filter blanks, which we believe was caused by extended storage in the field. In measurements conducted off the coast of Natal, Brazil, a diurnal afternoon minimum in DMS concentrations accompanied by a corresponding maximum in SO2 concentrations was observed. However, due to rather large uncertainties in the SO2 measurements, any conclusions about the SO2 trend must by considered tentative.

  12. Signal averaging technique for noninvasive recording of late potentials in patients with coronary artery disease

    NASA Technical Reports Server (NTRS)

    Abboud, S.; Blatt, C. M.; Lown, B.; Graboys, T. B.; Sadeh, D.; Cohen, R. J.

    1987-01-01

    An advanced non invasive signal averaging technique was used to detect late potentials in two groups of patients: Group A (24 patients) with coronary artery disease (CAD) and without sustained ventricular tachycardia (VT) and Group B (8 patients) with CAD and sustained VT. Recorded analog data were digitized and aligned using a cross correlation function with fast Fourier transform schema, averaged and band pass filtered between 60 and 200 Hz with a non-recursive digital filter. Averaged filtered waveforms were analyzed by computer program for 3 parameters: (1) filtered QRS (fQRS) duration (2) interval between the peak of the R wave peak and the end of fQRS (R-LP) (3) RMS value of last 40 msec of fQRS (RMS). Significant change was found between Groups A and B in fQRS (101 -/+ 13 msec vs 123 -/+ 15 msec; p < .0005) and in R-LP vs 52 -/+ 11 msec vs 71-/+18 msec, p <.002). We conclude that (1) the use of a cross correlation triggering method and non-recursive digital filter enables a reliable recording of late potentials from the body surface; (2) fQRS and R-LP durations are sensitive indicators of CAD patients susceptible to VT.

  13. Innovative Monitoring of Atmospheric Gaseous Hydrogen Fluoride

    PubMed Central

    Bonari, Alessandro; Pompilio, Ilenia; Monti, Alessandro; Arcangeli, Giulio

    2016-01-01

    Hydrogen fluoride (HF) is a basic raw material for a wide variety of industrial products, with a worldwide production capacity of more than three million metric tonnes. A novel method for determining particulate fluoride and gaseous hydrogen fluoride in air is presented herewith. Air was sampled using miniaturised 13 mm Swinnex two-stage filter holders in a medium-flow pumping system and through the absorption of particulate fluoride and HF vapours on cellulose ester filters uncoated or impregnated with sodium carbonate. Furthermore, filter desorption from the holders and the extraction of the pentafluorobenzyl ester derivative based on solid-phase microextraction were performed using an innovative robotic system installed on an xyz autosampler on-line with gas chromatography (GC)/mass spectrometry (MS). After generating atmospheres of a known concentration of gaseous HF, we evaluated the agreement between the results of our sampling method and those of the conventional preassembled 37 mm cassette (±8.10%; correlation coefficient: 0.90). In addition, precision (relative standard deviation for n = 10, 4.3%), sensitivity (0.2 μg/filter), and linearity (2.0–4000 μg/filter; correlation coefficient: 0.9913) were also evaluated. This procedure combines the efficiency of GC/MS systems with the high throughput (96 samples/day) and the quantitative accuracy of pentafluorobenzyl bromide on-sample derivatisation. PMID:27829835

  14. Using an Extended Kalman Filter Learning Algorithm for Feed-Forward Neural Networks to Describe Tracer Correlations

    NASA Technical Reports Server (NTRS)

    Lary, David J.; Mussa, Yussuf

    2004-01-01

    In this study a new extended Kalman filter (EKF) learning algorithm for feed-forward neural networks (FFN) is used. With the EKF approach, the training of the FFN can be seen as state estimation for a non-linear stationary process. The EKF method gives excellent convergence performances provided that there is enough computer core memory and that the machine precision is high. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). The neural network was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9997. The neural network Fortran code used is available for download.

  15. HOXB2, an adverse prognostic indicator for stage I lung adenocarcinomas, promotes invasion by transcriptional regulation of metastasis-related genes in HOP-62 non-small cell lung cancer cells.

    PubMed

    Inamura, Kentaro; Togashi, Yuki; Ninomiya, Hironori; Shimoji, Takashi; Noda, Tetsuo; Ishikawa, Yuichi

    2008-01-01

    Previously, using microarray and real-time RT-PCR analysis, we established that HOXB2 is an adverse prognostic indicator for Stage I lung adenocarcinomas. HOXB2 is one of the homeobox master development-controlling genes regulating morphogenesis and cell differentiation. The molecular functions of HOXB2 were analyzed with a small interfering RNA (siRNA) approach in HOP-62 human non-small cell lung cancer (NSCLC) cells featuring high HOXB2 expression. Matrigel invasion assays and microarray gene expression analysis were compared between the HOXB2-siRNA cells and the control cells. The Matrigel invasion assays showed attenuation of HOXB2 expression by siRNA to result in a significant decrease of invasiveness compared to the control cells (p = 0.0013, paired t-test). On microarray gene expression analysis, up-regulation of many metastasis-related genes and others correlating with HOXB2 expression was observed in the control case. With attenuation of HOXB2 expression, downregulation was noted for laminins alpha 4 and 5, involved in enriched signaling, and for Mac-2BP (Mac-2 binding protein) and integrin beta 4 amongst the genes having an enriched glycoprotein ontology. HOXB2 promotes invasion of lung cancer cells through the regulation of metastasis-related genes.

  16. Mapping of oxidative stress responses of human tumor cells following photodynamic therapy using hexaminolevulinate

    PubMed Central

    Cekaite, Lina; Peng, Qian; Reiner, Andrew; Shahzidi, Susan; Tveito, Siri; Furre, Ingegerd E; Hovig, Eivind

    2007-01-01

    Background Photodynamic therapy (PDT) involves systemic or topical administration of a lesion-localizing photosensitizer or its precursor, followed by irradiation of visible light to cause singlet oxygen-induced damage to the affected tissue. A number of mechanisms seem to be involved in the protective responses to PDT, including activation of transcription factors, heat shock proteins, antioxidant enzymes and apoptotic pathways. Results In this study, we address the effects of a destructive/lethal hexaminolevulinate (HAL) mediated PDT dose on the transcriptome by using transcriptional exon evidence oligo microarrays. Here, we confirm deviations in the steady state expression levels of previously identified early defence response genes and extend this to include unreported PDT inducible gene groups, most notably the metallothioneins and histones. HAL-PDT mediated stress also altered expression of genes encoded by mitochondrial DNA (mtDNA). Further, we report PDT stress induced alternative splicing. Specifically, the ATF3 alternative isoform (deltaZip2) was up-regulated, while the full-length variant was not changed by the treatment. Results were independently verified by two different technological microarray platforms. Good microarray, RT-PCR and Western immunoblotting correlation for selected genes support these findings. Conclusion Here, we report new insights into how destructive/lethal PDT alters the transcriptome not only at the transcriptional level but also at post-transcriptional level via alternative splicing. PMID:17692132

  17. EzArray: A web-based highly automated Affymetrix expression array data management and analysis system

    PubMed Central

    Zhu, Yuerong; Zhu, Yuelin; Xu, Wei

    2008-01-01

    Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from . PMID:18218103

  18. Microbial community analysis of an Alabama coastal salt marsh impacted by the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Beazley, M. J.; Martinez, R.; Rajan, S.; Powell, J.; Piceno, Y.; Tom, L.; Andersen, G. L.; Hazen, T. C.; Van Nostrand, J. D.; Zhou, J.; Mortazavi, B.; Sobecky, P. A.

    2011-12-01

    Microbial community responses of an Alabama coastal salt marsh environment to the Deepwater Horizon oil spill were studied by 16S rRNA (PhyloChip) and functional gene (GeoChip) microarray-based analysis. Oil and tar balls associated with the oil spill arrived along the Alabama coast in June 2010. Marsh and inlet sediment samples collected in June, July, and September 2010 from a salt marsh ecosystem at Point Aux Pines Alabama were analyzed to determine if bacterial community structure changed as a result of oil perturbation. Sediment total petroleum hydrocarbon (TPH) concentrations ranged from below detection to 189 mg kg-1 and were randomly dispersed throughout the salt marsh sediments. Total DNA extracted from sediment and particulates were used for PhyloChip and GeoChip hybridization. A total of 4000 to 8000 operational taxonomic units (OTUs) were detected in marsh and inlet samples. Distinctive changes in the number of detectable OTUs were observed between June, July, and September 2010. Surficial inlet sediments demonstrated a significant increase in the total number of OTUs between June and September that correlated with TPH concentrations. The most significant increases in bacterial abundance were observed in the phyla Actinobacteria, Firmicutes, Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. Bacterial richness in marsh sediments also correlated with TPH concentrations with significant changes primarily in Acidobacteria, Actinobacteria, Firmicutes, Fusobacteria, Nitrospirae, and Proteobacteria. GeoChip microarray analysis detected 5000 to 8300 functional genes in marsh and inlet samples. Surficial inlet sediments demonstrated distinctive increases in the number of detectable genes and gene signal intensities in July samples compared to June. Signal intensities increased (> 1.5-fold) in genes associated with petroleum degradation. Genes related to metal resistance, stress, and carbon cycling also demonstrated increases in oiled sediments. This study demonstrates the value of applying phylogenetic and functional gene microarray technology to characterize the extensive microbial diversity of marsh environments. Moreover, this technology provides significant insight into bacterial community responses to anthropogenic oil events.

  19. Hypermethylation of testis derived transcript gene promoter significantly correlates with worse outcomes in glioblastoma patients.

    PubMed

    Wang, Li-jia; Bai, Yu; Bao, Zhao-shi; Chen, Yan; Yan, Zhuo-hong; Zhang, Wei; Zhang, Quan-geng

    2013-01-01

    Glioblastoma is the most common and lethal cancer of the central nervous system. Global genomic hypomethylation and some CpG island hypermethylation are common hallmarks of these malignancies, but the effects of these methylation abnormalities on glioblastomas are still largely unclear. Methylation of the O6-methylguanine-DNA methyltransferase promoter is currently an only confirmed molecular predictor of better outcome in temozolomide treatment. To better understand the relationship between CpG island methylation status and patient outcome, this study launched DNA methylation profiles for thirty-three primary glioblastomas (pGBMs) and nine secondary glioblastomas (sGBMs) with the expectation to identify valuable prognostic and therapeutic targets. We evaluated the methylation status of testis derived transcript (TES) gene promoter by microarray analysis of glioblastomas and the prognostic value for TES methylation in the clinical outcome of pGBM patients. Significance analysis of microarrays was used for genes significantly differently methylated between 33 pGBM and nine sGBM. Survival curves were calculated according to the Kaplan-Meier method, and differences between curves were assessed using the log-rank test. Then, we treated glioblastoma cell lines (U87 and U251) with 5-aza-2-deoxycytidines (5-aza-dC) and detected cell biological behaviors. Microarray data analysis identified TES promoter was hypermethylated in pGBMs compared with sGBMs (P < 0.05). Survival curves from the Kaplan-Meier method analysis revealed that the patients with TES hypermethylation had a short overall survival (P < 0.05). This abnormality is also confirmed in glioblastoma cell lines (U87 and U251). Treating these cells with 5-aza-dC released TES protein expression resulted in significant inhibition of cell growth (P = 0.013). Hypermethylation of TES gene promoter highly correlated with worse outcome in pGBM patients. TES might represent a valuable prognostic marker for glioblastoma.

  20. A Java-based tool for the design of classification microarrays.

    PubMed

    Meng, Da; Broschat, Shira L; Call, Douglas R

    2008-08-04

    Classification microarrays are used for purposes such as identifying strains of bacteria and determining genetic relationships to understand the epidemiology of an infectious disease. For these cases, mixed microarrays, which are composed of DNA from more than one organism, are more effective than conventional microarrays composed of DNA from a single organism. Selection of probes is a key factor in designing successful mixed microarrays because redundant sequences are inefficient and limited representation of diversity can restrict application of the microarray. We have developed a Java-based software tool, called PLASMID, for use in selecting the minimum set of probe sequences needed to classify different groups of plasmids or bacteria. The software program was successfully applied to several different sets of data. The utility of PLASMID was illustrated using existing mixed-plasmid microarray data as well as data from a virtual mixed-genome microarray constructed from different strains of Streptococcus. Moreover, use of data from expression microarray experiments demonstrated the generality of PLASMID. In this paper we describe a new software tool for selecting a set of probes for a classification microarray. While the tool was developed for the design of mixed microarrays-and mixed-plasmid microarrays in particular-it can also be used to design expression arrays. The user can choose from several clustering methods (including hierarchical, non-hierarchical, and a model-based genetic algorithm), several probe ranking methods, and several different display methods. A novel approach is used for probe redundancy reduction, and probe selection is accomplished via stepwise discriminant analysis. Data can be entered in different formats (including Excel and comma-delimited text), and dendrogram, heat map, and scatter plot images can be saved in several different formats (including jpeg and tiff). Weights generated using stepwise discriminant analysis can be stored for analysis of subsequent experimental data. Additionally, PLASMID can be used to construct virtual microarrays with genomes from public databases, which can then be used to identify an optimal set of probes.

  1. THE ABRF MARG MICROARRAY SURVEY 2005: TAKING THE PULSE ON THE MICROARRAY FIELD

    EPA Science Inventory

    Over the past several years microarray technology has evolved into a critical component of any discovery based program. Since 1999, the Association of Biomolecular Resource Facilities (ABRF) Microarray Research Group (MARG) has conducted biennial surveys designed to generate a pr...

  2. Development of a Digital Microarray with Interferometric Reflectance Imaging

    NASA Astrophysics Data System (ADS)

    Sevenler, Derin

    This dissertation describes a new type of molecular assay for nucleic acids and proteins. We call this technique a digital microarray since it is conceptually similar to conventional fluorescence microarrays, yet it performs enumerative ('digital') counting of the number captured molecules. Digital microarrays are approximately 10,000-fold more sensitive than fluorescence microarrays, yet maintain all of the strengths of the platform including low cost and high multiplexing (i.e., many different tests on the same sample simultaneously). Digital microarrays use gold nanorods to label the captured target molecules. Each gold nanorod on the array is individually detected based on its light scattering, with an interferometric microscopy technique called SP-IRIS. Our optimized high-throughput version of SP-IRIS is able to scan a typical array of 500 spots in less than 10 minutes. Digital DNA microarrays may have utility in applications where sequencing is prohibitively expensive or slow. As an example, we describe a digital microarray assay for gene expression markers of bacterial drug resistance.

  3. Implementation of mutual information and bayes theorem for classification microarray data

    NASA Astrophysics Data System (ADS)

    Dwifebri Purbolaksono, Mahendra; Widiastuti, Kurnia C.; Syahrul Mubarok, Mohamad; Adiwijaya; Aminy Ma’ruf, Firda

    2018-03-01

    Microarray Technology is one of technology which able to read the structure of gen. The analysis is important for this technology. It is for deciding which attribute is more important than the others. Microarray technology is able to get cancer information to diagnose a person’s gen. Preparation of microarray data is a huge problem and takes a long time. That is because microarray data contains high number of insignificant and irrelevant attributes. So, it needs a method to reduce the dimension of microarray data without eliminating important information in every attribute. This research uses Mutual Information to reduce dimension. System is built with Machine Learning approach specifically Bayes Theorem. This theorem uses a statistical and probability approach. By combining both methods, it will be powerful for Microarray Data Classification. The experiment results show that system is good to classify Microarray data with highest F1-score using Bayesian Network by 91.06%, and Naïve Bayes by 88.85%.

  4. FORTRAN programs to process Magsat data for lithospheric, external field, and residual core components

    NASA Technical Reports Server (NTRS)

    Alsdorf, Douglas E.; Vonfrese, Ralph R. B.

    1994-01-01

    The FORTRAN programs supplied in this document provide a complete processing package for statistically extracting residual core, external field and lithospheric components in Magsat observations. To process the individual passes: (1) orbits are separated into dawn and dusk local times and by altitude, (2) passes are selected based on the variance of the magnetic field observations after a least-squares fit of the core field is removed from each pass over the study area, and (3) spatially adjacent passes are processed with a Fourier correlation coefficient filter to separate coherent and non-coherent features between neighboring tracks. In the second state of map processing: (1) data from the passes are normalized to a common altitude and gridded into dawn and dusk maps with least squares collocation, (2) dawn and dusk maps are correlated with a Fourier correlation efficient filter to separate coherent and non-coherent features; the coherent features are averaged to produce a total field grid, (3) total field grids from all altitudes are continued to a common altitude, correlation filtered for coherent anomaly features, and subsequently averaged to produce the final total field grid for the study region, and (4) the total field map is differentially reduced to the pole.

  5. Gaussian Process Kalman Filter for Focal Plane Wavefront Correction and Exoplanet Signal Extraction

    NASA Astrophysics Data System (ADS)

    Sun, He; Kasdin, N. Jeremy

    2018-01-01

    Currently, the ultimate limitation of space-based coronagraphy is the ability to subtract the residual PSF after wavefront correction to reveal the planet. Called reference difference imaging (RDI), the technique consists of conducting wavefront control to collect the reference point spread function (PSF) by observing a bright star, and then extracting target planet signals by subtracting a weighted sum of reference PSFs. Unfortunately, this technique is inherently inefficient because it spends a significant fraction of the observing time on the reference star rather than the target star with the planet. Recent progress in model based wavefront estimation suggests an alternative approach. A Kalman filter can be used to estimate the stellar PSF for correction by the wavefront control system while simultaneously estimating the planet signal. Without observing the reference star, the (extended) Kalman filter directly utilizes the wavefront correction data and combines the time series observations and model predictions to estimate the stellar PSF and planet signals. Because wavefront correction is used during the entire observation with no slewing, the system has inherently better stability. In this poster we show our results aimed at further improving our Kalman filter estimation accuracy by including not only temporal correlations but also spatial correlations among neighboring pixels in the images. This technique is known as a Gaussian process Kalman filter (GPKF). We also demonstrate the advantages of using a Kalman filter rather than RDI by simulating a real space exoplanet detection mission.

  6. Optical Absorption Spectra of Nuclear Filters Modified by Deposition of Silver Nano- and Microparticles

    NASA Astrophysics Data System (ADS)

    Smolyanskii, A. S.; Kozlova, N. V.; Zheltova, A. V.; Aksyutina, A. S.; Shvedov, A. S.; Lakeev, S. G.

    2015-07-01

    Light scattering and interference patterns are studied in the optical absorption spectra of nuclear filters based on polyethylene terephthalate fi lms modifi ed by dry aerosol deposition of silver nano- and microparticles. Surface plasmon polaritons and localized plasmons formed by the passage of light through porous silver films are found to have an effect on the diffraction and interference modes. The thickness of silver nano- and microparticle coatings on the surface of the nuclear fi lters was determined from the shift in the interference patterns in the optical absorption spectra of the modified nuclear filters relative to the original nuclear filters. A correlation was found between the estimated coating thickness and the average surface roughness of the nuclear filters modified by layers of silver nano- and microparticles.

  7. A CLT on the SNR of Diagonally Loaded MVDR Filters

    NASA Astrophysics Data System (ADS)

    Rubio, Francisco; Mestre, Xavier; Hachem, Walid

    2012-08-01

    This paper studies the fluctuations of the signal-to-noise ratio (SNR) of minimum variance distorsionless response (MVDR) filters implementing diagonal loading in the estimation of the covariance matrix. Previous results in the signal processing literature are generalized and extended by considering both spatially as well as temporarily correlated samples. Specifically, a central limit theorem (CLT) is established for the fluctuations of the SNR of the diagonally loaded MVDR filter, under both supervised and unsupervised training settings in adaptive filtering applications. Our second-order analysis is based on the Nash-Poincar\\'e inequality and the integration by parts formula for Gaussian functionals, as well as classical tools from statistical asymptotic theory. Numerical evaluations validating the accuracy of the CLT confirm the asymptotic Gaussianity of the fluctuations of the SNR of the MVDR filter.

  8. Increased Expression of ALDH1A1 in Prostate Cancer is Correlated With Tumor Aggressiveness: A Tissue Microarray Study of Iranian Patients.

    PubMed

    Kalantari, Elham; Saadi, Faezeh H; Asgari, Mojgan; Shariftabrizi, Ahmad; Roudi, Raheleh; Madjd, Zahra

    2017-09-01

    Subpopulations of prostate cancer (PCa) cells expressing putative stem cell markers possess the ability to promote tumor growth, maintenance, and progression. This study aimed to evaluate the expression patterns and clinical significance of putative stem cell marker aldehyde dehydrogenase 1 A1 (ALDH1A1) in prostate tumor tissues. ALDH1A1 expression was examined in a well-defined series of prostate tissues, including 105 (68%) samples of PCa, 21 (13%) samples of high-grade prostatic intraepithelial neoplasia, and 31 (19%) samples of benign prostate hyperplasia, which were embedded in tissue microarray blocks. The correlation of ALDH1A1 expression with clinicopathologic parameters was also assessed. There was a significant difference between the expression level of ALDH1A1 in PCa compared with the high-grade prostatic intraepithelial neoplasia and benign prostate hyperplasia samples (P<0.001). PCa cells expressing ALDH1A1 were more often seen in samples with advanced Gleason score (P=0.05) and high serum prostate specific antigen level (P=0.02). In addition, a positive correlation was found between ALDH1A1 expression and primary tumor stage and regional lymph node involvement (P=0.04 and 0.03, respectively). The significant association between ALDH1A1 expressions with Gleason score indicates the potential role of this protein in PCa tumorigenesis and aggressive behavior; therefore, this cancer stem cell marker can be used as a promising candidate for targeted therapy of PCa, especially those with high Gleason score.

  9. Prognostic significance of TRIM24/TIF-1α gene expression in breast cancer.

    PubMed

    Chambon, Monique; Orsetti, Béatrice; Berthe, Marie-Laurence; Bascoul-Mollevi, Caroline; Rodriguez, Carmen; Duong, Vanessa; Gleizes, Michel; Thénot, Sandrine; Bibeau, Frédéric; Theillet, Charles; Cavaillès, Vincent

    2011-04-01

    In this study, we have analyzed the expression of TRIM24/TIF-1α, a negative regulator of various transcription factors (including nuclear receptors and p53) at the genomic, mRNA, and protein levels in human breast tumors. In breast cancer biopsy specimens, TRIM24/TIF-1α mRNA levels (assessed by Real-Time Quantitative PCR or microarray expression profiling) were increased as compared to normal breast tissues. At the genomic level, array comparative genomic hybridization analysis showed that the TRIM24/TIF-1α locus (7q34) exhibited both gains and losses that correlated with mRNA levels. By re-analyzing a series of 238 tumors, high levels of TRIM24/TIF-1α mRNA significantly correlated with various markers of poor prognosis (such as the molecular subtype) and were associated with worse overall survival. By using a rabbit polyclonal antibody for immunochemistry, the TRIM24/TIF-1α protein was detected in nuclei of normal luminal epithelial breast cells, but not in myoepithelial cells. Tissue microarray analysis confirmed that its expression was increased in epithelial cells from normal to breast infiltrating duct carcinoma and correlated with worse overall survival. Altogether, this work is the first study that shows that overexpression of the TRIM24/TIF-1α gene in breast cancer is associated with poor prognosis and worse survival, and it suggests that this transcription coregulator may play a role in mammary carcinogenesis and represent a novel prognostic marker. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Photonic correlator pattern recognition: Application to autonomous docking

    NASA Technical Reports Server (NTRS)

    Sjolander, Gary W.

    1991-01-01

    Optical correlators for real-time automatic pattern recognition applications have recently become feasible due to advances in high speed devices and filter formulation concepts. The devices are discussed in the context of their use in autonomous docking.

  11. Wavelet filtered shifted phase-encoded joint transform correlation for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new wavelet-filtered-based Shifted- phase-encoded Joint Transform Correlation (WPJTC) technique has been proposed for efficient face recognition. The proposed technique uses discrete wavelet decomposition for preprocessing and can effectively accommodate various 3D facial distortions, effects of noise, and illumination variations. After analyzing different forms of wavelet basis functions, an optimal method has been proposed by considering the discrimination capability and processing speed as performance trade-offs. The proposed technique yields better correlation discrimination compared to alternate pattern recognition techniques such as phase-shifted phase-encoded fringe-adjusted joint transform correlator. The performance of the proposed WPJTC has been tested using the Yale facial database and extended Yale facial database under different environments such as illumination variation, noise, and 3D changes in facial expressions. Test results show that the proposed WPJTC yields better performance compared to alternate JTC based face recognition techniques.

  12. Correlation pattern recognition: optimal parameters for quality standards control of chocolate marshmallow candy

    NASA Astrophysics Data System (ADS)

    Flores, Jorge L.; García-Torales, G.; Ponce Ávila, Cristina

    2006-08-01

    This paper describes an in situ image recognition system designed to inspect the quality standards of the chocolate pops during their production. The essence of the recognition system is the localization of the events (i.e., defects) in the input images that affect the quality standards of pops. To this end, processing modules, based on correlation filter, and segmentation of images are employed with the objective of measuring the quality standards. Therefore, we designed the correlation filter and defined a set of features from the correlation plane. The desired values for these parameters are obtained by exploiting information about objects to be rejected in order to find the optimal discrimination capability of the system. Regarding this set of features, the pop can be correctly classified. The efficacy of the system has been tested thoroughly under laboratory conditions using at least 50 images, containing 3 different types of possible defects.

  13. Computationally efficient video restoration for Nyquist sampled imaging sensors combining an affine-motion-based temporal Kalman filter and adaptive Wiener filter.

    PubMed

    Rucci, Michael; Hardie, Russell C; Barnard, Kenneth J

    2014-05-01

    In this paper, we present a computationally efficient video restoration algorithm to address both blur and noise for a Nyquist sampled imaging system. The proposed method utilizes a temporal Kalman filter followed by a correlation-model based spatial adaptive Wiener filter (AWF). The Kalman filter employs an affine background motion model and novel process-noise variance estimate. We also propose and demonstrate a new multidelay temporal Kalman filter designed to more robustly treat local motion. The AWF is a spatial operation that performs deconvolution and adapts to the spatially varying residual noise left in the Kalman filter stage. In image areas where the temporal Kalman filter is able to provide significant noise reduction, the AWF can be aggressive in its deconvolution. In other areas, where less noise reduction is achieved with the Kalman filter, the AWF balances the deconvolution with spatial noise reduction. In this way, the Kalman filter and AWF work together effectively, but without the computational burden of full joint spatiotemporal processing. We also propose a novel hybrid system that combines a temporal Kalman filter and BM3D processing. To illustrate the efficacy of the proposed methods, we test the algorithms on both simulated imagery and video collected with a visible camera.

  14. All-digital GPS receiver mechanization

    NASA Astrophysics Data System (ADS)

    Ould, P. C.; van Wechel, R. J.

    The paper describes the all-digital baseband correlation processing of GPS signals, which is characterized by (1) a potential for improved antijamming performance, (2) fast acquisition by a digital matched filter, (3) reduction of adjustment, (4) increased system reliability, and (5) provision of a basis for the realization of a high degree of VLSI potential for the development of small economical GPS sets. The basic technical approach consists of a broadband fix-tuned RF converter followed by a digitizer; digital-matched-filter acquisition section; phase- and delay-lock tracking via baseband digital correlation; software acquisition logic and loop filter implementation; and all-digital implementation of the feedback numerical controlled oscillators and code generator. Broadband in-phase and quadrature tracking is performed by an arctangent angle detector followed by a phase-unwrapping algorithm that eliminates false locks induced by sampling and data bit transitions, and yields a wide pull-in frequency range approaching one-fourth of the loop iteration frequency.

  15. High-resolution gravity model of Venus

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.; Goldberg, Z. M.

    1992-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  16. Dipolar filtered magic-sandwich-echoes as a tool for probing molecular motions using time domain NMR

    NASA Astrophysics Data System (ADS)

    Filgueiras, Jefferson G.; da Silva, Uilson B.; Paro, Giovanni; d'Eurydice, Marcel N.; Cobo, Márcio F.; deAzevedo, Eduardo R.

    2017-12-01

    We present a simple 1 H NMR approach for characterizing intermediate to fast regime molecular motions using 1 H time-domain NMR at low magnetic field. The method is based on a Goldmann Shen dipolar filter (DF) followed by a Mixed Magic Sandwich Echo (MSE). The dipolar filter suppresses the signals arising from molecular segments presenting sub kHz mobility, so only signals from mobile segments are detected. Thus, the temperature dependence of the signal intensities directly evidences the onset of molecular motions with rates higher than kHz. The DF-MSE signal intensity is described by an analytical function based on the Anderson Weiss theory, from where parameters related to the molecular motion (e.g. correlation times and activation energy) can be estimated when performing experiments as function of the temperature. Furthermore, we propose the use of the Tikhonov regularization for estimating the width of the distribution of correlation times.

  17. A global method for identifying dependences between helio-geophysical and biological series by filtering the precedents (outliers)

    NASA Astrophysics Data System (ADS)

    Ozheredov, V. A.; Breus, T. K.; Gurfinkel, Yu. I.; Matveeva, T. A.

    2014-12-01

    A new approach to finding the dependence between heliophysical and meteorological factors and physiological parameters is considered that is based on the preliminary filtering of precedents (outliers). The sought-after dependence is masked by extraneous influences which cannot be taken into account. Therefore, the typically calculated correlation between the external-influence ( x) and physiology ( y) parameters is extremely low and does not allow their interdependence to be conclusively proved. A robust method for removing the precedents (outliers) from the database is proposed that is based on the intelligent sorting of the polynomial curves of possible dependences y( x), followed by filtering out the precedents which are far away from y( x) and optimizing the coefficient of nonlinear correlation between the regular, i.e., remaining, precedents. This optimization problem is shown to be a search for a maximum in the absence of the concept of gradient and requires the use of a genetic algorithm based on the Gray code. The relationships between the various medical and biological parameters and characteristics of the space and terrestrial weather are obtained and verified using the cross-validation method. It is proven that, by filtering out no more than 20% of precedents, it is possible to obtain a nonlinear correlation coefficient of no less than 0.5. A juxtaposition of the proposed method for filtering precedents (outliers) and the least-square method (LSM) for determining the optimal polynomial using multiple independent tests (Monte Carlo method) of models, which are as close as possible to real dependences, has shown that the LSM determination loses much in comparison to the proposed method.

  18. Silicone wristbands compared with traditional polycyclic aromatic hydrocarbon exposure assessment methods.

    PubMed

    Dixon, Holly M; Scott, Richard P; Holmes, Darrell; Calero, Lehyla; Kincl, Laurel D; Waters, Katrina M; Camann, David E; Calafat, Antonia M; Herbstman, Julie B; Anderson, Kim A

    2018-05-01

    Currently there is a lack of inexpensive, easy-to-use technology to evaluate human exposure to environmental chemicals, including polycyclic aromatic hydrocarbons (PAHs). This is the first study in which silicone wristbands were deployed alongside two traditional personal PAH exposure assessment methods: active air monitoring with samplers (i.e., polyurethane foam (PUF) and filter) housed in backpacks, and biological sampling with urine. We demonstrate that wristbands worn for 48 h in a non-occupational setting recover semivolatile PAHs, and we compare levels of PAHs in wristbands to PAHs in PUFs-filters and to hydroxy-PAH (OH-PAH) biomarkers in urine. We deployed all samplers simultaneously for 48 h on 22 pregnant women in an established urban birth cohort. Each woman provided one spot urine sample at the end of the 48-h period. Wristbands recovered PAHs with similar detection frequencies to PUFs-filters. Of the 62 PAHs tested for in the 22 wristbands, 51 PAHs were detected in at least one wristband. In this cohort of pregnant women, we found more significant correlations between OH-PAHs and PAHs in wristbands than between OH-PAHs and PAHs in PUFs-filters. Only two comparisons between PAHs in PUFs-filters and OH-PAHs correlated significantly (r s  = 0.53 and p = 0.01; r s  = 0.44 and p = 0.04), whereas six comparisons between PAHs in wristbands and OH-PAHs correlated significantly (r s  = 0.44 to 0.76 and p = 0.04 to <0.0001). These results support the utility of wristbands as a biologically relevant exposure assessment tool which can be easily integrated into environmental health studies. Graphical abstract PAHs detected in samples collected from urban pregnant women.

  19. The Microarray Revolution: Perspectives from Educators

    ERIC Educational Resources Information Center

    Brewster, Jay L.; Beason, K. Beth; Eckdahl, Todd T.; Evans, Irene M.

    2004-01-01

    In recent years, microarray analysis has become a key experimental tool, enabling the analysis of genome-wide patterns of gene expression. This review approaches the microarray revolution with a focus upon four topics: 1) the early development of this technology and its application to cancer diagnostics; 2) a primer of microarray research,…

  20. Microarray analysis of glial cells resistant to JCV infection suggests a correlation between viral infection and inflammatory cytokine gene expression

    PubMed Central

    Manley, Kate; Gee, Gretchen V; Simkevich, Carl P; Sedivy, John M; Atwood, Walter J

    2007-01-01

    The human polyomavirus, JCV, has a highly restricted tropism and primarily infects glial cells. The mechanisms restricting infection of cells by JCV are poorly understood. Previously we developed and described a glial cell line that was resistant to JCV infection with the aim of using these cells to identify factors that determine JCV tropism. Gene expression profiling of susceptible and resistant glial cells revealed a direct correlation between the expression of inflammatory cytokines and susceptibility to JCV infection. This correlation manifested at the level of viral gene transcription. Previous studies have suggested a link between an increase in cytokine gene expression in HIV patients and the development of PML and these data support this hypothesis. PMID:17555786

Top