Science.gov

Sample records for filtration water treatment

  1. Water Treatment Technology - Filtration.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  2. Enhanced performance of crumb rubber filtration for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2009-03-01

    Waste-tire-derived crumb rubber was utilized as filter media to develop an efficient filter for ballast water treatment. In this study, the effects of coagulation, pressure filtration and dual-media (gravity) filtration on the performance of the crumb rubber filtration were investigated. The removal efficiencies of turbidity, phytoplankton and zooplankton, and head loss development were monitored during the filtration process. The addition of a coagulant enhanced the removal efficiencies of all targeted matter, but resulted in substantial increase of head loss. Pressure filtration increased filtration rates to 220 m(3)h(-1)m(-2) for 8-h operation and improved the zooplankton removal. Dual-media (crumb rubber/sand) gravity filtration also improved the removal efficiencies of phytoplankton and zooplankton over mono-media gravity crumb rubber filtration. However, these filtration techniques alone did not meet the criteria for removing indigenous organisms from ballast water. A combination of filtration and disinfection is suggested for future studies.

  3. Crumb rubber filtration: a potential technology for ballast water treatment.

    PubMed

    Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F

    2006-05-01

    The removal of turbidity, particles, phytoplankton and zooplankton in water by crumb rubber filtration was investigated. A substantial reduction was achieved. Of the three variables, filter depth, media size and filtration rate, media size had the most significant influence. Smaller media size favored higher removal efficiency of all targeted matter. There was no apparent relationship between removal efficiency and filter depth. Higher filtration rate resulted in lower removal efficiency and higher head loss. Compared with conventional granular media filters, crumb rubber filters required less backwash, and developed lower head loss. Consequently crumb rubber filters could be run for a longer time or allow a higher filtration rate. The results also indicate that the crumb rubber filtration alone did not achieve the target removal of invasive species. However, crumb rubber filtration could potentially be used as a primary treatment technology to enhance the efficiency of a secondary treatment process (e.g., disinfection).

  4. Water Filtration

    ERIC Educational Resources Information Center

    Jacobsen, Erica K.

    2004-01-01

    A water filtration column is devised by students using a two-liter plastic bottle containing gravel, sand, and activated charcoal, to test the filtration potential of the column. Results indicate that the filtration column eliminates many of the contaminating materials, but does not kill bacteria.

  5. Grey water treatment in urban slums by a filtration system: optimisation of the filtration medium.

    PubMed

    Katukiza, A Y; Ronteltap, M; Niwagaba, C B; Kansiime, F; Lens, P N L

    2014-12-15

    Two uPVC columns (outer diameter 160 cm, internal diameter 14.6 cm and length 100 cm) were operated in parallel and in series to simulate grey water treatment by media based filtration at unsaturated conditions and constant hydraulic loading rates (HLR). Grey water from bathroom, laundry and kitchen activities was collected from 10 households in the Bwaise III slum in Kampala (Uganda) in separate containers, mixed in equal proportions followed by settling, prior to transferring the influent to the tanks. Column 1 was packed with lava rock to a depth of 60 cm, while column 2 was packed with lava rock (bottom 30 cm) and silica sand, which was later replaced by granular activated carbon (top 30 cm) to further investigate nutrient removal from grey water. Operating the two filter columns in series at a HLR of 20 cm/day resulted in a better effluent quality than at a higher (40 cm/day) HLR. The COD removal efficiencies by filter columns 1 and 2 in series amounted to 90% and 84% at HLR of 20 cm/day and 40 cm/day, respectively. TOC and DOC removal efficiency amounted to 77% and 71% at a HLR of 20 cm/day, but decreased to 72% and 67% at a HLR of 40 cm/day, respectively. The highest log removal of Escherichia coli, Salmonella sp. and total coliforms amounted to 3.68, 3.50 and 3.95 at a HLR of 20 cm/day respectively. The overall removal of pollutants increased with infiltration depth, with the highest pollutant removal efficiency occurring in the top 15 cm layer. Grey water pre-treatment followed by double filtration using coarse and fine media has the potential to reduce the grey water pollution load in slum areas by more than 60%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. REMOVAL OF ARSENIC IN DRINKING WATER: ARS CFU-50 APC ELECTROFLOCCULATION AND FILTRATION WATER TREATMENT SYSTEM

    EPA Science Inventory

    ETV testing of the ARS CFU-50 APC Electroflocculation and Filtration Water Treatment System (ARS CFU-50 APC) for arsenic removal was conducted at the Town of Bernalillo Well #3 site from April 18 through May 2, 2006. The source water was chlorinated groundwater from two supply w...

  7. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    EPA Science Inventory

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  8. Description of the surface water filtration and ozone treatment system at the Northeast Fishery Center

    USDA-ARS?s Scientific Manuscript database

    A water filtration and ozone disinfection system was installed at the U.S. Fish and Wildlife Service's Northeast Fishery Center in Lamar, Pennsylvania to treat a surface water supply that is used to culture sensitive and endangered fish. The treatment system first passes the surface water through dr...

  9. REMOVAL OF CRYPTOSPORIDIUM AND GIARDIA THROUGH CONVENTIONAL WATER TREATMENT AND DIRECT FILTRATION

    EPA Science Inventory

    Pilot- and full-scale evaluations of Giardia and Cryptosporidium cyst removal through direction filtration and conventional water treatment were conducted by the Utah Department of Environmental Quality. Cysts were seeded continuously in a step dose at a 0.5 gpm pilot plant and i...

  10. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration.

    PubMed

    Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria

    2013-06-01

    This study was carried out to evaluate the efficiency of conventional drinking water treatment processes with and without pre-oxidation with chlorine and chlorine dioxide and the use of granular activated carbon (GAC) filtration for the removal of diclofenac (DCF). Water treatment was performed using the Jar test with filters on a lab scale, employing nonchlorinated artesian well water prepared with aquatic humic substances to yield 20HU true color, kaolin turbidity of 70 NTU and 1mgL(-1) DCF. For the quantification of DCF in water samples, solid phase extraction and HPLC-DAD methods were developed and validated. There was no removal of DCF in coagulation with aluminum sulfate (3.47mgAlL(-1) and pH=6.5), flocculation, sedimentation and sand filtration. In the treatment with pre-oxidation and disinfection, DCF was partially removed, but the concentration of dissolved organic carbon (DOC) was unchanged and byproducts of DCF were observed. Chlorine dioxide was more effective than chorine in oxidizing DCF. In conclusion, the identification of DCF and DOC in finished water indicated the incomplete elimination of DCF through conventional treatments. Nevertheless, conventional drinking water treatment followed by GAC filtration was effective in removing DCF (⩾99.7%). In the oxidation with chlorine, three byproducts were tentatively identified, corresponding to a hydroxylation, aromatic substitution of one hydrogen by chlorine and a decarboxylation/hydroxylation. Oxidation with chlorine dioxide resulted in only one byproduct (hydroxylation). Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Water Filtration Products

    NASA Technical Reports Server (NTRS)

    1986-01-01

    American Water Corporation manufactures water filtration products which incorporate technology originally developed for manned space operations. The formula involves granular activated charcoal and other ingredients, and removes substances by catalytic reactions, mechanical filtration, and absorption. Details are proprietary. A NASA literature search contributed to development of the compound. The technology is being extended to a deodorizing compound called Biofresh which traps gas and moisture inside the unit. Further applications are anticipated.

  12. Dataset on the spent filter backwash water treatment by sedimentation, coagulation and ultra filtration.

    PubMed

    Mahdavi, Mokhtar; Ebrahimi, Afshin; Azarpira, Hossein; Tashauoei, Hamid Reza; Mahvi, Amir Hossein

    2017-12-01

    During operation of most water treatment plants, spent filter backwash water (SFBW) is generated, which accounts about 2-10% of the total plant production. By increasing world population and water shortage in many countries, SFBW can be used as a permanent water source until the water treatment plant is working. This data article reports the practical method being used for water reuse from SFBW through different method including pre-sedimentation, coagulation and flocculation, second clarification, ultra filtration (UF) and returned settled SFBW to the beginning of water treatment plant (WTP). Also, two coagulants of polyaluminum ferric chloride (PAFCl) and ferric chloride (FeCl 3 ) were investigated with respect to their performance on treated SFBW quality. Samples were collected from Isfahan's WTP in Iran during spring and summer season. The acquired data indicated that drinkable water can be produced form SFBW by applying hybrid coagulation-UF process (especially when PAFCl used as coagulant).

  13. Water sample filtration unit

    USGS Publications Warehouse

    Skougstad, M.W.; Scarbro, G.F.

    1968-01-01

    A readily portable, all plastic, pressure filtration unit is described which greatly facilitates rapid micropore membrane field filtration of up to several liters of water with a minimum risk of inorganic chemical alteration or contamination of the sample. The unit accommodates standard 10.2-cm. (4-inch) diameter filters. The storage and carrying case serves as a convenient filter stand for both field and laboratory use.

  14. Evaluating efficacy of filtration + UV-C radiation for ballast water treatment at different temperatures

    NASA Astrophysics Data System (ADS)

    Casas-Monroy, Oscar; Linley, Robert D.; Chan, Po-Shun; Kydd, Jocelyn; Vanden Byllaardt, Julie; Bailey, Sarah

    2018-03-01

    To prevent new ballast water-mediated introductions of aquatic nonindigenous species (NIS), many ships will soon use approved Ballast Water Management Systems (BWMS) to meet discharge standards for the maximum number of viable organisms in ballast water. Type approval testing of BWMS is typically conducted during warmer seasons when plankton concentrations are highest, despite the fact that ships operate globally year-round. Low temperatures encountered in polar and cool temperate climates, particularly during the winter season, may impact treatment efficacy through changes in plankton community composition, biological metabolic rates or chemical reaction rates. Filtration + UV irradiance is one of the most common ballast water treatment methods, but its effectiveness at low temperatures has not been assessed. The objective in this study was to examine the efficacy of filtration + UV-C irradiation treatment at low temperatures for removal or inactivation of phytoplankton and zooplankton populations during simulated ballast water treatment. Organisms from two size classes (≥ 10 to < 50 μm and ≥ 50 μm) were identified and enumerated using microscope and culture techniques. The response of organisms in both size categories to UV-C irradiation was evident across a range of temperatures (18 °C, 12 °C and 2 °C) as a significant decrease in concentration between controls and treated samples. Results indicate that filtration + UV-C irradiation will be effective at low temperatures, with few viable organisms ≥ 10 to < 50 μm recorded even 21 days following UV exposure (significantly lower than in the control treatment).

  15. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment.

    PubMed

    Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D

    2016-02-27

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  16. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    PubMed Central

    Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.

    2016-01-01

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152

  17. FULL-SCALE EVALUATION OF RIVERBANK FILTRATION AT THREE MIDWEST WATER TREATMENT PLANTS

    EPA Science Inventory

    Riverbank filtration (or induced infiltration) is a process in which river water passes through ground prior to its use as a drinking water supply. Alluvial aquifers that are hydraulically connected to rivers may provide an alternate source of water supply for water utilities. Ri...

  18. WATER FILTRATION AT DULUTH

    EPA Science Inventory

    After partial completion of the Lakewood Filtration Plant at Duluth, studies were begun with funding provided by the demonstration grant. Research covered a variety of topics and was done with a 10 gpm pilot plant located at the filtration plant, with the full scale plant operati...

  19. Impact of backwashing procedures on deep bed filtration productivity in drinking water treatment.

    PubMed

    Slavik, Irene; Jehmlich, Alexander; Uhl, Wolfgang

    2013-10-15

    Backwash procedures for deep bed filters were evaluated and compared by means of a new integrated approach based on productivity. For this, different backwash procedures were experimentally evaluated by using a pilot plant for direct filtration. A standard backwash mode as applied in practice served as a reference and effluent turbidity was used as the criterion for filter run termination. The backwash water volumes needed, duration of the filter-to-waste period, time out of operation, total volume discharged and filter run-time were determined and used to calculate average filtration velocity and average productivity. Results for filter run-times, filter backwash volumes, and filter-to-waste volumes showed considerable differences between the backwash procedures. Thus, backwash procedures with additional clear flushing phases were characterised by an increased need for backwash water. However, this additional water consumption could not be compensated by savings during filter ripening. Compared to the reference backwash procedure, filter run-times were longer for both single-media and dual-media filters when air scour and air/water flush were optimised with respect to flow rates and the proportion of air and water. This means that drinking water production time is longer and less water is needed for filter bed cleaning. Also, backwashing with additional clear flushing phases resulted in longer filter run-times before turbidity breakthrough. However, regarding the productivity of the filtration process, it was shown that it was almost the same for all of the backwash procedures investigated in this study. Due to this unexpected finding, the relationships between filter bed cleaning, filter ripening and filtration performance were considered and important conclusions and new approaches for process optimisation and resource savings were derived. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Test of precoat filtration technology for treatment of swimming pool water.

    PubMed

    Christensen, Morten Lykkegaard; Klausen, Morten Møller; Christensen, Peter Vittrup

    2018-02-01

    The technical performance of a precoat filter was compared with that of a traditional sand filter. Particle concentration and size distribution were measured before and after the filtration of swimming pool water. Both the sand and precoat filters could reduce the particle concentration in the effluent. However, higher particle removal efficiency was generally observed for the precoat filter, especially for particles smaller than 10 μm in diameter. Adding flocculant improved the removal efficiency of the sand filter, resulting in removal efficiencies comparable to those of the precoat filter. Three powders, i.e., two types of perlite (Harbolite ® and Aquatec perlite) and cellulose fibers (Arbocel ® ), were tested for the precoat filter, but no significant difference in particle removal efficiency was observed among them. The maximum efficiency was reached within 30-40 min of filtration. The energy required for the pumps increased by approximately 35% over a period of 14 days. The energy consumption could be reduced by replacing the powder on the filter cloth. The sand filter was backwashed once a week, while the powder on the precoat filter was replaced every two weeks. Under these conditions, it was possible to reduce the water used for cleaning by 88% if the precoat filter was used instead of the sand filter.

  1. Pig manure treatment by filtration.

    PubMed

    Kowalski, Zygmunt; Makara, Agnieszka; Matýsek, Dalibor; Hoffmann, Józef; Hoffmann, Krystyna

    2013-01-01

    A study of new pig manure treatment and filtration process was carried out. The advantage of the worked out technology is the method of incorporation of crystalline phase into solid organic part of manure. The obtained new solid phase of manure contains about 50% of crystalline phase forming a filtration aid that enables high effectiveness of manure filtration. The filtration rate of manure separation into solid and liquid fractions with pressure filter may achieve 1300-3000 kg/m(2)/h. The method makes it possible to maintain an overall average pollutant removal performance 90% for the chemical oxygen demand COD, > 99% for the suspended solids SS, to 47% for the total nitrogen content. The obtained results showed that the proposed technology being efficient and simple offers a possible solution to pig manure problems.

  2. IMPACT OF WATER CHEMISTRY ON MANGANESE REMOVAL DURING OXIDATION/FILTRATION TREATMENT

    EPA Science Inventory

    This is a poster showing the purpose and setup of our pilot plant experiments with manganese filtration. The focus is on the differences, effectiveness, and problems with using chlorine and potassium permanganate in oxidation/filtration. The poster will show the results and findi...

  3. Water Filtration Using Plant Xylem

    PubMed Central

    Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2014-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees – a readily available, inexpensive, biodegradable, and disposable material – can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings. PMID:24587134

  4. Water filtration using plant xylem.

    PubMed

    Boutilier, Michael S H; Lee, Jongho; Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2014-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees--a readily available, inexpensive, biodegradable, and disposable material--can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm(3) of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  5. Computational fluid dynamics simulations of membrane filtration process adapted for water treatment of aerated sewage lagoons.

    PubMed

    Cano, Grégory; Mouahid, Adil; Carretier, Emilie; Guasp, Pascal; Dhaler, Didier; Castelas, Bernard; Moulin, Philippe

    2015-01-01

    The aim of this study is to apply the membrane bioreactor technology in an oxidation ditch in submerged conditions. This new wastewater filtration process will benefit rural areas (<5,000 population equivalent) subject to chronic water shortages by reusing this water for irrigation of green areas. For this purpose, the membranes developed without support are immersed in an aeration well and work in suction mode. The development of the membrane without support and more precisely the performance of spacers are approached by computational fluid dynamics in order to provide the best compromise between pressure drop/flow velocity and permeate flux. The numerical results on the layout and the membrane modules' geometry in the aeration well indicate that the optimal configuration is to install the membranes horizontally on three levels. Membranes should be connected to each other to a manifold providing a total membrane area of 18 m². Loss rate compared to the theoretical throughput is relatively low (less than 3%). Preliminary data obtained by modeling the lagoon provide access to its hydrodynamics, revealing that recirculation zones can be optimized by making changes in the operating conditions. The experimental validation of these results and taking into account the aeration in the numerical models are underway.

  6. Polymeric water filtration membranes

    NASA Astrophysics Data System (ADS)

    Paul, Mou

    Nanofiltration (NF) membranes are used for separating salts and small neutral molecules. NF membranes show unique selectivity properties compared to reverse osmosis membranes as it can selectively pass monovalent salts and neutral molecules as a function of charge and molecular weight cut-off which are dependent on membrane characteristics and operating conditions. Dow Water and Process solutions has been a pioneer in the membrane based water purification field and Dow's role was instrumental in developing several NF membranes for different applications. However, the characterization of NF membranes and hence the development of structure-property relationship is challenging due to the nanoscale thin, crosslinked nature of the membrane. Recently significant efforts were employed to develop analytical capabilities to understand polymer structure and composition and it had been possible to achieve a structure-property relationship for NF membranes. This paper will highlight similar relationships and will also focus on the relationships of membrane structure with membrane transport properties and how this relationship influences products for different application areas such as in oil field, sweetener and minimum liquid discharge etc.

  7. Optimization of the cleaning process on a pilot filtration setup for waste water treatment accompanied by flow visualization

    NASA Astrophysics Data System (ADS)

    Bílek, Petr; Hrůza, Jakub

    2018-06-01

    This paper deals with an optimization of the cleaning process on a liquid flat-sheet filter accompanied by visualization of the inlet side of a filter. The cleaning process has a crucial impact on the hydrodynamic properties of flat-sheet filters. Cleaning methods avoid depositing of particles on the filter surface and forming a filtration cake. Visualization significantly helps to optimize the cleaning methods, because it brings new overall view on the filtration process in time. The optical method, described in the article, enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. Visualization is a strong tool for investigation of the processes on filters in details and it is also possible to determine concentration of particles after an image analysis. The impact of air flow rate, inverse pressure drop and duration on the cleaning mechanism is investigated in the article. Images of the cleaning process are compared to the hydrodynamic data. The tests are carried out on a pilot filtration setup for waste water treatment.

  8. Field-analysis of potable water quality and ozone efficiency in ozone-assisted biological filtration systems for surface water treatment.

    PubMed

    Zanacic, Enisa; Stavrinides, John; McMartin, Dena W

    2016-11-01

    Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The substitution of sand filtration by immersed-UF for surface water treatment: pilot-scale studies.

    PubMed

    Lihua, Sun; Xing, Li; Guoyu, Zhang; Jie, Chen; Zhe, Xu; Guibai, Li

    2009-01-01

    The newly issued National Drinking Water Standard required that turbidity should be lower than 1 NTU, and the substitution of sand filtration by immersed ultrafiltration (immersed-UF) is feasible to achieve the standard. This study aimed to optimise the operational processes (i.e. aeration, backwashing) through pilot scale studies, to control membrane fouling while treating the sedimentation effluent. Results indicated that the immersed-UF was promising to treat the sedimentation effluent. The turbidity was below 0.10 NTU, bacteria and E. coli were not detected in the permeate water. The intermittent filtration with aeration is beneficial to inhibit membrane fouling. The critical aeration intensity is observed to be 60.0 m(3) m(-2) h(-1). At this aeration intensity, the decline rate of permeate flux in one period of backwashing was 1.94% and 7.03% for intermittent filtration and sustained filtration respectively. The different membrane backwashing methods (i.e. aeration 1.5 min, synchronous aeration and water backwashing 2 min, water backwashing 1.5 min; synchronous aeration and water backwashing 3 min, water backwashing 2 min; aeration 3 min, single water backwashing 2 min; synchronous aeration and water backwashing 5 min; single water backwashing 5 min) on the recovery of permeate flux were compared, indicating that the synchronous aeration and water backwashing exhibited best potential for permeate flux recovery. The optimal intensity of water backwashing is shown to be 90.0 L m(-2) h(-1). When the actual water intensity was below or exceeded the value, the recovery rate of permeate flux would be reduced. Additionally, the average operating cost for the immersed UF membrane, including the power, the chemical cleaning reagents, and membrane modules replacement, was about 0.31 RMB/m(3).

  10. Modelling the removal of p-TSA (para-toluenesulfonamide) during rapid sand filtration used for drinking water treatment.

    PubMed

    Meffe, Raffaella; Kohfahl, Claus; Holzbecher, Ekkehard; Massmann, Gudrun; Richter, Doreen; Dünnbier, Uwe; Pekdeger, Asaf

    2010-01-01

    A finite element model was set-up to determine degradation rate constants for p-TSA during rapid sand filtration (RSF). Data used for the model originated from a column experiment carried out in the filter hall of a drinking water treatment plant in Berlin (Germany). Aerated abstracted groundwater was passed through a 1.6m long column-shaped experimental sand filter applying infiltration rates from 2 to 6mh(-1). Model results were fitted to measured profiles and breakthrough curves of p-TSA for different infiltration rates using both first-order reaction kinetics and Michaelis-Menten kinetics. Both approaches showed that degradation rates varied both in space and time. Higher degradation rates were observed in the upper part of the column, probably related to higher microbial activity in this zone. Measured and simulated breakthrough curves revealed an adaption phase with lower degradation rates after infiltration rates were changed, followed by an adapted phase with more elevated degradation rates. Irrespective of the mathematical approach and the infiltration rate, degradation rates were very high, probably owing to the fact that filter sands have been in operation for decades, receiving high p-TSA concentrations with the raw water.

  11. Leakage of soluble microbial products from biological activated carbon filtration in drinking water treatment plants and its influence on health risks.

    PubMed

    Hong, Shen; Xian-Chun, Tang; Nan-Xiang, Wu; Hong-Bin, Chen

    2018-07-01

    The application of ozone-biological activated carbon (O 3 -BAC) as an advanced treatment method in drinking water treatment plants (DWTPs) can help to remove organic micropollutants and further decrease the dissolved organic carbon (DOC) level in finished water. With the increase attention to microbial safety of drinking water, a pre-positioned O 3 -BAC followed by a sand filter has been implanted into DWTP located in Shanghai, China to increase the biostability of effluents. The results showed that BAC had high removal efficiencies of UV 254 , DOC and disinfection by-product formation potential (DBPFP). The removal efficiencies between pre- and post-positioned BAC filtrations were similar. Based on the analyses of fluorescence excitation-emission matrix spectrophotometry (FEEM), the generation and leakage of soluble microbial products (SMPs) were found in both two BAC filtrations on account of the increased fluorescence intensities and fluorescence regional integration (FRI) distribution of protein-like organics, as well as the enhanced biological index (BIX). The leakage of SMPs produced by metabolism of microbes during BAC process resulted in increased DBPFP yield and carcinogenic factor per unit of DOC (CF/DOC). Although BAC filtration reduced the DBPFP and CF, there still was high health risk of effluents for the production of SMPs. Therefore, the health risks for SMPs generated by BAC filtration in drinking water advanced treatment process should be addressed, especially with that at high temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Pepper mild mottle virus as a process indicator at drinking water treatment plants employing coagulation-sedimentation, rapid sand filtration, ozonation, and biological activated carbon treatments in Japan.

    PubMed

    Kato, Ryuichi; Asami, Tatsuya; Utagawa, Etsuko; Furumai, Hiroaki; Katayama, Hiroyuki

    2018-04-01

    To assess the potential of pepper mild mottle virus (PMMoV) as a viral process indicator, its reduction through coagulation-sedimentation (CS) and rapid sand filtration (RSF) were compared with those of Escherichia coli, previously used viral indicators, and norovirus genotype II (NoV GII; enteric virus reference pathogen) in a bench-scale experiment. PMMoV log 10 reductions in CS (1.96 ± 0.30) and RSF (0.26 ± 0.38) were similar to those of NoV GII (1.86 ± 0.61 and 0.28 ± 0.46). PMMoV, the most abundant viruses in the raw water, was also determined during CS, RSF, and advanced treatment processes at two full-scale drinking water treatment plants under strict turbidity management over a 13-month period. PMMoV was concentrated from large-volume water samples (10-614 L) and quantified by Taqman-based quantitative polymerase chain reaction. The PMMoV log 10 reduction in CS (2.38 ± 0.74, n = 13 and 2.63 ± 0.76, n = 10 each for Plant A and B) and in ozonation (1.91 ± 1.18, n = 5, Plant A) greatly contributed to the overall log 10 reduction. Our results suggest that PMMoV can act as a useful treatment process indicator of enteric viruses and can be used to monitor the log 10 reduction of individual treatment processes at drinking water treatment plants due to its high and consistent copy numbers in source water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 40 CFR 141.717 - Pre-filtration treatment toolbox components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface water or GWUDI source. (c) Bank filtration. Systems receive Cryptosporidium treatment credit for... paragraph. Systems using bank filtration when they begin source water monitoring under § 141.701(a) must... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Pre-filtration treatment toolbox...

  14. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  15. WATER TREATMENT

    DOEpatents

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  16. RESEARCH AND DEMONSTRATION OF ELECTROSPUN NANOFIBER FILTERS: MULTIFUNCTIONAL, CHEMICALLY ACTIVE FILTRATION TECHNOLOGIES FOR SMALL-SCALE WATER TREATMENT SYSTEMS

    EPA Science Inventory

    This work will provide the production framework for next-generation treatment technologies capable of targeting diverse chemical pollutants over a range of water chemistries and application scales. Tangible outcomes include a wealth of demonstration data and standard operat...

  17. Water nano-filtration device

    DOEpatents

    Judkins, Roddie R [Knoxville, TN

    2009-02-03

    A water filter includes a porous support characterized by a mean porosity in the range of 20 to 50% and a mean pore size of 2 to 5 .mu.m; and a carbon filter membrane disposed thereon which is characterized by a mean particle size of no more than 50 .mu.m and a mean pore size of no more than 7.2 .mu.m.

  18. Recycled PET Nanofibers for Water Filtration Applications

    PubMed Central

    Zander, Nicole E.; Gillan, Margaret; Sweetser, Daniel

    2016-01-01

    Water shortage is an immediate and serious threat to our world population. Inexpensive and scalable methods to clean freshwater and wastewater are in high demand. Nanofiber filtration membranes represent a next generation nonwoven filter media due to their unique properties. Polyethlyene terephthalate (PET) is often used in the packaging of water and other commonly used materials, leading to a large amount of plastic waste often with limited incentive for recycling (few value-added uses). Here, we present work in the generation of nanofiber liquid filtration membranes from PET plastic bottles and demonstrate their use in microfiltration. PET nanofiber membranes were formed via solution electrospinning with fiber diameters as low as ca. 100 nm. Filtration efficiency was tested with latex beads with sizes ranging from 30 to 2000 nm. Greater than 99% of the beads as small as 500 nm were removed using gravity filtration. To reduce biofouling, the mats were functionalized with quaternary ammonium and biguanide biocides. The biguanide functionalized mats achieved 6 log reduction for both gram negative and gram positive bacteria. PMID:28773380

  19. Impacts of extreme flooding on riverbank filtration water quality.

    PubMed

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) <90% baseline, high dissolved oxygen (DO) >400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the

  20. Some aspects of applying nanostructured materials in air filtration, water filtration and electrical engineering

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Lovecka, Lenka; Kazda, Tomas; Giurg, Adam; Skorvan, Ondrej

    2017-05-01

    Nanostructures prepared from nanofibres and nanostructured composites prepared from nanofibres and fillers are gradually becoming increasingly demanded materials for applications in various industrial branches connected with catalysis, environment protection (air filtration, waste water treatment, sound absorption), in biological engineering, electronics (battery separators, electrode materials), etc. Selected applications of these materials prepared in the company SPUR a.s. are summed up in the following presentation.

  1. CONTRIBUTIONS OF WATER FILTRATION TO IMPROVING WATER QUALITY

    EPA Science Inventory

    A variety of water quality improvements can be accomplished by properly operated filtration plants. These include reduction of turbidity, micro-organisms, asbestos fibers, color, trihalomethane precursors, and organics adsorbed to particulate matter. The focus of the paper is on ...

  2. 3. INTERIOR OF THE WATER FILTRATION PLANT SHOWING REMAINS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTERIOR OF THE WATER FILTRATION PLANT SHOWING REMAINS OF THE FILTRATION APPARATUS. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  3. Diatomite filtration of water for injection

    SciTech Connect

    Olmsted, B.C. Jr.; Bell, G.R.

    1966-01-01

    A discussion is presented of the capabilities, problems, and answers, in the performance of diatomite filters. The discussion includes a description of diatomite filtration, new developments, design criteria, and some case histories. Diatomite filters, when properly designed and installed, and when properly applied, can provide effective clarification of waters for injection at low capital and operating costs. Design, installation, and proper application, effectiveness, and capital and operating costs can be placed in the proper perspective in the light of general experience and recent pilot plant tests in the southern California area. (30 refs.)

  4. Evaluation of virus removal efficiency of coagulation-sedimentation and rapid sand filtration processes in a drinking water treatment plant in Bangkok, Thailand.

    PubMed

    Asami, Tatsuya; Katayama, Hiroyuki; Torrey, Jason Robert; Visvanathan, Chettiyappan; Furumai, Hiroaki

    2016-09-15

    In order to properly assess and manage the risk of infection by enteric viruses in tap water, virus removal efficiency should be evaluated quantitatively for individual processes in actual drinking water treatment plants (DWTPs); however, there have been only a few studies due to technical difficulties in quantifying low virus concentration in water samples. In this study, the removal efficiency of indigenous viruses was evaluated for coagulation-sedimentation (CS) and rapid sand filtration (RSF) processes in a DWTP in Bangkok, Thailand by measuring the concentration of viruses before and after treatment processes using real-time polymerase chain reaction (qPCR). Water samples were collected and concentrated from raw source water, after CS, and after RSF, and inhibitory substances in water samples were reduced by use of a hydrophobic resin (DAX-8). Pepper mild mottle virus (PMMoV) and JC polyomavirus (JC PyV) were found to be highly prevalent in raw waters, with concentrations of 10(2.88 ± 0.35) and 10(3.06 ± 0.42) copies/L (geometric mean ± S.D.), respectively. Step-wise removal efficiencies were calculated for individual processes, with some variation observed between wet and dry seasons. During the wet season, PMMoV was removed less by CS and more by RSF on average (0.40 log10 vs 1.26 log10, respectively), while the reverse was true for JC PyV (1.91 log10 vs 0.49 log10, respectively). Both viruses were removed similarly during the dry season, with CS removing the most virus (PMMoV, 1.61 log10 and 0.78 log10; JC PyV, 1.70 log10, and 0.59 log10; CS and RSF, respectively). These differences between seasons were potentially due to variations in raw water quality and the characteristics of the viruses themselves. These results suggest that PMMoV and JC PyV, which are more prevalent in environmental waters than the other enteric viruses evaluated in this study, could be useful in determining viral fate for the risk management of viruses in water treatment

  5. Purification of contaminated water by filtration through porous glass

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Leban, M. I.

    1972-01-01

    Method for purifying water that is contaminated with mineral salts and soluble organic compounds is described. Method consists of high pressure filtration of contaminated water through stabilized porous glass membranes. Procedure for conducting filtration is described. Types of materials by percentage amounts removed from the water are identified.

  6. Membraneless water filtration using CO2

    PubMed Central

    Shin, Sangwoo; Shardt, Orest; Warren, Patrick B.; Stone, Howard A.

    2017-01-01

    Water purification technologies such as microfiltration/ultrafiltration and reverse osmosis utilize porous membranes to remove suspended particles and solutes. These membranes, however, cause many drawbacks such as a high pumping cost and a need for periodic replacement due to fouling. Here we show an alternative membraneless method for separating suspended particles by exposing the colloidal suspension to CO2. Dissolution of CO2 into the suspension creates solute gradients that drive phoretic motion of particles. Due to the large diffusion potential generated by the dissociation of carbonic acid, colloidal particles move either away from or towards the gas–liquid interface depending on their surface charge. Using the directed motion of particles induced by exposure to CO2, we demonstrate a scalable, continuous flow, membraneless particle filtration process that exhibits low energy consumption, three orders of magnitude lower than conventional microfiltration/ultrafiltration processes, and is essentially free from fouling. PMID:28462929

  7. Membraneless water filtration using CO2

    NASA Astrophysics Data System (ADS)

    Shin, Sangwoo; Shardt, Orest; Warren, Patrick B.; Stone, Howard A.

    2017-05-01

    Water purification technologies such as microfiltration/ultrafiltration and reverse osmosis utilize porous membranes to remove suspended particles and solutes. These membranes, however, cause many drawbacks such as a high pumping cost and a need for periodic replacement due to fouling. Here we show an alternative membraneless method for separating suspended particles by exposing the colloidal suspension to CO2. Dissolution of CO2 into the suspension creates solute gradients that drive phoretic motion of particles. Due to the large diffusion potential generated by the dissociation of carbonic acid, colloidal particles move either away from or towards the gas-liquid interface depending on their surface charge. Using the directed motion of particles induced by exposure to CO2, we demonstrate a scalable, continuous flow, membraneless particle filtration process that exhibits low energy consumption, three orders of magnitude lower than conventional microfiltration/ultrafiltration processes, and is essentially free from fouling.

  8. THE PERSISTENCE OF NONTUBERCULOUS MYCOBACTERIA INI A DRINKING WATER DISTRIBUTION SYSTEM AFTER THE ADDITION OF FILTRATION TREATMENT

    EPA Science Inventory

    There is evidence that drinking water may be a source of pathogenic nontuberculous mycobacteria (NTM) infections in humans. One method by which NTM are believed to enter drinking water distribution systems is by their intracellular colonization of protozoa. Our goal was to determ...

  9. THE PERSISTENCE OF MYCOBACTERIUM AVIUM IN A DRINKING WATER DISTRIBUTION SYSTEM AFTER THE ADDITION OF FILTRATION TREATMENT

    EPA Science Inventory

    There is evidence that drinking water may be a source of pathogenic nontuberculous mycobacteria (NTM) infections in humans. One method by which NTM are believed to enter drinking water distribution systems is by their intracellular location within protozoa. Our goal was to determ...

  10. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  11. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  12. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... filtration. (1) For systems using diatomaceous earth filtration, the turbidity level of representative... PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system... treatment or direct filtration. (1) For systems using conventional filtration or direct filtration, the...

  13. Water Filtration. Grades 3-5.

    ERIC Educational Resources Information Center

    Rushton, Erik; Ryan, Emily; Swift, Charles

    One of our most valuable and often overlooked resources is water. We can survive for a couple of weeks without food but only a few days without water. Having clean water to drink is a luxury. The water that comes out of our faucets does not always start off safe to drink. Most often it has visited a treatment plant prior to reaching our glasses.…

  14. 8. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING SOUTHWEST, SHOWING MEZZANINE WITH FILTER TANKS AT REAR - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  15. 7. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. OBLIQUE INTERIOR VIEW OF FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHEAST, SHOWING PUMP NO. 1 AND METERING EQUIPMENT - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  16. STORMWATER TREATMENT AT CRITICAL AREAS: EVALUATION OF FILTRATION MEDIA

    EPA Science Inventory

    Past research has identified urban runoff as a major contributor to the degradation of urban streams and rivers. Filtration, especially "slow" filtration, is of interest for stormwater runoff treatment because filters will work on intermittent flows without significant loss of ca...

  17. 1. VIEW OF THE WATER FILTRATION PLANT FROM THE ACCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF THE WATER FILTRATION PLANT FROM THE ACCESS ROAD, LOOKING NORTHWEST. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  18. Spontaneous water filtration of bio-inspired membrane

    NASA Astrophysics Data System (ADS)

    Kim, Kiwoong; Kim, Hyejeong; Lee, Sang Joon

    2016-11-01

    Water is one of the most important elements for plants, because it is essential for various metabolic activities. Thus, water management systems of vascular plants, such as water collection and water filtration have been optimized through a long history. In this view point, bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. However, most of the underlying biophysical features of the optimized water management systems remain unsolved In this study, the biophysical characteristics of water filtration phenomena in the roots of mangrove are experimentally investigated. To understand water-filtration features of the mangrove, the morphological structures of its roots are analyzed. The electrokinetic properties of the root surface are also examined. Based on the quantitatively analyzed information, filtration of sodium ions in the roots are visualized. Motivated by this mechanism, spontaneous desalination mechanism in the root of mangrove is proposed by combining the electrokinetics and hydrodynamic transportation of ions. This study would be helpful for understanding the water-filtration mechanism of the roots of mangrove and developing a new bio-inspired desalination technology. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract Grant Number: 2008-0061991).

  19. Riverbank filtration for the treatment of highly turbid Colombian rivers

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Juan Pablo; van Halem, Doris; Rietveld, Luuk

    2017-05-01

    The poor quality of many Colombian surface waters forces us to seek alternative, sustainable treatment solutions with the ability to manage peak pollution events and to guarantee the uninterrupted provision of safe drinking water to the population. This review assesses the potential of using riverbank filtration (RBF) for the highly turbid and contaminated waters in Colombia, emphasizing water quality improvement and the influence of clogging by suspended solids. The suspended sediments may be favorable for the improvement of the water quality, but they may also reduce the production yield capacity. The cake layer must be balanced by scouring in order for an RBF system to be sustainable. The infiltration rate must remain high enough throughout the river-aquifer interface to provide the water quantity needed, and the residence time of the contaminants must be sufficient to ensure adequate water quality. In general, RBF seems to be a technology appropriate for use in highly turbid and contaminated surface rivers in Colombia, where improvements are expected due to the removal of turbidity, pathogens and to a lesser extent inorganics, organic matter and micro-pollutants. RBF has the potential to mitigate shock loads, thus leading to the prevention of shutdowns of surface water treatment plants. In addition, RBF, as an alternative pretreatment step, may provide an important reduction in chemical consumption, considerably simplifying the operation of the existing treatment processes. However, clogging and self-cleansing issues must be studied deeper in the context of these highly turbid waters to evaluate the potential loss of abstraction capacity yield as well as the development of different redox zones for efficient contaminant removal.

  20. Automation of water supply and recirculation-filtration of water at a swimming pool using Zelio PLC

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Popa, G. N.; Iagăr, A.

    2018-01-01

    The paper proposes the use of the Zelio PLC for the automation of the water supply and recirculation-filtration system of a swimming pool. To do this, the Zelio SR3B261BD - 24V DC with 10 digital inputs (24V DC) and 10 digital outputs (relay contacts) was used. The proposed application makes the control of the water supply pumps and the water recirculation-filtration from a swimming pool. The recirculation-filtration systems for pools and swimming pools are designed to ensure water cleaning and recirculation to achieve optimum quality and lasting service life. The water filtration process is one of the important steps in water treatment in polls and swimming pools. It consists in recirculation of the entire volume of water and begins by absorbing the water in the pool by means of a pump followed by the passing of water through the filter, disinfectant and pH dosing, and reintroducing the water back into the pool or swimming pool through the discharge holes. Filters must to work 24 hours a day to remove pollutants from pools or swimming pools users. Filtration removes suspension particles with different origins. All newly built pools and swimming pools must be fitted with water recirculation systems, and existing ones will be equipped with water recirculation and water treatment systems.

  1. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  2. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  3. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  4. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... treatment, direct filtration, slow sand filtration, or diatomaceous earth filtration. A public water system... PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  5. Filtration in the Use of Individual Water Purification Devices

    DTIC Science & Technology

    2006-03-01

    natural water pH will increase virus retention (references 14-17). One study investigating coliphage reduction by a 0.2 µm microporous filter...Filtration in the Use of Individual Water Purification Devices Technical Information Paper #31-004-0306 PURPOSE This information paper...natural waters . This paper is intended to assist the reader in evaluating the capabilities of Individual Water Purification Devices (IWPDs) using

  6. THE PERSISTENCE OF MYCOBACTERIUM AVIUM IN A DRINKING WATER SYSTEM AFTER THE ADDITION OF FILTRATION

    EPA Science Inventory

    Drinking water is increasingly recognized as a major source of pathogenic nontuberculous mycobacteria (NTM) associated with human infection. Our goal was to determine if the prevalence of NTM would decrease after the addition of filtration treatment to an unfiltered surface water...

  7. ARSENIC REMOVAL FROM DRINKING WATER BY COAGULATION/FILTRATION AND LIME SOFTENING PLANTS

    EPA Science Inventory

    This report documents a long term performance (one year) study of 3 water treatment plants to remove arsenic from drinking water sources. The 3 plants consisted of 2 conventional coagulation/filtration plants and 1 lime softening plant. The study involved the collecting of weekly...

  8. Small Water System Alternatives: Media and Membrane Filtration Alternatives for Small Communities and Households

    EPA Science Inventory

    This webinar presentation will highlight research case studies on innovative drinking water treatment alternatives for small community water systems. Emphasis will be placed on media and membrane filtration technologies capable of meeting the requirements of the Long-Term 2 Enha...

  9. Water Supply and Treatment Equipment. Change Notice 1

    DTIC Science & Technology

    2014-08-05

    Coagulation Filtration Total Dissolved Solids Water Quality Conductivity Potable water Turbidity Water Treatment/Purification Disinfection ...microorganisms (pathogenic) found in the raw water . The preferred Army field method of water disinfection is chlorination. Filtration Filtration...senses. It looks, tastes, and smells good and is neither too hot nor too cold. Potable water Water that is safe for drinking . Reverse osmosis

  10. 2. VIEW OF THE WATER FILTRATION PLANT LOOKING SOUTHEAST. A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF THE WATER FILTRATION PLANT LOOKING SOUTH-EAST. A SET OF FOUR EVENLY SPACED CONCRETE WALLS JUT OUT FROM THE NORTHEAST FACADE OF THE BUILDING. - Tower Hill No. 2 Mine, Approximately 0.47 mile Southwest of intersection of Stone Church Road & Township Route 561, Hibbs, Fayette County, PA

  11. FILTRATION OF GROUND WATER SAMPLES FOR METALS ANALYSIS

    EPA Science Inventory

    The filtration of a ground water samples with 0.45 um filters for determination of 'dissolved' metals is not only inaccurate for distinguishing between dissolved and particulate phases, but if used for estimates of mobile contaminant loading in a given aquifer, may result in sign...

  12. Landfill Leachate Treatment by Electrocoagulation and Fiber Filtration.

    PubMed

    Li, Runwei; Wang, Boya; Owete, Owete; Dertien, Joe; Lin, Chen; Ahmad, Hafiz; Chen, Gang

    2017-11-01

      Landfilling is widely adopted as one of the most economical processes for solid waste disposal. At the same time, landfill leachate is also a great environmental concern owing to its complex composition and high concentrations of contaminants. This research investigated electrocoagulation and fiber filtration for the treatment of landfill leachate. Besides electrical current (i.e., current density) and reaction time, pH played a very important role in arsenic and phosphorus removal by electrocoagulation. The combination of electrocoagulation with fiber filtration achieved a 94% chemical oxygen demand (COD), 87% arsenic, 96% iron, and 86% phosphorus removal. During electrocoagulation, the micro-particles that could not be settled by gravity were removed by the first stage of fiber filtration. Organic contaminants in the leachate were further removed by biodegradation in the second stage of fiber biofiltration.

  13. RADIUM REMOVAL FROM WATER MANGANESE DIOXIDE ADSORP- TION AND DIATOMACEOUS EARTH FILTRATION

    EPA Science Inventory

    The study reveals that radium adsorption onto precipitated MnO2 followed by diatomaceous earth (DE) filtration is a very effective treatment process for radium-contaminated water. Radium removals in the range of 80% to 97% were observed for performed MnO2 feed concentrations of 0...

  14. Microbiological contamination in water filtration plants in Islamabad.

    PubMed

    Hisam, Aliya; Ur Rahman, Mahmood; Kadir, Ehsan; Tariq, Naseer Alam; Masood, Sumaira

    2014-05-01

    To determine the frequency of microbiological contamination of water in different water filtration plants in Islamabad. Descriptive cross-sectional study. Water Filtration Plants (WFP) in different sectors of Islamabad, from April to September 2012. Water samples were collected in sterilized bottles according to the standard water sampling protocol from site and transported to Pakistan Council for Research in Water Resources (PCRWR) for analysis. Microbiological quality of water was determined in terms of total coliforms (< 2.0 MPN/100 ml) and Escherichia coli (< 2.0 MPN/100 ml). Microbiological contaminated water was defined the sample which had more than 2.0 MPN per 100 ml of either total coliforms or Escherichia (E.) coli. Thirty two WFP were analyzed for microbiological contamination. E. coli was present in 8 (25.0%) water samples, while 24 (75.0%) water samples were free from it. Total coliforms were present in 13 (40.6%) of the samples of WFP, while 19 (59.3%) samples were free from total coliform. Faecal coliforms were present in 8 (25.0%) and absent in 24 (75.0%) samples. Both E. coli and total coliform were present in 8 (25.0%) samples. Nine (59.3) WFP were free from E. coli, total coliform and faecal coliform. Statistically, no significant association was found (p > 0.05) between microbiological contamination and the sectors. Less than half of the water samples of the WFP were contaminated while certain sectors showed more frequent contamination than others.

  15. Four years experience with filtration systems in commercial nurseries for eliminating Phytophthora species from recirculation water

    Treesearch

    T. Ufer; M. Posner; H.-P. Wessels; S. Wagner; K. Kaminski; T. Brand; Werres S.

    2008-01-01

    In a four year project, three different filtration systems were tested under commercial nursery conditions to eliminate Phytophthora spp. from irrigation water. Five nurseries were involved in the project. Slow sand filtration systems were tested in three nurseries. In the fourth nursery, a filtration system with lava grains (Shieer® Bio filtration)...

  16. STUDY OF WATER QUALITY IMPROVEMENTS DURING RIVERBANK FILTRATION AT THREE MIDWESTERN UNITED STATES DRINKING WATER UTILITIES

    EPA Science Inventory

    Riverbank filtration (RBF) is a process during which surface water is subjected to subsurface flow prior to extraction from wells. During infiltration and soil passage, surface water is subjected to a combination of physical, chemical, and biological processes such as filtration...

  17. Rapid Sand Filtration for Best Practical Treatment of Domestic Wastewater Stabilization Pond Effluent

    ERIC Educational Resources Information Center

    Boatright, D. T.; Lawrence, C. H.

    1977-01-01

    The technical and economic feasibility of constructing and operating a rapid sand filtration sewage treatment system as an adjunct to a waste water stabilization pond is investigated. The study concludes that such units are within the technical and economic constraints of a small community and comply with the EPA criteria. (BT)

  18. Evaluation of Small System Filtration Technologies for the Treatment of Color, Disinfection ByProducts and Microbiological Contaminants in Surface Water

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) National Risk Management Research Laboratory (NRMRL) evaluated various filtration systems at the EPA T&E Facility in Cincinnati, Ohio and at a field site in Ely, Minnesota (MN) in collaboration with the Minnesota Department of Health...

  19. Emergency field water supply system using natural filtration elements

    NASA Astrophysics Data System (ADS)

    Vikneswaran, M.; Yahya, Muhamad Azani; Yusof, Mohammed Alias; Ismail, Siti Nor Kamariah

    2018-02-01

    Water is the most important resource in times of emergency and during military missions. In addition, if there is a war in a country, sources of clean water are essential for life. But, the safety and cleanliness of the river water for the campers and hikers still uncertain. Usually, polluted and contaminated river water is not safe to be directly consumed by human. However, this problem can be partly resolved by using water filter where the river water can be consumed directly after the filtration process. In respect of that, this study was conducted to design the filter media for personal water purification system. Hence, the objective of this work also is to develop a personal, portable dual purpose handy water filter to provide an easier way to get safe, clean and healthy drinking water for human wherever they go. The water quality of samples collected before and after filtration were analyzed. Water samples were taken from a waterfall near Lestari Block and Lake beside Marine Centre UPNM Campus. The experimental results were analyzed based on the assessment of water quality parameters. Overall, the analysis of the results showed that the water filter was designed with basic mix tabs aqua filter water purification tablets is showing a better result where it achieve the class I of water quality index (WQI). In details, the water sample taken from waterfall near Lestari Block shown the WQI around 93 which is higher than WQI of water sample from Lake near Marine Centre UPNM which is 86, class II A which can be used for external purpose only.

  20. Water Hyacinths and Alligator Weeds for Final Filtration of Sewage

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.; Gordon, J.

    1976-01-01

    The potential of water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxerides) (Mart.) Griesb. as secondary and tertiary filtration systems for domestic sewage was demonstrated. These two vascular aquatic plants reduced the suspended solids, total Kjeldahl nitrogen, total phosphorus, BOD sub 5, and total organic carbon levels in domestic sewage from 60 percent to 98 percent within a two week period. These plants grown in domestic sewage were also free of toxic levels of trace heavy metals.

  1. Removal of benzocaine from water by filtration with activated carbon

    USGS Publications Warehouse

    Howe, G.E.; Bills, T.D.; Marking, L.L.

    1990-01-01

    Benzocaine is a promising candidate for registration with the U.S. Food and Drug Administration for use as an anesthetic in fish culture, management, and research. A method for the removal of benzocaine from hatchery effluents could speed registration of this drug by eliminating requirements for data on its residues, tolerances, detoxification, and environmental hazards. Carbon filtration effectively removes many organic compounds from water. This study tested the effectiveness of three types of activated carbon for removing benzocaine from water by column filtration under controlled laboratory conditions. An adsorptive capacity was calculated for each type of activated carbon. Filtrasorb 400 (12 x 40 mesh; U.S. standard sieve series) showed the greatest capacity for benzocaine adsorption (76.12 mg benzocaine/g carbon); Filtrasorb 300 (8 x 30 mesh) ranked next (31.93 mg/g); and Filtrasorb 816 (8 x 16 mesh) absorbed the least (1.0 mg/g). Increased adsorptive capacity was associated with smaller carbon particle size; however, smaller particle size also impeded column flow. Carbon filtration is a practical means for removing benzocaine from treated water.

  2. Reduction in cryptosporidiosis associated with introduction of enhanced filtration of drinking water at Loch Katrine, Scotland.

    PubMed

    Pollock, K G J; Young, D; Robertson, C; Ahmed, S; Ramsay, C N

    2014-01-01

    Previous evidence has suggested an association between cryptosporidiosis and consumption of unfiltered drinking water from Loch Katrine in Scotland. Before September 2007, the water was only micro-strained and chlorinated; however, since that time, coagulation and rapid gravity filtration have been installed. In order to determine risk factors associated with cryptosporidiosis, including drinking water, we analysed data on microbiologically confirmed cases of cryptosporidiosis from 2004 to 2010. We identified an association between the incidence of cryptosporidiosis and unfiltered Loch Katrine drinking water supplied to the home (odds ratio 1.86, 95% confidence interval 1.11-3.11, P = 0.019). However, while filtration appears to be associated with initially reduced rates of cryptosporidiosis, evidence suggests it may paradoxically make those consumers more susceptible to other transmission routes in the long-term. These findings support implementation of similar treatment for other unfiltered drinking-water supplies, as a means of reducing cryptosporidiosis associated with drinking water.

  3. Successful treatment of homozygous familial hypercholesterolemia using cascade filtration plasmapheresis.

    PubMed

    Kardaş, Fatih; Cetin, Aysun; Solmaz, Musa; Büyükoğlan, Rüksan; Kaynar, Leylagül; Kendirci, Mustafa; Eser, Bülent; Unal, Ali

    2012-12-01

    The aim of this study was to report the efficacy of low-density lipoprotein cholesterol (LDL-C) apheresisusing a cascade filtration system in pediatric patients with homozygous familial hypercholesterolemia (FH), and toclarify the associated adverse effects and difficulties. LDL-C apheresis using a cascade filtration system was performed in 3 pediatric patientswith homozygous FH; in total, 120 apheresis sessions were performed. Cascade filtration therapy significantly reduced the mean LDL-C values from 418 ± 62 mg/dL to 145 ± 43 mg/dL (p= 0.011). We observed an acute mean reduction in the plasma level of total cholesterol (57.9%), LDL-C (70.8%),and high-density lipoprotein cholesterol (HDL-C) (40.7%). Treatments were well tolerated. The most frequent clinicaladverse effects were hypotension in 3 sessions (2.5%), chills (1.7%) in 2 sessions, and nausea/vomiting in 3 sessions(2.5%). Our experience using the cascade filtration system with 3 patients included good clinical outcomes andlaboratory findings, safe usage, and minor adverse effects and technical problems. None declared.

  4. Study of water quality improvements during riverbank filtration at three midwestern United States drinking water utilities

    NASA Astrophysics Data System (ADS)

    Weiss, W.; Bouwer, E.; Ball, W.; O'Melia, C.; Lechevallier, M.; Arora, H.; Aboytes, R.; Speth, T.

    2003-04-01

    manner that is not otherwise accomplished through conventional processes of drinking water treatment (e.g. coagulation, flocculation, sedimentation). 3. Evaluate changes in the character of NOM upon ground passage from the river to the wells. The experimental approach entailed monitoring the performance of three different RBF systems along the Ohio, Wabash, and Missouri Rivers in the Midwestern United States and involved a cooperative effort between the American Water Works Company, Inc. and Johns Hopkins University. Samples of the river source waters and the bank-filtered well waters were analyzed for a range of water quality parameters including TOC, DOC, UV-absorbance at 254-nm (UV-254), biodegradable dissolved organic carbon (BDOC), biologically assimilable organic carbon (AOC), inorganic species, DBP formation potential, and microorganisms. In the second year of the project, river waters were subjected to a bench-scale conventional treatment train consisting of coagulation, flocculation, sedimentation, glass-fiber filtration, and ozonation. The treated river waters were compared with the bank-filtered waters in terms of TOC, DOC, UV-254, and DBP formation potential. In the third and fourth years of the project, NOM from the river and well waters was characterized using the XAD-8 resin adsorption fractionation method (Leenheer, 1981; Thurman &Malcolm, 1981). XAD-8 adsorbing (hydrophobic) and non-adsorbing (hydrophilic) fractions of the river and well waters were compared with respect to DOC, UV-254, and DBP formation potential to determine whether RBF alters the character of the source water NOM upon ground passage and if so, which fractions are preferentially removed. The results demonstrate the effectiveness of RBF at removing the organic precursors to potentially carcinogenic DBPs. When compared to a bench-scale conventional treatment train optimized for turbidity removal, RBF performed as well as the treatment at one of the sites and significantly better than the

  5. Bacterial community structure in the drinking water microbiome is governed by filtration processes.

    PubMed

    Pinto, Ameet J; Xi, Chuanwu; Raskin, Lutgarde

    2012-08-21

    The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.

  6. Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Thurman, E.M.; Lindsey, M.E.; Lee, E.C.; Smith, R.D.

    2002-01-01

    The changes in triazine and acetamide concentrations in water during natural and artificial treatment by bank filtration, ozonation, filtration, and chlorination were measured at the well field and drinking water treatment plant of Lincoln, Nebraska, USA. The city's groundwater supply is affected by induced infiltration and transport of triazines and acetamide herbicides from the Platte River in late spring and early summer. The objective of the study was to evaluate the effect of infiltration and treatment on the presence of triazines and acetamides in drinking water. Samples of river water, well water, and public supply water at various stages of water treatment were collected from 1997-1999 during spring-runoff when the presence of herbicides in the Platte River is largest. In 1999, parent compounds were reduced by 76% of the concentration present in river water (33% by bank filtration, 41% by ozonation, and 1.5% by chlorination). Metabolites of herbicides for which analytical techniques existed were reduced by 21% (plus 26% by bank filtration, minus 23% by ozonation, and minus 24% by chlorination). However, increases in concentrations of specific metabolite compounds were identified after bank filtration and ozonation. After bank filtration, increases in cyanazine amide, cyanazine acid, and deethylcyanazine acid were identified. After ozonation, concentrations of deisopropylatrazine, deethylatrazine, didealkylatrazine, atrazine amide-I, hydroxydeethylatrazine, hydroxydeisopopylatrazine, deethylcyanazine acid, and deethylcyanazine increased. Concentrations of cyanazine acid and ethanesulfonic and oxanilic acids of acetamides decreased during ozonation. Our findings suggest that bank filtration and ozonation of water in part can shift the assessment of risk to human health associated with the consumption of the water from the parent compounds to their degradation products.

  7. Polyaluminium chloride as an alternative to alum for the direct filtration of drinking water.

    PubMed

    Zarchi, Idit; Friedler, Eran; Rebhun, Menahem

    2013-01-01

    The efficiency of various polyaluminium chloride coagulants (PACls) was compared to the efficiency of aluminium sulfate (alum) in the coagulation-flocculation process preceding direct filtration in drinking water treatment. The comparative study consisted of two separate yet complementary series of experiments: the first series included short (5-7 h) and long (24 h) filter runs conducted at a pilot filtration plant equipped with large filter columns that simulated full-scale filters. Partially treated surface water from the Sea of Galilee, characterized by very low turbidity (-1 NTU), was used. In the second series of experiments, speciation of aluminium in situ was investigated using the ferron assay method. Results from the pilot-scale study indicate that most PACls were as or more efficient a coagulant as alum for direct filtration of surface water without requiring acid addition for pH adjustment and subsequent base addition for re-stabilizing the water. Consequently, cost analysis of the chemicals needed for the process showed that treatment with PACl would be significantly less costly than treatment with alum. The aluminium speciation experiments revealed that the performance of the coagulant is more influenced by the species present during the coagulation process than those present in the original reagents.

  8. In-Water Hull Cleaning & Filtration System

    NASA Astrophysics Data System (ADS)

    George, Dan

    2015-04-01

    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped

  9. Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction and Membrane Filtration

    DTIC Science & Technology

    2013-11-18

    the experimental filter media Next-SandTM was used, thus turbidity results may not be translatable to conventional filtration media. The media...performance objective was not met. Further optimization of the media filtration process would result in meeting the objective. Dissolved Organic Carbon...FINAL REPORT Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction and Membrane Filtration ESTCP Project ER

  10. Gravity filtration performances of the bio-diatomite dynamic membrane reactor for slightly polluted surface water purification.

    PubMed

    Chu, Huaqiang; Dong, Bingzhi; Zhang, Yalei; Zhou, Xuefei

    2012-01-01

    A bio-diatomite dynamic membrane (BDDM) reactor for surface water treatment under a water head of 30, 40, 50, 60 and 70 cm, respectively, was investigated, which was very effective for pollutants removal. The water head exerted strong influences on filtration flux of BDDM during the precoating process, as well as on the formation of BDDM and turbidity variations. A high filtration flux (approximately 200-300 L/m2 h) could be achieved in the long filtration times of BDDM with a stable effluent turbidity of approximately 0.11-0.25 NTU. The BDDM could remove particles larger than 25 μm completely. The adopted sintered diatomite mainly consisted of macro pores, which were beneficial for improving the filtration flux of BDDM. During the backwash stage, the BDDM could be removed completely by the air backwash.

  11. Evaluation of biological hydrogen sulfide oxidation coupled with two-stage upflow filtration for groundwater treatment.

    PubMed

    Levine, Audrey D; Raymer, Blake J; Jahn, Johna

    2004-01-01

    Hydrogen sulfide in groundwater can be oxidized by aerobic bacteria to form elemental sulfur and biomass. While this treatment approach is effective for conversion of hydrogen sulfide, it is important to have adequate control of the biomass exiting the biological treatment system to prevent release of elemental sulfur into the distribution system. Pilot scale tests were conducted on a Florida groundwater to evaluate the use of two-stage upflow filtration downstream of biological sulfur oxidation. The combined biological and filtration process was capable of excellent removal of hydrogen sulfide and associated turbidity. Additional benefits of this treatment approach include elimination of odor generation, reduction of chlorine demand, and improved stability of the finished water.

  12. Stochastic modeling of filtrate alkalinity in water filtration devices: Transport through micro/nano porous clay based ceramic materials

    USDA-ARS?s Scientific Manuscript database

    Clay and plant materials such as wood are the raw materials used in manufacture of ceramic water filtration devices around the world. A step by step manufacturing procedure which includes initial mixing, molding and sintering is used. The manufactured ceramic filters have numerous pores which help i...

  13. Portable water filtration system for oil well fractionation

    SciTech Connect

    Seibert, D. L.

    The invention comprises a portable, multi-stage filtration system utilized in filtering water for an oil and gas stimulation process commonly known as fracking. Three stages are used, the first being a straining operation reducing the size of particulate matter in the water to about three-eighths of an inch. The second stage is a centrifugal separator, reducing the particle size to about 50 microns. The final stage utilizes a cartridge-type filter giving a final particle size in the water of about 5 microns. In this manner, water which is injected into the well head during the fracking process and which ismore » obtained from readily available sources such as ponds, streams and the like is relatively free of particulate matter which can foul the fracking process. The invention, by virtue of being mounted on a trailer, is portable and thus can be easily moved from site to site. Water flow rates obtained using the invention are between 250 and 300 gallons per minute, sufficient for processing a small to medium sized well.« less

  14. 10. OBLIQUE DETAIL VIEW OF PUMP NO. 1 IN FILTRATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. OBLIQUE DETAIL VIEW OF PUMP NO. 1 IN FILTRATION ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHEAST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  15. Novel water filtration of saline water in the outermost layer of mangrove roots.

    PubMed

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-02-05

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na(+) ions are filtered at the first sublayer of the outermost layer. The high blockage of Na(+) ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na(+) ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.

  16. Purification of inkjet ink from water using liquid phase, electric discharge polymerization and cellulosic membrane filtration.

    PubMed

    Jordan, Alexander T; Hsieh, Jeffery S; Lee, Daniel T

    2013-01-01

    A method to separate inkjet ink from water was developed using a liquid phase, electric discharge process. The liquid phase, electric discharge process with filtration or sedimentation was shown to remove 97% of inkjet ink from solutions containing between 0.1-0.8 g/L and was consistent over a range of treatment conditions. Additionally, particle size analysis of treated allyl alcohol and treated propanol confirmed the electric discharge treatment has a polymerization mechanism, and small molecule analysis of treated methanol using gas chromatography and mass spectroscopy confirmed the mechanism was free radical initiated polymerization.

  17. Introduction of filtration systems in container nurseries for nonchemical elimination of Phytophthora spp. from irrigation water

    Treesearch

    Thorsten Ufer; Heinrich Beltz; Thomas Brand; Katrin Kaminski; Ralf Lüttmann; Martin Posner; Stefan Wagner; Sabine Werres; Hans-Peter Wessels

    2006-01-01

    In a 3-year project the elimination of Phytophthora spp. from the recirculation water with different kinds of filtration systems will be tested under commercial conditions in container nurseries. First results indicate that the filtration systems eliminate Phytophthora spp. from the water.

  18. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality.

    PubMed

    da Silva, Flávia Vieira; Yamaguchi, Natália Ueda; Lovato, Gilselaine Afonso; da Silva, Fernando Alves; Reis, Miria Hespanhol Miranda; de Amorim, Maria Teresa Pessoa Sousa; Tavares, Célia Regina Granhen; Bergamasco, Rosângela

    2012-01-01

    This study evaluates the performance of a polymeric microfiltration membrane, as well as its combination with a coconut granular activated carbon (GAC) pretreatment, in a gravitational filtration module, to improve the quality of water destined to human consumption. The proposed membrane and adsorbent were thoroughly characterized using instrumental techniques, such as contact angle, Brunauer-Emmett-Teller) and Fourier transform infrared spectroscopy analyses. The applied processes (membrane and GAC + membrane) were evaluated regarding permeate flux, fouling percentage, pH and removal of Escherichia coli, colour, turbidity and free chlorine. The obtained results for filtrations with and without GAC pretreatment were similar in terms of water quality. GAC pretreatment ensured higher chlorine removals, as well as higher initial permeate fluxes. This system, applying GAC as a pretreatment and a gravitational driven membrane filtration, could be considered as an alternative point-of-use treatment for water destined for human consumption.

  19. REDUCTION IN DBP PRECURSORS AND PATHOGENS DURING RIVERBANK FILTRATION AT THREE MIDWESTERN DRINKING WATER UTILITIES

    EPA Science Inventory

    Riverbank filtrtion (RBF) is a process that subjects river water to ground passage prior to its use as a drinking water supply. European expereince with RBF demonstrate that during infiltration and underground transport, processes such as filtration, sorption, and biodegradation...

  20. Evaluation of Filtration and UV Disinfection for Inactivation of Viruses in Non-Community Water Systems in Minnesota

    EPA Science Inventory

    This study evaluated filtration and disinfection processes for removal and inactivation of pathogens in non-community water systems (NCWS) in two surface water supplies. Pretreatment systems included 1) pressure sand filtration, and 2) granular activated carbon adsorption, and 3...

  1. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....174 Section 141.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection... water system subject to the requirements of this subpart that provides conventional filtration treatment...

  2. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....174 Section 141.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection... water system subject to the requirements of this subpart that provides conventional filtration treatment...

  3. 40 CFR 141.174 - Filtration sampling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....174 Section 141.174 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection... water system subject to the requirements of this subpart that provides conventional filtration treatment...

  4. Polymer-treated woody biomass: a filtration medium for removing phosphate from water

    Treesearch

    Thomas L Eberhardt

    2006-01-01

    A two-stage treatment of refined aspen wood fiber with solutions of carboxymethyl cellulose (CMC) and ferrous chloride afforded a filtration medium that was effective in removing phosphate from test solutions. To assess the stability of the filtration medium, samples exposed to the test solutions were analyzed by FTIR spectroscopy. The resultant spectra indicated that...

  5. Delineation of bank filtrate and groundwater flux for drinking water production using multivariate statistics and a combined tracer approach

    NASA Astrophysics Data System (ADS)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2013-04-01

    In shallow or unconfined aquifers infiltration of contaminated river might be a major threat for ground water quality. Thus, the identification of hydrological pathways in coupled surface- and groundwater systems and specifically the delineation of areas influenced by bank filtrate are of paramount importance to ensure water quality. Tracers have the potential to elucidate both, sources and flow patterns, and are widely applied in hydrological flow. Besides conventional tracers (Cl-, SO42-, stable water isotopes δ18O, δ2H, etc.) only recently another class of tracers in hydrologic systems are emerging: trace contaminants as waste water markers. Compounds, such as artificial sweeteners, might enter the aquatic environment via discharge of waste water treatment plants and are ubiquitously found in sewage water receiving waters. While the occurrence of waste water in aquatic systems can be confirmed by the detection of artificial sweeteners, it is still unknown whether those compounds are also suitable for the quantitative assessment of waste water and surface water in groundwater systems. The hereby presented field study aims at the identification of infiltration areas and the quantitative assessment of river bank filtrate using conventional tracers and artificial sweeteners as waste water markers. The investigated aquifer system is located in an alpine head water catchment, it consists of quaternary gravel deposits (kfmax 5 x 10-2 ms-1, vmax 250 md-1) and is used for drinking water production. It is hypothesized that a large proportion of the groundwater flux originates from bank filtrate of a nearby losing stream. During a sampling campaign in July 2012 water samples were collected from the entire aquatic system (2 springs, 3 surface and 40 groundwater samples). The in-situ parameters, major ions, stable water isotopes δ18O/δ2H and artificial sweeteners (acesulfame ACE, sucralose SUC, saccharin SAC and cyclamate CYC) were measured. The water samples were

  6. Evaluation of bank filtration as a pretreatment method for the provision of hygienically safe drinking water in Norway: results from monitoring at two full-scale sites

    NASA Astrophysics Data System (ADS)

    Kvitsand, Hanne M. L.; Myrmel, Mette; Fiksdal, Liv; Østerhus, Stein W.

    2017-08-01

    Two case studies were carried out in central Norway in order to assess the performance of bank filtration systems in cold-climate fluvial aquifers relying on recharge from humic-rich surface waters with moderate microbial contamination. Three municipal wells and two surface-water sources at operative bank filtration systems were monitored for naturally occurring bacteriophages, fecal indicators, natural organic matter (NOM) and physico-chemical water quality parameters during a 4-month period. Aquifer passage effectively reduced the microorganism and NOM concentrations at both study sites. Bacteriophages were detected in 13 of 16 (81%) surface-water samples and in 4 of 24 (17%) well-water samples, and underwent 3 ± 0.3 log10 reduction after 50-80-m filtration and 20-30 days of subsurface passage. NOM reductions (color: 74-97%; dissolved organic carbon: 54-80%; very hydrophobic acids: 70%) were similar to those achieved by conventional water-treatment processes and no further treatment was needed. Both groundwater dilution and sediment filtration contributed to the hygienic water quality improvements, but sediment filtration appeared to be the most important process with regard to microbial and NOM reductions. A strengths-weaknesses-opportunities-threats analysis showed that bank filtration technology has a high potential as a pretreatment method for the provision of hygienically safe drinking water in Norway.

  7. Research Regarding Membrane Filtration Capacity of Water Collected from Siret River

    NASA Astrophysics Data System (ADS)

    Mihalache, I.; Pintilie, Ş. C.; Bîrsan, I. G.; Dănăila, E.; Baltă, Ş.

    2018-06-01

    In the past decade, the high demand and strict legislations regarding pure and potable water production and quality require finding new treatment technologies with higher effectiveness. When compared with conventional treatment technologies, membrane technology is a viable option in water and wastewater treatment due to high performance, ease in implementation, cost-efficiency among other advantages, also, leading to a rapid expansion in use in almost all areas of industry. Polymeric ultrafiltration membranes have been successfully used in various industries since 1969, and in later years they were studied in the water purification sector, mainly as a pre-treatment step to reduce severe fouling that could occur in reverse osmosis filtration stage. Polysulfone (PSf) was the polymer of choice in this study with two concentrations, 25 wt.% and 30 wt.%. Surface SEM morphology, roughness and water affinity were analyzed for the studied membranes. Water from Siret river was used in the permeation tests in order to analyze the retention capacity and anti-fouling ability. The present study revealed higher retention for the 30 wt.% PSf membranes, from the physico-chemical and microbiological point-of-view and lower fouling, also.

  8. Pressure filtration of ceramic pastes. 4: Treatment of experimental data

    NASA Technical Reports Server (NTRS)

    Torrecillas, A. S.; Polo, J. F.; Perez, A. A.

    1984-01-01

    The use of data processing method based on the algorithm proposed by Kalman and its application to the filtration process at constant pressure are described, as well as the advantages of this method. This technique is compared to the least squares method. The operation allows the precise parameter adjustment of the equation in direct relationship to the specific resistance of the cake.

  9. Hydraulic design to optimize the treatment capacity of Multi-Stage Filtration units

    NASA Astrophysics Data System (ADS)

    Mushila, C. N.; Ochieng, G. M.; Otieno, F. A. O.; Shitote, S. M.; Sitters, C. W.

    2016-04-01

    Multi-Stage Filtration (MSF) can provide a robust treatment alternative for surface water sources of variable water quality in rural communities at low operation and maintenance costs. MSF is a combination of Slow Sand Filters (SSFs) and Pre-treatment systems. The general objective of this research was to optimize the treatment capacity of MSF. A pilot plant study was undertaken to meet this objective. The pilot plant was monitored for a continuous 98 days from commissioning till the end of the project. Three main stages of MSF namely: The Dynamic Gravel Filter (DGF), Horizontal-flow Roughing Filter (HRF) and SSF were identified, designed and built. The response of the respective MSF units in removal of selected parameters guiding drinking water quality such as microbiological (Faecal and Total coliform), Suspended Solids, Turbidity, PH, Temperature, Iron and Manganese was investigated. The benchmark was the Kenya Bureau (KEBS) and World Health Organization (WHO) Standards for drinking water quality. With respect to microbiological raw water quality improvement, MSF units achieved on average 98% Faecal and 96% Total coliform removal. Results obtained indicate that implementation of MSF in rural communities has the potential to increase access to portable water to the rural populace with a probable consequent decrease in waterborne diseases. With a reduced down time due to illness, more time would be spent in undertaking other economic activities.

  10. A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries.

    PubMed

    Huq, A; Xu, B; Chowdhury, M A; Islam, M S; Montilla, R; Colwell, R R

    1996-07-01

    Plankton to which cells of Vibrio cholerae O1 and/or O139 were attached was introduced into 0.5% Instant Ocean microcosms maintained at 25 degrees C. The bulk of the plankton and associated particulates was removed with a filter constructed from either nylon net and one of several different types of sari material, the latter being very inexpensive and readily available in villages in Bangladesh, where V. cholerae is endemic. V. cholerae was enumerated before and after filtration to evaluate the efficiency of the filtration procedure. The results obtained indicate that 99% of V. cholerae, i.e., those cells attached to plankton, were removed from the water samples. Epidemic strains of V. cholerae O1 and O139 from various geographical sources, including Bangladesh, Brazil, India, and Mexico, were included in the experiments. Removal of vibrios from water by this simple filtration method was found to yield consistent results with all strains examined in this study. Thus, it is concluded that a simple filtration procedure involving the use of domestic sari material can reduce the number of cholera vibrios attached to plankton in raw water from ponds and rivers commonly used for drinking. Since untreated water from such sources serves as drinking water for millions of people living in developing countries (e.g., Bangladesh), filtration should prove effective at reducing the incidence and severity of outbreaks, especially in places that lack fuel wood for boiling water and/or municipal water treatment plants. The results of this study provide the basis for determining such reductions, which are to be carried out in the near future.

  11. Agronomic benefits of biochar as a soil amendment after its use as waste water filtration medium.

    PubMed

    Werner, Steffen; Kätzl, Korbinian; Wichern, Marc; Buerkert, Andreas; Steiner, Christoph; Marschner, Bernd

    2018-02-01

    In many water-scarce countries, waste water is used for irrigation which poses a health risk to farmers and consumers. At the same time, it delivers nutrients to the farming systems. In this study, we tested the hypotheses that biochar can be used as a filter medium for waste water treatment to reduce pathogen loads. At the same time, the biochar is becoming enriched with nutrients and therefore can act as a fertilizer for soil amendment. We used biochar as a filter medium for the filtration of raw waste water and compared the agronomic effects of this "filterchar" (FC) and the untreated biochar (BC) in a greenhouse pot trial on spring wheat biomass production on an acidic sandy soil from Niger. The biochar filter showed the same removal of pathogens as a common sand filter (1.4 log units on average). We did not observe a nutrient accumulation in FC compared to untreated BC. Instead, P, Mg and K were reduced during filtration while N content remained unchanged. Nevertheless, higher biomass (Triticum L. Spp.) production in BC (+72%) and FC (+37%) treatments (20 t ha -1 ), compared with the unamended control, were found. There were no significant differences in aboveground biomass production between BC and FC. Soil available P content was increased by BC (+106%) and FC (+52%) application. Besides, mineral nitrogen content was reduced in BC treated soil and to a lesser extent when FC was used. This may be explained by reduced sorption affinity for mineral nitrogen compounds on FC surfaces. Although the nutrients provided by FC decreased, due to leaching in the filter, it still yielded higher biomass than the unamended control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of filtration modes on membrane fouling behavior and treatment in submerged membrane bioreactor.

    PubMed

    Maqbool, Tahir; Khan, Sher Jamal; Lee, Chung-Hak

    2014-11-01

    Relaxation or backwashing is obligatory for effective operation of membrane module and intermittent aeration is helpful for nutrients removal. This study was performed to investigate effects of different filtration modes on membrane fouling behavior and treatment in membrane bioreactor (MBR) operated at three modes i.e., 12, 10 and 8min filtration and 3, 2, and 2min relaxation corresponding to 6, 5 and 4cycles/hour, respectively. Various parameters including trans-membrane pressure, specific cake resistance, specific oxygen uptake rate, nutrients removal and sludge dewaterability were examined to optimize the filtration mode. TMP profiles showed that MBR(8+2) with 8min filtration and 2min relaxation reduced the fouling rate and depicted long filtration time in MBR treating synthetic wastewater. MBR(12+3) was more efficient in organic and nutrients removal while denitrification rate was high in MBR(8+2). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Iron and manganese removal: Recent advances in modelling treatment efficiency by rapid sand filtration.

    PubMed

    Vries, D; Bertelkamp, C; Schoonenberg Kegel, F; Hofs, B; Dusseldorp, J; Bruins, J H; de Vet, W; van den Akker, B

    2017-02-01

    A model has been developed that takes into account the main characteristics of (submerged) rapid filtration: the water quality parameters of the influent water, notably pH, iron(II) and manganese(II) concentrations, homogeneous oxidation in the supernatant layer, surface sorption and heterogeneous oxidation kinetics in the filter, and filter media adsorption characteristics. Simplifying assumptions are made to enable validation in practice, while maintaining the main mechanisms involved in iron(II) and manganese(II) removal. Adsorption isotherm data collected from different Dutch treatment sites show that Fe(II)/Mn(II) adsorption may vary substantially between them, but generally increases with higher pH. The model is sensitive to (experimentally) determined adsorption parameters and the heterogeneous oxidation rate. Model results coincide with experimental values when the heterogeneous rate constants are calibrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Graphene nanoplatelets as high-performance filtration control material in water-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ridha, Syahrir; Ibrahim, Arif; Shahari, Radzi; Fonna, Syarizal

    2018-05-01

    The main objective of this work is to evaluate the effectiveness of graphene nanoplatelets (GNP) as filtration control materials in water based drilling fluids. Three (3) general samples of water based drilling fluids were prepared including basic potassium chloride (KCl) drilling fluids, nanosilica (NS) drilling fluids and GNP drilling fluids. Several concentrations of NS and GNP were dispersed in controlled formulations of water based drilling fluids. Standard API filtration tests were carried out for comparison purposes as well as High Temperature High Pressure (HTHP) filtration tests at 150 °F (∼66 °C), 250 °F (∼121 °C) and 350 °F (∼177 °C) at a fixed 500 (∼3.45MPa) psi to study the filtration trend as a function of temperature. Mud cake samples from several tests were selectively chosen and analyzed under Field Emission Scanning Electron Microscope (FESEM) for its morphology. Results from this work show that nanoparticle concentrations play a factor in filtration ability of colloid materials in water based drilling fluids when studied at elevated temperature. Low temperature filtration, however, shows only small differences in volume in all the drilling fluid samples. 0.1 ppb concentrations of GNP reduced the fluid loss of 350 °F by 4.6 mL as compared to the similar concentration of NS drilling fluids.

  15. Effective removal of trace thallium from surface water by nanosized manganese dioxide enhanced quartz sand filtration.

    PubMed

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Zhou, Jian; Jiang, Jin; Wang, Yaan

    2017-12-01

    Thallium (Tl) has drawn wide concern due to its high toxicity even at extremely low concentrations, as well as its tendency for significant accumulation in the human body and other organisms. The need to develop effective strategies for trace Tl removal from drinking water is urgent. In this study, the removal of trace Tl (0.5 μg L -1 ) by conventional quartz sand filtration enhanced by nanosized manganese dioxide (nMnO 2 ) has been investigated using typical surface water obtained from northeast China. The results indicate that nMnO 2 enhanced quartz sand filtration could remove trace Tl(I) and Tl(III) efficiently through the adsorption of Tl onto nMnO 2 added to a water matrix and onto nMnO 2 attached on quartz sand surfaces. Tl(III)-HA complexes might be responsible for higher residual Tl(III) in the effluent compared to residual Tl(I). Competitive Ca 2+ cations inhibit Tl removal to a certain extent because the Ca 2+ ions will occupy the Tl adsorption site on nMnO 2 . Moreover, high concentrations of HA (10 mgTOC L -1 ), which notably complexes with and dissolves nMnO 2 (more than 78%), resulted in higher residual Tl(I) and Tl(III). Tl(III)-HA complexes might also enhance Tl(III) penetration to a certain extent. Additionally, a higher pH level could enhance the removal of trace Tl from surface water. Finally, a slight increase of residual Tl was observed after backwash, followed by the reduction of the Tl concentration in the effluent to a "steady" state again. The knowledge obtained here may provide a potential strategy for drinking water treatment plants threatened by trace Tl. Copyright © 2017. Published by Elsevier Ltd.

  16. Problems associated with using filtration to define dissolved trace element concentrations in natural water samples

    USGS Publications Warehouse

    Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.

    1996-01-01

    Field and laboratory experiments indicate that a number of factors associated with filtration other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample) can produce significant variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. The bulk of these variations result from the inclusion/exclusion of colloidally associated trace elements in the filtrate, although dilution and sorption/desorption from filters also may be factors. Thus, dissolved trace element concentrations quantitated by analyzing filtrates generated by processing whole water through similar pore-sized filters may not be equal or comparable. As such, simple filtration of unspecified volumes of natural water through unspecified 0.45-??m membrane filters may no longer represent an acceptable operational definition for a number of dissolved chemical constituents.

  17. Effect of filtration rates on hollow fiber ultrafilter concentration of viruses and protozoans from large volumes of water

    EPA Science Inventory

    Aims: To describe the ability of tangential flow hollow-fiber ultrafiltration to recover viruses from large volumes of water when run either at high filtration rates or lower filtration rates and recover Cryptosporidium parvum at high filtration rates. Methods and Results: Wate...

  18. Comparative Recoveries of Naegleria fowleri Amoebae from Seeded River Water by Filtration and Centrifugation

    PubMed Central

    Pernin, P.; Pélandakis, M.; Rouby, Y.; Faure, A.; Siclet, F.

    1998-01-01

    Detection of pathogenic Naegleria fowleri in environmental water samples, which is necessary for the prevention of primary amoebic meningoencephalitis, generally requires concentrating the samples. Two concentration techniques, filtration and centrifugation, were used to study the recovery of N. fowleri, in vegetative or cystic form, that had been mixed with the two other thermotolerant Naegleria species, N. lovaniensis and N. australiensis. Counting of amoebae was performed by the most probable number method on 10 water replicates of 100 ml and 10 ml each. With both concentration methods, recovery was better for cysts than for trophozoites (53% ± 21% versus 5% ± 5% by filtration and 57% ± 25% versus 22% ± 5% by centrifugation). The recovery of Naegleria trophozoites by filtration was very low, and centrifugation was significantly better than filtration in recovery of Naegleria trophozoites (22% ± 5% versus 5% ± 5%; P < 0.001). For cysts, however, filtration appeared as efficient as centrifugation, with equivalent values for recovery (53% ± 21% versus 57% ± 25%; P > 0.7). Although the recovery of cysts of N. fowleri obtained by filtration (51% ± 24%) appeared higher than that by centrifugation (36% ± 23%), the difference was not significant (P > 0.1). Both concentration methods have highly variable recovery rates, making accurate quantification of low concentrations (<100/liter) of N. fowleri in the environment difficult. PMID:9501435

  19. Treatment of secondary effluent by sequential combination of photocatalytic oxidation with ceramic membrane filtration.

    PubMed

    Song, Lili; Zhu, Bo; Jegatheesan, Veeriah; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2018-02-01

    The aim of the present work was to experimentally evaluate an alternative advanced wastewater treatment system, which combines the action of photocatalytic oxidation with ceramic membrane filtration. Experiments were carried out using laboratory scale TiO 2 /UV photocatalytic reactor and tubular ceramic microfiltration (CMF) system to treat the secondary effluent (SE). A 100-nm pore size CMF membrane was investigated in cross flow mode under constant transmembrane pressure of 20 kPa. The results show that specific flux decline of CMF membrane with and without TiO 2 /UV photocatalytic treatment was 30 and 50%, respectively, after 60 min of filtration. Data evaluation revealed that the adsorption of organic compounds onto the TiO 2 particles was dependent on the pH of the suspension and was considerably higher at low pH. The liquid chromatography-organic carbon detector (LC-OCD) technique was used to characterise the dissolved organic matter (DOM) present in the SE and was monitored following photocatalysis and CMF. The results showed that there was no removal of biopolymers and slight removal of humics, building blocks and the other oxidation by-products after TiO 2 /UV photocatalytic treatment. This result suggested that the various ions present in the SE act as scavengers, which considerably decrease the efficiency of the photocatalytic oxidation reactions. On the other hand, the CMF was effective for removing 50% of biopolymers with no further removal of other organic components after photocatalytic treatment. Thus, the quantity of biopolymers in SE has an apparent correlation with the filterability of water samples in CMF.

  20. Development of an Electrochemical Ceramic Membrane Filtration System for Efficient Contaminant Removal from Waters.

    PubMed

    Zheng, Junjian; Wang, Zhiwei; Ma, Jinxing; Xu, Shaoping; Wu, Zhichao

    2018-04-03

    Inability to remove low-molecular-weight anthropogenic contaminants is a critical issue in low-pressure membrane filtration processes for water treatment. In this work, a novel electrochemical ceramic membrane filtration (ECMF) system using TiO 2 @SnO 2 -Sb anode was developed for removing persistent p-chloroaniline (PCA). Results showed that the ECMF system achieved efficient removal of PCA from contaminated waters. At a charging voltage of 3 V, the PCA removal rate of TiO 2 @SnO 2 -Sb ECMF system under flow-through mode was 2.4 times that of flow-by mode. The energy consumption for 50% of PCA removal for TiO 2 @SnO 2 -Sb ECMF at 3 V under flow-through mode was 0.38 Wh/L, much lower than that of flow-by operation (1.5 Wh/L), which was attributed to the improved utilization of the surface adsorbed HO· and dissociated HO· driven by the enhanced mass transfer of PCA toward the anode surface. Benefiting from the increased production of reactive oxygen species such as O 2 •- , H 2 O 2 , and HO· arising from excitation of anatase TiO 2 , TiO 2 @SnO 2 -Sb ECMF exhibited a superior electrocatalytic activity to the SnO 2 -Sb ECMF system. The degradation pathways of PCA initiated by OH· attack were further proposed, with the biodegradable short-chain carboxylic acids (mainly formic, acetic, and oxalic acids) identified as the dominant oxidized products. These results highlight the potential of the ECMF system for cost-effective water purification.

  1. Modeling sedimentation-filtration basins for urban watersheds using Soil and Water Assessment Tool

    USDA-ARS?s Scientific Manuscript database

    Sedimentation-filtration (SedFil) basins are one of the storm-water best management practices (BMPs) that are intended to mitigate water quality problems in urban creeks and rivers. A new physically based model of variably saturated flows was developed for simulating flow and sediment in SedFils wi...

  2. Evaluation of storage and filtration protocols for alpine/subalpine lake water quality samples

    Treesearch

    John L. Korfmacher; Robert C. Musselman

    2007-01-01

    Many government agencies and other organizations sample natural alpine and subalpine surface waters using varying protocols for sample storage and filtration. Simplification of protocols would be beneficial if it could be shown that sample quality is unaffected. In this study, samples collected from low ionic strength waters in alpine and subalpine lake inlets...

  3. Removal of oil and oil sheen from produced water by pressure-assisted ozonation and sand filtration.

    PubMed

    Cha, Zhixiong; Lin, Cheng-Fang; Cheng, Chia-Jung; Andy Hong, P K

    2010-01-01

    Ever increasing energy demand worldwide necessitates energy supply, inevitably leading to an increasing volume of process waters containing hydrocarbon contaminants. Among them, dispersed and dissolved oils in produced water need to be removed adequately in order to reuse or avoid surface sheen from coastal discharge. We have recently developed a new ozonation technique coupled with sand filtration to quickly remove oil from process water and prevent oil sheen. The technique incorporates rapid, successive cycles of compression and decompression during ozonation. Gas bubbles expanding from small to large sizes occur that provide ample reactive zones at the gas-liquid interface, resulting in heightened chemical conversions-notably the conversion of hydrophobic hydrocarbon molecules into hydrophilic ones. This study examined the removal of hydrocarbons and sheen according to treatment parameters and configurations, as assessed by changes in turbidity, COD, BOD, and sheen presence following treatment. When a synthetic produced water containing 120ppm of oil (about 100ppm of dispersed and 20ppm of soluble oil at a total COD of 320mgL(-1)) was subjected to 10 pressure cycles (reaching 1.0MPa; 20s each) of ozonation and sand filtration at 6cmmin(-1) and then repeated by 20 cycles of ozonation and sand filtration, it resulted in removal of oil to 20ppm as water-soluble organic acids, decrease of turbidity from 200 to 2NTU, and complete sequestration of surface sheen. The new technique offers a treatment alternative for produced water and likely other tailings waters, promoting safe discharge to the environment and beneficial uses of the water. 2009 Elsevier Ltd. All rights reserved.

  4. Oxidation of Ammonia in Source Water Using Biological Filtration (slides)

    EPA Science Inventory

    Drinking water utilities are challenged with a variety of contamination issues from both the source water and the distribution system. Source water issues include biological contaminants such as bacteria and viruses as well as inorganic contaminants such as arsenic, barium, and ...

  5. Biophysical analysis of water filtration phenomenon in the roots of halophytes

    NASA Astrophysics Data System (ADS)

    Kim, Kiwoong; Lee, Sang Joon

    2015-11-01

    The water management systems of plants, such as water collection and water filtration have been optimized through a long history. In this point of view, new bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. In this study, the biophysical characteristics of water filtration process in the roots of halophytes are experimentally investigated in the plant hydrodynamic point of view. To understand the functional features of the halophytes 3D morphological structure of their roots are analyzed using advanced bioimaging techniques. The surface properties of the roots of halophytes are also examined Based on the quantitatively analyzed information, water filtration phenomenon in the roots is examined. Sodium treated mangroves are soaked in sodium acting fluorescent dye solution to trace sodium ions in the roots. In addition, in vitroexperiment is carried out by using the roots. As a result, the outermost layer of the roots filters out continuously most of sodium ions. This study on developing halophytes would be helpful for understanding the water filtration mechanism of the roots of halophytes and developing a new bio inspired desalination system. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).

  6. Application of bacteriophages to selectively remove Pseudomonas aeruginosa in water and wastewater filtration systems.

    PubMed

    Zhang, Yanyan; Hunt, Heather K; Hu, Zhiqiang

    2013-09-01

    Water and wastewater filtration systems often house pathogenic bacteria, which must be removed to ensure clean, safe water. Here, we determine the persistence of the model bacterium Pseudomonas aeruginosa in two types of filtration systems, and use P. aeruginosa bacteriophages to determine their ability to selectively remove P. aeruginosa. These systems used beds of either anthracite or granular activated carbon (GAC), which were operated at an empty bed contact time (EBCT) of 45 min. The clean bed filtration systems were loaded with an instantaneous dose of P. aeruginosa at a total cell number of 2.3 (± 0.1 [standard deviation]) × 10(7) cells. An immediate dose of P. aeruginosa phages (1 mL of phage stock at the concentration of 2.7 × 10(7) PFU (Plaque Forming Units)/mL) resulted in a reduction of 50% (± 9%) and >99.9% in the effluent P. aeruginosa concentrations in the clean anthracite and GAC filters, respectively. To further evaluate the effects of P. aeruginosa phages, synthetic stormwater was run through anthracite and GAC biofilters where mixed-culture biofilms were present. Eighty five days after an instantaneous dose of P. aeruginosa (2.3 × 10(7) cells per filter) on day 1, 7.5 (± 2.8) × 10(7) and 1.1 (± 0.5) × 10(7) P. aeruginosa cells/g filter media were detected in the top layer (close to the influent port) of the anthracite and GAC biofilters, respectively, demonstrating the growth and persistence of pathogenic bacteria in the biofilters. A subsequent 1-h dose of phages, at the concentration of 5.1 × 10(6) PFU/mL and flow rate of 1.6 mL/min, removed the P. aeruginosa inside the GAC biofilters and the anthracite biofilters by 70% (± 5%) and 56% (± 1%), respectively, with no P. aeruginosa detected in the effluent, while not affecting ammonia oxidation or the ammonia-oxidizing bacterial community inside the biofilters. These results suggest that phage treatment can selectively remove pathogenic bacteria with minimal impact on beneficial

  7. Suitability assessment of grey water quality treated with an upflow-downflow siliceous sand/marble waste filtration system for agricultural and industrial purposes.

    PubMed

    Chaabane, Safa; Riahi, Khalifa; Hamrouni, Hédi; Thayer, Béchir Ben

    2017-04-01

    The present study examines the suitability assessment of an upflow-downflow siliceous sand/marble waste filtration system for treatment and reuse of grey water collected from bathrooms of the student residential complex at the Higher Institute of Engineering Medjez El Bab (Tunisia). Once the optimization of grey water pre-treatment system has been determined, the filtration system was operated at different hydraulic loading rate and media filter proportions in order to assess the suitability of treated grey water for irrigational purpose according to salinity hazard, sodium hazard, magnesium hazard, permeability index, water infiltration rate, and widely used graphical methods. Suitability of the treated grey water for industrial purpose was evaluated in terms of foaming, corrosion, and scaling. Under optimal operational conditions, results reveals that treated grey water samples with an upflow-downflow siliceous sand/marble waste filtration system may be considered as a good and an excellent water quality suitable for irrigation purpose. However, treated grey water was found not appropriate for industrial purpose due to high concentrations of calcium and sodium that can generate foaming and scaling harm to boilers. These results suggest that treated grey water with an upflow-downflow siliceous sand/marble waste filtration system would support production when used as irrigation water.

  8. Domestic wash water reclamation for reuse as commode water supply using filtration: Reverse-osmosis separation technique

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    A combined filtration-reverse-osmosis water recovery system has been evaluated to determine its capability to reclaim domestic wash water for reuse as a commode water supply. The system produced water that met all chemical and physical requirements established by the U.S. Public Health Service for drinking water with the exception of carbon chloroform extractables, methylene blue active substances, and phenols. It is thought that this water is of sufficient quality to be reused as commode supply water. The feasibility of using a combined filtration and reverse-osmosis technique for reclaiming domestic wash water has been established. The use of such a technique for wash-water recovery will require a maintenance filter to remove solid materials including those less than 1 micron in size from the wash water. The reverse-osmosis module, if sufficiently protected from plugging, is an attractive low-energy technique for removing contaminants from domestic wash water.

  9. Effects of Water Bottle Materials and Filtration on Bisphenol A Content in Laboratory Animal Drinking Water

    PubMed Central

    Honeycutt, Jennifer A; Nguyen, Jenny Q T; Kentner, Amanda C; Brenhouse, Heather C

    2017-01-01

    Bisphenol A (BPA) is widely used in the polycarbonate plastics and epoxy resins that are found in laboratory animal husbandry materials including cages and water bottles. Concerns about BPA exposure in humans has led to investigations that suggest physiologic health risks including disruptions to the endocrine system and CNS. However, the extent of exposure of laboratory animals to BPA in drinking water is unclear. In the first study, we compared the amount of BPA contamination in water stored in plastic bottles used in research settings with that in glass bottles. The amount of BPA that leached into water was measured across several time points ranging from 24 to 96 h by using a BPA ELISA assay. The results showed that considerable amounts of BPA (approximately 0.15 μg/L) leached from polycarbonate bottles within the first 24 h of storage. In the second study, BPA levels were measured directly from water taken from filtered compared with unfiltered taps. We observed significantly higher BPA levels in water from unfiltered taps (approximately 0.40 μg/L) compared with taps with filtration systems (approximately 0.04 μg/L). Taken together, our findings indicate that the use of different types of water bottles and water sources, combined with the use of different laboratory products (food, caging systems) between laboratories, likely contribute to decreased rigor and reproducibility in research. We suggest that researchers consider reporting the types of water bottles used and that animal care facilities educate staff regarding the importance of flushing nonfiltered water taps when filling animal water bottles. PMID:28535862

  10. Effects of Water Bottle Materials and Filtration on Bisphenol A Content in Laboratory Animal Drinking Water.

    PubMed

    Honeycutt, Jennifer A; Nguyen, Jenny Q T; Kentner, Amanda C; Brenhouse, Heather C

    2017-05-01

    Bisphenol A (BPA) is widely used in the polycarbonate plastics and epoxy resins that are found in laboratory animal husbandry materials including cages and water bottles. Concerns about BPA exposure in humans has led to investigations that suggest physiologic health risks including disruptions to the endocrine system and CNS. However, the extent of exposure of laboratory animals to BPA in drinking water is unclear. In the first study, we compared the amount of BPA contamination in water stored in plastic bottles used in research settings with that in glass bottles. The amount of BPA that leached into water was measured across several time points ranging from 24 to 96 h by using a BPA ELISA assay. The results showed that considerable amounts of BPA (approximately 0.15 μg/L) leached from polycarbonate bottles within the first 24 h of storage. In the second study, BPA levels were measured directly from water taken from filtered compared with unfiltered taps. We observed significantly higher BPA levels in water from unfiltered taps (approximately 0.40 μg/L) compared with taps with filtration systems (approximately 0.04 μg/L). Taken together, our findings indicate that the use of different types of water bottles and water sources, combined with the use of different laboratory products (food, caging systems) between laboratories, likely contribute to decreased rigor and reproducibility in research. We suggest that researchers consider reporting the types of water bottles used and that animal care facilities educate staff regarding the importance of flushing nonfiltered water taps when filling animal water bottles.

  11. CHARACTERIZING SURFACE WATERS THAT MAY NOT REQUIRE FILTRATION

    EPA Science Inventory

    Field data from various utilities were studied with the object of identifying a set of characteristics of a surface water that might allow it to be successfully treated by disinfection alone, thus avoiding the need to filter. It was found possible to define water quality standard...

  12. Coagulation, flocculation, dissolved air flotation and filtration in the removal of Giardia spp. and Cryptosporidium spp. from water supply.

    PubMed

    Andreoli, Fernando César; Sabogal-Paz, Lyda Patricia

    2017-11-15

    Removing protozoa from a water supply using coagulation, flocculation, dissolved air flotation (DAF) and filtration on a bench scale was evaluated. Calcium carbonate flocculation with and without immunomagnetic separation (IMS) was chosen to detect Giardia spp. cysts and Cryptosporidium spp. oocysts in the studied samples. The results indicated that DAF removed between 1.31 log and 1.79 log of cysts and between 1.08 log and 1.42 log of oocysts. The performance was lower in filtration, with the removal of 1.07 log-1.44 log for cysts and 0.82 log-0.98 log for oocysts. The coagulation, flocculation, DAF and filtration steps removed more than 2.2 log of cysts and oocysts from the water studied. However, protozoa were detected in the filtered water, even with turbidity values of 0.2 NTU. The recovery of the detection method met the international criteria and was higher when there was no IMS. Including the third acid dissociation in the IMS was critical to improve the performance of the protocol tested. However, there was an increase in the technical and analytical complexity and costs. It was also observed that the efficiency of the treatment was linked to the performance of the selected method of detecting protozoa.

  13. 11. DETAIL VIEW OF FILTER TANK IN FILTRATION PLANT (#1773), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF FILTER TANK IN FILTRATION PLANT (#1773), LOOKING NORTHWEST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  14. 12. OBLIQUE VIEW OF NORTH WORK ROOM IN FILTRATION PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. OBLIQUE VIEW OF NORTH WORK ROOM IN FILTRATION PLANT (#1773), LOOKING NORTHWEST - Presidio Water Treatment Plant, Filtration Plant, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  15. SITE PROGRAM DEMONSTRATION OF THE SBP TECHNOLOGIES, INC. MEMBRANE FILTRATION SYSTEM ON CREOSOTE-CONTAMINATED WATER

    EPA Science Inventory

    The formed-in-place, membrane filtration system offered by SBP Technologies, Inc. of Stone Mountain, Georgia was evaluated by the U.S. EPA Superfund Inno- vative Technology Evaluation (SITE) Program. The evaluation lasted six days; ap- proximately 1000 gallons per day of water co...

  16. WATER QUALITY IMPROVEMENTS DURING RIVERBANK FILTRATION AT THREE SITES IN THE MIDWESTERN US

    EPA Science Inventory

    A 3-year project is underway to evaluate riverbank filtration systems along three major US rivers. A principal aspects of the study involved monitoring a suite or organic, inorganic, and microbiological water quality parameters, with emphasis on disinfection byproduct formation p...

  17. TECHNICAL FACT SHEET: A Systematic Evaluation of Dissolved Metals Loss during Water Sample Filtration

    EPA Science Inventory

    This research study examined how water quality collection and filtration approaches, including commonly used capsule and disc syringe filters, may cause losses in the amounts of soluble lead and copper found in a sample. A variety of commercially available filter materials with a...

  18. Sediment filtration can reduce the N load of the waste water discharge - a full-scale lake experiment

    NASA Astrophysics Data System (ADS)

    Aalto, Sanni L.; Saarenheimo, Jatta; Karvinen, Anu; Rissanen, Antti J.; Ropponen, Janne; Juntunen, Janne; Tiirola, Marja

    2016-04-01

    European commission has obliged Baltic states to reduce nitrate load, which requires high investments on the nitrate removal processes and may increase emissions of greenhouse gases, e.g. N2O, in the waste water treatment plants. We used ecosystem-scale experimental approach to test a novel sediment filtration method for economical waste water N removal in Lake Keurusselkä, Finland between 2014 and 2015. By spatially optimizing the waste water discharge, the contact area and time of nitrified waste water with the reducing microbes of the sediment was increased. This was expected to enhance microbial-driven N transformation and to alter microbial community composition. We utilized 15N isotope pairing technique to follow changes in the actual and potential denitrification rates, nitrous oxide formation and dissimilatory nitrate reduction to ammonium (DNRA) in the lake sediments receiving nitrate-rich waste water input and in the control site. In addition, we investigated the connections between observed process rates and microbial community composition and functioning by using next generation sequencing and quantitative PCR. Furthermore, we estimated the effect of sediment filtration method on waste water contact time with sediment using the 3D hydrodynamic model. We sampled one year before the full-scale experiment and observed strong seasonal patterns in the process rates, which reflects the seasonal variation in the temperature-related mixing patterns of the waste water within the lake. During the experiment, we found that spatial optimization enhanced both actual and potential denitrification rates of the sediment. Furthermore, it did not significantly promote N2O emissions, or N retention through DNRA. Overall, our results indicate that sediment filtration can be utilized as a supplemental or even alternative method for the waste water N removal.

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM: Stormwater Source Area Treatment Device - Arkal Pressurized Stormwater Filtration System

    EPA Science Inventory

    Performance verification testing of the Arkal Pressurized Stormwater Filtration System was conducted under EPA's Environmental Technology Verification Program on a 5.5-acre parking lot and grounds of St. Mary's Hospital in Milwaukee, Wisconsin. The system consists of a water sto...

  20. WATER CAPTURE AND FILTRATION SYSTEM FOR ARID RURAL COMMUNITIES

    EPA Science Inventory

    The primary goal of our Phase 1 funding was to complete a scaled version of our P3 design. The great thing about our project is that it would help almost 4,000 residents and give hope to several adjacent villages that clean water was not a privilege, it is a right. Due to the loc...

  1. Filtration recovery of extracellular DNA from environmental water samples

    EPA Science Inventory

    qPCR methods are able to analyze DNA from microbes within hours of collecting water samples, providing the promptest notification and public awareness possible when unsafe pathogenic levels are reached. Health risk, however, may be overestimated by the presence of extracellular ...

  2. Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration.

    PubMed

    Macova, M; Escher, B I; Reungoat, J; Carswell, S; Chue, K Lee; Keller, J; Mueller, J F

    2010-01-01

    A bioanalytical test battery was used to monitor the removal efficiency of organic micropollutants during advanced wastewater treatment in the South Caboolture Water Reclamation Plant, Queensland, Australia. This plant treats effluent from a conventional sewage treatment plant for industrial water reuse. The aqueous samples were enriched using solid-phase extraction to separate some organic micropollutants of interest from metals, nutrients and matrix components. The bioassays were chosen to provide information on groups of chemicals with a common mode of toxic action. Therefore they can be considered as sum indicators to detect certain relevant groups of chemicals, not as the most ecologically or human health relevant endpoints. The baseline toxicity was quantified with the bioluminescence inhibition test using the marine bacterium Vibrio fischeri. The specific modes of toxic action that were targeted with five additional bioassays included aspects of estrogenicity, dioxin-like activity, genotoxicity, neurotoxicity, and phytotoxicity. While the accompanying publication discusses the treatment steps in more detail by drawing from the results of chemical analysis as well as the bioanalytical results, here we focus on the applicability and limitations of using bioassays for the purpose of determining the treatment efficacy of advanced water treatment and for water quality assessment in general. Results are reported in toxic equivalent concentrations (TEQ), that is, the concentration of a reference compound required to elicit the same response as the unknown and unidentified mixture of micropollutants actually present. TEQ proved to be useful and easily communicable despite some limitations and uncertainties in their derivation based on the mixture toxicity theory. The results obtained were reproducible, robust and sensitive. The TEQ in the influent ranged in the same order of magnitude as typically seen in effluents of conventional sewage treatment plants. In the

  3. TREATMENT BY FILTRATION OF STORMWATER RUNOFF PRIOR TO GROUNDWATER RECHARGE

    EPA Science Inventory

    Generally, dry ponds, trenches and swales do not have the same pollutant removal capacity as wet detention ponds. Their pollutant removal ability results from the straining of particulate matter out of the water. However, infiltration ceases when the bottom of the pond, trench or...

  4. Alkaline hydrothermal conversion of fly ash filtrates into zeolites 2: utilization in wastewater treatment.

    PubMed

    Somerset, Vernon; Petrik, Leslie; Iwuoha, Emmanuel

    2005-01-01

    Filtrates were collected using a codisposal reaction wherein fly ash was reacted with acid mine drainage. These codisposal filtrates were then analyzed by X-ray Fluorescence spectrometry for quantitative determination of the SiO2 and Al2O3 content. Alkaline hydrothermal zeolite synthesis was then applied to the filtrates to convert the fly ash material into zeolites. The zeolites formed under the experimental conditions were faujasite, sodalite, and zeolite A. The use of the fly ash-derived zeolites and a commercial zeolite was explored in wastewater decontamination experiments as it was applied to acid mine drainage in different dosages. The concentrations of Ni, Zn, Cd, As, and Pb metal ions in the treated wastewater were investigated. The results of the treatment of the acid mine drainage with the prepared fly ash zeolites showed that the concentrations of Ni, Zn, Cd, and Hg were decreased as the zeolite dosages of the fly ash zeolite (FAZ1) increased.

  5. Transport of water and ions in partially water-saturated porous media. Part 2. Filtration effects

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2017-05-01

    A new set of constitutive equations describing the transport of the ions and water through charged porous media and considering the effect of ion filtration is applied to the problem of reverse osmosis and diffusion of a salt. Starting with the constitutive equations derived in Paper 1, I first determine specific formula for the osmotic coefficient and effective diffusion coefficient of a binary symmetric 1:1 salt (such as KCl or NaCl) as a function of a dimensionless number Θ corresponding to the ratio between the cation exchange capacity (CEC) and the salinity. The modeling is first carried with the Donnan model used to describe the concentrations of the charge carriers in the pore water phase. Then a new model is developed in the thin double layer approximation to determine these concentrations. These models provide explicit relationships between the concentration of the ionic species in the pore space and those in a neutral reservoir in local equilibrium with the pore space and the CEC. The case of reverse osmosis and diffusion coefficient are analyzed in details for the case of saturated and partially saturated porous materials. Comparisons are done with experimental data from the literature obtained on bentonite. The model predicts correctly the influence of salinity (including membrane behavior at high salinities), porosity, cation type (K+ versus Na+), and water saturation on the osmotic coefficient. It also correctly predicts the dependence of the diffusion coefficient of the salt with the salinity.

  6. Removal of bacterial fecal indicators, coliphages and enteric adenoviruses from waters with high fecal pollution by slow sand filtration.

    PubMed

    Bauer, Rosalie; Dizer, Halim; Graeber, Ingeborg; Rosenwinkel, Karl-Heinz; López-Pila, Juan M

    2011-01-01

    The aim of the present study was to estimate the performance of slow sand filtration (SSF) facilities, including the time needed for reaching stabilization (maturation), operated with surface water bearing high fecal contamination, representing realistic conditions of rivers in many emerging countries. Surface water spiked with wastewater was infiltrated at different pore water velocities (PWV) and samples were collected at different migration distances. The samples were analyzed for phages and to a lesser extent for fecal bacteria and enteric adenoviruses. At the PWV of 50 cm/d, at which somatic phages showed highest removal, their mean log(10) removal after 90 cm migration was 3.2. No substantial differences of removal rates were observed at PWVs between 100 and 900 cm/d (2.3 log(10) mean removal). The log(10) mean removal of somatic phages was less than the observed for fecal bacteria and tended more towards that of enteric adenoviruses This makes somatic phages a potentially better process indicator than Escherichia coli for the removal of viruses in SSF. We conclude that SSF, and by inference in larger scale river bank filtration (RBF), is an excellent option as a component in multi-barrier systems for drinking water treatment also in areas where the sources of raw water are considerably fecally polluted, as often found in many emerging countries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Effect of operation parameters on the flux stabilization of gravity-driven membrane (GDM) filtration system for decentralized water supply.

    PubMed

    Tang, Xiaobin; Ding, An; Qu, Fangshu; Jia, Ruibao; Chang, Haiqing; Cheng, Xiaoxiang; Liu, Bin; Li, Guibai; Liang, Heng

    2016-08-01

    A pilot-scale gravity-driven membrane (GDM) filtration system under low gravitational pressure without any pre-treatment, backwash, flushing, or chemical cleaning was carried out to investigate the effect of operation parameters (including operation pressure, aeration mode, and intermittent filtration) on the effluent quality and permeability development. The results revealed that GDM system exhibited an efficient performance for the removal of suspended substances and organic compounds. The stabilization of flux occurred and the average values of stable flux were 6.6, 8.1, and 8.6 Lm(-2) h(-1) for pressures of 65, 120, and 200 mbar, respectively. In contrast, flux stabilization was not observed under continuous and intermittent aeration conditions. However, aeration (especially continuous aeration) was effective to improve flux and alleviate membrane fouling during 1-month operation. Moreover, intermittent filtration would influence the stabilization of permeate flux, resulting in a higher stable flux (ranging from 6 to 13 Lm(-2) h(-1)). The stable flux significantly improved with the increase of intermittent period. Additionally, GDM systems exhibited an efficient recovery of flux after simple physical cleaning and the analyses of resistance reversibility demonstrated that most of the total resistance was hydraulic reversible resistance (50-75 %). Therefore, it is expected that the results of this study can develop strategies to increase membrane permeability and reduce energy consumption in GDM systems for decentralized water supply.

  8. Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media.

    PubMed

    Abebe, Lydia S; Su, Yi-Hsuan; Guerrant, Richard L; Swami, Nathan S; Smith, James A

    2015-11-03

    Ceramic water filters (CWFs) impregnated with silver nanoparticles are a means of household-level water treatment. CWFs remove/deactivate microbial pathogens by employing two mechanisms: metallic disinfection and physical filtration. Herein we report on the independent effects of silver salt and nanoparticles on Cryptosporidium parvum and the removal of C. parvum by physical filtration in porous ceramic filter media. Using a murine (mouse) model, we observed that treatment of oocysts with silver nitrate and proteinate-capped silver nanoparticles resulted in decreased infection relative to untreated oocysts. Microscopy and excystation experiments were conducted to support the disinfection investigation. Heat and proteinate-capped silver-nanoparticle treatment of oocysts resulted in morphological modifications and decreased excystation rates of sporozoites. Subsequently, disk-shaped ceramic filters were produced to investigate the transport of C. parvum. Two factors were varied: sawdust size and clay-to-sawdust ratio. Five disks were prepared with combinations of 10, 16, and 20 mesh sawdust and sawdust percentage that ranged from 9 to 11%. C. parvum removal efficiencies ranged from 1.5 log (96.4%) to 2.1 log (99.2%). The 16-mesh/10% sawdust had the greatest mean reduction of 2.1-log (99.2%), though there was no statistically significant difference in removal efficiency. Based on our findings, physical filtration and silver nanoparticle disinfection likely contribute to treatment of C. parvum for silver impregnated ceramic water filters, although the contribution of physical filtration is likely greater than silver disinfection.

  9. Particle counter as a tool to control pre-hydrolyzed coagulant dosing and rapid filtration efficiency in a conventional treatment system.

    PubMed

    Gumińska, Jolanta; Kłos, Marcin

    2015-01-01

    Filtration efficiency in a conventional water treatment system was analyzed in the context of pre-hydrolyzed coagulant overdosing. Two commercial coagulants of different aluminum speciation were tested. A study was carried out at a water treatment plant supplied with raw water of variable quality. The lack of stability of water quality caused many problems with maintaining the optimal coagulant dose. The achieved results show that the type of coagulant had a very strong influence on the effectiveness of filtration resulting from the application of an improper coagulant dose. The overdosing of high basicity coagulant (PAC85) caused a significant increase of fine particles in the outflow from the sedimentation tanks, which could not be retained in the filter bed due to high surface charge and the small size of hydrolysis products. When using a coagulant of lower basicity (PAC70), it was much easier to control the dose of coagulant and to adjust it to the changing water quality.

  10. Microfluidic colloid filtration

    PubMed Central

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-01-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level. PMID:26927706

  11. Filtration of water-sediment samples for the determination of organic compounds

    USGS Publications Warehouse

    Sandstrom, Mark W.

    1995-01-01

    This report describes the equipment and procedures used for on-site filtration of surface-water and ground-water samples for determination of organic compounds. Glass-fiber filters and a positive displacement pumping system are suitable for processing most samples for organic analyses. An optional system that uses disposable in-line membrane filters is suitable for a specific gas chromatography/mass spectrometry, selected-ion monitoring analytical method for determination of organonitrogen herbicides. General procedures to minimize contamination of the samples include preparing a clean workspace at the site, selecting appropriate sample-collection materials, and cleaning of the equipment with detergent, tap water, and methanol.

  12. Nano-structured silica coated mesoporous carbon micro-granules for potential application in water filtration

    NASA Astrophysics Data System (ADS)

    Das, Avik; Sen, D.; Mazumder, S.; Ghosh, A. K.

    2017-05-01

    A novel nano-composite spherical micro-granule has been synthesized using a facile technique of solvent evaporation induced assembly of nanoparticles for potential application in water filtration. The spherical micro-granule is comprised of nano-structured shell of hydrophilic silica encapsulating a hydrophobic mesoporous carbon at the core. Hierarchical structure of such core-shell micro-granules has been rigorously characterized using small-angle neutron and X-ray scattering techniques and complemented with scanning electron microscopy. The hydrophilic silica envelope around the carbon core helps in incorporation of such granules into the hydrophilic polymeric ultra-filtration membrane. The interstitial micro-pores present in the silica shell can serve as water transport channels and the mesoporus carbon core enhances the separation performance due its well adsorption characteristics. It has been found that the incorporation of such granules inside the ultra-filtration membrane indeed enhances the water permeability as well as the separation performance in a significant way.

  13. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration.

    PubMed

    Rakruam, Pharkphum; Wattanachira, Suraphong

    2014-03-01

    This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  14. A Guide for Developing Standard Operating Job Procedures for the Tertiary Multimedia Filtration Process Wastewater Treatment Facility. SOJP No. 7.

    ERIC Educational Resources Information Center

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary multimedia filtration process of wastewater treatment plants. The major objective of the filtration process is the removal of suspended solids from the reclaimed wastewater. The guide gives step-by-step instructions for pre-start up, start-up, continuous operation, and…

  15. Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration.

    PubMed

    Ali, Asmaa; Ahmed, Abdelkader; Gad, Ali

    2017-01-01

    This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb 2+ , Cu 2+ , and Cd 2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.

  16. Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water; a review.

    PubMed

    Zazouli, Mohammad Ali; Kalankesh, Laleh R

    2017-01-01

    Disinfection by-products (DBPs) have heterogeneous structures which are suspected carcinogens as a result of reactions between NOMs (Natural Organic Matter) and oxidants/disinfectants such as chlorine. Because of variability in DBPs characteristics, eliminate completely from drinking water by single technique is impossible. The current article reviews removal of the precursors and DBPs by different membrane filtration methods such as Microfiltration (MF), Ultrafiltration (UF), Nanofiltration (NF) and Reverse Osmosis (RO) techniques. Also, we provide an overview of existing and potentially Membrane filtration techniques, highlight their strengths and drawbacks. MF membranes are a suitable alternative to remove suspended solids and colloidal materials. However, NOMs fractions are effectively removed by negatively charged UF membrane. RO can remove both organic and inorganic DBPs and precursors simultaneously. NF can be used to remove compounds from macromolecular size to multivalent ions.

  17. Recent Trends in Nanofibrous Membranes and Their Suitability for Air and Water Filtrations

    PubMed Central

    Balamurugan, Ramalingam; Sundarrajan, Subramanian; Ramakrishna, Seeram

    2011-01-01

    In recent decades, engineered membranes have become a viable separation technology for a wide range of applications in environmental, food and biomedical fields. Membranes are now competitive compared to conventional techniques such as adsorption, ion exchangers and sand filters. The main advantage of membrane technology is the fact that it works without the addition of any chemicals, with relatively high efficiency and low energy consumption with well arranged process conductions. Hence they are widely utilized in biotechnology, food and drink manufacturing, air filtration and medical uses such as dialysis for kidney failure patients. Membranes from nanofibrous materials possess high surface area to volume ratio, fine tunable pore sizes and their ease of preparation prompted both industry and academic researchers to study their use in many applications. In this paper, modern concepts and current research progress on various nanofibrous membranes, such as water and air filtration media, are presented. PMID:24957734

  18. Self-Driven Desalination and Advanced Treatment of Wastewater in a Modularized Filtration Air Cathode Microbial Desalination Cell.

    PubMed

    Zuo, Kuichang; Wang, Zhen; Chen, Xi; Zhang, Xiaoyuan; Zuo, Jiaolan; Liang, Peng; Huang, Xia

    2016-07-05

    Microbial desalination cells (MDCs) extract organic energy from wastewater for in situ desalination of saline water. However, to desalinate salt water, traditional MDCs often require an anolyte (wastewater) and a catholyte (other synthetic water) to produce electricity. Correspondingly, the traditional MDCs also produced anode effluent and cathode effluent, and may produce a concentrate solution, resulting in a low production of diluate. In this study, nitrogen-doped carbon nanotube membranes and Pt carbon cloths were utilized as filtration material and cathode to fabricate a modularized filtration air cathode MDC (F-MDC). With real wastewater flowing from anode to cathode, and finally to the middle membrane stack, the diluate volume production reached 82.4%, with the removal efficiency of salinity and chemical oxygen demand (COD) reached 93.6% and 97.3% respectively. The final diluate conductivity was 68 ± 12 μS/cm, and the turbidity was 0.41 NTU, which were sufficient for boiler supplementary or industrial cooling. The concentrate production was only 17.6%, and almost all the phosphorus and salt, and most of the nitrogen were recovered, potentially allowing the recovery of nutrients and other chemicals. These results show the potential utility of the modularized F-MDC in the application of municipal wastewater advanced treatment and self-driven desalination.

  19. Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor wastewater treatment plants and by riverbank filtration.

    PubMed

    Petrovic, Mira; de Alda, Maria Jose Lopez; Diaz-Cruz, Silvia; Postigo, Cristina; Radjenovic, Jelena; Gros, Meritxell; Barcelo, Damià

    2009-10-13

    Pharmaceutically active compounds (PhACs) and drugs of abuse (DAs) are two important groups of emerging environmental contaminants that have raised an increasing interest in the scientific community. A number of studies revealed their presence in the environment. This is mainly due to the fact that some compounds are not efficiently removed during wastewater treatment processes, being able to reach surface and groundwater and subsequently, drinking waters. This paper reviews the data regarding the levels of pharmaceuticals and illicit drugs detected in wastewaters and gives an overview of their removal by conventional treatment technologies (applying activated sludge) as well as advanced treatments such as membrane bioreactor. The paper also gives an overview of bank filtration practices at managed aquifer recharge sites and discusses the potential of this approach to mitigate the contamination by PhACs and DAs.

  20. Study on the influence on water ecosystem by a lake inflow filtration system

    NASA Astrophysics Data System (ADS)

    Wu, Sushu; Gao, Shipei; Hu, Xiaodong; Weng, Songgan; Guo, Liuchao

    2018-06-01

    Lakes play important roles in the economic-social sustainable development. However, due to unreasonable development and urbanization in recent years, lake water pollution and ecological degradation have occurred in China. The improvement of the lake inflow water quality is very important. A filtration system includes Gravel filtering system, Aquatic plant area and Ecological bag area was established. The test river is one of the typical lake inflow river and located in the river network in the Chang Dang lake, China. Water quality, zooplankton and phytoplankton in the inflow river were observed form July to mid-August in order to analyze the general process. The average removal rate of NH3-N (ammonia nitrogen) TN (total nitrogen) and TP (total phosphorus) is 28.33, 25.76 and 24.43 %, respectively. The Pantle-Buck method was used to evaluate the water quality and the B/T index was used to evaluate the nutrition situation. The B/T values were reduced by 20 % and the SI pollution index was reduced by 11.8 %. Therefore, a positive effect on the water's ecological restoration was achieved by the filtration system.

  1. Use of a Filter Cartridge for Filtration of Water Samples and Extraction of Environmental DNA.

    PubMed

    Miya, Masaki; Minamoto, Toshifumi; Yamanaka, Hiroki; Oka, Shin-Ichiro; Sato, Keiichi; Yamamoto, Satoshi; Sado, Tetsuya; Doi, Hideyuki

    2016-11-25

    Recent studies demonstrated the use of environmental DNA (eDNA) from fishes to be appropriate as a non-invasive monitoring tool. Most of these studies employed disk fiber filters to collect eDNA from water samples, although a number of microbial studies in aquatic environments have employed filter cartridges, because the cartridge has the advantage of accommodating large water volumes and of overall ease of use. Here we provide a protocol for filtration of water samples using the filter cartridge and extraction of eDNA from the filter without having to cut open the housing. The main portions of this protocol consists of 1) filtration of water samples (water volumes ≤4 L or >4 L); (2) extraction of DNA on the filter using a roller shaker placed in a preheated incubator; and (3) purification of DNA using a commercial kit. With the use of this and previously-used protocols, we perform metabarcoding analysis of eDNA taken from a huge aquarium tank (7,500 m 3 ) with known species composition, and show the number of detected species per library from the two protocols as the representative results. This protocol has been developed for metabarcoding eDNA from fishes, but is also applicable to eDNA from other organisms.

  2. Study on an integrated process combining ozonation with ceramic ultra-filtration for decentralized supply of drinking water.

    PubMed

    Zhu, Jia; Fan, Xiao J; Tao, Yi; Wei, De Q; Zhang, Xi H

    2014-09-19

    An integrated process was specifically developed for the decentralized supply of drinking water from micro-polluted surface water in the rural areas of China. The treatment process combined ozonation with ceramic ultra-filtration (UF), coagulation for pre-treatment and granular activated carbon filtration. A flat-sheet ceramic membrane was used with a cut-off of 60 nm and the measurement of 254 mm (length) × 240 mm (width) × 6 mm (thickness). Ozonation and ceramic UF was set up whthin one reactor. The experimental results showed that the removal efficiencies of the dissolved organic carbon (DOC) and the formation potential of trihalomethanes (THMs), haloacetic acids (HAAs) and ammonia were 80%, 76%, 70% and 90%, respectively; that the turbidity of the product water was below 0.2 NTU and the particle count number (particles larger than 2 μm) was less than 50 counts per mL. The result also showed that all the pathogenic microorganisms were retained by the ceramic and that UF. Ozonation played a critical role in the control of membrane fouling and the removal of contaminants. Exactly, the membrane fouling can be controlled in situ with 3 mg L(-1) ozone at the permeate flux of 80 L m(-2) h(-1), yet the required dosage of ozone was dependent on the quality of the raw water. Therefore, this study is able to provide a highly compacted system for decentralized supply of high-quality drinking water in terms of both chemical and microbiological safety for the rural areas in China.

  3. Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System

    NASA Astrophysics Data System (ADS)

    Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.

    2016-07-01

    Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.

  4. Acceptance and Impact of Point-of-Use Water Filtration Systems in Rural Guatemala.

    PubMed

    Larson, Kim L; Hansen, Corrie; Ritz, Michala; Carreño, Diego

    2017-01-01

    Infants and children in developing countries bear the burden of diarrheal disease. Diarrheal disease is linked to unsafe drinking water and can result in serious long-term consequences, such as impaired immune function and brain growth. There is evidence that point-of-use water filtration systems reduce the prevalence of diarrhea in developing countries. In the summer of 2014, following community forums and interactive workshops, water filters were distributed to 71 households in a rural Maya community in Guatemala. The purpose of this study was to evaluate the uptake of tabletop water filtration systems to reduce diarrheal diseases. A descriptive correlational study was used that employed community partnership and empowerment strategies. One year postintervention, in the summer of 2015, a bilingual, interdisciplinary research team conducted a house-to-house survey with families who received water filters. Survey data were gathered from the head of household on family demographics, current family health, water filter usage, and type of flooring in the home. Interviews were conducted in Spanish and in partnership with a village leader. Each family received a food package of household staples for their participation. Descriptive statistics were calculated for all responses. Fisher's exact test and odds ratios were used to determine relationships between variables. Seventy-nine percent (n = 56) of the 71 households that received a water filter in 2014 participated in the study. The majority of families (71.4%; n = 40) were using the water filters and 16 families (28.6%) had broken water filters. Of the families with working water filters, 15% reported diarrhea, while 31% of families with a broken water filter reported diarrhea. Only 55.4% of the homes had concrete flooring. More households with dirt flooring and broken water filters reported a current case of diarrhea. A record review of attendees at an outreach clinic in this village noted a decrease in intestinal

  5. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification.

    PubMed

    Phelps, T J; Palumbo, A V; Bischoff, B L; Miller, C J; Fagan, L A; McNeilly, M S; Judkins, R R

    2008-07-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold.

  6. PERFORMANCE IMPROVEMENT OF CROSS-FLOW FILTRATION FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect

    Duignan, M.; Nash, C.; Poirier, M.

    2011-01-12

    In the interest of accelerating waste treatment processing, the DOE has funded studies to better understand filtration with the goal of improving filter fluxes in existing cross-flow equipment. The Savannah River National Laboratory (SRNL) was included in those studies, with a focus on start-up techniques, filter cake development, the application of filter aids (cake forming solid precoats), and body feeds (flux enhancing polymers). This paper discusses the progress of those filter studies. Cross-flow filtration is a key process step in many operating and planned waste treatment facilities to separate undissolved solids from supernate slurries. This separation technology generally has themore » advantage of self-cleaning through the action of wall shear stress created by the flow of waste slurry through the filter tubes. However, the ability of filter wall self-cleaning depends on the slurry being filtered. Many of the alkaline radioactive wastes are extremely challenging to filtration, e.g., those containing compounds of aluminum and iron, which have particles whose size and morphology reduce permeability. Unfortunately, low filter flux can be a bottleneck in waste processing facilities such as the Savannah River Modular Caustic Side Solvent Extraction Unit and the Hanford Waste Treatment Plant. Any improvement to the filtration rate would lead directly to increased throughput of the entire process. To date increased rates are generally realized by either increasing the cross-flow filter axial flowrate, limited by pump capacity, or by increasing filter surface area, limited by space and increasing the required pump load. SRNL set up both dead-end and cross-flow filter tests to better understand filter performance based on filter media structure, flow conditions, filter cleaning, and several different types of filter aids and body feeds. Using non-radioactive simulated wastes, both chemically and physically similar to the actual radioactive wastes, the authors

  7. Vacuum distillation/vapor filtration water recovery, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Remus, G. A.; Krug, E. K.

    1973-01-01

    The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.

  8. Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation.

    PubMed

    Vingerhoeds, Monique H; Nijenhuis-de Vries, Mariska A; Ruepert, Nienke; van der Laan, Harmen; Bredie, Wender L P; Kremer, Stefanie

    2016-05-01

    Membrane filtration of ground, surface, or sea water by reverse osmosis results in permeate, which is almost free from minerals. Minerals may be added afterwards, not only to comply with (legal) standards and to enhance chemical stability, but also to improve the taste of drinking water made from permeate. Both the nature and the concentrations of added minerals affect the taste of the water and in turn its acceptance by consumers. The aim of this study was to examine differences in taste between various remineralised drinking waters. Samples selected varied in mineral composition, i.e. tap water, permeate, and permeate with added minerals (40 or 120 mg Ca/L, added as CaCO3, and 4 or 24 mg Mg/L added as MgCl2), as well as commercially available bottled drinking waters, to span a relevant product space in which the remineralised samples could be compared. All samples were analysed with respect to their physical-chemical properties. Sensory profiling was done by descriptive analysis using a trained panel. Significant attributes included taste intensity, the tastes bitter, sweet, salt, metal, fresh and dry mouthfeel, bitter and metal aftertaste, and rough afterfeel. Total dissolved solids (TDS) was a major determinant of the taste perception of water. In general, lowering mineral content in drinking water in the range examined (from <5 to 440 mg/L) shifted the sensory perception of water from fresh towards bitter, dry, and rough sensations. In addition, perceived freshness of the waters correlated positively with calcium concentration. The greatest fresh taste was found for water with a TDS between 190 and 350 mg/L. Remineralisation of water after reverse osmosis can improve drinking quality significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Reductions in bacterial microorganisms by filtration and ozonation of the surface water supply at the USFWS Northeast Fishery Center

    USDA-ARS?s Scientific Manuscript database

    A water filtration and ozonation system was recently installed to treat creek water used to culture species of concern at the U.S. Fish and Wildlife Service's Northeast Fishery Center, Lamar National Fish Hatchery (NFH). Past experience with fish culture indicates that the following bacterial pathog...

  10. The use of zero-valent iron filtration to reduce Escherichia coli and Listeria innocua in irrigation water

    USDA-ARS?s Scientific Manuscript database

    Introduction: Irrigation water can be a source of contamination in outbreaks associated with produce. Zero-valent iron (ZVI) filtration has been effective in E. coli O157:H12 in irrigation water, but has not been evaluated against Listeria spp. Purpose: To 1) determine effectiveness of ZVI filters...

  11. Cyanobacteria breakthrough: Effects of Limnothrix redekei contamination in an artificial bank filtration on a regional water supply.

    PubMed

    Rose, Adam K; Fabbro, Larelle; Kinnear, Susan

    2018-06-01

    Mitigation of cyanobacterial or "blue-green algal" blooms is a challenging task for water managers across Australia. In the present study, a regional drinking water source (located in Central Queensland) was studied to identify the potential risks posed by cyanobacteria. Data were collected from the drinking water source (a lagoon) as well as the drinking water supply infrastructure, at monthly intervals between September 2012 and December 2014. In March 2013 there was an extreme rainfall event where floodwaters infiltrated the water supply without passing through bank filtration. The floodwaters also compromised the bank filtration via erosion. The pump well and bank filtration system were subsequently upgraded/maintained in May 2013. Results showed that following the extreme event and infrastructure upgrade, two distinct Limnothrix redekei blooms microscopically identified, were detected in the drinking water supply chain. Further investigations indicated that the species was also present in the pump well infrastructure, a dark environment, growing on the surface of the newly installed pump well cement pipe. After observing the occurrence and habitat niche of this species during the present study, a suggestion was made to minimise cyanobacterial contamination and proliferation within the water supply chain infrastructure. The preliminary proposal is to use clean sand on the sub-surface layer of the bank filtration, complemented with biologically active sand as a surface cap. Furthermore, the culturing techniques reported in this study can potentially be used to optimize assessment for Limnothrix redekei populations surrounding water extraction points. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    PubMed

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals <80% at <5,000 BV. In addition, breakthrough behavior was

  13. Impact of polymeric membrane filtration of oil sands process water on organic compounds quantification.

    PubMed

    Moustafa, Ahmed M A; Kim, Eun-Sik; Alpatova, Alla; Sun, Nian; Smith, Scott; Kang, Seoktae; Gamal El-Din, Mohamed

    2014-01-01

    The interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.7. However, the adsorption of AEF on the membranes increased as the pH of OSPW decreased due to hydrophobic interactions between the membrane surfaces and the protonated molecules. The use of ultra pressure liquid chromatography-high resolution mass spectrometry (UPLC/HRMS) showed insignificant adsorption of NAs on the tested membranes at pH 8.7. However, 26±2.4% adsorption of NAs was observed at pH 5.3 following the protonation of NAs species. For the nylon membrane, excessive carboxylic acids in the commercial NAs caused the formation of negatively charged assisted hydrogen bonds, resulting in increased adsorption at pH 8.2 (25%) as compared to OSPW (0%). The use of membranes for filtration of soluble compounds from complex oily wastewaters before quantification analysis of AEF and NAs should be examined prior to application.

  14. Application of graphene oxide in water treatment

    NASA Astrophysics Data System (ADS)

    Liu, Yongchen

    2017-11-01

    Graphene oxide has good hydrophilicity and has been tried to use it into thin films for water treatment in recent years. In this paper, the preparation methods of graphene oxide membrane are reviewed, including vacuum suction filtration, spray coating, spin coating, dip coating and the layer by layer method. Secondly, the mechanism of mass transfer of graphene membrane is introduced in detail. The application of the graphene oxide membrane, modified graphene oxide membrane and graphene hybrid membranes were discussed in RO, vaporization, nanofiltration and other aspects. Finally, the development and application of graphene membrane in water treatment were discussed.

  15. Drinking water treatment for a rural karst region in Indonesia

    NASA Astrophysics Data System (ADS)

    Matthies, K.; Schott, C.; Anggraini, A. K.; Silva, A.; Diedel, R.; Mühlebach, H.; Fuchs, S.; Obst, U.; Brenner-Weiss, G.

    2016-09-01

    An interdisciplinary German-Indonesian joint research project on Integrated Water Resources Management (IWRM) focused on the development and exemplary implementation of adapted technologies to improve the water supply situation in a model karst region in southern Java. The project involving 19 sub-projects covers exploration of water resources, water extraction, distribution as well as water quality assurance, and waste water treatment. For the water quality assurance, an appropriate and sustainable drinking water treatment concept was developed and exemplarily implemented. Monitoring results showed that the main quality issue was the contamination with hygienically relevant bacteria. Based on the gained results, a water treatment concept was developed consisting of a central sand filtration prior to the distribution network, a semi-central hygienization where large water volumes are needed to remove bacteria deriving from water distribution and a final point-of-use water treatment. This paper focuses on the development of a central sand filtration plant and some first analysis for the development of a recipe for the local production of ceramic filters for household water treatment. The first results show that arsenic and manganese are leaching from the filters made of local raw material. Though discarding the first, filtrates should be sufficient to reduce arsenic and manganese concentration effectively. Moreover, hydraulic conductivities of filter pots made of 40 % pore-forming agents are presented and discussed.

  16. Modelling of the Water Exchange between Shallow Groundwater and River during bank filtration and changing conditions

    NASA Astrophysics Data System (ADS)

    Wang, Weishi; Munz, Matthias; Oswald, Sascha E.

    2015-04-01

    The interaction of river water and groundwater is of importance for the hydrological cycle and water quality in rivers. Moreover, drinking water is often obtained by pumping groundwater in the direct vicinity of rivers, called bank filtration. Typically this implies a considerable dynamics, because changes in river water level and pumping activities will cause varying conditions, and in its effects modified by the local hydrogeology. Numerical modelling can be a tool to study spatial patterns and temporal changes. Often this is limited by model performance, uncertainty of geological structure and lack of sufficient observation values beyond water heads, for example water quality or temperature data. The aim of this research is to model the hydraulic conditions for transient conditions, including a period of substantial re-construction works in the river. Later this will then be used to include the temperature and other water quality data to improve the model performance. As shown from the geological information analysis, the majority of the water volume pumped is from the first and second aquifers, where a strong exchange between the river and groundwater can happen. The implementation of the geological structure is based on 7 main geological profiles and several scattered drilling wells of difference depths. A first model has been built in FEFLOW 6.2 as a steady fluid flow model, while the pilot-points auto-calibration method is used for estimating the hydraulic conductivity of different sediment types, based on water head information of 19 observation wells. Then a transient model during the year 2011-2013 is further calibrated based on estimated hydraulic conductivity. Furthermore, the observation wells are used to make a statistic analysis with the hydrograph of the river to clarify the correlation of changes in river to changes in groundwater.

  17. Polyethersulfone-based ultrafiltration hollow fibre membrane for drinking water treatment systems

    NASA Astrophysics Data System (ADS)

    Chew, Chun Ming; Ng, K. M. David; Ooi, H. H. Richard

    2017-12-01

    Conventional media/sand filtration has been the mainstream water treatment process for most municipal water treatment plants in Malaysia. Filtrate qualities of conventional media/sand filtration are very much dependent on the coagulation-flocculation process prior to filtration and might be as high as 5 NTU. However, the demands for better quality of drinking water through public piped-water supply systems are growing. Polymeric ultrafiltration (UF) hollow fibre membrane made from modified polyethersulfone (PES) material is highly hydrophilic with high tensile strength and produces excellent quality filtrate of below 0.3 NTU in turbidity. This advanced membrane filtration material is also chemical resistance which allows a typical lifespan of 5 years. Comparisons between the conventional media/sand filtration and PES-based UF systems are carried out in this paper. UF has been considered as the emerging technology in municipal drinking water treatment plants due to its consistency in producing high quality filtrates even without the coagulation-flocculation process. The decreasing cost of PES-based membrane due to mass production and competitive pricing by manufacturers has made the UF technology affordable for industrial-scale water treatment plants.

  18. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration.

    PubMed

    Abood, Alkhafaji R; Bao, Jianguo; Du, Jiangkun; Zheng, Dan; Luo, Ye

    2014-02-01

    This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH3-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s(-1) within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD5) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L(-1) at pH 5.0. The biodegradable ratio BOD5/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD5, 95.5% COD and 98.1% NH3-N removal were achieved by SBR operated under anoxic-aerobic-anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD5, suspended solid (SS), NH3-N and total organic carbon (TOC) were 72.4 mg L(-1), 22.8 mg L(-1), 24.2 mg L(-1), 18.4 mg L(-1) and 50.8 mg L(-1) respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Attenuation of NADPH oxidase activation and glomerular filtration barrier remodeling with statin treatment.

    PubMed

    Whaley-Connell, Adam; Habibi, Javad; Nistala, Ravi; Cooper, Shawna A; Karuparthi, Poorna R; Hayden, Melvin R; Rehmer, Nathan; DeMarco, Vincent G; Andresen, Bradley T; Wei, Yongzhong; Ferrario, Carlos; Sowers, James R

    2008-02-01

    Activation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase by angiotensin II is integral to the formation of oxidative stress in the vasculature and the kidney. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibition is associated with reductions of oxidative stress in the vasculature and kidney and associated decreases in albuminuria. Effects of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibition on oxidative stress in the kidney and filtration barrier integrity are poorly understood. To investigate, we used transgenic TG(mRen2)27 (Ren2) rats, which harbor the mouse renin transgene and renin-angiotensin system activation, and an immortalized murine podocyte cell line. We treated young, male Ren2 and Sprague-Dawley rats with rosuvastatin (20 mg/kg IP) or placebo for 21 days. Compared with controls, we observed increases in systolic blood pressure, albuminuria, renal NADPH oxidase activity, and 3-nitrotryosine staining, with reductions in the rosuvastatin-treated Ren2. Structural changes on light and transmission electron microscopy, consistent with periarteriolar fibrosis and podocyte foot-process effacement, were attenuated with statin treatment. Nephrin expression was diminished in the Ren2 kidney and trended to normalize with statin treatment. Angiotensin II-dependent increases in podocyte NADPH oxidase activity and subunit expression (NOX2, NOX4, Rac, and p22(phox)) and reactive oxygen species generation were decreased after in vitro statin treatment. These data support a role for increased NADPH oxidase activity and subunit expression with resultant reactive oxygen species formation in the kidney and podocyte. Furthermore, statin attenuation of NADPH oxidase activation and reactive oxygen species formation in the kidney/podocyte seems to play roles in the abrogation of oxidative stress-induced filtration barrier injury and consequent albuminuria.

  20. 40 CFR 141.717 - Pre-filtration treatment toolbox components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for treatment credit. Granular aquifers are those comprised of sand, clay, silt, rock fragments... Cryptosporidium and related hydrogeologic and water quality parameters during the full range of operating...

  1. Organic micropollutant removal from wastewater effluent-impacted drinking water sources during bank filtration and artificial recharge.

    PubMed

    Maeng, Sung Kyu; Ameda, Emmanuel; Sharma, Saroj K; Grützmacher, Gesche; Amy, Gary L

    2010-07-01

    Natural treatment systems such as bank filtration (BF) and artificial recharge (via an infiltration basin) are a robust barrier for many organic micropollutants (OMPs) and may represent a low-cost alternative compared to advanced drinking water treatment systems. This study analyzes a comprehensive database of OMPs at BF and artificial recharge (AR) sites located near Lake Tegel in Berlin (Germany). The focus of the study was on the derivation of correlations between the removal efficiencies of OMPs and key factors influencing the performance of BF and AR. At the BF site, shallow monitoring wells located close to the Lake Tegel source exhibited oxic conditions followed by prolonged anoxic conditions in deep monitoring wells and a production well. At the AR site, oxic conditions prevailed from the recharge pond along monitoring wells to the production well. Long residence times of up to 4.5 months at the BF site reduced the temperature variation during soil passage between summer and winter. The temperature variations were greater at the AR site as a consequence of shorter residence times. Deep monitoring wells and the production well located at the BF site were under the influence of ambient groundwater and old bank filtrate (up to several years of age). Thus, it is important to account for mixing with native groundwater and other sources (e.g., old bank filtrate) when estimating the performance of BF with respect to removal of OMPs. Principal component analysis (PCA) was used to investigate correlations between OMP removals and hydrogeochemical conditions with spatial and temporal parameters (e.g., well distance, residence time and depth) from both sites. Principal component-1 (PC1) embodied redox conditions (oxidation-reduction potential and dissolved oxygen), and principal component-2 (PC2) embodied degradation potential (e.g., total organic carbon and dissolved organic carbon) with the calcium carbonate dissolution potential (Ca(2+) and HCO(3)(-)) for the BF

  2. Potential of combining mechanical and physicochemical municipal wastewater pre-treatment with direct membrane filtration.

    PubMed

    Hey, Tobias; Väänänen, Janne; Heinen, Nicolas; la Cour Jansen, Jes; Jönsson, Karin

    2017-01-01

    At a full-scale wastewater treatment plant, raw municipal wastewater from the sand trap outlet was mechanically and physicochemically pre-treated before microfiltration (MF) in a large pilot-scale study. MF was performed using a low transmembrane pressure (0.03 bar) without backflushing for up to 159 h (∼6.6 d). Pre-filtration ensured stable MF operation compared with the direct application of raw wastewater on the membrane. The combination of physicochemical pre-treatment, such as coagulation, flocculation, and microsieving, with MF meets the European and Swedish discharge limits for small- and medium-sized wastewater treatment plants (WWTPs). The specific electricity footprint was 0.3-0.4 kWh·m -3 , which is an improvement compared to the median footprint of 0.75 kWh·m -3 found in 105 traditional Swedish WWTPs with sizes of 1500-10,000 person equivalents. Furthermore, the biological treatment step can be omitted, and the risk of releasing greenhouse gases was eliminated. The investigated wastewater treatment process required less space than conventional wastewater treatment processes, and more carbon was made available for biogas production.

  3. Comparison of m-Endo LES, MacConkey, and Teepol media for membrane filtration counting of total coliform bacteria in water.

    PubMed Central

    Grabow, W O; du Preez, M

    1979-01-01

    Total coliform counts obtained by means of standard membrane filtration techniques, using MacConkey agar, m-Endo LES agar, Teepol agar, and pads saturated with Teepol broth as growth media, were compared. Various combinations of these media were used in tests on 490 samples of river water and city wastewater after different stages of conventional purification and reclamation processes including lime treatment, and filtration, active carbon treatment, ozonation, and chlorination. Endo agar yielded the highest average counts for all these samples. Teepol agar generally had higher counts then Teepol broth, whereas MacConkey agar had the lowest average counts. Identification of 871 positive isolates showed that Aeromonas hydrophila was the species most commonly detected. Species of Escherichia, Citrobacter, Klebsiella, and Enterobacter represented 55% of isolates which conformed to the definition of total coliforms on Endo agar, 54% on Teepol agar, and 45% on MacConkey agar. Selection for species on the media differed considerably. Evaluation of these data and literature on alternative tests, including most probable number methods, indicated that the technique of choice for routine analysis of total coliform bacteria in drinking water is membrane filtration using m-Endo LES agar as growth medium without enrichment procedures or a cytochrome oxidase restriction. PMID:394678

  4. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    PubMed

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  5. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration

    SciTech Connect

    Abood, Alkhafaji R.; Thi Qar University, Nasiriyah; Bao, Jianguo, E-mail: bjianguo888@126.com

    2014-02-15

    Highlights: • A novel method of stripping (agitation) was investigated for NH{sub 3}-N removal. • PFS coagulation followed agitation process enhanced the leachate biodegradation. • Nitrification–denitrification achieved by changing operation process in SBR treatment. • A dual filter of carbon-sand is suitable as a polishing treatment of leachate. • Combined treatment success for the complete treatment of non-biodegradable leachate. - Abstract: This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH{sub 3}-N removal ratio wasmore » 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s{sup −1} within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD{sub 5}) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L{sup −1} at pH 5.0. The biodegradable ratio BOD{sub 5}/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD{sub 5}, 95.5% COD and 98.1% NH{sub 3}-N removal were achieved by SBR operated under anoxic–aerobic–anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD{sub 5}, suspended solid (SS), NH{sub 3}-N and total organic carbon (TOC) were 72.4 mg L{sup −1}, 22.8 mg L{sup −1}, 24.2 mg L{sup −1}, 18.4 mg L{sup −1} and 50.8 mg L{sup −1} respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively

  6. Bioinspired Ultralight Inorganic Aerogel for Highly Efficient Air Filtration and Oil-Water Separation.

    PubMed

    Zhang, Yong-Gang; Zhu, Ying-Jie; Xiong, Zhi-Chao; Wu, Jin; Chen, Feng

    2018-04-18

    Inorganic aerogels have been attracting great interest owing to their distinctive structures and properties. However, the practical applications of inorganic aerogels are greatly restricted by their high brittleness and high fabrication cost. Herein, inspired by the cancellous bone, we have developed a novel kind of hydroxyapatite (HAP) nanowire-based inorganic aerogel with excellent elasticity, which is highly porous (porosity ≈ 99.7%), ultralight (density 8.54 mg/cm 3 , which is about 0.854% of water density), and highly adiabatic (thermal conductivity 0.0387 W/m·K). Significantly, the as-prepared HAP nanowire aerogel can be used as the highly efficient air filter with high PM 2.5 filtration efficiency. In addition, the HAP nanowire aerogel is also an ideal candidate for continuous oil-water separation, which can be used as a smart switch to separate oil from water continuously. Compared with organic aerogels, the as-prepared HAP nanowire aerogel is biocompatible, environmentally friendly, and low-cost. Moreover, the synthetic method reported in this work can be scaled up for large-scale production of HAP nanowires, free from the use of organic solvents. Therefore, the as-prepared new kind of HAP nanowire aerogel is promising for the applications in various fields.

  7. Oily Waste Water Treatment System

    DTIC Science & Technology

    1998-01-22

    from three 6 series connected, ceramic membrane type of filtration units 82, 84 and 86 through a conduit 80. 7 The flow rate and pressure of the...hereinbefore described is of the silica-coated 4 P- ceramic membrane type through which effluent from the oil/water separator 20 may be processed

  8. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents.

    PubMed

    He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei

    2013-04-01

    A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. EPA’s Drinking Water Treatment Research

    EPA Science Inventory

    Riverbank filtration has been utilized for decades as a pretreatment for waters that will be used for drinking water. A study investigating the occurrence and potential for removal of suspected endocrine disrupting compounds (EDCs) during riverbank filtration at a municipal well...

  10. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    ERIC Educational Resources Information Center

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  11. Filtration-wet transferred transparent conducting films of mm long carbon nanotubes grown using water-assisted chemical vapor deposition.

    PubMed

    Patole, Shashikant P; Shin, Dong Wook; Fugetsu, Bunshi; Yoo, Ji-Beom

    2013-11-01

    Transparent conducting films (TCF) made up from carbon nanotubes (CNTs) have a tremendous potential in replacing the indium tin oxide films. Compare to single wall CNTs multiwall CNTs are more metallic and are more suitable candidate for the TCF. In this letter we report the use of selectively grown mm-scale, few-wall, vertically aligned CNTs for the fabrication of TCF. Water-assisted chemical vapor deposition was used to grow the mm-scale CNTs within short growth time. A special post-growth water-vapor treatment allowed us to remove the catalyst-free CNT forest very easily from the substrate and use it for the further process. A filtration-wet transfer process was used to form the TCF. The TCF shows sheet resistance of 228 omega/sq. at 72% transparency (at 550 nm). The ratio of optical conductivity to dc conductivity was observed in between 0.21 to 0.25 for below 80% transmission.

  12. Ultrasonic Treatment of Water

    DTIC Science & Technology

    1960-09-01

    Best Available Copy OTS: 60-41, 3 04 JPRS: 5486 ( 1 September 1960 AD-A280 702 00 ’T lh~lh tU ULTRASONIC TREATMENT OF WATER . •By L. B. Sigalov... WATER [lollowing is the translation of an article by Engineer L. B. Sigalov entitled "Ulltrazyukovaya obrabotka vody" (English version above), in...preliminary treatment of the water in which -es or -1 - A1/4i this fee& water is presoftened in cationit filters. Per low-capacity boiler

  13. A Qualitative Assessment of Beliefs, Attitudes, and Behaviors Related to Diarrhea and Water Filtration in Rural Kenya

    PubMed Central

    Apondi, Rose; Lugada, Eric; Kahn, James G.; Sandiford-Day, Mary Ann; DasBanerjee, Tania

    2011-01-01

    Objectives. We qualitatively assessed beliefs, attitudes, and behaviors related to diarrhea and water filtration in rural Kenya. Methods. A public health campaign was conducted in rural western Kenya to give community members a comprehensive prevention package of goods and services, including a personal water filter or a household water filter (or both). Two months after the campaign, we conducted qualitative interviews with 34 campaign attendees to assess their beliefs, attitudes, and behaviors related to diarrhea and use of the filtration devices. Results. Participants held generally correct perceptions of diarrhea causation. Participants provided positive reports of their experiences with using filters and of their success with obtaining clean water, reducing disease, and reducing consumption of resources otherwise needed to produce clean water. Several participants offered technical suggestions for device improvements, and most participants were still using the devices at the time of the assessment. Conclusions. Novel water filtration devices distributed as part of a comprehensive public health campaign rapidly proved acceptable to community members and were consistent with community practices and beliefs. PMID:21680914

  14. A qualitative assessment of beliefs, attitudes, and behaviors related to diarrhea and water filtration in rural Kenya.

    PubMed

    De Ver Dye, Timothy; Apondi, Rose; Lugada, Eric; Kahn, James G; Sandiford-Day, Mary Ann; Dasbanerjee, Tania

    2011-08-01

    We qualitatively assessed beliefs, attitudes, and behaviors related to diarrhea and water filtration in rural Kenya. A public health campaign was conducted in rural western Kenya to give community members a comprehensive prevention package of goods and services, including a personal water filter or a household water filter (or both). Two months after the campaign, we conducted qualitative interviews with 34 campaign attendees to assess their beliefs, attitudes, and behaviors related to diarrhea and use of the filtration devices. Participants held generally correct perceptions of diarrhea causation. Participants provided positive reports of their experiences with using filters and of their success with obtaining clean water, reducing disease, and reducing consumption of resources otherwise needed to produce clean water. Several participants offered technical suggestions for device improvements, and most participants were still using the devices at the time of the assessment. Novel water filtration devices distributed as part of a comprehensive public health campaign rapidly proved acceptable to community members and were consistent with community practices and beliefs.

  15. Occurrence of Mycobacteria in Water Treatment Lines and in Water Distribution Systems

    PubMed Central

    Le Dantec, Corinne; Duguet, Jean-Pierre; Montiel, Antoine; Dumoutier, Nadine; Dubrou, Sylvie; Vincent, Véronique

    2002-01-01

    The frequency of recovery of atypical mycobacteria was estimated in two treatment plants providing drinking water to Paris, France, at some intermediate stages of treatment. The two plants use two different filtration processes, rapid and slow sand filtration. Our results suggest that slow sand filtration is more efficient for removing mycobacteria than rapid sand filtration. In addition, our results show that mycobacteria can colonize and grow on granular activated carbon and are able to enter distribution systems. We also investigated the frequency of recovery of mycobacteria in the water distribution system of Paris (outside buildings). The mycobacterial species isolated from the Paris drinking water distribution system are different from those isolated from the water leaving the treatment plants. Saprophytic mycobacteria (present in 41.3% of positive samples), potentially pathogenic mycobacteria (16.3%), and unidentifiable mycobacteria (54.8%) were isolated from 12 sites within the Paris water distribution system. Mycobacterium gordonae was preferentially recovered from treated surface water, whereas Mycobacterium nonchromogenicum was preferentially recovered from groundwater. No significant correlations were found among the presence of mycobacteria, the origin of water, and water temperature. PMID:12406720

  16. Intermittent slow sand filtration for preventing diarrhoea among children in Kenyan households using unimproved water sources: randomized controlled trial.

    PubMed

    Tiwari, Sangya-Sangam K; Schmidt, Wolf-Peter; Darby, Jeannie; Kariuki, Z G; Jenkins, Marion W

    2009-11-01

    Measure effectiveness of intermittent slow sand filtration for reducing child diarrhoea among households using unimproved water sources in rural Kenya. A randomized controlled trail was conducted among populations meeting a high-risk profile for child diarrhoea from drinking river water in the River Njoro watershed. Intervention households (30) were provided the concrete BioSand Filter and instructed on filter use and maintenance. Control households (29) continued normal practices. Longitudinal monthly monitoring of diarrhoea (seven-day daily prevalence recall) and of influent, effluent, and drinking water quality for fecal coliform was conducted for 6 months. Intervention households had better drinking water quality than control households (fecal coliform geometric mean, 30.0 CFU vs. 89.0 CFU/100 ml, P < 0.001) and reported significantly fewer diarrhoea days (86 days over 626 child-weeks) compared to controls (203 days over 558 child-weeks) among children up to 15 (age-adjusted RR 0.46; 95 % CI = 0.22, 0.96). Greater child diarrhoea reduction due to the intervention (age-adjusted RR 0.23, 95 % CI = 0.10, 0.51) was observed among the sub-group using unimproved water sources all of the time. Intermittent slow sand filtration, a non-commercial technology, produces similar observed effects on child diarrhoea as commercial POU products, adding to the range of effective options for poor populations (chlorination, ceramic filtration, solar disinfection, flocculation/disinfection).

  17. Water Treatment Technology - Hydraulics.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  18. Water Treatment Technology - Springs.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on springs provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on spring basin construction and spring protection. For each competency, student…

  19. Water Treatment Technology - Flouridation.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on flouridation provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of flouridation, correct…

  20. Water Treatment Technology - Pumps.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  1. Water Treatment Technology - Chlorination.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chlorination provides instructional materials for nine competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purpose and process of chlorination, chlorine…

  2. Water Treatment Technology - Wells.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  3. EVALUATING A COMPOSITE CARTRIDGE FOR SMALL SYSTEM DRINKING WATER TREATMENT

    EPA Science Inventory

    A multi-layer, cartridge-based system that combines physical filtration with carbon adsorption and ultraviolet (UV) light disinfection has been developed to perform as a water treatment security device to protect homes against accidental or intentional contaminant events. A seri...

  4. Impact of Arsenic Treatment Techniques on Distribution Water Quality

    EPA Science Inventory

    This presentation will summarize the results of the distribution water quality studies (arsenic, lead, and copper) of the demonstration program. The impact of the treatment systems by type of system (adsorptive media, coagulation/filtration, ion exchange, etc) will be shown by co...

  5. Pozzolanic filtration/solidification of radionuclides in nuclear reactor cooling water

    SciTech Connect

    Englehardt, J.D.; Peng, C.

    1995-12-31

    Laboratory studies to investigate the feasibility of one- and two-step processes for precipitation/coprecipitating radionuclides from nuclear reactor cooling water, filtering with pozzolanic filter aid, and solidifying, are reported in this paper. In the one-step process, ferrocyanide salt and excess lime are added ahead of the filter, and the resulting filter cake solidifies by a pozzolanic reaction. The two-step process involves addition of solidifying agents subsequent to filtration. It was found that high surface area diatomaceous synthetic calcium silicate powders, sold commercially as functional fillers and carriers, adsorb nickel isotopes from solution at neutral and slightly basic pH. Addition of themore » silicates to cooling water allowed removal of the tested metal isotopes (nickel, iron, manganese, cobalt, and cesium) simultaneously at neutral to slightly basic pH. Lime to diatomite ratio was the most influential characteristic of composition on final strength tested, with higher lime ratios giving higher strength. Diatomaceous earth filter aids manufactured without sodium fluxes exhibited higher pozzolanic activity. Pozzolanic filter cake solidified with sodium silicate and a ratio of 0.45 parts lime to 1 part diatomite had compressive strength ranging from 470 to 595 psi at a 90% confidence level. Leachability indices of all tested metals in the solidified waste were acceptable. In light of the typical requirement of removing iron and desirability of control over process pH, a two-step process involving addition of Portland cement to the filter cake may be most generally applicable.« less

  6. Cellulose Nanomaterials in Water Treatment Technologies

    PubMed Central

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  7. Cellulose nanomaterials in water treatment technologies.

    PubMed

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  8. Application of design for six sigma methodology on portable water filter that uses membrane filtration system: A preliminary study

    NASA Astrophysics Data System (ADS)

    Fahrul Hassan, Mohd; Jusoh, Suhada; Zaini Yunos, Muhamad; Arifin, A. M. T.; Ismail, A. E.; Rasidi Ibrahim, M.; Zulafif Rahim, M.

    2017-09-01

    Portable water filter has grown significantly in recent years. The use of water bottles as a water drink stuff using hand pump water filtration unit has been suggested to replace water bottled during outdoor recreational activities and for emergency supplies. However, quality of water still the issue related to contaminated water due to the residual waste plants, bacteria, and so on. Based on these issues, the study was carried out to design a portable water filter that uses membrane filtration system by applying Design for Six Sigma. Design for Six Sigma methodology consists of five stages which is Define, Measure, Analyze, Design and Verify. There were several tools have been used in each stage in order to come out with a specific objective. In the Define stage, questionnaire approach was used to identify the needs of portable water filter in the future from potential users. Next, Quality Function Deployment (QFD) tool was used in the Measure stage to measure the users’ needs into engineering characteristics. Based on the information in the Measure stage, morphological chart and weighted decision matrix tools were used in the Analyze stage. This stage performed several activities including concept generation and selection. Once the selection of the final concept completed, detail drawing was made in the Design stage. Then, prototype was developed in the Verify stage to conduct proof-of-concept testing. The results that obtained from each stage have been reported in this paper. From this study, it can be concluded that the application of Design for Six Sigma in designing a future portable water filter that uses membrane filtration system is a good start in looking for a new alternative concept with a completed supporting document.

  9. PROVIDING SAFE WATER TO RURAL NEPAL: A NOVEL WATER FILTRATION SYSTEM

    EPA Science Inventory

    The quality of Nepalese water sources is often compromised by pathogen contamination resulting from inadequate wastewater management, and arsenic contamination from natural and anthropogenic sources. The primary source of Nepal’s arsenic problem is suspected to arise fro...

  10. Alport syndrome: its effects on the glomerular filtration barrier and implications for future treatment

    PubMed Central

    Savige, Judy

    2014-01-01

    The glomerular filtration barrier comprises a fenestrated capillary endothelium, glomerular basement membrane and podocyte slit diaphragm. Over the past decade we have come to realise that permselectivity depends on size and not necessarily charge, that the molecular sieve depends on the podocyte contractile apparatus and is highly dynamic, and that protein uptake by proximal tubular epithelial cells stimulates signalling and the production of transcription factors and inflammatory mediators. Alport syndrome is the second commonest monogenic cause of renal failure after autosomal dominant polycystic kidney disease. Eighty per cent of patients have X-linked disease caused by mutations in the COL4A5 gene. Most of these result in the replacement of the collagen IV α3α4α5 network with the α1α1α2 heterotrimer. Affected membranes also have ectopic laminin and increased matrix metalloproteinase levels, which makes them more susceptible to proteolysis. Mechanical stress, due to the less elastic membrane and hypertension, interferes with integrin-mediated podocyte–GBM adhesion. Proteinuria occurs when urinary levels exceed tubular reabsorption rates, and initiates tubulointerstitial fibrosis. The glomerular mesangial cells produce increased TGFβ and CTGF which also contribute to glomerulosclerosis. Currently there is no specific therapy for Alport syndrome. However treatment with angiotensin converting enzyme (ACE) inhibitors delays renal failure progression by reducing intraglomerular hypertension, proteinuria, and fibrosis. Our greater understanding of the mechanisms underlying the GBM changes and their consequences in Alport syndrome have provided us with further novel therapeutic targets. PMID:25107927

  11. High speed municipal sewage treatment in microbial fuel cell integrated with anaerobic membrane filtration system.

    PubMed

    Lee, Y; Oa, S W

    2014-01-01

    A cylindrical two chambered microbial fuel cell (MFC) integrated with an anaerobic membrane filter was designed and constructed to evaluate bioelectricity generation and removal efficiency of organic substrate (glucose or domestic wastewater) depending on organic loading rates (OLRs). The MFC was continuously operated with OLRs 3.75, 5.0, 6.25, and 9.38 kg chemical oxygen demand (COD)/(m(3)·d) using glucose as a substrate, and the cathode chamber was maintained at 5-7 mg/L of dissolved oxygen. The optimal OLR was found to be 6.25 kgCOD/(m(3)·d) (hydraulic retention time (HRT) 1.9 h), and the corresponding voltage and power density averaged during the operation were 0.15 V and 13.6 mW/m(3). With OLR 6.25 kgCOD/(m(3)·d) using domestic wastewater as a substrate, the voltage and power reached to 0.13 V and 91 mW/m(3) in the air cathode system. Even though a relatively short HRT of 1.9 h was applied, stable effluent could be obtained by the membrane filtration system and the following air purging. In addition, the short HRT would provide economic benefit in terms of reduction of construction and operating costs compared with a conventional aerobic treatment process.

  12. A new installation for treatment of road runoff: up-flow filtration by porous polypropylene media.

    PubMed

    Lee, B C; Matsui, S; Shimizu, Y; Matsuda, T; Tanaka, Y

    2005-01-01

    We installed a new device on a paved road to treat runoff from a roadway surface. All the stormwater runoff was transferred into the device and the runoff equivalent to 10 mm/hr or less was treated. The treatment method consists of sedimentation and up-flow filtration with porous polypropylene (PPL) processes. The treated runoff was discharged into the existing storm drainage pipe. The average removal efficiency of the initial runoff at the beginning of rainfall which has high pollution intensity was about 90% for SS, about 70% for COD, about 40% for total phosphorus (T-P), about 80% for Pb and Cd, about 70% for Zn, Cu, Mn and Cr, and about 60% for polycyclic aromatic hydrocarbons (PAHs). The overall removal efficiencies of the experiment that ran for four months remained > 60% of SS, > 40% of COD, > 60% of heavy metals, and > 40% of PAHs. The PPL is excellent for removing smaller size particulates of suspended solids, which originate basically from diesel exhaust, as well as larger size particulates from automobile tires, asphalt roads, and other accumulated source(s) of clay and sand, etc.

  13. Comparison study of membrane filtration direct count and an automated coliform and Escherichia coli detection system for on-site water quality testing.

    PubMed

    Habash, Marc; Johns, Robert

    2009-10-01

    This study compared an automated Escherichia coli and coliform detection system with the membrane filtration direct count technique for water testing. The automated instrument performed equal to or better than the membrane filtration test in analyzing E. coli-spiked samples and blind samples with interference from Proteus vulgaris or Aeromonas hydrophila.

  14. Water-soluble vitamins in people with low glomerular filtration rate or on dialysis: a review.

    PubMed

    Clase, Catherine M; Ki, Vincent; Holden, Rachel M

    2013-01-01

    People with low glomerular filtration rate and people on dialysis are spontaneously at risk for vitamin deficiency because of the potential for problems with decreased appetite and decreased sense of smell and taste, leading to decreased intake, and because decreased energy or decreased cognitive ability results in difficulties in shopping and cooking. Imposed dietary restrictions because of their renal dysfunction and because of comorbidities such as hypertension and diabetes exacerbate this problem. Finally, particularly for water-soluble vitamins, loss may occur into the dialysate. We did not identify any randomized trials of administering daily doses close to the recommended daily allowances of these vitamins. In people who are eating at all, deficiencies of B5 and B7 seem unlikely. It is unclear whether supplements of B2 and B3 are necessary. Because of dialyzability and documented evidence of insufficiency in dialysis patients, B1 supplementation is likely to be helpful. B6, B9, and B12 are implicated in the hyperhomocysteinemia observed in patients on dialysis. These vitamins have been studied in combinations, in high doses, with the hope of reducing cardiovascular outcomes. No reductions in patient-important outcomes were seen in adequately powered randomized trials. Because of their involvement in the homocysteine pathway, however, supplementation with lower doses, close to the recommended daily allowances, may be helpful. Vitamin C deficiency is common in patients on dialysis who are not taking supplements: low-dose supplements are warranted. Vitamins for dialysis patients contain most or all of the B vitamins and low-dose vitamin C. We are not aware of any medical reasons to choose one over another. © 2013. The Authors. Seminars in Dialysis published by Wiley Periodicals, Inc.

  15. Water-Soluble Vitamins in People with Low Glomerular Filtration Rate or On Dialysis: A Review

    PubMed Central

    Clase, Catherine M; Ki, Vincent; Holden, Rachel M

    2013-01-01

    People with low glomerular filtration rate and people on dialysis are spontaneously at risk for vitamin deficiency because of the potential for problems with decreased appetite and decreased sense of smell and taste, leading to decreased intake, and because decreased energy or decreased cognitive ability results in difficulties in shopping and cooking. Imposed dietary restrictions because of their renal dysfunction and because of comorbidities such as hypertension and diabetes exacerbate this problem. Finally, particularly for water-soluble vitamins, loss may occur into the dialysate. We did not identify any randomized trials of administering daily doses close to the recommended daily allowances of these vitamins. In people who are eating at all, deficiencies of B5 and B7 seem unlikely. It is unclear whether supplements of B2 and B3 are necessary. Because of dialyzability and documented evidence of insufficiency in dialysis patients, B1 supplementation is likely to be helpful. B6, B9, and B12 are implicated in the hyperhomocysteinemia observed in patients on dialysis. These vitamins have been studied in combinations, in high doses, with the hope of reducing cardiovascular outcomes. No reductions in patient-important outcomes were seen in adequately powered randomized trials. Because of their involvement in the homocysteine pathway, however, supplementation with lower doses, close to the recommended daily allowances, may be helpful. Vitamin C deficiency is common in patients on dialysis who are not taking supplements: low-dose supplements are warranted. Vitamins for dialysis patients contain most or all of the B vitamins and low-dose vitamin C. We are not aware of any medical reasons to choose one over another. PMID:23859229

  16. The effect of nanofiber based filter morphology on bacteria deactivation during water filtration

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Lev, Jaroslav; Kalhotka, Libor; Mikula, Premysl; Korinkova, Radka; Sambaer, Wannes; Zatloukal, Martin

    2013-04-01

    Procedures permitting to prepare homogeneous functionalized nanofibre structures based on polyurethanes modified by phthalocyanines (PCs) by employing a suitable combination of variables during the electrospinning process are presented. Compared are filtration and bacteria deactivation properties of open and planar nanostructures with PCs embedded into polyurethane chain by a covalent bond protecting the release of active organic compound during the filtration process. Finding that the morphology of functionalized nanofibre structures have an effect on bacterial growth was confirmed by microbiological and physico-chemical analyses, such as the inoculation in a nutrient agar culture medium and flow cytometry.

  17. Real-time determination of the efficacy of residual disinfection to limit wastewater contamination in a water distribution system using filtration-based luminescence.

    PubMed

    Lee, Jiyoung; Deininger, Rolf A

    2010-05-01

    Water distribution systems can be vulnerable to microbial contamination through cross-connections, wastewater backflow, the intrusion of soiled water after a loss of pressure resulting from an electricity blackout, natural disaster, or intentional contamination of the system in a bioterrrorism event. The most urgent matter a water treatment utility would face in this situation is detecting the presence and extent of a contamination event in real-time, so that immediate action can be taken to mitigate the problem. The current approved microbiological detection methods are culture-based plate count methods, which require incubation time (1 to 7 days). This long period of time would not be useful for the protection of public health. This study was designed to simulate wastewater intrusion in a water distribution system. The objectives were 2-fold: (1) real-time detection of water contamination, and (2) investigation of the sustainability of drinking water systems to suppress the contamination with secondary disinfectant residuals (chlorine and chloramine). The events of drinking water contamination resulting from a wastewater addition were determined by filtration-based luminescence assay. The water contamination was detected by luminescence method within 5 minutes. The signal amplification attributed to wastewater contamination was clear-102-fold signal increase. After 1 hour, chlorinated water could inactivate 98.8% of the bacterial contaminant, while chloraminated water reduced 77.2%.

  18. DRINKING WATER TREATMENT

    EPA Science Inventory

    The purpose of water treatment is threefold: 1. To improve the aethetic quality ofwater, 2. to remove toxic or health-hazardous chemicals, 3. to remove and/or inactivate any disease causing microorganisms. These objectives should be accomplished using a reasonable safety factor...

  19. Basic Water Treatment Operation.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce the fundamentals of water treatment plant operations. The course consists of lecture-discussions and hands-on activities. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that…

  20. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    PubMed Central

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively. PMID:26729180

  1. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    PubMed

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  2. Electrocoagulation in Water Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Huijuan; Zhao, Xu; Qu, Jiuhui

    Electrocoagulation (EC) is an electrochemical method of treating polluted water where sacrificial anodes corrode to release active coagulant precursors (usually aluminum or iron cations) into solution. At the cathode, gas evolves (usually as hydrogen bubbles) accompanying electrolytic reactions. EC needs simple equipments and is designable for virtually any size. It is cost effective and easily operable. Specially, the recent technical improvements combined with a growing need for small-scale water treatment facilities have led to a revaluation of EC. In this chapter, the basic principle of EC was introduced first. Following that, reactions at the electrodes and electrode assignment were reviewed; electrode passivation process and activation method were presented; comparison between electrocoagulation and chemical coagulation was performed; typical design of the EC reactors was also described; and factors affecting electrocoagulation including current density, effect of conductivity, temperature, and pH were introduced in details. Finally, application of EC in water treatment was given in details.

  3. Rapid Production of a Porous Cellulose Acetate Membrane for Water Filtration Using Readily Available Chemicals

    ERIC Educational Resources Information Center

    Kaiser, Adrian; Stark, Wendelin J.; Grass, Robert N.

    2017-01-01

    A chemistry laboratory experiment using everyday items and readily available chemicals is described to introduce advanced high school students and undergraduate college students to porous polymer membranes. In a three-step manufacturing process, a membrane is produced at room temperature. The filtration principle of the membrane is then…

  4. Double filtration plasmapheresis in the treatment of pancreatitis due to severe hypertriglyceridemia.

    PubMed

    Galán Carrillo, Isabel; Demelo-Rodriguez, Pablo; Rodríguez Ferrero, María Luisa; Anaya, Fernando

    2015-01-01

    Severe hypertriglyceridemia (HTG) leads to major complications such as acute pancreatitis. Lipoprotein apheresis has been proposed as a therapeutic tool for decreasing triglyceride levels, although experience is limited. To describe our experience with double filtration plasmapheresis (DFPP) in patients with severe HTG and pancreatitis in the plasmapheresis unit of a tertiary hospital in Spain. We recruited 4 patients with severe HTG (triglycerides [TGs] >1000 mg/dL) and acute pancreatitis. All the patients underwent DFPP as part of their treatment. Epidemiologic and laboratory data were collected before and after each plasmapheresis session. The average TG level before plasmapheresis was 3136 mg/dL (35.44 mmol/L; range, 1306-6693 mg/dL, 14.76-75.63 mmol/L), and the average Acute Physiology And Chronic Health Evaluation (APACHE) II level before the first session was 6 (range, 3-8). All patients made a full recovery, with a significant improvement in TG levels after plasmapheresis. The mean number of sessions was 2.1 (range, 1-3), and mean TG level after plasmapheresis was 428 mg/dL (4.84 mmol/L; range, 169-515 mg/dL; 1.91-5.82 mmol/L). After the first session, the mean decrease in TG levels was 69.16% (2169 mg/dL, range, 945-5925 mg/dL; 24.51 mmol/L, range, 10.78-66.95 mmol/L), and after the last session, TG levels fell by 89.09% (2794 mg/dL, range, 945-6198 mg/dL; 31.57 mmol/L, range, 10.68-70.04 mmol/L). None of the patients developed complications related to plasmapheresis. According to available evidence and our own experience, DFPP can be an effective and rapid treatment option in patients with severe HTG and complications. However, further research, including randomized controlled studies, is necessary. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  5. Flexographic newspaper deinking : treatment of wash filtrate effluent by membrane technology

    Treesearch

    B. Chabot; G.A. Krishnagopalan; S. Abubakr

    1999-01-01

    Ultrafiltration was investigated as a means to remove flexographic ink pigments from wash filtrate effluent generated from various mixtures of flexographic and offset old newspapers from deinking operations. Membrane separation efficiency was assessed from permeate flux, fouling rate, and ease of membrane regeneration (cleaning). Ultrafiltration was capable of...

  6. Effectiveness of Membrane Filtration to Improve Drinking Water: A Quasi-Experimental Study from Rural Southern India

    PubMed Central

    Francis, Mark Rohit; Sarkar, Rajiv; Roy, Sheela; Jaffar, Shabbar; Mohan, Venkata Raghava; Kang, Gagandeep; Balraj, Vinohar

    2016-01-01

    Since point-of-use methods of water filtration have shown limited acceptance in Vellore, southern India, this study evaluated the effectiveness of decentralized membrane filtration 1) with safe storage, 2) without safe storage, versus 3) no intervention, consisting of central chlorination as per government guidelines, in improving the microbiological quality of drinking water and preventing childhood diarrhea. Periodic testing of water sources, pre-/postfiltration samples, and household water, and a biweekly follow up of children less than 2 years of age was done for 1 year. The membrane filters achieved a log reduction of 0.86 (0.69–1.06), 1.14 (0.99–1.30), and 0.79 (0.67–0.94) for total coliforms, fecal coliforms, and Escherichia coli, respectively, in field conditions. A 24% (incidence rate ratio, IRR [95% confidence interval, CI] = 0.76 [0.51–1.13]; P = 0.178) reduction in diarrheal incidence in the intervention village with safe storage and a 14% (IRR [95% CI] = 1.14 [0.75–1.77]; P = 0.530) increase in incidence for the intervention village without safe storage versus no intervention village was observed, although not statistically significant. Microbiologically, the membrane filters decreased fecal contamination; however, provision of decentralized membrane-filtered water with or without safe storage was not protective against childhood diarrhea. PMID:27601525

  7. Effectiveness of Membrane Filtration to Improve Drinking Water: A Quasi-Experimental Study from Rural Southern India.

    PubMed

    Francis, Mark Rohit; Sarkar, Rajiv; Roy, Sheela; Jaffar, Shabbar; Mohan, Venkata Raghava; Kang, Gagandeep; Balraj, Vinohar

    2016-11-02

    Since point-of-use methods of water filtration have shown limited acceptance in Vellore, southern India, this study evaluated the effectiveness of decentralized membrane filtration 1) with safe storage, 2) without safe storage, versus 3) no intervention, consisting of central chlorination as per government guidelines, in improving the microbiological quality of drinking water and preventing childhood diarrhea. Periodic testing of water sources, pre-/postfiltration samples, and household water, and a biweekly follow up of children less than 2 years of age was done for 1 year. The membrane filters achieved a log reduction of 0.86 (0.69-1.06), 1.14 (0.99-1.30), and 0.79 (0.67-0.94) for total coliforms, fecal coliforms, and Escherichia coli, respectively, in field conditions. A 24% (incidence rate ratio, IRR [95% confidence interval, CI] = 0.76 [0.51-1.13]; P = 0.178) reduction in diarrheal incidence in the intervention village with safe storage and a 14% (IRR [95% CI] = 1.14 [0.75-1.77]; P = 0.530) increase in incidence for the intervention village without safe storage versus no intervention village was observed, although not statistically significant. Microbiologically, the membrane filters decreased fecal contamination; however, provision of decentralized membrane-filtered water with or without safe storage was not protective against childhood diarrhea. © The American Society of Tropical Medicine and Hygiene.

  8. Comparison of the effects of filtration and preservation methods on analyses for strontium-90 in ground water

    USGS Publications Warehouse

    Knobel, L.L.; DeWayne, Cecil L.; Wegner, S.J.; Moore, L.L.

    1992-01-01

    From 1952 to 1988, about 140 curies of strontium-90 were discharged in liquid waste to disposal ponds and wells at the INEL (Idaho National Engineering Laboratory). Water from four wells was sampled as part of the U.S. Geological Survey's quality-assurance program to evaluate the effects of filtration and preservation methods on strontium-90 concentrations in ground water at the INEL. Water from each well was filtered through eithera 0.45- or a 0.1-micrometer membrane filter; unfiltered samples also were collected. Two sets of filtered and two sets of unfiltered water samples were collected at each well. One of the two sets of water samples was field acidified. Strontium-90 concentrations ranged from below the reporting level to 52 ?? 4 picocuries per liter. Descriptive statistics were used to determine reproducibility of the analytical results for strontium-90 concentrations in water from each well. Comparisons were made with unfiltered, acidified samples at each well. Analytical results for strontium-90 concentrations in water from well 88 were not in statistical agreement between the unfiltered, acidified sample and the filtered (0.45 micrometer), acidified sample. The strontium-90 concentration for water from well 88 was less than the reporting level. For water from wells with strontium-90 concentrations at or above the reporting level, 94 percent or more of the strontium-90 is in true solution or in colloidal particles smaller than 0.1 micrometer. These results suggest that changes in filtration and preservation methods used for sample collection do not significantly affect reproducibility of strontium-90 analyses in ground water at the INEL.

  9. Comparison of the effects of filtration and preservation methods on analyses for strontium-90 in ground water.

    PubMed

    Knobel, L L; Cecil, L D; Wegner, S J; Moore, L L

    1992-01-01

    From 1952 to 1988, about 140 curies of strontium-90 were discharged in liquid waste to disposal ponds and wells at the INEL (Idaho National Engineering Laboratory). Water from four wells was sampled as part of the U.S. Geological Survey's quality-assurance program to evaluate the effects of filtration and preservation methods on strontium-90 concentrations in ground water at the INEL. Water from each well was filtered through either a 0.45- or a 0.1-micrometer membrane filter; unfiltered samples also were collected. Two sets of filtered and two sets of unfiltered water samples were collected at each well. One of the two sets of water samples was field acidified.Strontium-90 concentrations ranged from below the reporting level to 52±4 picocuries per liter. Descriptive statistics were used to determine reproducibility of the analytical results for strontium-90 concentrations in water from each well. Comparisons were made with unfiltered, acidified samples at each well. Analytical results for strontium-90 concentrations in water from well 88 were not in statistical agreement between the unfiltered, acidified sample and the filtered (0.45 micrometer), acidified sample. The strontium-90 concentration for water from well 88 was less than the reporting level.For water from wells with strontium-90 concentrations at or above the reporting level, 94 percent or more of the strontium-90 is in true solution or in colloidal particles smaller than 0.1 micrometer. These results suggest that changes in filtration and preservation methods used for sample collection do not significantly affect reproducibility of strontium-90 analyses in ground water at the INEL.

  10. Characterization of drinking water treatment for virus risk assessment.

    PubMed

    Teunis, P F M; Rutjes, S A; Westrell, T; de Roda Husman, A M

    2009-02-01

    Removal or inactivation of viruses in drinking water treatment processes can be quantified by measuring the concentrations of viruses or virus indicators in water before and after treatment. Virus reduction is then calculated from the ratio of these concentrations. Most often only the average reduction is reported. That is not sufficient when treatment efficiency must be characterized in quantitative risk assessment. We present three simple models allowing statistical analysis of series of counts before and after treatment: distribution of the ratio of concentrations, and distribution of the probability of passage for unpaired and paired water samples. Performance of these models is demonstrated for several processes (long and short term storage, coagulation/filtration, coagulation/sedimentation, slow sand filtration, membrane filtration, and ozone disinfection) using microbial indicator data from full-scale treatment processes. All three models allow estimation of the variation in (log) reduction as well as its uncertainty; the results can be easily used in risk assessment. Although they have different characteristics and are present in vastly different concentrations, different viruses and/or bacteriophages appear to show similar reductions in a particular treatment process, allowing generalization of the reduction for each process type across virus groups. The processes characterized in this paper may be used as reference for waterborne virus risk assessment, to check against location specific data, and in case no such data are available, to use as defaults.

  11. Recovery of a marker strain of Escherichia coli from ozonated water by membrane filtration

    SciTech Connect

    Finch, G.R.; Stiles, M.E.; Smith, D.W.

    1987-12-01

    Selective and nonselective growth media were evaluated at two incubation temperatures, 35 and 44.5 degrees C, for the recovery of a nalidixic acid-resistant marker strain of Escherichia coli ATCC 11775 by membrane filtration from ozonated 0.05 M phosphate buffer (pH 6.9). There were significantly fewer bacteria recovered with the standard m-FC agar when compared with the same growth medium prepared without bile salts and rosolic acid. This effect was particularly noticeable at the elevated incubation temperature of 44.5 degrees C. These findings are contrary to previous work which concluded that the standard American Public Health Association membrane filtration procedure ismore » suitable for recovery of fecal coliform indicator bacteria from ozonated wastewater.« less

  12. Effect of river excavation on a bank filtration site - assessing transient surface water - groundwater interaction by 3D heat and solute transport modelling

    NASA Astrophysics Data System (ADS)

    Wang, W.; Oswald, S. E.; Munz, M.; Strasser, D.

    2017-12-01

    Bank filtration is widely used either as main- or pre-treatment process for water supply. The colmation of the river bottom as interface to groundwater plays a key role for hydraulic control of flow paths and location of several beneficial attenuation processes, such as pathogen filtration, mixing, biodegradation and sorption. Along the flow path, mixing happens between the `young' infiltrated water and ambient `old' groundwater. To clarify the mechanisms and their interaction, modelling is often used for analysing spatial and temporal distribution of the travelling time, quantifying mixing ratios, and estimating the biochemical reaction rates. As the most comprehensive tool, 2-D or 3-D spatially-explicit modelling is used in several studies, and for area with geological heterogeneity, the adaptation of different natural tracers could constrain the model in respect to model non-uniqueness and improve the interpretation of the flow field. In our study, we have evaluated the influence of a river excavation and bank reconstruction project on the groundwater-surface water exchange at a bank filtration site. With data from years of field site monitoring, we could include besides heads and temperature also the analysis of stable isotope data and ions to differentiate between infiltrated water and groundwater. Thus, we have set up a 3-D transient heat and mass transport groundwater model, taking the strong local geological heterogeneity into consideration, especially between river and water work wells. By transferring the effect of the river excavation into a changing hydraulic conductivity of the riverbed, model could be calibrated against both water head and temperature time-series observed. Finally, electrical conductivity dominated by river input was included as quasi-conservative tracer. The `triple' calibrated, transient model was then used to i) understand the flow field and quantify the long term changes in infiltration rate and distribution brought by the

  13. Removal of pharmaceuticals during drinking water treatment.

    PubMed

    Ternes, Thomas A; Meisenheimer, Martin; McDowell, Derek; Sacher, Frank; Brauch, Heinz-Jürgen; Haist-Gulde, Brigitte; Preuss, Gudrun; Wilme, Uwe; Zulei-Seibert, Ninette

    2002-09-01

    The elimination of selected pharmaceuticals (bezafibrate, clofibric acid, carbamazepine, diclofenac) during drinking water treatment processes was investigated at lab and pilot scale and in real waterworks. No significant removal of pharmaceuticals was observed in batch experiments with sand under natural aerobic and anoxic conditions, thus indicating low sorption properties and high persistence with nonadapted microorganisms. These results were underscored by the presence of carbamazepine in bank-filtrated water with anaerobic conditions in a waterworks area. Flocculation using iron(III) chloride in lab-scale experiments (Jar test) and investigations in waterworks exhibited no significant elimination of the selected target pharmaceuticals. However, ozonation was in some cases very effective in eliminating these polar compounds. In lab-scale experiments, 0.5 mg/L ozone was shown to reduce the concentrations of diclofenac and carbamazepine by more than 90%, while bezafibrate was eliminated by 50% with a 1.5 mg/L ozone dose. Clofibric acid was stable even at 3 mg/L ozone. Under waterworks conditions, similar removal efficiencies were observed. In addition to ozonation, filtration with granular activated carbon (GAC) was very effective in removing pharmaceuticals. Except for clofibric acid, GAC in pilot-scale experiments and waterworks provided a major elimination of the pharmaceuticals under investigation.

  14. Removals of cryptosporidium parvum oocysts and cryptosporidium-sized polystyrene microspheres from swimming pool water by diatomaceous earth filtration and perlite-sand filtration.

    PubMed

    Lu, Ping; Amburgey, James E; Hill, Vincent R; Murphy, Jennifer L; Schneeberger, Chandra L; Arrowood, Michael J; Yuan, Tao

    2017-06-01

    Removal of Cryptosporidium-sized microspheres and Cryptosporidium parvum oocysts from swimming pools was investigated using diatomaceous earth (DE) precoat filtration and perlite-sand filtration. In pilot-scale experiments, microsphere removals of up to 2 log were obtained with 0.7 kg·DE/m 2 at a filtration rate of 5 m/h. A slightly higher microsphere removal (2.3 log) was obtained for these DE-precoated filters when the filtration rate was 3.6 m/h. Additionally, pilot-scale perlite-sand filters achieved greater than 2 log removal when at least 0.37 kg/m 2 of perlite was used compared to 0.1-0.4 log removal without perlite both at a surface loading rate of 37 m/h. Full-scale testing achieved 2.7 log of microspheres and oocysts removal when 0.7 kg·DE/m 2 was used at 3.6 m/h. Removals were significantly decreased by a 15-minute interruption of the flow (without any mechanical agitation) to the DE filter in pilot-scale studies, which was not observed in full-scale filters. Microsphere removals were 2.7 log by perlite-sand filtration in a full-scale swimming pool filter operated at 34 m/h with 0.5 kg/m 2 of perlite. The results demonstrate that either a DE precoat filter or a perlite-sand filter can improve the efficiency of removal of microspheres and oocysts from swimming pools over a standard sand filter under the conditions studied.

  15. Comparison of Garnet Bead Media Filtration and Multimedia Filtration for Turbidity and Microbial Pathogen Removal

    EPA Science Inventory

    U.S. Environmental Protection Agency’s (EPA’s) National Risk Management Research Laboratory (NRMRL) in Cincinnati, Ohio is evaluating drinking water filtration systems to determine their capability to meet the requirements of the Long-Term 2 Enhanced Surface Water Treatment Rule ...

  16. [Influence of tap water treatment on perfluorinated compounds residue in the dissolved phase].

    PubMed

    Zhang, Hong; Chen, Qing-wu; Wang, Xin-xuan; Chai, Zhi-fang; Shen, Jin-can; Yang, Bo; Liu, Guo-qing

    2013-09-01

    To study the perfluorinated compounds (PFCs) residues through water treatments including flocculation, sedimentation, sand filtration, ozonation with activated carbon and chlorination, as well as the seasonal variation of PFCs in the raw water of waterworks, 13 PFCs species in the dissolved phase of raw water, finished water, as well as the water samples after flocculation, sedimentation, sand filtration, and ozonation with activated carbon filtration were measured by the high performance liquid chromatography-tandem mass spectrometry combined with solid phase extraction. Results indicated that sigma PFCs residue in water was higher in spring and summer than that in fall and winter. The vast majority of PFCs in samples were of short and medium chains (C < or = 10), and perfluorooctane sulfonate was the most typical residue species. Among the five water treatment stages, sedimentation, sand filtration and ozonation with activated carbon filtration can remove PFCs, while flocculation and chlorination significantly raise the levels of short- (C < or = 6) and medium-chain (10 > or = C > or = 7) PFCs, respectively, causing sigma PFCs increase in finished water by 10%-44% compared to raw water. However, the PFCs residues in finished water are still far below their limit values, posing no threat against human health.

  17. Gray water recycle: Effect of pretreatment technologies on low pressure reverse osmosis treatment

    USDA-ARS?s Scientific Manuscript database

    Gray water can be a valuable source of water when properly treated to reduce the risks associated with chemical and microbial contamination to acceptable levels for the intended reuse application. In this study, the treatment of gray water using low pressure reverse osmosis (RO) filtration after pre...

  18. Parking Lot Runoff Quality and Treatment Efficiency of a Stormwater-Filtration Device, Madison, Wisconsin, 2005-07

    USGS Publications Warehouse

    Horwatich, Judy A.; Bannerman, Roger T.

    2010-01-01

    To evaluate the treatment efficiency of a stormwater-filtration device (SFD) for potential use at Wisconsin Department of Transportation (WisDOT) park-and-ride facilities, a SFD was installed at an employee parking lot in downtown Madison, Wisconsin. This type of parking lot was chosen for the test site because the constituent concentrations and particle-size distributions (PSDs) were expected to be similar to those of a typical park-and-ride lot operated by WisDOT. The objective of this particular installation was to reduce loads of total suspended solids (TSS) in stormwater runoff to Lake Monona. This study also was designed to provide a range of treatment efficiencies expected for a SFD. Samples from the inlet and outlet were analyzed for 33 organic and inorganic constituents, including 18 polycyclic aromatic hydrocarbons (PAHs). Samples were also analyzed for physical properties, including PSD. Water-quality samples were collected for 51 runoff events from November 2005 to August 2007. Samples from all runoff events were analyzed for concentrations of suspended sediment (SS). Samples from 31 runoff events were analyzed for 15 constituents, samples from 15 runoff events were analyzed for PAHs, and samples from 36 events were analyzed for PSD. The treatment efficiency of the SFD was calculated using the summation of loads (SOL) and the efficiency ratio methods. Constituents for which the concentrations and (or) loads were decreased by the SFD include TSS, SS, volatile suspended solids, total phosphorous (TP), total copper, total zinc, and PAHs. The efficiency ratios for these constituents are 45, 37, 38, 55, 22, 5, and 46 percent, respectively. The SOLs for these constituents are 32, 37, 28, 36, 23, 8, and 48 percent, respectively. The SOL for chloride was -21 and the efficiency ratio was -18. Six chemical constituents or properties-dissolved phosphorus, chemical oxygen demand, dissolved zinc, total dissolved solids, dissolved chemical oxygen demand, and

  19. Use of Ceramic Membranes in a Membrane Filtration Supported by Coagulation for the Treatment of Dairy Wastewater.

    PubMed

    Zielińska, Magdalena; Galik, Maciej

    2017-01-01

    A membrane filtration system was used to remove organic compounds, suspended solids, colour and turbidity from anaerobically treated dairy wastewater. Direct microfiltration (MF), ultrafiltration (UF), MF-UF and a combination of UF with coagulation using two conventional coagulants were investigated. The installation with ceramic membranes was operated at a pressure of 0.15 MPa (MF) and 0.3 MPa (UF). COD removal was 89 ± 2% in MF, 95 ± 1% in UF and 99% in MF-UF. Apart from size exclusion, removal was also the result of adsorption of organics on the membrane; 3-18% of COD removal was attributed to adsorption. In all these membrane systems, colour removal was 96-98%. Coagulation removed 63-72% of COD at all coagulant doses. In combination with UF, 96-97% of COD was removed. The use of coagulants was ineffective for colour removal; further treatment by UF resulted in above 98% removal. Because of complete rejection of suspended solids, turbidity removal exceeded 99% under all conditions. The use of increased coagulant doses did not have an effect on total efficiency of pollutant removal and on the permeate flux. Coagulation pre-treatment enhanced the performance of filtration only by lengthening the filtration cycle by about 12% as compared to direct UF. Not only was pollutant removal highest in MF-UF, but also the average permeate flux was about 80% higher in this two-stage system than in direct UF. This study shows that the most effective strategy to mitigate membrane fouling is the use of MF as a pre-treatment preceding UF.

  20. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water.

    PubMed

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-03-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  1. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    PubMed Central

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-01-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst. PMID:26938568

  2. A hybrid froth flotation-filtration system as a pretreatment for oil sands tailings pond recycle water management: Bench- and pilot-scale studies.

    PubMed

    Loganathan, Kavithaa; Bromley, David; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2015-09-15

    Through sustainable water management, oil sands companies are working to reduce their reliance on fresh water by minimizing the amount of water required for their operations and by recycling water from tailings ponds. This study was the first pilot-scale testing of a hybrid technology consisting of froth flotation combined with filtration through precoated submerged stainless steel membranes used to treat recycle water from an oil sands facility. The results indicated that the most important factor affecting the performance of the hybrid system was the influent water quality. Any rise in the levels of suspended solids or total organic carbon of the feed water resulted in changes of chemical consumption rates, flux rates, and operating cycle durations. The selections of chemical type and dosing rates were critical in achieving optimal performance. In particular, the froth application rate heavily affected the overall recovery of the hybrid system as well as the performance of the flotation process. Optimum surfactant usage to generate froth (per liter of treated water) was 0.25 mL/L at approximately 2000 NTU of influent turbidity and 0.015 mL/L at approximately 200 NTU of influent turbidity. At the tested conditions, the optimal coagulant dose was 80 mg/L (as Al) at approximately 2000 NTU of influent turbidity and <40 mg/L (as Al) at approximately 200 NTU of influent turbidity. Precoat loading per unit membrane surface area tested during the pilot study was approximately 30 g/m(2). The results of this study indicated that this hybrid technology can potentially be considered as a pre-treatment step for reverse osmosis treatment of recycle water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Sioux City Riverbank Filtration Study

    NASA Astrophysics Data System (ADS)

    Mach, R.; Condon, J.; Johnson, J.

    2003-04-01

    The City of Sioux City (City) obtains a large percentage of their drinking water supply from both a horizontal collector well system and vertical wells located adjacent to the Missouri River. These wells are set in either the Missouri Alluvium or the Dakota Sandstone aquifer. Several of the collector well laterals extend out beneath the Missouri River, with the laterals being over twenty feet below the river channel bottom. Due to concerns regarding ground water under direct surface water influence, the Iowa Department of Natural Resources (IDNR) required the City to expand their water treatment process to deal with potential surface water contaminant issues. With the extensive cost of these plant upgrades, the City and Olsson Associates (OA) approached the IDNR requesting approval for assessing the degree of natural riverbank filtration for water treatment. If this natural process could be ascertained, the level of treatment from the plant could be reduced. The objective of this study was to quantify the degree of surface water (i.e. Missouri River) filtration due to the underlying Missouri River sediments. Several series of microscopic particulate analysis where conducted, along with tracking of turbidity, temperature, bacteria and a full scale particle count study. Six particle sizes from six sampling points were assessed over a nine-month period that spanned summer, fall and spring weather periods. The project was set up in two phases and utilized industry accepted statistical analyses to identify particle data trends. The first phase consisted of twice daily sample collection from the Missouri River and the collector well system for a one-month period. Statistical analysis of the data indicated reducing the sampling frequency and sampling locations would yield justifiable data while significantly reducing sampling and analysis costs. The IDNR approved this modification, and phase II included sampling and analysis under this reduced plant for an eight

  4. Evaluation of media for simultaneous enumeration of total coliform and Escherichia coli in drinking water supplies by membrane filtration techniques.

    PubMed

    Wang, Dunling; Fiessel, Wanda

    2008-01-01

    This study evaluated three different dehydrated media for simultaneous detection and enumeration of total coliform (TC) and Escherichia coli in drinking water samples with a standard membrane filtration procedure. The experiment indicated that the differential coliform agar (DCA) medium was the most effective among the tested media in enumerating TC and E. coli, without the need for extensive accompanying confirmation tests. The results for DCA medium were highly reproducible for both TC and E. coli with standard deviation of 6.0 and 6.1, respectively. A high agreement (82%) was found between DCA and m-Endo media on 152 drinking water samples in terms of TC positive. The DCA medium also reduced concealment of background bacteria.

  5. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water

    PubMed Central

    McDonald, Kyle J.; Reynolds, Brandon; Reddy, K. J.

    2015-01-01

    The contamination of arsenic in human drinking water supplies is a serious global health concern. Despite multiple years of research, sustainable arsenic treatment technologies have yet to be developed. This study demonstrates the intrinsic abilities of cupric oxide nanoparticles (CuO-NP) towards arsenic adsorption and the development of a point-of-use filter for field application. X-ray diffraction and X-ray photoelectron spectroscopy experiments were used to examine adsorption, desorption, and readsorption of aqueous arsenite and arsenate by CuO-NP. Field experiments were conducted with a point-of-use filter, coupled with real-time arsenic monitoring, to remove arsenic from domestic groundwater samples. The CuO-NP were regenerated by desorbing arsenate via increasing pH above the zero point of charge. Results suggest an effective oxidation of arsenite to arsenate on the surface of CuO-NP. Naturally occurring arsenic was effectively removed by both as-prepared and regenerated CuO-NP in a field demonstration of the point-of-use filter. A sustainable arsenic mitigation model for contaminated water is proposed. PMID:26047164

  6. 40 CFR 141.718 - Treatment performance toolbox components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for.... (a) Combined filter performance. Systems using conventional filtration treatment or direct filtration... the criteria in this paragraph. Combined filter effluent (CFE) turbidity must be less than or equal to...

  7. 40 CFR 141.718 - Treatment performance toolbox components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for.... (a) Combined filter performance. Systems using conventional filtration treatment or direct filtration... the criteria in this paragraph. Combined filter effluent (CFE) turbidity must be less than or equal to...

  8. 40 CFR 141.718 - Treatment performance toolbox components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for.... (a) Combined filter performance. Systems using conventional filtration treatment or direct filtration... the criteria in this paragraph. Combined filter effluent (CFE) turbidity must be less than or equal to...

  9. Treatment of Oil & Gas Produced Water.

    SciTech Connect

    Dwyer, Brian P.

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowedmore » hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.« less

  10. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain.

    PubMed

    Eschauzier, Christian; Beerendonk, Erwin; Scholte-Veenendaal, Petra; De Voogt, Pim

    2012-02-07

    The behavior of polyfluoralkyl acids (PFAAs) from intake (raw source water) to finished drinking water was assessed by taking samples from influent and effluent of the several treatment steps used in a drinking water production chain. These consisted of intake, coagulation, rapid sand filtration, dune passage, aeration, rapid sand filtration, ozonation, pellet softening, granular activated carbon (GAC) filtration, slow sand filtration, and finished drinking water. In the intake water taken from the Lek canal (a tributary of the river Rhine), the most abundant PFAA were PFBA (perfluorobutanoic acid), PFBS (perfluorobutane sulfonate), PFOS (perfluorooctane sulfonate), and PFOA (perfluorooctanoic acid). During treatment, longer chain PFAA such as PFNA (perfluorononanoic acid) and PFOS were readily removed by the GAC treatment step and their GAC effluent concentrations were reduced to levels below the limits of quantitation (LOQ) (0.23 and 0.24 ng/L for PFOS and PFNA, respectively). However, more hydrophilic shorter chain PFAA (especially PFBA and PFBS) were not removed by GAC and their concentrations remained constant through treatment. A decreasing removal capacity of the GAC was observed with increasing carbon loading and with decreasing carbon chain length of the PFAAs. This study shows that none of the treatment steps, including softening processes, are effective for PFAA removal, except for GAC filtration. GAC can effectively remove certain PFAA from the drinking water cycle.The enrichment of branched PFOS and PFOA isomers relative to non branched isomers during GAC filtration was observed during treatment. The finished water contained 26 and 19 ng/L of PFBA and PFBS. Other PFAAs were present in concentrations below 4.2 ng/L The concentrations of PFAA observed in finished waters are no reason for concern for human health as margins to existing guidelines are sufficiently large.

  11. A PERSPECTIVE OF RIVERBANK FILTRATION

    EPA Science Inventory

    Riverbank filtration is a process in which pumping of wells located along riverbanks induce a portion of the river water to flow toward the pumping wells. The process has many similarities to the slow sand filtration process. River water contaminants are attenuated due to a combi...

  12. Critical, sustainable and threshold fluxes for membrane filtration with water industry applications.

    PubMed

    Field, Robert W; Pearce, Graeme K

    2011-05-11

    Critical flux theory evolved as a description of the upper bound in the operating envelope for controlled steady state environments such as cross-flow systems. However, in the application of UF membranes in the water industry, dead-end (direct-flow) designs are used. Direct-flow is a pseudo steady state operation with different fouling characteristics to cross-flow, and thus the critical flux concept has limited applicability. After a review of recent usage of the critical flux theory, an alternative concept for providing design guidelines for direct-flow systems namely that of the threshold flux is introduced. The concept of threshold flux can also be applicable to cross-flow systems. In more general terms the threshold flux can be taken to be the flux that divides a low fouling region from a high fouling region. This may be linked both to the critical flux concept and to the concept of a sustainable flux. The sustainable flux is the one at which a modest degree of fouling occurs, providing a compromise between capital expenditure (which is reduced by using high flux) and operating costs (which are reduced by restricting the fouling rate). Whilst the threshold flux can potentially be linked to physical phenomena alone, the sustainable flux also depends upon economic factors and is thus of a different nature to the critical and threshold fluxes. This distinction will be illustrated using some MBR data. Additionally the utility of the concept of a threshold flux will be illustrated using pilot plant data obtained for UF treatment of four sources of water. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Problems of drinking water treatment along Ismailia Canal Province, Egypt.

    PubMed

    Geriesh, Mohamed H; Balke, Klaus-Dieter; El-Rayes, Ahmed E

    2008-03-01

    The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06x10(6) m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6x10(6) m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application.

  14. Problems of drinking water treatment along Ismailia Canal Province, Egypt*

    PubMed Central

    Geriesh, Mohamed H.; Balke, Klaus-Dieter; El-Rayes, Ahmed E.

    2008-01-01

    The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process. On the other hand, chlorine gas is added as a disinfectant agent in two steps, pre- and post-chlorination. Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane (THM) species as a chlorination by-product. The Ismailia Canal represents the most distal downstream of the main Nile River. Thus its water contains all the proceeded pollutants discharged into the Nile. In addition, the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year. Moreover, the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals. The obtained results indicate that the canal gains up to 24.06×106 m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates, while during the rest of the year, the canal acts as an influent stream losing about 99.6×106 m3 of its water budget. The reduction of total organic carbon (TOC) and suspended particulate matters (SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products. The combination of sedimentation basins, gravel pre-filtration and slow sand filtration, and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC, SPM and heavy metals. Moreover, it reduces the use of disinfectants chemicals and lowers the treatment costs. However, this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application. PMID:18357626

  15. Estrogen-related receptor gamma disruption of source water and drinking water treatment processes extracts.

    PubMed

    Li, Na; Jiang, Weiwei; Rao, Kaifeng; Ma, Mei; Wang, Zijian; Kumaran, Satyanarayanan Senthik

    2011-01-01

    Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERRgamma two-hybrid yeast assay to screen ERRgamma disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonistic activity to 4-hydroxytamoxifen (4-OHT). Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes. Samples were extracted by solid phase extraction. Results showed that ERRgamma antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found. When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 microg/L. In the treatment processes, secondary chlorination was effective in removing ERRgamma antagonists, but the coagulation process led to significantly increased ERRgamma antagonistic activity. The drinking water treatment processes removed 73.5% of ERRgamma antagonists. To our knowledge, the occurrence of ERRgamma disruption activities on source and drinking water in vitro had not been reported previously. It is vital, therefore, to increase our understanding of ERRy disrupting activities in drinking water.

  16. Concentration and Detection of Cryptosporidium Oocysts in Surface Water Samples by Method 1622 Using Ultrafiltration and Capsule Filtration

    USGS Publications Warehouse

    Simmons, O. D.; Sobsey, M.D.; Heaney, C.D.; Schaefer, F. W.; Francy, D.S.

    2001-01-01

    The protozoan parasite Cryptosporidium parvum is known to occur widely in both source and drinking water and has caused waterborne outbreaks of gastroenteritis. To improve monitoring, the U.S. Environmental Protection Agency developed method 1622 for isolation and detection of Cryptosporidium oocysts in water. Method 1622 is performance based and involves filtration, concentration, immunomagnetic separation, fluorescent-antibody staining and 4???,6-diamidino-2-phenylindole (DAPI) counterstaining, and microscopic evaluation. The capsule filter system currently recommended for method 1622 was compared to a hollow-fiber ultrafilter system for primary concentration of C. parvum oocysts in seeded reagent water and untreated surface waters. Samples were otherwise processed according to method 1622. Rates of C. parvum oocyst recovery from seeded 10-liter volumes of reagent water in precision and recovery experiments with filter pairs were 42% (standard deviation [SD], 24%) and 46% (SD, 18%) for hollow-fiber ultrafilters and capsule filters, respectively. Mean oocyst recovery rates in experiments testing both filters on seeded surface water samples were 42% (SD, 27%) and 15% (SD, 12%) for hollow-fiber ultrafilters and capsule filters, respectively. Although C. parvum oocysts were recovered from surface waters by using the approved filter of method 1622, the recovery rates were significantly lower and more variable than those from reagent grade water. In contrast, the disposable hollow-fiber ultrafilter system was compatible with subsequent method 1622 processing steps, and it recovered C. parvum oocysts from seeded surface waters with significantly greater efficiency and reliability than the filter suggested for use in the version of method 1622 tested.

  17. COMPARISON OF FILTRATION METHODS FOR PRIMARY RECOVERY OF CRYPTOSPORIIDUM PARVUM FROM WATER

    EPA Science Inventory

    Waterborne disease outbreaks from contaminated drinking water have been linked to the protozoan parasite, Cryptosporidium parvum. To improve monitoring for this agent, the USEPA developed Method 1622 for isolation and detection of Cryptosporidium oocysts in water. Method 1622 i...

  18. Pentachlorophenol removal from water using surfactant-enhanced filtration through low-pressure thin film composite membranes.

    PubMed

    Kumar, Yogesh; Popat, K M; Brahmbhatt, H; Ganguly, B; Bhattacharya, A

    2008-06-15

    Removal of pentachlorophenol from water is investigated using the surfactant-enhanced cross-flow membrane filtration technique in which anionic surfactant; sodium dodecyl sulfate (SDS) is the carrier of pentachlorophenol. The separation performances are studied by varying SDS concentrations (

  19. Water Treatment Pilot Plant Design Manual: Low Flow Conventional/Direct Filtration Water Treatment Plant for Drinking Water Treatment Studies

    EPA Science Inventory

    This manual highlights the project constraints and concerns, and includes detailed design calculations and system schematics. The plant is based on engineering design principles and practices, previous pilot plant design experiences, and professional experiences and may serve as ...

  20. Enhanced drinking water supply through harvested rainwater treatment

    NASA Astrophysics Data System (ADS)

    Naddeo, Vincenzo; Scannapieco, Davide; Belgiorno, Vincenzo

    2013-08-01

    Decentralized drinking water systems represent an important element in the process of achieving the Millennium Development Goals, as centralized systems are often inefficient or nonexistent in developing countries. In those countries, most water quality related problems are due to hygiene factors and pathogens. A potential solution might include decentralized systems, which might rely on thermal and/or UV disinfection methods as well as physical and chemical treatments to provide drinking water from rainwater. For application in developing countries, decentralized systems major constraints include low cost, ease of use, environmental sustainability, reduced maintenance and independence from energy sources. This work focuses on an innovative decentralized system that can be used to collect and treat rainwater for potable use (drinking and cooking purposes) of a single household, or a small community. The experimented treatment system combines in one compact unit a Filtration process with an adsorption step on GAC and a UV disinfection phase in an innovative design (FAD - Filtration Adsorption Disinfection). All tests have been carried out using a full scale FAD treatment unit. The efficiency of FAD technology has been discussed in terms of pH, turbidity, COD, TOC, DOC, Escherichia coli and Total coliforms. FAD technology is attractive since it provides a total barrier for pathogens and organic contaminants, and reduces turbidity, thus increasing the overall quality of the water. The FAD unit costs are low, especially if compared to other water treatment technologies and could become a viable option for developing countries.

  1. Concentration of infectious hematopoietic necrosis virus from water samples by tangential flow filtration and polyethylene glycol precipitation

    USGS Publications Warehouse

    Batts, W.N.; Winton, J.R.

    1989-01-01

    Infectious hematopoietic necrosis virus (IHNV) was concentrated from water samples by polyethylene glycol (PEG) precipitation, tangential flow filtration (TFF), and by a combination of TFF followed by PEG precipitation of the retentate. Used alone, PEG increased virus titers more than 200-fold, and the efficiency of recovery was as great as 100%. Used alone, TFF concentrated IHNV more than 20-fold, and average recovery was 70%. When the two techniques were combined, 10-L water samples were reduced to about 300 mL by TFF and the virus was precipitated with PEG into a 1 to 2 g pellet; total recovery was as great as 100%. The combined techniques were used to isolate IHNV from water samples taken from a river containing adult sockeye salmon (Oncorhynchus nerka) and from a hatchery pond containing adult spring chinook salmon (O. tshawytscha). The combination of these methods was effective in concentrating and detecting IHNV from water containing only three infectious particles per 10-L sample.

  2. Water treatment method

    DOEpatents

    Martin, Frank S.; Silver, Gary L.

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  3. Water treatment method

    DOEpatents

    Martin, F.S.; Silver, G.L.

    1991-04-30

    A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  4. Enhanced treatment of secondary municipal wastewater effluent: comparing (biological) filtration and ozonation in view of micropollutant removal, unselective effluent toxicity, and the potential for real-time control.

    PubMed

    Chys, Michael; Demeestere, Kristof; Ingabire, Ange Sabine; Dries, Jan; Van Langenhove, Herman; Van Hulle, Stijn W H

    2017-07-01

    Ozonation and three (biological) filtration techniques (trickling filtration (TF), slow sand filtration (SSF) and biological activated carbon (BAC) filtration) have been evaluated in different combinations as tertiary treatment for municipal wastewater effluent. The removal of 18 multi-class pharmaceuticals, as model trace organic contaminants (TrOCs), has been studied. (Biological) activated carbon filtration could reduce the amount of TrOCs significantly (>99%) but is cost-intensive for full-scale applications. Filtration techniques mainly depending on biodegradation mechanisms (TF and SSF) are found to be inefficient for TrOCs removal as a stand alone technique. Ozonation resulted in 90% removal of the total amount of quantified TrOCs, but a post-ozonation step is needed to cope with an increased unselective toxicity. SSF following ozonation showed to be the only technique able to reduce the unselective toxicity to the same level as before ozonation. In view of process control, innovative correlation models developed for the monitoring and control of TrOC removal during ozonation, are verified for their applicability during ozonation in combination with TF, SSF or BAC. Particularly for the poorly ozone reactive TrOCs, statistically significant models were obtained that correlate TrOC removal and reduction in UVA 254 as an online measured surrogate parameter.

  5. Field assessment of a novel household-based water filtration device: a randomised, placebo-controlled trial in the Democratic Republic of Congo.

    PubMed

    Boisson, Sophie; Kiyombo, Mbela; Sthreshley, Larry; Tumba, Saturnin; Makambo, Jacques; Clasen, Thomas

    2010-09-10

    Household water treatment can improve the microbiological quality of drinking water and may prevent diarrheal diseases. However, current methods of treating water at home have certain shortcomings, and there is evidence of bias in the reported health impact of the intervention in open trial designs. We undertook a randomised, double-blinded, placebo-controlled trial among 240 households (1,144 persons) in rural Democratic Republic of Congo to assess the field performance, use and effectiveness of a novel filtration device in preventing diarrhea. Households were followed up monthly for 12 months. Filters and placebos were monitored for longevity and for microbiological performance by comparing thermotolerant coliform (TTC) levels in influent and effluent water samples. Mean longitudinal prevalence of diarrhea was estimated among participants of all ages. Compliance was assessed through self-reported use and presence of water in the top vessel of the device at the time of visit. Over the 12-month follow-up period, data were collected for 11,236 person-weeks of observation (81.8% total possible). After adjusting for clustering within the household, the longitudinal prevalence ratio of diarrhoea was 0.85 (95% confidence interval: 0.61-1.20). The filters achieved a 2.98 log reduction in TTC levels while, for reasons that are unclear, the placebos achieved a 1.05 log reduction (p<0.0001). After 8 months, 68% of intervention households met the study's definition of current users, though most (73% of adults and 95% of children) also reported drinking untreated water the previous day. The filter maintained a constant flow rate over time, though 12.4% of filters were damaged during the course of the study. While the filter was effective in improving water quality, our results provide little evidence that it was protective against diarrhea. The moderate reduction observed nevertheless supports the need for larger studies that measure impact against a neutral placebo. Current

  6. Pollution Impact and Alternative Treatment for Produced Water

    NASA Astrophysics Data System (ADS)

    Hedar, Yusran; Budiyono

    2018-02-01

    Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  7. Effects of discharge fluctuation and the addition of fine sediment on stream fish and macroinvertebrates below a water-filtration facility

    NASA Astrophysics Data System (ADS)

    Erman, Don C.; Ligon, Franklin K.

    1988-01-01

    A small, coastal stream in the San Francisco Bay area of California, USA, received the discharges from a drinking-water filtration plant. Two types of discharges were present. Discharges from filter backwashing were 3 4 times base stream flow, occurred 10 60 times per day, contained fine sediments, and each lasted about 10 min. The other discharge was a large, steady flow of relatively sediment-free water from occasional overflow of the delivery aqueduct which generally lasted several hours a day. Samples of invertebrates from natural substrates had significantly fewer taxa and lower density at the two stations below the backwash than at the two above. However, when stable artificial substrates were used, there were no significant differences among all four stations. The aqueduct apparently had no effect because the. invertebrate community at the station upstream of the backwash but downstream of the aqueduct was statistically similar to the station above the aqueduct. To test for acute toxicity, we exposed additional artificial substrates to short-term simulated backwash conditions. These exposures had no effect on invertebrate density or drift. Three-spine stickleback ( Gasterosteus aculeatus) populations were also significantly reduced at the two downstream stations and were made up mostly of larger, adult fish. Prickly sculpins ( Cottus asper), restricted to the most downstream station, were emaciated and had poor growth, probably as a result of scarce benthic food organisms. Artificial redds with eggs of rainbow trout ( Salmo gairdneri) had significantly lower survival at two stations below the plant backwash (30.7% and 41.8%) than at the one above it (61.4%). Hatchery rainbow trout held in cages below the treatment plant from 7 to 37 days survived and continued to feed. Thus, the major effect of the water treatment plant on fish and invertebrates probably was not from acute toxicity in the discharges or the occasionally large discharge of clean water from the

  8. Removal of indigenous coliphages and enteric viruses during riverbank filtration from highly polluted river water in Delhi (India).

    PubMed

    Sprenger, C; Lorenzen, G; Grunert, A; Ronghang, M; Dizer, H; Selinka, H-C; Girones, R; Lopez-Pila, J M; Mittal, A K; Szewzyk, R

    2014-06-01

    Emerging countries frequently afflicted by waterborne diseases require safe and cost-efficient production of drinking water, a task that is becoming more challenging as many rivers carry a high degree of pollution. A study was conducted on the banks of the Yamuna River, Delhi, India, to ascertain if riverbank filtration (RBF) can significantly improve the quality of the highly polluted surface water in terms of virus removal (coliphages, enteric viruses). Human adenoviruses and noroviruses, both present in the Yamuna River in the range of 10(5) genomes/100 mL, were undetectable after 50 m infiltration and approximately 119 days of underground passage. Indigenous somatic coliphages, used as surrogates of human pathogenic viruses, underwent approximately 5 log10 removal after only 3.8 m of RBF. The initial removal after 1 m was 3.3 log10, and the removal between 1 and 2.4 m and between 2.4 and 3.8 m was 0.7 log10 each. RBF is therefore an excellent candidate to improve the water situation in emerging countries with respect to virus removal.

  9. 3-D Modelling the effect of river excavation on surface water and groundwater relation in a bank filtration system - comparing electrical conductivity and heat as tracer

    NASA Astrophysics Data System (ADS)

    Wang, Weishi; Oswald, Sascha; Munz, Matthias; Strasser, Daniel

    2017-04-01

    As a pretreatment for conventional drinking water supply, bank filtration (BF) is widely used in Europe, while in Germany it contributes 16% of potable water supply. There are usually two crucial issues for BF influencing its treatment effect, which are separately the spatial and temporal distribution of travelling times and distinguishing between the flow contribution of BF versus inflow from the ambient groundwater. Modelling is a strong tool for analyzing the behavior and development of the flow field, especially for quantification of the river recharge rate of BF and estimation of travel time distribution. Though 3-D modelling of the flow field as a comprehensive tool has been used in several studies, many simulations are limited to pure water flow. Since heads are only partially able to constrain the flow field, model non-uniqueness might lead to misinterpretation of the real flow field, especially in complex geological conditions. Some studies have shown that by including tracers, the model non-uniqueness could be reasonably constrained and the accuracy of flux estimation could be improved. Natural tracers thus are used in groundwater modelling, while differences in their properties or input may cause dissimilar behavior during the transport process. In this study, we have set up a numerical 3-D groundwater flow model of a bank filtration site with strong geological heterogeneity and used the data of several years monitoring activities as the data basis. We were particularly interested in the seasonal dynamics but also structural changes induced by a reconstruction of the surface water including excavation and rebuilding the bank construction. By combining separately electrical conductivity and heat as tracers in the model we were able to i) understand flow field mechanisms and its changes caused by the excavation ii) conclude from the deviations of the tracer concentrations and dynamics simulated compared to the measurements on deficiencies of the flow field

  10. Improvement of organics removal by bio-ceramic filtration of raw water with addition of phosphorus.

    PubMed

    Sang, Junqiang; Zhang, Xihui; Li, Lingzhi; Wang, Zhansheng

    2003-11-01

    The purpose of this study was to investigate the effect of phosphorus addition on biological pretreatment of raw water. Experiments were conducted in pilot-scale bio-ceramic filters with raw water from a reservoir located in Beijing, China. The results demonstrated that phosphorus was the limiting nutrient for bacterial growth in the raw water investigated in this study. The measured values of bacterial regrowth potential (BRP) and biodegradable dissolved organic carbon (BDOC) of the raw water increased by 50-65% and 30-40% with addition of 50 microg of PO4(3-)-PL(-1), respectively. Addition of 25 microg of PO4(3-)-PL(-1) to the influent of bio-ceramic filter enhanced the percent removal of organics by 4.6, 5.7 and 15 percentage points in terms of COD(Mn), TOC and BDOC, respectively. Biomass in terms of phospholipid content increased by 13-22% and oxygen uptake rate (OUR) increased by 35-45%. The ratio of C:P for bacteria growth was 100:1.6 for the raw water used in this study. Since change of phosphorus concentrations can influence the performance of biological pretreatment and the biological stability of drinking water, this study is of substantial significance for waterworks in China. The role of phosphorus in biological processes of drinking water should deserve more attention.

  11. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant.

    PubMed

    Vieno, Niina M; Härkki, Heli; Tuhkanen, Tuula; Kronberg, Leif

    2007-07-15

    The occurrence of four beta blockers, one antiepileptic drug, one lipid regulator, four anti-inflammatories, and three fluoroquinolones was studied in a river receiving sewage effluents. All compounds but two of the fluoroquinolones were observed in the water above their limit of quantification concentrations. The highest concentrations (up to 107 ng L(-1)) of the compounds were measured during the winter months. The river water was passed to a pilot-scale drinking water treatment plant, and the elimination of the pharmaceuticals was followed during the treatment. The processes applied by the plant consisted of ferric salt coagulation, rapid sand filtration, ozonation, two-stage granular activated carbon filtration (GAC), and UV disinfection. Following the coagulation, sedimentation, and rapid sand filtration, the studied pharmaceuticals were found to be eliminated only by an average of 13%. An efficient elimination was found to take place during ozonation at an ozone dose of about 1 mg L(-1) (i.e., 0.2-0.4 mg of O3/ mg of TOC). Following this treatment, the concentrations of the pharmaceuticals dropped to below the quantification limits with the exception of ciprofloxacin. Atenolol, sotalol, and ciprofloxacin, the most hydrophilic of the studied pharmaceuticals, were not fully eliminated during the GAC filtrations. All in all, the treatment train was found to very effectively eliminate the pharmaceuticals from the rawwater. The only compound that was found to pass almost unaffected through all the treatment steps was ciprofloxacin.

  12. The role of a combined coagulation and disk filtration process as a pre-treatment to microfiltration and reverse osmosis membranes in a municipal wastewater pilot plant.

    PubMed

    Chon, Kangmin; Cho, Jaeweon; Kim, Seung Joon; Jang, Am

    2014-12-01

    A pilot study was conducted to assess the performance of a municipal wastewater reclamation plant consisting of a combined coagulation-disk filtration (CC-DF) process, microfiltration (MF) and reverse osmosis (RO) membranes, in terms of the removal of water contaminants and changes in characteristics of effluent organic matter (EfOM). The CC-DF and MF membranes were not effective for the removal of dissolved water contaminants. However, they could partially reduce the turbidity associated with the cake layer formation by particulate materials on the membrane surfaces. Furthermore, most of water contaminants were completely removed by the RO membranes. Although the CC-DF process could remove approximately 20% of turbidity, the aluminium concentrations considerably increased after the CC-DF process due to the residual coagulants complexed with both carboxylic acid and alcohol functional groups of EfOM. Those aluminium-EfOM complexes had a lower negative charge and higher molecular weight (>0.1 μm pore size of the MF membranes) compared to non-complexed EfOM. These results indicate that the control of the formation of the aluminium-EfOM complexes should be considered as a key step to use the CC-DF process as a pre-treatment of the MF and RO membranes for mitigation of membrane fouling in the tested pilot plant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.73 Filtration. A public water system that uses a surface water source or a ground water source under the direct influence of surface water...

  14. Numerical simulation of filtration of mine water from coal slurry particles

    NASA Astrophysics Data System (ADS)

    Dyachenko, E. N.; Dyachenko, N. N.

    2017-11-01

    The discrete element method is applied to model a technology for clarification of industrial waste water containing fine-dispersed solid impurities. The process is analyzed at the level of discrete particles and pores. The effect of filter porosity on the volume fraction of particles has been shown. The degree of clarification of mine water was also calculated depending on the coal slurry particle size, taking into account the adhesion force.

  15. 1. Perspective view southwest of filtration bed with earth mounded ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Perspective view southwest of filtration bed with earth mounded over facility. Armory Street appears in the foreground. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  16. Comparison of membrane filtration and multiple tube methods for the enumeration of coliform organisms in water

    PubMed Central

    1972-01-01

    The membrane methods described in Report 71 on the bacteriological examination of water supplies (Report, 1969) for the enumeration of coliform organisms and Escherichia coli in waters, together with a glutamate membrane method, were compared with the glutamate multiple tube method recommended in Report 71 and an incubation procedure similar to that used for membranes with the first 4 hr. at 30° C., and with MacConkey broth in multiple tubes. Although there were some differences between individual laboratories, the combined results from all participating laboratories showed that standard and extended membrane methods gave significantly higher results than the glutamate tube method for coliform organisms in both chlorinated and unchlorinated waters, but significantly lower results for Esch. coli with chlorinated waters and equivocal results with unchlorinated waters. Extended membranes gave higher results than glutamate tubes in larger proportions of samples than did standard membranes. Although transport membranes did not do so well as standard membrane methods, the results were usually in agreement with glutamate tubes except for Esch. coli in chlorinated waters. The glutamate membranes were unsatisfactory. Preliminary incubation of glutamate at 30° C. made little difference to the results. PMID:4567313

  17. Comparison of two filtration-elution procedures to improve the standard methods ISO 10705-1 & 2 for bacteriophage detection in groundwater, surface water and finished water samples.

    PubMed

    Helmi, K; Jacob, P; Charni-Ben-Tabassi, N; Delabre, K; Arnal, C

    2011-09-01

    To select a reliable method for bacteriophage concentration prior detection by culture from surface water, groundwater and drinking water to enhance the sensitivity of the standard methods ISO 10705-1 & 2. Artificially contaminated (groundwater and drinking water) and naturally contaminated (surface water) 1-litre samples were processed for bacteriophages detection. The spiked samples were inoculated with about 150 PFU of F-specific RNA bacteriophages and somatic coliphages using wastewater. Bacteriophage detection in the water samples was achieved using the standard method without and with a concentration step (electropositive Anodisc membrane or a pretreated electronegative Micro Filtration membrane, MF). For artificially contaminated matrices (drinking and ground waters), recovery rates using the concentration step were superior to 70% whilst analyses without concentration step mainly led to false negative results. Besides, the MF membrane presented higher performances compared with the Anodisc membrane. The concentration of a large volume of water (up to one litre) on a filter membrane avoids false negative results obtained by direct analysis as it allows detecting low number of bacteriophages in water samples. The addition of concentration step before applying the standard method could be useful to enhance the reliability of bacteriophages monitoring in water samples as bio-indicators to highlight faecal pollution. © No claim to French Government works. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  18. Removal of antibiotic resistant E. coli in two Norwegian wastewater treatment plants and by nano- and ultra-filtration processes.

    PubMed

    Schwermer, Carsten Ulrich; Krzeminski, Pawel; Wennberg, Aina Charlotte; Vogelsang, Christian; Uhl, Wolfgang

    2018-02-01

    The effectivity of different treatment stages at two large wastewater treatment plants (WWTPs) located in Oslo, Norway, to remove antibiotic resistant Escherichia coli from municipal wastewater was investigated. The WWTPs were effective in reducing the total cultivable E. coli. The E. coli in WWTP samples were mainly resistant to ampicillin (6-27%) and trimethoprim-sulfamethoxazole (5-24%), and, to a lesser extent, tetracycline (3-14%) and ciprofloxacin (0-7%). In the first WWTP, a clear decrease in the percentage of E. coli resistant to these antibiotics was found, with the main removal occurring during physical/chemical treatment. In the second WWTP, the percentage of cultivable resistant E. coli did not display a considerable change. During laboratory-scale membrane filtration of WWTP effluents using ultrafiltration (UF) and nanofiltration (NF) membranes, all E. coli, including those resistant to antibiotics, were removed completely. The results imply that UF and NF processes are potent measures to remove antibiotic resistant bacteria (ARB) during post-treatment of WWTP effluents, thus reducing the potential spread of antibiotic resistance in the receiving aquatic environment.

  19. Ground water in northeastern Louisville, Kentucky with reference to induced filtration

    USGS Publications Warehouse

    Rorabaugh, M.I.

    1956-01-01

    In cooperation with the city of Louisville, Ky., the U. S. Geological Survey made a detailed investigation during the period February 1945 to March 1947 of the ground-water resources of a 3-square-mile area along the Ohio River north-east of Louisville. Test drilling shows that the principal aquifer consists of about 80 feet of glacial-outwash sands and gravels lying in an old river channel which was cut into rocks of Ordovician, Silurian, and Devonian age. The total ground-water storage in the area is estimated as 7 billion gallons. The ground-water levels are affected by changes in river elevation, by rainfall, and by the effects of pumping in the downtown part of Louisville 3 miles to the southwest. In the northeastern part of the area the flow of ground water, as defined by contour maps, is toward the river, and in the southwestern part of the area it is from the river toward the downtown area of overpumping. Ground water in the area has an average temperature of 56° F. The water, which is moderately hard, is suitable for domestic and industrial uses. Analysis of a pumping test made during the investigation proves that infiltration supplies can be developed. Studies to determine the degree of connection between the river and aquifer were made on the basis of chemical analyses, sections showing temperature distribution in the aquifer during the pumping test, shapes of water-level profiles in the test area, and shapes of time-drawdown curves for a number of observation wells. Quantitative studies to evaluate the hydrologic constants of the aquifer were made by both graphical and mathematical methods. The transmissibility was determined as 121,000 gpd/ft in the test area; the distance to the line source, 400 feet; and the coefficient of storage, 0.0003. A comparison of river-level fluctuations and water-level fluctuations in observation wells shows that conditions along the 6.4-mile reach of river are not greatly different from those at the site of the pumping

  20. Biological filters and their use in potable water filtration systems in spaceflight conditions

    NASA Astrophysics Data System (ADS)

    Thornhill, Starla G.; Kumar, Manish

    2018-05-01

    Providing drinking water to space missions such as the International Space Station (ISS) is a costly requirement for human habitation. To limit the costs of water transport, wastewater is collected and purified using a variety of physical and chemical means. To date, sand-based biofilters have been designed to function against gravity, and biofilms have been shown to form in microgravity conditions. Development of a universal silver-recycling biological filter system that is able to function in both microgravity and full gravity conditions would reduce the costs incurred in removing organic contaminants from wastewater by limiting the energy and chemical inputs required. This paper aims to propose the use of a sand-substrate biofilter to replace chemical means of water purification on manned spaceflights.

  1. Biological filters and their use in potable water filtration systems in spaceflight conditions.

    PubMed

    Thornhill, Starla G; Kumar, Manish

    2018-05-01

    Providing drinking water to space missions such as the International Space Station (ISS) is a costly requirement for human habitation. To limit the costs of water transport, wastewater is collected and purified using a variety of physical and chemical means. To date, sand-based biofilters have been designed to function against gravity, and biofilms have been shown to form in microgravity conditions. Development of a universal silver-recycling biological filter system that is able to function in both microgravity and full gravity conditions would reduce the costs incurred in removing organic contaminants from wastewater by limiting the energy and chemical inputs required. This paper aims to propose the use of a sand-substrate biofilter to replace chemical means of water purification on manned spaceflights. Copyright © 2018 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  2. [Treatment effect of biological filtration and vegetable floating-bed combined system on greenhouse turtle breeding wastewater].

    PubMed

    Chen, Chong-Jun; Zhang, Rui; Xiang, Kun; Wu, Wei-Xiang

    2014-08-01

    Unorganized discharge of greenhouse turtle breeding wastewater has brought several negative influences on the ecological environment in the rural area of Yangtze River Delta. Biological filtration and vegetable floating-bed combined system is a potential ecological method for greenhouse turtle breeding wastewater treatment. In order to explore the feasibility of this system and evaluate the contribution of vegetable uptake of nitrogen (N) and phosphorus (P) in treating greenhouse turtle breeding wastewater, three types of vegetables, including Ipomoea aquatica, lettuce and celery were selected in this study. Results showed the combined system had a high capacity in simultaneous removal of organic matter, N and P. The removal efficiencies of COD, NH4(+)-N, TN and TP from the wastewater reached up to 93.2%-95.6%, 97.2%-99.6%, 73.9%-93.1% and 74.9%-90.0%, respectively. System with I. aquatica had the highest efficiencies in N and P removal, followed by lettuce and celery. However, plant uptake was not the primary pathway for TN arid TP removal in the combined system. The vegetable uptake of N and P accounted for only 9.1%-25.0% of TN and TP removal from the wastewater while the effect of microorganisms would be dominant for N and P removal. In addition, the highest amounts of N and P uptake in I. aquatica were closely related with the biomass of plant. Results from the study indicated that the biological filtration and vegetable floating-bed combined system was an effective approach to treating greenhouse turtle breeding wastewater in China.

  3. Technology for Water Treatment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    There are approximately 500,000 water cooling towers in the United States, all of which must be kept clear of "scale" and corrosion and free of pollutants and bacteria. Electron Pure, Ltd. manufactures a hydro cooling tower conditioner as well as an automatic pool sanitizer. The pool sanitizer consists of two copper/silver electrodes placed in a chamber mounted in the pool's recirculation system. The tower conditioner combines the ionization system with a water conditioner, pump, centrifugal solids separator and timer. The system saves water, eliminates algae and operates maintenance and chemical free. The company has over 100 distributors in the U.S. as well as others in 20 foreign countries. The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  4. The potentiality of cross-linked fungal chitosan to control water contamination through bioactive filtration.

    PubMed

    Tayel, Ahmed A; El-Tras, Wael F; Elguindy, Nihal M

    2016-07-01

    Water contamination, with heavy metals and microbial pathogens, is among the most dangerous challenges that confront human health worldwide. Chitosan is a bioactive biopolymer that could be produced from fungal mycelia to be utilized in various applied fields. An attempt to apply fungal chitosan for heavy metals chelation and microbial pathogens inhibition, in contaminated water, was performed in current study. Chitosan was produced from the mycelia of Aspergillus niger, Cunninghamella elegans, Mucor rouxii and from shrimp shells, using unified production conditions. The FT-IR spectra of produced chitosans were closely comparable. M. rouxii chitosan had the highest deacetylation degree (91.3%) and the lowest molecular weight (33.2kDa). All chitosan types had potent antibacterial activities against Escherichia coli and Staphylococcus aureus; the most forceful type was C. elegans chitosan. Chitosan beads were cross-linked with glutaraldehyde (GLA) and ethylene-glycol-diglycidyl ether (EGDE); linked beads became insoluble in water, acidic and alkaline solutions and could effectively adsorb heavy metals ions, e.g. copper, lead and zinc, in aqueous solution. The bioactive filter, loaded with EGDE- A. niger chitosan beads, was able to reduce heavy metals' concentration with >68%, and microbial load with >81%, after 6h of continuous water flow in the experimentally designed filter. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Contaminated water treatment

    NASA Technical Reports Server (NTRS)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  6. [Effect of ozone on membrane fouling in water and wastewater treatment: a research review].

    PubMed

    Zhu, Hong-tao; Wen, Xiang-hua; Huang, Xia

    2009-01-01

    As a high efficient water and wastewater treatment technology, membrane filtration has been mainly used in wastewater treatment as membrane bioreactor, in reclaiming secondary effluent,treating surface water and potable water, and etc. Membrane fouling is a main obstacle to the wide application of membrane technology. Ozone has strong oxidizing power and has been utilized widely in water and wastewater treatment. In recent years, researches on combined process of ozone-membrane filtration are increasing. This paper does reviews and analysis of these researches. It is noticed that there has been a few of researches on the ozone treatment plus MBR process. Pre-ozonation of feed to MBR and slight ozonation of the mixed liquid in MBR may be used to relieve membrane fouling.Combined processes of ozone-membrane filtration can be divided into three classes in terms of the function of ozone and the system configuration: (1) cleaning the fouled membrane with ozone; (2) separate ozone-membrane filtration process; (3) integrated ozone-membrane filtration process. Although most reports supported that ozonation can control membrane fouling development,there were contrary results. At present, researches on the mechanisms of ozone's effect on membrane fouling control concentrated on the change of organic composition of the filtration influent under ozonation, however, particulate substances, microbial and inorganic substances may also be affected and then play roles in membrane fouling, depending on source water quality and process configuration. Moreover, there have not been common parameters to evaluate the ozone diffusion equipment and efficiency. The authors suggest that further researches should emphasize on integrated ozone-membrane process, and more attention should be paid to the cost-effectiveness of the combined process.

  7. Activated charcoal filters: Water treatment, pollution control, and industrial applications. October 1970-October 1989 (Citations from the US Patent data base). Report for October 1970-October 1989

    SciTech Connect

    Not Available

    This bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming-pool filtration, tobacco-smoke filters, kitchen ventilators, medical filtration treatment, and odor-absorbing materials. (This updated bibliography contains 173 citations, 12 of which are new entries to the previous edition.)

  8. Activated charcoal filters: Water treatment, pollution control, and industrial applications. (Latest citations from the Patent Bibliographic database with exemplary claims. ) Published Search

    SciTech Connect

    Not Available

    The bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming pool filtration, tobacco smoke filters, kitchen ventilators, medical filtration treatment, and odor absorbing materials. (Contains 250 citations and includes a subject term index and title list.)

  9. Activated-charcoal filters: Water treatment, pollution control, and industrial applications. January 1970-August 1989 (Citations from the US Patent data base). Report for January 1970-August 1989

    SciTech Connect

    Not Available

    This bibliography contains citations of selected patents concerning activated charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic materials and contaminants are described. Applications include drinking-water purification, filtering beverages, production of polymer materials, solvent and metal recovery, waste conversion, automotive fuel and exhaust systems, swimming-pool filtration, tobacco-smoke filters, kitchen ventilators, medical-filtration treatment, and odor absorbing materials. (This updated bibliography contains 161 citations, 32 of which are new entries to the previous edition.)

  10. RIVERBANK FILTRATION AS A PRETREATMENT FOR NANOFILTRATION MEMBRANES

    EPA Science Inventory

    The loss of membrane efficiency due to fouling is one of the main impediments to the development of membrane processes for use in drinking water treatment. Surface waters, in general, have a greater proclivity towards fouling as compared to groundwaters. Riverbank filtration ch...

  11. RIVERBANK FILTRATION AS A PRETREATMENT FOR NANOFILTRATION MEMBRANES

    EPA Science Inventory

    The loss of membrane efficiency due to fouling is one of the main impediments to the development of membrane processes for use in drinking water treatment. Surface waters, in general, have a greater proclivity towards fouling as compared to groundwaters. Riverbank filtration chan...

  12. Belt Filtration. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Broste, Dale

    This lesson, an introduction to belt management, was developed for a course in sludge treatment and disposal. Fundamental principles of belt filter operation are described. Chemical conditioning and the effect on sludge characteristics are discussed, and a detailed description of the different zones of dewatering is presented. Information on…

  13. Car wash wastewater treatment and water reuse - a case study.

    PubMed

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.

  14. Water Treatment Technology - Distribution Systems.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  15. REMOVAL OF HEPATITIS A VIRUS AND ROTAVIRUS BY DRINKING WATER TREATMENT

    EPA Science Inventory

    The paper presents quantitative data from a two year study on the removability of rotavirus SA11 and hepatitis A virus added exogenously to Lake Houston raw water during treatment. Processes studied on laboratory and pilot scale included coagulation, filtration, softening and dis...

  16. Rate of Decline in Serum PFOA Concentrations after Granular Activated Carbon Filtration at Two Public Water Systems in Ohio and West Virginia

    PubMed Central

    Bartell, Scott M.; Calafat, Antonia M.; Lyu, Christopher; Kato, Kayoko; Ryan, P. Barry; Steenland, Kyle

    2010-01-01

    Background Drinking water in multiple water districts in the Mid-Ohio Valley has been contaminated with perfluorooctanoic acid (PFOA), which was released by a nearby DuPont chemical plant. Two highly contaminated water districts began granular activated carbon filtration in 2007. Objectives To determine the rate of decline in serum PFOA, and its corresponding half-life, during the first year after filtration. Methods Up to six blood samples were collected from each of 200 participants from May 2007 until August 2008. The primary source of drinking water varied over time for some participants; our analyses were grouped according to water source at baseline in May–June 2007. Results For Lubeck Public Service District customers, the average decrease in serum PFOA concentrations between May–June 2007 and May–August 2008 was 32 ng/mL (26%) for those primarily consuming public water at home (n = 130), and 16 ng/mL (28%) for those primarily consuming bottled water at home (n = 17). For Little Hocking Water Association customers, the average decrease in serum PFOA concentrations between November–December 2007 and May–June 2008 was 39 ng/mL (11%) for consumers of public water (n = 39) and 28 ng/mL (20%) for consumers of bottled water (n = 11). The covariate-adjusted average rate of decrease in serum PFOA concentration after water filtration was 26% per year (95% confidence interval, 25–28% per year). Conclusions The observed data are consistent with first-order elimination and a median serum PFOA half-life of 2.3 years. Ongoing follow-up will lead to improved half-life estimation. PMID:20123620

  17. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water.

    PubMed

    Su, Hao-Chang; Liu, You-Sheng; Pan, Chang-Gui; Chen, Jun; He, Liang-Ying; Ying, Guang-Guo

    2018-03-01

    As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. High Throughput Plasma Water Treatment

    NASA Astrophysics Data System (ADS)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  19. Water reduction in waste-activated sludge by resettling and filtration in batch. Phase (1): pilot-scale experiments to optimize performance.

    PubMed

    Trapote, Arturo; Jover, Margarita; Cartagena, Pablo; El Kaddouri, Marouane; Prats, Daniel

    2014-08-01

    This article describes an effective procedure for reducing the water content of excess sludge production from a wastewater treatment plant by increasing its concentration and, as a consequence, minimizing the volume of sludge to be managed. It consists of a pre-dewatering sludge process, which is used as a preliminary step or alternative to the thickening. It is made up of two discontinuous sequential stages: the first is resettling and the second, filtration through a porous medium. The process is strictly physical, without any chemical additives or electromechanical equipment intervening. The experiment was carried out in a pilot-scale system, consisting of a column of sedimentation that incorporates a filter medium. Different sludge heights were tested over the filter to verify the influence ofhydrostatic pressure on the various final concentrations of each stage. The results show that the initial sludge concentration may increase by more than 570% by the end of the process with the final volume of sludge being reduced in similar proportions and hydrostatic pressure having a limited effect on this final concentration. Moreover, the value of the hydrostatic pressure at which critical specific cake resistance is reached is established.

  20. Efficiency of combined process of ozone and bio-filtration in the treatment of secondary effluent.

    PubMed

    Tripathi, Smriti; Tripathi, B D

    2011-07-01

    The present work was aimed at studying the efficiency of the combined process of biofiltration with ozonation to improve the quality of secondary effluent. The secondary effluent from the Dinapur Sewage Treatment Plant Varanasi, India was used in this work. The process of biofiltration with the plant species of Eichornia crassipes and Lemna minor, at a flow rate of 262 ml min(-1) and plant density of 30 mg L(-1) for 48 h, in combination with the process of ozonation with ozone dose of 10 mg L(-1) and contact time of 5 min was applied. Results revealed that combined process was statistically most suitable for the highest degradation of physico-chemical and microbial parameters with improving BDOC value. The biofiltration process is able to remove highest percentage of toxic heavy metals from the secondary effluent without production of toxicity. This technique is highly recommendable for tropical wastewater where sewage is mixed with industrial effluents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Anaerobic wastewater treatment and membrane filtration: a one night stand or a sustainable relationship?

    PubMed

    Jeison, D; van Lier, J B

    2008-01-01

    Several anaerobic membrane bioreactors (AnMBR) were operated, under various conditions, applying different reactor configurations. Applicable fluxes were strongly determined by the physical properties of the sludge present in the reactors. Results show that particle size is a key determining factor for the attainable fluxes. Under thermophilic conditions, small sludge particle size was observed, resulting in low critical fluxes reaching 6-7 L/m2h for the submerged configuration and acidified substrate. In contrast, under mesophilic conditions critical fluxes of 20 L/m2h were obtained. The acidification level also showed a strong effect. Under thermophilic conditions, the presence of a significant fraction of non-acidified organic matter induced the growth of suspended acidogenic biomass that seriously affected the applicable fluxes, both in submerged and side-stream configurations. Under all conditions tested cake formation showed to be the limiting factor determining the applicable fluxes. Only low levels of irreversible fouling were observed. Due to technical and economical considerations, most interesting perspectives for the application of AnMBR are expected with the treatment of high-strength particulate wastewaters, and with extreme wastewaters characterised by high temperature, salinity, etc.

  2. Field Assessment of a Novel Household-Based Water Filtration Device: A Randomised, Placebo-Controlled Trial in the Democratic Republic of Congo

    PubMed Central

    Boisson, Sophie; Kiyombo, Mbela; Sthreshley, Larry; Tumba, Saturnin; Makambo, Jacques; Clasen, Thomas

    2010-01-01

    Background Household water treatment can improve the microbiological quality of drinking water and may prevent diarrheal diseases. However, current methods of treating water at home have certain shortcomings, and there is evidence of bias in the reported health impact of the intervention in open trial designs. Methods and Findings We undertook a randomised, double-blinded, placebo-controlled trial among 240 households (1,144 persons) in rural Democratic Republic of Congo to assess the field performance, use and effectiveness of a novel filtration device in preventing diarrhea. Households were followed up monthly for 12 months. Filters and placebos were monitored for longevity and for microbiological performance by comparing thermotolerant coliform (TTC) levels in influent and effluent water samples. Mean longitudinal prevalence of diarrhea was estimated among participants of all ages. Compliance was assessed through self-reported use and presence of water in the top vessel of the device at the time of visit. Over the 12-month follow-up period, data were collected for 11,236 person-weeks of observation (81.8% total possible). After adjusting for clustering within the household, the longitudinal prevalence ratio of diarrhoea was 0.85 (95% confidence interval: 0.61–1.20). The filters achieved a 2.98 log reduction in TTC levels while, for reasons that are unclear, the placebos achieved a 1.05 log reduction (p<0.0001). After 8 months, 68% of intervention households met the study's definition of current users, though most (73% of adults and 95% of children) also reported drinking untreated water the previous day. The filter maintained a constant flow rate over time, though 12.4% of filters were damaged during the course of the study. Conclusions While the filter was effective in improving water quality, our results provide little evidence that it was protective against diarrhea. The moderate reduction observed nevertheless supports the need for larger studies that

  3. Evaluation of the 183-D Water Filtration Facility for Bat Roosts and Development of a Mitigation Strategy, 100-D Area, Hanford Site

    SciTech Connect

    Lindsey, C. T.; Gano, K. A.; Lucas, J. G.

    The 183-D Water Filtration Facility is located in the 100-D Area of the Hanford Site, north of Richland, Washington. It was used to provide filtered water for cooling the 105-D Reactor and supplying fire-protection and drinking water for all facilities in the 100-D Area. The facility has been inactive since the 1980s and is now scheduled for demolition. Therefore, an evaluation was conducted to determine if any part of the facility was being used as roosting habitat by bats.

  4. Application of hydrodynamic cavitation in ballast water treatment.

    PubMed

    Cvetković, Martina; Kompare, Boris; Klemenčič, Aleksandra Krivograd

    2015-05-01

    Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO's International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment.

  5. Water filtration rate and infiltration/accumulation of low density lipoproteins in 3 different modes of endothelial/smooth muscle cell co-cultures.

    PubMed

    Ding, ZuFeng; Fan, YuBo; Deng, XiaoYan

    2009-11-01

    Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels, the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied. The three cell culture modes of the study were: (i) The endothelial cell monolayer (EC/Phi); (ii) endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC); (iii) endothelial cells and smooth muscle cells cultured on different sides of a Millicell-CM membrane (EC/SMC). It was found that under the same condition, the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/Phi mode, while the infiltration/accumulation of DiI-LDLs was the lowest in the EC/Phi mode and the highest in the EC-SMC mode. It was also found that DiI-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate. The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids, and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.

  6. Modeling Water Filtration

    ERIC Educational Resources Information Center

    Parks, Melissa

    2014-01-01

    Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…

  7. Drainage Water Filtration

    USDA-ARS?s Scientific Manuscript database

    Tile drainage discharge from managed turf is known to carry elevated concentrations of agronomic fertilizers and chemicals. One approach being considered to reduce the transport is end-of-tile-filters. Laboratory and field studies have been initiated to address the efficacy of this approach. Result...

  8. Comparison of drinking water treatment process streams for optimal bacteriological water quality.

    PubMed

    Ho, Lionel; Braun, Kalan; Fabris, Rolando; Hoefel, Daniel; Morran, Jim; Monis, Paul; Drikas, Mary

    2012-08-01

    Four pilot-scale treatment process streams (Stream 1 - Conventional treatment (coagulation/flocculation/dual media filtration); Stream 2 - Magnetic ion exchange (MIEX)/Conventional treatment; Stream 3 - MIEX/Conventional treatment/granular activated carbon (GAC) filtration; Stream 4 - Microfiltration/nanofiltration) were commissioned to compare their effectiveness in producing high quality potable water prior to disinfection. Despite receiving highly variable source water quality throughout the investigation, each stream consistently reduced colour and turbidity to below Australian Drinking Water Guideline levels, with the exception of Stream 1 which was difficult to manage due to the reactive nature of coagulation control. Of particular interest was the bacteriological quality of the treated waters where flow cytometry was shown to be the superior monitoring tool in comparison to the traditional heterotrophic plate count method. Based on removal of total and active bacteria, the treatment process streams were ranked in the order: Stream 4 (average log removal of 2.7) > Stream 2 (average log removal of 2.3) > Stream 3 (average log removal of 1.5) > Stream 1 (average log removal of 1.0). The lower removals in Stream 3 were attributed to bacteria detaching from the GAC filter. Bacterial community analysis revealed that the treatments affected the bacteria present, with the communities in streams incorporating conventional treatment clustering with each other, while the community composition of Stream 4 was very different to those of Streams 1, 2 and 3. MIEX treatment was shown to enhance removal of bacteria due to more efficient flocculation which was validated through the novel application of the photometric dispersion analyser. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Treatment of industrial effluent water

    SciTech Connect

    Levitskii, Yu.N.

    1982-09-01

    This article reports on a thematic exhibition on ''New Developments in Treatment of Natural and Effluent Water'' in the Sanitary-Technical Construction Section at the Exhibition of Achievements of the National Economy of the USSR. The exhibition acquainted visitors with the achievements of leading organizations in different branches of industry with respect to treatment of natural and industrial effluent water. The Kharkov ''Vodkanalproekt'' Institute and the Kharkov affiliate of the All-Union Scientific-Research Institute of Water and Geodesy has jointly developed a ''Polymer-25'' filter for removal of oil products from nonexplosive effluent water discharged by machine building plants. A Baku affiliate hasmore » developed a new ShFP-1 screw-type press filter for dewatering the sediments from water treatment plants as well as for sediments from chemical, food, and other types of plants. The State Institute for Applied Chemistry has designed a continuous process plant for treating effluent water and removing toxic organic waste by converting them into mineral salts with high efficiency.« less

  10. Potential Effectiveness of Point-of-Use Filtration to Address Risks to Drinking Water in the United States

    PubMed Central

    Brown, Kathleen Ward; Gessesse, Bemnet; Butler, Lindsey J; MacIntosh, David L

    2017-01-01

    Numerous contemporary incidents demonstrate that conventional control strategies for municipal tap water have limited ability to mitigate exposures to chemicals whose sources are within distribution systems, such as lead, and chemicals that are not removed by standard treatment technologies, such as perfluorooctanoic acid (PFOA)/perfluorooctanesulfonic acid (PFOS). In these situations, point-of-use (POU) controls may be effective in mitigating exposures and managing health risks of chemicals in drinking water, but their potential utility has not been extensively examined. As an initial effort to fill this information gap, we conducted a critical review and analysis of the existing literature and data on the effectiveness of POU drinking water treatment technologies for reducing chemical contaminants commonly found in tap water in the United States. We found that many types of water treatment devices available to consumers in the United States have undergone laboratory testing and often certification for removal of chemical contaminants in tap water, but in most cases their efficacy in actual use has yet to be well characterized. In addition, the few studies of POU devices while “in use” focus on traditional contaminants regulated under the Safe Drinking Water Act, but do not generally consider nontraditional contaminants of concern, such as certain novel human carcinogens, industrial chemicals, pesticides, pharmaceuticals, personal care products, and flame retardants. Nevertheless, the limited information available at present suggests that POU devices can be highly effective when used prophylactically and when deployed in response to contamination incidents. Based on these findings, we identify future areas of research for assessing the ability of POU filters to reduce health-related chemical contaminants distributed through public water systems and private wells. PMID:29270018

  11. Potential Effectiveness of Point-of-Use Filtration to Address Risks to Drinking Water in the United States.

    PubMed

    Brown, Kathleen Ward; Gessesse, Bemnet; Butler, Lindsey J; MacIntosh, David L

    2017-01-01

    Numerous contemporary incidents demonstrate that conventional control strategies for municipal tap water have limited ability to mitigate exposures to chemicals whose sources are within distribution systems, such as lead, and chemicals that are not removed by standard treatment technologies, such as perfluorooctanoic acid (PFOA)/perfluorooctanesulfonic acid (PFOS). In these situations, point-of-use (POU) controls may be effective in mitigating exposures and managing health risks of chemicals in drinking water, but their potential utility has not been extensively examined. As an initial effort to fill this information gap, we conducted a critical review and analysis of the existing literature and data on the effectiveness of POU drinking water treatment technologies for reducing chemical contaminants commonly found in tap water in the United States. We found that many types of water treatment devices available to consumers in the United States have undergone laboratory testing and often certification for removal of chemical contaminants in tap water, but in most cases their efficacy in actual use has yet to be well characterized. In addition, the few studies of POU devices while "in use" focus on traditional contaminants regulated under the Safe Drinking Water Act, but do not generally consider nontraditional contaminants of concern, such as certain novel human carcinogens, industrial chemicals, pesticides, pharmaceuticals, personal care products, and flame retardants. Nevertheless, the limited information available at present suggests that POU devices can be highly effective when used prophylactically and when deployed in response to contamination incidents. Based on these findings, we identify future areas of research for assessing the ability of POU filters to reduce health-related chemical contaminants distributed through public water systems and private wells.

  12. 40 CFR 141.173 - Filtration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving 10,000 or More People § 141.173 Filtration. A public water system subject to the requirements of this subpart that does...

  13. Using phytoremediation technologies to upgrade waste water treatment in Europe.

    PubMed

    Schröder, Peter; Navarro-Aviñó, Juan; Azaizeh, Hassan; Goldhirsh, Avi Golan; DiGregorio, Simona; Komives, Tamas; Langergraber, Günter; Lenz, Anton; Maestri, Elena; Memon, Abdul R; Ranalli, Alfonso; Sebastiani, Luca; Smrcek, Stanislav; Vanek, Tomas; Vuilleumier, Stephane; Wissing, Frieder

    2007-11-01

    One of the burning problems of our industrial society is the high consumption of water and the high demand for clean drinking water. Numerous approaches have been taken to reduce water consumption, but in the long run it seems only possible to recycle waste water into high quality water. It seems timely to discuss alternative water remediation technologies that are fit for industrial as well as less developed countries to ensure a high quality of drinking water throughout Europe. The present paper discusses a range of phytoremediation technologies to be applied in a modular approach to integrate and improve the performance of existing wastewater treatment, especially towards the emerging micro pollutants, i.e. organic chemicals and pharmaceuticals. This topic is of global relevance for the EU. Existing technologies for waste water treatment do not sufficiently address increasing pollution situation, especially with the growing use of organic pollutants in the private household and health sector. Although some crude chemical approaches exist, such as advanced oxidation steps, most waste water treatment plants will not be able to adopt them. The same is true for membrane technologies. Incredible progress has been made during recent years, thus providing us with membranes of longevity and stability and, at the same time, high filtration capacity. However, these systems are expensive and delicate in operation, so that the majority of communities will not be able to afford them. Combinations of different phytoremediation technologies seem to be most promising to solve this burning problem. To quantify the occurrence and the distribution of micropollutants, to evaluate their effects, and to prevent them from passing through wastewater collection and treatment systems into rivers, lakes and ground water bodies represents an urgent task for applied environmental sciences in the coming years. Public acceptance of green technologies is generally higher than that of

  14. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment

    USGS Publications Warehouse

    Klarich, Kathryn L.; Pflug, Nicholas C.; DeWald, Eden M.; Hladik, Michelle L.; Kolpin, Dana W.; Cwiertny, David M.; LeFevre, Gergory H.

    2017-01-01

    Neonicotinoid insecticides are widespread in surface waters across the agriculturally-intensive Midwestern US. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over seven weeks in 2016 (May-July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples and ranged from 0.24-57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin and imidacloprid, with modest thiamethoxam removal (~50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis at high pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as an effective management tool to lower neonicotinoid concentrations in finished drinking water.

  15. Application of quantitative real-time PCR compared to filtration methods for the enumeration of Escherichia coli in surface waters within Vietnam.

    PubMed

    Vital, Pierangeli G; Van Ha, Nguyen Thi; Tuyet, Le Thi Hong; Widmer, Kenneth W

    2017-02-01

    Surface water samples in Vietnam were collected from the Saigon River, rural and suburban canals, and urban runoff canals in Ho Chi Minh City, Vietnam, and were processed to enumerate Escherichia coli. Quantification was done through membrane filtration and quantitative real-time polymerase chain reaction (PCR). Mean log colony-forming unit (CFU)/100 ml E. coli counts in the dry season for river/suburban canals and urban canals were log 2.8 and 3.7, respectively, using a membrane filtration method, while using Taqman quantitative real-time PCR they were log 2.4 and 2.8 for river/suburban canals and urban canals, respectively. For the wet season, data determined by the membrane filtration method in river/suburban canals and urban canals samples had mean counts of log 3.7 and 4.1, respectively. While mean log CFU/100 ml counts in the wet season using quantitative PCR were log 3 and 2, respectively. Additionally, the urban canal samples were significantly lower than those determined by conventional culture methods for the wet season. These results show that while quantitative real-time PCR can be used to determine levels of fecal indicator bacteria in surface waters, there are some limitations to its application and it may be impacted by sources of runoff based on surveyed samples.

  16. Surface Water Treatment Workshop Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  17. Highway-runoff quality, and treatment efficiencies of a hydrodynamic-settling device and a stormwater-filtration device in Milwaukee, Wisconsin

    USGS Publications Warehouse

    Horwatich, Judy A.; Bannerman, Roger T.; Pearson, Robert

    2011-01-01

    The treatment efficiencies of two prefabricated stormwater-treatment devices were tested at a freeway site in a high-density urban part of Milwaukee, Wisconsin. One treatment device is categorized as a hydrodynamic-settling device (HSD), which removes pollutants by sedimentation and flotation. The other treatment device is categorized as a stormwater-filtration device (SFD), which removes pollutants by filtration and sedimentation. During runoff events, flow measurements were recorded and water-quality samples were collected at the inlet and outlet of each device. Efficiency-ratio and summation-of-load (SOL) calculations were used to estimate the treatment efficiency of each device. Event-mean concentrations and loads that were decreased by passing through the HSD include total suspended solids (TSS), suspended sediment (SS), total phosphorus (TP), total copper (TCu), and total zinc (TZn). The efficiency ratios for these constituents were 42, 57, 17, 33, and 23 percent, respectively. The SOL removal rates for these constituents were 25, 49, 10, 27, and 16 percent, respectively. Event-mean concentrations and loads that increased by passing through the HSD include chloride (Cl), total dissolved solids (TDS), and dissolved zinc (DZn). The efficiency ratios for these constituents were -347, -177, and 20 percent, respectively. Four constituents—dissolved phosphorus (DP), chemical oxygen demand (COD), total polycyclic aromatic hydrocarbon (PAH), and dissolved copper (DCu)—are not included in the list of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Event-mean concentrations and loads that decreased by passing through the SFD include TSS, SS, TP, DCu, TCu, DZn, TZn, and COD. The efficiency ratios for these constituents were 59, 90, 40, 21, 66, 23, 66, and 18, respectively. The SOLs for these constituents were 50, 89, 37, 19, 60, 20, 65, and 21, respectively. Two constituents—DP and

  18. Treatment of Pesticide-Laden Wastewaters from Army Pest Control Facilities by Activated Carbon Filtration Using the Carbolator Treatment System

    DTIC Science & Technology

    1983-08-01

    Malathion ---- Olethylmercapto- 0 succinate S-ester of .0PSCCIn145 ppm (250 0.0-dimethyiphosphoro- S cm~coft dl thionate 0 Propoxur Baygon 2-Isopropoxy...Description 1. Baygon ( propoxur ) Baygon - 70% wettable powder, Chemagro Agricultural Division of Mlobay Chem. Corp., Kansas City, MO 2. Diaxinon Diazinon...indicate that 2,4-D diethylamine salt, parathion, carbaryl , and chlordane may also be removed from water by this method. 4. With the exception of chlordane

  19. SMALL DRINKING WATER SYSTEMS HANDBOOK A GUIDE TO "PACKAGED" FILTRATION AND DISINFECTION TECHNOLOGIES WITH REMOTE MONITORING AND CONTROL TOOLS

    EPA Science Inventory

    The intent of this handbook is to highlight information appropriate to small systems with an emphasis on filtration and disinfection technologies and how they can be "packaged" with remote monitoring and control technologies to provide a healthy and affordable solution for small ...

  20. Climate Adaptation Capacity for Conventional Drinking Water Treatment Facilities

    NASA Astrophysics Data System (ADS)

    Levine, A.; Goodrich, J.; Yang, J.

    2013-12-01

    the capacity of treatment facilities and supporting water infrastructure to deliver safe drinking water consistently and reliably. Simulation models of water treatment facilities are used to evaluate the outcome of specific source water quality scenarios on treatment system performance and reliability. Modeling results are used to evaluate the process and operational capacity to respond to transient water quality changes and adapt to longer-term variability in water quality and availability. In some cases, changes in temperature and mineral content serve to improve the overall treatment performance. In addition, the integration of microbially enhanced treatment systems such as biological filtration can provide additional capacity. Conversely, changes in the nutrient and temperature dynamics can trigger algal and cyanobacterial blooms that can impair performance. Research needs are identified and the importance of developing more integrated modeling systems is highlighted.

  1. Treatment of arsenic-contaminated water using akaganeite adsorption

    DOEpatents

    Cadena C, Fernando [Las Cruces, NM; Johnson, Michael D [Las Cruces, NM

    2008-01-01

    The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

  2. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    PubMed

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  3. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    PubMed

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  4. Evaluation of standard and modified M-FC, MacConkey, and Teepol media for membrane filtration counting of fecal coliforms in water.

    PubMed

    Grabow, W O; Hilner, C A; Coubrough, P

    1981-08-01

    MacConkey agar, standard M-FC agar, M-FC agar without rosolic acid, M-FC agar with a resuscitation top layer, Teepol agar, and pads saturated with Teepol broth, were evaluated as growth media for membrane filtration counting of fecal coliform bacteria in water. In comparative tests on 312 samples of water from a wide variety of sources, including chlorinated effluents, M-FC agar without rosolic acid proved the medium of choice because it generally yielded the highest counts, was readily obtainable, easy to prepare and handle, and yielded clearly recognizable fecal coliform colonies. Identification of 1,139 fecal coliform isolates showed that fecal coliform tests cannot be used to enumerate Escherichia coli because the incidence of E. coli among fecal coliforms varied from an average of 51% for river water to 93% for an activated sludge effluent after chlorination. The incidence of Klebsiella pneumoniae among fecal coliforms varied from an average of 4% for the activated sludge effluent after chlorination to 32% for the river water. The advantages of a standard membrane filtration procedure for routine counting of fecal coliforms in water using M-FC agar without rosolic acid as growth medium, in the absence of preincubation or resuscitation steps, are outlined.

  5. Membrane filtration media for the enumeration of coliform organisms and Escherichia coli in water: comparison of Tergitol 7 and lauryl sulphate with Teepol 610.

    PubMed Central

    1980-01-01

    In a multi-laboratory trial with the membrane filtration technique, three surfactants--Teepol 610 (T610), Tergitol 7 (T7) and sodium lauryl sulphate (LS)--were compared in media for the enumeration of coliform organisms and Escherichia coli in water. A total of 179 samples of water (87 raw and 92 marginally chlorinated) were examined for colony counts of coliform organisms, and 185 water samples (94 raw and 91 marginally chlorinated) for E. coli. Slight differences in the confirmed colony counts between the three media were noted, but few of these were observed consistently in every laboratory. In most laboratories, T7 gave slightly higher counts of E. coli than LS with chlorinated waters; a higher incidence of false-positive results for E. coli at 44 degrees C was also noted with T7. As there were no outstanding differences in the trial, sodium lauryl sulphate, which is chemically defined, cheap and readily available, is therefore recommended for use at a concentration of 0 . 1% instead of Teepol 610 in the standard medium for the enumeration of coliform organisms and E. coli in water by the membrane filtration technique. PMID:7005324

  6. Water treatment by new-generation graphene materials: hope for bright future.

    PubMed

    Ali, Imran; Alharbi, Omar M L; Tkachev, Alexey; Galunin, Evgeny; Burakov, Alexander; Grachev, Vladimir A

    2018-03-01

    Water is the most important and essential component of earth's ecosystem playing a vital role in the proper functioning of flora and fauna. But, our water resources are contaminating continuously. The whole world may be in great water scarcity after few decades. Graphene, a single-atom thick carbon nanosheet, and graphene nanomaterials have bright future in water treatment technologies due to their extraordinary properties. Only few papers describe the use of these materials in water treatment by adsorption, filtration, and photodegradation methods. This article presents a critical evaluation of the contribution of graphene nanomaterials in water treatment. Attempts have been made to discuss the future perspectives of these materials in water treatment. Besides, the efforts are made to discuss the nanotoxicity and hazards of graphene-based materials. The suggestions are given to explore the full potential of these materials along with precautions of nanotoxicity and its hazards. It was concluded that the future of graphene-based materials is quite bright.

  7. 21. Overflow pipe in filtration bed. Located at each corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Overflow pipe in filtration bed. Located at each corner of the bed, the pipes drain off any excess water and maintain a limit on water depth. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  8. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    NASA Astrophysics Data System (ADS)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  9. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review.

    PubMed

    Rahman, Mohammad Feisal; Peldszus, Sigrid; Anderson, William B

    2014-03-01

    This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being investigated for regulation. They are aliphatic compounds containing saturated carbon-fluorine bonds and are resistant to chemical, physical, and biological degradation. Functional groups, carbon chain length, and hydrophilicity/hydrophobicity are some of the important structural properties of PFASs that affect their fate during drinking water treatment. Full-scale drinking water treatment plant occurrence data indicate that PFASs, if present in raw water, are not substantially removed by most drinking water treatment processes including coagulation, flocculation, sedimentation, filtration, biofiltration, oxidation (chlorination, ozonation, AOPs), UV irradiation, and low pressure membranes. Early observations suggest that activated carbon adsorption, ion exchange, and high pressure membrane filtration may be effective in controlling these contaminants. However, branched isomers and the increasingly used shorter chain PFAS replacement products may be problematic as it pertains to the accurate assessment of PFAS behaviour through drinking water treatment processes since only limited information is available for these PFASs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Summary Report: Pilot Study of an Innovative Biological Treatment Process for the Removal of Ammonia from a Small Drinking Water System

    EPA Science Inventory

    The use of biologically active filtration to oxidize ammonia as a full-scale drinking water treatment process has not been thoroughly considered in the United States. A number of concerns with biological water treatment exist including the potential release of excessive numbers o...

  11. Hydraulic modeling of clay ceramic water filters for point-of-use water treatment.

    PubMed

    Schweitzer, Ryan W; Cunningham, Jeffrey A; Mihelcic, James R

    2013-01-02

    The acceptability of ceramic filters for point-of-use water treatment depends not only on the quality of the filtered water, but also on the quantity of water the filters can produce. This paper presents two mathematical models for the hydraulic performance of ceramic water filters under typical usage. A model is developed for two common filter geometries: paraboloid- and frustum-shaped. Both models are calibrated and evaluated by comparison to experimental data. The hydraulic models are able to predict the following parameters as functions of time: water level in the filter (h), instantaneous volumetric flow rate of filtrate (Q), and cumulative volume of water produced (V). The models' utility is demonstrated by applying them to estimate how the volume of water produced depends on factors such as the filter shape and the frequency of filling. Both models predict that the volume of water produced can be increased by about 45% if users refill the filter three times per day versus only once per day. Also, the models predict that filter geometry affects the volume of water produced: for two filters with equal volume, equal wall thickness, and equal hydraulic conductivity, a filter that is tall and thin will produce as much as 25% more water than one which is shallow and wide. We suggest that the models can be used as tools to help optimize filter performance.

  12. The effectiveness of removing precursors of chlorinated organic substances in pilot water treatment plant

    NASA Astrophysics Data System (ADS)

    Wolska, Małgorzata; Szerzyna, Sławomir; Machi, Justyna; Mołczan, Marek; Adamski, Wojciech; Wiśniewski, Jacek

    2017-11-01

    The presence of organic substances in the water intaken for consumption could be hazardous to human health due to the potential formation of disinfection by-products (TOX). The study were carried out in the pilot surface water treatment system consisting of coagulation, sedimentation, filtration, ozonation, adsorption and disinfection. Due to continuous operation of the system and interference with the parameters of the processes it was possible not only assess the effectiveness of individual water treatment processes in removing TOX, but also on factors participating on the course of unit processes.

  13. Preliminary studies on membrane filtration for the production of potable water: a case of Tshaanda rural village in South Africa.

    PubMed

    Molelekwa, Gomotsegang F; Mukhola, Murembiwa S; Van der Bruggen, Bart; Luis, Patricia

    2014-01-01

    Ultrafiltration (UF) systems have been used globally for treating water from resources including rivers, reservoirs, and lakes for the production of potable water in the past decade. UF membranes with a pore size of between 0.1 and 0.01 micrometres provide an effective barrier for bacteria, viruses, suspended particles, and colloids. The use of UF membrane technology in treating groundwater for the supply of potable water in the impoverished and rural village, Tshaanda (i.e., the study area) is demonstrated. The technical and administrative processes that are critical for the successful installation of the pilot plant were developed. Given the rural nature of Tshaanda, the cultural and traditional protocols were observed. Preliminary results of the water quality of untreated water and the permeate are presented. Escherichia coli in the untreated water during the dry season (i.e., June and July) was 2 cfu/100 ml and was <1 cfu/100 ml (undetected) following UF, which complied with the WHO and South African National Standards and Guidelines of <1 cfu/100 ml. During the wet/rainy season (February) total coliform was unacceptably high (>2419.2 cfu/100 ml) before UF. Following UF, it dramatically reduced to acceptable level (7 cfu/100 ml) which is within the WHO recommended level of <10 cfu/100 ml. Additionally, during the wet/rainy season E. coli and enterococci were unacceptably high (40.4 cfu/100 ml and 73.3 cfu/100 ml, respectively) before UF but were completely removed following UF, which are within the WHO and SANS recommended limit. The values for electrical conductivity (EC) and turbidity were constantly within the WHO recommended limits of 300 µS/cm corrected at 25°C and <5 NTU, respectively, before and after UF, during dry season and wet season. This suggests that there is no need for pre-treatment of the water for suspended particles and colloids. Considering these data, it can be concluded that the water is suitable for human consumption, following UF.

  14. Preliminary Studies on Membrane Filtration for the Production of Potable Water: A Case of Tshaanda Rural Village in South Africa

    PubMed Central

    Molelekwa, Gomotsegang F.; Mukhola, Murembiwa S.; Van der Bruggen, Bart; Luis, Patricia

    2014-01-01

    Ultrafiltration (UF) systems have been used globally for treating water from resources including rivers, reservoirs, and lakes for the production of potable water in the past decade. UF membranes with a pore size of between 0.1 and 0.01 micrometres provide an effective barrier for bacteria, viruses, suspended particles, and colloids. The use of UF membrane technology in treating groundwater for the supply of potable water in the impoverished and rural village, Tshaanda (i.e., the study area) is demonstrated. The technical and administrative processes that are critical for the successful installation of the pilot plant were developed. Given the rural nature of Tshaanda, the cultural and traditional protocols were observed. Preliminary results of the water quality of untreated water and the permeate are presented. Escherichia coli in the untreated water during the dry season (i.e., June and July) was 2 cfu/100 ml and was <1 cfu/100 ml (undetected) following UF, which complied with the WHO and South African National Standards and Guidelines of <1 cfu/100 ml. During the wet/rainy season (February) total coliform was unacceptably high (>2419.2 cfu/100 ml) before UF. Following UF, it dramatically reduced to acceptable level (7 cfu/100 ml) which is within the WHO recommended level of <10 cfu/100 ml. Additionally, during the wet/rainy season E. coli and enterococci were unacceptably high (40.4 cfu/100 ml and 73.3 cfu/100 ml, respectively) before UF but were completely removed following UF, which are within the WHO and SANS recommended limit. The values for electrical conductivity (EC) and turbidity were constantly within the WHO recommended limits of 300 µS/cm corrected at 25°C and <5 NTU, respectively, before and after UF, during dry season and wet season. This suggests that there is no need for pre-treatment of the water for suspended particles and colloids. Considering these data, it can be concluded that the water is suitable for human consumption, following UF. PMID

  15. Characterization of suspended bacteria from processing units in an advanced drinking water treatment plant of China.

    PubMed

    Wang, Feng; Li, Weiying; Zhang, Junpeng; Qi, Wanqi; Zhou, Yanyan; Xiang, Yuan; Shi, Nuo

    2017-05-01

    For the drinking water treatment plant (DWTP), the organic pollutant removal was the primary focus, while the suspended bacterial was always neglected. In this study, the suspended bacteria from each processing unit in a DWTP employing an ozone-biological activated carbon process was mainly characterized by using heterotrophic plate counts (HPCs), a flow cytometer, and 454-pyrosequencing methods. The results showed that an adverse changing tendency of HPC and total cell counts was observed in the sand filtration tank (SFT), where the cultivability of suspended bacteria increased to 34%. However, the cultivability level of other units stayed below 3% except for ozone contact tank (OCT, 13.5%) and activated carbon filtration tank (ACFT, 34.39%). It meant that filtration processes promoted the increase in cultivability of suspended bacteria remarkably, which indicated biodegrading capability. In the unit of OCT, microbial diversity indexes declined drastically, and the dominant bacteria were affiliated to Proteobacteria phylum (99.9%) and Betaproteobacteria class (86.3%), which were also the dominant bacteria in the effluent of other units. Besides, the primary genus was Limnohabitans in the effluents of SFT (17.4%) as well as ACFT (25.6%), which was inferred to be the crucial contributors for the biodegradable function in the filtration units. Overall, this paper provided an overview of community composition of each processing units in a DWTP as well as reference for better developing microbial function for drinking water treatment in the future.

  16. Potential of Using Solar Energy for Drinking Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  17. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment

    USGS Publications Warehouse

    Lester, Yaal; Ferrer, Imma; Thurman, E. Michael; Sitterley, Kurban A.; Korak, Julie A.; Aiken, George R.; Linden, Karl G.

    2015-01-01

    A suite of analytical tools was applied to thoroughly analyze the chemical composition of an oil/gas well flowback water from the Denver–Julesburg (DJ) basin in Colorado, and the water quality data was translated to propose effective treatment solutions tailored to specific reuse goals. Analysis included bulk quality parameters, trace organic and inorganic constituents, and organic matter characterization. The flowback sample contained salts (TDS = 22,500 mg/L), metals (e.g., iron at 81.4 mg/L) and high concentration of dissolved organic matter (DOC = 590 mgC/L). The organic matter comprised fracturing fluid additives such as surfactants (e.g., linear alkyl ethoxylates) and high levels of acetic acid (an additives' degradation product), indicating the anthropogenic impact on this wastewater. Based on the water quality results and preliminary treatability tests, the removal of suspended solids and iron by aeration/precipitation (and/or filtration) followed by disinfection was identified as appropriate for flowback recycling in future fracturing operations. In addition to these treatments, a biological treatment (to remove dissolved organic matter) followed by reverse osmosis desalination was determined to be necessary to attain water quality standards appropriate for other water reuse options (e.g., crop irrigation). The study provides a framework for evaluating site-specific hydraulic fracturing wastewaters, proposing a suite of analytical methods for characterization, and a process for guiding the choice of a tailored treatment approach.

  18. Characterization of hydraulic fracturing flowback water in Colorado: implications for water treatment.

    PubMed

    Lester, Yaal; Ferrer, Imma; Thurman, E Michael; Sitterley, Kurban A; Korak, Julie A; Aiken, George; Linden, Karl G

    2015-04-15

    A suite of analytical tools was applied to thoroughly analyze the chemical composition of an oil/gas well flowback water from the Denver-Julesburg (DJ) basin in Colorado, and the water quality data was translated to propose effective treatment solutions tailored to specific reuse goals. Analysis included bulk quality parameters, trace organic and inorganic constituents, and organic matter characterization. The flowback sample contained salts (TDS=22,500 mg/L), metals (e.g., iron at 81.4 mg/L) and high concentration of dissolved organic matter (DOC=590 mgC/L). The organic matter comprised fracturing fluid additives such as surfactants (e.g., linear alkyl ethoxylates) and high levels of acetic acid (an additives' degradation product), indicating the anthropogenic impact on this wastewater. Based on the water quality results and preliminary treatability tests, the removal of suspended solids and iron by aeration/precipitation (and/or filtration) followed by disinfection was identified as appropriate for flowback recycling in future fracturing operations. In addition to these treatments, a biological treatment (to remove dissolved organic matter) followed by reverse osmosis desalination was determined to be necessary to attain water quality standards appropriate for other water reuse options (e.g., crop irrigation). The study provides a framework for evaluating site-specific hydraulic fracturing wastewaters, proposing a suite of analytical methods for characterization, and a process for guiding the choice of a tailored treatment approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Removal of Encephalitozoon intestinalis, calicivirus, and coliphages by conventional drinking water treatment.

    PubMed

    Gerba, Charles P; Riley, Kelley R; Nwachuku, Nena; Ryu, Hodon; Abbaszadegan, Morteza

    2003-07-01

    The removal of the Microsporidia, Encephalitozoon intestinalis, feline calicivirus and coliphages MS-2, PRD-1, and Fr were evaluated during conventional drinking water treatment in a pilot plant. The treatment consisted of coagulation, sedimentation, and mixed media filtration. Fr coliphage was removed the most (3.21 log), followed by feline calicivirus (3.05 log), E. coli (2.67 log), E. intestinalis (2.47 log), MS-2 (2.51 log). and PRD-1 (1.85 log). With the exception of PRD-1 the greatest removal of the viruses occurred during the flocculation step of the water treatment process.

  20. Presence of enteric viruses in freshwater and their removal by the conventional drinking water treatment process.

    PubMed Central

    Hurst, C. J.

    1991-01-01

    A review of results published in English or French between 1980 and 1990 was carried out to determine the levels of indigenous human enteric viruses in untreated surface and subsurface freshwaters, as well as in drinking water that had undergone the complete conventional treatment process. For this purpose, the conventional treatment process was defined as an operation that included coagulation followed by sedimentation, filtration, and disinfection. Also assessed was the stepwise efficiency of the conventional treatment process, as practised at full-scale facilities, for removing indigenous viruses from naturally occurring freshwaters. A list was compiled of statistical correlations relating to the occurrence of indigenous viruses in water. PMID:1647273

  1. Removal of pathogens using riverbank filtration

    NASA Astrophysics Data System (ADS)

    Cote, M. M.; Emelko, M. B.; Thomson, N. R.

    2003-04-01

    Although more than hundred years old, in situ or Riverbank Filtration (RBF) has undergone a renewed interest in North America because of its potential as a surface water pre-treatment tool for removal of pathogenic microorganisms. A new RBF research field site has been constructed along the banks of the Grand River in Kitchener, Ontario, Canada to assess factors influencing pathogen removal in the subsurface. Implementation of RBF and appropriate design of subsequent treatment (UV, chlorination, etc.) processes requires successful quantification of in situ removals of Cryptosporidium parvum or a reliable surrogate parameter. C.~parvum is often present in surface water at low indigenous concentrations and can be difficult to detect in well effluents. Since releases of inactivated C.~parvum at concentrations high enough for detection in well effluents are cost prohibitive, other approaches for demonstrating effective in situ filtration of C.~parvum must be considered; these include the use of other microbial species or microspheres as indicators of C.~parvum transport in the environment. Spores of Bacillus subtilis may be considered reasonable indicators of C.~parvum removal by in situ filtration because of their size (˜1 μm in diameter), spherical shape, relatively high indigenous concentration is many surface waters, and relative ease of enumeration. Based on conventional particle filtration theory and assuming equivalent chemical interactions for all particle sizes, a 1 μm B.~subtilis spore will be removed less readily than a larger C. parvum oocyst (4-6 μm) in an ideal granular filter. Preliminary full-scale data obtained from a high rate RBF production well near the new RBF test site demonstrated greater than 1 log removal of B.~subtilis spores. This observed spore removal is higher than that prescribed by the proposed U.S. Long Term 2 Enhanced Surface Water Treatment Rule for C.~parvum. To further investigate the removal relationship between C

  2. Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.

    PubMed

    Hyung, Hoon; Kim, Jae-Hong

    2009-05-01

    The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).

  3. Silica incorporated membrane for wastewater based filtration

    NASA Astrophysics Data System (ADS)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  4. Ceramic Filter for Small System Drinking Water Treatment: Evaluation of Membrane Pore Size and Importance of Integrity Monitoring

    EPA Science Inventory

    Ceramic filtration has recently been identified as a promising technology for drinking water treatment in households and small communities. This paper summarizes the results of a pilot-scale study conducted at the U.S. Environmental Protection Agency’s (EPA’s) Test & Evaluation ...

  5. Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment.

    PubMed Central

    Hoeger, Stefan J; Dietrich, Daniel R; Hitzfeld, Bettina C

    2002-01-01

    Water treatment plants faced with toxic cyanobacteria have to be able to remove cyanotoxins from raw water. In this study we investigated the efficacy of ozonation coupled with various filtration steps under different cyanobacterial bloom conditions. Cyanobacteria were ozonated in a laboratory-scale batch reactor modeled on a system used by a modern waterworks, with subsequent activated carbon and sand filtration steps. The presence of cyanobacterial toxins (microcystins) was determined using the protein phosphatase inhibition assay. We found that ozone concentrations of at least 1.5 mg/L were required to provide enough oxidation potential to destroy the toxin present in 5 X 10(5 )Microcystis aeruginosa cells/mL [total organic carbon (TOC), 1.56 mg/L]. High raw water TOC was shown to reduce the efficiency of free toxin oxidation and destruction. In addition, ozonation of raw waters containing high cyanobacteria cell densities will result in cell lysis and liberation of intracellular toxins. Thus, we emphasize that only regular and simultaneous monitoring of TOC/dissolved organic carbon and cyanobacterial cell densities, in conjunction with online residual O(3) concentration determination and efficient filtration steps, can ensure the provision of safe drinking water from surface waters contaminated with toxic cyanobacterial blooms. PMID:12417484

  6. 22. Float located adjacent to entry stair in filtration bed. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Float located adjacent to entry stair in filtration bed. The float actuates a valve that maintains water level over the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  7. Operation, Maintenance and Performance Evaluation of the Potomac Estuary Experimental Water Treatment Plant. Executive Summary.

    DTIC Science & Technology

    1983-09-01

    tion of appropriate isotherm and rate model parameters for TOC and one SOC. - Evaluation of GAC design alternatives at different treatment...permits an estimate of corrosion rates , based on weight loss of pipe inserts maintained in continuous contact with the finished water. With respect to the...coagulation, sedimentation, recarbonation, gravity filtration, GAC adsorption at twice the contact time, ozone and chloramine for final disinfection. An

  8. 7. WEYMOUTH FILTRATION PLANT, BUILDING 1 INTERIOR: LA VERNE CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. WEYMOUTH FILTRATION PLANT, BUILDING 1 INTERIOR: LA VERNE CONTROL ROOM, REGULATES DISTRIBUTION OF WATER, CONTROLS POWER HOUSES. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  9. Water: from the source to the treatment plan

    NASA Astrophysics Data System (ADS)

    Baude, I.; Marquet, V.

    2012-04-01

    Isabelle BAUDE isa.baude@free.fr Lycee français de Vienne Liechtensteinstrasse 37AVienna As a physics and chemistry teacher, I have worked on water from the source to the treatment plant with 27 pupils between 14 and 15 years old enrolled in the option "Science and laboratory". The objectives of this option are to interest students in science, to introduce them to practical methods of laboratory analyses, and let them use computer technology. Teaching takes place every two weeks and lasts 1.5 hours. The theme of water is a common project with the biology and geology teacher, Mrs. Virginie Marquet. Lesson 1: Introduction: The water in Vienna The pupils have to consider why the water is so important in Vienna (history, economy etc.) and where tap water comes from. Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2: Objectives of the session: What are the differences between mineral waters? Activities: Compare water from different origins (France: Evian, Vittel, Contrex. Austria: Vöslauer, Juvina, Gasteiner and tap water from Vienna) by tasting and finding the main ions they contain. Testing ions: Calcium, magnesium, sulphate, chloride, sodium, and potassium Lesson 3: Objectives of the session: Build a hydrometer Activities: Producing a range of calibration solutions, build and calibrate the hydrometer with different salt-water solutions. Measure the density of the Dead Sea's water and other mineral waters. Lesson 4: Objectives of the session: How does a fountain work? Activities: Construction of a fountain as Heron of Alexandria with simple equipment and try to understand the hydrostatic principles. Lesson 5: Objectives of the session: Study of the physical processes of water treatment (decantation, filtration, screening) Activities: Build a natural filter with sand, stone, carbon, and cotton wool. Retrieve the filtered water to test it during lesson 7. Lesson 6: Visit of the biggest treatment

  10. Apparatus and process for water treatment

    DOEpatents

    Phifer, Mark A.; Nichols, Ralph L.

    2001-01-01

    An apparatus is disclosed utilizing permeable treatment media for treatment of contaminated water, along with a method for enhanced passive flow of contaminated water through the treatment media. The apparatus includes a treatment cell including a permeable structure that encloses the treatment media, the treatment cell may be located inside a water collection well, exterior to a water collection well, or placed in situ within the pathway of contaminated groundwater. The passive flow of contaminated water through the treatment media is maintained by a hydraulic connection between a collecting point of greater water pressure head, and a discharge point of lower water pressure head. The apparatus and process for passive flow and groundwater treatment utilizes a permeable treatment media made up of granular metal, bimetallics, granular cast iron, activated carbon, cation exchange resins, and/or additional treatment materials. An enclosing container may have an outer permeable wall for passive flow of water into the container and through the enclosed treatment media to an effluent point. Flow of contaminated water is attained without active pumping of water through the treatment media. Remediation of chlorinated hydrocarbons and other water contaminants to acceptable regulatory concentration levels is accomplished without the costs of pumping, pump maintenance, and constant oversight by personnel.

  11. Pathogen filtration to control plant disease outbreak in greenhouse production

    NASA Astrophysics Data System (ADS)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei

    2016-04-01

    Previous research has been extensively focused on understanding the fate and transport of human microbial pathogens in soil and water environments. However, little is known about the transport of plant pathogens, although these pathogens are often found in irrigation waters and could cause severe crop damage and economical loss. Water mold pathogens including Phytophthora spp. and Pythium spp. are infective to a wide range of vegetable and floriculture crops, and they are primarily harbored in soils and disseminated through water flow. It is challenging to control these pathogens because they often quickly develop resistance to many fungicides. Therefore, this multi-scale study aimed to investigate physical removal of plant pathogens from water by filtration, thus reducing the pathogen exposure risks to crops. In column-scale experiments, we studied controlling factors on the transport and retention of Phytophthora capsici zoospores in saturated columns packed with iron oxide coated-sand and uncoated-sand under varying solution chemistry. Biflagellate zoospores were less retained than encysted zoospores, and lower solution pH and greater iron oxide content increased the retention of encysted zoospores. These results provided insights on environmental dispersal of Phytophthora zoospores in natural soils as well as on developing cost-effective engineered filtration systems for pathogen removal. Using small-scale greenhouse filtration systems, we further investigated the performance of varying filter media (i.e., granular sand, iron oxide coated ceramic porous media, and activated carbon) in mitigating disease outbreaks of Phytophthora and Pythium for greenhouse-grown squash and poinsettia, respectively, in comparison with fungicide treatment. For squash, filtration by iron oxide coated media was more effective in reducing the Phytophthora infection, comparing to sand filtration and fungicide application. For poinsettia, sand filtration performed better in controlling

  12. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production.

    PubMed

    Cho, Sunja; Luong, Thanh Thao; Lee, Dukhaeng; Oh, You-Kwan; Lee, Taeho

    2011-09-01

    This study assessed the usability of effluent water discharged from a secondary municipal wastewater treatment plant for mass cultivation of microalgae for biofuel production. It was observed that bacteria and protozoa in the effluent water exerted a negative impact on the growth of Chlorella sp. 227. To reduce the effect, filtration or UV-radiation were applied on the effluent water as pre-treatment methods. Of all the pretreatment options tested, the filtration (by 0.2 μm) resulted in the highest biomass and lipid productivity. To be comparable with the growth in the autoclaved effluent water, the filtration with a proper pore size filter (less than 0.45 μm) or UV-B radiation of a proper dose (over 1620 mJ cm(-2)) are proposed. These findings led us to conclude that the utilization can be realized only when bacteria and other microorganisms are greatly reduced or eliminated from the effluent prior to its use. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Testing the Waters.

    ERIC Educational Resources Information Center

    Finks, Mason

    1993-01-01

    Provides information about home drinking water treatment systems to address concerns about the safety and quality of drinking water. Discusses water testing, filtration, product options and selection, water testing resources, water treatment device guidelines, water analysis terminology, and laboratory selection. (MCO)

  14. Public health protection through bank filtration - Kearney Nebraska case study

    NASA Astrophysics Data System (ADS)

    Esseks, E.; Bellamy, W.; Heinemann, T.; Stocker, K.

    2003-04-01

    The investigation of Kearney's bank filtration system provides further evidence of this technology's capability to assist in providing public health protection, as it relates to drinking water. The results of hydrogeologic and treatment studies demonstrate the capabilities of the Platte River aquifer materials, in this locale, to remove pathogens and their surrogates. Continual monitoring and evaluations will establish the system’s longevity and continued treatment efficacy. The City of Kearney is located in south central Nebraska. The City owns and operates a public water system that serves approximately 24,889 people. The water system includes 12 wells located on Killgore Island in the Platte River. In 1994, the Nebraska Department of Health and Human Services System (Department) determined that 3 wells in the wellfield serving the City of Kearney were ground water under the direct influence of surface water. This determination was based on results of microscopic particulate analysis (MPA). The City of Kearney undertook the natural bank filtration study to determine whether natural bank filtration was occurring at the site and if the filtration was sufficient to meet pathogen treatment requirements designed to protect public health. A preliminary study was undertaken from June through October 1995. This coincided with the City’s peak pumping time, which may be the time when the influence of the River is greatest on the wellfield wells. Hydrogeologic studies assisted in selecting wells that were at highest risk based on shortest travel times and greatest differential head. Data collected included particle counts, MPAs, turbidity, coliform, centrifugate pellet evaluation (CPE) volumes, pH, conductivity, and temperature. Following analysis of data collected during the preliminary 18-week study the Department granted conditional approval of 2-log credit for removal of Giardia lamblia and 1-log credit for removal of viruses through bank filtration, pending the

  15. Membrane technology revolutionizes water treatment.

    PubMed

    Wilderer, P A; Paris, S

    2007-01-01

    Membranes play a crucial role in living cells, plants and animals. They not only serve as barriers between the inside and outside world of cells and organs. More importantly, they are means of selective transport of materials and host for biochemical conversion. Natural membrane systems have demonstrated efficiency and reliability for millions of years and it is remarkable that most of these systems are small, efficient and highly reliable even under rapidly changing ambient conditions. Thus, it appears to be advisable for technology developers to keep a close eye on Mother Nature. By doing so it is most likely that ideas for novel technical solutions are born. Following the concept of natural systems it is hypothesized that the Millennium Development Goals can be best met when counting on small water and wastewater treatment systems. The core of such systems could be membranes in which chemical reactions are integrated allowing recovery and direct utilization of valuable substances.

  16. Technology for Water Treatment (National Water Management)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  17. TENORM: Drinking Water Treatment Residuals

    EPA Pesticide Factsheets

    EPA has specific regulations under the Safe Drinking Water Act (SDWA) that limit the amount of radioactivity allowed in community water systems. Learn about methods used to treat these water supplies to remove radioactivity and manage wastes.

  18. Characterization of haloacetaldehyde and trihalomethane formation potentials during drinking water treatment.

    PubMed

    Mao, Yu-Qin; Wang, Xiao-Mao; Guo, Xian-Fen; Yang, Hong-Wei; Xie, Yuefeng F

    2016-09-01

    Haloacetaldehydes (HAs) are the third prevalent group of disinfection by-products (DBPs) of great health concern. In this study, their formation and speciation during chlorination were investigated for raw and process waters collected at three O3-biological activated carbon (BAC) advanced drinking water treatment plants. The results showed that all HA formation potentials (HAFPs) were highly enhanced whenever ozone was applied before or after conventional treatment. Sand filtration and BAC filtration could substantially reduce HAFPs. Trihalomethanes (THMs) were also measured to better understand the role of HAs in DBPs. Very different from HAFPs, THMFPs kept decreasing with the progress of treatment steps, which was mainly attributed to the different precursors for HAs and THMs. Brominated HAs were detected in bromide-containing waters. Chloral hydrate (CH) contributed from 25% to 48% to the total HAs formed in waters containing 100-150 μg L(-1) bromide, indicating the wide existence of other HAs after chlorination besides CH production. In addition, bromide incorporation factor (BIF) in HAs and THMs increased with the progress of treatment steps and the BIF values of THMs were generally higher than those of HAs. The BAC filtration following ozonation could significantly reduce HA precursors produced from ozonation but without complete removal. The brominated HAFPs in the outflow of BAC were still higher than their levels in the raw water. As a result, O3-BAC combined treatment was effective at controlling the total HAs, whereas it should be cautious for waters with high bromide levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. [The toxicity variation of organic extracts in drinking water treatment processes].

    PubMed

    Mei, M; Wei, S; Zijian, W; Wenhua, W; Baohua, Z; Suxia, Z

    2001-01-01

    Source water samples and outlet water samples from different treatment processes of the Beijing Ninth Water Works were concentrated in situ with XAD-2 filled columns. GC-MS analysis and toxic assessment including acute toxicity evaluation by luminescent bacterium bioassay(Q67 strains) and mutagenicity assessment by Ames test(TA98 and TA100 strains with and without S9 addition) were conducted on these samples. The results showed that prechlorination caused the direct and indirect frame shift mutagenicity as well as indirect base pair substitute mutagenicity. Addition of coagulant may increase the base pair substitute mutagenic effects greatly. Sand and coal filtration and granular activated carbon filtration could effectively remove most of the formed mutagens. The rechlorination do not obviously increase the mutagenic effects. No mutagenic effect was observed in tap water. Acute toxicity showed the same variation with that of mutagenicity during the treatment processes. Sample from flocculation treatment process was found to be the most toxic sample. Results of GC-MS analysis showed that water in this plant was not contaminated by PCB. Concentrations of toluene, naphthalene and phenol increased in flocculation treatment process and in tap water. However, the concentrations of these substances were at the level of microgram/L, therefore, were not high enough to cause mutagenicity.

  20. Nitrification in Water and Wastewater Treatment

    EPA Science Inventory

    This chapter discusses available information on the occurrence of nitrification in water treatment plants and its potential impact on distribution system water quality. Nitrification as part of the water treatment process can occur whenever ammonia is present in or added to the s...

  1. Rotary filtration system

    DOEpatents

    Herman, David T [Aiken, SC; Maxwell, David N [Aiken, SC

    2011-04-19

    A rotary filtration apparatus for filtering a feed fluid into permeate is provided. The rotary filtration apparatus includes a container that has a feed fluid inlet. A shaft is at least partially disposed in the container and has a passageway for the transport of permeate. A disk stack made of a plurality of filtration disks is mounted onto the shaft so that rotation of the shaft causes rotation of the filtration disks. The filtration disks may be made of steel components and may be welded together. The shaft may penetrate a filtering section of the container at a single location. The rotary filtration apparatus may also incorporate a bellows seal to prevent leakage along the shaft, and an around the shaft union rotary joint to allow for removal of permeate. Various components of the rotary filtration apparatus may be removed as a single assembly.

  2. Smectite Dehydration, Membrane Filtration, and Pore-Water Freshening in Deep Ultra-Low Permeability Formations: Deep Processes in the Nankai Accretionary Wedge

    NASA Astrophysics Data System (ADS)

    Brown, K. M.; Sample, J. C.; Even, E.; Poeppe, D.; Henry, P.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.

    2014-12-01

    We address the fundamental questions surrounding the nature of water and chemical transport processes deep within sedimentary basin and accretionary-wedge environments. Consolidation and permeability studies conducted to 165 MPa (~10km depth) indicate that ultra-tight clay formations (10-18 m2 to10-21 m2) can substantially modify the fluids migrating through then. Pore-water extractions conducted on smectite/illite rich core samples obtained from 1-3 km depths at IODP (NanTroSEIZE, Chikyu) deep-riser drilling Site C0002, at the elevated loads required to squeeze waters from such deeply buried sediment (stresses up to 100 MPa),resulted in anomalous patterns of sequential freshening with progressive loading. More accurate laboratory investigations (both incremental loading and Constant Rate of Strain test) revealed that such freshening initiates above 20 MPa and progresses with consolidation to become greater than 20% by effective normal load of 165 MPa. Log-log plots of stress vs. hydraulic conductivity reveal that trends remain linear to elevated stresses and total porosities as low at 14%. The implications are that stress induced smectite dehydration and/or membrane filtration effects cause remarkable changes in pore water chemistry with fluid migration through deep, tight, clay-rich formations. These changes should occur in addition to any thermally induced diagenetic and clay-dehydration effects on pore water chemistry. Work is progressing to evaluate the impact of clay composition and temperature to ascertain if purely illitic compositions show similar trends and if the mass fractionation of water and other isotopes also occurs. Such studies will ascertain if the presence of smectite is a prerequisite for freshening or if membrane filtration is a major process in earth systems containing common clay minerals. The results have major implications for interpretations of mass chemical balances, pore water profiles, and the hydrologic, geochemical, and stress state

  3. Review of the technological approaches for grey water treatment and reuses.

    PubMed

    Li, Fangyue; Wichmann, Knut; Otterpohl, Ralf

    2009-05-15

    Based on literature review, a non-potable urban grey water reuse standard is proposed and the treatment alternatives and reuse scheme for grey water reuses are evaluated according to grey water characteristics and the proposed standard. The literature review shows that all types of grey water have good biodegradability. The bathroom and the laundry grey water are deficient in both nitrogen and phosphors. The kitchen grey water has a balanced COD: N: P ratio. The review also reveals that physical processes alone are not sufficient to guarantee an adequate reduction of the organics, nutrients and surfactants. The chemical processes can efficiently remove the suspended solids, organic materials and surfactants in the low strength grey water. The combination of aerobic biological process with physical filtration and disinfection is considered to be the most economical and feasible solution for grey water recycling. The MBR appears to be a very attractive solution in collective urban residential buildings.

  4. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates.

    PubMed

    Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Vulnerability of bank filtration systems to climate change.

    PubMed

    Sprenger, C; Lorenzen, G; Hülshoff, I; Grützmacher, G; Ronghang, M; Pekdeger, A

    2011-01-15

    Bank filtration (BF) is a well established and proven natural water treatment technology, where surface water is infiltrated to an aquifer through river or lake banks. Improvement of water quality is achieved by a series of chemical, biological and physical processes during subsurface passage. This paper aims at identifying climate sensitive factors affecting bank filtration performance and assesses their relevance based on hypothetical 'drought' and 'flood' climate scenarios. The climate sensitive factors influencing water quantity and quality also have influence on substance removal parameters such as redox conditions and travel time. Droughts are found to promote anaerobic conditions during bank filtration passage, while flood events can drastically shorten travel time and cause breakthrough of pathogens, metals, suspended solids, DOC and organic micropollutants. The study revealed that only BF systems comprising an oxic to anoxic redox sequence ensure maximum removal efficiency. The storage capacity of the banks and availability of two source waters renders BF for drinking water supply less vulnerable than surface water or groundwater abstraction alone. Overall, BF is vulnerable to climate change although anthropogenic impacts are at least as important. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Biological Treatment of Water Disinfection Byproducts using ...

    EPA Pesticide Factsheets

    Major disinfection by-products (DBPs) from the chlorination process of drinking water include trihalomethanes (THMs) and haloacetic acides (HAA5). THMs mainly consist of chloroform, and other harsh chemicals. Prolonged consumptions of drinking water containing high levels of THMs has been linked with diseases of the liver, kidneys, bladder, or central nervous system and may increase likelihood of cancer. A risk also exists for THMs exposure via inhalation while showering, bathing or washing clothes and dishes. Due to these risks, the U.S. EPA regulate THMs content in drinking water. This research investigates biological degradation of THM using chloroform as a model compound. The study aims to decrease possible risks of THMs through filtration. Throughout this year’s presentations, there is a common theme of health and safety concerns. UC researchers are working hard to clean water ways of naturally occurring contaminates as well as man-made toxins found in our waterways. The significance of these presentations translates into the promise of safer environments, and more importantly saved lives, as UC’s faculty continues to produce real-world solutions to problems threatening the world around us. A biotech process has been developed and demonstrated that effectively remove and treat volatile disinfection by-products from drinking water. The process strips low concentration disinfection by-products, such as trihalomethanes, that are formed during the chlori

  7. Water Treatment Technology - General Plant Operation.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  8. Surface Water Treatment Rules State Implementation Guidance

    EPA Pesticide Factsheets

    These documents provide guidance to states, tribes and U.S. EPA Regions exercising primary enforcement responsibility under the Safe Drinking Water Act. The documents contain EPA’s recommendations for implementation of the Surface Water Treatment Rules.

  9. Enhanced Column Filtration for Arsenic Removal from Water: Polymer-Templated Iron Oxide Nanoparticles Immobilized on Sand via Layer-by-Layer Deposition

    NASA Astrophysics Data System (ADS)

    Cheng, Calvin Chia-Hung

    Arsenic is ubiquitous in water sources around the world and is highly toxic. While precipitation and membrane filtration techniques are successfully implemented in developed cities, they are unsuitable for rural and low-resource settings lacking centralized facilities. This thesis presents the use of ultra-small iron oxide (Fe2O3) nanoparticles functionalized on sand granules for use as a house-hold scale adsorption filter. Water-stable alpha-Fe2O3 (hematite) nanoparticles (<10 nm) were synthesized via a collapsed-polymer approach using poly(acrylic acid) and Fe3+ ions. The nanoparticles exhibited high arsenic adsorption, with 147 +/- 2 mg As(III) per g Fe2O3 and 91 +/- 10 mg As(V) per g Fe2O3. The platform was also used to synthesize iron-based composites, including magnetite (Fe 3O4) and Fe-Cu oxide nanoparticles. For use as a column filter, Fe2O3-PAA nanoparticles were functionalized on sand granules using a layer-by-layer deposition method, with the nanoparticles embedded in the negative layer. The removal of As(III) by the Fe2O 3-PAA functionalized column was described by reversible 1st order kinetics where the forward and reverse rate constants were 0.31 hr -1 and 0.097 hr-1, respectively. Implemented as a passive water filter with 30 x 30 x 50 cm3 dimensions, the filter has an expected lifetime in the order of many years. By controlling the flow rate of the column depending on contamination levels, the filter effectively removes arsenic down to the safety limit of 0.01 mg/L. In a parallel project, the layer-by-layer deposition of Poly(diallydimethyl ammonium chloride) (PDDA) and poly(sodium 5-styrenesulfonate) (PSS) was exploited for a highly practical synthesis of discrete gradient surfaces. By independently controlling the concentration of NaCl in PDDA and PSS deposition solutions, a 2-dimensional matrix of surfaces was created in 96-well microtiter plates. Distinct non-monotonic dye adsorption patterns on the gradient surfaces was observed. Practical

  10. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance.

    PubMed

    Bai, Xiaohui; Ma, Xiaolin; Xu, Fengming; Li, Jing; Zhang, Hang; Xiao, Xiang

    2015-11-15

    Two waterworks, with source water derived from the Huangpu or Yangtze River in Shanghai, were investigated, and the effluents were plate-screened for antibiotic-resistant bacteria (ARB) using five antibiotics: ampicillin (AMP), kanamycin (KAN), rifampicin (RFP), chloramphenicol (CM) and streptomycin (STR). The influence of water treatment procedures on the bacterial antibiotic resistance rate and the changes that bacteria underwent when exposed to the five antibiotics at concentration levels ranging from 1 to 100 μg/mL were studied. Multi-drug resistance was also analyzed using drug sensitivity tests. The results indicated that bacteria derived from water treatment plant effluent that used the Huangpu River rather than the Yangtze River as source water exhibited higher antibiotic resistance rates against AMP, STR, RFP and CM but lower antibiotic resistance rates against KAN. When the antibiotic concentration levels ranged from 1 to 10 μg/mL, the antibiotic resistance rates of the bacteria in the water increased as water treatment progressed. Biological activated carbon (BAC) filtration played a key role in increasing the antibiotic resistance rate of bacteria. Chloramine disinfection can enhance antibiotic resistance. Among the isolated ARB, 75% were resistant to multiple antibiotics. Ozone oxidation, BAC filtration and chloramine disinfection can greatly affect the relative abundance of bacteria in the community. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. 20. View of sand filtration bed. Wheelbarrow was used to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View of sand filtration bed. Wheelbarrow was used to remove schmutzdeck (top, dirty sand layer containing particulate contamination, dead microorganisms and debris) for cleaning and or disposal. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  12. 2. View east of filtration bed building. Access bridge to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View east of filtration bed building. Access bridge to earth covering over reinforced concrete roof is at center right of photograph. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  13. 30. Valves under central corridor of filtration bed building. Main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Valves under central corridor of filtration bed building. Main flood valves is at left and crossover valve is a right. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  14. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems.

    PubMed

    Appleman, Timothy D; Higgins, Christopher P; Quiñones, Oscar; Vanderford, Brett J; Kolstad, Chad; Zeigler-Holady, Janie C; Dickenson, Eric R V

    2014-03-15

    The near ubiquitous presence of poly- and perfluoroalkyl substances (PFASs) in humans has raised concerns about potential human health effects from these chemicals, some of which are both extremely persistent and bioaccumulative. Because some of these chemicals are highly water soluble, one major pathway for human exposure is the consumption of contaminated drinking water. This study measured concentrations of PFASs in 18 raw drinking water sources and 2 treated wastewater effluents and evaluated 15 full-scale treatment systems for the attenuation of PFASs in water treatment utilities throughout the U.S. A liquid-chromatography tandem mass-spectrometry method was used to enable measurement of a suite of 23 PFASs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). Despite the differences in reporting levels, the PFASs that were detected in >70% of the source water samples (n = 39) included PFSAs, perfluorobutane sulfonic acid (74%), perfluorohexane sulfonic acid (79%), and perfluorooctane sulfonic acid (84%), and PFCAs, perfluoropentanoic acid (74%), perfluorohexanoic acid (79%), perfluoroheptanoic acid (74%), and perfluorooctanoic acid (74%). More importantly, water treatment techniques such as ferric or alum coagulation, granular/micro-/ultra- filtration, aeration, oxidation (i.e., permanganate, ultraviolet/hydrogen peroxide), and disinfection (i.e., ozonation, chlorine dioxide, chlorination, and chloramination) were mostly ineffective in removing PFASs. However, anion exchange and granular activated carbon treatment preferably removed longer-chain PFASs and the PFSAs compared to the PFCAs, and reverse osmosis demonstrated significant removal for all the PFASs, including the smallest PFAS, perfluorobutanoic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Investigation of Microgranular Adsorptive Filtration System

    NASA Astrophysics Data System (ADS)

    Cai, Zhenxiao

    Over the past few decades, enormous advances have been made in the application of low-pressure membrane filtration to both drinking water and wastewater treatment. Nevertheless, the full potential of this technology has not been reached, due primarily to limitations imposed by membrane fouling. In drinking water treatment, much of the fouling is caused by soluble and particulate natural organic matter (NOM). Efforts to overcome the problem have focused on removal of NOM from the feed solution, usually by addition of conventional coagulants like alum and ferric chloride (FeCl3) or adsorbents like powdered activated carbon (PAC). While coagulants and adsorbents can remove a portion of the NOM, their performance with respect to fouling control has been inconsistent, often reducing fouling but sometimes having no effect or even exacerbating fouling. This research investigated microgranular adsorptive filtration (muGAF), a process that combines three existing technologies---granular media filtration, packed bed adsorption, and membrane filtration---in a novel way to reduce membrane fouling while simultaneously removing NOM from water. In this technology, a thin layer of micron-sized adsorbent particles is deposited on the membrane prior to delivering the feed to the system. The research reported here represents the first systematic study of muGAF, and the results demonstrate the promising potential of this process. A new, aluminum-oxide-based adsorbent---heated aluminum oxide particles (HAOPs)---was synthesized and shown to be very effective for NOM removal as well as fouling reduction in muGAF systems. muGAF has also been demonstrated to work well with powdered activated carbon (PAC) as the adsorbent, but not as well as when HAOPs are used; the process has also been successful when used with several different membrane types and configurations. Experiments using a wide range of operational parameters and several analytical tools lead to the conclusion that the fouling

  16. Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes.

    PubMed

    Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong

    2017-07-01

    Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.

  17. Activated-charcoal filters: water treatment, pollution control, and industrial applications. January 1970-July 1988 (citations from the US Patent data base). Report for January 1970-July 1988

    SciTech Connect

    Not Available

    This bibliography contains citations of selected patents concerning activated-charcoal filters and their applications in water treatment, pollution control, and industrial processes. Filtering methods and equipment for air and water purification, industrial distillation and extraction, industrial leaching, and filtration of toxic gases and pollutants are described. Applications include drinking water purification, filtering beverages, production of polymer materials, solvent and metal recovery, swimming pool filtration, waste conversion, automobile fuel and exhaust systems, and footwear deodorizing. (Contains 129 citations fully indexed and including a title list.)

  18. Disinfection of drain water of tomato by means of UV radiation and slow sand filtration in real greenhouse circumstances.

    PubMed

    De Rocker, E; Goen, K; Van Poucke, K

    2006-01-01

    The efficiency of the disinfection of drain water was tested at 11 greenhouses with tomato cultivation on rockwool substrate in Flanders (Belgium) by means of mycological analysis. In addition the presence of phytopathogenic fungi in the drain water was analysed at 2 supplementary greenhouses with recirculation without disinfection.

  19. The effectiveness of water treatment processes against schistosome cercariae: A systematic review

    PubMed Central

    Templeton, Michael R.

    2018-01-01

    Background Schistosomiasis is one of the most disabling neglected tropical diseases, ranking second in terms of years lived with disability. While treatment with the drug praziquantel can have immediate beneficial effects, reinfection can occur rapidly if people are in contact with cercaria-infested water. Water treatment for schistosomiasis control seeks to eliminate viable cercariae from water, thereby providing safe alternative water supplies for recreational and domestic activities including laundry and bathing. This provision may reduce contact with infested water, which is crucial for reducing reinfection following chemotherapy and cutting schistosome transmission. Methodology A qualitative systematic review was carried out to summarize the existing knowledge on the effectiveness of water treatment in removing or inactivating human schistosome cercariae. Four online databases were searched. Studies were screened and categorized into five water treatment processes: storage, heating, chlorination, filtration, and ultraviolet (UV) disinfection. Conclusions All five water treatment methods can remove or inactivate cercariae in water, and hence produce cercaria-free water. However, reliable design guidelines for treating water do not exist as there are insufficient data. Overall, the review found that cercariae are inactivated when storing water for 10–72 hours (depending on temperature), or with chlorination values of 3–30 mg-min/l. UV fluences between 3–60 mJ/cm2 may significantly damage or kill cercariae, and sand filters with 0.18–0.35 mm grain size have been shown to remove cercariae. This systematic review identified 67 studies about water treatment and schistosomiasis published in the past 106 years. It highlights the many factors that influence the results of water treatment experiments, which include different water quality conditions and methods for measuring key parameters. Variation in these factors limit comparability, and therefore currently

  20. Water-Quality Changes Caused by Riverbank Filtration Between the Missouri River and Three Pumping Wells of the Independence, Missouri, Well Field 2003-05

    USGS Publications Warehouse

    Kelly, Brian P.; Rydlund, Jr., Paul H.

    2006-01-01

    Riverbank filtration substantially improves the source-water quality of the Independence, Missouri well field. Coliform bacteria, Cryptosporidium, Giardia, viruses and selected constituents were analyzed in water samples from the Missouri River, two vertical wells, and a collector well. Total coliform bacteria, Cryptosporidium, Giardia, and total culturable viruses were detected in the Missouri River, but were undetected in samples from wells. Using minimum reporting levels for non-detections in well samples, minimum log removals were 4.57 for total coliform bacteria, 1.67 for Cryptosporidium, 1.67 for Giardia, and 1.15 for total culturable virus. Ground-water flow rates between the Missouri River and wells were calculated from water temperature profiles and ranged between 1.2 and 6.7 feet per day. Log removals based on sample pairs separated by the traveltime between the Missouri River and wells were infinite for total coliform bacteria (minimum detection level equal to zero), between 0.8 and 3.5 for turbidity, between 1.5 and 2.1 for Giardia, and between 0.4 and 2.6 for total culturable viruses. Cryptosporidium was detected once in the Missouri River but no corresponding well samples were available. No clear relation was evident between changes in water quality in the Missouri River and in wells for almost all constituents. Results of analyses for organic wastewater compounds and the distribution of dissolved oxygen, specific conductance, and temperature in the Missouri River indicate water quality on the south side of the river was moderately influenced by the south bank inflows to the river upstream from the Independence well field.

  1. Treatment techniques for the recycling of bottle washing water in the soft drinks industry.

    PubMed

    Ramirez Camperos, E; Mijaylova Nacheva, P; Diaz Tapia, E

    2004-01-01

    The soft drink production is an important sector in the manufacturing industry of Mexico. Water is the main source in the production of soft drinks. Wastewater from bottle washing is almost 50% of the total wastewater generated by this industry. In order to reduce the consumption of water, the water of the last bottle rinse can be reused in to the bottle pre-rinse and pre-washing cycles. This work presents the characterization of the final bottle washing rinse discharge and the treatability study for the most appropriate treatment system for recycling. Average characteristics of the final bottle wash rinse were as follows: Turbidity 40.46 NTU, COD 47.7 mg/L, TSS 56 mg/L, TS 693.6 mg/L, electrical conductivity 1,194 microS/cm. The results of the treatability tests showed that the final rinse water can be used in the pre-rinse and pre-washing after removing the totality of the suspended solids, 80% of the COD and 75% of the dissolved solids. This can be done using the following treatment systems: filtration-adsorption-reverse osmosis, or filtration-adsorption-ion exchange. The installation of these treatment techniques in the soft drink industry would decrease bottle washing water consumption by 50%.

  2. Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes.

    PubMed

    Zamyadi, Arash; Dorner, Sarah; Sauvé, Sébastien; Ellis, Donald; Bolduc, Anouka; Bastien, Christian; Prévost, Michèle

    2013-05-15

    Accumulation and breakthrough of several potentially toxic cyanobacterial species within drinking water treatment plants (DWTP) have been reported recently. The objectives of this project were to test the efficiency of different treatment barriers in cyanobacterial removal. Upon observation of cyanobacterial blooms, intensive sampling was conducted inside a full scale DWTP at raw water, clarification, filtration and oxidation processes. Samples were taken for microscopic speciation/enumeration and microcystins analysis. Total cyanobacteria cell numbers exceeded World Health Organisation and local alert levels in raw water (6,90,000 cells/mL). Extensive accumulation of cyanobacteria species in sludge beds and filters, and interruption of treatment were observed. Aphanizomenon cells were poorly coagulated and they were not trapped efficiently in the sludge. It was also demonstrated that Aphanizomenon cells passed through and were not retained over the filter. However, Microcystis, Anabaena, and Pseudanabaena cells were adequately removed by clarification and filtration processes. The breakthrough of non toxic cyanobacterial cells into DWTPs could also result in severe treatment disruption leading to plant shutdown. Application of intervention threshold values restricted to raw water does not take into consideration the major long term accumulation of potentially toxic cells in the sludge and the risk of toxins release. Thus, a sampling regime inside the plant adapted to cyanobacterial occurrence and intensity is recommended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Behaviour and biodegradation of sulfonamides (p-TSA, o-TSA, BSA) during drinking water treatment.

    PubMed

    Richter, Doreen; Massmann, Gudrun; Dünnbier, Uwe

    2008-04-01

    Three sulfonamides -para-toluenesulfonamide (p-TSA), ortho-toluenesulfonamide (o-TSA) and benzenesulfonamide (BSA) - have recently been detected in groundwater within a catchment area of one drinking water treatment plant (DWTP), which is located downstream of a former sewage farm. The degradation pathways of p-TSA, o-TSA and BSA were investigated during drinking water treatment with incubation experiments and an experimental filter. Incubation experiments showed that p-TSA is removed during the treatment by microbiological processes. Removal of p-TSA is performed by adapted microorganisms only present in polluted groundwater. The elimination in an experimental filter of 1.6m length applying filtration velocities from 2 to 6 m h(-1) was approximately 93% of p-TSA. The microbial degradation rates in the incubation experiment were approximately 0.029 microg l(-1) h(-1) (zero order reaction). In the experimental filter, the reaction rate constants were around 0.0063 s(-1) for all filtration velocities (1st order reaction). Drinking water treatment does not reduce the concentration of o-TSA and BSA under conditions encountered in Berlin. p-TSA, o-TSA and BSA were only measured in the low microg l(-1) concentrations range in the purified water.

  4. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds.

    PubMed

    Stackelberg, Paul E; Gibs, Jacob; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Lippincott, R Lee

    2007-05-15

    Samples of water and sediment from a conventional drinking-water-treatment (DWT) plant were analyzed for 113 organic compounds (OCs) that included pharmaceuticals, detergent degradates, flame retardants and plasticizers, polycyclic aromatic hydrocarbons (PAHs), fragrances and flavorants, pesticides and an insect repellent, and plant and animal steroids. 45 of these compounds were detected in samples of source water and 34 were detected in samples of settled sludge and (or) filter-backwash sediments. The average percent removal of these compounds was calculated from their average concentration in time-composited water samples collected after clarification, disinfection (chlorination), and granular-activated-carbon (GAC) filtration. In general, GAC filtration accounted for 53% of the removal of these compounds from the aqueous phase; disinfection accounted for 32%, and clarification accounted for 15%. The effectiveness of these treatments varied widely within and among classes of compounds; some hydrophobic compounds were strongly oxidized by free chlorine, and some hydrophilic compounds were partly removed through adsorption processes. The detection of 21 of the compounds in 1 or more samples of finished water, and of 3 to 13 compounds in every finished-water sample, indicates substantial but incomplete degradation or removal of OCs through the conventional DWT process used at this plant.

  5. Dissolved organic nitrogen and its biodegradable portion in a water treatment plant with ozone oxidation.

    PubMed

    Wadhawan, Tanush; Simsek, Halis; Kasi, Murthy; Knutson, Kristofer; Prüβ, Birgit; McEvoy, John; Khan, Eakalak

    2014-05-01

    Biodegradability of dissolved organic nitrogen (DON) has been studied in wastewater, freshwater and marine water but not in drinking water. Presence of biodegradable DON (BDON) in water prior to and after chlorination may promote formation of nitrogenous disinfectant by-products and growth of microorganisms in the distribution system. In this study, an existing bioassay to determine BDON in wastewater was adapted and optimized, and its application was tested on samples from four treatment stages of a water treatment plant including ozonation and biologically active filtration. The optimized bioassay was able to detect BDON in 50 μg L(-1) as N of glycine and glutamic solutions. BDON in raw (144-275 μg L(-1) as N), softened (59-226 μg L(-1) as N), ozonated (190-254 μg L(-1) as N), and biologically filtered (17-103 μg L(-1) as N) water samples varied over a sampling period of 2 years. The plant on average removed 30% of DON and 68% of BDON. Ozonation played a major role in increasing the amount of BDON (31%) and biologically active filtration removed 71% of BDON in ozonated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds

    USGS Publications Warehouse

    Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Lippincott, R.L.

    2007-01-01

    Samples of water and sediment from a conventional drinking-water-treatment (DWT) plant were analyzed for 113 organic compounds (OCs) that included pharmaceuticals, detergent degradates, flame retardants and plasticizers, polycyclic aromatic hydrocarbons (PAHs), fragrances and flavorants, pesticides and an insect repellent, and plant and animal steroids. 45 of these compounds were detected in samples of source water and 34 were detected in samples of settled sludge and (or) filter-backwash sediments. The average percent removal of these compounds was calculated from their average concentration in time-composited water samples collected after clarification, disinfection (chlorination), and granular-activated-carbon (GAC) filtration. In general, GAC filtration accounted for 53% of the removal of these compounds from the aqueous phase; disinfection accounted for 32%, and clarification accounted for 15%. The effectiveness of these treatments varied widely within and among classes of compounds; some hydrophobic compounds were strongly oxidized by free chlorine, and some hydrophilic compounds were partly removed through adsorption processes. The detection of 21 of the compounds in 1 or more samples of finished water, and of 3 to 13 compounds in every finished-water sample, indicates substantial but incomplete degradation or removal of OCs through the conventional DWT process used at this plant. ?? 2007 Elsevier B.V. All rights reserved.

  7. Pseudomonas-related populations associated with reverse osmosis in drinking water treatment.

    PubMed

    Sala-Comorera, Laura; Blanch, Anicet R; Vilaró, Carles; Galofré, Belén; García-Aljaro, Cristina

    2016-11-01

    Reverse osmosis membrane filtration technology (RO) is used to treat drinking water. After RO treatment, bacterial growth is still observed in water. However, it is not clear whether those microorganisms belong to species that can pose a health risk, such as Pseudomonas spp. The goal of this study is to characterize the bacterial isolates from a medium that is selective for Pseudomonas and Aeromonas which were present in the water fraction before and after the RO. To this end, isolates were recovered over two years and were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. They were then biochemically phenotyped and the population similarity indexes were calculated. The isolates were analysed for their capacity to form biofilms in vitro and antimicrobial susceptibility. There were significant differences between the microbial populations in water before and after RO. Furthermore, the structures of the populations analysed at the same sampling point were similar in different sampling campaigns. Some of the isolates had the capacity to form a biofilm and showed resistance to different antibiotics. A successful level filtration via RO and subsequent recolonization of the membrane with different species from those in the feed water was found. Pseudomonas aeruginosa was not recovered from among the isolates. This study increases the knowledge on the microorganisms present in water after RO treatment, with focus in one of the genus causing problems in RO systems associated with human health risk, Pseudomonas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment.

    PubMed

    Huerta-Fontela, Maria; Galceran, Maria Teresa; Ventura, Francesc

    2011-01-01

    The occurrence of fifty-five pharmaceuticals, hormones and metabolites in raw waters used for drinking water production and their removal through a drinking water treatment were studied. Thirty-five out of fifty-five drugs were detected in the raw water at the facility intake with concentrations up to 1200 ng/L. The behavior of the compounds was studied at each step: prechlorination, coagulation, sand filtration, ozonation, granular activated carbon filtration and post-chlorination; showing that the complete treatment accounted for the complete removal of all the compounds detected in raw waters except for five of them. Phenytoin, atenolol and hydrochlorothiazide were the three pharmaceuticals most frequently found in finished waters at concentrations about 10 ng/L. Sotalol and carbamazepine epoxide were found in less than a half of the samples at lower concentrations, above 2 ng/L. However despite their persistence, the removals of these five pharmaceuticals were higher than 95%. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Assessment of Two Different Drinking Water Treatment Plants for the Removal of Free-living Amoebae, Egypt.

    PubMed

    Al-Herrawy, Ahmad Z; Gad, Mahmoud A

    2017-01-01

    The aim of this study was to compare between slow and rapid sand filters for the removal of free-living amoebae during drinking water treatment production. Overall, 48 water samples were collected from two drinking water treatment plants having two different filtration systems (slow and rapid sand filters) and from inlet and outlet of each plant. Water samples were collected from Fayoum Drinking Water and Wastewater Holding Company, Egypt, during the year 2015. They were processed for detection of FLAs using non-nutrient agar (NNA). The isolates of FLAs were microscopically identified to the genus level based on the morphologic criteria and molecularly confirmed by the aid of PCR using genus-specific primers. The percentage of removal for FLAs through different treatment processes reached its highest rate in the station using slow sand filters (83%), while the removal by rapid sand filter system was 71.4%. Statistically, there was no significant difference ( P =0.55) for the removal of FLAs between the two different drinking water treatment systems. Statistically, seasons had no significant effect on the prevalence of FLAs in the two different drinking water treatment plants. Morphological identification of the isolated FLAs showed the presence of 3 genera namely Acanthamoeba , Naegleria , and Vermamoeba ( Hartmannella ) confirmed by PCR. The appearance of FLAs especially pathogenic amoebae in completely treated drinking water may cause potential health threat although there is no statistical difference between the two examined drinking water filtration systems.

  10. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review.

    PubMed

    Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu; Vepsäläinen, Mikko

    2018-01-01

    Natural organic matter (NOM) is a complex matrix of organic substances produced in (or channeled to) aquatic ecosystems via various biological, geological and hydrological cycles. Such variability is posing a serious challenge to most water treatment technologies, especially the ones designed to treat drinking water supplies. Lately, in addition to the fluctuating composition of NOM, a substantial increase of its concentration in fresh waters, and also municipal wastewater effluents, has been reported worldwide, which justifies the urgent need to develop highly efficient and versatile water treatment processes. Coagulation is among the most applied processes for water and wastewater treatment. The application of coagulation to remove NOM from drinking water supplies has received a great deal of attention from researchers around the world because it was efficient and helped avoiding the formation of disinfection by products (DBPs). Nonetheless, with the increased fluctuation of NOM in water (concentration and composition), the efficiency of conventional coagulation was substantially reduced, hence the need to develop enhanced coagulation processes by optimizing the operating conditions (mainly the amount coagulants and pH), developing more efficient inorganic or organic coagulants, as well as coupling coagulation with other water treatment technologies. In the present review, recent research studies dealing with the application of coagulation for NOM removal from drinking water supplies are presented and compared. In addition, integration schemes combining coagulation and other water treatment processes are presented, including membrane filtration, oxidation, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Household Water Treatments in Developing Countries

    ERIC Educational Resources Information Center

    Smieja, Joanne A.

    2011-01-01

    Household water treatments (HWT) can help provide clean water to millions of people worldwide who do not have access to safe water. This article describes four common HWT used in developing countries and the pertinent chemistry involved. The intent of this article is to inform both high school and college chemical educators and chemistry students…

  12. Water Treatment Technology - Chemistry/Bacteriology.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on chemistry/bacteriology provides instructional materials for twelve competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: waterborne diseases, water sampling…

  13. Organic polyelectrolytes in water treatment.

    PubMed

    Bolto, Brian; Gregory, John

    2007-06-01

    The use of polymers in the production of drinking water is reviewed, with emphasis on the nature of the impurities to be removed, the mechanisms of coagulation and flocculation, and the types of polymers commonly available. There is a focus on polymers for primary coagulation, their use as coagulant aids, in the recycling of filter backwash waters, and in sludge thickening. Practicalities of polymer use are discussed, with particular attention to polymer toxicity, and the presence of residual polymer in the final drinking water. The questions of polymer degradation and the formation of disinfection by-products are also addressed.

  14. Optimization of conventional water treatment plant using dynamic programming.

    PubMed

    Mostafa, Khezri Seyed; Bahareh, Ghafari; Elahe, Dadvar; Pegah, Dadras

    2015-12-01

    In this research, the mathematical models, indicating the capability of various units, such as rapid mixing, coagulation and flocculation, sedimentation, and the rapid sand filtration are used. Moreover, cost functions were used for the formulation of conventional water and wastewater treatment plant by applying Clark's formula (Clark, 1982). Also, by applying dynamic programming algorithm, it is easy to design a conventional treatment system with minimal cost. The application of the model for a case reduced the annual cost. This reduction was approximately in the range of 4.5-9.5% considering variable limitations. Sensitivity analysis and prediction of system's feedbacks were performed for different alterations in proportion from parameters optimized amounts. The results indicated (1) that the objective function is more sensitive to design flow rate (Q), (2) the variations in the alum dosage (A), and (3) the sand filter head loss (H). Increasing the inflow by 20%, the total annual cost would increase to about 12.6%, while 20% reduction in inflow leads to 15.2% decrease in the total annual cost. Similarly, 20% increase in alum dosage causes 7.1% increase in the total annual cost, while 20% decrease results in 7.9% decrease in the total annual cost. Furthermore, the pressure decrease causes 2.95 and 3.39% increase and decrease in total annual cost of treatment plants. © The Author(s) 2013.

  15. WATER TREATMENT PROBLEMS AND CONSEQUENCES

    EPA Science Inventory

    In recent years the emphasis on removing microbes from drinking water has increased. This increased concern was brought about partly by documented waterborne disease outbreaks in the US. Cryptosporidium concerns were elevated after the cryptosporodiosis outbreak in Milwaukee. Oth...

  16. Improved method for the determination of nonpurgeable suspended organic carbon in natural water by silver filter filtration, wet chemical oxidation, and infrared spectrometry

    USGS Publications Warehouse

    Burkhardt, Mark R.; Brenton, Ronald W.; Kammer, James A.; Jha, Virenda K.; O'Mara-Lopez, Peggy G.; Woodworth, Mark T.

    1999-01-01

    Precision and accuracy are reported for the first time for the analysis of nonpurgeable suspended organic carbon by silver membrane filtration followed by wet chemical oxidation. A water sample is pressure filtered through a 0.45‐μm‐pore‐size, 47‐mm‐diameter silver membrane filter. The silver membrane filter then is cut into ribbons and placed in a flame‐sealable glass ampule. The organic material trapped on the membrane filter strips is acidified, purged with oxygen to remove inorganic carbonates and volatile organic compounds, and oxidized to carbon dioxide (CO2) using phosphoric acid and potassium persulfate in the sealed glass ampule. The resulting CO2 is measured by a nondispersive infrared CO2 detector. The amount of CO2 is proportional to the concentration of chemically oxidizable nonpurgeable organic carbon in the environmental water sample. The quantitation and method detection limit for routine analysis is 0.2 mg/L. The average percent recovery in five representative matrices was 97 ± 11%. The errors associated with sampling and sample preparation of nonpurgeable suspended organic carbon are also described.

  17. Pulsatile plasma filtration and cell-free DNA amplification using a water-head-driven point-of-care testing chip.

    PubMed

    Lee, Yonghun; Kim, Dong-Min; Li, Zhenglin; Kim, Dong-Eun; Kim, Sung-Jin

    2018-03-13

    We demonstrate a microfiltration chip that separates blood plasma by using water-head-driven pulsatile pressures rather than any external equipment and use it for on-chip amplification of nucleic acids. The chip generates pulsatile pressures to significantly reduce filter clogging without hemolysis, and consists of an oscillator, a plasma-extraction pump, and filter units. The oscillator autonomously converts constant water-head pressure to pulsatile pressure, and the pump uses the pulsatile pressure to extract plasma through the filter. Because the pulsatile pressure can periodically clear blood cells from the filter surface, filter clogging can be effectively reduced. In this way, we achieve plasma extraction with 100% purity and 90% plasma recovery at 15% hematocrit. During a 10 min period, the volume of plasma extracted was 43 μL out of a 243 μL extraction volume at 15% hematocrit. We also studied the influence of the pore size and diameter of the filter, blood loading volume, oscillation period, and hematocrit level on the filtration performance. To demonstrate the utility of our chip for point-of-care testing (POCT) applications, we successfully implemented on-chip amplification of a nucleic acid (miDNA21) in plasma filtered from blood. We expect our chip to be useful not only for POCT applications but also for other bench-top analysis tools using blood plasma.

  18. Occurrence of endocrine-disrupting and other wastewater compunds during water treatment with case studies from Lincoln, Nebraska and Berlin, Germany

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Heberer, T.; Vogel, J.R.; Speth, T.; Zuehlke, S.; Duennbier, U.

    2003-01-01

    Research on the fate and transport of endocrine-disrupting compounds and other organic wastewater compounds released into the environment and their potential presence in drinking water is in its infancy. Studies conducted during the last decade in Lincoln, Nebraska, and Berlin, Germany, indicate that removal of less polar compounds probably can be obtained through bank filtration, ground-water enrichment, and additional drinking-water and wastewater treatment processes. Polar compounds, such as atrazine and some metabolites, occur in drinking water obtained from contaminated surface water or ground water, but at concentrations generally lower than those occurring in wastewater and surface water. The results of the studies also suggest that concentrations of nonpolar estrogenic compounds decrease during drinking-water pretreatment processes such as bank filtration and ground-water enrichment.

  19. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    NASA Astrophysics Data System (ADS)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  20. FECAL INDICATOR BACTERIA MEASUREMENTS BY QUANTITATIVE POLYMERASE CHAIN REACTION (QPCR) ANALYSIS IN FRESH ARCHIVED DNA EXTRACT OF WATER SAMPLE FILTRATES

    EPA Science Inventory

    The U.S. EPA has initiated a new recreational water study to evaluate the correlation between illness rates in swimmers and Enterococcus concentrations determined by the mEI agar membrane filter (MF) method and several new technologies including QPCR analysis. Results of this stu...

  1. A COMPARISON OF THE EFFICIENCY OF POLYCARBONATE AND MIXED CELLULOSE ESTER FILTERS FOR USE IN THE FILTRATION OF WATER SAMPLES

    EPA Science Inventory

    The federal standard for the presence of asbestos in drinking water mandates the use of transmission electron microscopy (TEM) as the only acceptable testing method. The July 17, 1992 Federal Register (57 FR 31839, Section 141.23(k)(4)) specifies that the analysis for as...

  2. Evaluation of direct membrane filtration and direct forward osmosis as concepts for compact and energy-positive municipal wastewater treatment.

    PubMed

    Hey, Tobias; Bajraktari, Niada; Davidsson, Åsa; Vogel, Jörg; Madsen, Henrik Tækker; Hélix-Nielsen, Claus; Jansen, Jes la Cour; Jönsson, Karin

    2018-02-01

    Municipal wastewater treatment commonly involves mechanical, biological and chemical treatment steps to protect humans and the environment from adverse effects. Membrane technology has gained increasing attention as an alternative to conventional wastewater treatment due to increased urbanization. Among the available membrane technologies, microfiltration (MF) and forward osmosis (FO) have been selected for this study due to their specific characteristics, such as compactness and efficient removal of particles. In this study, two treatment concepts were evaluated with regard to their specific electricity, energy and area demands. Both concepts would fulfil the Swedish discharge demands for small- and medium-sized wastewater treatment plants at full scale: (1) direct MF and (2) direct FO with seawater as the draw solution. The framework of this study is based on a combination of data obtained from bench- and pilot-scale experiments applying direct MF and FO, respectively. Additionally, available complementary data from a Swedish full-scale wastewater treatment plant and the literature were used to evaluate the concepts in depth. The results of this study indicate that both concepts are net positive with respect to electricity and energy, as more biogas can be produced compared to that using conventional wastewater treatment. Furthermore, the specific area demand is significantly reduced. This study demonstrates that municipal wastewater could be treated in a more energy- and area-efficient manner with techniques that are already commercially available and with future membrane technology.

  3. Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge.

    PubMed

    Linlin, Wu; Xuan, Zhao; Meng, Zhang

    2011-04-01

    In the paper the combination process of ozonation, slow sand filtration (SSF) and nanofiltration (NF) was investigated with respect to dissolved organic matter (DOM) removal as high quality pre-treatment option for artificial groundwater recharge. With the help of ozonation leading to breakdown of the large organic molecules, SSF preferentially removes soluble microbial by-product-like substances and DOM with molecular weight (MW) less than 1.0 kDa. NF, however, removes aromatic, humic acid-like and fulvic acid-like substances efficiently and specially removes DOM with MW above 1.0 kDa. The residual DOM of the membrane permeate is dominated by small organics with MW 500 Da, which can be further reduced by the aquifer treatment, despite of the very low concentration. Consequently, the O(3)/SSF/NF system offers a complementary process in DOM removal. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) can be reduced from 6.5±1.1 to 0.7±0.3 mg L(-1) and from 267±24 to 52±6 μg L(-1), respectively. The very low DOC concentration of 0.6±0.2 mg L(-1) and THMFP of 44±4 μg L(-1) can be reached after the aquifer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A Primer on Waste Water Treatment.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  5. The effect of feed water dissolved organic carbon concentration and composition on organic micropollutant removal and microbial diversity in soil columns simulating river bank filtration.

    PubMed

    Bertelkamp, C; van der Hoek, J P; Schoutteten, K; Hulpiau, L; Vanhaecke, L; Vanden Bussche, J; Cabo, A J; Callewaert, C; Boon, N; Löwenberg, J; Singhal, N; Verliefde, A R D

    2016-02-01

    This study investigated organic micropollutant (OMP) biodegradation rates in laboratory-scale soil columns simulating river bank filtration (RBF) processes. The dosed OMP mixture consisted of 11 pharmaceuticals, 6 herbicides, 2 insecticides and 1 solvent. Columns were filled with soil from a RBF site and were fed with four different organic carbon fractions (hydrophilic, hydrophobic, transphilic and river water organic matter (RWOM)). Additionally, the effect of a short-term OMP/dissolved organic carbon (DOC) shock-load (e.g. quadrupling the OMP concentrations and doubling the DOC concentration) on OMP biodegradation rates was investigated to assess the resilience of RBF systems. The results obtained in this study imply that - in contrast to what is observed for managed aquifer recharge systems operating on wastewater effluent - OMP biodegradation rates are not affected by the type of organic carbon fraction fed to the soil column, in case of stable operation. No effect of a short-term DOC shock-load on OMP biodegradation rates between the different organic carbon fractions was observed. This means that the RBF site simulated in this study is resilient towards transient higher DOC concentrations in the river water. However, a temporary OMP shock-load affected OMP biodegradation rates observed for the columns fed with the river water organic matter (RWOM) and the hydrophilic fraction of the river water organic matter. These different biodegradation rates did not correlate with any of the parameters investigated in this study (cellular adenosine triphosphate (cATP), DOC removal, specific ultraviolet absorbance (SUVA), richness/evenness of the soil microbial population or OMP category (hydrophobicity/charge). Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh

    NASA Astrophysics Data System (ADS)

    Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin

    2018-02-01

    A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.

  7. The artificial water cycle: emergy analysis of waste water treatment.

    PubMed

    Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco

    2003-04-01

    The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows.

  8. MEMBRANES FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    Various treatment technologies have proven effective in controlling halogenated disinfection by-products such as precursor removal and the use of alternative disinfectants. One of the most promising methods for halogenated by-product control includes removal of precursors before ...

  9. Verifying Ballast Water Treatment Performance

    EPA Science Inventory

    The U.S. Environmental Protection Agency, NSF International, Battelle, and U.S. Coast Guard are jointly developing a protocol for verifying the technical performance of commercially available technologies designed to treat ship ballast water for potentially invasive species. The...

  10. SUMMARY REPORT: SMALL COMMUNITY WATER AND WASTE- WATER TREATMENT

    EPA Science Inventory

    This summary report presents information on the unique needs of small communities facing new water and wastewater treatment requirements. t contains three main sections: technology overviews (each presents a process description, O&M requirements, technology limitations, and finan...

  11. 40 CFR 141.73 - Filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... turbidity level of representative samples of a system's filtered water must be less than or equal to 0.5 NTU....74 (a)(1) and (c)(1). (2) The turbidity level of representative samples of a system's filtered water... filtration, the turbidity level of representative samples of a system's filtered water must be less than or...

  12. [A comparative and technical assessment of the HELP system (heparin extracorporeal LDL precipitation) and cascade filtration (CF) for the treatment of high plasma lipids].

    PubMed

    Loschiavo, Carmelo

    2013-01-01

    Extracorporeal techniques for the removal of plasma lipids, known as LDL-apheresis, have improved treatment of atherosclerotic lesions in patients with familial hyperlipidemia (FH). In the homozygous form, such treatment is to be considered a life-saving therapy, and in heterozygous forms, which are widely distributed in the population, it is also used when there is a high risk of coronary atherogenic lesions and where a dietary and pharmacological approach has failed to satisfy the objective of a LDL-C 2.6 mmol/L. Of the various techniques available, we believe that cascade filtration (CF) and extracorporeal LDL precipitation with heparin (HELP) are the methods of choice for technical reasons, clinical efficacy and safety. HELP provides, at long-term follow-up, a 5% greater decrease in LDL-C and Lp (a) compared to CF, and about 10% increase in fibrinogen removal resulting in decreased blood viscosity. Conversely, CF produces a concomitant elimination of up to 20% of HDL-C, whereas HELP results in around 5% elimination. CF determines a loss of protein which over time can impact negatively on the protein profile, while HELP results in negligible protein loss. Finally, a significant dampening effect on the intermediate products of inflammation, which initiate the process of vessel atheroma development, has been documented only with HELP. Therefore, the HELP procedure appears to inhibit the development of atheromatous plaques via several different routes.

  13. Water Supply and Treatment Equipment

    DTIC Science & Technology

    2009-09-15

    1 2 3 4 5 6 7 8 9 Always 2. Speaking ability (enunciation, volume, etc.) Poor 1 2 3 4 5 6 7 8 9 Excellent 3. Subject...knowledge Poor 1 2 3 4 5 6 7 8 9 Excellent 4. Treatment of students Discourteous 1 2 3 4 5 6 7 8 9 Courteous 5. Aware of

  14. ALTERNATIVE DISINFECTION FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    During a one-yr study at Jefferson Parish, La., the chemical, microbiological, and mutagenic effects os using the major drinkgin water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. Tests were performed on samples collected from various treatment s...

  15. Interim Enhanced Surface Water Treatment Rule Documents

    EPA Pesticide Factsheets

    The IESWTR balances the need for treatment with potential increases in disinfection by -products. The materials found on this page are intended to assist public water systems and state in the implementation of the IESWTR.

  16. Water/Wastewater Treatment Plant Operator Qualifications.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  17. Effect of drinking water treatment process parameters on biological removal of manganese from surface water.

    PubMed

    Hoyland, Victoria W; Knocke, William R; Falkinham, Joseph O; Pruden, Amy; Singh, Gargi

    2014-12-01

    Soluble manganese (Mn) presents a significant treatment challenge to many water utilities, causing aesthetic and operational concerns. While application of free chlorine to oxidize Mn prior to filtration can be effective, this is not feasible for surface water treatment plants using ozonation followed by biofiltration because it inhibits biological removal of organics. Manganese-oxidizing bacteria (MOB) readily oxidize Mn in groundwater treatment applications, which normally involve pH > 7.0. The purpose of this study was to evaluate the potential for biological Mn removal at the lower pH conditions (6.2-6.3) often employed in enhanced coagulation to optimize organics removal. Four laboratory-scale biofilters were operated over a pH range of 6.3-7.3. The biofilters were able to oxidize Mn at a pH as low as pH 6.3 with greater than 98% Mn removal. Removal of simulated organic ozonation by-products was also greater than 90% in all columns. Stress studies indicated that well-acclimated MOB can withstand variations in Mn concentration (e.g., 0.1-0.2 mg/L), hydraulic loading rate (e.g., 2-4 gpm/ft(2); 1.36 × 10(-3)-2.72 × 10(-3) m/s), and temperature (e.g., 7-22 °C) typically found at surface water treatment plants at least for relatively short (1-2 days) periods of time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Evaluating nanoparticle breakthrough during drinking water treatment.

    PubMed

    Abbott Chalew, Talia E; Ajmani, Gaurav S; Huang, Haiou; Schwab, Kellogg J

    2013-10-01

    Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. In this study we investigated the breakthrough of common NPs--silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)--into finished drinking water following conventional and advanced treatment. NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma-mass spectrometry (ICP-MS). Conventional treatment resulted in 2-20%, 3-8%, and 48-99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1-45% for Ag, 0-44% for TiO2, and 36-83% for ZnO. With UF, NP breakthrough was 0-2%, 0-4%, and 2-96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes.

  19. Standardised evaluation of the performance of a simple membrane filtration-elution method to concentrate bacteriophages from drinking water.

    PubMed

    Méndez, Javier; Audicana, Ana; Isern, Ana; Llaneza, Julián; Moreno, Belén; Tarancón, María Luisa; Jofre, Juan; Lucena, Francisco

    2004-04-01

    The bacteriophage elution procedure described further after adsorption to acetate-nitrate cellulose membrane filters allows better recovery of phages concentrated from 1l of water than elution procedures used previously. The improvement is due to the combined effect of the eluent (3% (w/v) beef extract, 3% (v/v) Tween 80, 0.5M NaCl, pH 9.0) and the application of ultrasound instead of agitation or swirling. Average recovery of somatic coliphages, 82 +/- 7%, was the greatest, and that of phages infecting Bacteroides fragilis, 56 +/- 8%, the lowest, with intermediate values for F-specific and F-specific RNA bacteriophages. Thus, the method allowed recovery of over 56% for all the phages suggested as surrogate indicators. The method was then validated according to an International Standardisation Organisation validation standard procedure and implemented in routine laboratories, which obtained reproducible results.

  20. Selection of representative emerging micropollutants for drinking water treatment studies: a systematic approach.

    PubMed

    Jin, Xiaohui; Peldszus, Sigrid

    2012-01-01

    Micropollutants remain of concern in drinking water, and there is a broad interest in the ability of different treatment processes to remove these compounds. To gain a better understanding of treatment effectiveness for structurally diverse compounds and to be cost effective, it is necessary to select a small set of representative micropollutants for experimental studies. Unlike other approaches to-date, in this research micropollutants were systematically selected based solely on their physico-chemical and structural properties that are important in individual water treatment processes. This was accomplished by linking underlying principles of treatment processes such as coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration to compound characteristics and corresponding molecular descriptors. A systematic statistical approach not commonly used in water treatment was then applied to a compound pool of 182 micropollutants (identified from the literature) and their relevant calculated molecular descriptors. Principal component analysis (PCA) was used to summarize the information residing in this large dataset. D-optimal onion design was then applied to the PCA results to select structurally representative compounds that could be used in experimental treatment studies. To demonstrate the applicability and flexibility of this selection approach, two sets of 22 representative micropollutants are presented. Compounds in the first set are representative when studying a range of water treatment processes (coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration), whereas the second set shows representative compounds for ozonation and advanced oxidation studies. Overall, selected micropollutants in both lists are structurally diverse, have wide-ranging physico-chemical properties and cover a large spectrum of applications. The systematic compound selection approach presented here can also be adjusted to fit

  1. Aspects of Industrial Water Treatment.

    DTIC Science & Technology

    1978-02-01

    Biochemical oxygen demand, Nitrate (as I) Cyanide, total 5- d (DOD 5 ) Nitr$te (a N) Cyanide amenable to i Chealc€l oxygen deuma! (COD)) chlorination...for Industrial ProcessWaters * o s .o. . o , ,,. . . , s o , , , , 26 Is CON~TfNTS (Cont’dI TAMLE (Cont’ d ) 10 Limiting Concentration Ranges...the United States are graphically presented in Figures I and 2. D . Z C O’ M ITUMMS OJT WATM U 1. Untreated feedwater can cause numerous problems in

  2. 77 FR 38857 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Treatment, Heating Ventilation and Air Conditioning Systems.'' This new standard provides comprehensive test... Criteria for Air Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water-Cooled... NUCLEAR REGULATORY COMMISSION [NRC-2012-0152] Design, Inspection, and Testing Criteria for Air...

  3. Inhibition of biofilm formation on the surface of water storage containers using biosand zeolite silver-impregnated clay granular and silver impregnated porous pot filtration systems

    PubMed Central

    Moropeng, Resoketswe Charlotte; Mpenyana-Monyatsi, Lizzy; Momba, Maggie Ndombo Benteke

    2018-01-01

    Development of biofilms occurring on the inner surface of storage vessels offers a suitable medium for the growth of microorganisms and consequently contributes to the deterioration of treated drinking water quality in homes. The aim of this study was to determine whether the two point-of-use technologies (biosand zeolite silver-impregnated clay granular (BSZ-SICG) filter and silver-impregnated porous pot (SIPP) filter) deployed in a rural community of South Africa could inhibit the formation of biofilm on the surface of plastic-based containers generally used by rural households for the storage of their drinking water. Culture-based methods and molecular techniques were used to detect the indicator bacteria (Total coliforms, faecal coliform, E. coli) and pathogenic bacteria (Salmonella spp., Shigella spp. and Vibrio cholerae) in intake water and on the surface of storage vessels containing treated water. Scanning electron microscopy was also used to visualize the development of biofilm. Results revealed that the surface water source used by the Makwane community was heavily contaminated and harboured unacceptably high counts of bacteria (heterotrophic plate count: 4.4–4.3 Log10 CFU/100mL, total coliforms: 2.2 Log10 CFU/100 mL—2.1 Log10 CFU/100 mL, faecal coliforms: 1.9 Log10 CFU/100 mL—1.8 Log10 CFU/100 mL, E. coli: 1.7 Log10 CFU/100 mL—1.6 Log10 CFU/100 mL, Salmonella spp.: 3 Log10 CFU/100 mL -8 CFU/100 mL; Shigella spp. and Vibrio cholerae had 1.0 Log10 CFU/100 mL and 0.8 Log10 CFU/100 mL respectively). Biofilm formation was apparent on the surface of the storage containers with untreated water within 24 h. The silver nanoparticles embedded in the clay of the filtration systems provided an effective barrier for the inhibition of biofilm formation on the surface of household water storage containers. Biofilm formation occurred on the surface of storage plastic vessels containing drinking water treated with the SIPP filter between 14 and 21 days, and on

  4. Inhibition of biofilm formation on the surface of water storage containers using biosand zeolite silver-impregnated clay granular and silver impregnated porous pot filtration systems.

    PubMed

    Budeli, Phumudzo; Moropeng, Resoketswe Charlotte; Mpenyana-Monyatsi, Lizzy; Momba, Maggie Ndombo Benteke

    2018-01-01

    Development of biofilms occurring on the inner surface of storage vessels offers a suitable medium for the growth of microorganisms and consequently contributes to the deterioration of treated drinking water quality in homes. The aim of this study was to determine whether the two point-of-use technologies (biosand zeolite silver-impregnated clay granular (BSZ-SICG) filter and silver-impregnated porous pot (SIPP) filter) deployed in a rural community of South Africa could inhibit the formation of biofilm on the surface of plastic-based containers generally used by rural households for the storage of their drinking water. Culture-based methods and molecular techniques were used to detect the indicator bacteria (Total coliforms, faecal coliform, E. coli) and pathogenic bacteria (Salmonella spp., Shigella spp. and Vibrio cholerae) in intake water and on the surface of storage vessels containing treated water. Scanning electron microscopy was also used to visualize the development of biofilm. Results revealed that the surface water source used by the Makwane community was heavily contaminated and harboured unacceptably high counts of bacteria (heterotrophic plate count: 4.4-4.3 Log10 CFU/100mL, total coliforms: 2.2 Log10 CFU/100 mL-2.1 Log10 CFU/100 mL, faecal coliforms: 1.9 Log10 CFU/100 mL-1.8 Log10 CFU/100 mL, E. coli: 1.7 Log10 CFU/100 mL-1.6 Log10 CFU/100 mL, Salmonella spp.: 3 Log10 CFU/100 mL -8 CFU/100 mL; Shigella spp. and Vibrio cholerae had 1.0 Log10 CFU/100 mL and 0.8 Log10 CFU/100 mL respectively). Biofilm formation was apparent on the surface of the storage containers with untreated water within 24 h. The silver nanoparticles embedded in the clay of the filtration systems provided an effective barrier for the inhibition of biofilm formation on the surface of household water storage containers. Biofilm formation occurred on the surface of storage plastic vessels containing drinking water treated with the SIPP filter between 14 and 21 days, and on those

  5. Changes in Dissolved Organic Matter Composition and Disinfection Byproduct Precursors in Advanced Drinking Water Treatment Processes.

    PubMed

    Phungsai, Phanwatt; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki

    2018-03-20

    Molecular changes in dissolved organic matter (DOM) from treatment processes at two drinking water treatment plants in Japan were investigated using unknown screening analysis by Orbitrap mass spectrometry. DOM formulas with carbon, hydrogen and oxygen (CHO-DOM) were the most abundant class in water samples, and over half of them were commonly found at both plants. Among the treatment processes, ozonation induced the most drastic changes to DOM. Mass peak intensities of less saturated CHO-DOM (positive (oxygen subtracted double bond equivalent per carbon (DBE-O)/C)) decreased by ozonation, while more saturated oxidation byproducts (negative (DBE-O)/C) increased and new oxidation byproducts (OBPs) were detected. By Kendrick mass analysis, ozone reactions preferred less saturated CHO-DOM in the same alkylation families and produced more saturated alkylation families of OBPs. Following ozonation, biological activated carbon filtration effectively removed <300 Da CHO-DOM, including OBPs. Following chlorination, over 50 chlorinated formulas of disinfection byproducts (DBPs) were found in chlorinated water samples where at least half were unknown. Putative precursors of these DBPs were determined based on electrophilic substitutions and addition reactions. Ozonation demonstrated better decomposition of addition reaction-type precursors than electrophilic substitution-type precursors; over half of both precursor types decreased during biological activated carbon filtration.

  6. Water Treatment Technology - Taste, Odor & Color.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on taste, odor, and color provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: taste and odor determination, control of…

  7. Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge.

    PubMed

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2009-01-01

    In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.

  8. Special diatomite solves fiberglass particles filtration problem

    SciTech Connect

    Not Available

    1979-07-01

    Johns-Manville Corp. has developed a water treatment system which is based on the principle of zero-discharge of process water and which uses an alum-coated Celite diatomaceous earth filter for removing particles of carbon black and abrasive glass, tramp dirt, and oils and grease out of waste water from its fiberglass plants at Parkersburg, W. Va., and elsewhere. The resulting water is essentially free of suspended solids larger than 0.5j at Vertical Bar3; 5 mg/l. concentration, even when the solids concentration in the filter feed water ranges from 50 to 1000 mg/l. The system's core is the alum coating, which ismore » obtained by reacting the diatomite with aluminum sulfate and soda ash. Because it has a highly positive electrical charge, the coating attracts the negatively charged carbon particles and attaches them to the diatomite surface to be filtered out. Filtration cycles vary from 8 to 24 hr depending on the raw water and filter grade used; the terminal pressure is about 60 psig. At cycles' end, the filter cake is up to 2.5 in. thick; this is disposed of in sanitary landfills.« less

  9. Genotoxicity and cytotoxicity assessment in lake drinking water produced in a treatment plant.

    PubMed

    Buschini, Annamaria; Carboni, Pamela; Frigerio, Silvia; Furlini, Mariangela; Marabini, Laura; Monarca, Silvano; Poli, Paola; Radice, Sonia; Rossi, Carlo

    2004-09-01

    Chemical analyses and short-term mutagenicity bioassays have revealed the presence of genotoxic disinfection by-products in drinking water. In this study, the influence of the different steps of surface water treatment on drinking water mutagen content was evaluated. Four different samples were collected at a full-scale treatment plant: raw lake water (A), water after pre-disinfection with chlorine dioxide and coagulation (B), water after pre-disinfection, coagulation and granular activated carbon filtration (C) and tap water after post-disinfection with chlorine dioxide just before its distribution (D). Water samples, concentrated by solid phase adsorption on silica C18 columns, were tested in human leukocytes and HepG2 hepatoma cells using the comet assay and in HepG2 cells in the micronuclei test. A significant increase in DNA migration was observed in both cell types after 1 h treatment with filtered and tap water, and, to a lesser extent, chlorine dioxide pre-disinfected water. Similar findings were observed for the induction of "ghost" cells. Overloading of the carbon filter, with a consequent peak release, might explain the high genotoxicity found in water samples C and D. Cell toxicity and DNA damage increases were also detected in metabolically competent HepG2 cells treated with a lower concentration of tap water extract for a longer exposure time (24 h). None of the water extracts significantly increased micronuclei frequencies. Our monitoring approach appears to be able to detect contamination related to the different treatment stages before drinking water consumption and the results suggest the importance of improving the technologies for drinking water treatment to prevent human exposure to potential genotoxic compounds.

  10. Antibiotics elimination and risk reduction at two drinking water treatment plants by using different conventional treatment techniques.

    PubMed

    Li, Guiying; Yang, Huan; An, Taicheng; Lu, Yujuan

    2018-04-20

    Safe drinking water is essential for the wellbeing of people around the world. In this work, the occurrence, distribution, and elimination of four groups of antibiotics including fluoroquinolones, sulfonamides, chloramphenicols and macrolides (21 antibiotics total), were studied in two drinking water treatment plants during the wet and dry seasons. In the drinking water source (river), the most abundant group was fluoroquinolones. In contrast, chloramphenicols were all under the limitation of detection. Total concentration of all investigated antibiotics was higher in dissolved phase (62-3.3 × 10 2 ng L -1 ) than in particulate phase (2.3-7.1 ng L -1 ) during both wet and dry seasons in two plants. With the treatment process of flocculation → horizontal flow sedimentation → V type filtration → liquid Cl 2 chlorination, approximately 57.5% (the dry season) and 73.6% (the wet season) of total antibiotics in dissolved phase, and 46.3% (the dry season) and 51.0% (the wet season) in particulate phase were removed. In contrast, the removal efficiencies of total antibiotics were obtained as -49.6% (the dry season) and 52.3% (the wet season) in dissolved phase, and -15.5% (the dry season) and 44.3% (the wet season) in particulate phase, during the process of grille flocculation→ tube settler sedimentation → siphon filtration → ClO 2 chlorination. Sulfonamides were found to be typically easily removed antibiotics from the dissolved and particulate phases during both seasons. Through a human health risk assessment, we found that the former treatment technologies were much better than the later for risk reduction. Overall, it can be concluded that the treatment processes currently used should be modified to increase emerging contaminant elimination efficiency and ensure maintenance of proper water quality. Copyright © 2018. Published by Elsevier Inc.

  11. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China.

    PubMed

    Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing

    2010-04-01

    Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment. Copyright 2009 Wiley-Liss, Inc.

  12. PATHFINDER ATOMIC POWER PLANT. FILTRATION OF ALUMINUM CORROSION PRODUCTS PRODUCED IN HIGH-TEMPERATURE, HIGH PURITY WATER SYSTEMS

    SciTech Connect

    Noble, J.H.; Davie, R.L.

    1961-05-01

    Filter tests were conducted to determine the most suitable filter for removing large quantities of aluminum corrosion product (boehmite) from reactor water. Filters tested included the following: wire-wound, sintered filter elements, sintered ceramic fllter elements, cotton stringwound filter elements, felted-cotton filter elements, cation resin, adsorption resin, diatomaceous earth precoat filter, and a wood-cellulose precoat filter. Parameters measured were flow rate, filter-influent and -effluent boehmite concentration, pressure drop, and final filter load. The pressure drop and efficiency of the filters was correlated with boehmite load. Boehmite deposits on filters as a nonporous gelatinous cake, and causes a rapidly increasing pressure drop.more » Tests indicate that the optimum load with filter elements and precoat filters is achieved at a pressure drop of 25 psi. Very little additional load can be obtained by operating to a higher pressure drop. Of the filters tested, the precoat filter snd 40 to 60 mesh cation resin were the more effective in removing boehmite. The efficiency of the precoat filter was in excess of 99%, and the efficiency of the cation resin was for the most part in excess of 95%. For various reasons, the other filters were eliminated from final consideration. The test program and available literature indicated that an element type precoat filter using wood cellulose as the precoat media would be most suitable for the proposed application. (auth)« less

  13. Gel filtration of sialoglycoproteins.

    PubMed Central

    Alhadeff, J A

    1978-01-01

    The role of sialic acid in the gel-filtration behaviour of sialoglycoproteins was investigated by using the separated isoenzymes of purified human liver alpha-L-fucosidase and several other well-known sialic acid-containing glycoproteins (fetuin, alpha1-acid glycoprotein, thyroglobulin and bovine submaxillary mucin). For each glycoprotein studied, gel filtration of its desialylated derivative gave an apparent molecular weights much less than that expected just from removal of sialic acid. For the lower-molecular-weight glycoproteins (fetuin and alpha1-acid glyocprotein), gel filtration of the sialylated molecules led to apparent molecular weights much larger than the known values. The data indicate that gel filtration cannot be used for accurately determining the molecular weights of at least some sialoglycoproteins. Images Fig. 1. PMID:356853

  14. Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece.

    PubMed

    Papageorgiou, A; Papadakis, N; Voutsa, D

    2016-01-01

    The aim of this study was to investigate the fate of natural organic matter (NOM) and subsequent changes during the various treatment processes at a full-scale Drinking Water Treatment Plant (DWTP). Monthly sampling campaigns were conducted for 1 year at six sites along DWTP of Thessaloniki, Northern Greece including raw water from the Aliakmonas River that supplies DWTP and samples from various treatment processes (pre-ozonation, coagulation, sand filtration, ozonation, and granular activated carbon (GAC) filtration). The concentration of NOM and its characteristics as well as the removal efficiency of various treatment processes on the basis of dissolved organic carbon, UV absorbance, specific ultra-violet absorbance, fluorescence intensity, hydrophobicity, biodegradable dissolved organic carbon, and formation potential of chlorination by-products trihalomethanes (THMs) and haloacetic acids (HAAs) were studied. The concentration of dissolved organic carbon (DOC) in reservoir of the Aliakmonas River ranged from 1.46 to 1.84 mg/L, exhibiting variations regarding UV, fluorescence, and hydrophobic character through the year. Along DWTP, a significant reduction of aromatic, fluorophoric, and hydrophobic character of NOM was observed resulting in significant elimination of THM (63%) and HAAs (75%) precursors.

  15. Solar-assisted MED treatment of Eskom power station waste water

    NASA Astrophysics Data System (ADS)

    Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard

    2017-06-01

    The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.

  16. 40 CFR 142.64 - Variances and exemptions from the requirements of part 141, subpart H-Filtration and Disinfection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of part 141, subpart H-Filtration and Disinfection. 142.64 Section 142.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Identification of Best Technology, Treatment Techniques or Other Means...

  17. Conventional Treatment Options for HABs Impacted Waters

    EPA Science Inventory

    This presentation discusses (1) the removal of cyanobacterial cells through coagulation, flocculation, sedimentation and filtration, (2) the control of cyanobacterial toxins by powdered activated carbon, (3) the control of cyanobacterial toxins by chlorine, UV, ozone, chlorine di...

  18. Assessing the impact of a school-based safe water intervention on household adoption of point-of-use water treatment practices in southern India.

    PubMed

    Freeman, Matthew C; Clasen, Thomas

    2011-03-01

    We assessed a pilot project by UNICEF and Hindustan Unilever Limited to improve the quality of drinking water for children in schools through adoption of improved drinking water practices among households in southern India. The intervention consisted of providing classrooms of 200 schools a commercial water purifier, and providing basic hygiene and water treatment information to students, parents, and teachers. We found no evidence that the intervention was effective in improving awareness or uptake of effective water treatment practices at home. A similar proportion of household members in the intervention and control groups boiled their water (P = 0.60), used a ceramic filtration system (P = 0.33), and used a cloth filter (P = 0.89). One year after the launch of the campaign, household ownership of the commercial purifier promoted at schools was higher in the intervention group (26%) than the control group (19%), but this difference was not statistically significant (P = 0.53).

  19. Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry.

    PubMed

    Rodriguez-Mozaz, Sara; de Alda, Maria J López; Barceló, Damià

    2004-08-06

    A multi-residue analytical method has been developed for the determination of various classes of selected endocrine disruptors. This method allows the simultaneous extraction and quantification of different estrogens (estradiol, estrone, estriol, estradiol-17-glucuronide, estradiol diacetate, estrone-3-sulfate, ethynyl estradiol and diethylstilbestrol), pesticides (atrazine, simazine, desethylatrazine, isoproturon and diuron), and bisphenol A in natural waters. In the method developed, 500 ml of water are preconcentrated on LiChrolut RP-18 cartridges. Further analysis is carried out by liquid chromatography-mass spectrometry (LC-MS) using atmospheric pressure chemical ionisation (APCI) in the positive ion mode for determination of pesticides and electrospray in the negative ionisation mode for determination of estrogens and bisphenol A. Recoveries for most compounds were between 90 and 119%, except for bisphenol A (81%) and diethylstilbestrol (70%), with relative standard deviations below 20%. Limits of detection ranged between 2 and 15 ng/l. The method was used to study the occurrence of the selected pollutants in surface and groundwater used for abstraction of drinking water in a waterworks and to evaluate the removal efficiency of the different water treatments applied. Water samples from the river, the aquifer, and after each treatment stage (sand filtration, ozonation, activated carbon filtration and post-chlorination) were taken monthly from February to August of 2002. The presence in river water of atrazine, simazine, diuron and bisphenol A were relatively frequent at concentrations usually below 0.1 microg/l. Lower levels, below 0.02 microg/l, were usual for isoproturon. Estrone-3-sulfate and estrone were detected occasionally in the river. Most of the compounds were completely removed during the water treatment, especially after activated carbon filtration.

  20. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision.

    PubMed

    Gwenzi, Willis; Chaukura, Nhamo; Noubactep, Chicgoua; Mukome, Fungai N D

    2017-07-15

    Approximately 600 million people lack access to safe drinking water, hence achieving Sustainable Development Goal 6 (Ensure availability and sustainable management of water and sanitation for all by 2030) calls for rapid translation of recent research into practical and frugal solutions within the remaining 13 years. Biochars, with excellent capacity to remove several contaminants from aqueous solutions, constitute an untapped technology for drinking water treatment. Biochar water treatment has several potential merits compared to existing low-cost methods (i.e., sand filtration, boiling, solar disinfection, chlorination): (1) biochar is a low-cost and renewable adsorbent made using readily available biomaterials and skills, making it appropriate for low-income communities; (2) existing methods predominantly remove pathogens, but biochars remove chemical, biological and physical contaminants; (3) biochars maintain organoleptic properties of water, while existing methods generate carcinogenic by-products (e.g., chlorination) and/or increase concentrations of chemical contaminants (e.g., boiling). Biochars have co-benefits including provision of clean energy for household heating and cooking, and soil application of spent biochar improves soil quality and crop yields. Integrating biochar into the water and sanitation system transforms linear material flows into looped material cycles, consistent with terra preta sanitation. Lack of design information on biochar water treatment, and environmental and public health risks constrain the biochar technology. Seven hypotheses for future research are highlighted under three themes: (1) design and optimization of biochar water treatment; (2) ecotoxicology and human health risks associated with contaminant transfer along the biochar-soil-food-human pathway, and (3) life cycle analyses of carbon and energy footprints of biochar water treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment.

    PubMed

    Donovan, Ariel R; Adams, Craig D; Ma, Yinfa; Stephan, Chady; Eichholz, Todd; Shi, Honglan

    2016-02-01

    One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The Perspective of Riverbank Filtration in China

    NASA Astrophysics Data System (ADS)

    Li, J.; Teng, Y.; Zhai, Y.; Zuo, R.

    2014-12-01

    Sustainable drinking water supply can affect the health of people, and the surrounding ecosystems. According to statistics of the monitoring program of drinking water sources in 309 at or above prefecture level of China in 2013, the major pollutants index were total phosphorus, ammonia and manganese in surface drinking water sources, respectively, iron, ammonia and manganese in groundwater drinking water sources, respectively. More than 150 drinking water emergency environmental accidents happened since 2006, 52 of these accidents led to the disruption of water supply in waterworks, and a population of over ten million were affected. It indicated that there is a potential risk for people's health by the use of river water directly and it is necessary to require alternative techniques such as riverbank filtration for improving the drinking water quality. Riverbank filtration is an inexpensive natural process, not only smoothing out normal pollutant concentration found in surface water but also significantly reducing the risk from such emergency events as chemical spill into the river. Riverbank filtration technique has been used in many countries more than 100 years, including China. In China, in 1950s, the bank infiltration technique was first applied in northeast of China. Extensive bank infiltration application was conducted in 1980s, and more than 300 drinking water sources utilities bank infiltration established mainly near the Songhua River Basin, the Yellow River Basin, Haihe River Basin. However, the comparative lack of application and researches on riverbank filtration have formed critical scientific data gap in China. As the performance of riverbank filtration technique depend on not only the design and setting such as well type, pumping rate, but also the local hydrogeology and environmental properties. We recommend more riverbank filtration project and studies to be conducted to collect related significant environmental geology data in China

  3. Nanotechnology-based water treatment strategies.

    PubMed

    Kumar, Sandeep; Ahlawat, Wandit; Bhanjana, Gaurav; Heydarifard, Solmaz; Nazhad, Mousa M; Dilbaghi, Neeraj

    2014-02-01

    The most important component for living beings on the earth is access to clean and safe drinking water. Globally, water scarcity is pervasive even in water-rich areas as immense pressure has been created by the burgeoning human population, industrialization, civilization, environmental changes and agricultural activities. The problem of access to safe water is inevitable and requires tremendous research to devise new, cheaper technologies for purification of water, while taking into account energy requirements and environmental impact. This review highlights nanotechnology-based water treatment technologies being developed and used to improve desalination of sea and brackish water, safe reuse of wastewater, disinfection and decontamination of water, i.e., biosorption and nanoadsorption for contaminant removal, nanophotocatalysis for chemical degradation of contaminants, nanosensors for contaminant detection, different membrane technologies including reverse osmosis, nanofiltration, ultrafiltration, electro-dialysis etc. This review also deals with the fate and transport of engineered nanomaterials in water and wastewater treatment systems along with the risks associated with nanomaterials.

  4. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater.

    PubMed

    Ioannou-Ttofa, L; Michael-Kordatou, I; Fattas, S C; Eusebio, A; Ribeiro, B; Rusan, M; Amer, A R B; Zuraiqi, S; Waismand, M; Linder, C; Wiesman, Z; Gilron, J; Fatta-Kassinos, D

    2017-05-01

    Olive mill wastewater (OMW) is a major waste stream resulting from numerous operations that occur during the production stages of olive oil. The resulting effluent contains various organic and inorganic contaminants and its environmental impact can be notable. The present work aims at investigating the efficiency of (i) jet-loop reactor with ultrafiltration (UF) membrane system (Jacto.MBR), (ii) solar photo-Fenton oxidation after coagulation/flocculation pre-treatment and (iii) integrated membrane filtration processes (i.e. UF/nanofiltration (NF)) used for the treatment of OMW. According to the results, the efficiency of the biological treatment was high, equal to 90% COD and 80% total phenolic compounds (TPh) removal. A COD removal higher than 94% was achieved by applying the solar photo-Fenton oxidation process as post-treatment of coagulation/flocculation of OMW, while the phenolic fraction was completely eliminated. The combined UF/NF process resulted in very high conductivity and COD removal, up to 90% and 95%, respectively, while TPh were concentrated in the NF concentrate stream (i.e. 93% concentration). Quite important is the fact that the NF concentrate, a valuable and polyphenol rich stream, can be further valorized in various industries (e.g. food, pharmaceutical, etc.). The above treatment processes were found also to be able to reduce the initial OMW phytotoxicity at greenhouse experiments; with the effluent stream of solar photo-Fenton process to be the least phytotoxic compared to the other treated effluents. A SWOT (Strength, Weakness, Opportunities, Threats) analysis was performed, in order to determine both the strengths of each technology, as well as the possible obstacles that need to overcome for achieving the desired levels of treatment. Finally, an economic evaluation of the tested technologies was performed in an effort to measure the applicability and viability of these systems at real scale; highlighting that the cost cannot be regarded as

  5. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    PubMed Central

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121

  6. Microbial Removals by a Novel Biofilter Water Treatment System

    PubMed Central

    Wendt, Christopher; Ives, Rebecca; Hoyt, Anne L.; Conrad, Ken E.; Longstaff, Stephanie; Kuennen, Roy W.; Rose, Joan B.

    2015-01-01

    Two point-of-use drinking water treatment systems designed using a carbon filter and foam material as a possible alternative to traditional biosand systems were evaluated for removal of bacteria, protozoa, and viruses. Two configurations were tested: the foam material was positioned vertically around the carbon filter in the sleeve unit or horizontally in the disk unit. The filtration systems were challenged with Cryptosporidium parvum, Raoultella terrigena, and bacteriophages P22 and MS2 before and after biofilm development to determine average log reduction (ALR) for each organism and the role of the biofilm. There was no significant difference in performance between the two designs, and both designs showed significant levels of removal (at least 4 log10 reduction in viruses, 6 log10 for protozoa, and 8 log10 for bacteria). Removal levels meet or exceeded Environmental Protection Agency (EPA) standards for microbial purifiers. Exploratory test results suggested that mature biofilm formation contributed 1–2 log10 reductions. Future work is recommended to determine field viability. PMID:25758649

  7. Microbial removals by a novel biofilter water treatment system.

    PubMed

    Wendt, Christopher; Ives, Rebecca; Hoyt, Anne L; Conrad, Ken E; Longstaff, Stephanie; Kuennen, Roy W; Rose, Joan B

    2015-04-01

    Two point-of-use drinking water treatment systems designed using a carbon filter and foam material as a possible alternative to traditional biosand systems were evaluated for removal of bacteria, protozoa, and viruses. Two configurations were tested: the foam material was positioned vertically around the carbon filter in the sleeve unit or horizontally in the disk unit. The filtration systems were challenged with Cryptosporidium parvum, Raoultella terrigena, and bacteriophages P22 and MS2 before and after biofilm development to determine average log reduction (ALR) for each organism and the role of the biofilm. There was no significant difference in performance between the two designs, and both designs showed significant levels of removal (at least 4 log10 reduction in viruses, 6 log10 for protozoa, and 8 log10 for bacteria). Removal levels meet or exceeded Environmental Protection Agency (EPA) standards for microbial purifiers. Exploratory test results suggested that mature biofilm formation contributed 1-2 log10 reductions. Future work is recommended to determine field viability. © The American Society of Tropical Medicine and Hygiene.

  8. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  9. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  10. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  11. 40 CFR 141.171 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Criteria for avoiding filtration. 141.171 Section 141.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection...

  12. Fate of cyanobacteria and their metabolites during water treatment sludge management processes.

    PubMed

    Ho, Lionel; Dreyfus, Jennifer; Boyer, Justine; Lowe, Todd; Bustamante, Heriberto; Duker, Phil; Meli, Tass; Newcombe, Gayle

    2012-05-01

    Cyanobacteria and their metabolites are an issue for water authorities; however, little is known as to the fate of coagulated cyanobacterial-laden sludge during waste management processes in water treatment plants (WTPs). This paper provides information on the cell integrity of Anabaena circinalis and Cylindrospermopsis raciborskii during: laboratory-scale coagulation/sedimentation processes; direct filtration and backwashing procedures; and cyanobacterial-laden sludge management practices. In addition, the metabolites produced by A. circinalis (geosmin and saxitoxins) and C. raciborskii (cylindrospermopsin) were investigated with respect to their release (and possible degradation) during each of the studied processes. Where sedimentation was used, coagulation effectively removed cyanobacteria (and intracellular metabolites) without any considerable exertion on coagulant demand. During direct filtration experiments, cyanobacteria released intracellular metabolites through a stagnation period, suggesting that more frequent backwashing of filters may be required to prevent floc build-up and metabolite release. Cyanobacteria appeared to be protected within the flocs, with minimal damage during backwashing of the filters. Within coagulant sludge, cyanobacteria released intracellular metabolites into the supernatant after 3d, even though cells remained viable up to 7d. This work has improved the understanding of cyanobacterial metabolite risks associated with management of backwash water and sludge and is likely to facilitate improvements at WTPs, including increased monitoring and the application of treatment strategies and operational practices, with respect to cyanobacterial-laden sludge and/or supernatant recycle management. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants.

    PubMed

    Zhong, Xin; Cui, Chongwei; Yu, Shuili

    2017-07-01

    Carbonyl compounds can occur alpha-hydrogens or beta-diketones substitution reactions with disinfectants contributed to halogenated by-products formation. The objective of this research was to study the occurrence and fate of carbonyl compounds as ozonation by-products at two full-scale drinking water treatment plants (DWTPs) using different disinfectants for one year. The quality of the raw water used in both plants was varied according to the season. The higher carbonyl compounds concentrations were found in raw water in spring. Up to 15 (as the sum of both DWTPs) of the 24 carbonyl compounds selected for this work were found after disinfection. The dominant carbonyl compounds were formaldehyde, glyoxal, methyl-glyoxal, fumaric, benzoic, protocatechuic and 3-hydroxybenzoic acid at both DWTPs. In the following steps in each treatment plant, the concentration patterns of these carbonyl compounds differed depending on the type of disinfectant applied. Benzaldehyde was the only aromatic aldehyde detected after oxidation with ozone in spring. As compared with DWTP 1, five new carbonyl compounds were formed (crotonaldehyde, benzaldehyde, formic, oxalic and malonic acid) disinfection by ozone, and the levels of the carbonyl compounds increased. In addition, pre-ozonation (PO) and main ozonation (OZ) increased the levels of carbonyl compounds, however coagulation/flocculation (CF), sand filtration (SF) and granular activated carbon filtration (GAC) decreased the levels of carbonyl compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent.

    PubMed

    Beltrán-Heredia, J; Sánchez-Martín, J

    2009-05-01

    Moringa oleifera extract is a high-capacity flocculant agent for turbidity removal in surface water treatment. A complete study of a pilot-plant installation has been carried out. Because of flocculent sedimentability of treated water, a residual turbidity occured in the pilot plant (around 30 NTU), which could not be reduced just by a coagulation-flocculation-sedimentation process. Because of this limitation, the pilot plant (excluded filtration) achieved a turbidity removal up to 70%. A slow sand filter was put in as a complement to installation. A clogging process was characterized, according to Carman-Kozeny's hydraulic hypothesis. Kozeny's k parameter was found to be 4.18. Through fouling stages, this k parameter was found to be up to 6.36. The obtained data are relevant for the design of a real filter in a continuous-feeding pilot plant. Slow sand filtration is highly recommended owing to its low cost, easy-handling and low maintenance, so it is a very good complement to Moringa water treatment in developing countries.

  15. From Earth to Space: Application of Biological Treatment for the Removal of Ammonia from Water

    NASA Technical Reports Server (NTRS)

    Ghosh, Amlan; Seidel, Chad; Adam, Niklas; Pickering, Karen; White, Dawn

    2014-01-01

    Managing ammonia is often a challenge in both drinking water and wastewater treatment facilities. Ammonia is unregulated in drinking water, but its presence may result in numerous water quality issues in the distribution system such as loss of residual disinfectant, nitrification, and corrosion. Ammonia concentrations need to be managed in wastewater effluent to sustain the health of receiving water bodies. Biological treatment involves the microbiological oxidation of ammonia to nitrate through a two-step process. While nitrification is common in the environment, and nitrifying bacteria can grow rapidly on filtration media, appropriate conditions, such as the presence of dissolved oxygen and required nutrients, need to be established. This presentation will highlight results from two ongoing research programs - one at NASA's Johnson Space Center, and the other at a drinking water facility in California. Both programs are designed to demonstrate nitrification through biological treatment. The objective of NASA's research is to be able to recycle wastewater to potable water for spaceflight mission. To this end, a biological water processor (BWP) has been integrated with a forward osmosis secondary treatment system (FOST). Bacteria mineralize organic carbon to carbon dioxide as well as ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system testing planned for this year is expected to produce water that requires only a polishing step to meet potable water requirements for spaceflight. The pilot study in California is being conducted on Golden State Water Company's Yukon wellsthat have hydrogen sulfide odor

  16. From Earth to Space: Application of Biological Treatment for the Removal of Ammonia from Water

    NASA Technical Reports Server (NTRS)

    Pickering, Karen; Adam, Niklas; White, Dawn; Ghosh, Amlan; Seidel, Chad

    2014-01-01

    Managing ammonia is often a challenge in both drinking water and wastewater treatment facilities. Ammonia is unregulated in drinking water, but its presence may result in numerous water quality issues in the distribution system such as loss of residual disinfectant, nitrification, and corrosion. Ammonia concentrations need to be managed in wastewater effluent to sustain the health of receiving water bodies. Biological treatment involves the microbiological oxidation of ammonia to nitrate through a two-step process. While nitrification is common in the environment, and nitrifying bacteria can grow rapidly on filtration media, appropriate conditions, such as the presence of dissolved oxygen and required nutrients, need to be established. This presentation will highlight results from two ongoing research programs - one at NASA's Johnson Space Center, and the other at a drinking water facility in California. Both programs are designed to demonstrate nitrification through biological treatment. The objective of NASA's research is to be able to recycle wastewater to potable water for spaceflight missions. To this end, a biological water processor (BWP) has been integrated with a forward osmosis secondary treatment system (FOST). Bacteria mineralize organic carbon to carbon dioxide as well as ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system testing planned for this year is expected to produce water that requires only a polishing step to meet potable water requirements for spaceflight. The pilot study in California is being conducted on Golden State Water Company's Yukon wells that have hydrogen sulfide odor

  17. Promoting Household Water Treatment through Women's Self Help Groups in Rural India: Assessing Impact on Drinking Water Quality and Equity

    PubMed Central

    Freeman, Matthew C.; Trinies, Victoria; Boisson, Sophie; Mak, Gregory; Clasen, Thomas

    2012-01-01

    Household water treatment, including boiling, chlorination and filtration, has been shown effective in improving drinking water quality and preventing diarrheal disease among vulnerable populations. We used a case-control study design to evaluate the extent to which the commercial promotion of household water filters through microfinance institutions to women's self-help group (SHG) members improved access to safe drinking water. This pilot program achieved a 9.8% adoption rate among women targeted for adoption. Data from surveys and assays of fecal contamination (thermotolerant coliforms, TTC) of drinking water samples (source and household) were analyzed from 281 filter adopters and 247 non-adopters exposed to the program; 251 non-SHG members were also surveyed. While adopters were more likely than non-adopters to have children under 5 years, they were also more educated, less poor, more likely to have access to improved water supplies, and more likely to have previously used a water filter. Adopters had lower levels of fecal contamination of household drinking water than non-adopters, even among those non-adopters who treated their water by boiling or using traditional ceramic filters. Nevertheless, one-third of water samples from adopter households exceeded 100 TTC/100ml (high risk), and more than a quarter of the filters had no stored treated water available when visited by an investigator, raising concerns about correct, consistent use. In addition, the poorest adopters were less likely to see improvements in their water quality. Comparisons of SHG and non-SHG members suggest similar demographic characteristics, indicating SHG members are an appropriate target group for this promotion campaign. However, in order to increase the potential for health gains, future programs will need to increase uptake, particularly among the poorest households who are most susceptible to disease morbidity and mortality, and focus on strategies to improve the correct, consistent

  18. Promoting household water treatment through women's self help groups in Rural India: assessing impact on drinking water quality and equity.

    PubMed

    Freeman, Matthew C; Trinies, Victoria; Boisson, Sophie; Mak, Gregory; Clasen, Thomas

    2012-01-01

    Household water treatment, including boiling, chlorination and filtration, has been shown effective in improving drinking water quality and preventing diarrheal disease among vulnerable populations. We used a case-control study design to evaluate the extent to which the commercial promotion of household water filters through microfinance institutions to women's self-help group (SHG) members improved access to safe drinking water. This pilot program achieved a 9.8% adoption rate among women targeted for adoption. Data from surveys and assays of fecal contamination (thermotolerant coliforms, TTC) of drinking water samples (source and household) were analyzed from 281 filter adopters and 247 non-adopters exposed to the program; 251 non-SHG members were also surveyed. While adopters were more likely than non-adopters to have children under 5 years, they were also more educated, less poor, more likely to have access to improved water supplies, and more likely to have previously used a water filter. Adopters had lower levels of fecal contamination of household drinking water than non-adopters, even among those non-adopters who treated their water by boiling or using traditional ceramic filters. Nevertheless, one-third of water samples from adopter households exceeded 100 TTC/100ml (high risk), and more than a quarter of the filters had no stored treated water available when visited by an investigator, raising concerns about correct, consistent use. In addition, the poorest adopters were less likely to see improvements in their water quality. Comparisons of SHG and non-SHG members suggest similar demographic characteristics, indicating SHG members are an appropriate target group for this promotion campaign. However, in order to increase the potential for health gains, future programs will need to increase uptake, particularly among the poorest households who are most susceptible to disease morbidity and mortality, and focus on strategies to improve the correct, consistent

  19. Effects of long-term losartan and L-arginine treatment on haemodynamics, glomerular filtration, and SOD activity in spontaneously hypertensive rats.

    PubMed

    Miloradović, Zoran; Jovović, Durdica; Mihailović-Stanojević, Nevena; Milanović, Jelica Grujić; Milanović, Sladan

    2008-04-01

    Recently, it has been reported that losartan, an angiotensin II receptor (ATR) antagonist, depresses the angiotensin II-induced production of superoxide radicals. Also, in spontaneously hypertensive rats (SHR) endothelial dysfunction is associated with decreased nitric oxide (NO) synthesis. In this study, we examined the effects of long-term ATR blockade and L-arginine supplementation on the haemodynamic parameters, glomerular filtration, and oxidative status in SHR. Adult male SHR were treated with losartan (10 mg/kg) and with the NO donor L-arginine (2 g/kg) for 4 weeks. The animals were divided into the following experimental groups: control (n = 7), L-arginine (n = 7), losartan (n = 7), and L-arginine + losartan (n = 7). Mean arterial pressure (MAP), regional blood flow, urea clearance, and activity of superoxide dismutase (SOD) were measured at the end of treatment. MAP was significantly reduced in the losartan group compared with the control group (133.3 +/- 7.3 vs. 161.5 +/- 14.5 mm Hg). Aortic blood flow was significantly higher and aortic vascular resistance was significantly lower in all treated groups than in the control. Urea clearance rose significantly in the L-arginine + losartan group compared with control (393.27 +/- 37.58 vs. 218.68 +/- 42.03 microL x min(-1) x 100 g(-1)) as did the activity of SOD (1668.97 +/- 244.57 vs. 1083.18 +/- 169.96 U/g Hb). Our results suggest that the antihypertensive effect of losartan and L-arginine in SHR is not primarily mediated by increased SOD activity. Also, combined treatment with ATR blockade and L-arginine supplementation has a beneficial effect on renal function that is, at least in part, mediated by increased SOD activity in SHR.

  20. Effects of sterilization treatments on the analysis of TOC in water samples.

    PubMed

    Shi, Yiming; Xu, Lingfeng; Gong, Dongqin; Lu, Jun

    2010-01-01

    Decomposition experiments conducted with and without microbial processes are commonly used to study the effects of environmental microorganisms on the degradation of organic pollutants. However, the effects of biological pretreatment (sterilization) on organic matter often have a negative impact on such experiments. Based on the principle of water total organic carbon (TOC) analysis, the effects of physical sterilization treatments on determination of TOC and other water quality parameters were investigated. The results revealed that two conventional physical sterilization treatments, autoclaving and 60Co gamma-radiation sterilization, led to the direct decomposition of some organic pollutants, resulting in remarkable errors in the analysis of TOC in water samples. Furthermore, the extent of the errors varied with the intensity and the duration of sterilization treatments. Accordingly, a novel sterilization method for water samples, 0.45 microm micro-filtration coupled with ultraviolet radiation (MCUR), was developed in the present study. The results indicated that the MCUR method was capable of exerting a high bactericidal effect on the water sample while significantly decreasing the negative impact on the analysis of TOC and other water quality parameters. Before and after sterilization treatments, the relative errors of TOC determination could be controlled to lower than 3% for water samples with different categories and concentrations of organic pollutants by using MCUR.

  1. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent.

    PubMed

    Katsoyiannis, Ioannis A; Gkotsis, Petros; Castellana, Massimo; Cartechini, Fabricio; Zouboulis, Anastasios I

    2017-04-01

    The operation and efficiency of a modern, high-tech industrial full-scale water treatment plant was investigated in the present study. The treated water was used for the supply of the boilers, producing steam to feed the steam turbine of the power station. The inlet water was the effluent of municipal wastewater treatment plant of the city of Bari (Italy). The treatment stages comprised (1) coagulation, using ferric chloride, (2) lime softening, (3) powdered activated carbon, all dosed in a sedimentation tank. The treated water was thereafter subjected to dual-media filtration, followed by ultra-filtration (UF). The outlet of UF was subsequently treated by reverse osmosis (RO) and finally by ion exchange (IX). The inlet water had total organic carbon (TOC) concentration 10-12 mg/L, turbidity 10-15 NTU and conductivity 3500-4500 μS/cm. The final demineralized water had TOC less than 0.2 mg/L, turbidity less than 0.1 NTU and conductivity 0.055-0.070 μS/cm. Organic matter fractionation showed that most of the final DOC concentration consisted of low molecular weight neutral compounds, while other compounds such as humic acids or building blocks were completely removed. It is notable that this plant was operating under "Zero Liquid Discharge" conditions, implementing treatment of any generated liquid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Innovations in nanotechnology for water treatment

    PubMed Central

    Gehrke, Ilka; Geiser, Andreas; Somborn-Schulz, Annette

    2015-01-01

    Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA. PMID:25609931

  3. Removal of strontium from drinking water by conventional treatment and lime softening in bench-scale studies.

    PubMed

    O'Donnell, Alissa J; Lytle, Darren A; Harmon, Stephen; Vu, Kevin; Chait, Hannah; Dionysiou, Dionysios D

    2016-10-15

    The United States Environmental Protection Agency Contaminant Candidate List 3 lists strontium as a contaminant for potential regulatory consideration in drinking water. Very limited data is available on strontium removal from drinking water and as a result, there is an immediate need for treatment information. The objective of this work is to evaluate the effectiveness of coagulation/filtration and lime-soda ash softening treatment methods to remove strontium from surface and ground waters. Coagulation/filtration jar test results on natural waters showed that conventional treatment with aluminum and iron coagulants were able to achieve only 12% and 5.9% strontium removal, while lime softening removed as high as 78% from natural strontium-containing ground water. Controlled batch experiments on synthetic water showed that strontium removal during the lime-soda ash softening was affected by pH, calcium concentration and dissolved inorganic carbon concentration. In all softening jar tests, the final strontium concentration was directly related to the initial strontium concentration and the removal of strontium was directly associated with calcium removal. Precipitated solids showed well-formed crystals or agglomerates of mixed solids, two polymorphs of calcium carbonate (vaterite and calcite), and strontianite, depending on initial water quality conditions. X-ray diffraction analysis suggested that strontium was likely incorporated in the calcium carbonate crystal lattice and was likely responsible for removal during lime softening. Copyright © 2016. Published by Elsevier Ltd.

  4. Reverse osmosis followed by activated carbon filtration for efficient removal of organic micropollutants from river bank filtrate.

    PubMed

    Kegel, F Schoonenberg; Rietman, B M; Verliefde, A R D

    2010-01-01

    Drinking water utilities in Europe are faced with a growing presence of organic micropollutants in their water sources. The aim of this research was to assess the robustness of a drinking water treatment plant equipped with reverse osmosis and subsequent activated carbon filtration for the removal of these pollutants. The total removal efficiency of 47 organic micropollutants was investigated. Results indicated that removal of most organic micropollutants was high for all membranes tested. Some selected micropollutants were less efficiently removed (e.g. the small and polar NDMA and glyphosate, and the more hydrophobic ethylbenzene and napthalene). Very high removal efficiencies for almost all organic micropollutants by the subsequent activated carbon, fed with the permeate stream of the RO element were observed except for the very small and polar NDMA and 1,4-dioxane. RO and subsequent activated carbon filtration are complementary and their combined application results in the removal of a large part of these emerging organic micropollutants. Based on these experiments it can be concluded that the robustness of a proposed treatment scheme for the drinking water treatment plant Engelse Werk is sufficiently guaranteed.

  5. Trichomonas gallinae Persistence in Four Water Treatments.

    PubMed

    Purple, Kathryn E; Humm, Jacob M; Kirby, R Brian; Saidak, Christina G; Gerhold, Richard

    2015-07-01

    Trichomonas gallinae is a protozoan parasite commonly found in columbids, passerines, and several raptor species. Although T. gallinae is thought to spread between individuals and across species through shared water sources, little research has been conducted regarding the persistence of T. gallinae in the environment. To determine the persistence of T. gallinae in various communal water sources, we inoculated 1 × 10(6) trichomonads into 500 mL samples of distilled water, quarry water, bird bath water, and rain barrel water in two replicates. Aliquots of 0.5 mL were collected from each source at -1, 0, 15, 30, and 60 min; aliquots were incubated at 37 C and examined for trichomonads by light microscopy for five consecutive days. Live trichomonads were observed in all samples and at all sampling times except prior to inoculation (-1 min). The pH of water sources ranged from an average of 5.9 to 7.4 postsampling. Our findings indicate that T. gallinae can persist for up to 60 min in various water treatments and thus be infectious for birds drinking T. gallinae-contaminated water.

  6. Arsenic Removal from Drinking Water by Coagulation/Filtration - U.S. EPA Demonstration Project at Town of Arnaudville, LA - Final Performance Evaluation Report

    EPA Science Inventory

    This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at the United Water Systems’ facility in Arnaudville, LA. The objectives of the project were to evaluate: (1) the effectiveness of K...

  7. Arsenic Removal from Drinking Water by Coagulation/Filtration - U.S. EPA Demonstration Project at Village of Waynesville, IL - Final Performance Evaluation Report

    EPA Science Inventory

    This report documents the activities performed and the results obtained from the arsenic removal drinking water treatment technology demonstration project at the Village of Waynesville, IL. The main objective of the project was to evaluate the effectiveness of the Peerless coagu...

  8. Point-of-use membrane filtration and hyperchlorination to prevent patient exposure to rapidly growing mycobacteria in the potable water supply of a skilled nursing facility.

    PubMed

    Williams, Margaret M; Chen, Tai-Ho; Keane, Tim; Toney, Nadege; Toney, Sean; Armbruster, Catherine R; Butler, W Ray; Arduino, Matthew J

    2011-09-01

    Healthcare-associated outbreaks and pseudo-outbreaks of rapidly growing mycobacteria (RGM) are frequently associated with contaminated tap water. A pseudo-outbreak of Mycobacterium chelonae-M. abscessus in patients undergoing bronchoscopy was identified by 2 acute care hospitals. RGM was identified in bronchoscopy specimens of 28 patients, 25 of whom resided in the same skilled nursing facility (SNF). An investigation ruled out bronchoscopy procedures, specimen collection, and scope reprocessing at the hospitals as sources of transmission. To identify the reservoir for RGM within the SNF and evaluate 2 water system treatments, hyperchlorination and point-of-use (POU) membrane filters, to reduce RGM. A comparative in situ study of 2 water system treatments to prevent RGM transmission. An SNF specializing in care of patients requiring ventilator support. RGM and heterotrophic plate count (HPC) bacteria were examined in facility water before and after hyperchlorination and in a subsequent 24-week assessment of filtered water by colony enumeration on Middlebrook and R2A media. Mycobacterium chelonae was consistently isolated from the SNF water supply. Hyperchlorination reduced RGM by 1.5 log(10) initially, but the population returned to original levels within 90 days. Concentration of HPC bacteria also decreased temporarily. RGM were reduced below detection level in filtered water, a 3-log(10) reduction. HPC bacteria were not recovered from newly installed filters, although low quantities were found in water from 2-week-old filters. POU membrane filters may be a feasible prevention measure for healthcare facilities to limit exposure of sensitive individuals to RGM in potable water systems.

  9. Membrane bioreactor for the drinking water treatment of polluted surface water supplies.

    PubMed

    Li, Xiao-yan; Chu, Hiu Ping

    2003-11-01

    A laboratory membrane bioreactor (MBR) using a submerged polyethylene hollow-fibre membrane module with a pore size of 0.4 microm and a total surface area of 0.2 m2 was used for treating a raw water supply slightly polluted by domestic sewage. The feeding influent had a total organic carbon (TOC) level of 3-5 mg/L and an ammonia nitrogen (NH(3)-N) concentration of 3-4 mg/L. The MBR ran continuously for more than 500 days, with a hydraulic retention time (HRT) as short as 1h or less. Sufficient organic degradation and complete nitrification were achieved in the MBR effluent, which normally had a TOC of less than 2 mg/L and a NH(3)-N of lower than 0.2 mg/L. The process was also highly effective for eliminating conventional water impurities, as demonstrated by decreases in turbidity from 4.50+/-1.11 to 0.08+/-0.03 NTU, in total coliforms from 10(5)/mL to less than 5/mL and in UV(254) absorbance from 0.098+/-0.019 to 0.036+/-0.007 cm(-1). With the MBR treatment, the 3-day trihalomethane formation potential (THMFP) was significantly reduced from 239.5+/-43.8 to 60.4+/-23.1 microg/L. The initial chlorine demand for disinfection decreased from 22.3+/-5.1 to 0.5+/-0. 1mg/L. The biostability of the effluent improved considerably as the assimilable organic carbon (AOC) decreased from 134.5+/-52.7 to 25.3+/-19.9 microg/L. All of these water quality parameters show the superior quality of the MBR-treated water, which was comparable to or even better than the local tap water. Molecular size distribution analysis and the hydrophobic characterisation of the MBR effluent, in comparison to the filtered liquor from the bioreactor, suggest that the MBR had an enhanced filtration mechanism. A sludge layer on the membrane surface could have functioned as an additional barrier to the passage of typical THM precursors, such as large organic molecules and hydrophobic compounds. These results indicate that the MBR with a short HRT could be developed as an effective biological water

  10. A Markov modelled pharmacoeconomic analysis of bimatoprost 0.03% in the treatment of glaucoma as an alternative to filtration surgery in Italy.

    PubMed

    Christensen, Torsten Lundgaard; Poulsen, Peter Bo; Holmstrom, Stefan; Walt, John G; Vetrugno, Michele

    2005-11-01

    Glaucoma is generally managed by decreasing the intraocular pressure (IOP) to a level believed to prevent further damage to the optic disc and loss of visual field. This may be achieved medically or surgically. The objective of this pharmacoeconomic analysis was to investigate the 4-year costs of bimatoprost 0.03% (Lumigan) eye drops as an alternative to filtration surgery (FS) for glaucoma patients on maximum tolerable medical therapy (MTMT). A Markov model was designed using effectiveness and resource use data from a randomized clinical trial and expert statements (Delphi panel). The RCT covered 83 patients on MTMT. The Model compared bimatoprost with FS. In the bimatoprost model arm patients began treatment with bimatoprost. If target IOP (-20%) was not reached using medical therapy the patient proceeded with FS. In the FS model arm, FS was performed after the first ophthalmologist visit. Unit costs were obtained from an Italian chart and tariffs review (healthcare sector perspective). The RCT showed that 74.7% of the patients delayed the need for FS by 3 months. The Markov model forecasted that 64.2% of the patients could delay the need for FS by 1 year, and forecasted 34.0% could avoid FS after 4 years. The 4-year cost per patient in the bimatoprost and FS arms was E3438 and E4194, respectively (incremental costs of E755). The major cost drivers for the bimatoprost arm were patients who needed combination therapy or FS if the target IOP was not reached. In the FS arm, the major cost drives were the initial surgery costs and pressure-lowering medications used as add-on therapy after FS. The analysis shows that in a 4-year perspective bimatoprost is cheaper compared to FS. In addition, the postponement of FS associated with bimatoprost may have important implications for waiting list planning.

  11. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zong, Yichen; Zhang, Yingying; Yang, Mengmeng; Zhang, Rufan; Li, Shuiqing; Wei, Fei

    2013-03-01

    . Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions. Electronic supplementary information (ESI) available: Schematic of the synthesis process of the CNT/QF filter; typical size distribution of atomized polydisperse NaCl aerosols used for air filtration testing; images of a QF filter and a CNT/QF filter; SEM image of a CNT/QF filter after 5 minutes of sonication in ethanol; calculation of porosity and filter specific area. See DOI: 10.1039/c3nr34325a

  12. Filtration by eyelashes

    NASA Astrophysics Data System (ADS)

    Vistarakula, Krishna; Bergin, Mike; Hu, David

    2010-11-01

    Nearly every mammalian and avian eye is rimmed with lashes. We investigate experimentally the ability of lashes to reduce airborne particle deposition in the eye. We hypothesize that there is an optimum eyelash length that maximizes both filtration ability and extent of peripheral vision. This hypothesis is tested using a dual approach. Using preserved heads from 36 species of animals at the American Museum of Natural History, we determine the relationship between eye size and eyelash geometry (length and spacing). We test the filtration efficacy of these geometries by deploying outdoor manikins and measuring particle deposition rate as a function of eyelash length.

  13. Treatment stage associated changes in cellular and molecular microbial markers during the production of drinking water at the Vansjø water works.

    PubMed

    Charnock, Colin; Otterholt, Eli; Nordlie, Anne-Lise

    2015-09-15

    The production of a drinking water that meets current aesthetic, microbiological and chemical standards, generally requires a combination of mechanical purification and disinfection in a multi-component treatment chain. Treatment choices and optimisation of water processing is best informed by using markers (including microbiological parameters) which indicate how each stage contributes to the production of the potable water. The present study combines culture-based and a number of culture-independent analyses to indicate what is happening at each stage of a state-of-the-art water treatment chain at Vansjø near the city of Moss in Norway. We show that particularly clarification with flotation and post-chlorination have profound and positive effects on water quality with respect to the removal and inactivation of microbes. Post-chlorination achieved better disinfection of the water than UV-treatment and was of paramount importance, as the penultimate step filtration through granular activated shed microbes to the water. Cloning and sequencing showed that some clones present in the raw water were detected at all stages in the treatment process, perhaps providing examples of microbes breaching physically all barriers in the treatment process. Results from the study should be useful in the improvement and maintenance of the treatment process at the Vansjø plant and others. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments.

    PubMed

    Boleda, M A Rosa; Galceran, M A Teresa; Ventura, Francesc

    2011-06-01

    The behavior along the potabilization process of 29 pharmaceuticals and 12 drugs of abuse identified from a total of 81 compounds at the intake of a drinking water treatment plant (DWTP) has been studied. The DWTP has a common treatment consisting of dioxychlorination, coagulation/flocculation and sand filtration and then water is splitted in two parallel treatment lines: conventional (ozonation and carbon filtration) and advanced (ultrafiltration and reverse osmosis) to be further blended, chlorinated and distributed. Full removals were reached for most of the compounds. Iopromide (up to 17.2 ng/L), nicotine (13.7 ng/L), benzoylecgonine (1.9 ng/L), cotinine (3.6 ng/L), acetaminophen (15.6 ng/L), erythromycin (2.0 ng/L) and caffeine (6.0 ng/L) with elimination efficiencies ≥ 94%, were the sole compounds found in the treated water. The advanced treatment process showed a slightly better efficiency than the conventional treatment to eliminate pharmaceuticals and drugs of abuse. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. RIVERBANK FILTRATION: EFFECT OF GROUND PASSAGE ON NOM CHARACTER

    EPA Science Inventory

    Research was conducted to explore the effect of underground travel on the character of the natural organic matter (NOM) originating from the river water source during riverbank filtration (RBF) at three Midwestern US drinking water utilities. Measurements of biodegradable dissolv...

  16. Water treatment: Chitosan associated with electrochemical methods

    NASA Astrophysics Data System (ADS)

    Tamiasso-Martinhon, Priscila; Marques Teixeira de Souza, João; Cruzeiro da Silva, Silvia Maria; Pellegrini Pessoa, Fernando Luiz; Sousa, Célia

    2017-04-01

    Pollution of water bodies due to the presence of toxic metals and organic compounds, bring out a series of environmental problems of public, government and social character. In addition, water pollution, has become the target and source of concern in many industrial sectors. Therefore, it is essential to develop technologies for treatment and purification of water. Chitosan is a natural product derived from chitin, extracted mainly from the shells of crustaceans. It is a low cost, renewable and biodegradable biopolymer of great socioeconomic and environmental importance. The classic treatment of wastewater containing metals involves physical chemistry processes of precipitation, ion exchange and electrochemistry. Electrochemical technology has been presented as the most promising methods for treating wastewater polluted with metals, colloids, dyes or oil in water emulsions; besides being used in removing organic compounds. Alternative methods like adsorption with biosorbents have been investigated. The great advantage of this latter over other techniques is the low generation of residues, easy recovery of metals and the possibility of reuse of the adsorbent. This article aimed to carry out an exploratory study, of bibliographical nature, on the use of chitosan in electrochemical methods for water treatment.

  17. Managing peatland vegetation for drinking water treatment.

    PubMed

    Ritson, Jonathan P; Bell, Michael; Brazier, Richard E; Grand-Clement, Emilie; Graham, Nigel J D; Freeman, Chris; Smith, David; Templeton, Michael R; Clark, Joanna M

    2016-11-18

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to 'end-of-pipe' solutions through management of ecosystem service provision.

  18. Managing peatland vegetation for drinking water treatment

    PubMed Central

    Ritson, Jonathan P.; Bell, Michael; Brazier, Richard E.; Grand-Clement, Emilie; Graham, Nigel J. D.; Freeman, Chris; Smith, David; Templeton, Michael R.; Clark, Joanna M.

    2016-01-01

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to ‘end-of-pipe’ solutions through management of ecosystem service provision. PMID:27857210

  19. Conventional drinking water treatment and direct biofiltration for the removal of pharmaceuticals and artificial sweeteners: A pilot-scale approach.

    PubMed

    McKie, Michael J; Andrews, Susan A; Andrews, Robert C

    2016-02-15

    The presence of endocrine disrupting compounds (EDCs), pharmaceutically active compounds (PhACs) and artificial sweeteners are of concern to water providers because they may be incompletely removed by wastewater treatment processes and they pose an unknown risk to consumers due to long-term consumption of low concentrations of these compounds. This study utilized pilot-scale conventional and biological drinking water treatment processes to assess the removal of nine PhACs and EDCs, and two artificial sweeteners. Conventional treatment (coagulation, flocculation, settling, non-biological dual-media filtration) was compared to biofilters with or without the addition of in-line coagulant (0.2-0.8 mg Al(3+)/L; alum or PACl). A combination of biofiltration, with or without in-line alum, and conventional filtration was able to reduce 7 of the 9 PhACs and EDCs by more than 50% from river water while artificial sweeteners were inconsistently removed by conventional treatment or biofiltration. Increasing doses of PACl from 0 to 0.8 mg/L resulted in average removals of PhACs, EDCs increasing from 39 to 70% and artificial sweeteners removal increasing from ~15% to ~35% in lake water. These results suggest that a combination of biological, chemical and physical treatment can be applied to effectively reduce the concentration of EDCs, PhACs, and artificial sweeteners. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation.

    PubMed

    Fan, Xinfei; Zhao, Huimin; Quan, Xie; Liu, Yanming; Chen, Shuo

    2016-01-01

    Membrane filtration provides an effective solution for removing pollutants from water but is limited by serious membrane fouling. In this work, an effective approach was used to mitigate membrane fouling by integrating membrane filtration with electropolarization using an electroconductive nanocarbon-based membrane. The electropolarized membrane (EM) by alternating square-wave potentials between +1.0 V and -1.0 V with a pulse width of 60 s exhibited a permeate flux 8.1 times as high as that without electropolarization for filtering feed water containing bacteria, which confirms the ability of the EM to achieve biofouling mitigation. Moreover, the permeate flux of EM was 1.5 times as high as that without electropolarization when filtrating natural organic matter (NOM) from water, and demonstrated good performance in organic fouling mitigation with EM. Furthermore, the EM was also effective for complex fouling mitigation in filtering water containing coexisting bacteria and NOM, and presented an increased flux rate 1.9 times as high as that without electropolarization. The superior fouling mitigation performance of EM was attributed to the synergistic effects of electrostatic repulsion, electrochemical oxidation and electrokinetic behaviors. This work opens an effective avenue for membrane fouling mitigation of water-treatment membrane filtration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Analysis of the bacterial communities associated with different drinking water treatment processes.

    PubMed

    Zeng, Dan-Ning; Fan, Zhen-Yu; Chi, Liang; Wang, Xia; Qu, Wei-Dong; Quan, Zhe-Xue

    2013-09-01

    A drinking water plant was surveyed to determine the bacterial composition of different drinking water treatment processes (DWTP). Water samples were collected from different processing steps in the plant (i.e., coagulation, sedimentation, sand filtration, and chloramine disinfection) and from distantly piped water. The samples were pyrosequensed using sample-specific oligonucleotide barcodes. The taxonomic composition of the microbial communities of different DWTP and piped water was dominated by the phylum Proteobacteria. Additionally, a large proportion of the sequences were assigned to the phyla Actinobacteria and Bacteroidetes. The piped water exhibited increasing taxonomic diversity, including human pathogens such as the Mycobacterium, which revealed a threat to the safety of drinking water. Surprisingly, we also found that a sister group of SAR11 (LD12) persisted throughout the DWTP, which was always detected in freshwater aquatic systems. Moreover, Polynucleobacter, Rhodoferax, and a group of Actinobacteria, hgcI clade, were relatively consistent throughout the processes. It is concluded that smaller-size microorganisms tended to survive against the present treatment procedure. More improvement should be made to ensure the long-distance transmission drinking water.

  2. Research on the experiment of reservoir water treatment applying ultrafiltration membrane technology of different processes.

    PubMed

    Zhang, Liyong; Zhang, Penghui; Wang, Meng; Yang, Kai; Liu, Junliang

    2016-09-01

    The processes and effects of coagulation-ultrafiltration (C-UF) and coagulation sedimentation-ultrafiltration (CS-UF) process used in the treatment of Dalangdian Reservoir water were compared. The experiment data indicated that 99% of turbidity removal and basically 100% of microorganism and algae removal were achieved in both C-UF and CS-UF process. The organic removal effect of CS-UF? process was slightly better than C-UF process. However, the organic removal effect under different processes was not obvious due to limitation of ultrafiltration membrane aperture. Polyaluminium chloride was taken as a coagulant in water plant. The aluminum ion removal result revealed that coagulant dosage was effectively saved by using membrane technology during megathermal high algae laden period. Within the range of certain reagent concentration and soaking time, air-water backwashing of every filtration cycle of membrane was conducted to effectively reduce membrane pollution. Besides, maintenance cleaning was conducted every 60 min. whether or not restorative cleaning was conducted depends on the pollution extent. After cleaning, recovery of membrane filtration effect was obvious.

  3. [Determination of Trace Lead in Water by UV-Visible Diffuse Reflectance Spectroscopy Combined with Surfactant and Membrane Filtration-Enrichment].

    PubMed

    Zhang, Xiao-fang; Zhu, Bi-lin; Li, Wei; Wang, Lei; Zhang, Lei; Wu, Ting; Du, Yi-ping

    2015-07-01

    In this paper, a method of determination of trace lead in water by UV-Visible diffuse reflectance spectroscopy combined with surfactant and membrane filtration enrichment was proposed. In the NH3 x H2O-NH4Cl buffer solution with pH 8.5, the lead(II) ion would react with dithizone to form the red complex under vigorous stirring, which is hydrophobic and can be enriched by the mixed cellulose ester membrane. In addition, the nonionic surfactant Polyoxyethylene lauryl ether (Brij-30) was added into the solution to improve the enrichment efficiency, then visible diffuse reflectance spectra of the membrane were measured directly after the membrane were naturally dried. We also optimized the reaction conditions which may affect the complexation reaction process, such as type of surfactants, the concentration of the surfactant, the reaction acidity, the concentration of dithizone as well as the reaction time. The research results show that under the optimum conditions, a good linear correlation between absorbance at 485 nm and concentration of lead in the range of 5.0-100.0 microg x L(-1) was obtained with a squared correlation coefficient (R2) of 0.9906, and the detection limit was estimated accordingly to be 2.88 microg x L(-1). To determine real water sample, the interference from some potential coexisting ions was also studied at the optimal conditions when the concentration of lead (II) ion standard solution was fixed to 20 microg x L(-1). The results indicate that the following ions cannot interfere in the determination of lead with the proposed method: 500 times of the K+, Na+, Ca2+, Mg2+, NH4+, NO3-, Cl-, CH3COO-, SO4(2-); 10 times of the Al3+ (using 10% NaF as a masking reagent to avoid the interference); 10 times of the Fe3+ (using 10% NaF and 10% sodium potassium tartrate as masking reagents); 10 times of Hg2+ or Zn2+ (using 10% NaSCN and 10% potassium sodium tartrate as masking reagents); the same amount of Cd2+, Cu2+. The proposed method was applied to the

  4. Impact of interferon-free regimens on the glomerular filtration rate during treatment of chronic hepatitis C in a real-life cohort.

    PubMed

    Álvarez-Ossorio, M J; Sarmento E Castro, R; Granados, R; Macías, J; Morano-Amado, L E; Ríos, M J; Merino, D; Álvarez, E N; Collado, A; Pérez-Pérez, M; Téllez, F; Martín, J M; Méndez, J; Pineda, J A; Neukam, K

    2018-06-01

    Little data are available on renal toxicity exerted by direct-acting antivirals (DAAs) in real life. The aim of this study was to assess the impact of direct-acting antivirals against hepatitis C virus infection currently used in Spain and Portugal on the estimated glomerular filtration rate (eGFR) in clinical practise. From an international, prospective multicohort study, patients treated with DAAs for at least 12 weeks and with eGFR ≥30 mL/min per 1.73 m 2 at baseline were selected. eGFR was determined using the CKD-EPI formula. A total of 1131 patients were included; 658 (58%) were HIV/HCV-coinfected patients. Among the 901 patients treated for 12 weeks, median (interquartile range) eGFR was 100 (87-107) at baseline vs 97 (85-105) mL/min per 1.73 m 2 at week 12 of follow-up (FU12) post-treatment (P < .001). For HIV-coinfected subjects who received tenofovir plus a ritonavir-boosted HIV protease inhibitor (PI/r), baseline vs FU12 eGFR were 104 (86-109) vs 104 (91-110) mL/min per 1.73 m 2 (P = .913). Among subjects receiving ombitasvir/paritaprevir with or without dasabuvir, eGFR did not show any significant change. Of 1100 subjects with eGFR >60 mL/min per 1.73 m 2 at baseline, 22 (2%) had eGFR <60 mL/min per 1.73 m 2 at FU12, but none presented with eGFR <30 mL/min per 1.73 m 2 . In conclusion, eGFR slightly declines during therapy with all-oral DAAs and this effect persists up to 12 weeks after stopping treatment in subjects with normal to moderately impaired renal function, regardless of HIV status. Concomitant use of tenofovir plus PI/r does not seem to have an impact on eGFR. © 2018 John Wiley & Sons Ltd.

  5. [Risk for hyperkalemia during long-term treatment with angiotensin-converting enzyme inhibitors in insulin-dependent type 2 diabetics in relation to the glomerular filtration rate].

    PubMed

    Raml, A; Schmekal, B; Grafinger, P; Biesenbach, G

    2001-11-23

    The risk for hyperkalaemia during therapy with angiotensin-converting enzyme inhibitors is especially increased in the elderly diabetic because of a decrease in glomerular filtration rate (GFR), as well as the occurrence of hyporeninaemic hypoaldosteronism. We evaluated the risk for hyperkalaemia under long-term angiotensin-converting enyzme inhibition in 86 insulin-dependent type 2 diabetic patients in relation to their GFR. We compared the influence of a 3 to 6 months long treatment with angiotensin-converting enzyme inhibitors on the serum potassium levels, the creatinine clearance and the urinary albumin excretion in insulin-dependent type 2 diabetic patients with an initial creatinine clearance < 50 ml/min/1.73m(2) (n = 15, age 66 +/- 6 years) and >/= 50 ml/min/1.73m(2) respectively (n = 71, age 61 +/- 10 years). In addition, we also investigated the influence on the metabolic control and the blood pressure values in both groups of patients. In the patients with creatinine clearance >/= 50 ml/min/1,73m(2) the mean potassium level increased from 4.3 +/- 0.2 to 4.6 +/- 0.4 mmol/l (P < 0,01), while the incidence of a potassium level > 5 mmol/l was 17 %. In the group with a creatinine clearance < 50 ml/min/1.73m(2) the potassium level rose from 4.5 +/- 0.2 to 5.0 +/- 0.4 mmol/l (P < 0.01). The incidence of potassium levels > 5 mmol/l was 66 % (P < 0,01). In both patient groups the creatinine clearances did not change significantly during angiotensin-converting enzyme inhibition, and the urinary albumin excretion as well as the HbA(1c) values and blood pressure showed only a tendency towards a decrease. Long-term treatment with angiotensin-converting enzyme inhibitors in insulin-dependent type 2 diabetic patients leads to a significant increase in serum potassium. The incidence of hyperkalaemia with potassium levels > 5 mmol/l is significantly higher in the patients with initial creatinine clearance < 50 ml/min/1.73m(2). Severe hyperkalaemia with potassium levels

  6. Occurrence of cyanobacteria and microcystin toxins in raw and treated waters of the Nile River, Egypt: implication for water treatment and human health.

    PubMed

    Mohamed, Zakaria A; Deyab, Mohamed Ali; Abou-Dobara, Mohamed I; El-Sayed, Ahmad K; El-Raghi, Wesam M

    2015-08-01

    Monitoring of cyanobacteria and their associated toxins has intensified in raw water sources of drinking water treatment plants (WTPs) in most countries of the world. However, it is not explored yet for Egyptian WTPs. Therefore, this study was undertaken to investigate the occurrence of cyanobacteria and their microcystin (MC) toxins in the Nile River source water of Damietta WTP during warm months (April-September 2013) and to evaluate the removal efficiency of both cyanobacterial cells and MCs by conventional methods used in this plant as a representative of Egyptian drinking WTPs. The results showed that the source water at the intake of Damietta WTP contained dense cyanobacterial population (1.1-6.6 × 107 cells L(-1)) dominated by Microcystis aeruginosa. This bloom was found to produce MC-RR and MC-LR. Both cyanobacterial cell density and intracellular MCs in the intake source water increased with the increase in temperature and nutrients during the study period, with maximum values obtained in August. During treatment processes, cyanobacterial cells were incompletely removed by coagulation/flocculation/sedimentation (C/F/S; 91-96.8%) or sand filtration (93.3-98.9%). Coagulation/flocculation induced the release of MCs into the ambient water, and the toxins were not completely removed or degraded during further treatment stages (filtration and chlorination). MCs in outflow tank water were detected in high concentrations (1.1-3.6 μg L - 1), exceeding WHO provisional guideline value of 1 μg L - 1 for MC-LR in drinking water. Based on this study, regular monitoring of cyanobacteria and their cyanotoxins in the intake source water and at different stages at all WTPs is necessary to provide safe drinking water to consumers or to prevent exposure of consumers to hazardous cyanobacterial metabolites.

  7. Use of a water treatment sludge in a sewage sludge dewatering process

    NASA Astrophysics Data System (ADS)

    Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata

    2018-02-01

    The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

  8. Electro-Fenton as a feasible advanced treatment process to produce reclaimed water.

    PubMed

    Durán Moreno, A; Frontana-Uribe, B A; Ramírez Zamora, R M

    2004-01-01

    The feasibility of the electro-Fenton process to generate simultaneously both of the Fenton's reagent species (Fe2+/H2O2), was assessed as a potentially more economical alternative to the classical Fenton's reaction to produce reclaimed water. An air-saturated combined wastewater (mixture of municipal and laboratory effluents) was treated in discontinuous and continuous reactors at pH = 3.5. The discontinuous reactor was a 2 L electrochemical laboratory cell fitted with concentric graphite and iron electrodes. The continuous reactor tests used a pilot treatment system comprising the aforementioned electrochemical cell, two clarifiers and one sand filter. Several tests were carried out at different conditions of reaction time (0-60 min) and electrical current values (0.2-1.0 A) in the discontinuous reactor. The best operating conditions were 60 min and 1 A without filtration of effluents. At these conditions, in discontinuous and continuous reactors with filtration, the COD, turbidity and color removal were 65-74.8%, 77-92.3% and 80-100%, respectively. Fecal and total coliforms, Escherichia coli, Shigella and Salmonella sp. were not detected at the end of the pilot treatment system. Electrogeneration of the Fenton's reagent is also economical; its cost is one-fifth the cost reported for Advanced Primary Treatment.

  9. Assessing the impact of water treatment on bacterial biofilms in drinking water distribution systems using high-throughput DNA sequencing.

    PubMed

    Shaw, Jennifer L A; Monis, Paul; Fabris, Rolando; Ho, Lionel; Braun, Kalan; Drikas, Mary; Cooper, Alan

    2014-12-01

    Biofilm control in drinking water distribution systems (DWDSs) is crucial, as biofilms are known to reduce flow efficiency, impair taste and quality of drinking water and have been implicated in the transmission of harmful pathogens. Microorganisms within biofilm communities are more resistant to disinfection compared to planktonic microorganisms, making them difficult to manage in DWDSs. This study evaluates the impact of four unique drinking water treatments on biofilm community structure using metagenomic DNA sequencing. Four experimental DWDSs were subjected to the following treatments: (1) conventional coagulation, (2) magnetic ion exchange contact (MIEX) plus conventional coagulation, (3) MIEX plus conventional coagulation plus granular activated carbon, and (4) membrane filtration (MF). Bacterial biofilms located inside the pipes of each system were sampled under sterile conditions both (a) immediately after treatment application ('inlet') and (b) at a 1 km distance from the treatment application ('outlet'). Bacterial 16S rRNA gene sequencing revealed that the outlet biofilms were more diverse than those sampled at the inlet for all treatments. The lowest number of unique operational taxonomic units (OTUs) and lowest diversity was observed in the MF inlet. However, the MF system revealed the greatest increase in diversity and OTU count from inlet to outlet. Further, the biofilm communities at the outlet of each system were more similar to one another than to their respective inlet, suggesting that biofilm communities converge towards a common established equilibrium as distance from treatment application increases. Based on the results, MF treatment is most effective at inhibiting biofilm growth, but a highly efficient post-treatment disinfection regime is also critical in order to prevent the high rates of post-treatment regrowth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Performance of small water treatment plants: The case study of Mutshedzi Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Makungo, R.; Odiyo, J. O.; Tshidzumba, N.

    The performance of small water treatment plants (SWTPs) was evaluated using Mutshedzi WTP as a case study. The majority of SWTPs in South Africa (SA) that supply water to rural villages face problems of cost recovery, water wastages, limited size and semi-skilled labour. The raw and final water quality analyses and their compliance were used to assess the performance of the Mutshedzi WTP. Electrical conductivity (EC), pН and turbidity were measured in the field using a portable multimeter and a turbidity meter respectively. Atomic Absorption Spectrometry and Ion Chromatography were used to analyse metals and non-metals respectively. The results were compared with the Department of Water Affairs (DWA) guidelines for domestic use. The turbidity levels partially exceeded the recommended guidelines for domestic water use of 1 NTU. The concentrations of chemical parameters in final water were within the DWA guidelines for domestic water use except for fluoride, which exceeded the maximum allowable guideline of 1.5 mg/L in August 2009. Mutshedzi WTP had computed compliance for raw and final water analyses ranging from 79% to 93% and 86% to 93% throughout the sampling period, respectively. The results from earlier studies showed that the microbiological quality of final water in Mutshedzi WTP complied with the recommended guidelines, eliminating the slight chance of adverse aesthetic effects and infectious disease transmission associated with the turbidity values between 1 and 5 NTU. The study concluded that Mutshedzi WTP, though moving towards compliance, is still not producing adequate quality of water. Other studies also indicated that the quantity of water produced from Mutshedzi WTP was inadequate. The findings of the study indicate that lack of monitoring of quantity of water supplied to each village, dosage of treatment chemicals, the treatment capacity of the WTP and monitoring the quality of water treated are some of the factors that limit the performance of

  11. Water Treatment Systems for Long Spaceflights

    NASA Technical Reports Server (NTRS)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  12. Characterization of bacterial community dynamics in a full-scale drinking water treatment plant.

    PubMed

    Li, Cuiping; Ling, Fangqiong; Zhang, Minglu; Liu, Wen-Tso; Li, Yuxian; Liu, Wenjun

    2017-01-01

    Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water. The objective of this study was to comprehensively characterize the dynamics of microbial biomass and bacterial communities at each step of a full-scale drinking water treatment plant in Beijing, China. Both bulk water and biofilm samples on granular activated carbon (GAC) were collected over 9months. The proportion of cultivable cells decreased during the treatment processes, and this proportion was higher in warm season than cool season, suggesting that treatment processes and water temperature probably had considerable impact on the R2A cultivability of total bacteria. 16s rRNA gene based 454 pyrosequencing analysis of the bacterial community revealed that Proteobacteria predominated in all samples. The GAC biofilm harbored a distinct population with a much higher relative abundance of Acidobacteria than water samples. Principle coordinate analysis and one-way analysis of similarity indicated that the dynamics of the microbial communities in bulk water and biofilm samples were better explained by the treatment processes rather than by sampling time, and distinctive changes of the microbial communities in water occurred after GAC filtration. Furthermore, 20 distinct OTUs contributing most to the dissimilarity among samples of different sampling locations and 6 persistent OTUs present in the entire treatment process flow were identified. Overall, our findings demonstrate the significant effects that treatment processes have on the microbial biomass and community fluctuation and provide implications for further targeted investigation on particular bacteria populations. Copyright © 2016. Published by Elsevier B.V.

  13. Identifying, counting, and characterizing superfine activated-carbon particles remaining after coagulation, sedimentation, and sand filtration.

    PubMed

    Nakazawa, Yoshifumi; Matsui, Yoshihiko; Hanamura, Yusuke; Shinno, Koki; Shirasaki, Nobutaka; Matsushita, Taku

    2018-07-01

    Superfine powdered activated carbon (SPAC; particle diameter ∼1 μm) has greater adsorptivity for organic molecules than conventionally sized powdered activated carbon (PAC). Although SPAC is currently used in the pretreatment to membrane filtration at drinking water purification plants, it is not used in conventional water treatment consisting of coagulation-flocculation, sedimentation, and rapid sand filtration (CSF), because it is unclear whether CSF can adequately remove SPAC from the water. In this study, we therefore investigated the residual SPAC particles in water after CSF treatment. First, we developed a method to detect and quantify trace concentration of carbon particles in the sand filtrate. This method consisted of 1) sampling particles with a membrane filter and then 2) using image analysis software to manipulate a photomicrograph of the filter so that black spots with a diameter >0.2 μm (considered to be carbon particles) could be visualized. Use of this method revealed that CSF removed a very high percentage of SPAC: approximately 5-log in terms of particle number concentrations and approximately 6-log in terms of particle volume concentrations. When waters containing 7.5-mg/L SPAC and 30-mg/L PAC, concentrations that achieved the same adsorption performance, were treated, the removal rate of SPAC was somewhat superior to that of PAC, and the residual particle number concentrations for SPAC and PAC were at the same low level (100-200 particles/mL). Together, these results suggest that SPAC can be used in place of PAC in CSF treatment without compromising the quality of the filtered water in terms of particulate matter contamination. However, it should be noted that the activated carbon particles after sand filtration were smaller in terms of particle size and were charge-neutralized to a lesser extent than the activated carbon particles before sand filtration. Therefore, the tendency of small particles to escape in the filtrate would appear