Sample records for fime-catalyzed off-to-on inversion

  1. Chemiluminescence of off-line and on-line gold nanoparticle-catalyzed luminol system in the presence of flavonoid.

    PubMed

    Wu, Dong; Zhang, Xiaoyue; Liu, Yong; Ma, Yan; Wang, Xiaowu; Wang, Xiaojuan; Xu, Liuxin

    2017-06-01

    It was found that flavonoids could remarkably inhibit the chemiluminescence (CL) intensity of an off-line gold nanoparticle (AuNP)-catalyzed luminol-H 2 O 2 CL system. By contrast, flavonoids enhanced the CL intensity of an on-line AuNP-catalyzed luminol-H 2 O 2 CL system. In the off-line system, the AuNPs were prepared beforehand, whereas in the on-line system, AuNPs were produced by on-line mixing of luminol prepared in a buffer solution of NaHCO 3  - Na 2 CO 3 and HAuCl 4 with no need for the preliminary preparation of AuNPs. The on-line system had prominent advantages over the off-line system, namely a lowering of the background noise and improvements in the stability of the CL system. The results show that differences in the signal suppression effect of flavonoids on the off-line AuNP-catalyzed CL system are influenced by the combined action of a free radical scavenging effect and occupy-sites function; the latter was proved to be predominant using controlled experiments. Enhancement of the on-line system was ascribed to the presence of flavonoids promoting the on-line formation of AuNPs, which better catalyzed the luminol-H 2 O 2 CL reaction, and the enhancement activity of the six flavonoids increased with the increase in reducibility. This work broadens the scope of practical applications of an AuNP-catalyzed CL system. Copyright © 2016 John Wiley & Sons, Ltd.

  2. A trade-off solution between model resolution and covariance in surface-wave inversion

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Zeng, C.

    2010-01-01

    Regularization is necessary for inversion of ill-posed geophysical problems. Appraisal of inverse models is essential for meaningful interpretation of these models. Because uncertainties are associated with regularization parameters, extra conditions are usually required to determine proper parameters for assessing inverse models. Commonly used techniques for assessment of a geophysical inverse model derived (generally iteratively) from a linear system are based on calculating the model resolution and the model covariance matrices. Because the model resolution and the model covariance matrices of the regularized solutions are controlled by the regularization parameter, direct assessment of inverse models using only the covariance matrix may provide incorrect results. To assess an inverted model, we use the concept of a trade-off between model resolution and covariance to find a proper regularization parameter with singular values calculated in the last iteration. We plot the singular values from large to small to form a singular value plot. A proper regularization parameter is normally the first singular value that approaches zero in the plot. With this regularization parameter, we obtain a trade-off solution between model resolution and model covariance in the vicinity of a regularized solution. The unit covariance matrix can then be used to calculate error bars of the inverse model at a resolution level determined by the regularization parameter. We demonstrate this approach with both synthetic and real surface-wave data. ?? 2010 Birkh??user / Springer Basel AG.

  3. Autoinduced catalysis and inverse equilibrium isotope effect in the frustrated Lewis pair catalyzed hydrogenation of imines.

    PubMed

    Tussing, Sebastian; Greb, Lutz; Tamke, Sergej; Schirmer, Birgitta; Muhle-Goll, Claudia; Luy, Burkhard; Paradies, Jan

    2015-05-26

    The frustrated Lewis pair (FLP)-catalyzed hydrogenation and deuteration of N-benzylidene-tert-butylamine (2) was kinetically investigated by using the three boranes B(C6F5)3 (1), B(2,4,6-F3-C6H2)3 (4), and B(2,6-F2-C6H3)3 (5) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol(-1)) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. DNA Supercoiling and the Lrp Protein Determine the Directionality of fim Switch DNA Inversion in Escherichia coli K-12

    PubMed Central

    Kelly, Arlene; Conway, Colin; Ó Cróinín, Tadhg; Smith, Stephen G. J.; Dorman, Charles J.

    2006-01-01

    Site-specific recombinases of the integrase family usually require cofactors to impart directionality in the recombination reactions that they catalyze. The FimB integrase inverts the Escherichia coli fim switch (fimS) in the on-to-off and off-to-on directions with approximately equal efficiency. Inhibiting DNA gyrase with novobiocin caused inversion to become biased in the off-to-on direction. This directionality was not due to differential DNA topological distortion of fimS in the on and off phases by the activity of its resident PfimA promoter. Instead, the leucine-responsive regulatory (Lrp) protein was found to determine switching outcomes. Knocking out the lrp gene or abolishing Lrp binding sites 1 and 2 within fimS completely reversed the response of the switch to DNA relaxation. Inactivation of either Lrp site alone resulted in mild on-to-off bias, showing that they act together to influence the response of the switch to changes in DNA supercoiling. Thus, Lrp is not merely an architectural element organizing the fim invertasome, it collaborates with DNA supercoiling to determine the directionality of the DNA inversion event. PMID:16855224

  5. Quantifying the Uncertainties and Multi-parameter Trade-offs in Joint Inversion of Receiver Functions and Surface Wave Velocity and Ellipticity

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2016-12-01

    When constraining the structure of the Earth's continental lithosphere, multiple seismic observables are often combined due to their complementary sensitivities.The transdimensional Bayesian (TB) approach in seismic inversion allows model parameter uncertainties and trade-offs to be quantified with few assumptions. TB sampling yields an adaptive parameterization that enables simultaneous inversion for different model parameters (Vp, Vs, density, radial anisotropy), without the need for strong prior information or regularization. We use a reversible jump Markov chain Monte Carlo (rjMcMC) algorithm to incorporate different seismic observables - surface wave dispersion (SWD), Rayleigh wave ellipticity (ZH ratio), and receiver functions - into the inversion for the profiles of shear velocity (Vs), compressional velocity (Vp), density (ρ), and radial anisotropy (ξ) beneath a seismic station. By analyzing all three data types individually and together, we show that TB sampling can eliminate the need for a fixed parameterization based on prior information, and reduce trade-offs in model estimates. We then explore the effect of different types of misfit functions for receiver function inversion, which is a highly non-unique problem. We compare the synthetic inversion results using the L2 norm, cross-correlation type and integral type misfit function by their convergence rates and retrieved seismic structures. In inversions in which only one type of model parameter (Vs for the case of SWD) is inverted, assumed scaling relationships are often applied to account for sensitivity to other model parameters (e.g. Vp, ρ, ξ). Here we show that under a TB framework, we can eliminate scaling assumptions, while simultaneously constraining multiple model parameters to varying degrees. Furthermore, we compare the performance of TB inversion when different types of model parameters either share the same or use independent parameterizations. We show that different parameterizations

  6. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics.

    PubMed

    Matsumoto, Tsubasa; Kato, Hiromitsu; Oyama, Kazuhiro; Makino, Toshiharu; Ogura, Masahiko; Takeuchi, Daisuke; Inokuma, Takao; Tokuda, Norio; Yamasaki, Satoshi

    2016-08-22

    We fabricated inversion channel diamond metal-oxide-semiconductor field-effect transistors (MOSFETs) with normally off characteristics. At present, Si MOSFETs and insulated gate bipolar transistors (IGBTs) with inversion channels are widely used because of their high controllability of electric power and high tolerance. Although a diamond semiconductor is considered to be a material with a strong potential for application in next-generation power devices, diamond MOSFETs with an inversion channel have not yet been reported. We precisely controlled the MOS interface for diamond by wet annealing and fabricated p-channel and planar-type MOSFETs with phosphorus-doped n-type body on diamond (111) substrate. The gate oxide of Al2O3 was deposited onto the n-type diamond body by atomic layer deposition at 300 °C. The drain current was controlled by the negative gate voltage, indicating that an inversion channel with a p-type character was formed at a high-quality n-type diamond body/Al2O3 interface. The maximum drain current density and the field-effect mobility of a diamond MOSFET with a gate electrode length of 5 μm were 1.6 mA/mm and 8.0 cm(2)/Vs, respectively, at room temperature.

  7. Seismic inversion for incoming sedimentary sequence in the Nankai Trough margin off Kumano Basin, southwest Japan

    NASA Astrophysics Data System (ADS)

    Naito, K.; Park, J.

    2012-12-01

    The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake mechanism. Huge earthquakes have been repeated in the cycle of 100-150 years in the area, and in these days the next emergence of the earthquake becomes one of the most serious issue in Japan. Therefore, detailed descriptions of geological structure are urgently needed there. IODP (Integrated Ocean Drilling Program) have investigated this area in the NanTroSEIZE science plan. Seismic reflection, core sampling and borehole logging surveys have been executed during the NanTroSEIZE expeditions. Core-log-seismic data integration (CLSI) is useful for understanding the Nankai seismogenic zone. We use the seismic inversion method to do the CLSI. The seismic inversion (acoustic impedance inversion, A.I. inversion) is a method to estimate rock physical properties using seismic reflection and logging data. Acoustic impedance volume is inverted for seismic data with density and P-wave velocity of several boreholes with the technique. We use high-resolution 3D multi-channel seismic (MCS) reflection data obtained during KR06-02 cruise in 2006, and measured core sample properties by IODP Expeditions 322 and 333. P-wave velocities missing for some core sample are interpolated by the relationship between acoustic impedance and P-wave velocity. We used Hampson-Russell software for the seismic inversion. 3D porosity model is derived from the 3D acoustic impedance model to figure out rock physical properties of the incoming sedimentary sequence in the Nankai Trough off Kumano Basin. The result of our inversion analysis clearly shows heterogeneity of sediments; relatively high porosity sediments on the shallow layer of Kashinosaki Knoll, and distribution of many physical anomaly bands on volcanic and turbidite sediment layers around the 3D MCS survey area. In this talk, we will show 3D MCS, acoustic impedance, and porosity data for the incoming sedimentary sequence and discuss its

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...

  9. Interparameter trade-off quantification and reduction in isotropic-elastic full-waveform inversion: synthetic experiments and Hussar land data set application

    NASA Astrophysics Data System (ADS)

    Pan, Wenyong; Geng, Yu; Innanen, Kristopher A.

    2018-05-01

    The problem of inverting for multiple physical parameters in the subsurface using seismic full-waveform inversion (FWI) is complicated by interparameter trade-off arising from inherent ambiguities between different physical parameters. Parameter resolution is often characterized using scattering radiation patterns, but these neglect some important aspects of interparameter trade-off. More general analysis and mitigation of interparameter trade-off in isotropic-elastic FWI is possible through judiciously chosen multiparameter Hessian matrix-vector products. We show that products of multiparameter Hessian off-diagonal blocks with model perturbation vectors, referred to as interparameter contamination kernels, are central to the approach. We apply the multiparameter Hessian to various vectors designed to provide information regarding the strengths and characteristics of interparameter contamination, both locally and within the whole volume. With numerical experiments, we observe that S-wave velocity perturbations introduce strong contaminations into density and phase-reversed contaminations into P-wave velocity, but themselves experience only limited contaminations from other parameters. Based on these findings, we introduce a novel strategy to mitigate the influence of interparameter trade-off with approximate contamination kernels. Furthermore, we recommend that the local spatial and interparameter trade-off of the inverted models be quantified using extended multiparameter point spread functions (EMPSFs) obtained with pre-conditioned conjugate-gradient algorithm. Compared to traditional point spread functions, the EMPSFs appear to provide more accurate measurements for resolution analysis, by de-blurring the estimations, scaling magnitudes and mitigating interparameter contamination. Approximate eigenvalue volumes constructed with stochastic probing approach are proposed to evaluate the resolution of the inverted models within the whole model. With a synthetic

  10. Dual chemistry catalyzed by human acireductone dioxygenase

    PubMed Central

    Deshpande, Aditi R.; Pochapsky, Thomas C.; Petsko, Gregory A.

    2017-01-01

    Abstract Acireductone dioxygenase (ARD) from the methionine salvage pathway of Klebsiella oxytoca is the only known naturally occurring metalloenzyme that catalyzes different reactions in vivo based solely on the identity of the divalent transition metal ion (Fe2+ or Ni2+) bound in the active site. The iron-containing isozyme catalyzes the cleavage of substrate 1,2-dihydroxy-3-keto-5-(thiomethyl)pent-1-ene (acireductone) by O2 to formate and the ketoacid precursor of methionine, whereas the nickel-containing isozyme uses the same substrates to catalyze an off-pathway shunt to form methylthiopropionate, carbon monoxide and formate. This dual chemistry was recently demonstrated in vitro by ARD from Mus musculus (MmARD), providing the first example of a mammalian ARD exhibiting metal-dependent catalysis. We now show that human ARD (HsARD) is also capable of metal-dependent dual chemistry. Recombinant HsARD was expressed and purified to obtain a homogeneous enzyme with a single transition metal ion bound. As with MmARD, the Fe2+-bound HsARD shows the highest activity and catalyzes on-pathway chemistry, whereas Ni2+, Co2+ or Mn2+ forms catalyze off-pathway chemistry. The thermal stability of the HsARD isozymes is a function of the metal ion identity, with Ni2+-bound HsARD being the most stable followed by Co2+ and Fe2+, and Mn2+-bound HsARD being the least stable. As with the bacterial ARD, solution NMR data suggest that HsARD isozymes can have significant structural differences depending upon the metal ion bound. PMID:28062648

  11. Fe(II)/Fe(III)-Catalyzed Intramolecular Didehydro-Diels-Alder Reaction of Styrene-ynes.

    PubMed

    Mun, Hyeon Jin; Seong, Eun Young; Ahn, Kwang-Hyun; Kang, Eun Joo

    2018-02-02

    The intramolecular didehydro-Diels-Alder reaction of styrene-ynes was catalyzed by Fe(II) and Fe(III) to produce various naphthalene derivatives under microwave heating conditions. Mechanistic calculations found that the Fe(II) catalyst activates the styrenyl diene in an inverse-electron-demand Diels-Alder reaction, and the consecutive dehydrogenation reaction can be promoted by either Fe(II)-catalyzed direct dehydrogenation or an Fe(III)-catalyzed rearomatization/dehydrogenation pathway.

  12. Site-specific DNA Inversion by Serine Recombinases

    PubMed Central

    2015-01-01

    Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized. PMID:25844275

  13. Round-off errors in cutting plane algorithms based on the revised simplex procedure

    NASA Technical Reports Server (NTRS)

    Moore, J. E.

    1973-01-01

    This report statistically analyzes computational round-off errors associated with the cutting plane approach to solving linear integer programming problems. Cutting plane methods require that the inverse of a sequence of matrices be computed. The problem basically reduces to one of minimizing round-off errors in the sequence of inverses. Two procedures for minimizing this problem are presented, and their influence on error accumulation is statistically analyzed. One procedure employs a very small tolerance factor to round computed values to zero. The other procedure is a numerical analysis technique for reinverting or improving the approximate inverse of a matrix. The results indicated that round-off accumulation can be effectively minimized by employing a tolerance factor which reflects the number of significant digits carried for each calculation and by applying the reinversion procedure once to each computed inverse. If 18 significant digits plus an exponent are carried for each variable during computations, then a tolerance value of 0.1 x 10 to the minus 12th power is reasonable.

  14. Off-axis illumination direct-to-digital holography

    DOEpatents

    Thomas, Clarence E.; Price, Jeffery R.; Voelkl, Edgar; Hanson, Gregory R.

    2004-06-08

    Systems and methods are described for off-axis illumination direct-to-digital holography. A method of recording an off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis, includes: reflecting a reference beam from a reference mirror at a non-normal angle; reflecting an object beam from an object at an angle with respect to an optical axis defined by a focusing lens; focusing the reference beam and the object beam at a focal plane of a digital recorder to form the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digitally recording the off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes for Fourier analysis; Fourier analyzing the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes by transforming axes of the recorded off-axis illuminated spatially heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined as an angle between the reference beam and the object beam; applying a digital filter to cut off signals around an original origin; and then performing an inverse Fourier transform.

  15. Characterisation of a resolution enhancing image inversion interferometer.

    PubMed

    Wicker, Kai; Sindbert, Simon; Heintzmann, Rainer

    2009-08-31

    Image inversion interferometers have the potential to significantly enhance the lateral resolution and light efficiency of scanning fluorescence microscopes. Self-interference of a point source's coherent point spread function with its inverted copy leads to a reduction in the integrated signal for off-axis sources compared to sources on the inversion axis. This can be used to enhance the resolution in a confocal laser scanning microscope. We present a simple image inversion interferometer relying solely on reflections off planar surfaces. Measurements of the detection point spread function for several types of light sources confirm the predicted performance and suggest its usability for scanning confocal fluorescence microscopy.

  16. Reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts revealed by an FeO(111)/Pt(111) inverse model catalyst.

    PubMed

    Xu, Lingshun; Wu, Zongfang; Jin, Yuekang; Ma, Yunsheng; Huang, Weixin

    2013-08-07

    We have employed XPS and TDS to study the adsorption and surface reactions of H2O, CO and HCOOH on an FeO(111)/Pt(111) inverse model catalyst. The FeO(111)-Pt(111) interface of the FeO(111)/Pt(111) inverse model catalyst exposes coordination-unsaturated Fe(II) cations (Fe(II)CUS) and the Fe(II)CUS cations are capable of modifying the reactivity of neighbouring Pt sites. Water facilely dissociates on the Fe(II)CUS cations at the FeO(111)-Pt(111) interface to form hydroxyls that react to form both water and H2 upon heating. Hydroxyls on the Fe(II)CUS cations can react with CO(a) on the neighbouring Pt(111) sites to produce CO2 at low temperatures. Hydroxyls act as the co-catalyst in the CO oxidation by hydroxyls to CO2 (PROX reaction), while they act as one of the reactants in the CO oxidation by hydroxyls to CO2 and H2 (WGS reaction), and the recombinative reaction of hydroxyls to produce H2 is the rate-limiting step in the WGS reaction. A comparison of reaction behaviors between the interfacial CO(a) + OH reaction and the formate decomposition reaction suggest that formate is the likely surface intermediate of the CO(a) + OH reaction. These results provide some solid experimental evidence for the associative reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts.

  17. An Inverse Optimal Control Approach to Explain Human Arm Reaching Control Based on Multiple Internal Models.

    PubMed

    Oguz, Ozgur S; Zhou, Zhehua; Glasauer, Stefan; Wollherr, Dirk

    2018-04-03

    Human motor control is highly efficient in generating accurate and appropriate motor behavior for a multitude of tasks. This paper examines how kinematic and dynamic properties of the musculoskeletal system are controlled to achieve such efficiency. Even though recent studies have shown that the human motor control relies on multiple models, how the central nervous system (CNS) controls this combination is not fully addressed. In this study, we utilize an Inverse Optimal Control (IOC) framework in order to find the combination of those internal models and how this combination changes for different reaching tasks. We conducted an experiment where participants executed a comprehensive set of free-space reaching motions. The results show that there is a trade-off between kinematics and dynamics based controllers depending on the reaching task. In addition, this trade-off depends on the initial and final arm configurations, which in turn affect the musculoskeletal load to be controlled. Given this insight, we further provide a discomfort metric to demonstrate its influence on the contribution of different inverse internal models. This formulation together with our analysis not only support the multiple internal models (MIMs) hypothesis but also suggest a hierarchical framework for the control of human reaching motions by the CNS.

  18. RNA-Catalyzed RNA Ligation on an External RNA Template

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Joyce, Gerald F.

    2002-01-01

    Variants of the hc ligase ribozyme, which catalyzes ligation of the 3' end of an RNA substrate to the 5' end of the ribozyme, were utilized to evolve a ribozyme that catalyzes ligation reactions on an external RNA template. The evolved ribozyme catalyzes the joining of an oligonucleotide 3'-hydroxyl to the 5'-triphosphate of an RNA hairpin molecule. The ribozyme can also utilize various substrate sequences, demonstrating a largely sequence-independent mechanism for substrate recognition. The ribozyme also carries out the ligation of two oligonucleotides that are bound at adjacent positions on a complementary template. Finally, it catalyzes addition of mononucleoside '5-triphosphates onto the '3 end of an oligonucleotide primer in a template-dependent manner. The development of ribozymes that catalyze polymerase-type reactions contributes to the notion that an RNA world could have existed during the early history of life on Earth.

  19. Source encoding in multi-parameter full waveform inversion

    NASA Astrophysics Data System (ADS)

    Matharu, Gian; Sacchi, Mauricio D.

    2018-04-01

    Source encoding techniques alleviate the computational burden of sequential-source full waveform inversion (FWI) by considering multiple sources simultaneously rather than independently. The reduced data volume requires fewer forward/adjoint simulations per non-linear iteration. Applications of source-encoded full waveform inversion (SEFWI) have thus far focused on monoparameter acoustic inversion. We extend SEFWI to the multi-parameter case with applications presented for elastic isotropic inversion. Estimating multiple parameters can be challenging as perturbations in different parameters can prompt similar responses in the data. We investigate the relationship between source encoding and parameter trade-off by examining the multi-parameter source-encoded Hessian. Probing of the Hessian demonstrates the convergence of the expected source-encoded Hessian, to that of conventional FWI. The convergence implies that the parameter trade-off in SEFWI is comparable to that observed in FWI. A series of synthetic inversions are conducted to establish the feasibility of source-encoded multi-parameter FWI. We demonstrate that SEFWI requires fewer overall simulations than FWI to achieve a target model error for a range of first-order optimization methods. An inversion for spatially inconsistent P - (α) and S-wave (β) velocity models, corroborates the expectation of comparable parameter trade-off in SEFWI and FWI. The final example demonstrates a shortcoming of SEFWI when confronted with time-windowing in data-driven inversion schemes. The limitation is a consequence of the implicit fixed-spread acquisition assumption in SEFWI. Alternative objective functions, namely the normalized cross-correlation and L1 waveform misfit, do not enable SEFWI to overcome this limitation.

  20. Kinetic profiling of prolinate-catalyzed α-amination of aldehydes.

    PubMed

    Hein, Jason E; Armstrong, Alan; Blackmond, Donna G

    2011-08-19

    Deconvolution of the role of off-cycle species from the desired catalytic cycle leads to an optimized protocol for the prolinate-catalyzed amination of aldehydes. The scope of complex reaction networks will be greatly broadened by understanding ancillary rate processes that influence the productive catalytic pathway. © 2011 American Chemical Society

  1. Step-to-Step Ankle Inversion/Eversion Torque Modulation Can Reduce Effort Associated with Balance.

    PubMed

    Kim, Myunghee; Collins, Steven H

    2017-01-01

    Below-knee amputation is associated with higher energy expenditure during walking, partially due to difficulty maintaining balance. We previously found that once-per-step push-off work control can reduce balance-related effort, both in simulation and in experiments with human participants. Simulations also suggested that changing ankle inversion/eversion torque on each step, in response to changes in body state, could assist with balance. In this study, we investigated the effects of ankle inversion/eversion torque modulation on balance-related effort among amputees ( N = 5) using a multi-actuated ankle-foot prosthesis emulator. In stabilizing conditions, changes in ankle inversion/eversion torque were applied so as to counteract deviations in side-to-side center-of-mass acceleration at the moment of intact-limb toe off; higher acceleration toward the prosthetic limb resulted in a corrective ankle inversion torque during the ensuing stance phase. Destabilizing controllers had the opposite effect, and a zero gain controller made no changes to the nominal inversion/eversion torque. To separate the balance-related effects of step-to-step control from the potential effects of changes in average mechanics, average ankle inversion/eversion torque and prosthesis work were held constant across conditions. High-gain stabilizing control lowered metabolic cost by 13% compared to the zero gain controller ( p = 0.05). We then investigated individual responses to subject-specific stabilizing controllers following an enforced exploration period. Four of five participants experienced reduced metabolic rate compared to the zero gain controller (-15, -14, -11, -6, and +4%) an average reduction of 9% ( p = 0.05). Average prosthesis mechanics were unchanged across all conditions, suggesting that improvements in energy economy might have come from changes in step-to-step corrections related to balance. Step-to-step modulation of inversion/eversion torque could be used in new, active

  2. Precision-Trimming 2D Inverse-Opal Lattice on Elastomer to Ordered Nanostructures with Variable Size and Morphology.

    PubMed

    Zhan, Haoran; Chen, Yanqiu; Liu, Yu; Lau, Woonming; Bao, Chao; Li, Minggan; Lu, Yunlong; Mei, Jun; Hui, David

    2017-05-23

    A low-cost and scalable method is developed for producing large-area elastomer surfaces having ordered nanostructures with a variety of lattice features controllable to nanometer precision. The method adopts the known technique of molding a PDMS precursor film with a close-packed monolayer of monodisperse submicron polystyrene beads on water to form an inverse-opal dimple lattice with the dimple size controlled by the bead selection and the dimple depth by the molding condition. The subsequent novel precision engineering of the inverse-opal lattice comprises trimming the PDMS precursor by a combination of polymer curing temperature/time and polymer dissolution parameters. The resultant ordered surface nanostructures, fabricated with an increasing degree of trimming, include (a) submicron hemispherical dimples with nanothin interdimple rims and walls; (b) nanocones with variable degrees of tip-sharpness by trimming off the top part of the nanothin interdimple walls; and (c) soup-plate-like submicron shallow dimples with interdimple rims and walls by anisotropically trimming off the nanocones and forming close-packed shallow dimples. As exemplars of industrial relevance of these lattice features, tunable Young's modulus and wettability are demonstrated.

  3. Huge Inverse Magnetization Generated by Faraday Induction in Nano-Sized Au@Ni Core@Shell Nanoparticles.

    PubMed

    Kuo, Chen-Chen; Li, Chi-Yen; Lee, Chi-Hung; Li, Hsiao-Chi; Li, Wen-Hsien

    2015-08-25

    We report on the design and observation of huge inverse magnetizations pointing in the direction opposite to the applied magnetic field, induced in nano-sized amorphous Ni shells deposited on crystalline Au nanoparticles by turning the applied magnetic field off. The magnitude of the induced inverse magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before turning the magnetic field off, and can be as high as 54% of the magnetization prior to cutting off the applied magnetic field. Memory effect of the induced inverse magnetization is clearly revealed in the relaxation measurements. The relaxation of the inverse magnetization can be described by an exponential decay profile, with a critical exponent that can be effectively tuned by the wait time right after reaching the designated temperature and before the applied magnetic field is turned off. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.

  4. Adults' understanding of inversion concepts: how does performance on addition and subtraction inversion problems compare to performance on multiplication and division inversion problems?

    PubMed

    Robinson, Katherine M; Ninowski, Jerilyn E

    2003-12-01

    Problems of the form a + b - b have been used to assess conceptual understanding of the relationship between addition and subtraction. No study has investigated the same relationship between multiplication and division on problems of the form d x e / e. In both types of inversion problems, no calculation is required if the inverse relationship between the operations is understood. Adult participants solved addition/subtraction and multiplication/division inversion (e.g., 9 x 22 / 22) and standard (e.g., 2 + 27 - 28) problems. Participants started to use the inversion strategy earlier and more frequently on addition/subtraction problems. Participants took longer to solve both types of multiplication/division problems. Overall, conceptual understanding of the relationship between multiplication and division was not as strong as that between addition and subtraction. One explanation for this difference in performance is that the operation of division is more weakly represented and understood than the other operations and that this weakness affects performance on problems of the form d x e / e.

  5. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qinhua

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I 2, ICl, PhSeCl, PhSCl and p-O 2NC 6H 4SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellentmore » yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that these

  6. Novel Dry-Type Glucose Sensor Based on a Metal-Oxide-Semiconductor Capacitor Structure with Horseradish Peroxidase + Glucose Oxidase Catalyzing Layer

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Jenn; Wu, You-Lin; Hsu, Po-Yen

    2007-10-01

    In this paper, we present a novel dry-type glucose sensor based on a metal-oxide-semiconductor capacitor (MOSC) structure using SiO2 as a gate dielectric in conjunction with a horseradish peroxidase (HRP) + glucose oxidase (GOD) catalyzing layer. The tested glucose solution was dropped directly onto the window opened on the SiO2 layer, with a coating of HRP + GOD catalyzing layer on top of the gate dielectric. From the capacitance-voltage (C-V) characteristics of the sensor, we found that the glucose solution can induce an inversion layer on the silicon surface causing a gate leakage current flowing along the SiO2 surface. The gate current changes Δ I before and after the drop of glucose solution exhibits a near-linear relationship with increasing glucose concentration. The Δ I sensitivity is about 1.76 nA cm-2 M-1, and the current is quite stable 20 min after the drop of the glucose solution is tested.

  7. Construction of a Turn Off-On-Off Fluorescent System Based on Competitive Coordination of Cu2+ between 6,7-Dihydroxycoumarin and Pyrophosphate Ion for Sensitive Assay of Pyrophosphatase Activity

    PubMed Central

    Zhao, Liu; Miao, Yanqing; Liu, Chunye; Zhang, Chenxiao

    2016-01-01

    The detection of pyrophosphatase (PPase) activity is of great significance in diagnosing diseases and understanding the function of PPase-related biological events. This study constructed a turn off-on-off fluorescent system for PPase activity assay based on PPase-regulated competitive coordination of Cu2+ between a water-soluble fluorescent probe 6,7-dihydroxycoumarin (DHC) and pyrophosphate (PPi). The probe DHC can coordinate with Cu2+ and consequently display on-off type fluorescence response. Furthermore, the in situ formed nonfluorescent Cu2+-DHC complex can act as an effective off-on type fluorescent probe for sensing PPi due to the higher coordination reactivity between Cu2+ and PPi than that between Cu2+ and DHC. The subsequent addition of PPase to the mixture containing Cu2+, DHC, and PPi leads to the fluorescence requenching of the system again (an off state) because PPase catalyzes the hydrolysis of PPi into orthophosphate in the reaction system. Under the optimum conditions, the decrease of the fluorescence intensity of DHC-Cu2+-PPi system was linear with the increase of the PPase activity in the range from 0.1 to 0.3 U. The detection limit was down to 0.028 U PPase (S/N = 3). Moreover, the as-established system was also applied to evaluate PPase inhibitor. This study offers a simple yet effective method for the detection of PPase activity. PMID:27766179

  8. Acid-Catalyzed Isomerization of Carvone to Carvacrol

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Mattingly, Shawn P.

    2005-01-01

    The acid-catalyzed isomerization of carvone to carvacrol, first reported by Ritter and Ginsburg, is especially well suited with a permanent-magnet FT instrument. The acid-catalyzed isomerization of carvone to carvacrol produced a 61% yield after a three hour reflux with 30% aqueous sulfuric acid.

  9. Application of a stochastic inverse to the geophysical inverse problem

    NASA Technical Reports Server (NTRS)

    Jordan, T. H.; Minster, J. B.

    1972-01-01

    The inverse problem for gross earth data can be reduced to an undertermined linear system of integral equations of the first kind. A theory is discussed for computing particular solutions to this linear system based on the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized inverse of Penrose and Moore. A Backus-Gilbert type tradeoff curve is constructed for the problem of estimating the solution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal point on this tradeoff curve. A useful form of the solution autocorrelation operator as a member of a one-parameter family of smoothing operators is derived.

  10. Full-waveform inversion of GPR data for civil engineering applications

    NASA Astrophysics Data System (ADS)

    van der Kruk, Jan; Kalogeropoulos, Alexis; Hugenschmidt, Johannes; Klotzsche, Anja; Busch, Sebastian; Vereecken, Harry

    2014-05-01

    Conventional GPR ray-based techniques are often limited in their capability to image complex structures due to the pertaining approximations. Due to the increased computational power, it is becoming more easy to use modeling and inversion tools that explicitly take into account the detailed electromagnetic wave propagation characteristics. In this way, new civil engineering application avenues are opening up that enable an improved high resolution imaging of quantitative medium properties. In this contribution, we show recent developments that enable the full-waveform inversion of off-ground, on-ground and crosshole GPR data. For a successful inversion, a proper start model must be used that generates synthetic data that overlaps the measured data with at least half a wavelength. In addition, the GPR system must be calibrated such that an effective wavelet is obtained that encompasses the complexity of the GPR source and receiver antennas. Simple geometries such as horizontal layers can be described with a limited number of model parameters, which enable the use of a combined global and local search using the Simplex search algorithm. This approach has been implemented for the full-waveform inversion of off-ground and on-ground GPR data measured over horizontally layered media. In this way, an accurate 3D frequency domain forward model of Maxwell's equation can be used where the integral representation of the electric field is numerically evaluated. The full-waveform inversion (FWI) for a large number of unknowns uses gradient-based optimization methods where a 3D to 2D conversion is used to apply this method to experimental data. Off-ground GPR data, measured over homogeneous concrete specimens, were inverted using the full-waveform inversion. In contrast to traditional ray-based techniques we were able to obtain quantitative values for the permittivity and conductivity and in this way distinguish between moisture and chloride effects. For increasing chloride

  11. Iodine-catalyzed diazo activation to access radical reactivity.

    PubMed

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  12. Absolutely and uniformly convergent iterative approach to inverse scattering with an infinite radius of convergence

    DOEpatents

    Kouri, Donald J [Houston, TX; Vijay, Amrendra [Houston, TX; Zhang, Haiyan [Houston, TX; Zhang, Jingfeng [Houston, TX; Hoffman, David K [Ames, IA

    2007-05-01

    A method and system for solving the inverse acoustic scattering problem using an iterative approach with consideration of half-off-shell transition matrix elements (near-field) information, where the Volterra inverse series correctly predicts the first two moments of the interaction, while the Fredholm inverse series is correct only for the first moment and that the Volterra approach provides a method for exactly obtaining interactions which can be written as a sum of delta functions.

  13. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  14. Voltage-Controlled On/Off Switching of Ferromagnetism in Manganite Supercapacitors.

    PubMed

    Molinari, Alan; Hahn, Horst; Kruk, Robert

    2018-01-01

    The ever-growing technological demand for more advanced microelectronic and spintronic devices keeps catalyzing the idea of controlling magnetism with an electric field. Although voltage-driven on/off switching of magnetization is already established in some magnetoelectric (ME) systems, often the coupling between magnetic and electric order parameters lacks an adequate reversibility, energy efficiency, working temperature, or switching speed. Here, the ME performance of a manganite supercapacitor composed of a ferromagnetic, spin-polarized ultrathin film of La 0.74 Sr 0.26 MnO 3 (LSMO) electrically charged with an ionic liquid electrolyte is investigated. Fully reversible, rapid, on/off switching of ferromagnetism in LSMO is demonstrated in combination with a shift in Curie temperature of up to 26 K and a giant ME coupling coefficient of ≈226 Oe V -1 . The application of voltages of only ≈2 V results in ultralow energy consumptions of about 90 µJ cm -2 . This work provides a step forward toward low-power, high-endurance electrical switching of magnetism for the development of high-performance ME spintronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Parsimony and goodness-of-fit in multi-dimensional NMR inversion

    NASA Astrophysics Data System (ADS)

    Babak, Petro; Kryuchkov, Sergey; Kantzas, Apostolos

    2017-01-01

    Multi-dimensional nuclear magnetic resonance (NMR) experiments are often used for study of molecular structure and dynamics of matter in core analysis and reservoir evaluation. Industrial applications of multi-dimensional NMR involve a high-dimensional measurement dataset with complicated correlation structure and require rapid and stable inversion algorithms from the time domain to the relaxation rate and/or diffusion domains. In practice, applying existing inverse algorithms with a large number of parameter values leads to an infinite number of solutions with a reasonable fit to the NMR data. The interpretation of such variability of multiple solutions and selection of the most appropriate solution could be a very complex problem. In most cases the characteristics of materials have sparse signatures, and investigators would like to distinguish the most significant relaxation and diffusion values of the materials. To produce an easy to interpret and unique NMR distribution with the finite number of the principal parameter values, we introduce a new method for NMR inversion. The method is constructed based on the trade-off between the conventional goodness-of-fit approach to multivariate data and the principle of parsimony guaranteeing inversion with the least number of parameter values. We suggest performing the inversion of NMR data using the forward stepwise regression selection algorithm. To account for the trade-off between goodness-of-fit and parsimony, the objective function is selected based on Akaike Information Criterion (AIC). The performance of the developed multi-dimensional NMR inversion method and its comparison with conventional methods are illustrated using real data for samples with bitumen, water and clay.

  16. Selection on Inversion Breakpoints Favors Proximity to Pairing Sensitive Sites in Drosophila melanogaster

    PubMed Central

    Corbett-Detig, Russell B.

    2016-01-01

    Chromosomal inversions are widespread among taxa, and have been implicated in a number of biological processes including adaptation, sex chromosome evolution, and segregation distortion. Consistent with selection favoring linkage between loci, it is well established that length is a selected trait of inversions. However, the factors that affect the distribution of inversion breakpoints remain poorly understood. “Sensitive sites” have been mapped on all euchromatic chromosome arms in Drosophila melanogaster, and may be a source of natural selection on inversion breakpoint positions. Briefly, sensitive sites are genomic regions wherein proximal structural rearrangements result in large reductions in local recombination rates in heterozygotes. Here, I show that breakpoints of common inversions are significantly more likely to lie within a cytological band containing a sensitive site than are breakpoints of rare inversions. Furthermore, common inversions for which neither breakpoint intersects a sensitive site are significantly longer than rare inversions, but common inversions whose breakpoints intersect a sensitive site show no evidence for increased length. I interpret these results to mean that selection favors inversions whose breakpoints disrupt synteny near to sensitive sites, possibly because these inversions suppress recombination in large genomic regions. To my knowledge this is the first evidence consistent with positive selection acting on inversion breakpoint positions. PMID:27343234

  17. Selection on Inversion Breakpoints Favors Proximity to Pairing Sensitive Sites in Drosophila melanogaster.

    PubMed

    Corbett-Detig, Russell B

    2016-09-01

    Chromosomal inversions are widespread among taxa, and have been implicated in a number of biological processes including adaptation, sex chromosome evolution, and segregation distortion. Consistent with selection favoring linkage between loci, it is well established that length is a selected trait of inversions. However, the factors that affect the distribution of inversion breakpoints remain poorly understood. "Sensitive sites" have been mapped on all euchromatic chromosome arms in Drosophila melanogaster, and may be a source of natural selection on inversion breakpoint positions. Briefly, sensitive sites are genomic regions wherein proximal structural rearrangements result in large reductions in local recombination rates in heterozygotes. Here, I show that breakpoints of common inversions are significantly more likely to lie within a cytological band containing a sensitive site than are breakpoints of rare inversions. Furthermore, common inversions for which neither breakpoint intersects a sensitive site are significantly longer than rare inversions, but common inversions whose breakpoints intersect a sensitive site show no evidence for increased length. I interpret these results to mean that selection favors inversions whose breakpoints disrupt synteny near to sensitive sites, possibly because these inversions suppress recombination in large genomic regions. To my knowledge this is the first evidence consistent with positive selection acting on inversion breakpoint positions. Copyright © 2016 by the Genetics Society of America.

  18. Suspended few-layer graphene beam electromechanical switch with abrupt on-off characteristics and minimal leakage current

    NASA Astrophysics Data System (ADS)

    Kim, Sung Min; Song, Emil B.; Lee, Sejoon; Seo, Sunae; Seo, David H.; Hwang, Yongha; Candler, R.; Wang, Kang L.

    2011-07-01

    Suspended few-layer graphene beam electro-mechanical switches (SGSs) with 0.15 μm air-gap are fabricated and electrically characterized. The SGS shows an abrupt on/off current characteristics with minimal off current. In conjunction with the narrow air-gap, the outstanding mechanical properties of graphene enable the mechanical switch to operate at a very low pull-in voltage (VPI) of 1.85 V, which is compatible with conventional complimentary metal-oxide-semiconductor (CMOS) circuit requirements. In addition, we show that the pull-in voltage exhibits an inverse dependence on the beam length.

  19. On the value of incorporating spatial statistics in large-scale geophysical inversions: the SABRe case

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.; Chambers, J. E.; Cirpka, O. A.; Nowak, W.

    2010-12-01

    Electrical Resistance Tomography (ERT) is a popular method for investigating subsurface heterogeneity. The method relies on measuring electrical potential differences and obtaining, through inverse modeling, the underlying electrical conductivity field, which can be related to hydraulic conductivities. The quality of site characterization strongly depends on the utilized inversion technique. Standard ERT inversion methods, though highly computationally efficient, do not consider spatial correlation of soil properties; as a result, they often underestimate the spatial variability observed in earth materials, thereby producing unrealistic subsurface models. Also, these methods do not quantify the uncertainty of the estimated properties, thus limiting their use in subsequent investigations. Geostatistical inverse methods can be used to overcome both these limitations; however, they are computationally expensive, which has hindered their wide use in practice. In this work, we compare a standard Gauss-Newton smoothness constrained least squares inversion method against the quasi-linear geostatistical approach using the three-dimensional ERT dataset of the SABRe (Source Area Bioremediation) project. The two methods are evaluated for their ability to: a) produce physically realistic electrical conductivity fields that agree with the wide range of data available for the SABRe site while being computationally efficient, and b) provide information on the spatial statistics of other parameters of interest, such as hydraulic conductivity. To explore the trade-off between inversion quality and computational efficiency, we also employ a 2.5-D forward model with corrections for boundary conditions and source singularities. The 2.5-D model accelerates the 3-D geostatistical inversion method. New adjoint equations are developed for the 2.5-D forward model for the efficient calculation of sensitivities. Our work shows that spatial statistics can be incorporated in large-scale ERT

  20. Spectroscopic determination of inverse photon efficiencies of W atoms in the scrape-off layer of TEXTOR

    NASA Astrophysics Data System (ADS)

    Brezinsek, S.; Laengner, M.; Coenen, J. W.; O'Mullane, M. G.; Pospieszczyk, A.; Sergienko, G.; Samm, U.

    2017-12-01

    Optical emission spectroscopy can be applied to determine in situ tungsten particle fluxes from erosion processes at plasma-facing materials. Inverse photon efficiencies convert photon fluxes of WI and WII line transitions into W and {{{W}}}+ particle fluxes, respectively, dependening on the local plasma conditions. Experiments in TEXTOR were carried out to determine effective conversion factors for different WI and WII transitions with the aid of WF6 injection into deuterium scrape-off layer plasmas in the electron temperature T e range between {T}{e}=20 {eV} and {T}{e}=82 {eV}. The inverse photon efficiencies or so-called effective \\tfrac{S}{{XB}}-values have been determined for WI lines at λ =400.9 {nm}, 429.5 nm, 488.7 nm, 498.3 nm, and 522.5 nm as well as for WII at λ =434.6 {nm} and compared with theoretical calculations from the ADAS data base. Moreover, a multi-machine scaling for the \\tfrac{S}{{XB}}-value in the range of T e between 2...100 {eV} has been determined for the most prominent WI line at λ =400.9 {nm} to \\tfrac{S}{{XB}}({T}{e})=53.63-56.07× {e}(0.045× {T{e}[{eV}])} considering experimental data from TEXTOR, ASDEX Upgrade, PSI and PISCES. Comparison with ADAS calculations for the same transition reveal a good qualitative agreement with the dependence on T e , but an underestimation of ADAS calculations of less than 25% over the full covered range of experimentally accessible T e in the multi-machine scaling. A good agreement within the experimental uncertainties is found between TEXTOR and ADAS \\tfrac{S}{{XB}}-values for WI at λ =429.5 {nm} and λ =488.7 {nm} whereas an underestimation of up to a factor two of ADAS values for WI at λ =522.5 {nm} and λ =498.3 {nm} was measured. Potentially, reasons for the discrepancy are an overestimation of applied ionisation rate coefficients in ADAS for neutral W and a stronger electron dependence n e for these transitions.

  1. Wavefield reconstruction inversion with a multiplicative cost function

    NASA Astrophysics Data System (ADS)

    da Silva, Nuno V.; Yao, Gang

    2018-01-01

    We present a method for the automatic estimation of the trade-off parameter in the context of wavefield reconstruction inversion (WRI). WRI formulates the inverse problem as an optimisation problem, minimising the data misfit while penalising with a wave equation constraining term. The trade-off between the two terms is balanced by a scaling factor that balances the contributions of the data-misfit term and the constraining term to the value of the objective function. If this parameter is too large then it implies penalizing for the wave equation imposing a hard constraint in the inversion. If it is too small, then this leads to a poorly constrained solution as it is essentially penalizing for the data misfit and not taking into account the physics that explains the data. This paper introduces a new approach for the formulation of WRI recasting its formulation into a multiplicative cost function. We demonstrate that the proposed method outperforms the additive cost function when the trade-off parameter is appropriately scaled in the latter, when adapting it throughout the iterations, and when the data is contaminated with Gaussian random noise. Thus this work contributes with a framework for a more automated application of WRI.

  2. Using CO2:CO Correlations to Improve Inverse Analyses of Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Suntharalingam, Parvadha; Jones, Dylan B. A.; Jacob, Daniel J.; Streets, David G.; Fu, Qingyan; Vay, Stephanie A.; Sachse, Glen W.

    2006-01-01

    Observed correlations between atmospheric concentrations of CO2 and CO represent potentially powerful information for improving CO2 surface flux estimates through coupled CO2-CO inverse analyses. We explore the value of these correlations in improving estimates of regional CO2 fluxes in east Asia by using aircraft observations of CO2 and CO from the TRACE-P campaign over the NW Pacific in March 2001. Our inverse model uses regional CO2 and CO surface fluxes as the state vector, separating biospheric and combustion contributions to CO2. CO2-CO error correlation coefficients are included in the inversion as off-diagonal entries in the a priori and observation error covariance matrices. We derive error correlations in a priori combustion source estimates of CO2 and CO by propagating error estimates of fuel consumption rates and emission factors. However, we find that these correlations are weak because CO source uncertainties are mostly determined by emission factors. Observed correlations between atmospheric CO2 and CO concentrations imply corresponding error correlations in the chemical transport model used as the forward model for the inversion. These error correlations in excess of 0.7, as derived from the TRACE-P data, enable a coupled CO2-CO inversion to achieve significant improvement over a CO2-only inversion for quantifying regional fluxes of CO2.

  3. When Ethyl Isocyanoacetate Meets Isatins: A 1,3-Dipolar/Inverse 1,3-Dipolar/Olefination Reaction for Access to 3-Ylideneoxindoles.

    PubMed

    Yuan, Wen-Kui; Cui, Tao; Liu, Wei; Wen, Li-Rong; Li, Ming

    2018-03-16

    A new CuI/1,10-phen-catalyzed reaction for the synthesis of 3-ylideneoxindoles from readily available isatins and ethyl isocyanoacetate, in which ethyl isocyanoacetate acts as a latent two-carbon donor like the Wittig reagent, is reported. A tandem procedure including 1,3-dipolar cycloaddition/inverse 1,3-dipolar ring opening/olefination allows the preparation of 3-ylideneoxindoles with broad functional group tolerance.

  4. Effect of transmitter turn-off time on transient soundings

    USGS Publications Warehouse

    Fitterman, D.V.; Anderson, W.L.

    1987-01-01

    A general procedure for computing the effect of non-zero turn-off time on the transient electromagnetic response is presented which can be applied to forward and inverse calculation methods for any transmitter-receiver configuration. We consider in detail the case of a large transmitter loop which has a receiver coil located at the center of the loop (central induction or in-loop array). For a linear turn-off ramp of width t0, the voltage response is shown to be the voltage due to an ideal step turn-off averaged over windows of width t0. Thus the effect is similar to that obtained by using averaging windows in the receiver. In general when time zero is taken to be the end of the ramp, the apparent resistivity increases for a homogeneous half-space over a limited time range. For time zero taken to be the start of the ramp the apparent resistivity is affected in the opposite direction. The effect of the ramp increases with increasing t0 and first-layer resistivity, is largest during the intermediate stage, and decreases with increasing time. It is shown that for a ramp turn-off, there is no effect in the early and late stages. For two-layered models with a resistive first layer (??1>??2), the apparent resistivity is increased in the intermediate stage. When the first layer is more conductive than the second layer (??1to the loop radius the apparent resistivity is initially decreased and then increases as time increases. Examples are presented which illustrate the strong influence of the geoelectrical section on the turn-off effect. Neglecting the turn-off ramp will affect data interpretation as shown by field examples; the influence is the greatest on near-surface layer parameters. ?? 1987.

  5. Resolvability of regional density structure and the road to direct density inversion - a principal-component approach to resolution analysis

    NASA Astrophysics Data System (ADS)

    Płonka, Agnieszka; Fichtner, Andreas

    2017-04-01

    Lateral density variations are the source of mass transport in the Earth at all scales, acting as drivers of convective motion. However, the density structure of the Earth remains largely unknown since classic seismic observables and gravity provide only weak constraints with strong trade-offs. Current density models are therefore often based on velocity scaling, making strong assumptions on the origin of structural heterogeneities, which may not necessarily be correct. Our goal is to assess if 3D density structure may be resolvable with emerging full-waveform inversion techniques. We have previously quantified the impact of regional-scale crustal density structure on seismic waveforms with the conclusion that reasonably sized density variations within the crust can leave a strong imprint on both travel times and amplitudes, and, while this can produce significant biases in velocity and Q estimates, the seismic waveform inversion for density may become feasible. In this study we perform principal component analyses of sensitivity kernels for P velocity, S velocity, and density. This is intended to establish the extent to which these kernels are linearly independent, i.e. the extent to which the different parameters may be constrained independently. We apply the method to data from 81 events around the Iberian Penninsula, registered in total by 492 stations. The objective is to find a principal kernel which would maximize the sensitivity to density, potentially allowing for as independent as possible density resolution. We find that surface (mosty Rayleigh) waves have significant sensitivity to density, and that the trade-off with velocity is negligible. We also show the preliminary results of the inversion.

  6. Probability of twin formation on self-catalyzed GaAs nanowires on Si substrate

    PubMed Central

    2012-01-01

    We attempted to control the incorporation of twin boundaries in self-catalyzed GaAs nanowires (NWs). Self-catalyzed GaAs NWs were grown on a Si substrate under various arsenic pressures using molecular beam epitaxy and the vapor-liquid-solid method. When the arsenic flux is low, wurtzite structures are dominant in the GaAs NWs. On the other hand, zinc blende structures become dominant as the arsenic flux rises. We discussed this phenomenon on the basis of thermodynamics and examined the probability of twin-boundary formation in detail. PMID:23043754

  7. On current drive by Ohkawa mechanism of electron cyclotron wave in large inverse aspect ratio tokamaks

    NASA Astrophysics Data System (ADS)

    Zheng, Pingwei; Gong, Xueyu; Lu, Xingqiang; He, Lihua; Cao, Jingjia; Huang, Qianhong; Deng, Sheng

    2018-03-01

    A localized and efficient current drive method in the outer-half region of the tokamak with a large inverse aspect ratio is proposed via the Ohkawa mechanism of electron cyclotron (EC) waves. Further off-axis Ohkawa current drive (OKCD) via EC waves was investigated in high electron beta β e HL-2M-like tokamaks with a large inverse aspect ratio, and in EAST-like tokamaks with a low inverse aspect ratio. OKCD can be driven efficiently, and the driven current profile is spatially localized in the radial region, ranging from 0.62 to 0.85, where the large fraction of trapped electrons provides an excellent advantage for OKCD. Furthermore, the current drive efficiency increases with an increase in minor radius, and then drops when the minor radius beyond a certain value. The effect of trapped electrons greatly enhances the current driving capability of the OKCD mechanism. The highest current drive efficiency can reach 0.183 by adjusting the steering mirror to change the toroidal and poloidal incident angle, and the total driven current by OKCD can reach 20-32 kA MW-1 in HL-2M-like tokamaks. The current drive is less efficient for the EAST-like scenario due to the lower inverse aspect ratio. The results show that OKCD may be a valuable alternative current drive method in large inverse aspect ratio tokamaks, and the potential capabilities of OKCD can be used to suppress some important magnetohydrodynamics instabilities in the far off-axis region.

  8. Plasma shaping effects on tokamak scrape-off layer turbulence

    NASA Astrophysics Data System (ADS)

    Riva, Fabio; Lanti, Emmanuel; Jolliet, Sébastien; Ricci, Paolo

    2017-03-01

    The impact of plasma shaping on tokamak scrape-off layer (SOL) turbulence is investigated. The drift-reduced Braginskii equations are written for arbitrary magnetic geometries, and an analytical equilibrium model is used to introduce the dependence of turbulence equations on tokamak inverse aspect ratio (ε ), Shafranov’s shift (Δ), elongation (κ), and triangularity (δ). A linear study of plasma shaping effects on the growth rate of resistive ballooning modes (RBMs) and resistive drift waves (RDWs) reveals that RBMs are strongly stabilized by elongation and negative triangularity, while RDWs are only slightly stabilized in non-circular magnetic geometries. Assuming that the linear instabilities saturate due to nonlinear local flattening of the plasma gradient, the equilibrium gradient pressure length {L}p=-{p}e/{{\

  9. Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data.

    PubMed

    Dosso, Stan E; Nielsen, Peter L

    2002-01-01

    This paper applies the new method of fast Gibbs sampling (FGS) to estimate the uncertainties of seabed geoacoustic parameters in a broadband, shallow-water acoustic survey, with the goal of interpreting the survey results and validating the method for experimental data. FGS applies a Bayesian approach to geoacoustic inversion based on sampling the posterior probability density to estimate marginal probability distributions and parameter covariances. This requires knowledge of the statistical distribution of the data errors, including both measurement and theory errors, which is generally not available. Invoking the simplifying assumption of independent, identically distributed Gaussian errors allows a maximum-likelihood estimate of the data variance and leads to a practical inversion algorithm. However, it is necessary to validate these assumptions, i.e., to verify that the parameter uncertainties obtained represent meaningful estimates. To this end, FGS is applied to a geoacoustic experiment carried out at a site off the west coast of Italy where previous acoustic and geophysical studies have been performed. The parameter uncertainties estimated via FGS are validated by comparison with: (i) the variability in the results of inverting multiple independent data sets collected during the experiment; (ii) the results of FGS inversion of synthetic test cases designed to simulate the experiment and data errors; and (iii) the available geophysical ground truth. Comparisons are carried out for a number of different source bandwidths, ranges, and levels of prior information, and indicate that FGS provides reliable and stable uncertainty estimates for the geoacoustic inverse problem.

  10. High on/off ratios in bilayer graphene field effect transistors realized by surface dopants.

    PubMed

    Szafranek, B N; Schall, D; Otto, M; Neumaier, D; Kurz, H

    2011-07-13

    The unique property of bilayer graphene to show a band gap tunable by external electrical fields enables a variety of different device concepts with novel functionalities for electronic, optoelectronic, and sensor applications. So far the operation of bilayer graphene-based field effect transistors requires two individual gates to vary the channel's conductance and to create a band gap. In this paper, we report on a method to increase the on/off ratio in single gated bilayer graphene field effect transistors by adsorbate doping. The adsorbate dopants on the upper side of the graphene establish a displacement field perpendicular to the graphene surface breaking the inversion symmetry of the two graphene layers. Low-temperature measurements indicate that the increased on/off ratio is caused by the opening of a mobility gap.

  11. Acid-catalyzed autohydrolysis of wheat straw to improve sugar recovery.

    PubMed

    Ertas, Murat; Han, Qiang; Jameel, Hasan

    2014-10-01

    A comparison study of autohydrolysis and acid-catalyzed autohydrolysis of wheat straw was performed to understand the impact of acid addition on overall sugar recovery. Autohydrolysis combined with refining is capable of achieving sugar recoveries in the mid 70s. If the addition of a small amount of acid is capable of increasing the sugar recovery even higher it may be economically attractive. Acetic, sulfuric, hydrochloric and sulfurous acids were selected for acid-catalyzed autohydrolysis pretreatments. Autohydrolysis with no acid at 190 °C showed the highest total sugar in the prehydrolyzate. Enzymatic hydrolysis was performed for all the post-treated solids with and without refining at enzyme loadings of 4 and 10 FPU/g for 96 h. Acid-catalyzed autohydrolysis at 190 °C with sulfurous acid showed the highest total sugar recovery of 81.2% at 4 FPU/g enzyme charge compared with 64.3% at 190 °C autohydrolysis without acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Following the footprints of polymorphic inversions on SNP data: from detection to association tests

    PubMed Central

    Cáceres, Alejandro; González, Juan R.

    2015-01-01

    Inversion polymorphisms have important phenotypic and evolutionary consequences in humans. Two different methodologies have been used to infer inversions from SNP dense data, enabling the use of large cohorts for their study. One approach relies on the differences in linkage disequilibrium across breakpoints; the other one captures the internal haplotype groups that tag the inversion status of chromosomes. In this article, we assessed the convergence of the two methods in the detection of 20 human inversions that have been reported in the literature. The methods converged in four inversions including inv-8p23, for which we studied its association with low-BMI in American children. Using a novel haplotype tagging method with control on inversion ancestry, we computed the frequency of inv-8p23 in two American cohorts and observed inversion haplotype admixture. Accounting for haplotype ancestry, we found that the European inverted allele in children carries a recessive risk of underweight, validated in an independent Spanish cohort (combined: OR= 2.00, P = 0.001). While the footprints of inversions on SNP data are complex, we show that systematic analyses, such as convergence of different methods and controlling for ancestry, can reveal the contribution of inversions to the ancestral composition of populations and to the heritability of human disease. PMID:25672393

  13. Acid-catalyzed rearrangements of flavan-4-phloroglucinol derivatives to novel 6-hydroxyphenyl-6a,llb-dihydro-6H-[1]benzofuro[2,3-c]-chromenes and hydroxyphenyl-3,2'-spirobi[dihydro[l]benzofurans

    Treesearch

    Petrus J. Steynberg; Jan P. Steynberg; Richard W. Hemingway; Daneel Ferreira; G. Wayne McGraw

    1997-01-01

    Acetic acid-catalyzed cleavage of proanthocyanidins in the presence of phloroglucinol gives a series of 2R procyanidin- and prodelphinidin-phloroglucinol adducts together with a novel 2S all-cis derivative implicating cleavage of the pyran ring and subsequent inversion of stereochernistry at C-2c. These flavan-4-phloroglucinol adducts also suffer dehydration to...

  14. Mechanistic insights into the rhenium-catalyzed alcohol-to-olefin dehydration reaction.

    PubMed

    Korstanje, Ties J; Jastrzebski, Johann T B H; Klein Gebbink, Robertus J M

    2013-09-23

    Rhenium-based complexes are powerful catalysts for the dehydration of various alcohols to the corresponding olefins. Here, we report on both experimental and theoretical (DFT) studies into the mechanism of the rhenium-catalyzed dehydration of alcohols to olefins in general, and the methyltrioxorhenium-catalyzed dehydration of 1-phenylethanol to styrene in particular. The experimental and theoretical studies are in good agreement, both showing the involvement of several proton transfers, and of a carbenium ion intermediate in the catalytic cycle. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ligand-Controlled Regioselective Copper-Catalyzed Trifluoromethylation To Generate (Trifluoromethyl)allenes.

    PubMed

    Ambler, Brett R; Peddi, Santosh; Altman, Ryan A

    2015-05-15

    "Cu-CF3" species have been used historically for a broad spectrum of nucleophilic trifluoromethylation reactions. Although recent advancements have employed ligands to stabilize and harness the reactivity of this key organometallic intermediate, the ability of a ligand to differentiate a regiochemical outcome of a Cu-CF3-mediated or -catalyzed reaction has not been previously reported. Herein, we report the first example of a Cu-catalyzed trifluoromethylation reaction in which a ligand controls the regiochemical outcome. More specifically, we demonstrate the ability of bipyridyl-derived ligands to control the regioselectivity of the Cu-catalyzed nucleophilic trifluoromethylation reactions of propargyl electrophiles to generate (trifluoromethyl)allenes. This method provides a variety of di-, tri-, and tetrasubstituted (trifluoromethyl)allenes, which can be further modified to generate complex fluorinated substructures.

  16. An evolutive real-time source inversion based on a linear inverse formulation

    NASA Astrophysics Data System (ADS)

    Sanchez Reyes, H. S.; Tago, J.; Cruz-Atienza, V. M.; Metivier, L.; Contreras Zazueta, M. A.; Virieux, J.

    2016-12-01

    Finite source inversion is a steppingstone to unveil earthquake rupture. It is used on ground motion predictions and its results shed light on seismic cycle for better tectonic understanding. It is not yet used for quasi-real-time analysis. Nowadays, significant progress has been made on approaches regarding earthquake imaging, thanks to new data acquisition and methodological advances. However, most of these techniques are posterior procedures once seismograms are available. Incorporating source parameters estimation into early warning systems would require to update the source build-up while recording data. In order to go toward this dynamic estimation, we developed a kinematic source inversion formulated in the time-domain, for which seismograms are linearly related to the slip distribution on the fault through convolutions with Green's functions previously estimated and stored (Perton et al., 2016). These convolutions are performed in the time-domain as we progressively increase the time window of records at each station specifically. Selected unknowns are the spatio-temporal slip-rate distribution to keep the linearity of the forward problem with respect to unknowns, as promoted by Fan and Shearer (2014). Through the spatial extension of the expected rupture zone, we progressively build-up the slip-rate when adding new data by assuming rupture causality. This formulation is based on the adjoint-state method for efficiency (Plessix, 2006). The inverse problem is non-unique and, in most cases, underdetermined. While standard regularization terms are used for stabilizing the inversion, we avoid strategies based on parameter reduction leading to an unwanted non-linear relationship between parameters and seismograms for our progressive build-up. Rise time, rupture velocity and other quantities can be extracted later on as attributs from the slip-rate inversion we perform. Satisfactory results are obtained on a synthetic example (FIgure 1) proposed by the Source

  17. Doped organic transistors operating in the inversion and depletion regime

    PubMed Central

    Lüssem, Björn; Tietze, Max L.; Kleemann, Hans; Hoßbach, Christoph; Bartha, Johann W.; Zakhidov, Alexander; Leo, Karl

    2013-01-01

    The inversion field-effect transistor is the basic device of modern microelectronics and is nowadays used more than a billion times on every state-of-the-art computer chip. In the future, this rigid technology will be complemented by flexible electronics produced at extremely low cost. Organic field-effect transistors have the potential to be the basic device for flexible electronics, but still need much improvement. In particular, despite more than 20 years of research, organic inversion mode transistors have not been reported so far. Here we discuss the first realization of organic inversion transistors and the optimization of organic depletion transistors by our organic doping technology. We show that the transistor parameters—in particular, the threshold voltage and the ON/OFF ratio—can be controlled by the doping concentration and the thickness of the transistor channel. Injection of minority carriers into the doped transistor channel is achieved by doped contacts, which allows forming an inversion layer. PMID:24225722

  18. Top-gate organic depletion and inversion transistors with doped channel and injection contact

    NASA Astrophysics Data System (ADS)

    Liu, Xuhai; Kasemann, Daniel; Leo, Karl

    2015-03-01

    Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.

  19. Ruthenium(III) catalyzed oxidation of sugar alcohols by dichloroisocyanuric acid—A kinetic study

    NASA Astrophysics Data System (ADS)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2016-02-01

    Kinetics of ruthenium(III) catalyzed oxidation of biologically important sugar alcohols (myo-inositol, D-sorbitol, and D-mannitol) by dichloroisocyanuric acid was carried out in aqueous acetic acid—perchloric medium. The reactions were found to be first order in case of oxidant and ruthenium(III). Zero order was observed with the concentrations of sorbitol and mannitol whereas, a positive fractional order was found in the case of inositol concentration. An inverse fractional order was observed with perchloric acid in oxidation of three substrates. Arrhenius parameters were calculated and a plausible mechanism was proposed.

  20. Effects of off-road vehicles on vertebrates in the California desert

    USGS Publications Warehouse

    Bury, R. Bruce; Luckenbach, Roger A.; Busack, Stephen D.

    1977-01-01

    Off-road vehicle (ORV) use provides a form of outdoor recreation that is increasingly popular. The purpose of this study was to examine the impact of these machines on creosote shrub habitat and associated wildlife in the western California Desert. Comparisons at eight paired sites (Control and ORV use) demonstrate that ORV-use areas have significantly fewer species of vertebrates, greatly reduced abundance of individuals, and noticeably lower reptile and small mammal biomass. Diversity, density, and biomass of reptiles and small mammals are inversely related to the level of ORV usage. The number of individuals found in heavily used and pit areas was 55% and 20%, respectively, of that present in undisturbed sites. Biomass estimates were even lower (23% and 17%, respectively). Censuses at three localities also showed decreased diversity, density, and biomass estimates of breeding birds in DRV-used areas. Present evidence indicates that off-road vehicles have a negative effect on desert wildlife over large areas. This widespread impact must be recognized to manage and conserve resources in DRV-use areas.

  1. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    PubMed

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  2. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  3. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  4. Screening and selection of artificial riboswitches.

    PubMed

    Harbaugh, Svetlana V; Martin, Jennifer; Weinstein, Jenna; Ingram, Grant; Kelley-Loughnane, Nancy

    2018-05-17

    Synthetic riboswitches are engineered to regulate gene expression in response to a variety of non-endogenous small molecules, and a challenge to select this engineered response requires robust screening tools. A new synthetic riboswitch can be created by linking an in vitro-selected aptamer library with a randomized expression platform followed by in vivo selection and screening. In order to determine response to analyte, we developed a dual-color reporter comprising elements of the E. coli fimbriae phase variation system: recombinase FimE controlled by a synthetic riboswitch and an invertible DNA segment (fimS) containing a constitutively active promoter placed between two fluorescent protein genes. Without an analyte, the fluorescent reporter constitutively expressed green fluorescent protein (GFPa1). Addition of the analyte initiated translation of fimE causing unidirectional inversion of the fimS segment and constitutive expression of red fluorescent protein (mKate2). The dual color reporter system can be used to select and to optimize artificial riboswitches in E. coli cells. In this work, the enriched library of aptamers incorporated into the riboswitch architecture reduces the sequence search space by offering a higher percentage of potential ligand binders. The study was designed to produce structure switching aptamers, a necessary feature for riboswitch function and efficiently quantify this function using the dual color reporter system. Copyright © 2018. Published by Elsevier Inc.

  5. [Study on the chemical constituents of Rhizoma Cyperi].

    PubMed

    Wu, Xi; Xia, Hou-Lin; Huang, Li-Hua; Chen, Dan-Dan; Chen, Jin-Yu; Weng, Hai-Ting

    2008-07-01

    To study the chemical constituents of Rhizoma Cyperi. The constituents were separated and purified by silica gel column chromatography, their structures were identified on the basis of physico-chemical properties and spectral data. Six compounds were isolated and identified as physicion (1), hexadecanoic acid (2), beta-sitosterol (3), stigmasterol (4), catenarin (5), daucosterol (6). Compounds 1, 4, 5 were isolated from this plant for the first fime.

  6. Resting State and Elementary Steps of the Coupling of Aryl Halides with Thiols Catalyzed by Alkylbisphosphine Complexes of Palladium

    PubMed Central

    Alvaro, Elsa

    2010-01-01

    Detailed mechanistic studies on the coupling of aryl halides with thiols catalyzed by palladium complexes of the alkylbisphosphine ligand CyPF-tBu (1-dicyclohexylphosphino-2-di-tert-butylphosphinoethylferrocene) are reported. The elementary steps that constitute the catalytic cycle, i.e. oxidative addition, transmetalation and reductive elimination, have been studied, and their relative rates are reported. Each of the steps of the catalytic process occurs at temperatures that are much lower than those required for the reactions catalyzed by a combination of palladium precursors and CyPF-tBu. To explain these differences in rates between the catalytic and stoichiometric reactions, studies were conducted to identify the resting state of the catalyst of the reactions catalyzed by a combination of Pd(OAc)2 and CyPF-tBu, a combination of Pd(dba)2 and CyPF-tBu, or the likely intermediate Pd(CyPF-tBu)(Ar)(Br). These show that the major palladium complex in each case lies off of the catalytic cycle. The resting state of the reactions catalyzed by Pd(OAc)2 and CyPF-tBu was the palladium bis-thiolate complex [Pd(CyPF-tBu)(SR)2] (R = alkyl or aryl). The resting state in reactions catalyzed by Pd2(dba)3 and CyPF-tBu was the binuclear complex [Pd(CyPF-tBu)]2(μ2, η2-dba) (9). The resting state of reactions of both aromatic and aliphatic thiols catalyzed by [Pd(CyPF-tBu)(p-tolyl)(Br)] (3a) was the hydridopalladium thiolate complex [Pd(CyPF-tBu)(H)(SR)] (R= alkyl and aryl). All these palladium species have been prepared independently, and the mechanisms by which they enter the catalytic cycle have been examined in detail. These features of the reaction catalyzed by palladium and CyPF-tBu have been compared with those of reactions catalyzed by the alkylbisphosphine DiPPF and Pd(OAc)2 or Pd(dba)2. Our data indicate that the resting states of these reactions are similar to each other and that our mechanistic conclusions about reactions catalyzed by palladium and CyPF-tBu can be

  7. Nickel-Catalyzed, Carbonyl-Ene-Type Reactions: Selective for Alpha Olefins and More Efficient with Electron-Rich Aldehydes

    PubMed Central

    Ho, Chun-Yu; Ng, Sze-Sze; Jamison, Timothy F.

    2011-01-01

    Described are several classes of unusual or unprecedented carbonyl-ene-type reactions, including those between alpha olefins and aromatic aldehydes. Catalyzed by nickel, these processes complement existing Lewis acid-catalyzed methods in several respects. Not only are monosubstituted alkenes, aromatic aldehydes, and tert-alkyl aldehydes effective substrates, but monosubstituted olefins also react faster than those that are more substituted, and large or electron-rich aldehydes are more effective than small or electron-poor ones. Conceptually, in the presence of a nickel-phosphine catalyst, the combination of off-the-shelf alkenes, silyl triflates, and triethylamine functions as a replacement for an allylmetal reagent. PMID:16620106

  8. On the inversion-indel distance

    PubMed Central

    2013-01-01

    Background The inversion distance, that is the distance between two unichromosomal genomes with the same content allowing only inversions of DNA segments, can be computed thanks to a pioneering approach of Hannenhalli and Pevzner in 1995. In 2000, El-Mabrouk extended the inversion model to allow the comparison of unichromosomal genomes with unequal contents, thus insertions and deletions of DNA segments besides inversions. However, an exact algorithm was presented only for the case in which we have insertions alone and no deletion (or vice versa), while a heuristic was provided for the symmetric case, that allows both insertions and deletions and is called the inversion-indel distance. In 2005, Yancopoulos, Attie and Friedberg started a new branch of research by introducing the generic double cut and join (DCJ) operation, that can represent several genome rearrangements (including inversions). Among others, the DCJ model gave rise to two important results. First, it has been shown that the inversion distance can be computed in a simpler way with the help of the DCJ operation. Second, the DCJ operation originated the DCJ-indel distance, that allows the comparison of genomes with unequal contents, considering DCJ, insertions and deletions, and can be computed in linear time. Results In the present work we put these two results together to solve an open problem, showing that, when the graph that represents the relation between the two compared genomes has no bad components, the inversion-indel distance is equal to the DCJ-indel distance. We also give a lower and an upper bound for the inversion-indel distance in the presence of bad components. PMID:24564182

  9. Resolution and Trade-offs in Finite Fault Inversions for Large Earthquakes Using Teleseismic Signals (Invited)

    NASA Astrophysics Data System (ADS)

    Lay, T.; Ammon, C. J.

    2010-12-01

    An unusually large number of widely distributed great earthquakes have occurred in the past six years, with extensive data sets of teleseismic broadband seismic recordings being available in near-real time for each event. Numerous research groups have implemented finite-fault inversions that utilize the rapidly accessible teleseismic recordings, and slip models are regularly determined and posted on websites for all major events. The source inversion validation project has already demonstrated that for events of all sizes there is often significant variability in models for a given earthquake. Some of these differences can be attributed to variations in data sets and procedures used for including signals with very different bandwidth and signal characteristics into joint inversions. Some differences can also be attributed to choice of velocity structure and data weighting. However, our experience is that some of the primary causes of solution variability involve rupture model parameterization and imposed kinematic constraints such as rupture velocity and subfault source time function description. In some cases it is viable to rapidly perform separate procedures such as teleseismic array back-projection or surface wave directivity analysis to reduce the uncertainties associated with rupture velocity, and it is possible to explore a range of subfault source parameterizations to place some constraints on which model features are robust. In general, many such tests are performed, but not fully described, with single model solutions being posted or published, with limited insight into solution confidence being conveyed. Using signals from recent great earthquakes in the Kuril Islands, Solomon Islands, Peru, Chile and Samoa, we explore issues of uncertainty and robustness of solutions that can be rapidly obtained by inversion of teleseismic signals. Formalizing uncertainty estimates remains a formidable undertaking and some aspects of that challenge will be addressed.

  10. Dependence of paracentric inversion rate on tract length.

    PubMed

    York, Thomas L; Durrett, Rick; Nielsen, Rasmus

    2007-04-03

    We develop a Bayesian method based on MCMC for estimating the relative rates of pericentric and paracentric inversions from marker data from two species. The method also allows estimation of the distribution of inversion tract lengths. We apply the method to data from Drosophila melanogaster and D. yakuba. We find that pericentric inversions occur at a much lower rate compared to paracentric inversions. The average paracentric inversion tract length is approx. 4.8 Mb with small inversions being more frequent than large inversions. If the two breakpoints defining a paracentric inversion tract are uniformly and independently distributed over chromosome arms there will be more short tract-length inversions than long; we find an even greater preponderance of short tract lengths than this would predict. Thus there appears to be a correlation between the positions of breakpoints which favors shorter tract lengths. The method developed in this paper provides the first statistical estimator for estimating the distribution of inversion tract lengths from marker data. Application of this method for a number of data sets may help elucidate the relationship between the length of an inversion and the chance that it will get accepted.

  11. Dependence of paracentric inversion rate on tract length

    PubMed Central

    York, Thomas L; Durrett, Rick; Nielsen, Rasmus

    2007-01-01

    Background We develop a Bayesian method based on MCMC for estimating the relative rates of pericentric and paracentric inversions from marker data from two species. The method also allows estimation of the distribution of inversion tract lengths. Results We apply the method to data from Drosophila melanogaster and D. yakuba. We find that pericentric inversions occur at a much lower rate compared to paracentric inversions. The average paracentric inversion tract length is approx. 4.8 Mb with small inversions being more frequent than large inversions. If the two breakpoints defining a paracentric inversion tract are uniformly and independently distributed over chromosome arms there will be more short tract-length inversions than long; we find an even greater preponderance of short tract lengths than this would predict. Thus there appears to be a correlation between the positions of breakpoints which favors shorter tract lengths. Conclusion The method developed in this paper provides the first statistical estimator for estimating the distribution of inversion tract lengths from marker data. Application of this method for a number of data sets may help elucidate the relationship between the length of an inversion and the chance that it will get accepted. PMID:17407601

  12. Susceptibility of Goethite to Fe2+-Catalyzed Recrystallization over Time.

    PubMed

    Joshi, Prachi; Fantle, Matthew S; Larese-Casanova, Philip; Gorski, Christopher A

    2017-10-17

    Recent work has shown that iron oxides, such as goethite and hematite, may recrystallize in the presence of aqueous Fe 2+ under anoxic conditions. This process, referred to as Fe 2+ -catalyzed recrystallization, can influence water quality by causing the incorporation/release of environmental contaminants and biological nutrients. Accounting for the effects of Fe 2+ -catalyzed recrystallization on water quality requires knowing the time scale over which recrystallization occurs. Here, we tested the hypothesis that nanoparticulate goethite becomes less susceptible to Fe 2+ -catalyzed recrystallization over time. We set up two batches of reactors in which 55 Fe 2+ tracer was added at two different time points and tracked the 55 Fe partitioning in the aqueous and goethite phases over 60 days. Less 55 Fe uptake occurred between 30 and 60 days than between 0 and 30 days, suggesting goethite recrystallization slowed with time. Fitting the data with a box model indicated that 17% of the goethite recrystallized after 30 days of reaction, and an additional 2% recrystallized between 30 and 60 days. The decreasing susceptibility of goethite to recrystallize as it reacted with aqueous Fe 2+ suggested that recrystallization is likely only an important process over short time scales.

  13. Switching Logic for Converting Off-grid PV Customers to On-grid by Utilizing Off-grid Inverter and Battery

    NASA Astrophysics Data System (ADS)

    Anishkumar, A. R.; Sreejaya, P.

    2016-12-01

    Kerala is a state in India having a very good potential for solar PV energy production. The domestic customers in Kerala using PV system are approximately 15 % and almost all of them are using the off-grid PV system. When these off grid customers move to on-grid system, off grid system accessories such as inverter and batteries become redundant. In this paper, a switching logic has been developed for the effective utilization of off grid accessories and reducing islanding power loss for on grid customers. An algorithm is proposed for the switching logic and it is verified using simulation results and hardware implementation.

  14. Asymmetric Additions to Dienes Catalyzed by a Dithiophosphoric Acid

    PubMed Central

    Shapiro, Nathan D.; Rauniyar, Vivek; Hamilton, Gregory L.; Wu, Jeffrey; Toste, F. Dean

    2011-01-01

    Chiral Brønsted acids have become an invaluable tool for achieving a variety of asymmetric chemical transformations under catalytic conditions while avoiding the use of toxic and expensive metals1–8. While the catalysts developed so far are remarkably effective at activating polarized functional groups, chemists have not yet been able to use organic Brønsted acids to catalyze highly enantioselective transformations of unactivated carbon-carbon multiple bonds. This deficiency persists despite the fact that racemic acid-catalyzed “Markovnikov” additions to olefins are a well-established part of the chemist’s toolbox. Here we show that chiral dithiophosphoric acids catalyze the intramolecular hydroamination and hydroarylation of dienes and allenes to generate heterocyclic products in exceptional yield and enantiomeric excess. To help rationalize the unique success of this catalytic system, we present a mechanistic hypothesis that involves the addition of the acid catalyst to the diene followed by SN2′ displacement of the resulting dithiophosphate intermediate. Mass spectrometry and deuterium labelling studies are presented in support of the proposed mechanism. The catalysts and concepts revealed in this study should prove applicable to other asymmetric functionalizations of unsaturated systems. PMID:21307938

  15. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy.

    PubMed

    Dong, Zhenning; André, Yamina; Dubrovskii, Vladimir G; Bougerol, Catherine; Leroux, Christine; Ramdani, Mohammed R; Monier, Guillaume; Trassoudaine, Agnès; Castelluci, Dominique; Gil, Evelyne

    2017-03-24

    Gold-free GaAs nanowires on silicon substrates can pave the way for monolithic integration of photonic nanodevices with silicon electronic platforms. It is extensively documented that the self-catalyzed approach works well in molecular beam epitaxy but is much more difficult to implement in vapor phase epitaxies. Here, we report the first gallium-catalyzed hydride vapor phase epitaxy growth of long (more than 10 μm) GaAs nanowires on Si(111) substrates with a high integrated growth rate up to 60 μm h -1 and pure zincblende crystal structure. The growth is achieved by combining a low temperature of 600 °C with high gaseous GaCl/As flow ratios to enable dechlorination and formation of gallium droplets. GaAs nanowires exhibit an interesting bottle-like shape with strongly tapered bases, followed by straight tops with radii as small as 5 nm. We present a model that explains the peculiar growth mechanism in which the gallium droplets nucleate and rapidly swell on the silicon surface but then are gradually consumed to reach a stationary size. Our results unravel the necessary conditions for obtaining gallium-catalyzed GaAs nanowires by vapor phase epitaxy techniques.

  16. Optical inverse-square displacement sensor

    DOEpatents

    Howe, R.D.; Kychakoff, G.

    1989-09-12

    This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R + [Delta]R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as given in an equation. 10 figs.

  17. Optical inverse-square displacement sensor

    DOEpatents

    Howe, Robert D.; Kychakoff, George

    1989-01-01

    This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R+.DELTA.R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as ##EQU1##

  18. Inverse relaxation effect of azo-dye molecules: The role of the film anisotropy

    NASA Astrophysics Data System (ADS)

    Sehnem, A. L.; Faita, F. L.; Cabrera, F. C.; Job, A. E.; Bechtold, I. H.

    2013-11-01

    We investigated the effect generally treated in the literature as inverse relaxation, which is related to an increase in the birefringence of azopolymer films after the inscription laser is turned off. The results demonstrate that films prepared with the casting method on anisotropic substrates induce a preferential organization of the polymeric chains. Inverse relaxation is evidenced only when the photo-alignment of the azo groups is induced parallel to the orientation of the polymeric chains. Thus, it is possible to enhance the optical storage in these systems with appropriate alignment methods.

  19. Frechet derivatives for shallow water ocean acoustic inverse problems

    NASA Astrophysics Data System (ADS)

    Odom, Robert I.

    2003-04-01

    For any inverse problem, finding a model fitting the data is only half the problem. Most inverse problems of interest in ocean acoustics yield nonunique model solutions, and involve inevitable trade-offs between model and data resolution and variance. Problems of uniqueness and resolution and variance trade-offs can be addressed by examining the Frechet derivatives of the model-data functional with respect to the model variables. Tarantola [Inverse Problem Theory (Elsevier, Amsterdam, 1987), p. 613] published analytical formulas for the basic derivatives, e.g., derivatives of pressure with respect to elastic moduli and density. Other derivatives of interest, such as the derivative of transmission loss with respect to attenuation, can be easily constructed using the chain rule. For a range independent medium the analytical formulas involve only the Green's function and the vertical derivative of the Green's function for the medium. A crucial advantage of the analytical formulas for the Frechet derivatives over numerical differencing is that they can be computed with a single pass of any program which supplies the Green's function. Various derivatives of interest in shallow water ocean acoustics are presented and illustrated by an application to the sensitivity of measured pressure to shallow water sediment properties. [Work supported by ONR.

  20. Mapping the Moho with seismic surface waves: Sensitivity, resolution, and recommended inversion strategies

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergei; Adam, Joanne; Meier, Thomas

    2013-04-01

    Seismic surface waves have been used to study the Earth's crust since the early days of modern seismology. In the last decade, surface-wave crustal imaging has been rejuvenated by the emergence of new, array techniques (ambient-noise and teleseismic interferometry). The strong sensitivity of both Rayleigh and Love waves to the Moho is evident from a mere visual inspection of their dispersion curves or waveforms. Yet, strong trade-offs between the Moho depth and crustal and mantle structure in surface-wave inversions have prompted doubts regarding their capacity to resolve the Moho. Although the Moho depth has been an inversion parameter in numerous surface-wave studies, the resolution of Moho properties yielded by a surface-wave inversion is still somewhat uncertain and controversial. We use model-space mapping in order to elucidate surface waves' sensitivity to the Moho depth and the resolution of their inversion for it. If seismic wavespeeds within the crust and upper mantle are known, then Moho-depth variations of a few kilometres produce large (over 1 per cent) perturbations in phase velocities. However, in inversions of surface-wave data with no a priori information (wavespeeds not known), strong Moho-depth/shear-speed trade-offs will mask about 90 per cent of the Moho-depth signal, with remaining phase-velocity perturbations 0.1-0.2 per cent only. In order to resolve the Moho with surface waves alone, errors in the data must thus be small (up to 0.2 per cent for resolving continental Moho). If the errors are larger, Moho-depth resolution is not warranted and depends on error distribution with period, with errors that persist over broad period ranges particularly damaging. An effective strategy for the inversion of surface-wave data alone for the Moho depth is to, first, constrain the crustal and upper-mantle structure by inversion in a broad period range and then determine the Moho depth in inversion in a narrow period range most sensitive to it, with the

  1. Colliding-Droplet Microreactor: Rapid On-Demand Inertial Mixing and Metal-Catalyzed Aqueous Phase Oxidation Processes.

    PubMed

    Davis, Ryan D; Jacobs, Michael I; Houle, Frances A; Wilson, Kevin R

    2017-11-21

    In-depth investigations of the kinetics of aqueous chemistry occurring in microdroplet environments require experimental techniques that allow a reaction to be initiated at a well-defined point in time and space. Merging microdroplets of different reactants is one such approach. The mixing dynamics of unconfined (airborne) microdroplets have yet to be studied in detail, which is an essential step toward widespread use and application of merged droplet microreactors for monitoring chemical reactions. Here, we present an on-demand experimental approach for initiating chemical reactions in and characterizing the mixing dynamics of colliding airborne microdroplets (40 ± 5 μm diameter) using a streak-based fluorescence microscopy technique. The advantages of this approach include the ability to generate two well-controlled monodisperse microdroplet streams and collide (and thus mix) the microdroplets with high spatial and temporal control while consuming small amounts of sample (<0.1 μL/s). Mixing times are influenced not only by the velocity at which microdroplets collide but also the geometry of the collision (i.e., head-on vs off-center collision). For head-on collisions, we achieve submillisecond mixing times ranging from ∼900 μs at a collision velocity of 0.1 m/s to <200 μs at ∼6 m/s. For low-velocity (<1 m/s) off-center collisions, mixing times were consistent with the head-on cases. For high-velocity (i.e., > 1 m/s) off-center collisions, mixing times increased by as much as a factor of 6 (e.g., at ∼6 m/s, mixing times increased from <200 μs for head-on collisions to ∼1200 μs for highly off-center collisions). At collision velocities >7 m/s, droplet separation and fragmentation occurred, resulting in incomplete mixing. These results suggest a limited range of collision velocities over which complete and rapid mixing can be achieved when using airborne merged microdroplets to, e.g., study reaction kinetics when reaction times are short relative to

  2. Colliding-Droplet Microreactor: Rapid On-Demand Inertial Mixing and Metal-Catalyzed Aqueous Phase Oxidation Processes

    DOE PAGES

    Davis, Ryan D.; Jacobs, Michael I.; Houle, Frances A.; ...

    2017-10-30

    In-depth investigations of the kinetics of aqueous chemistry occurring in microdroplet environments require experimental techniques that allow a reaction to be initiated at a well-defined point in time and space. Merging microdroplets of different reactants is one such approach. The mixing dynamics of unconfined (airborne) microdroplets have yet to be studied in detail, which is an essential step toward widespread use and application of merged droplet microreactors for monitoring chemical reactions. Here, we present an on-demand experimental approach for initiating chemical reactions in and characterizing the mixing dynamics of colliding airborne microdroplets (40 ± 5 μm diameter) using a streak-basedmore » fluorescence microscopy technique. The advantages of this approach include the ability to generate two well-controlled monodisperse microdroplet streams and collide (and thus mix) the microdroplets with high spatial and temporal control while consuming small amounts of sample (<0.1 μL/s). Mixing times are influenced not only by the velocity at which microdroplets collide but also the geometry of the collision (i.e., head-on vs off-center collision). For head-on collisions, we achieve submillisecond mixing times ranging from ~900 μs at a collision velocity of 0.1 m/s to <200 μs at ~6 m/s. For low-velocity (<1 m/s) off-center collisions, mixing times were consistent with the head-on cases. For high-velocity (i.e., > 1 m/s) off-center collisions, mixing times increased by as much as a factor of 6 (e.g., at ~6 m/s, mixing times increased from <200 μs for head-on collisions to ~1200 μs for highly off-center collisions). At collision velocities >7 m/s, droplet separation and fragmentation occurred, resulting in incomplete mixing. These results suggest a limited range of collision velocities over which complete and rapid mixing can be achieved when using airborne merged microdroplets to, e.g., study reaction kinetics when reaction times are short relative to

  3. Colliding-Droplet Microreactor: Rapid On-Demand Inertial Mixing and Metal-Catalyzed Aqueous Phase Oxidation Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Ryan D.; Jacobs, Michael I.; Houle, Frances A.

    In-depth investigations of the kinetics of aqueous chemistry occurring in microdroplet environments require experimental techniques that allow a reaction to be initiated at a well-defined point in time and space. Merging microdroplets of different reactants is one such approach. The mixing dynamics of unconfined (airborne) microdroplets have yet to be studied in detail, which is an essential step toward widespread use and application of merged droplet microreactors for monitoring chemical reactions. Here, we present an on-demand experimental approach for initiating chemical reactions in and characterizing the mixing dynamics of colliding airborne microdroplets (40 ± 5 μm diameter) using a streak-basedmore » fluorescence microscopy technique. The advantages of this approach include the ability to generate two well-controlled monodisperse microdroplet streams and collide (and thus mix) the microdroplets with high spatial and temporal control while consuming small amounts of sample (<0.1 μL/s). Mixing times are influenced not only by the velocity at which microdroplets collide but also the geometry of the collision (i.e., head-on vs off-center collision). For head-on collisions, we achieve submillisecond mixing times ranging from ~900 μs at a collision velocity of 0.1 m/s to <200 μs at ~6 m/s. For low-velocity (<1 m/s) off-center collisions, mixing times were consistent with the head-on cases. For high-velocity (i.e., > 1 m/s) off-center collisions, mixing times increased by as much as a factor of 6 (e.g., at ~6 m/s, mixing times increased from <200 μs for head-on collisions to ~1200 μs for highly off-center collisions). At collision velocities >7 m/s, droplet separation and fragmentation occurred, resulting in incomplete mixing. These results suggest a limited range of collision velocities over which complete and rapid mixing can be achieved when using airborne merged microdroplets to, e.g., study reaction kinetics when reaction times are short relative to

  4. The Source Inversion Validation (SIV) Initiative: A Collaborative Study on Uncertainty Quantification in Earthquake Source Inversions

    NASA Astrophysics Data System (ADS)

    Mai, P. M.; Schorlemmer, D.; Page, M.

    2012-04-01

    Earthquake source inversions image the spatio-temporal rupture evolution on one or more fault planes using seismic and/or geodetic data. Such studies are critically important for earthquake seismology in general, and for advancing seismic hazard analysis in particular, as they reveal earthquake source complexity and help (i) to investigate earthquake mechanics; (ii) to develop spontaneous dynamic rupture models; (iii) to build models for generating rupture realizations for ground-motion simulations. In applications (i - iii), the underlying finite-fault source models are regarded as "data" (input information), but their uncertainties are essentially unknown. After all, source models are obtained from solving an inherently ill-posed inverse problem to which many a priori assumptions and uncertain observations are applied. The Source Inversion Validation (SIV) project is a collaborative effort to better understand the variability between rupture models for a single earthquake (as manifested in the finite-source rupture model database) and to develop robust uncertainty quantification for earthquake source inversions. The SIV project highlights the need to develop a long-standing and rigorous testing platform to examine the current state-of-the-art in earthquake source inversion, and to develop and test novel source inversion approaches. We will review the current status of the SIV project, and report the findings and conclusions of the recent workshops. We will briefly discuss several source-inversion methods, how they treat uncertainties in data, and assess the posterior model uncertainty. Case studies include initial forward-modeling tests on Green's function calculations, and inversion results for synthetic data from spontaneous dynamic crack-like strike-slip earthquake on steeply dipping fault, embedded in a layered crustal velocity-density structure.

  5. Towards a Full Waveform Ambient Noise Inversion

    NASA Astrophysics Data System (ADS)

    Sager, K.; Ermert, L. A.; Boehm, C.; Fichtner, A.

    2015-12-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green's function between the two receivers. This assumption, however, is only met under specific conditions, for instance, wavefield diffusivity and equipartitioning, zero attenuation, etc., that are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations regarding Earth structure and noise generation. To overcome this limitation we attempt to develop a method that consistently accounts for noise distribution, 3D heterogeneous Earth structure and the full seismic wave propagation physics in order to improve the current resolution of tomographic images of the Earth. As an initial step towards a full waveform ambient noise inversion we develop a preliminary inversion scheme based on a 2D finite-difference code simulating correlation functions and on adjoint techniques. With respect to our final goal, a simultaneous inversion for noise distribution and Earth structure, we address the following two aspects: (1) the capabilities of different misfit functionals to image wave speed anomalies and source distribution and (2) possible source-structure trade-offs, especially to what extent unresolvable structure could be mapped into the inverted noise source distribution and vice versa.

  6. Clinical knowledge-based inverse treatment planning

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Xing, Lei

    2004-11-01

    Clinical IMRT treatment plans are currently made using dose-based optimization algorithms, which do not consider the nonlinear dose-volume effects for tumours and normal structures. The choice of structure specific importance factors represents an additional degree of freedom of the system and makes rigorous optimization intractable. The purpose of this work is to circumvent the two problems by developing a biologically more sensible yet clinically practical inverse planning framework. To implement this, the dose-volume status of a structure was characterized by using the effective volume in the voxel domain. A new objective function was constructed with the incorporation of the volumetric information of the system so that the figure of merit of a given IMRT plan depends not only on the dose deviation from the desired distribution but also the dose-volume status of the involved organs. The conventional importance factor of an organ was written into a product of two components: (i) a generic importance that parametrizes the relative importance of the organs in the ideal situation when the goals for all the organs are met; (ii) a dose-dependent factor that quantifies our level of clinical/dosimetric satisfaction for a given plan. The generic importance can be determined a priori, and in most circumstances, does not need adjustment, whereas the second one, which is responsible for the intractable behaviour of the trade-off seen in conventional inverse planning, was determined automatically. An inverse planning module based on the proposed formalism was implemented and applied to a prostate case and a head-neck case. A comparison with the conventional inverse planning technique indicated that, for the same target dose coverage, the critical structure sparing was substantially improved for both cases. The incorporation of clinical knowledge allows us to obtain better IMRT plans and makes it possible to auto-select the importance factors, greatly facilitating the inverse

  7. EDITORIAL: Introduction to the special issue on electromagnetic inverse problems: emerging methods and novel applications Introduction to the special issue on electromagnetic inverse problems: emerging methods and novel applications

    NASA Astrophysics Data System (ADS)

    Dorn, O.; Lesselier, D.

    2010-07-01

    Inverse problems in electromagnetics have a long history and have stimulated exciting research over many decades. New applications and solution methods are still emerging, providing a rich source of challenging topics for further investigation. The purpose of this special issue is to combine descriptions of several such developments that are expected to have the potential to fundamentally fuel new research, and to provide an overview of novel methods and applications for electromagnetic inverse problems. There have been several special sections published in Inverse Problems over the last decade addressing fully, or partly, electromagnetic inverse problems. Examples are: Electromagnetic imaging and inversion of the Earth's subsurface (Guest Editors: D Lesselier and T Habashy) October 2000 Testing inversion algorithms against experimental data (Guest Editors: K Belkebir and M Saillard) December 2001 Electromagnetic and ultrasonic nondestructive evaluation (Guest Editors: D Lesselier and J Bowler) December 2002 Electromagnetic characterization of buried obstacles (Guest Editors: D Lesselier and W C Chew) December 2004 Testing inversion algorithms against experimental data: inhomogeneous targets (Guest Editors: K Belkebir and M Saillard) December 2005 Testing inversion algorithms against experimental data: 3D targets (Guest Editors: A Litman and L Crocco) February 2009 In a certain sense, the current issue can be understood as a continuation of this series of special sections on electromagnetic inverse problems. On the other hand, its focus is intended to be more general than previous ones. Instead of trying to cover a well-defined, somewhat specialized research topic as completely as possible, this issue aims to show the broad range of techniques and applications that are relevant to electromagnetic imaging nowadays, which may serve as a source of inspiration and encouragement for all those entering this active and rapidly developing research area. Also, the

  8. Pressure effects on enzyme-catalyzed quantum tunneling events arise from protein-specific structural and dynamic changes.

    PubMed

    Hay, Sam; Johannissen, Linus O; Hothi, Parvinder; Sutcliffe, Michael J; Scrutton, Nigel S

    2012-06-13

    The rate and kinetic isotope effect (KIE) on proton transfer during the aromatic amine dehydrogenase-catalyzed reaction with phenylethylamine shows complex pressure and temperature dependences. We are able to rationalize these effects within an environmentally coupled tunneling model based on constant pressure molecular dynamics (MD) simulations. As pressure appears to act anisotropically on the enzyme, perturbation of the reaction coordinate (donor-acceptor compression) is, in this case, marginal. Therefore, while we have previously demonstrated that pressure and temperature dependences can be used to infer H-tunneling and the involvement of promoting vibrations, these effects should not be used in the absence of atomistic insight, as they can vary greatly for different enzymes. We show that a pressure-dependent KIE is not a definitive hallmark of quantum mechanical H-tunneling during an enzyme-catalyzed reaction and that pressure-independent KIEs cannot be used to exclude tunneling contributions or a role for promoting vibrations in the enzyme-catalyzed reaction. We conclude that coupling of MD calculations with experimental rate and KIE studies is required to provide atomistic understanding of pressure effects in enzyme-catalyzed reactions.

  9. Hybrid inversions of CO2 fluxes at regional scale applied to network design

    NASA Astrophysics Data System (ADS)

    Kountouris, Panagiotis; Gerbig, Christoph; -Thomas Koch, Frank

    2013-04-01

    Long term observations of atmospheric greenhouse gas measuring stations, located at representative regions over the continent, improve our understanding of greenhouse gas sources and sinks. These mixing ratio measurements can be linked to surface fluxes by atmospheric transport inversions. Within the upcoming years new stations are to be deployed, which requires decision making tools with respect to the location and the density of the network. We are developing a method to assess potential greenhouse gas observing networks in terms of their ability to recover specific target quantities. As target quantities we use CO2 fluxes aggregated to specific spatial and temporal scales. We introduce a high resolution inverse modeling framework, which attempts to combine advantages from pixel based inversions with those of a carbon cycle data assimilation system (CCDAS). The hybrid inversion system consists of the Lagrangian transport model STILT, the diagnostic biosphere model VPRM and a Bayesian inversion scheme. We aim to retrieve the spatiotemporal distribution of net ecosystem exchange (NEE) at a high spatial resolution (10 km x 10 km) by inverting for spatially and temporally varying scaling factors for gross ecosystem exchange (GEE) and respiration (R) rather than solving for the fluxes themselves. Thus the state space includes parameters for controlling photosynthesis and respiration, but unlike in a CCDAS it allows for spatial and temporal variations, which can be expressed as NEE(x,y,t) = λG(x,y,t) GEE(x,y,t) + λR(x,y,t) R(x,y,t) . We apply spatially and temporally correlated uncertainties by using error covariance matrices with non-zero off-diagonal elements. Synthetic experiments will test our system and select the optimal a priori error covariance by using different spatial and temporal correlation lengths on the error statistics of the a priori covariance and comparing the optimized fluxes against the 'known truth'. As 'known truth' we use independent fluxes

  10. An efficient sequential strategy for realizing cross-gradient joint inversion: method and its application to 2-D cross borehole seismic traveltime and DC resistivity tomography

    NASA Astrophysics Data System (ADS)

    Gao, Ji; Zhang, Haijiang

    2018-05-01

    Cross-gradient joint inversion that enforces structural similarity between different models has been widely utilized in jointly inverting different geophysical data types. However, it is a challenge to combine different geophysical inversion systems with the cross-gradient structural constraint into one joint inversion system because they may differ greatly in the model representation, forward modelling and inversion algorithm. Here we propose a new joint inversion strategy that can avoid this issue. Different models are separately inverted using the existing inversion packages and model structure similarity is only enforced through cross-gradient minimization between two models after each iteration. Although the data fitting and structural similarity enforcing processes are decoupled, our proposed strategy is still able to choose appropriate models to balance the trade-off between geophysical data fitting and structural similarity. This is realized by using model perturbations from separate data inversions to constrain the cross-gradient minimization process. We have tested this new strategy on 2-D cross borehole synthetic seismic traveltime and DC resistivity data sets. Compared to separate geophysical inversions, our proposed joint inversion strategy fits the separate data sets at comparable levels while at the same time resulting in a higher structural similarity between the velocity and resistivity models.

  11. Modified Dynamic Inversion to Control Large Flexible Aircraft: What's Going On?

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    1999-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper explores dynamic inversion application to an advanced highly flexible aircraft. An initial application has been made to a large flexible supersonic aircraft. In the course of controller design for this advanced vehicle, modifications were made to the standard dynamic inversion methodology. The results of this application were deemed rather promising. An analytical study has been undertaken to better understand the nature of the made modifications and to determine its general applicability. This paper presents the results of this initial analytical look at the modifications to dynamic inversion to control large flexible aircraft.

  12. On the high energy cut-off of accreting sources: Is general relativity relevant?

    NASA Astrophysics Data System (ADS)

    Tamborra, Francesco; Papadakis, Iossif; Dovčiak, Michal; Svoboda, Jiři

    2018-04-01

    The hard X-ray emission observed in accreting compact sources is believed to be produced by inverse Compton scattering of soft photons arising from the accretion disc by energetic electrons thermally distributed above the disc, the so-called X-ray corona. Many independent observations suggest that such coronae should be compact and located very close to the black hole. In this case, general relativistic (GR) effects should play an important role to the continuum X-ray emission from these sources, and, in particular, in the observed high energy cut-off, which is a measure of the intrinsic temperature of the corona. Our results show that the energy shift between the observed and intrinsic high energy cut-off due to GR effects can be as large as two to eight times, depending on the geometry and size of the corona as well as its inclination. We provide estimates of this energy shift in the case of a lamp-post and a flat, rotating corona, around a Kerr and a Schwartzschild black hole, for various inclinations, and coronal sizes. These values could be useful to correct the observed high energy cut-off and/or coronal temperatures, either in the case of individual or large sample of objects.

  13. On the calibration process of film dosimetry: OLS inverse regression versus WLS inverse prediction.

    PubMed

    Crop, F; Van Rompaye, B; Paelinck, L; Vakaet, L; Thierens, H; De Wagter, C

    2008-07-21

    The purpose of this study was both putting forward a statistically correct model for film calibration and the optimization of this process. A reliable calibration is needed in order to perform accurate reference dosimetry with radiographic (Gafchromic) film. Sometimes, an ordinary least squares simple linear (in the parameters) regression is applied to the dose-optical-density (OD) curve with the dose as a function of OD (inverse regression) or sometimes OD as a function of dose (inverse prediction). The application of a simple linear regression fit is an invalid method because heteroscedasticity of the data is not taken into account. This could lead to erroneous results originating from the calibration process itself and thus to a lower accuracy. In this work, we compare the ordinary least squares (OLS) inverse regression method with the correct weighted least squares (WLS) inverse prediction method to create calibration curves. We found that the OLS inverse regression method could lead to a prediction bias of up to 7.3 cGy at 300 cGy and total prediction errors of 3% or more for Gafchromic EBT film. Application of the WLS inverse prediction method resulted in a maximum prediction bias of 1.4 cGy and total prediction errors below 2% in a 0-400 cGy range. We developed a Monte-Carlo-based process to optimize calibrations, depending on the needs of the experiment. This type of thorough analysis can lead to a higher accuracy for film dosimetry.

  14. Nucleation and growth mechanism of self-catalyzed InAs nanowires on silicon

    NASA Astrophysics Data System (ADS)

    Gomes, U. P.; Ercolani, D.; Zannier, V.; David, J.; Gemmi, M.; Beltram, F.; Sorba, L.

    2016-06-01

    We report on the nucleation and growth mechanism of self-catalyzed InAs nanowires (NWs) grown on Si (111) substrates by chemical beam epitaxy. Careful choices of the growth parameters lead to In-rich conditions such that the InAs NWs nucleate from an In droplet and grow by the vapor-liquid-solid mechanism while sustaining an In droplet at the tip. As the growth progresses, new NWs continue to nucleate on the Si (111) surface causing a spread in the NW size distribution. The observed behavior in NW nucleation and growth is described within a suitable existing theoretical model allowing us to extract relevant growth parameters. We argue that these results provide useful guidelines to rationally control the growth of self-catalyzed InAs NWs for various applications.

  15. The trade-off between number and size of offspring in humans and other primates

    PubMed Central

    Walker, Robert S; Gurven, Michael; Burger, Oskar; Hamilton, Marcus J

    2007-01-01

    Life-history theory posits a fundamental trade-off between number and size of offspring that structures the variability in parental investment across and within species. We investigate this ‘quantity–quality’ trade-off across primates and present evidence that a similar trade-off is also found across natural-fertility human societies. Restating the classic Smith–Fretwell model in terms of allometric scaling of resource supply and offspring investment predicts an inverse scaling relation between birth rate and offspring size and a −¼ power scaling between birth rate and body size. We show that these theoretically predicted relationships, in particular the inverse scaling between number and size of offspring, tend to hold across increasingly finer scales of analyses (i.e. from mammals to primates to apes to humans). The advantage of this approach is that the quantity–quality trade-off in humans is placed into a general framework of parental investment that follows directly from first principles of energetic allocation. PMID:18077252

  16. A novel signal-off electrochemiluminescence biosensor for the determination of glucose based on double nanoparticles.

    PubMed

    Liu, Linlin; Ma, Qiang; Li, Yang; Liu, ZiPing; Su, Xingguang

    2015-01-15

    In this work, a novel facile signal-off electrochemiluminescence (ECL) biosensor has been developed for the determination of glucose based on the integration of chitosan (CHIT), CdTe quantum dots (CdTe QDs) and Au nanoparticles (Au NPs) on the glassy carbon electrode (GCE). Chitosan displays high water permeability, hydrophilic property, strong hydrogel ability and good adhesion to load the double nanoparticles to the glassy carbon electrode surfaces. Au NPs are efficient glucose oxidase (GOx)-mimickess to catalytically oxidize glucose, similar to the natural process. Upon the addition of glucose, the Au NPs catalyzed glucose to produce gluconic acid and hydrogen peroxide (H2O2) based on the consumption of dissolved oxygen (O2), which resulted in a quenching effect on the ECL emission. Therefore, the determination of glucose could be achieved by monitoring the signal-off ECL biosensor. Under the optimum conditions, the ECL intensity of CdTe QDs and the concentration of glucose have a good linear relationship in the range of 0.01-10 mmol L(-1). The limit of detection for glucose was 5.28 μmol L(-1) (S/N=3). The biosensor showed good sensitivity, selectivity, reproducibility and stability. The proposed biosensor has been employed for the detection of glucose in human serum samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Spectral reflectance inversion with high accuracy on green target

    NASA Astrophysics Data System (ADS)

    Jiang, Le; Yuan, Jinping; Li, Yong; Bai, Tingzhu; Liu, Shuoqiong; Jin, Jianzhou; Shen, Jiyun

    2016-09-01

    Using Landsat-7 ETM remote sensing data, the inversion of spectral reflectance of green wheat in visible and near infrared waveband in Yingke, China is studied. In order to solve the problem of lower inversion accuracy, custom atmospheric conditions method based on moderate resolution transmission model (MODTRAN) is put forward. Real atmospheric parameters are considered when adopting this method. The atmospheric radiative transfer theory to calculate atmospheric parameters is introduced first and then the inversion process of spectral reflectance is illustrated in detail. At last the inversion result is compared with simulated atmospheric conditions method which was a widely used method by previous researchers. The comparison shows that the inversion accuracy of this paper's method is higher in all inversion bands; the inversed spectral reflectance curve by this paper's method is more similar to the measured reflectance curve of wheat and better reflects the spectral reflectance characteristics of green plant which is very different from green artificial target. Thus, whether a green target is a plant or artificial target can be judged by reflectance inversion based on remote sensing image. This paper's research is helpful for the judgment of green artificial target hidden in the greenery, which has a great significance on the precise strike of green camouflaged weapons in military field.

  18. Some Phenomena on Negative Inversion Constructions

    ERIC Educational Resources Information Center

    Sung, Tae-Soo

    2013-01-01

    We examine the characteristics of NDI (negative degree inversion) and its relation with other inversion phenomena such as SVI (subject-verb inversion) and SAI (subject-auxiliary inversion). The negative element in the NDI construction may be" not," a negative adverbial, or a negative verb. In this respect, NDI has similar licensing…

  19. Inverse electrocardiographic transformations: dependence on the number of epicardial regions and body surface data points.

    PubMed

    Johnston, P R; Walker, S J; Hyttinen, J A; Kilpatrick, D

    1994-04-01

    The inverse problem of electrocardiography, the computation of epicardial potentials from body surface potentials, is influenced by the desired resolution on the epicardium, the number of recording points on the body surface, and the method of limiting the inversion process. To examine the role of these variables in the computation of the inverse transform, Tikhonov's zero-order regularization and singular value decomposition (SVD) have been used to invert the forward transfer matrix. The inverses have been compared in a data-independent manner using the resolution and the noise amplification as endpoints. Sets of 32, 50, 192, and 384 leads were chosen as sets of body surface data, and 26, 50, 74, and 98 regions were chosen to represent the epicardium. The resolution and noise were both improved by using a greater number of electrodes on the body surface. When 60% of the singular values are retained, the results show a trade-off between noise and resolution, with typical maximal epicardial noise levels of less than 0.5% of maximum epicardial potentials for 26 epicardial regions, 2.5% for 50 epicardial regions, 7.5% for 74 epicardial regions, and 50% for 98 epicardial regions. As the number of epicardial regions is increased, the regularization technique effectively fixes the noise amplification but markedly decreases the resolution, whereas SVD results in an increase in noise and a moderate decrease in resolution. Overall the regularization technique performs slightly better than SVD in the noise-resolution relationship. There is a region at the posterior of the heart that was poorly resolved regardless of the number of regions chosen. The variance of the resolution was such as to suggest the use of variable-size epicardial regions based on the resolution.

  20. Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria.

    PubMed

    Cui, Longzhu; Neoh, Hui-min; Iwamoto, Akira; Hiramatsu, Keiichi

    2012-06-19

    Genome inversions are ubiquitous in organisms ranging from prokaryotes to eukaryotes. Typical examples can be identified by comparing the genomes of two or more closely related organisms, where genome inversion footprints are clearly visible. Although the evolutionary implications of this phenomenon are huge, little is known about the function and biological meaning of this process. Here, we report our findings on a bacterium that generates a reversible, large-scale inversion of its chromosome (about half of its total genome) at high frequencies of up to once every four generations. This inversion switches on or off bacterial phenotypes, including colony morphology, antibiotic susceptibility, hemolytic activity, and expression of dozens of genes. Quantitative measurements and mathematical analyses indicate that this reversible switching is stochastic but self-organized so as to maintain two forms of stable cell populations (i.e., small colony variant, normal colony variant) as a bet-hedging strategy. Thus, this heritable and reversible genome fluctuation seems to govern the bacterial life cycle; it has a profound impact on the course and outcomes of bacterial infections.

  1. Bayesian approach to inverse statistical mechanics.

    PubMed

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  2. Bayesian approach to inverse statistical mechanics

    NASA Astrophysics Data System (ADS)

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  3. A novel on-line gold nanoparticle-catalyzed luminol chemiluminescence detector for high-performance liquid chromatography.

    PubMed

    Zhang, Qun Lin; Wu, Liang; Lv, Chen; Zhang, Xiao Yue

    2012-06-15

    A novel on-line gold nanoparticle-catalyzed luminol-H(2)O(2) chemiluminescence (CL) detector for high-performance liquid chromatography (HPLC) was established, in which gold nanoparticles were produced by the on-line reaction of H(2)O(2), NaHCO(3)-Na(2)CO(3) (buffer solution of luminol), and HAuCl(4). Eight phenolic compounds (gallic acid, protocatechuic acid, protocatechuic aldehyde, 2,5-dihydroxybenzoic acid, caffeic acid, 2,3-dihydroxybenzoic acid, (+)-catechin, and (-)-epicatechin) were chosen as the model compounds. Every separated phenolic compound in the column eluent strongly enhanced the CL signal of on-line gold nanoparticle-catalyzed luminol system. The CL and UV-visible absorption spectra and transmission electron microscopy studies were carried out, and the CL enhancement mechanism was ascribed to that the presence of phenolic compound promoted the on-line formation of 38-nm-diameter gold nanoparticles, which better catalyzed the luminol-H(2)O(2) CL reaction. The effects of methanol and phosphoric acid in the proposed HPLC configuration were performed by two gradient elution programs, and the baseline profile revealed that on-line gold nanoparticle-catalyzed luminol-H(2)O(2) CL detector had better compatibility than 38 nm gold colloids-luminol-H(2)O(2) CL detector. The proposed CL detector exhibits excellent analytical performance with the low detection limit (S/N=3) of 0.53-0.97 ng/mL (10.6-19.4 pg) phenolic compounds, and offers a new strategy for developing on-line nanoparticle-catalyzed CL detector for HPLC with sensitive analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Lewis super-acid catalyzed cyclizations: a new route to fragrance compounds.

    PubMed

    Coulombel, Lydie; Grau, Fanny; Weïwer, Michel; Favier, Isabelle; Chaminade, Xavier; Heumann, Andreas; Bayón, J Carles; Aguirre, Pedro A; Duñach, Elisabet

    2008-06-01

    This review deals with the application of Lewis super acids such as Al(III), In(III), and Sn(IV) triflates and triflimidates as catalysts in the synthesis of fragrance materials. Novel catalytic reactions involving C-C and C-heteroatom bond-forming reactions, as well as cycloisomerization processes are presented. In particular, Sn(IV) and Al(III) triflates were employed as catalysts in the selective cyclization of unsaturated alcohols to cyclic ethers, as well as in the cyclization of unsaturated carboxylic acids to lactones. The addition of thiols and thioacids to non-activated olefins, both in intra- and intermolecular versions, was efficiently catalyzed by In(III) derivatives. Sn(IV) Triflimidates catalyzed the cycloisomerization of highly substituted 1,6-dienes to gem-dimethyl-substituted cyclohexanes bearing an isopropylidene substituent. The hydroformylation of these unsaturated substrates, catalyzed by a Rh(I) complex with a bulky phosphite ligand, selectively afforded the corresponding linear aldehydes. The olfactory evaluation of selected heterocycles, carbocycles, and aldehydes synthesized is also discussed.

  5. The Extension Storyteller: Using Stories to Enhance Meaning and Catalyze Change

    ERIC Educational Resources Information Center

    Franz, Nancy

    2016-01-01

    Many cultures share and pass on norms through storytelling. Extension as a culture also creates and shares stories to pass on history, provide information about Extension work and experiences, and develop the organization. However, Extension as a culture less frequently uses storytelling to enhance meaning and catalyze related change. This article…

  6. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes

    PubMed Central

    2015-01-01

    We report copper-catalyzed oxidative dehydrogenative carboxylation (ODC) of unactivated alkanes with various substituted benzoic acids to produce the corresponding allylic esters. Spectroscopic studies (EPR, UV–vis) revealed that the resting state of the catalyst is [(BPI)Cu(O2CPh)] (1-O2CPh), formed from [(BPI)Cu(PPh3)2], oxidant, and benzoic acid. Catalytic and stoichiometric reactions of 1-O2CPh with alkyl radicals and radical probes imply that C–H bond cleavage occurs by a tert-butoxy radical. In addition, the deuterium kinetic isotope effect from reactions of cyclohexane and d12-cyclohexane in separate vessels showed that the turnover-limiting step for the ODC of cyclohexane is C–H bond cleavage. To understand the origin of the difference in products formed from copper-catalyzed amidation and copper-catalyzed ODC, reactions of an alkyl radical with a series of copper–carboxylate, copper–amidate, and copper–imidate complexes were performed. The results of competition experiments revealed that the relative rate of reaction of alkyl radicals with the copper complexes follows the trend Cu(II)–amidate > Cu(II)–imidate > Cu(II)–benzoate. Consistent with this trend, Cu(II)–amidates and Cu(II)–benzoates containing more electron-rich aryl groups on the benzamidate and benzoate react faster with the alkyl radical than do those with more electron-poor aryl groups on these ligands to produce the corresponding products. These data on the ODC of cyclohexane led to preliminary investigation of copper-catalyzed oxidative dehydrogenative amination of cyclohexane to generate a mixture of N-alkyl and N-allylic products. PMID:25389772

  7. A C. elegans Hox gene switches on, off, on and off again to regulate proliferation, differentiation and morphogenesis.

    PubMed

    Salser, S J; Kenyon, C

    1996-05-01

    Hox genes establish body pattern throughout the animal kingdom, but the role these genes play at the cellular level to modify and shape parts of the body remains a mystery. We find that the C. elegans Antennapedia homolog, mab-5, sequentially programs many independent events within individual cell lineages. In one body region, mab-5 first switches ON in a lineage to stimulate proliferation, then OFF to specify epidermal structures, then ON in just one branch of the lineage to promote neuroblast formation, and finally OFF to permit proper sense organ morphology. In a neighboring lineage, continuous mab-5 expression leads to a different pattern of development. Thus, this Hox gene achieves much of its power to diversify the anteroposterior axis through fine spatiotemporal differences in expression coupled with a changing pattern of cellular response.

  8. Towards Full-Waveform Ambient Noise Inversion

    NASA Astrophysics Data System (ADS)

    Sager, Korbinian; Ermert, Laura; Afanasiev, Michael; Boehm, Christian; Fichtner, Andreas

    2017-04-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green function between the two receivers. This assumption, however, is only met under specific conditions, e.g. wavefield diffusivity and equipartitioning, or the isotropic distribution of both mono- and dipolar uncorrelated noise sources. These assumptions are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations in order to constrain Earth structure and noise generation. To overcome this limitation, we attempt to develop a method that consistently accounts for the distribution of noise sources, 3D heterogeneous Earth structure and the full seismic wave propagation physics. This is intended to improve the resolution of tomographic images, to refine noise source distribution, and thereby to contribute to a better understanding of both Earth structure and noise generation. First, we develop an inversion strategy based on a 2D finite-difference code using adjoint techniques. To enable a joint inversion for noise sources and Earth structure, we investigate the following aspects: i) the capability of different misfit functionals to image wave speed anomalies and source distribution and ii) possible source-structure trade-offs, especially to what extent unresolvable structure can be mapped into the inverted noise source distribution and vice versa. In anticipation of real-data applications, we present an extension of the open-source waveform modelling and inversion package Salvus (http://salvus.io). It allows us to compute correlation functions in 3D media with heterogeneous noise sources at the surface and the corresponding sensitivity kernels for the distribution of noise sources and Earth structure. By studying the effect of noise sources on correlation functions in 3D, we validate the aforementioned inversion strategy and prepare the

  9. Towards full waveform ambient noise inversion

    NASA Astrophysics Data System (ADS)

    Sager, Korbinian; Ermert, Laura; Boehm, Christian; Fichtner, Andreas

    2018-01-01

    In this work we investigate fundamentals of a method—referred to as full waveform ambient noise inversion—that improves the resolution of tomographic images by extracting waveform information from interstation correlation functions that cannot be used without knowing the distribution of noise sources. The fundamental idea is to drop the principle of Green function retrieval and to establish correlation functions as self-consistent observables in seismology. This involves the following steps: (1) We introduce an operator-based formulation of the forward problem of computing correlation functions. It is valid for arbitrary distributions of noise sources in both space and frequency, and for any type of medium, including 3-D elastic, heterogeneous and attenuating media. In addition, the formulation allows us to keep the derivations independent of time and frequency domain and it facilitates the application of adjoint techniques, which we use to derive efficient expressions to compute first and also second derivatives. The latter are essential for a resolution analysis that accounts for intra- and interparameter trade-offs. (2) In a forward modelling study we investigate the effect of noise sources and structure on different observables. Traveltimes are hardly affected by heterogeneous noise source distributions. On the other hand, the amplitude asymmetry of correlations is at least to first order insensitive to unmodelled Earth structure. Energy and waveform differences are sensitive to both structure and the distribution of noise sources. (3) We design and implement an appropriate inversion scheme, where the extraction of waveform information is successively increased. We demonstrate that full waveform ambient noise inversion has the potential to go beyond ambient noise tomography based on Green function retrieval and to refine noise source location, which is essential for a better understanding of noise generation. Inherent trade-offs between source and structure

  10. A cis-prenyltransferase from Methanosarcina acetivorans catalyzes both head-to-tail and nonhead-to-tail prenyl condensation.

    PubMed

    Ogawa, Takuya; Emi, Koh-Ichi; Koga, Kazushi; Yoshimura, Tohru; Hemmi, Hisashi

    2016-06-01

    Cis-prenyltransferase usually consecutively catalyzes the head-to-tail condensation reactions of isopentenyl diphosphate to allylic prenyl diphosphate in the production of (E,Z-mixed) polyprenyl diphosphate, which is the precursor of glycosyl carrier lipids. Some recently discovered homologs of the enzyme, however, catalyze the nonhead-to-tail condensation reactions between allylic prenyl diphosphates. In this study, we characterize a cis-prenyltransferase homolog from a methanogenic archaeon, Methanosarcina acetivorans, to obtain information on the biosynthesis of the glycosyl carrier lipids within it. This enzyme catalyzes both head-to-tail and nonhead-to-tail condensation reactions. The kinetic analysis shows that the main reaction of the enzyme is consecutive head-to-tail prenyl condensation reactions yielding polyprenyl diphosphates, while the chain lengths of the major products seem shorter than expected for the precursor of glycosyl carrier lipids. On the other hand, a subsidiary reaction of the enzyme, i.e., nonhead-to-tail condensation between dimethylallyl diphosphate and farnesyl diphosphate, gives a novel diterpenoid compound, geranyllavandulyl diphosphate. © 2016 Federation of European Biochemical Societies.

  11. Parametrization study of the land multiparameter VTI elastic waveform inversion

    NASA Astrophysics Data System (ADS)

    He, W.; Plessix, R.-É.; Singh, S.

    2018-06-01

    Multiparameter inversion of seismic data remains challenging due to the trade-off between the different elastic parameters and the non-uniqueness of the solution. The sensitivity of the seismic data to a given subsurface elastic parameter depends on the source and receiver ray/wave path orientations at the subsurface point. In a high-frequency approximation, this is commonly analysed through the study of the radiation patterns that indicate the sensitivity of each parameter versus the incoming (from the source) and outgoing (to the receiver) angles. In practice, this means that the inversion result becomes sensitive to the choice of parametrization, notably because the null-space of the inversion depends on this choice. We can use a least-overlapping parametrization that minimizes the overlaps between the radiation patterns, in this case each parameter is only sensitive in a restricted angle domain, or an overlapping parametrization that contains a parameter sensitive to all angles, in this case overlaps between the radiation parameters occur. Considering a multiparameter inversion in an elastic vertically transverse isotropic medium and a complex land geological setting, we show that the inversion with the least-overlapping parametrization gives less satisfactory results than with the overlapping parametrization. The difficulties come from the complex wave paths that make difficult to predict the areas of sensitivity of each parameter. This shows that the parametrization choice should not only be based on the radiation pattern analysis but also on the angular coverage at each subsurface point that depends on geology and the acquisition layout.

  12. Using CFD Surface Solutions to Shape Sonic Boom Signatures Propagated from Off-Body Pressure

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2013-01-01

    The conceptual design of a low-boom and low-drag supersonic aircraft remains a challenge despite significant progress in recent years. Inverse design using reversed equivalent area and adjoint methods have been demonstrated to be effective in shaping the ground signature propagated from computational fluid dynamics (CFD) off-body pressure distributions. However, there is still a need to reduce the computational cost in the early stages of design to obtain a baseline that is feasible for low-boom shaping, and in the search for a robust low-boom design over the entire sonic boom footprint. The proposed design method addresses the need to reduce the computational cost for robust low-boom design by using surface pressure distributions from CFD solutions to shape sonic boom ground signatures propagated from CFD off-body pressure.

  13. Theoretical investigation for the reaction of NO 2 with CO catalyzed by Sc +

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Cheng; Zhang, Jian-Hui; Geng, Zhi-Yuan; Chen, Dong-Ping; Liu, Ze-Yu; Yang, Xiao-Yan

    2007-09-01

    The mechanism of the reaction NO(2A)+CO(1∑+)→NO(2∏)+CO(1∑g+) catalyzed by Sc + has been investigated by means of UB3LYP/6-311+G(2d) level. Our calculated results strongly indicate that both the reactions NO 2( 2A 1) + Sc +(X 3D) → NO( 2∏) + ScO +(X 1∑ +) and ScO(X1∑+)+CO(1∑+)→Sc(XD)+CO(1∑g+) are spin-forbidden reactions. The crossing points (CPs) that are involved and the possible spin inversion processes are discussed using the intrinsic reaction coordinate (IRC) approach. On the basis of Hammond postulate, they are typical 'two-state reactivity' (TSR) reactions. And the O-atom affinities (OA) testified that the argumentation is thermodynamically allowed.

  14. Off-resonance artifacts correction with convolution in k-space (ORACLE).

    PubMed

    Lin, Wei; Huang, Feng; Simonotto, Enrico; Duensing, George R; Reykowski, Arne

    2012-06-01

    Off-resonance artifacts hinder the wider applicability of echo-planar imaging and non-Cartesian MRI methods such as radial and spiral. In this work, a general and rapid method is proposed for off-resonance artifacts correction based on data convolution in k-space. The acquired k-space is divided into multiple segments based on their acquisition times. Off-resonance-induced artifact within each segment is removed by applying a convolution kernel, which is the Fourier transform of an off-resonance correcting spatial phase modulation term. The field map is determined from the inverse Fourier transform of a basis kernel, which is calibrated from data fitting in k-space. The technique was demonstrated in phantom and in vivo studies for radial, spiral and echo-planar imaging datasets. For radial acquisitions, the proposed method allows the self-calibration of the field map from the imaging data, when an alternating view-angle ordering scheme is used. An additional advantage for off-resonance artifacts correction based on data convolution in k-space is the reusability of convolution kernels to images acquired with the same sequence but different contrasts. Copyright © 2011 Wiley-Liss, Inc.

  15. Understanding Self-Catalyzed Epitaxial Growth of III-V Nanowires toward Controlled Synthesis.

    PubMed

    Zi, Yunlong; Suslov, Sergey; Yang, Chen

    2017-02-08

    The self-catalyzed growth of III-V nanowires has drawn plenty of attention due to the potential of integration in current Si-based technologies. The homoparticle-assisted vapor-liquid-solid growth mechanism has been demonstrated for self-catalyzed III-V nanowire growth. However, the understandings of the preferred growth sites of these nanowires are still limited, which obstructs the controlled synthesis and the applications of self-catalyzed nanowire arrays. Here, we experimentally demonstrated that thermally created pits could serve as the preferred sites for self-catalyzed InAs nanowire growth. On that basis, we performed a pregrowth annealing strategy to promote the nanowire density by enhancing the pits formation on the substrate surface and enable the nanowire growth on the substrate that was not capable to facilitate the growth. The discovery of the preferred self-catalyzed nanowire growth sites and the pregrowth annealing strategy have shown great potentials for controlled self-catalyzed III-V nanowire array growth with preferred locations and density.

  16. DNA-Catalyzed Amide Hydrolysis.

    PubMed

    Zhou, Cong; Avins, Joshua L; Klauser, Paul C; Brandsen, Benjamin M; Lee, Yujeong; Silverman, Scott K

    2016-02-24

    DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases.

  17. On the Duality of Forward and Inverse Light Transport.

    PubMed

    Chandraker, Manmohan; Bai, Jiamin; Ng, Tian-Tsong; Ramamoorthi, Ravi

    2011-10-01

    Inverse light transport seeks to undo global illumination effects, such as interreflections, that pervade images of most scenes. This paper presents the theoretical and computational foundations for inverse light transport as a dual of forward rendering. Mathematically, this duality is established through the existence of underlying Neumann series expansions. Physically, it can be shown that each term of our inverse series cancels an interreflection bounce, just as the forward series adds them. While the convergence properties of the forward series are well known, we show that the oscillatory convergence of the inverse series leads to more interesting conditions on material reflectance. Conceptually, the inverse problem requires the inversion of a large light transport matrix, which is impractical for realistic resolutions using standard techniques. A natural consequence of our theoretical framework is a suite of fast computational algorithms for light transport inversion--analogous to finite element radiosity, Monte Carlo and wavelet-based methods in forward rendering--that rely at most on matrix-vector multiplications. We demonstrate two practical applications, namely, separation of individual bounces of the light transport and fast projector radiometric compensation, to display images free of global illumination artifacts in real-world environments.

  18. Drug dealers' rational choices on which customers to rip-off.

    PubMed

    Jacques, Scott; Allen, Andrea; Wright, Richard

    2014-03-01

    Drug dealers are infamous for overcharging customers and handing over less than owed. One reason rip-offs frequently occur is blackmarket participants have limited access to formal means of dispute resolution and, as such, are attractive prey. Yet drug dealers do not cheat every customer. Though this is implicitly understood in the literature, sparse theoretical attention has been given to which customers are ripped-off and why. To address that lacuna, this paper uses the rationality perspective to analyze qualitative data obtained in interviews with 25 unincarcerated drug sellers operating in disadvantaged neighborhoods of St. Louis, Missouri. We find that dealers typically rip-off six types of customers: persons who are strangers, first-time or irregular customers; do not have sufficient money on hand to make a purchase; are uninformed about going market rates; are deemed unlikely to retaliate; are offensive; or are addicted to drugs. Dealers target these groups due to perceiving them as unlikely to be repeat business; not worth the hassle of doing business with; unlikely to realize they are being ripped-off; in the wrong and thus deserving of payback; and, unwilling to retaliate or take their money elsewhere. Our findings are discussed in relation to their practical implications, including the importance of giving blackmarket participants greater access to law, and how customers may prevent being ripped-off. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Steric and Electronic Effects of Bidentate Phosphine Ligands on Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide.

    PubMed

    Zhang, Pan; Ni, Shao-Fei; Dang, Li

    2016-09-20

    The reactivity difference between the hydrogenation of CO2 catalyzed by various ruthenium bidentate phosphine complexes was explored by DFT. In addition to the ligand dmpe (Me2 PCH2 CH2 PMe2 ), which was studied experimentally previously, a more bulky diphosphine ligand, dmpp (Me2 PCH2 CH2 CH2 PMe2 ), together with a more electron-withdrawing diphosphine ligand, PN(Me) P (Me2 PCH2 N(Me) CH2 PMe2 ), have been studied theoretically to analyze the steric and electronic effects on these catalyzed reactions. Results show that all of the most favorable pathways for the hydrogenation of CO2 catalyzed by bidentate phosphine ruthenium dihydride complexes undergo three major steps: cis-trans isomerization of ruthenium dihydride complex, CO2 insertion into the Ru-H bond, and H2 insertion into the ruthenium formate ion. Of these steps, CO2 insertion into the Ru-H bond has the lowest barrier compared with the other two steps in each preferred pathway. For the hydrogenation of CO2 catalyzed by ruthenium complexes of dmpe and dmpp, cis-trans isomerization of ruthenium dihydride complex has a similar barrier to that of H2 insertion into the ruthenium formate ion. However, in the reaction catalyzed by the PN(Me) PRu complex, cis-trans isomerization of the ruthenium dihydride complex has a lower barrier than H2 insertion into the ruthenium formate ion. These results suggest that the steric effect caused by the change of the outer sphere of the diphosphine ligand on the reaction is not clear, although the electronic effect is significant to cis-trans isomerization and H2 insertion. This finding refreshes understanding of the mechanism and provides necessary insights for ligand design in transition-metal-catalyzed CO2 transformation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 3D joint inversion of gravity-gradient and borehole gravity data

    NASA Astrophysics Data System (ADS)

    Geng, Meixia; Yang, Qingjie; Huang, Danian

    2017-12-01

    Borehole gravity is increasingly used in mineral exploration due to the advent of slim-hole gravimeters. Given the full-tensor gradiometry data available nowadays, joint inversion of surface and borehole data is a logical next step. Here, we base our inversions on cokriging, which is a geostatistical method of estimation where the error variance is minimised by applying cross-correlation between several variables. In this study, the density estimates are derived using gravity-gradient data, borehole gravity and known densities along the borehole as a secondary variable and the density as the primary variable. Cokriging is non-iterative and therefore is computationally efficient. In addition, cokriging inversion provides estimates of the error variance for each model, which allows direct assessment of the inverse model. Examples are shown involving data from a single borehole, from multiple boreholes, and combinations of borehole gravity and gravity-gradient data. The results clearly show that the depth resolution of gravity-gradient inversion can be improved significantly by including borehole data in addition to gravity-gradient data. However, the resolution of borehole data falls off rapidly as the distance between the borehole and the feature of interest increases. In the case where the borehole is far away from the target of interest, the inverted result can be improved by incorporating gravity-gradient data, especially all five independent components for inversion.

  1. Glycerol Dehydration to Acrolein Catalyzed by ZSM-5 Zeolite in Supercritical Carbon Dioxide Medium.

    PubMed

    Zou, Bin; Ren, Shoujie; Ye, X Philip

    2016-12-08

    Supercritical carbon dioxide (SC-CO 2 ) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time-on-stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC-CO 2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Effects of ompA deletion on expression of type 1 fimbriae in Escherichia coli K1 strain RS218 and on the association of E. coli with human brain microvascular endothelial cells.

    PubMed

    Teng, Ching-Hao; Xie, Yi; Shin, Sooan; Di Cello, Francescopaolo; Paul-Satyaseela, Maneesh; Cai, Mian; Kim, Kwang Sik

    2006-10-01

    We have previously shown that outer membrane protein A (OmpA) and type 1 fimbriae are the bacterial determinants involved in Escherichia coli K1 binding to human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. In investigating the role of OmpA in E. coli K1 binding to HBMEC, we showed for the first time that ompA deletion decreased the expression of type 1 fimbriae in E. coli K1. Decreased expression of type 1 fimbriae in the ompA deletion mutant was largely the result of driving the fim promoter toward the type 1 fimbrial phase-OFF orientation. mRNA levels of fimB and fimE were found to be decreased with the OmpA mutant compared to the parent strain. Of interest, the ompA deletion further decreased the abilities of E. coli K1 to bind to and invade HBMEC under the conditions of fixing type 1 fimbria expression in the phase-ON or phase-OFF status. These findings suggest that the decreased ability of the OmpA mutant to interact with HBMEC is not entirely due to its decreased type 1 fimbrial expression and that OmpA and type 1 fimbriae facilitate the interaction of E. coli K1 with HBMEC at least in an additive manner.

  3. Glycerol Dehydration to Acrolein Catalyzed by ZSM‐5 Zeolite in Supercritical Carbon Dioxide Medium

    PubMed Central

    Zou, Bin; Ren, Shoujie

    2016-01-01

    Abstract Supercritical carbon dioxide (SC‐CO2) has been used for the first time as a reaction medium for the dehydration of glycerol to acrolein catalyzed by a solid acid. Unprecedented catalyst stability over 528 hours of time‐on‐stream was achieved and the rate of coke deposition on the zeolite catalyst was the lowest among extensive previous studies, showing potential for industrial application. Coking pathways in SC‐CO2 were also elucidated for future development. The results have potential implications for other dehydration reactions catalyzed by solid acids. PMID:27796088

  4. Genome-wide association tests of inversions with application to psoriasis

    PubMed Central

    Ma, Jianzhong; Xiong, Momiao; You, Ming; Lozano, Guillermina; Amos, Christopher I.

    2014-01-01

    Although inversions have occasionally been found to be associated with disease susceptibility through interrupting a gene or its regulatory region, or by increasing the risk for deleterious secondary rearrangements, no association study has been specifically conducted for risks associated with inversions, mainly because existing approaches to detecting and genotyping inversions do not readily scale to a large number of samples. Based on our recently proposed approach to identifying and genotyping inversions using principal components analysis (PCA), we herein develop a method of detecting association between inversions and disease in a genome-wide fashion. Our method uses genotype data for single nucleotide polymorphisms (SNPs), and is thus cost-efficient and computationally fast. For an inversion polymorphism, local PCA around the inversion region is performed to infer the inversion genotypes of all samples. For many inversions, we found that some of the SNPs inside an inversion region are fixed in the two lineages of different orientations and thus can serve as surrogate markers. Our method can be applied to case-control and quantitative trait association studies to identify inversions that may interrupt a gene or the connection between a gene and its regulatory agents. Our method also offers a new venue to identify inversions that are responsible for disease-causing secondary rearrangements. We illustrated our proposed approach to case-control data for psoriasis and identified novel associations with a few inversion polymorphisms. PMID:24623382

  5. Calculating broad neutron resonances in a cut-off Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Baran, Á.; Noszály, Cs.; Salamon, P.; Vertse, T.

    2015-07-01

    In a cut-off Woods-Saxon (CWS) potential with realistic depth S -matrix poles being far from the imaginary wave number axis form a sequence where the distances of the consecutive resonances are inversely proportional with the cut-off radius value, which is an unphysical parameter. Other poles lying closer to the imaginary wave number axis might have trajectories with irregular shapes as the depth of the potential increases. Poles being close repel each other, and their repulsion is responsible for the changes of the directions of the corresponding trajectories. The repulsion might cause that certain resonances become antibound and later resonances again when they collide on the imaginary axis. The interaction is extremely sensitive to the cut-off radius value, which is an apparent handicap of the CWS potential.

  6. Inverse scattering approach to improving pattern recognition

    NASA Astrophysics Data System (ADS)

    Chapline, George; Fu, Chi-Yung

    2005-05-01

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the "wake-sleep" algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.

  7. Inverse Scattering Approach to Improving Pattern Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapline, G; Fu, C

    2005-02-15

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the ''wake-sleep'' algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensorymore » feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.« less

  8. Anisotropy effects on 3D waveform inversion

    NASA Astrophysics Data System (ADS)

    Stekl, I.; Warner, M.; Umpleby, A.

    2010-12-01

    In the recent years 3D waveform inversion has become achievable procedure for seismic data processing. A number of datasets has been inverted and presented (Warner el al 2008, Ben Hadj at all, Sirgue et all 2010) using isotropic 3D waveform inversion. However the question arises will the results be affected by isotropic assumption. Full-wavefield inversion techniques seek to match field data, wiggle-for-wiggle, to synthetic data generated by a high-resolution model of the sub-surface. In this endeavour, correctly matching the travel times of the principal arrivals is a necessary minimal requirement. In many, perhaps most, long-offset and wide-azimuth datasets, it is necessary to introduce some form of p-wave velocity anisotropy to match the travel times successfully. If this anisotropy is not also incorporated into the wavefield inversion, then results from the inversion will necessarily be compromised. We have incorporated anisotropy into our 3D wavefield tomography codes, characterised as spatially varying transverse isotropy with a tilted axis of symmetry - TTI anisotropy. This enhancement approximately doubles both the run time and the memory requirements of the code. We show that neglect of anisotropy can lead to significant artefacts in the recovered velocity models. We will present inversion results of inverting anisotropic 3D dataset by assuming isotropic earth and compare them with anisotropic inversion result. As a test case Marmousi model extended to 3D with no velocity variation in third direction and with added spatially varying anisotropy is used. Acquisition geometry is assumed as OBC with sources and receivers everywhere at the surface. We attempted inversion using both 2D and full 3D acquisition for this dataset. Results show that if no anisotropy is taken into account although image looks plausible most features are miss positioned in depth and space, even for relatively low anisotropy, which leads to incorrect result. This may lead to

  9. Development of a second generation palladium-catalyzed cycloalkenylation and its application to bioactive natural product synthesis.

    PubMed

    Toyota, Masahiro

    2013-07-01

    A novel palladium-catalyzed intramolecular oxidative alkylation of unactivated olefins is described. This protocol was devised to solve one of the drawbacks of the original palladium-catalyzed cycloalkenylation that we developed. We call this new procedure the 'second generation palladium-catalyzed cycloalkenylation'. This protocol has been applied to the total syntheses of cis-195A, trans-195A, boonein, scholareins A, C, D, and alpha-skytanthine.

  10. Gold(I)-catalyzed tandem cyclization approach to tetracyclic indolines.

    PubMed

    Liu, Yongxiang; Xu, Wenqing; Wang, Xiang

    2010-04-02

    Two highly stereoselective cationic gold(I)-catalyzed tandem cyclization reactions of alkynylindoles are described. These reactions demonstrated a novel and general strategy to rapidly construct highly functionalized polycyclic indolines. This approach was successfully employed for a formal synthesis of the akuammiline alkaloid minfiensine.

  11. Surface Wave Mode Conversion due to Lateral Heterogeneity and its Impact on Waveform Inversions

    NASA Astrophysics Data System (ADS)

    Datta, A.; Priestley, K. F.; Chapman, C. H.; Roecker, S. W.

    2016-12-01

    Surface wave tomography based on great circle ray theory has certain limitations which become increasingly significant with increasing frequency. One such limitation is the assumption of different surface wave modes propagating independently from source to receiver, valid only in case of smoothly varying media. In the real Earth, strong lateral gradients can cause significant interconversion among modes, thus potentially wreaking havoc with ray theory based tomographic inversions that make use of multimode information. The issue of mode coupling (with either normal modes or surface wave modes) for accurate modelling and inversion of body wave data has received significant attention in the seismological literature, but its impact on inversion of surface waveforms themselves remains much less understood.We present an empirical study with synthetic data, to investigate this problem with a two-fold approach. In the first part, 2D forward modelling using a new finite difference method that allows modelling a single mode at a time, is used to build a general picture of energy transfer among modes as a function of size, strength and sharpness of lateral heterogeneities. In the second part, we use the example of a multimode waveform inversion technique based on the Cara and Leveque (1987) approach of secondary observables, to invert our synthetic data and assess how mode conversion can affect the process of imaging the Earth. We pay special attention to ensuring that any biases or artefacts in the resulting inversions can be unambiguously attributed to mode conversion effects. This study helps pave the way towards the next generation of (non-numerical) surface wave tomography techniques geared to exploit higher frequencies and mode numbers than are typically used today.

  12. From the Rendering Equation to Stratified Light Transport Inversion

    DTIC Science & Technology

    2010-12-09

    iteratively. These approaches relate closely to the radiosity method for diffuse global illumination in forward rendering (Hanrahan et al, 1991; Gortler et...currently simply use sparse matrices to represent T, we are also interested in exploring connections with hierar- chical and wavelet radiosity as in...Seidel iterative methods used in radiosity . 2.4 Inverse Light Transport Previous work on inverse rendering has considered inversion of the direct

  13. Bowl Inversion and Electronic Switching of Buckybowls on Gold.

    PubMed

    Fujii, Shintaro; Ziatdinov, Maxim; Higashibayashi, Shuhei; Sakurai, Hidehiro; Kiguchi, Manabu

    2016-09-21

    Bowl-shaped π-conjugated compounds, or buckybowls, are a novel class of sp(2)-hybridized nanocarbon materials. In contrast to tubular carbon nanotubes and ball-shaped fullerenes, the buckybowls feature structural flexibility. Bowl-to-bowl structural inversion is one of the unique properties of the buckybowls in solutions. Bowl inversion on a surface modifies the metal-molecule interactions through bistable switching between bowl-up and bowl-down states on the surface, which makes surface-adsorbed buckybowls a relevant model system for elucidation of the mechano-electronic properties of nanocarbon materials. Here, we report a combination of scanning tunneling microscopy (STM) measurements and ab initio atomistic simulations to identify the adlayer structure of the sumanene buckybowl on Au(111) and reveal its unique bowl inversion behavior. We demonstrate that the bowl inversion can be induced by approaching the STM tip toward the molecule. By tuning the local metal-molecule interaction using the STM tip, the sumanene buckybowl exhibits structural bistability with a switching rate that is two orders of magnitude faster than that of the stochastic inversion process.

  14. Theoretical Study of the Effects of Di-Muonic Molecules on Muon-Catalyzed Fusion

    DTIC Science & Technology

    2012-03-01

    For example, synthetic zeolites could be used to separate molecular isotopes of hydrogen [12; 10] as could thermal diffusion and gas chromatography... thermal muon flux is large (see Chapter 8). Reactions which have the potential of increasing the muon-catalyzed fusion rate and reactions that could...the remainder of this document. Changes to the muon-catalyzed fusion cycle, that are expected to occur when the thermal muon flux is high, are

  15. Sensitivity analyses of acoustic impedance inversion with full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Acoustic impedance estimation has a significant importance to seismic exploration. In this paper, we use full-waveform inversion to recover the impedance from seismic data, and analyze the sensitivity of the acoustic impedance with respect to the source-receiver offset of seismic data and to the initial velocity model. We parameterize the acoustic wave equation with velocity and impedance, and demonstrate three key aspects of acoustic impedance inversion. First, short-offset data are most suitable for acoustic impedance inversion. Second, acoustic impedance inversion is more compatible with the data generated by density contrasts than velocity contrasts. Finally, acoustic impedance inversion requires the starting velocity model to be very accurate for achieving a high-quality inversion. Based upon these observations, we propose a workflow for acoustic impedance inversion as: (1) building a background velocity model with travel-time tomography or reflection waveform inversion; (2) recovering the intermediate wavelength components of the velocity model with full-waveform inversion constrained by Gardner’s relation; (3) inverting the high-resolution acoustic impedance model with short-offset data through full-waveform inversion. We verify this workflow by the synthetic tests based on the Marmousi model.

  16. Enantioselective and Regioselective Indium(III)-Catalyzed Addition of Pyrroles to Isatins

    PubMed Central

    Gutierrez, Elisa G.; Wong, Casey J.; Sahin, Aziza H.

    2011-01-01

    The indium(III)-catalyzed enantioselective and regioselective addition of pyrroles to isatins is described. The effects of metal and solvent on the reactivity and selectivity are compared and discussed, demonstrating that the indium(III)-indapybox complex provides the most effective catalyst. A case of divergent reactivity between pyrroles and indoles is presented. PMID:21992567

  17. Receiver function HV ratio: a new measurement for reducing non-uniqueness of receiver function waveform inversion

    NASA Astrophysics Data System (ADS)

    Chong, Jiajun; Chu, Risheng; Ni, Sidao; Meng, Qingjun; Guo, Aizhi

    2018-02-01

    It is known that a receiver function has relatively weak constraint on absolute seismic wave velocity, and that joint inversion of the receiver function with surface wave dispersion has been widely applied to reduce the trade-off of velocity with interface depth. However, some studies indicate that the receiver function itself is capable for determining the absolute shear-wave velocity. In this study, we propose to measure the receiver function HV ratio which takes advantage of the amplitude information of the receiver function to constrain the shear-wave velocity. Numerical analysis indicates that the receiver function HV ratio is sensitive to the average shear-wave velocity in the depth range it samples, and can help to reduce the non-uniqueness of receiver function waveform inversion. A joint inversion scheme has been developed, and both synthetic tests and real data application proved the feasibility of the joint inversion.

  18. Geometric Restraint Drives On- and Off-pathway Catalysis by the Escherichia coli Menaquinol:Fumarate Reductase*

    PubMed Central

    Tomasiak, Thomas M.; Archuleta, Tara L.; Andréll, Juni; Luna-Chávez, César; Davis, Tyler A.; Sarwar, Maruf; Ham, Amy J.; McDonald, W. Hayes; Yankovskaya, Victoria; Stern, Harry A.; Johnston, Jeffrey N.; Maklashina, Elena; Cecchini, Gary; Iverson, Tina M.

    2011-01-01

    Complex II superfamily members catalyze the kinetically difficult interconversion of succinate and fumarate. Due to the relative simplicity of complex II substrates and their similarity to other biologically abundant small molecules, substrate specificity presents a challenge in this system. In order to identify determinants for on-pathway catalysis, off-pathway catalysis, and enzyme inhibition, crystal structures of Escherichia coli menaquinol:fumarate reductase (QFR), a complex II superfamily member, were determined bound to the substrate, fumarate, and the inhibitors oxaloacetate, glutarate, and 3-nitropropionate. Optical difference spectroscopy and computational modeling support a model where QFR twists the dicarboxylate, activating it for catalysis. Orientation of the C2–C3 double bond of activated fumarate parallel to the C(4a)–N5 bond of FAD allows orbital overlap between the substrate and the cofactor, priming the substrate for nucleophilic attack. Off-pathway catalysis, such as the conversion of malate to oxaloacetate or the activation of the toxin 3-nitropropionate may occur when inhibitors bind with a similarly activated bond in the same position. Conversely, inhibitors that do not orient an activatable bond in this manner, such as glutarate and citrate, are excluded from catalysis and act as inhibitors of substrate binding. These results support a model where electronic interactions via geometric constraint and orbital steering underlie catalysis by QFR. PMID:21098488

  19. Geometric Restraint Drives On- and Off-pathway Catalysis by the Escherichia coli Menaquinol:Fumarate Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasiak, Thomas M.; Archuleta, Tara L.; Andréll, Juni

    2012-01-05

    Complex II superfamily members catalyze the kinetically difficult interconversion of succinate and fumarate. Due to the relative simplicity of complex II substrates and their similarity to other biologically abundant small molecules, substrate specificity presents a challenge in this system. In order to identify determinants for on-pathway catalysis, off-pathway catalysis, and enzyme inhibition, crystal structures of Escherichia coli menaquinol:fumarate reductase (QFR), a complex II superfamily member, were determined bound to the substrate, fumarate, and the inhibitors oxaloacetate, glutarate, and 3-nitropropionate. Optical difference spectroscopy and computational modeling support a model where QFR twists the dicarboxylate, activating it for catalysis. Orientation of themore » C2-C3 double bond of activated fumarate parallel to the C(4a)-N5 bond of FAD allows orbital overlap between the substrate and the cofactor, priming the substrate for nucleophilic attack. Off-pathway catalysis, such as the conversion of malate to oxaloacetate or the activation of the toxin 3-nitropropionate may occur when inhibitors bind with a similarly activated bond in the same position. Conversely, inhibitors that do not orient an activatable bond in this manner, such as glutarate and citrate, are excluded from catalysis and act as inhibitors of substrate binding. These results support a model where electronic interactions via geometric constraint and orbital steering underlie catalysis by QFR.« less

  20. Molybdenum Nitrogenase Catalyzes the Reduction and Coupling of CO to Form Hydrocarbons*♦

    PubMed Central

    Yang, Zhi-Yong; Dean, Dennis R.; Seefeldt, Lance C.

    2011-01-01

    The molybdenum-dependent nitrogenase catalyzes the multi-electron reduction of protons and N2 to yield H2 and 2NH3. It also catalyzes the reduction of a number of non-physiological doubly and triply bonded small molecules (e.g. C2H2, N2O). Carbon monoxide (CO) is not reduced by the wild-type molybdenum nitrogenase but instead inhibits the reduction of all substrates catalyzed by nitrogenase except protons. Here, we report that when the nitrogenase MoFe protein α-Val70 residue is substituted by alanine or glycine, the resulting variant proteins will catalyze the reduction and coupling of CO to form methane (CH4), ethane (C2H6), ethylene (C2H4), propene (C3H6), and propane (C3H8). The rates and ratios of hydrocarbon production from CO can be adjusted by changing the flux of electrons through nitrogenase, by substitution of other amino acids located near the FeMo-cofactor, or by changing the partial pressure of CO. Increasing the partial pressure of CO shifted the product ratio in favor of the longer chain alkanes and alkenes. The implications of these findings in understanding the nitrogenase mechanism and the relationship to Fischer-Tropsch production of hydrocarbons from CO are discussed. PMID:21454640

  1. The Effect of Flow Velocity on Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Lee, D.; Shin, S.; Chung, W.; Ha, J.; Lim, Y.; Kim, S.

    2017-12-01

    The waveform inversion is a velocity modeling technique that reconstructs accurate subsurface physical properties. Therefore, using the model in its final, updated version, we generated data identical to modeled data. Flow velocity, like several other factors, affects observed data in seismic exploration. Despite this, there is insufficient research on its relationship with waveform inversion. In this study, the generated synthetic data considering flow velocity was factored in waveform inversion and the influence of flow velocity in waveform inversion was analyzed. Measuring the flow velocity generally requires additional equipment. However, for situations where only seismic data was available, flow velocity was calculated by fixed-point iteration method using direct wave in observed data. Further, a new waveform inversion was proposed, which can be applied to the calculated flow velocity. We used a wave equation, which can work with the flow velocities used in the study by Käser and Dumbser. Further, we enhanced the efficiency of computation by applying the back-propagation method. To verify the proposed algorithm, six different data sets were generated using the Marmousi2 model; each of these data sets used different flow velocities in the range 0-50, i.e., 0, 2, 5, 10, 25, and 50. Thereafter, the inversion results from these data sets along with the results without the use of flow velocity were compared and analyzed. In this study, we analyzed the results of waveform inversion after flow velocity has been factored in. It was demonstrated that the waveform inversion is not affected significantly when the flow velocity is of smaller value. However, when the flow velocity has a large value, factoring it in the waveform inversion produces superior results. This research was supported by the Basic Research Project(17-3312, 17-3313) of the Korea Institute of Geoscience and Mineral Resources(KIGAM) funded by the Ministry of Science, ICT and Future Planning of Korea.

  2. Transition metal catalyzed borylation of functional π-systems

    PubMed Central

    SHINOKUBO, Hiroshi

    2014-01-01

    Borylated functional π-systems are useful building blocks to enable efficient synthesis of novel molecular architectures with beautiful structures, intriguing properties and unique functions. Introduction of boronic ester substituents to a variety of extended π-systems can be achieved through either iridium-catalyzed direct C–H borylation or the two-step procedure via electrophilic halogenation followed by palladium-catalyzed borylation. This review article focuses on our recent progress on borylation of large π-conjugated systems such as porphyrins, perylene bisimides, hexabenzocoronenes and dipyrrins. PMID:24492644

  3. Lysophosphatidylcholine synthesis by lipase-catalyzed ethanolysis.

    PubMed

    Yang, Guolong; Yang, Ruoxi; Hu, Jingbo

    2015-01-01

    Lysophosphatidylcholine (LPC) is amphiphilic substance, and possesses excellent physiological functions. In this study, LPC was prepared through ethanolysis of phosphatidylcholine (PC) in n-hexane or solvent free media catalyzed by Novozym 435 (from Candida antarctica), Lipozyme TLIM (from Thermomcyces lanuginosus) and Lipozyme RMIM (from Rhizomucor miehei). The results showed that three immobilized lipases from Candida Antarctica, Thermomcyces lanuginosus and Rhizomucor miehei could catalyze ethanolysis of PC efficiently. In n-hexane, the LPC conversions of ethanolysis of PC catalyzed by Novozyme 435, Lipozyme TLIM and Lipozyme RMIM could reach to 98.5 ± 1.6%, 94.6 ± 1.4% and 93.7 ± 1.8%, respectively. In solvent free media, the highest LPC conversions of ethanolysis of PC catalyzed by Novozyme 435, Lipozyme TL IM and Lipozyme RM IM were 97.7 ± 1.7%, 93.5 ± 1.2% and 93.8 ± 1.9%, respectively. The catalytic efficiencies of the three lipases were in the order of Novozyme 435 > Lipozyme TLIM > Lipozyme RMIM. Furthermore, their catalytic efficiencies in n-hexane were better than those in solvent free media.

  4. Drift effects on the tokamak power scrape-off width

    NASA Astrophysics Data System (ADS)

    Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; Mordijck, S.; Rozhansky, V. A.; Senichenkov, I. Yu.; Voskoboynikov, S. P.

    2015-11-01

    Recent experimental analysis suggests that the scrape-off layer (SOL) heat flux width (λq) for ITER will be near 1 mm, sharply narrowing the planned operating window. In this work, motivated by the heuristic drift (HD) model, which predicts the observed inverse plasma current scaling, SOLPS-ITER is used to explore drift effects on λq. Modeling focuses on an H-mode DIII-D discharge. In initial results, target recycling is set to 90%, resulting in sheath-limited SOL conditions. SOL particle diffusivity (DSOL) is varied from 0.1 to 1 m2/s. When drifts are included, λq is insensitive to DSOL, consistent with the HD model, with λq near 3 mm; in no-drift cases, λq varies from 2 to 5 mm. Drift effects depress near-separatrix potential, generating a channel of strong electron heat convection that is insensitive to DSOL. Sensitivities to thermal diffusivities, plasma current, toroidal magnetic field, and device size are also assessed. These initial results will be discussed in detail, and progress toward modeling experimentally relevant high-recycling conditions will be reported. Supported by U.S. DOE Contract DE-SC0010434.

  5. Synthesis of pyrrole-imidazole polyamide oligomers based on a copper-catalyzed cross-coupling strategy.

    PubMed

    Shiga, Naoki; Takayanagi, Shihori; Muramoto, Risa; Murakami, Tasuku; Qin, Rui; Suzuki, Yuta; Shinohara, Ken-Ichi; Kaneda, Atsushi; Nemoto, Tetsuhiro

    2017-05-15

    Pyrrole-imidazole (Py-Im) polyamides are useful tools for chemical biology and medicinal chemistry studies due to their unique binding properties to the minor groove of DNA. We developed a novel method of synthesizing Py-Im polyamide oligomers based on a Cu-catalyzed cross-coupling strategy. All four patterns of dimer fragments could be synthesized using a Cu-catalyzed Ullmann-type cross-coupling with easily prepared monomer units. Moreover, we demonstrated that pyrrole dimer, trimer, and tetramer building blocks for Py-Im polyamide synthesis were accessible by combining site selective iodination of the pyrrole/pyrrole coupling adduct. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  7. 3D magnetization vector inversion based on fuzzy clustering: inversion algorithm, uncertainty analysis, and application to geology differentiation

    NASA Astrophysics Data System (ADS)

    Sun, J.; Li, Y.

    2017-12-01

    Magnetic data contain important information about the subsurface rocks that were magnetized in the geological history, which provides an important avenue to the study of the crustal heterogeneities associated with magmatic and hydrothermal activities. Interpretation of magnetic data has been widely used in mineral exploration, basement characterization and large scale crustal studies for several decades. However, interpreting magnetic data has been often complicated by the presence of remanent magnetizations with unknown magnetization directions. Researchers have developed different methods to deal with the challenges posed by remanence. We have developed a new and effective approach to inverting magnetic data for magnetization vector distributions characterized by region-wise consistency in the magnetization directions. This approach combines the classical Tikhonov inversion scheme with fuzzy C-means clustering algorithm, and constrains the estimated magnetization vectors to a specified small number of possible directions while fitting the observed magnetic data to within noise level. Our magnetization vector inversion recovers both the magnitudes and the directions of the magnetizations in the subsurface. Magnetization directions reflect the unique geological or hydrothermal processes applied to each geological unit, and therefore, can potentially be used for the purpose of differentiating various geological units. We have developed a practically convenient and effective way of assessing the uncertainty associated with the inverted magnetization directions (Figure 1), and investigated how geological differentiation results might be affected (Figure 2). The algorithm and procedures we have developed for magnetization vector inversion and uncertainty analysis open up new possibilities of extracting useful information from magnetic data affected by remanence. We will use a field data example from exploration of an iron-oxide-copper-gold (IOCG) deposit in Brazil to

  8. Research on inverse methods and optimization in Italy

    NASA Technical Reports Server (NTRS)

    Larocca, Francesco

    1991-01-01

    The research activities in Italy on inverse design and optimization are reviewed. The review is focused on aerodynamic aspects in turbomachinery and wing section design. Inverse design of blade rows and ducts of turbomachinery in subsonic and transonic regime are illustrated by the Politecnico di Torino and turbomachinery industry (FIAT AVIO).

  9. Inversions

    ERIC Educational Resources Information Center

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  10. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.

    PubMed

    Choe, Jeesu; Oh, Boyoung; Choe, Eunok

    2014-11-01

    The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion. © 2014 Institute of Food Technologists®

  11. Use of an iodide-specific electrode to study lactoperoxidase-catalyzed iodination of l-tyrosine.

    PubMed

    Threatte, R M; Fregly, M J; Field, F P; Jones, P K

    1979-12-01

    An in vitro method employing an iodide-specific electrode for monitoring lactoperoxidase-catalyzed iodination is described. The method utilized lactoperoxidase, potassium iodide, and a glucose--glucose oxidase system for the generation of hydrogen peroxide and l-tyrosine. As iodination of l-tyrosine proceeded, the free iodide concentration in solution decreased and was monitored by an iodide-specific electrode. The iodide electrode was reliable when compared to a 131I-method for measuring free iodide changes in solution. Increasing concentrations of resorcinol, a well-known inhibitor of thyroid peroxidase-catalyzed iodination, in the reaction mixture resulted in graded inhibition of the initial rate of lactoperoxidase-catalyzed l-tyrosine iodination. This in vitro system can be used to assess inhibitory activity of various antithyroid substances.

  12. Nickel-Catalyzed Coupling of Alkenes, Aldehydes, and Silyl Triflates

    PubMed Central

    Ng, Sze-sze; Ho, Chun-Yu; Jamison, Timothy F.

    2011-01-01

    A full account of two recently developed nickel-catalyzed coupling reactions of alkenes, aldehydes and silyl triflates is presented. These reactions provide either allylic alcohol or homoallylic alcohol derivatives selectively, depending on the ligand employed. These processes are believed to be mechanistically distinct from Lewis acid-catalyzed carbonyl-ene reactions, and several lines of evidence supporting this hypothesis are discussed. PMID:16939275

  13. Stop-catalyzed baryogenesis beyond the MSSM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Andrey; Perelstein, Maxim; Ramsey-Musolf, Michael J.

    2015-11-19

    Nonminimal supersymmetric models that predict a tree-level Higgs mass above the minimal supersymmetric standard model (MSSM) bound are well motivated by naturalness considerations. Indirect constraints on the stop sector parameters of such models are significantly relaxed compared to the MSSM; in particular, both stops can have weak-scale masses. We revisit the stop-catalyzed electroweak baryogenesis (EWB) scenario in this context. We find that the LHC measurements of the Higgs boson production and decay rates already rule out the possibility of stop-catalyzed EWB. Here, we also introduce a gauge-invariant analysis framework that may generalize to other scenarios in which interactions outside themore » gauge sector drive the electroweak phase transition.« less

  14. Refractive index inversion based on Mueller matrix method

    NASA Astrophysics Data System (ADS)

    Fan, Huaxi; Wu, Wenyuan; Huang, Yanhua; Li, Zhaozhao

    2016-03-01

    Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.

  15. Bayesian inversion of surface-wave data for radial and azimuthal shear-wave anisotropy, with applications to central Mongolia and west-central Italy

    NASA Astrophysics Data System (ADS)

    Ravenna, Matteo; Lebedev, Sergei

    2018-04-01

    Seismic anisotropy provides important information on the deformation history of the Earth's interior. Rayleigh and Love surface-waves are sensitive to and can be used to determine both radial and azimuthal shear-wave anisotropies at depth, but parameter trade-offs give rise to substantial model non-uniqueness. Here, we explore the trade-offs between isotropic and anisotropic structure parameters and present a suite of methods for the inversion of surface-wave, phase-velocity curves for radial and azimuthal anisotropies. One Markov chain Monte Carlo (McMC) implementation inverts Rayleigh and Love dispersion curves for a radially anisotropic shear velocity profile of the crust and upper mantle. Another McMC implementation inverts Rayleigh phase velocities and their azimuthal anisotropy for profiles of vertically polarized shear velocity and its depth-dependent azimuthal anisotropy. The azimuthal anisotropy inversion is fully non-linear, with the forward problem solved numerically at different azimuths for every model realization, which ensures that any linearization biases are avoided. The computations are performed in parallel, in order to reduce the computing time. The often challenging issue of data noise estimation is addressed by means of a Hierarchical Bayesian approach, with the variance of the noise treated as an unknown during the radial anisotropy inversion. In addition to the McMC inversions, we also present faster, non-linear gradient-search inversions for the same anisotropic structure. The results of the two approaches are mutually consistent; the advantage of the McMC inversions is that they provide a measure of uncertainty of the models. Applying the method to broad-band data from the Baikal-central Mongolia region, we determine radial anisotropy from the crust down to the transition-zone depths. Robust negative anisotropy (Vsh < Vsv) in the asthenosphere, at 100-300 km depths, presents strong new evidence for a vertical component of asthenospheric

  16. Putting Off-Track Youths Back on Track to College

    ERIC Educational Resources Information Center

    Steinberg, Adria; Allen, Lili

    2011-01-01

    Back on Track, developed by Jobs for the Future, is a design for schools to not only re-engage off-track and out-of-school youths to graduate from high school, but also to put them on a clear, supported path to a college education. Two schools that have combined Back on Track with the early college model, in which students can earn both a high…

  17. Dustfall Effect on Hyperspectral Inversion of Chlorophyll Content - a Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Chen, Yuteng; Ma, Baodong; Li, Xuexin; Zhang, Song; Wu, Lixin

    2018-04-01

    Dust pollution is serious in many areas of China. It is of great significance to estimate chlorophyll content of vegetation accurately by hyperspectral remote sensing for assessing the vegetation growth status and monitoring the ecological environment in dusty areas. By using selected vegetation indices including Medium Resolution Imaging Spectrometer Terrestrial Chlorophyll Index (MTCI) Double Difference Index (DD) and Red Edge Position Index (REP), chlorophyll inversion models were built to study the accuracy of hyperspectral inversion of chlorophyll content based on a laboratory experiment. The results show that: (1) REP exponential model has the most stable accuracy for inversion of chlorophyll content in dusty environment. When dustfall amount is less than 80 g/m2, the inversion accuracy based on REP is stable with the variation of dustfall amount. When dustfall amount is greater than 80 g/m2, the inversion accuracy is slightly fluctuation. (2) Inversion accuracy of DD is worst among three models. (3) MTCI logarithm model has high inversion accuracy when dustfall amount is less than 80 g/m2; When dustfall amount is greater than 80 g/m2, inversion accuracy decreases regularly and inversion accuracy of modified MTCI (mMTCI) increases significantly. The results provide experimental basis and theoretical reference for hyperspectral remote sensing inversion of chlorophyll content.

  18. Geostatistical regularization operators for geophysical inverse problems on irregular meshes

    NASA Astrophysics Data System (ADS)

    Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA

    2018-05-01

    Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.

  19. Inverse Design of Low-Boom Supersonic Concepts Using Reversed Equivalent-Area Targets

    NASA Technical Reports Server (NTRS)

    Li, Wu; Rallabhand, Sriam

    2011-01-01

    A promising path for developing a low-boom configuration is a multifidelity approach that (1) starts from a low-fidelity low-boom design, (2) refines the low-fidelity design with computational fluid dynamics (CFD) equivalent-area (Ae) analysis, and (3) improves the design with sonic-boom analysis by using CFD off-body pressure distributions. The focus of this paper is on the third step of this approach, in which the design is improved with sonic-boom analysis through the use of CFD calculations. A new inverse design process for off-body pressure tailoring is formulated and demonstrated with a low-boom supersonic configuration that was developed by using the mixed-fidelity design method with CFD Ae analysis. The new inverse design process uses the reverse propagation of the pressure distribution (dp/p) from a mid-field location to a near-field location, converts the near-field dp/p into an equivalent-area distribution, generates a low-boom target for the reversed equivalent area (Ae,r) of the configuration, and modifies the configuration to minimize the differences between the configuration s Ae,r and the low-boom target. The new inverse design process is used to modify a supersonic demonstrator concept for a cruise Mach number of 1.6 and a cruise weight of 30,000 lb. The modified configuration has a fully shaped ground signature that has a perceived loudness (PLdB) value of 78.5, while the original configuration has a partially shaped aft signature with a PLdB of 82.3.

  20. ON THE GEOSTATISTICAL APPROACH TO THE INVERSE PROBLEM. (R825689C037)

    EPA Science Inventory

    Abstract

    The geostatistical approach to the inverse problem is discussed with emphasis on the importance of structural analysis. Although the geostatistical approach is occasionally misconstrued as mere cokriging, in fact it consists of two steps: estimation of statist...

  1. Tick off to Take off: The Pre-Departure Guide

    ERIC Educational Resources Information Center

    Arthur, Erica

    2009-01-01

    "Tick Off to Take Off (TOTTO)" is an online pre-departure guide for UK undergraduates intending to study abroad. It aims to simplify the application process, centralise information, increase efficiency and improve retention rates. TOTTO responds to the changing climate surrounding study abroad in UK universities and offers one way to…

  2. The attitude inversion method of geostationary satellites based on unscented particle filter

    NASA Astrophysics Data System (ADS)

    Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao

    2018-04-01

    The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.

  3. Surface-catalyzed air oxidation of hydrazines: Environmental chamber studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of fuel hydrazines were studied in a 6500-liter fluorocarbon-film chamber at 80 to 100 ppm concentrations. First-order rate constants for the reactions catalyzed by aluminum, water-damaged aluminum (Al/Al2O3), stainless steel 304L, galvanized steel and titanium plates with surface areas of 2 to 24 sq m were determined. With 23.8 sq m of Al/Al2O3 the surface-catalyzed air oxidation of hydrazine had a half-life of 2 hours, diimide (N2H2) was observed as an intermediate and traces of ammonia were present in the final product mixture. The Al/Al2O3 catalyzed oxidation of monomethylhydrazine yielded methyldiazine (HN = NCH3) as an intermediate and traces of methanol. Unsymmetrical dimethylhydrazine gave no detectable products. The relative reactivities of hydrazine, MMH and UDMH were 130 : 7.3 : 1.0, respectively. The rate constants for Al/Al2O3-catalyzed oxidation of hydrazine and MMH were proportional to the square of the surface area of the plates. Mechanisms for the surface-catalyzed oxidation of hydrazine and diimide and the formation of ammonia are proposed.

  4. Development of the Off-line Analysis Code for GODDESS

    NASA Astrophysics Data System (ADS)

    Garland, Heather; Cizewski, Jolie; Lepailleur, Alex; Walters, David; Pain, Steve; Smith, Karl

    2016-09-01

    Determining (n, γ) cross sections on unstable nuclei is important for understanding the r-process that is theorized to occur in supernovae and neutron-star mergers. However, (n, γ) reactions are difficult to measure directly because of the short lifetime of the involved neutron rich nuclei. A possible surrogate for the (n, γ) reaction is the (d,p γ) reaction; the measurement of these reactions in inverse kinematics is part of the scope of GODDESS - Gammasphere ORRUBA (Oak Ridge Rutgers University Barrel Array): Dual Detectors for Experimental Structure Studies. The development of an accurate and efficient off-line analysis code for GODDESS experiments is not only essential, but also provides a unique opportunity to create an analysis code designed specifically for transfer reaction experiments. The off-line analysis code has been developed to produce histograms from the binary data file to determine how to best sort events. Recent developments in the off-line analysis code will be presented as well as details on the energy and position calibrations for the ORRUBA detectors. This work is supported in part by the U.S. Department of Energy and National Science Foundation.

  5. Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model

    NASA Astrophysics Data System (ADS)

    Gu, Xiaoyu; Yu, Yang; Li, Jianchun; Li, Yancheng

    2017-10-01

    Magnetorheological elastomer (MRE) base isolations have attracted considerable attention over the last two decades thanks to its self-adaptability and high-authority controllability in semi-active control realm. Due to the inherent nonlinearity and hysteresis of the devices, it is challenging to obtain a reasonably complicated mathematical model to describe the inverse dynamics of MRE base isolators and hence to realise control synthesis of the MRE base isolation system. Two aims have been achieved in this paper: i) development of an inverse model for MRE base isolator based on optimal general regression neural network (GRNN); ii) numerical and experimental validation of a real-time semi-active controlled MRE base isolation system utilising LQR controller and GRNN inverse model. The superiority of GRNN inverse model lays in fewer input variables requirement, faster training process and prompt calculation response, which makes it suitable for online training and real-time control. The control system is integrated with a three-storey shear building model and control performance of the MRE base isolation system is compared with bare building, passive-on isolation system and passive-off isolation system. Testing results show that the proposed GRNN inverse model is able to reproduce desired control force accurately and the MRE base isolation system can effectively suppress the structural responses when compared to the passive isolation system.

  6. Glymes as benign co-solvents for CaO-catalyzed transesterification of soybean oil to biodiesel.

    PubMed

    Tang, Shaokun; Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe

    2013-07-01

    The base (such as CaO)-catalyzed heterogeneous preparation of biodiesel encounters a number of obstacles including the need for CaO pretreatment and the reactions being incomplete (typically 90-95% yields). In this study, a number of glymes were investigated as benign solvents for the CaO-catalyzed transesterification of soybean oil into biodiesel with a high substrate loading (typically soybean oil >50% v/v). The triglyceride-dissolving capability of glymes led to a much faster reaction rate (>98% conversions in 4h) than in methanol alone (typically 24h) and minimized the saponification reaction when catalyzed by anhydrous CaO or commercial lime without pre-activation. The use of glyme (e.g. P2) as co-solvent also activates commercial lime to become an effective catalyst without calcination pretreatment. The SEM images suggest a dissolution-agglomeration process of CaO surface in the presence of P2, which could remove the CaCO3 and Ca(OH)2 layer coated on the surface of lime. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Synthesis and characterization of branched polymers from lipase-catalyzed trimethylolpropane copolymerizations.

    PubMed

    Kulshrestha, Ankur S; Gao, Wei; Fu, Hongyong; Gross, Richard A

    2007-06-01

    Lipase-catalyzed terpolymerizations were performed with the monomers trimethylolpropane (B3), 1,8-octanediol (B2), and adipic acid (A2). Polymerizations were performed in bulk, at 70 degrees C, for 42 h, using immobilized lipase B from Candida antartica (Novozyme-435) as a catalyst. To determine the substitution pattern of trimethylolpropane (TMP) in copolymers, model compounds with variable degrees of acetylation were synthesized. Inverse-gated 13C NMR spectra were recorded to first determine the chemical shift positions for mono-, di-, and trisubstituted TMP units and, subsequently, to determine substitution of TMP units along chains. Variation of TMP in the monomer feed gave copolymers with degrees of branching (DB) from 20% to 67%. In one example, a hyperbranched copolyester with 53 mol % TMP adipate units was formed in 80% yield, with Mw 14 100 (relative to polystyrene standards), Mw/Mn 5.3, and DB 36%. Thermal and crystalline properties of the copolyesters were studied by thermogravimetric analysis and differential scanning calorimetry.

  8. Strategies for efficient resolution analysis in full-waveform inversion

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; van Leeuwen, T.; Trampert, J.

    2016-12-01

    Full-waveform inversion is developing into a standard method in the seismological toolbox. It combines numerical wave propagation for heterogeneous media with adjoint techniques in order to improve tomographic resolution. However, resolution becomes increasingly difficult to quantify because of the enormous computational requirements. Here we present two families of methods that can be used for efficient resolution analysis in full-waveform inversion. They are based on the targeted extraction of resolution proxies from the Hessian matrix, which is too large to store and to compute explicitly. Fourier methods rest on the application of the Hessian to Earth models with harmonic oscillations. This yields the Fourier spectrum of the Hessian for few selected wave numbers, from which we can extract properties of the tomographic point-spread function for any point in space. Random probing methods use uncorrelated, random test models instead of harmonic oscillations. Auto-correlating the Hessian-model applications for sufficiently many test models also characterises the point-spread function. Both Fourier and random probing methods provide a rich collection of resolution proxies. These include position- and direction-dependent resolution lengths, and the volume of point-spread functions as indicator of amplitude recovery and inter-parameter trade-offs. The computational requirements of these methods are equivalent to approximately 7 conjugate-gradient iterations in full-waveform inversion. This is significantly less than the optimisation itself, which may require tens to hundreds of iterations to reach convergence. In addition to the theoretical foundations of the Fourier and random probing methods, we show various illustrative examples from real-data full-waveform inversion for crustal and mantle structure.

  9. Inverse square law isothermal property in relativistic charged static distributions

    NASA Astrophysics Data System (ADS)

    Hansraj, Sudan; Qwabe, Nkululeko

    2017-12-01

    We analyze the impact of the inverse square law fall-off of the energy density in a charged isotropic spherically symmetric fluid. Initially, we impose a linear barotropic equation of state p = αρ but this leads to an intractable differential equation. Next, we consider the neutral isothermal metric of Saslaw et al. [Phys. Rev. D 13, 471 (1996)] in an electric field and the usual inverse square law of energy density and pressure results thus preserving the equation of state. Additionally, we discard a linear equation of state and endeavor to find new classes of solutions with the inverse square law fall-off of density. Certain prescribed forms of the spatial and temporal gravitational forms result in new exact solutions. An interesting result that emerges is that while isothermal fluid spheres are unbounded in the neutral case, this is not so when charge is involved. Indeed it was found that barotropic equations of state exist and hypersurfaces of vanishing pressure exist establishing a boundary in practically all models. One model was studied in depth and found to satisfy other elementary requirements for physical admissibility such as a subluminal sound speed as well as gravitational surface redshifts smaller than 2. Buchdahl [Acta Phys. Pol. B 10, 673 (1965)], Böhmer and Harko [Gen. Relat. Gravit. 39, 757 (2007)] and Andréasson [Commum. Math. Phys. 198, 507 (2009)] mass-radius bounds were also found to be satisfied. Graphical plots utilizing constants selected from the boundary conditions established that the model displayed characteristics consistent with physically viable models.

  10. Manganese Catalyzed C–H Halogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species thatmore » transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–Mn V$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  11. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  12. An inverse dynamics approach to face animation.

    PubMed

    Pitermann, M; Munhall, K G

    2001-09-01

    Muscle-based models of the human face produce high quality animation but rely on recorded muscle activity signals or synthetic muscle signals that are often derived by trial and error. This paper presents a dynamic inversion of a muscle-based model (Lucero and Munhall, 1999) that permits the animation to be created from kinematic recordings of facial movements. Using a nonlinear optimizer (Powell's algorithm), the inversion produces a muscle activity set for seven muscles in the lower face that minimize the root mean square error between kinematic data recorded with OPTOTRAK and the corresponding nodes of the modeled facial mesh. This inverted muscle activity is then used to animate the facial model. In three tests of the inversion, strong correlations were observed for kinematics produced from synthetic muscle activity, for OPTOTRAK kinematics recorded from a talker for whom the facial model is morphologically adapted and finally for another talker with the model morphology adapted to a different individual. The correspondence between the animation kinematics and the three-dimensional OPTOTRAK data are very good and the animation is of high quality. Because the kinematic to electromyography (EMG) inversion is ill posed, there is no relation between the actual EMG and the inverted EMG. The overall redundancy of the motor system means that many different EMG patterns can produce the same kinematic output.

  13. Inversion of Crater Morphometric Data to Gain Insight on the Cratering Process

    NASA Technical Reports Server (NTRS)

    Herrick, Robert R.; Lyons, Suzane N.

    1998-01-01

    In recent years, morphometric data for Venus and several outer planet satellites have been collected, so we now have observational data of complex Craters formed in a large range of target properties. We present general inversion techniques that can utilize the morphometric data to quantitatively test various models of complex crater formation. The morphometric data we use in this paper are depth of a complex crater, the diameter at which the depth-diameter ratio changes, and onset diameters for central peaks, terraces, and peak rings. We tested the roles of impactor velocities and hydrostatic pressure vs. crustal strength, and we tested the specific models of acoustic fluidization (Melosh, 1982) and nonproportional growth (Schultz, 1988). Neither the acoustic fluidization model nor the nonproportional growth in their published formulations are able to successfully reproduce the data. No dependence on impactor velocity is evident from our inversions. Most of the morphometric data is consistent with a linear dependence on the ratio of crustal strength to hydrostatic pressure on a planet, or the factor c/pg.

  14. A Joint Method of Envelope Inversion Combined with Hybrid-domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    CUI, C.; Hou, W.

    2017-12-01

    Full waveform inversion (FWI) aims to construct high-precision subsurface models by fully using the information in seismic records, including amplitude, travel time, phase and so on. However, high non-linearity and the absence of low frequency information in seismic data lead to the well-known cycle skipping problem and make inversion easily fall into local minima. In addition, those 3D inversion methods that are based on acoustic approximation ignore the elastic effects in real seismic field, and make inversion harder. As a result, the accuracy of final inversion results highly relies on the quality of initial model. In order to improve stability and quality of inversion results, multi-scale inversion that reconstructs subsurface model from low to high frequency are applied. But, the absence of very low frequencies (< 3Hz) in field data is still bottleneck in the FWI. By extracting ultra low-frequency data from field data, envelope inversion is able to recover low wavenumber model with a demodulation operator (envelope operator), though the low frequency data does not really exist in field data. To improve the efficiency and viability of the inversion, in this study, we proposed a joint method of envelope inversion combined with hybrid-domain FWI. First, we developed 3D elastic envelope inversion, and the misfit function and the corresponding gradient operator were derived. Then we performed hybrid-domain FWI with envelope inversion result as initial model which provides low wavenumber component of model. Here, forward modeling is implemented in the time domain and inversion in the frequency domain. To accelerate the inversion, we adopt CPU/GPU heterogeneous computing techniques. There were two levels of parallelism. In the first level, the inversion tasks are decomposed and assigned to each computation node by shot number. In the second level, GPU multithreaded programming is used for the computation tasks in each node, including forward modeling, envelope

  15. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  16. Horseradish-Peroxidase-Catalyzed Tyrosine Click Reaction.

    PubMed

    Sato, Shinichi; Nakamura, Kosuke; Nakamura, Hiroyuki

    2017-03-02

    The efficiency of protein chemical modification on tyrosine residues with N-methylluminol derivatives was drastically improved by using horseradish peroxidase (HRP). In the previous method, based on the use of hemin and H 2 O 2 , oxidative side reactions such as cysteine oxidation were problematic for functionalization of proteins selectively on tyrosine residues. Oxidative activation of N-methylluminol derivatives with a minimum amount of H 2 O 2 prevented the occurrence of oxidative side reactions under HRP-catalyzed conditions. As probes for HRP-catalyzed protein modification, N-methylluminol derivatives showed much higher efficiency than tyramide without inducing oligomerization of probe molecules. Tyrosine modification also proceeded in the presence of β-nicotinamide adenine dinucleotide (NADH, H 2 O 2 -free conditions). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Catalyzed sodium chlorate candles

    NASA Technical Reports Server (NTRS)

    Malich, C. W.; Wydeven, T.

    1972-01-01

    The catalytic effect of cobalt powder on chlorate decomposition has been confirmed. Catalysis is enhanced by oxidation of the metal during burning. Catalysts other than cobalt compounds should also be effective; the complete elimination of fuel has shown that the oxidation of cobalt during decomposition is not a vital factor in the improved performance of catalyzed candles.

  18. Contributed Review: Experimental characterization of inverse piezoelectric strain in GaN HEMTs via micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bagnall, Kevin R.; Wang, Evelyn N.

    2016-06-01

    Micro-Raman thermography is one of the most popular techniques for measuring local temperature rise in gallium nitride (GaN) high electron mobility transistors with high spatial and temporal resolution. However, accurate temperature measurements based on changes in the Stokes peak positions of the GaN epitaxial layers require properly accounting for the stress and/or strain induced by the inverse piezoelectric effect. It is common practice to use the pinched OFF state as the unpowered reference for temperature measurements because the vertical electric field in the GaN buffer that induces inverse piezoelectric stress/strain is relatively independent of the gate bias. Although this approach has yielded temperature measurements that agree with those derived from the Stokes/anti-Stokes ratio and thermal models, there has been significant difficulty in quantifying the mechanical state of the GaN buffer in the pinched OFF state from changes in the Raman spectra. In this paper, we review the experimental technique of micro-Raman thermography and derive expressions for the detailed dependence of the Raman peak positions on strain, stress, and electric field components in wurtzite GaN. We also use a combination of semiconductor device modeling and electro-mechanical modeling to predict the stress and strain induced by the inverse piezoelectric effect. Based on the insights gained from our electro-mechanical model and the best values of material properties in the literature, we analyze changes in the E2 high and A1 (LO) Raman peaks and demonstrate that there are major quantitative discrepancies between measured and modeled values of inverse piezoelectric stress and strain. We examine many of the hypotheses offered in the literature for these discrepancies but conclude that none of them satisfactorily resolves these discrepancies. Further research is needed to determine whether the electric field components could be affecting the phonon frequencies apart from the inverse

  19. Contributed Review: Experimental characterization of inverse piezoelectric strain in GaN HEMTs via micro-Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagnall, Kevin R.; Wang, Evelyn N.

    2016-06-15

    Micro-Raman thermography is one of the most popular techniques for measuring local temperature rise in gallium nitride (GaN) high electron mobility transistors with high spatial and temporal resolution. However, accurate temperature measurements based on changes in the Stokes peak positions of the GaN epitaxial layers require properly accounting for the stress and/or strain induced by the inverse piezoelectric effect. It is common practice to use the pinched OFF state as the unpowered reference for temperature measurements because the vertical electric field in the GaN buffer that induces inverse piezoelectric stress/strain is relatively independent of the gate bias. Although this approachmore » has yielded temperature measurements that agree with those derived from the Stokes/anti-Stokes ratio and thermal models, there has been significant difficulty in quantifying the mechanical state of the GaN buffer in the pinched OFF state from changes in the Raman spectra. In this paper, we review the experimental technique of micro-Raman thermography and derive expressions for the detailed dependence of the Raman peak positions on strain, stress, and electric field components in wurtzite GaN. We also use a combination of semiconductor device modeling and electro-mechanical modeling to predict the stress and strain induced by the inverse piezoelectric effect. Based on the insights gained from our electro-mechanical model and the best values of material properties in the literature, we analyze changes in the E{sub 2} high and A{sub 1} (LO) Raman peaks and demonstrate that there are major quantitative discrepancies between measured and modeled values of inverse piezoelectric stress and strain. We examine many of the hypotheses offered in the literature for these discrepancies but conclude that none of them satisfactorily resolves these discrepancies. Further research is needed to determine whether the electric field components could be affecting the phonon frequencies apart

  20. High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US

    NASA Astrophysics Data System (ADS)

    Kaiser, Jennifer; Jacob, Daniel J.; Zhu, Lei; Travis, Katherine R.; Fisher, Jenny A.; González Abad, Gonzalo; Zhang, Lin; Zhang, Xuesong; Fried, Alan; Crounse, John D.; St. Clair, Jason M.; Wisthaler, Armin

    2018-04-01

    Isoprene emissions from vegetation have a large effect on atmospheric chemistry and air quality. Bottom-up isoprene emission inventories used in atmospheric models are based on limited vegetation information and uncertain land cover data, leading to potentially large errors. Satellite observations of atmospheric formaldehyde (HCHO), a high-yield isoprene oxidation product, provide top-down information to evaluate isoprene emission inventories through inverse analyses. Past inverse analyses have however been hampered by uncertainty in the HCHO satellite data, uncertainty in the time- and NOx-dependent yield of HCHO from isoprene oxidation, and coarse resolution of the atmospheric models used for the inversion. Here we demonstrate the ability to use HCHO satellite data from OMI in a high-resolution inversion to constrain isoprene emissions on ecosystem-relevant scales. The inversion uses the adjoint of the GEOS-Chem chemical transport model at 0.25° × 0.3125° horizontal resolution to interpret observations over the southeast US in August-September 2013. It takes advantage of concurrent NASA SEAC4RS aircraft observations of isoprene and its oxidation products including HCHO to validate the OMI HCHO data over the region, test the GEOS-Chem isoprene oxidation mechanism and NOx environment, and independently evaluate the inversion. This evaluation shows in particular that local model errors in NOx concentrations propagate to biases in inferring isoprene emissions from HCHO data. It is thus essential to correct model NOx biases, which was done here using SEAC4RS observations but can be done more generally using satellite NO2 data concurrently with HCHO. We find in our inversion that isoprene emissions from the widely used MEGAN v2.1 inventory are biased high over the southeast US by 40 % on average, although the broad-scale distributions are correct including maximum emissions in Arkansas/Louisiana and high base emission factors in the oak-covered Ozarks

  1. The effect of Mg/2+/ and Ca/2+/ on urea-catalyzed phosphorylation reactions

    NASA Technical Reports Server (NTRS)

    Handschuk, G. J.; Lohrmann, R.; Orgel, L. E.

    1973-01-01

    The effect of Mg(2+) and Ca(2+) on phosphorylation reactions catalyzed by urea is investigated, showing that Mg(2+) improves markedly the yield of products containing pyrophosphate bonds. Yields of up to 25% of uridine diphosphate can be obtained with struvite at temperatures as low as 65 C.

  2. Effects of Inversions on Within- and Between-Species Recombination and Divergence

    PubMed Central

    Stevison, Laurie S.; Hoehn, Kenneth B.; Noor, Mohamed A. F.

    2011-01-01

    Chromosomal inversions disrupt recombination in heterozygotes by both reducing crossing-over within inverted regions and increasing it elsewhere in the genome. The reduction of recombination in inverted regions facilitates the maintenance of hybridizing species, as outlined by various models of chromosomal speciation. We present a comprehensive comparison of the effects of inversions on recombination rates and on nucleotide divergence. Within an inversion differentiating Drosophila pseudoobscura and Drosophila persimilis, we detected one double recombinant among 9,739 progeny from F1 hybrids screened, consistent with published double-crossover frequencies observed within species. Despite similar rates of exchange within and between species, we found no sequence-based evidence of ongoing gene exchange between species within this inversion, but significant exchange was inferred within species. We also observed greater differentiation at regions near inversion breakpoints between species versus within species. Moreover, we observed strong “interchromosomal effect” (higher recombination in inversion heterozygotes between species) with up to 9-fold higher recombination rates along collinear segments of chromosome two in hybrids. Further, we observed that regions most susceptible to changes in recombination rates corresponded to regions with lower recombination rates in homokaryotypes. Finally, we showed that interspecies nucleotide divergence is lower in regions with greater increases in recombination rate, potentially resulting from greater interspecies exchange. Overall, we have identified several similarities and differences between inversions segregating within versus between species in their effects on recombination and divergence. We conclude that these differences are most likely due to lower frequency of heterokaryotypes and to fitness consequences from the accumulation of various incompatibilities between species. Additionally, we have identified possible

  3. Design of Aspirated Compressor Blades Using Three-dimensional Inverse Method

    NASA Technical Reports Server (NTRS)

    Dang, T. Q.; Rooij, M. Van; Larosiliere, L. M.

    2003-01-01

    A three-dimensional viscous inverse method is extended to allow blading design with full interaction between the prescribed pressure-loading distribution and a specified transpiration scheme. Transpiration on blade surfaces and endwalls is implemented as inflow/outflow boundary conditions, and the basic modifications to the method are outlined. This paper focuses on a discussion concerning an application of the method to the design and analysis of a supersonic rotor with aspiration. Results show that an optimum combination of pressure-loading tailoring with surface aspiration can lead to a minimization of the amount of sucked flow required for a net performance improvement at design and off-design operations.

  4. Children's strategies to solving additive inverse problems: a preliminary analysis

    NASA Astrophysics Data System (ADS)

    Ding, Meixia; Auxter, Abbey E.

    2017-03-01

    Prior studies show that elementary school children generally "lack" formal understanding of inverse relations. This study goes beyond lack to explore what children might "have" in their existing conception. A total of 281 students, kindergarten to third grade, were recruited to respond to a questionnaire that involved both contextual and non-contextual tasks on inverse relations, requiring both computational and explanatory skills. Results showed that children demonstrated better performance in computation than explanation. However, many students' explanations indicated that they did not necessarily utilize inverse relations for computation. Rather, they appeared to possess partial understanding, as evidenced by their use of part-whole structure, which is a key to understanding inverse relations. A close inspection of children's solution strategies further revealed that the sophistication of children's conception of part-whole structure varied in representation use and unknown quantity recognition, which suggests rich opportunities to develop students' understanding of inverse relations in lower elementary classrooms.

  5. Spin-Off Successes of SETI Research at Berkeley

    NASA Astrophysics Data System (ADS)

    Douglas, K. A.; Anderson, D. P.; Bankay, R.; Chen, H.; Cobb, J.; Korpela, E. J.; Lebofsky, M.; Parsons, A.; von Korff, J.; Werthimer, D.

    2009-12-01

    Our group contributes to the Search for Extra-Terrestrial Intelligence (SETI) by developing and using world-class signal processing computers to analyze data collected on the Arecibo telescope. Although no patterned signal of extra-terrestrial origin has yet been detected, and the immediate prospects for making such a detection are highly uncertain, the SETI@home project has nonetheless proven the value of pursuing such research through its impact on the fields of distributed computing, real-time signal processing, and radio astronomy. The SETI@home project has spun off the Center for Astronomy Signal Processing and Electronics Research (CASPER) and the Berkeley Open Infrastructure for Networked Computing (BOINC), both of which are responsible for catalyzing a smorgasbord of new research in scientific disciplines in countries around the world. Futhermore, the data collected and archived for the SETI@home project is proving valuable in data-mining experiments for mapping neutral galatic hydrogen and for detecting black-hole evaporation.

  6. A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line

    NASA Astrophysics Data System (ADS)

    Its, A.; Sukhanov, V.

    2016-05-01

    The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.

  7. ANNIT - An Efficient Inversion Algorithm based on Prediction Principles

    NASA Astrophysics Data System (ADS)

    Růžek, B.; Kolář, P.

    2009-04-01

    Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good

  8. Multiresolution MR elastography using nonlinear inversion

    PubMed Central

    McGarry, M. D. J.; Van Houten, E. E. W.; Johnson, C. L.; Georgiadis, J. G.; Sutton, B. P.; Weaver, J. B.; Paulsen, K. D.

    2012-01-01

    Purpose: Nonlinear inversion (NLI) in MR elastography requires discretization of the displacement field for a finite element (FE) solution of the “forward problem”, and discretization of the unknown mechanical property field for the iterative solution of the “inverse problem”. The resolution requirements for these two discretizations are different: the forward problem requires sufficient resolution of the displacement FE mesh to ensure convergence, whereas lowering the mechanical property resolution in the inverse problem stabilizes the mechanical property estimates in the presence of measurement noise. Previous NLI implementations use the same FE mesh to support the displacement and property fields, requiring a trade-off between the competing resolution requirements. Methods: This work implements and evaluates multiresolution FE meshes for NLI elastography, allowing independent discretizations of the displacements and each mechanical property parameter to be estimated. The displacement resolution can then be selected to ensure mesh convergence, and the resolution of the property meshes can be independently manipulated to control the stability of the inversion. Results: Phantom experiments indicate that eight nodes per wavelength (NPW) are sufficient for accurate mechanical property recovery, whereas mechanical property estimation from 50 Hz in vivo brain data stabilizes once the displacement resolution reaches 1.7 mm (approximately 19 NPW). Viscoelastic mechanical property estimates of in vivo brain tissue show that subsampling the loss modulus while holding the storage modulus resolution constant does not substantially alter the storage modulus images. Controlling the ratio of the number of measurements to unknown mechanical properties by subsampling the mechanical property distributions (relative to the data resolution) improves the repeatability of the property estimates, at a cost of modestly decreased spatial resolution. Conclusions: Multiresolution

  9. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Q. Q., E-mail: yangqq@ipp.ac.cn; Zhong, F. C., E-mail: gsxu@ipp.ac.cn, E-mail: fczhong@dhu.edu.cn; Jia, M. N.

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation lengthmore » of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.« less

  10. Entropy of homeomorphisms on unimodal inverse limit spaces

    NASA Astrophysics Data System (ADS)

    Bruin, H.; Štimac, S.

    2013-04-01

    We prove that every self-homeomorphism h : Ks → Ks on the inverse limit space Ks of the tent map Ts with slope s \\in (\\sqrt 2, 2] has topological entropy htop(h) = |R| log s, where R \\in { Z} is such that h and σR are isotopic. Conclusions on all possible values of the entropy of homeomorphisms of the inverse limit space of a (renormalizable) quadratic map are also drawn.

  11. Iron-catalyzed intermolecular cycloaddition of diazo surrogates with hexahydro-1,3,5-triazines.

    PubMed

    Liu, Pei; Zhu, Chenghao; Xu, Guangyang; Sun, Jiangtao

    2017-09-26

    We report here an unprecedented iron-catalyzed cycloaddition reaction of diazo surrogates with hexahydro-1,3,5-triazines, providing five-membered heterocycles in moderate to high yields under mild reaction conditions. This cycloaddition features C-N and C-C bond formation using a cheap iron catalyst. Importantly, different to our former report on a gold-catalyzed system, both donor/donor and donor/acceptor diazo substrates are tolerated in this iron-catalyzed protocol.

  12. A Geophysical Inversion Model Enhancement Technique Based on the Blind Deconvolution

    NASA Astrophysics Data System (ADS)

    Zuo, B.; Hu, X.; Li, H.

    2011-12-01

    A model-enhancement technique is proposed to enhance the geophysical inversion model edges and details without introducing any additional information. Firstly, the theoretic correctness of the proposed geophysical inversion model-enhancement technique is discussed. An inversion MRM (model resolution matrix) convolution approximating PSF (Point Spread Function) method is designed to demonstrate the correctness of the deconvolution model enhancement method. Then, a total-variation regularization blind deconvolution geophysical inversion model-enhancement algorithm is proposed. In previous research, Oldenburg et al. demonstrate the connection between the PSF and the geophysical inverse solution. Alumbaugh et al. propose that more information could be provided by the PSF if we return to the idea of it behaving as an averaging or low pass filter. We consider the PSF as a low pass filter to enhance the inversion model basis on the theory of the PSF convolution approximation. Both the 1D linear and the 2D magnetotelluric inversion examples are used to analyze the validity of the theory and the algorithm. To prove the proposed PSF convolution approximation theory, the 1D linear inversion problem is considered. It shows the ratio of convolution approximation error is only 0.15%. The 2D synthetic model enhancement experiment is presented. After the deconvolution enhancement, the edges of the conductive prism and the resistive host become sharper, and the enhancement result is closer to the actual model than the original inversion model according the numerical statistic analysis. Moreover, the artifacts in the inversion model are suppressed. The overall precision of model increases 75%. All of the experiments show that the structure details and the numerical precision of inversion model are significantly improved, especially in the anomalous region. The correlation coefficient between the enhanced inversion model and the actual model are shown in Fig. 1. The figure

  13. Zinc-catalyzed allenylations of aldehydes and ketones.

    PubMed

    Fandrick, Daniel R; Saha, Jaideep; Fandrick, Keith R; Sanyal, Sanjit; Ogikubo, Junichi; Lee, Heewon; Roschangar, Frank; Song, Jinhua J; Senanayake, Chris H

    2011-10-21

    The general zinc-catalyzed allenylation of aldehydes and ketones with an allenyl boronate is presented. Preliminary mechanistic studies support a kinetically controlled process wherein, after a site-selective B/Zn exchange to generate a propargyl zinc intermediate, the addition to the electrophile effectively competes with propargyl-allenyl zinc equilibration. The utility of the methodology was demonstrated by application to a rhodium-catalyzed [4+2] cycloaddition. © 2011 American Chemical Society

  14. Easy way to determine quantitative spatial resolution distribution for a general inverse problem

    NASA Astrophysics Data System (ADS)

    An, M.; Feng, M.

    2013-12-01

    The spatial resolution computation of a solution was nontrivial and more difficult than solving an inverse problem. Most geophysical studies, except for tomographic studies, almost uniformly neglect the calculation of a practical spatial resolution. In seismic tomography studies, a qualitative resolution length can be indicatively given via visual inspection of the restoration of a synthetic structure (e.g., checkerboard tests). An effective strategy for obtaining quantitative resolution length is to calculate Backus-Gilbert resolution kernels (also referred to as a resolution matrix) by matrix operation. However, not all resolution matrices can provide resolution length information, and the computation of resolution matrix is often a difficult problem for very large inverse problems. A new class of resolution matrices, called the statistical resolution matrices (An, 2012, GJI), can be directly determined via a simple one-parameter nonlinear inversion performed based on limited pairs of random synthetic models and their inverse solutions. The total procedure were restricted to forward/inversion processes used in the real inverse problem and were independent of the degree of inverse skill used in the solution inversion. Spatial resolution lengths can be directly given during the inversion. Tests on 1D/2D/3D model inversion demonstrated that this simple method can be at least valid for a general linear inverse problem.

  15. Towards Full-Waveform Ambient Noise Inversion

    NASA Astrophysics Data System (ADS)

    Sager, K.; Ermert, L. A.; Boehm, C.; Fichtner, A.

    2016-12-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green function between the two receivers. This assumption, however, is only met under specific conditions, e.g. wavefield diffusivity and equipartitioning, or the isotropic distribution of both mono- and dipolar uncorrelated noise sources. These assumptions are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations in order to constrain Earth structure and noise generation. To overcome this limitation, we attempt to develop a method that consistently accounts for the distribution of noise sources, 3D heterogeneous Earth structure and the full seismic wave propagation physics. This is intended to improve the resolution of tomographic images, to refine noise source location, and thereby to contribute to a better understanding of noise generation. We introduce an operator-based formulation for the computation of correlation functions and apply the continuous adjoint method that allows us to compute first and second derivatives of misfit functionals with respect to source distribution and Earth structure efficiently. Based on these developments we design an inversion scheme using a 2D finite-difference code. To enable a joint inversion for noise sources and Earth structure, we investigate the following aspects: The capability of different misfit functionals to image wave speed anomalies and source distribution. Possible source-structure trade-offs, especially to what extent unresolvable structure can be mapped into the inverted noise source distribution and vice versa. In anticipation of real-data applications, we present an extension of the open-source waveform modelling and inversion package Salvus, which allows us to compute correlation functions in 3D media with heterogeneous noise sources at the surface.

  16. Finding off-targets, biological pathways, and target diseases for chymase inhibitors via structure-based systems biology approach.

    PubMed

    Arooj, Mahreen; Sakkiah, Sugunadevi; Cao, Guang Ping; Kim, Songmi; Arulalapperumal, Venkatesh; Lee, Keun Woo

    2015-07-01

    Off-target binding connotes the binding of a small molecule of therapeutic significance to a protein target in addition to the primary target for which it was proposed. Progressively such off-targeting is emerging to be regular practice to reveal side effects. Chymase is an enzyme of hydrolase class that catalyzes hydrolysis of peptide bonds. A link between heart failure and chymase is ascribed, and a chymase inhibitor is in clinical phase II for treatment of heart failure. However, the underlying mechanisms of the off-target effects of human chymase inhibitors are still unclear. Here, we develop a robust computational strategy that is applicable to any enzyme system and that allows the prediction of drug effects on biological processes. Putative off-targets for chymase inhibitors were identified through various structural and functional similarity analyses along with molecular docking studies. Finally, literature survey was performed to incorporate these off-targets into biological pathways and to establish links between pathways and particular adverse effects. Off-targets of chymase inhibitors are linked to various biological pathways such as classical and lectin pathways of complement system, intrinsic and extrinsic pathways of coagulation cascade, and fibrinolytic system. Tissue kallikreins, granzyme M, neutrophil elastase, and mesotrypsin are also identified as off-targets. These off-targets and their associated pathways are elucidated for the effects of inflammation, cancer, hemorrhage, thrombosis, and central nervous system diseases (Alzheimer's disease). Prospectively, our approach is helpful not only to better understand the mechanisms of chymase inhibitors but also for drug repurposing exercises to find novel uses for these inhibitors. © 2014 Wiley Periodicals, Inc.

  17. Search for Higgs boson off-shell production in proton-proton collisions at 7 and 8 TeV and derivation of constraints on its total decay width

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2016-09-09

    A search is presented for the Higgs boson off-shell production in gluon fusion and vector boson fusion processes with the Higgs boson decaying into a WW pair and the W bosons decaying leptonically. The data observed in this analysis are used to constrain the Higgs boson total decay width. The analysis is based on the data collected by the CMS experiment at the LHC, corresponding to integrated luminosities of 4.9 inverse femtobarns at a centre-of-mass energy of 7 TeV and 19.4 inverse femtobarns at 8 TeV, respectively. An observed (expected) upper limit on the off-shell Higgs boson event yield normalisedmore » to the standard model prediction of 2.4 (6.2) is obtained at the 95% CL for the gluon fusion process and of 19.3 (34.4) for the vector boson fusion process. Observed and expected limits on the total width of 26 and 66 MeV are found, respectively, at the 95% confidence level (CL). These limits are combined with the previous result in the ZZ channel leading to observed and expected 95% CL upper limits on the width of 13 and 26 MeV, respectively.« less

  18. Search for Higgs boson off-shell production in proton-proton collisions at 7 and 8 TeV and derivation of constraints on its total decay width

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.

    A search is presented for the Higgs boson off-shell production in gluon fusion and vector boson fusion processes with the Higgs boson decaying into a WW pair and the W bosons decaying leptonically. The data observed in this analysis are used to constrain the Higgs boson total decay width. The analysis is based on the data collected by the CMS experiment at the LHC, corresponding to integrated luminosities of 4.9 inverse femtobarns at a centre-of-mass energy of 7 TeV and 19.4 inverse femtobarns at 8 TeV, respectively. An observed (expected) upper limit on the off-shell Higgs boson event yield normalisedmore » to the standard model prediction of 2.4 (6.2) is obtained at the 95% CL for the gluon fusion process and of 19.3 (34.4) for the vector boson fusion process. Observed and expected limits on the total width of 26 and 66 MeV are found, respectively, at the 95% confidence level (CL). These limits are combined with the previous result in the ZZ channel leading to observed and expected 95% CL upper limits on the width of 13 and 26 MeV, respectively.« less

  19. Pareto-Optimal Multi-objective Inversion of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Schnaidt, Sebastian; Conway, Dennis; Krieger, Lars; Heinson, Graham

    2018-01-01

    In the process of modelling geophysical properties, jointly inverting different data sets can greatly improve model results, provided that the data sets are compatible, i.e., sensitive to similar features. Such a joint inversion requires a relationship between the different data sets, which can either be analytic or structural. Classically, the joint problem is expressed as a scalar objective function that combines the misfit functions of multiple data sets and a joint term which accounts for the assumed connection between the data sets. This approach suffers from two major disadvantages: first, it can be difficult to assess the compatibility of the data sets and second, the aggregation of misfit terms introduces a weighting of the data sets. We present a pareto-optimal multi-objective joint inversion approach based on an existing genetic algorithm. The algorithm treats each data set as a separate objective, avoiding forced weighting and generating curves of the trade-off between the different objectives. These curves are analysed by their shape and evolution to evaluate data set compatibility. Furthermore, the statistical analysis of the generated solution population provides valuable estimates of model uncertainty.

  20. On-off nonlinear active control of floor vibrations

    NASA Astrophysics Data System (ADS)

    Díaz, Iván M.; Reynolds, Paul

    2010-08-01

    Human-induced floor vibrations can be mitigated by means of active control via an electromagnetic proof-mass actuator. Previous researchers have developed a system for floor vibration comprising linear velocity feedback control (LVFC) with a command limiter (saturation in the command signal to avoid actuator overloading). The performance of this control is highly dependent on the linear gain utilised, which has to be designed for a particular excitation and might not be optimum for other excitations. This work explores the use of on-off nonlinear velocity feedback control (NLVFC) as the natural evolution of LVFC when high gains and/or significant vibration level are present together with saturation in the control law. Firstly, the describing function tool is employed to analyse the stability properties of: (1) LVFC with saturation, (2) on-off NLVFC with a dead zone and (3) on-off NLVFC with a switching-off function. Particular emphasis is paid to the resulting limit cycle behaviour and the design of appropriate dead zone and switching-off levels to avoid it. Secondly, experimental trials using the three control laws are conducted on a laboratory test floor. The results corroborate the analytical stability predictions. The pros of on-off NLVFC are that no gain has to be chosen and maximum actuator energy is delivered to cancel the vibration. In contrast, the requirement to select a dead zone or switching-off function provides a drawback in its application.

  1. The Inverse Response Law: Theory and Relevance to the Aftermath of Disasters

    PubMed Central

    Phibbs, Suzanne; Kenney, Christine; Rivera-Munoz, Graciela; Severinsen, Christina; Curtis, Bruce

    2018-01-01

    The Inverse Care Law is principally concerned with the effect of market forces on health care which create inequities in access to health services through privileging individuals who possess the forms of social capital that are valued within health care settings. The fields of disaster risk reduction need to consider the ways in which inequities, driven by economic and social policy as well as institutional decision-making, create vulnerabilities prior to a disaster, which are then magnified post disaster through entrenched structural differences in access to resources. Drawing on key principles within the Inverse Care Law, the Inverse Response Law refers to the idea that people in lower socio-economic groups are more likely to be impacted and to experience disparities in service provision during the disaster response and recovery phase. In a market model of recovery, vulnerable groups struggle to compete for necessary services creating inequities in adaptive capacity as well as in social and wellbeing outcomes over time. Both the Inverse Care Law and the Inverse Response Law focus on the structural organisation of services at a macro level. In this article, the Inverse Care Law is outlined, its application to medical treatment following disasters considered and an explanation of the Inverse Response Law provided. Case studies from recent disasters, in London, New Zealand, Puerto Rico and Mexico City are examined in order to illustrate themes at work relating to the Inverse Response Law. PMID:29734692

  2. The Inverse Response Law: Theory and Relevance to the Aftermath of Disasters.

    PubMed

    Phibbs, Suzanne; Kenney, Christine; Rivera-Munoz, Graciela; Huggins, Thomas J; Severinsen, Christina; Curtis, Bruce

    2018-05-04

    The Inverse Care Law is principally concerned with the effect of market forces on health care which create inequities in access to health services through privileging individuals who possess the forms of social capital that are valued within health care settings. The fields of disaster risk reduction need to consider the ways in which inequities, driven by economic and social policy as well as institutional decision-making, create vulnerabilities prior to a disaster, which are then magnified post disaster through entrenched structural differences in access to resources. Drawing on key principles within the Inverse Care Law, the Inverse Response Law refers to the idea that people in lower socio-economic groups are more likely to be impacted and to experience disparities in service provision during the disaster response and recovery phase. In a market model of recovery, vulnerable groups struggle to compete for necessary services creating inequities in adaptive capacity as well as in social and wellbeing outcomes over time. Both the Inverse Care Law and the Inverse Response Law focus on the structural organisation of services at a macro level. In this article, the Inverse Care Law is outlined, its application to medical treatment following disasters considered and an explanation of the Inverse Response Law provided. Case studies from recent disasters, in London, New Zealand, Puerto Rico and Mexico City are examined in order to illustrate themes at work relating to the Inverse Response Law.

  3. Impact of the lay-off length on +Gz tolerance.

    PubMed

    Mikuliszyn, Romuald; Kowalski, Wieslaw; Kowalczuk, Krzysztof

    2002-07-01

    There are many factors affecting pilots' +Gz-tolerance. Recently, attention of the aviation community has been focused on lay-off and it's impact on +Gz-tolerance. Pilots of the Polish Air Force (PAF) have dealt with that problem for several years now. The aim of the study was to provide insight on how lay-off periods with different duration impact +Gz-tolerance. 95 male jet pilots from the PAF participated in the study. Every one had at least two weeks lay-off period (non-medical reasons). Subjects were divided into four groups according to the length of lay-off period (2-4 weeks; 5-13 weeks; 14-26 weeks; 27-154 weeks), All pilots were subjected to a centrifuge exposure in GOR (0.1 G/s) or ROR (1.0 G/s) profiles, depending on the pre-lay-off exposure. Post-lay-off exposures were carried out directly after lay-off. 18 jet pilots without any lay-off constituted the control group. The difference between pre- and post-lay-off G-tolerance limit (-0,93 +/- 0,53) was statistically significant (p<0.01) only for one group, where lay-off period ranged between two and four weeks. No statistically significant differences were found where influence of other factors like total and yearly flight hours, heart rate gain (AHR) or physical activity measured as maximal oxygen intake were considered. 2-4 weeks of lay-off period decreases +Gz tolerance is statistically significant manner. Subsequent increase of lay-off period does not result in mean tolerance changes for group, however in certain individuals critical decrement of +Gz tolerance occurs. Total and last year flying hours, physical fitness does not modify impact of lay-off period on +Gz tolerance.

  4. Off-axis full-field swept-source optical coherence tomography using holographic refocusing

    NASA Astrophysics Data System (ADS)

    Hillmann, Dierck; Franke, Gesa; Hinkel, Laura; Bonin, Tim; Koch, Peter; Hüttmann, Gereon

    2013-03-01

    We demonstrate a full-field swept-source OCT using an off-axis geometry of the reference illumination. By using holographic refocusing techniques, a uniform lateral resolution is achieved over the measurement depth of approximately 80 Rayleigh lengths. Compared to a standard on-axis setup, artifacts and autocorrelation signals are suppressed and the measurement depth is doubled by resolving the complex conjugate ambiguity. Holographic refocusing was done efficiently by Fourier-domain resampling as demonstrated before in inverse scattering and holoscopy. It allowed to reconstruct a complete volume with about 10μm resolution over the complete measurement depth of more than 10mm. Off-axis full-field swept-source OCT enables high measurement depths, spanning many Rayleigh lengths with reduced artifacts.

  5. Optimization of sodium loading on zeolite support for catalyzed transesterification of triolein with methanol.

    PubMed

    Wang, Yu-Yuan; Chou, Hsin-Yu; Chen, Bing-Hung; Lee, Duu-Jong

    2013-10-01

    Optimization of sodium loading on zeolite HY for catalyzed transesterification of triolein in excess methanol to biodiesel was studied. Zeolite HY catalyst was activated by loading sodium ions to their surface via an ion-exchange method. The effects of ion-exchange process parameters, including the temperature, the process time, the pH value, as well as concentrations and sources of Na(+) cations (NaOH, NaCl and Na2SO4), on the conversion yield of triolein to biodiesel were investigated. Most of these Na(+)-activated zeolite HY catalysts could really facilitate the catalyzed transesterification reaction of triolein to biodiesel at a lower temperature near 65°C. Consequently, a high conversion yield of triglycerides to biodiesel at 97.3% was obtained at 65°C. Moreover, the durability of zeolite catalysts was examined as well. Catalytic performance tests of these zeolite catalysts in transesterification did not show a significant decrease in catalysis at least for three batch cycles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. High-bandwidth generation of duobinary and alternate-mark-inversion modulation formats using SOA-based signal processing.

    PubMed

    Dailey, James M; Power, Mark J; Webb, Roderick P; Manning, Robert J

    2011-12-19

    We report on the novel all-optical generation of duobinary (DB) and alternate-mark-inversion (AMI) modulation formats at 42.6 Gb/s from an input on-off keyed signal. The modulation converter consists of two semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer gates. A detailed SOA model numerically confirms the operational principles and experimental data shows successful AMI and DB conversion at 42.6 Gb/s. We also predict that the operational bandwidth can be extended beyond 40 Gb/s by utilizing a new pattern-effect suppression scheme, and demonstrate dramatic reductions in patterning up to 160 Gb/s. We show an increasing trade-off between pattern-effect reduction and mean output power with increasing bitrate.

  7. Copper-Catalyzed Alkoxycarbonylation of Alkanes with Alcohols.

    PubMed

    Li, Yahui; Wang, Changsheng; Zhu, Fengxiang; Wang, Zechao; Dixneuf, Pierre H; Wu, Xiao-Feng

    2017-04-10

    Esters are important chemicals widely used in various areas, and alkoxycarbonylation represents one of the most powerful tools for their synthesis. In this communication, a new copper-catalyzed carbonylative procedure for the synthesis of aliphatic esters from cycloalkanes and alcohols was developed. Through direct activation of the Csp3 -H bond of alkanes and with alcohols as the nucleophiles, the desired esters were prepared in moderate-to-good yields. Paraformaldehyde could also be applied for in situ alcohol generation by radical trapping, and moderate yields of the corresponding esters could be produced. Notably, this is the first report on copper-catalyzed alkoxycarbonylation of alkanes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Study of crash energy absorption characteristics of inversion tube on passenger vehicle

    NASA Astrophysics Data System (ADS)

    Liu, Jiandong; Liu, Tao; Yao, Shengjie; Zhao, Rutao

    2017-09-01

    This article studied the energy absorption characteristics of the inversion tube and acquired the inversion tube design key dimensions under theoretical conditions by performing formula derivation in the quasi-static and dynamic state based on the working principle of the inversion tube: free inversion. The article further adopted HyperMesh and LS-Dyna to perform simulation and compared the simulation result with the theoretical calculating value for comparison. The design was applied in the full-vehicle model to perform 50km/h front fullwidth crash simulation. The findings showed that the deformation mode of the inversion tube in the full-vehicle crash was consistent with the design mode, and the inversion tube absorbed 33.0% of total energy, thereby conforming to the vehicle safety design requirements.

  9. Structural basis for Diels-Alder ribozyme-catalyzed carbon-carbon bond formation

    PubMed Central

    Serganov, Alexander; Keiper, Sonja; Malinina, Lucy; Tereshko, Valentina; Skripkin, Eugene; Höbartner, Claudia; Polonskaia, Anna; Phan, Anh Tuân; Wombacher, Richard; Micura, Ronald; Dauter, Zbigniew; Jäschke, Andres; Patel, Dinshaw J

    2015-01-01

    The majority of structural efforts addressing RNA’s catalytic function have focused on natural ribozymes, which catalyze phosphodiester transfer reactions. By contrast, little is known about how RNA catalyzes other types of chemical reactions. We report here the crystal structures of a ribozyme that catalyzes enantioselective carbon-carbon bond formation by the Diels-Alder reaction in the unbound state and in complex with a reaction product. The RNA adopts a λ-shaped nested pseudoknot architecture whose preformed hydrophobic pocket is precisely complementary in shape to the reaction product. RNA folding and product binding are dictated by extensive stacking and hydrogen bonding, whereas stereoselection is governed by the shape of the catalytic pocket. Catalysis is apparently achieved by a combination of proximity, complementarity and electronic effects. We observe structural parallels in the independently evolved catalytic pocket architectures for ribozyme- and antibody-catalyzed Diels-Alder carbon-carbon bond-forming reactions. PMID:15723077

  10. A Practical Approach To Lift-Off

    NASA Astrophysics Data System (ADS)

    Jones, Susan K.; Chapman, Richard C.; Pavelchek, Edward K.

    1987-08-01

    Lift-off technology provides an alternate metal patterning technology to that of subtractive etching. In this raper, we describe an image reversal process which provides a practical means for reliably producing resist stencils which are required for successful lift-off in a 2.0 μm metal pitch CMOS process, as well as for experimental submicron processing. Experimental data and PROSIM simulations are presented to show the effects of patterning exposure dose, flood exposure dose, develop time, and focus parameters on resist linewidths as well as for control of resist retrograde (undercut) sidewall angles. Deposition and subsequent lift-off of Al/Cu alloys and sandwich metallizations is demonstrated. Because the image reversal process enables pattern definition at the top of the resist film, it is demonstrated that thicker resist films can be used to produce finer resolution of lift-off stencils over topography than would have been expected without resorting to multilayer resist structures.

  11. ON Bipolar Cells in Macaque Retina: Type-Specific Synaptic Connectivity with Special Reference to OFF Counterparts

    PubMed Central

    Tsukamoto, Yoshihiko; Omi, Naoko

    2016-01-01

    To date, 12 macaque bipolar cell types have been described. This list includes all morphology types first outlined by Polyak (1941) using the Golgi method in the primate retina and subsequently identified by other researchers using electron microscopy (EM) combined with the Golgi method, serial section transmission EM (SSTEM), and immunohistochemical imaging. We used SSTEM for the rod-dense perifoveal area of macaque retina, reconfirmed ON (cone) bipolar cells to be classified as invaginating midget bipolar (IMB), diffuse bipolar (DB)4, DB5, DB6, giant bipolar (GB), and blue bipolar (BB) types, and clarified their type-specific connectivity. DB4 cells made reciprocal synapses with a kind of ON-OFF lateral amacrine cell, similar to OFF DB2 cells. GB cells contacted rods and cones, similar to OFF DB3b cells. Retinal circuits formed by GB and DB3b cells are thought to substantiate the psychophysical finding of fast rod signals in mesopic vision. DB6 cell output synapses were directed to ON midget ganglion (MG) cells at 70% of ribbon contacts, similar to OFF DB1 cells that directed 60% of ribbon contacts to OFF MG cells. IMB cells contacted medium- or long-wavelength sensitive (M/L-) cones but not short-wavelength sensitive (S-) cones, while BB cells contacted S-cones but not M/L-cones. However, IMB and BB dendrites had similar morphological architectures, and a BB cell contacting a single S-cone resembled an IMB cell. Thus, both IMB and BB may be the ON bipolar counterparts of the OFF flat midget bipolar (FMB) type, likewise DB4 of DB2, DB5 of DB3a, DB6 of DB1, and GB of DB3b OFF bipolar type. The ON DB plus GB, and OFF DB cells predominantly contacted M/L-cones and their outputs were directed mainly to parasol ganglion (PG) cells but also moderately to MG cells. BB cells directed S-cone-driven outputs almost exclusively to small bistratified ganglion (SBG) cells. Some FMB cells predominantly contacted S-cones and their outputs were directed to OFF MG cells. Thus, two

  12. 49 CFR Appendix C to Part 595 - Installation of Air Bag On-Off Switches

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Installation of Air Bag On-Off Switches C Appendix C to Part 595 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... EXEMPTIONS Pt. 595, App. C Appendix C to Part 595—Installation of Air Bag On-Off Switches ER21NO97.012 ...

  13. 49 CFR Appendix C to Part 595 - Installation of Air Bag On-Off Switches

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Installation of Air Bag On-Off Switches C Appendix C to Part 595 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... EXEMPTIONS Pt. 595, App. C Appendix C to Part 595—Installation of Air Bag On-Off Switches ER21NO97.012 ...

  14. 49 CFR Appendix C to Part 595 - Installation of Air Bag On-Off Switches

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Installation of Air Bag On-Off Switches C Appendix C to Part 595 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... EXEMPTIONS Pt. 595, App. C Appendix C to Part 595—Installation of Air Bag On-Off Switches ER21NO97.012 ...

  15. 49 CFR Appendix C to Part 595 - Installation of Air Bag On-Off Switches

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Installation of Air Bag On-Off Switches C Appendix C to Part 595 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... EXEMPTIONS Pt. 595, App. C Appendix C to Part 595—Installation of Air Bag On-Off Switches ER21NO97.012 ...

  16. 49 CFR Appendix C to Part 595 - Installation of Air Bag On-Off Switches

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Installation of Air Bag On-Off Switches C Appendix C to Part 595 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL... EXEMPTIONS Pt. 595, App. C Appendix C to Part 595—Installation of Air Bag On-Off Switches ER21NO97.012 ...

  17. Efficient Monte Carlo sampling of inverse problems using a neural network-based forward—applied to GPR crosshole traveltime inversion

    NASA Astrophysics Data System (ADS)

    Hansen, T. M.; Cordua, K. S.

    2017-12-01

    Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.

  18. Comparative evolution of the inverse problems (Introduction to an interdisciplinary study of the inverse problems)

    NASA Technical Reports Server (NTRS)

    Sabatier, P. C.

    1972-01-01

    The progressive realization of the consequences of nonuniqueness imply an evolution of both the methods and the centers of interest in inverse problems. This evolution is schematically described together with the various mathematical methods used. A comparative description is given of inverse methods in scientific research, with examples taken from mathematics, quantum and classical physics, seismology, transport theory, radiative transfer, electromagnetic scattering, electrocardiology, etc. It is hoped that this paper will pave the way for an interdisciplinary study of inverse problems.

  19. Pd-Catalyzed Carbonylative Conjugate Addition of Dialkylzinc Reagents to Unsaturated Carbonyls

    PubMed Central

    Custar, Daniel W.; Le, Hai; Morken, James P.

    2010-01-01

    The Pd-catalyzed addition of organozinc reagents to unsaturated carbonyls in the presence of carbon monoxide provides 1,4-diketones in good yield. The reaction was studied with a number of substituted cyclic and acyclic ketones as well as α,β-unsaturated aldehydes. PMID:20687574

  20. Time-lapse joint inversion of geophysical data with automatic joint constraints and dynamic attributes

    NASA Astrophysics Data System (ADS)

    Rittgers, J. B.; Revil, A.; Mooney, M. A.; Karaoulis, M.; Wodajo, L.; Hickey, C. J.

    2016-12-01

    Joint inversion and time-lapse inversion techniques of geophysical data are often implemented in an attempt to improve imaging of complex subsurface structures and dynamic processes by minimizing negative effects of random and uncorrelated spatial and temporal noise in the data. We focus on the structural cross-gradient (SCG) approach (enforcing recovered models to exhibit similar spatial structures) in combination with time-lapse inversion constraints applied to surface-based electrical resistivity and seismic traveltime refraction data. The combination of both techniques is justified by the underlying petrophysical models. We investigate the benefits and trade-offs of SCG and time-lapse constraints. Using a synthetic case study, we show that a combined joint time-lapse inversion approach provides an overall improvement in final recovered models. Additionally, we introduce a new approach to reweighting SCG constraints based on an iteratively updated normalized ratio of model sensitivity distributions at each time-step. We refer to the new technique as the Automatic Joint Constraints (AJC) approach. The relevance of the new joint time-lapse inversion process is demonstrated on the synthetic example. Then, these approaches are applied to real time-lapse monitoring field data collected during a quarter-scale earthen embankment induced-piping failure test. The use of time-lapse joint inversion is justified by the fact that a change of porosity drives concomitant changes in seismic velocities (through its effect on the bulk and shear moduli) and resistivities (through its influence upon the formation factor). Combined with the definition of attributes (i.e. specific characteristics) of the evolving target associated with piping, our approach allows localizing the position of the preferential flow path associated with internal erosion. This is not the case using other approaches.

  1. Imaging and Detection of Carboxylesterase in Living Cells and Zebrafish Pretreated with Pesticides by a New Near-Infrared Fluorescence Off-On Probe.

    PubMed

    Li, Dongyu; Li, Zhao; Chen, Weihua; Yang, Xingbin

    2017-05-24

    A new near-infrared fluorescence off-on probe was developed and applied to fluorescence imaging of carboxylesterase in living HepG-2 cells and zebrafish pretreated with pesticides (carbamate, organophosphorus, and pyrethroid). The probe was readily prepared by connecting (4-acetoxybenzyl)oxy as a quenching and recognizing moiety to a stable hemicyanine skeleton that can be formed via the decomposition of IR-780. The fluorescence off-on response of the probe to carboxylesterase is based on the enzyme-catalyzed spontaneous hydrolysis of the carboxylic ester bond, followed by a further fragmentation of the phenylmethyl unit and thereby the fluorophore release. Compared with the only existing near-infrared carboxylesterase probe, the proposed probe exhibits superior analytical performance, such as near-infrared fluorescence emission over 700 nm as well as high selectivity and sensitivity, with a detection limit of 4.5 × 10 -3 U/mL. More importantly, the probe is cell membrane permeable, and its applicability has been successfully demonstrated for monitoring carboxylesterase activity in living HepG-2 cells and zebrafish pretreated with pesticides, revealing that pesticides can effectively inhibit the activity of carboxylesterase. The superior properties of the probe make it of great potential use in indicating pesticide exposure.

  2. Enzyme-catalyzed cationic epoxide rearrangements in quinolone alkaloid biosynthesis.

    PubMed

    Zou, Yi; Garcia-Borràs, Marc; Tang, Mancheng C; Hirayama, Yuichiro; Li, Dehai H; Li, Li; Watanabe, Kenji; Houk, K N; Tang, Yi

    2017-03-01

    Epoxides are highly useful synthons and biosynthons for the construction of complex natural products during total synthesis and biosynthesis, respectively. Among enzyme-catalyzed epoxide transformations, a reaction that is notably missing, in regard to the synthetic toolbox, is cationic rearrangement that takes place under strong acid. This is a challenging transformation for enzyme catalysis, as stabilization of the carbocation intermediate upon epoxide cleavage is required. Here, we discovered two Brønsted acid enzymes that can catalyze two unprecedented epoxide transformations in biology. PenF from the penigequinolone pathway catalyzes a cationic epoxide rearrangement under physiological conditions to generate a quaternary carbon center, while AsqO from the aspoquinolone pathway catalyzes a 3-exo-tet cyclization to forge a cyclopropane-tetrahydrofuran ring system. The discovery of these new epoxide-modifying enzymes further highlights the versatility of epoxides in complexity generation during natural product biosynthesis.

  3. Sodium imaging of the human knee using soft inversion recovery fluid attenuation.

    PubMed

    Feldman, Rebecca E; Stobbe, Robert; Watts, Alexander; Beaulieu, Christian

    2013-09-01

    Sodium signal strength in MRI is low when compared with (1)H. Thus, image voxel volumes must be relatively large in order to produce a sufficient signal-to-noise ratio (SNR). The measurement of sodium in cartilage is hindered by conflation with signal from the adjacent fluid spaces. Inversion recovery can be used to null signal from fluid, but reduces SNR. The purpose of this work was to optimize inversion recovery sodium MRI to enhance cartilage SNR while nulling fluid. Sodium relaxation was first measured for knee cartilage (T1=21±1 ms, T(2 fast)(∗)=0.8±0.2 ms, T(2 slow)(∗)=19.7±0.5 ms) and fluid (T1=48±3 ms, T2(∗)=47±4 ms) in nine healthy subjects at 4.7 T. The rapid relaxation of cartilage in relation to fluid permits the use of a lengthened inversion pulse to preferentially invert the fluid components. Simulations of inversion pulse length were performed to yield a cartilage SNR enhancing combination of parameters that nulled fluid. The simulations were validated in a phantom and then in vivo. B0 inhomogeneity was measured and the effect of off-resonance during the soft inversion pulse was assessed with simulation. Soft inversion recovery yielded twice the SNR and much improved sodium images of cartilage in human knee with little confounding signal from fluid. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Multiparameter elastic full waveform inversion with facies-based constraints

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-dong; Alkhalifah, Tariq; Naeini, Ehsan Zabihi; Sun, Bingbing

    2018-06-01

    Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize FWI beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a priori information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.

  5. Correlation-based regularization and gradient operators for (joint) inversion on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jordi, Claudio; Doetsch, Joseph; Günther, Thomas; Schmelzbach, Cedric; Robertsson, Johan

    2017-04-01

    When working with unstructured meshes for geophysical inversions, special attention should be paid to the design of the operators that are used for regularizing the inverse problem and coupling of different property models in joint inversions. Regularization constraints for inversions on unstructured meshes are often defined in a rather ad-hoc manner and usually only involve the cell to which the operator is applied and its direct neighbours. Similarly, most structural coupling operators for joint inversion, such as the popular cross-gradients operator, are only defined in the direct neighbourhood of a cell. As a result, the regularization and coupling length scales and strength of these operators depend on the discretization as well as cell sizes and shape. Especially for unstructured meshes, where the cell sizes vary throughout the model domain, the dependency of the operator on the discretization may lead to artefacts. Designing operators that are based on a spatial correlation model allows to define correlation length scales over which an operator acts (called footprint), reducing the dependency on the discretization and the effects of variable cell sizes. Moreover, correlation-based operators can accommodate for expected anisotropy by using different length scales in horizontal and vertical directions. Correlation-based regularization operators also known as stochastic regularization operators have already been successfully applied to inversions on regular grids. Here, we formulate stochastic operators for unstructured meshes and apply them in 2D surface and 3D cross-well electrical resistivity tomography data inversion examples of layered media. Especially for the synthetic cross-well example, improved inversion results are achieved when stochastic regularization is used instead of a classical smoothness constraint. For the case of cross-gradients operators for joint inversion, the correlation model is used to define the footprint of the operator and weigh

  6. Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning.

    PubMed

    Park, Silvia J H; Kim, In-Jung; Looger, Loren L; Demb, Jonathan B; Borghuis, Bart G

    2014-03-12

    Direction selectivity represents a fundamental visual computation. In mammalian retina, On-Off direction-selective ganglion cells (DSGCs) respond strongly to motion in a preferred direction and weakly to motion in the opposite, null direction. Electrical recordings suggested three direction-selective (DS) synaptic mechanisms: DS GABA release during null-direction motion from starburst amacrine cells (SACs) and DS acetylcholine and glutamate release during preferred direction motion from SACs and bipolar cells. However, evidence for DS acetylcholine and glutamate release has been inconsistent and at least one bipolar cell type that contacts another DSGC (On-type) lacks DS release. Here, whole-cell recordings in mouse retina showed that cholinergic input to On-Off DSGCs lacked DS, whereas the remaining (glutamatergic) input showed apparent DS. Fluorescence measurements with the glutamate biosensor intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) conditionally expressed in On-Off DSGCs showed that glutamate release in both On- and Off-layer dendrites lacked DS, whereas simultaneously recorded excitatory currents showed apparent DS. With GABA-A receptors blocked, both iGluSnFR signals and excitatory currents lacked DS. Our measurements rule out DS release from bipolar cells onto On-Off DSGCs and support a theoretical model suggesting that apparent DS excitation in voltage-clamp recordings results from inadequate voltage control of DSGC dendrites during null-direction inhibition. SAC GABA release is the apparent sole source of DS input onto On-Off DSGCs.

  7. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction.

    PubMed

    Yang, Ming; Allard, Lawrence F; Flytzani-Stephanopoulos, Maria

    2013-03-13

    We report a new method for stabilizing appreciable loadings (~1 wt %) of isolated gold atoms on titania and show that these catalyze the low-temperature water-gas shift reaction. The method combines a typical gold deposition/precipitation method with UV irradiation of the titania support suspended in ethanol. Dissociation of H2O on the thus-created Au-O-TiO(x) sites is facile. At higher gold loadings, nanoparticles are formed, but they were shown to add no further activity to the atomically bound gold on titania. Removal of this "excess" gold by sodium cyanide leaching leaves the activity intact and the atomically dispersed gold still bound on titania. The new materials may catalyze a number of other reactions that require oxidized active metal sites.

  8. Highly enantioselective synthesis of γ-, δ-, and ε-chiral 1-alkanols via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA)–Cu- or Pd-catalyzed cross-coupling

    PubMed Central

    Xu, Shiqing; Oda, Akimichi; Kamada, Hirofumi; Negishi, Ei-ichi

    2014-01-01

    Despite recent advances of asymmetric synthesis, the preparation of enantiomerically pure (≥99% ee) compounds remains a challenge in modern organic chemistry. We report here a strategy for a highly enantioselective (≥99% ee) and catalytic synthesis of various γ- and more-remotely chiral alcohols from terminal alkenes via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA reaction)–Cu- or Pd-catalyzed cross-coupling. ZACA–in situ oxidation of tert-butyldimethylsilyl (TBS)-protected ω-alkene-1-ols produced both (R)- and (S)-α,ω-dioxyfunctional intermediates (3) in 80–88% ee, which were readily purified to the ≥99% ee level by lipase-catalyzed acetylation through exploitation of their high selectivity factors. These α,ω-dioxyfunctional intermediates serve as versatile synthons for the construction of various chiral compounds. Their subsequent Cu-catalyzed cross-coupling with various alkyl (primary, secondary, tertiary, cyclic) Grignard reagents and Pd-catalyzed cross-coupling with aryl and alkenyl halides proceeded smoothly with essentially complete retention of stereochemical configuration to produce a wide variety of γ-, δ-, and ε-chiral 1-alkanols of ≥99% ee. The MαNP ester analysis has been applied to the determination of the enantiomeric purities of δ- and ε-chiral primary alkanols, which sheds light on the relatively undeveloped area of determination of enantiomeric purity and/or absolute configuration of remotely chiral primary alcohols. PMID:24912191

  9. Simulation study of a new inverse-pinch high Coulomb transfer switch

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1984-01-01

    A simulation study of a simplified model of a high coulomb transfer switch is performed. The switch operates in an inverse pinch geometry formed by an all metal chamber, which greatly reduces hot spot formations on the electrode surfaces. Advantages of the switch over the conventional switches are longer useful life, higher current capability and lower inductance, which improves the characteristics required for a high repetition rate switch. The simulation determines the design parameters by analytical computations and comparison with the experimentally measured risetime, current handling capability, electrode damage, and hold-off voltages. The parameters of initial switch design can be determined for the anticipated switch performance. Results are in agreement with the experiment results. Although the model is simplified, the switch characteristics such as risetime, current handling capability, electrode damages, and hold-off voltages are accurately determined.

  10. Empirical data on 220 families with de novo or inherited paracentric inversions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eyre, J.; McConkie-Rosell, A.; Tripp, T.

    Six new cases of paracentric inversions (3 detected prenatally) are presented and added to an expanding database of paracentric inversions. Three inversions were associated with an abnormal phenotype and detected postnatally: inv(2)(p21p23), inv(13)(q14q34), and inv(18)(q12.3q23). The present database of paracentric inversions includes 220 families reported. All chromosomes were involved except chromosome 20. The most frequent inversions were found on chromosomes 1, 3, 7, 11, and 14. 48 index cases had an abnormal phenotype not explainable by other causes such as additional chromosome abnormalities. Of these, 12 were de novo and 36 familial. By contrast, of the 122 index cases withmore » normal phenotype, there were 8 de novo and 87 familial cases (rest unknown). Ascertainment bias probably accounts for some of the abnormal inherited inversions cases. Maternally inherited inversions were more frequent than paternally inherited (72 versus 55). Inversions were found in males more than females (ratio of 4 to 3). There were some paracentric inversions that appear to be less involved with abnormal phenotypes (e.g., 11q21q23) than other inversions (e.g., inv X and Turner syndrome). An interesting observation which warrants further investigation is the excess number of fetal losses and karyotypically abnormal progeny in paracentric inversion carriers. The presence of additional karyotypic abnormalities in the children might be explainable by interchromosomal effects and chromosome position changes in the nucleus. Genetic counseling for paracentric inversions should take into consideration mode of ascertainment, inheritance, and chromosome involved. We solicit other cases of paracentric inversions to make this database more useful in counseling patients and families.« less

  11. Counting Magnetic Bipoles on the Sun by Polarity Inversion

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.

    2004-01-01

    This paper presents a simple and efficient algorithm for deriving images of polarity inversion from NSO/Kitt Peak magnetograms without use of contouring routines and shows by example how these maps depend upon the spatial scale for filtering the raw data. Smaller filtering scales produce many localized closed contours in mixed polarity regions while supergranular and larger filtering scales produce more global patterns. The apparent continuity of an inversion line depends on how the spatial filtering is accomplished, but its shape depends only on scale. The total length of the magnetic polarity inversion contours varies as a power law of the filter scale with fractal dimension of order 1.9. The amplitude but nut the exponent of this power-law relation varies with solar activity. The results are compared to similar analyses of areal distributions of bipolar magnetic regions.

  12. Caffeine-catalyzed gels.

    PubMed

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Off-ramps and on-ramps: keeping talented women on the road to success.

    PubMed

    Hewlett, Sylvia Ann; Luce, Carolyn Buck

    2005-03-01

    Most professional women step off the career fast track at some point. With children to raise, elderly parents to care for, and other pulls on their time, these women are confronted with one off-ramp after another. When they feel pushed at the same time by long hours and unsatisfying work, the decision to leave becomes even easier. But woe to the woman who intends for that exit to be temporary. The on-ramps for professional women to get back on track are few and far between, the authors confirm. Their new survey research reveals for the first time the extent of the problem--what percentage of highly qualified women leave work and for how long, what obstacles they face coming back, and what price they pay for their time-outs. And what are the implications for corporate America? One thing at least seems clear: As market and economic factors align in ways guaranteed to make talent constraints and skill shortages huge issues again, employers must learn to reverse this brain drain. Like it or not, large numbers of highly qualified, committed women need to take time out of the workplace. The trick is to help them maintain connections that will allow them to reenter the workforce without being marginalized for the rest of their lives. Strategies for building such connections include creating reduced-hour jobs, providing flexibility in the workday and in the arc of a career, removing the stigma of taking time off, refusing to burn bridges, offering outlets for altruism, and nurturing women's ambition.

  14. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity

    NASA Astrophysics Data System (ADS)

    Li, Dunzhu; Gurnis, Michael; Stadler, Georg

    2017-04-01

    We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a pre-conditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.

  15. On the inverse Magnus effect in free molecular flow

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick D.; Herczynski, Andrzej

    2004-02-01

    A Newton-inspired particle interaction model is introduced to compute the sideways force on spinning projectiles translating through a rarefied gas. The simple model reproduces the inverse Magnus force on a sphere reported by Borg, Söderholm and Essén [Phys. Fluids 15, 736 (2003)] using probability theory. Further analyses given for cylinders and parallelepipeds of rectangular and regular polygon section point to a universal law for this class of geometric shapes: when the inverse Magnus force is steady, it is proportional to one-half the mass M of gas displaced by the body.

  16. The Effect of Inversion on 3- to 5-Year-Olds' Recognition of Face and Nonface Visual Objects

    ERIC Educational Resources Information Center

    Picozzi, Marta; Cassia, Viola Macchi; Turati, Chiara; Vescovo, Elena

    2009-01-01

    This study compared the effect of stimulus inversion on 3- to 5-year-olds' recognition of faces and two nonface object categories matched with faces for a number of attributes: shoes (Experiment 1) and frontal images of cars (Experiments 2 and 3). The inversion effect was present for faces but not shoes at 3 years of age (Experiment 1). Analogous…

  17. Fast inversion of gravity data using the symmetric successive over-relaxation (SSOR) preconditioned conjugate gradient algorithm

    NASA Astrophysics Data System (ADS)

    Meng, Zhaohai; Li, Fengting; Xu, Xuechun; Huang, Danian; Zhang, Dailei

    2017-02-01

    The subsurface three-dimensional (3D) model of density distribution is obtained by solving an under-determined linear equation that is established by gravity data. Here, we describe a new fast gravity inversion method to recover a 3D density model from gravity data. The subsurface will be divided into a large number of rectangular blocks, each with an unknown constant density. The gravity inversion method introduces a stabiliser model norm with a depth weighting function to produce smooth models. The depth weighting function is combined with the model norm to counteract the skin effect of the gravity potential field. As the numbers of density model parameters is NZ (the number of layers in the vertical subsurface domain) times greater than the observed gravity data parameters, the inverse density parameter is larger than the observed gravity data parameters. Solving the full set of gravity inversion equations is very time-consuming, and applying a new algorithm to estimate gravity inversion can significantly reduce the number of iterations and the computational time. In this paper, a new symmetric successive over-relaxation (SSOR) iterative conjugate gradient (CG) method is shown to be an appropriate algorithm to solve this Tikhonov cost function (gravity inversion equation). The new, faster method is applied on Gaussian noise-contaminated synthetic data to demonstrate its suitability for 3D gravity inversion. To demonstrate the performance of the new algorithm on actual gravity data, we provide a case study that includes ground-based measurement of residual Bouguer gravity anomalies over the Humble salt dome near Houston, Gulf Coast Basin, off the shore of Louisiana. A 3D distribution of salt rock concentration is used to evaluate the inversion results recovered by the new SSOR iterative method. In the test model, the density values in the constructed model coincide with the known location and depth of the salt dome.

  18. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  19. Three-dimensional Gravity Inversion with a New Gradient Scheme on Unstructured Grids

    NASA Astrophysics Data System (ADS)

    Sun, S.; Yin, C.; Gao, X.; Liu, Y.; Zhang, B.

    2017-12-01

    Stabilized gradient-based methods have been proved to be efficient for inverse problems. Based on these methods, setting gradient close to zero can effectively minimize the objective function. Thus the gradient of objective function determines the inversion results. By analyzing the cause of poor resolution on depth in gradient-based gravity inversion methods, we find that imposing depth weighting functional in conventional gradient can improve the depth resolution to some extent. However, the improvement is affected by the regularization parameter and the effect of the regularization term becomes smaller with increasing depth (shown as Figure 1 (a)). In this paper, we propose a new gradient scheme for gravity inversion by introducing a weighted model vector. The new gradient can improve the depth resolution more efficiently, which is independent of the regularization parameter, and the effect of regularization term will not be weakened when depth increases. Besides, fuzzy c-means clustering method and smooth operator are both used as regularization terms to yield an internal consecutive inverse model with sharp boundaries (Sun and Li, 2015). We have tested our new gradient scheme with unstructured grids on synthetic data to illustrate the effectiveness of the algorithm. Gravity forward modeling with unstructured grids is based on the algorithm proposed by Okbe (1979). We use a linear conjugate gradient inversion scheme to solve the inversion problem. The numerical experiments show a great improvement in depth resolution compared with regular gradient scheme, and the inverse model is compact at all depths (shown as Figure 1 (b)). AcknowledgeThis research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). ReferencesSun J, Li Y. 2015. Multidomain petrophysically constrained inversion and

  20. An interactive Bayesian geostatistical inverse protocol for hydraulic tomography

    USGS Publications Warehouse

    Fienen, Michael N.; Clemo, Tom; Kitanidis, Peter K.

    2008-01-01

    Hydraulic tomography is a powerful technique for characterizing heterogeneous hydrogeologic parameters. An explicit trade-off between characterization based on measurement misfit and subjective characterization using prior information is presented. We apply a Bayesian geostatistical inverse approach that is well suited to accommodate a flexible model with the level of complexity driven by the data and explicitly considering uncertainty. Prior information is incorporated through the selection of a parameter covariance model characterizing continuity and providing stability. Often, discontinuities in the parameter field, typically caused by geologic contacts between contrasting lithologic units, necessitate subdivision into zones across which there is no correlation among hydraulic parameters. We propose an interactive protocol in which zonation candidates are implied from the data and are evaluated using cross validation and expert knowledge. Uncertainty introduced by limited knowledge of dynamic regional conditions is mitigated by using drawdown rather than native head values. An adjoint state formulation of MODFLOW-2000 is used to calculate sensitivities which are used both for the solution to the inverse problem and to guide protocol decisions. The protocol is tested using synthetic two-dimensional steady state examples in which the wells are located at the edge of the region of interest.

  1. Mechanistic Insight Facilitates Discovery of a Mild and Efficient Copper-Catalyzed Dehydration of Primary Amides to Nitriles Using Hydrosilanes.

    PubMed

    Liu, Richard Y; Bae, Minwoo; Buchwald, Stephen L

    2018-02-07

    Metal-catalyzed silylative dehydration of primary amides is an economical approach to the synthesis of nitriles. We report a copper-hydride(CuH)-catalyzed process that avoids a typically challenging 1,2-siloxane elimination step, thereby dramatically increasing the rate of the overall transformation relative to alternative metal-catalyzed systems. This new reaction proceeds at ambient temperature, tolerates a variety of metal-, acid-, or base-sensitive functional groups, and can be performed using a simple ligand, inexpensive siloxanes, and low catalyst loading.

  2. Ruthenium-Catalyzed Cascade C—H Functionalization of Phenylacetophenones**

    PubMed Central

    Mehta, Vaibhav P; García-López, José-Antonio; Greaney, Michael F

    2014-01-01

    Three orthogonal cascade C—H functionalization processes are described, based on ruthenium-catalyzed C—H alkenylation. 1-Indanones, indeno indenes, and indeno furanones were accessed through cascade pathways by using arylacetophenones as substrates under conditions of catalytic [{Ru(p-cymene)Cl2}2] and stoichiometric Cu(OAc)2. Each transformation uses C—H functionalization methods to form C—C bonds sequentially, with the indeno furanone synthesis featuring a C—O bond formation as the terminating step. This work demonstrates the power of ruthenium-catalyzed alkenylation as a platform reaction to develop more complex transformations, with multiple C—H functionalization steps taking place in a single operation to access novel carbocyclic structures. PMID:24453063

  3. Period-dependent source rupture behavior of the 2011 Tohoku earthquake estimated by multi period-band Bayesian waveform inversion

    NASA Astrophysics Data System (ADS)

    Kubo, H.; Asano, K.; Iwata, T.; Aoi, S.

    2014-12-01

    Previous studies for the period-dependent source characteristics of the 2011 Tohoku earthquake (e.g., Koper et al., 2011; Lay et al., 2012) were based on the short and long period source models using different method. Kubo et al. (2013) obtained source models of the 2011 Tohoku earthquake using multi period-bands waveform data by a common inversion method and discussed its period-dependent source characteristics. In this study, to achieve more in detail spatiotemporal source rupture behavior of this event, we introduce a new fault surface model having finer sub-fault size and estimate the source models in multi period-bands using a Bayesian inversion method combined with a multi-time-window method. Three components of velocity waveforms at 25 stations of K-NET, KiK-net, and F-net of NIED are used in this analysis. The target period band is 10-100 s. We divide this period band into three period bands (10-25 s, 25-50 s, and 50-100 s) and estimate a kinematic source model in each period band using a Bayesian inversion method with MCMC sampling (e.g., Fukuda & Johnson, 2008; Minson et al., 2013, 2014). The parameterization of spatiotemporal slip distribution follows the multi-time-window method (Hartzell & Heaton, 1983). The Green's functions are calculated by the 3D FDM (GMS; Aoi & Fujiwara, 1999) using a 3D velocity structure model (JIVSM; Koketsu et al., 2012). The assumed fault surface model is based on the Pacific plate boundary of JIVSM and is divided into 384 subfaults of about 16 * 16 km^2. The estimated source models in multi period-bands show the following source image: (1) First deep rupture off Miyagi at 0-60 s toward down-dip mostly radiating relatively short period (10-25 s) seismic waves. (2) Shallow rupture off Miyagi at 45-90 s toward up-dip with long duration radiating long period (50-100 s) seismic wave. (3) Second deep rupture off Miyagi at 60-105 s toward down-dip radiating longer period seismic waves then that of the first deep rupture. (4) Deep

  4. Improved source inversion from joint measurements of translational and rotational ground motions

    NASA Astrophysics Data System (ADS)

    Donner, S.; Bernauer, M.; Reinwald, M.; Hadziioannou, C.; Igel, H.

    2017-12-01

    Waveform inversion for seismic point (moment tensor) and kinematic sources is a standard procedure. However, especially in the local and regional distances a lack of appropriate velocity models, the sparsity of station networks, or a low signal-to-noise ratio combined with more complex waveforms hamper the successful retrieval of reliable source solutions. We assess the potential of rotational ground motion recordings to increase the resolution power and reduce non-uniquenesses for point and kinematic source solutions. Based on synthetic waveform data, we perform a Bayesian (i.e. probabilistic) inversion. Thus, we avoid the subjective selection of the most reliable solution according the lowest misfit or other constructed criterion. In addition, we obtain unbiased measures of resolution and possible trade-offs. Testing different earthquake mechanisms and scenarios, we can show that the resolution of the source solutions can be improved significantly. Especially depth dependent components show significant improvement. Next to synthetic data of station networks, we also tested sparse-network and single station cases.

  5. Inverse scattering theory: Inverse scattering series method for one dimensional non-compact support potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Jie, E-mail: yjie2@uh.edu; Lesage, Anne-Cécile; Hussain, Fazle

    2014-12-15

    The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptoticmore » form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.« less

  6. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  7. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Richland, WA; Hu, Jianli [Kennewick, WA; Hart, Todd R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  8. On-Line and Off-Line Assessment of Metacognition

    ERIC Educational Resources Information Center

    Saraç, Seda; Karakelle, Sema

    2012-01-01

    The study investigates the interrelationships between different on-line and off-line measures for assessing metacognition. The participants were 47 fifth grade elementary students. Metacognition was assessed through two off-line and two on-line measures. The off-line measures consisted of a teacher rating scale and a self-report questionnaire. The…

  9. Effects of Canary hotspot volcanism on structure of oceanic crust off Morocco

    NASA Astrophysics Data System (ADS)

    Holik, James S.; Rabinowitz, Philip D.; Austin, James A., Jr.

    1991-07-01

    Analysis of over 6400 km of multichannel seismics (MCS) and 50 sonobuoy reflection and refraction experiments reduced both in the domain of X-T and tau-p shows that a region within the Jurassic Quiet Zone off Morocco underwent dramatic changes as a result of the passage of the lithosphere over the Canary hotspot commencing approximately 60 Ma. A seismic unit (UCF), interpreted as volcanic in origin, is observed within the sediments in a region characterized by a broad bathymetric swell. It shows diffractions from its upper surface and an internally chaotic seismic facies and pinches out between sedimentary units of continuous, subparallel facies. A velocity inversion is noted between the UCF (4.7km/s) and the underlying sediment (3.1 km/s). The UCF is time transgressive; it lies near the Cretaceous/s Tertiary boundary in the northern portion of the study area and is younger to the south. Kinematic studies of the movement of the Canary hotspot relative to Africa show that the hotspot first appeared off NW Africa about 60 Ma and was located beneath oceanic crust in the region where the UCF is observed. Depth-to-basement measurements in areas not effected by the hotspot show a consistent linear trend of increased depth with age. In areas effected by the hotspot the thermal rejuvenation is evident as basement depths shoal with increased proximity to the present hotspot. The reheating of the crust resets the thermal age of the lithosphere with many of the properties of crust of a younger age. Subsidence curves of the reheated crust off Morocco show good correlation to subsidence curves of other reheated crust on a global basis. A zone characterized by high crustal velocities, (7.1-7.4 km/s) and greater crustal thicknesses (by ˜1-2 km) is observed in an area that corresponds to the bathymetric swell, the region of the UCF, and the reelevated basement. The high velocities and increased crustal thickness are interpreted to be the result of underplating and assimilation of

  10. Waveform inversion for orthorhombic anisotropy with P waves: feasibility and resolution

    NASA Astrophysics Data System (ADS)

    Kazei, Vladimir; Alkhalifah, Tariq

    2018-05-01

    Various parametrizations have been suggested to simplify inversions of first arrivals, or P waves, in orthorhombic anisotropic media, but the number and type of retrievable parameters have not been decisively determined. We show that only six parameters can be retrieved from the dynamic linearized inversion of P waves. These parameters are different from the six parameters needed to describe the kinematics of P waves. Reflection-based radiation patterns from the P-P scattered waves are remapped into the spectral domain to allow for our resolution analysis based on the effective angle of illumination concept. Singular value decomposition of the spectral sensitivities from various azimuths, offset coverage scenarios and data bandwidths allows us to quantify the resolution of different parametrizations, taking into account the signal-to-noise ratio in a given experiment. According to our singular value analysis, when the primary goal of inversion is determining the velocity of the P waves, gradually adding anisotropy of lower orders (isotropic, vertically transversally isotropic and orthorhombic) in hierarchical parametrization is the best choice. Hierarchical parametrization reduces the trade-off between the parameters and makes gradual introduction of lower anisotropy orders straightforward. When all the anisotropic parameters affecting P-wave propagation need to be retrieved simultaneously, the classic parametrization of orthorhombic medium with elastic stiffness matrix coefficients and density is a better choice for inversion. We provide estimates of the number and set of parameters that can be retrieved from surface seismic data in different acquisition scenarios. To set up an inversion process, the singular values determine the number of parameters that can be inverted and the resolution matrices from the parametrizations can be used to ascertain the set of parameters that can be resolved.

  11. Kinetic Behavior of Exchange-Driven Growth with Catalyzed-Birth Processes

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Feng; Lin, Zhen-Quan; Kong, Xiang-Mu

    2006-12-01

    Two catalyzed-birth models of n-species (n>=2) aggregates with exchange-driven growth processes are proposed and compared. In the first one, the exchange reaction occurs between any two aggregates Amk and Amj of the same species with the rate kernels Km(k,j) = Kmkj (m = 1,2,...,n, n>=2), and aggregates of An species catalyze a monomer-birth of Al species (l = 1,2,...,n-1) with the catalysis rate kernel Jl(k,j) = Jlkjυ. The kinetic behaviors are investigated by means of the mean-field theory. We find that the evolution behavior of aggregate-size distribution alk(t) of Al species depends crucially on the value of the catalysis rate parameter υ: (i) alk(t) obeys the conventional scaling law in the case of υ<=0, (ii) alk(t) satisfies a modified scaling form in the case of υ>0. In the second model, the mechanism of monomer-birth of An-species catalyzed by Al species is added on the basis of the first model, that is, the aggregates of Al and An species catalyze each other to cause monomer-birth. The kinetic behaviors of Al and An species are found to fall into two categories for the different υ: (i) growth obeying conventional scaling form with υ<=0, (ii) gelling at finite time with υ>0.

  12. Efficient Storage Scheme of Covariance Matrix during Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Mao, D.; Yeh, T. J.

    2013-12-01

    During stochastic inverse modeling, the covariance matrix of geostatistical based methods carries the information about the geologic structure. Its update during iterations reflects the decrease of uncertainty with the incorporation of observed data. For large scale problem, its storage and update cost too much memory and computational resources. In this study, we propose a new efficient storage scheme for storage and update. Compressed Sparse Column (CSC) format is utilized to storage the covariance matrix, and users can assign how many data they prefer to store based on correlation scales since the data beyond several correlation scales are usually not very informative for inverse modeling. After every iteration, only the diagonal terms of the covariance matrix are updated. The off diagonal terms are calculated and updated based on shortened correlation scales with a pre-assigned exponential model. The correlation scales are shortened by a coefficient, i.e. 0.95, every iteration to show the decrease of uncertainty. There is no universal coefficient for all the problems and users are encouraged to try several times. This new scheme is tested with 1D examples first. The estimated results and uncertainty are compared with the traditional full storage method. In the end, a large scale numerical model is utilized to validate this new scheme.

  13. Binaural sensitivity changes between cortical on and off responses

    PubMed Central

    Dahmen, Johannes C.; King, Andrew J.; Schnupp, Jan W. H.

    2011-01-01

    Neurons exhibiting on and off responses with different frequency tuning have previously been described in the primary auditory cortex (A1) of anesthetized and awake animals, but it is unknown whether other tuning properties, including sensitivity to binaural localization cues, also differ between on and off responses. We measured the sensitivity of A1 neurons in anesthetized ferrets to 1) interaural level differences (ILDs), using unmodulated broadband noise with varying ILDs and average binaural levels, and 2) interaural time delays (ITDs), using sinusoidally amplitude-modulated broadband noise with varying envelope ITDs. We also assessed fine-structure ITD sensitivity and frequency tuning, using pure-tone stimuli. Neurons most commonly responded to stimulus onset only, but purely off responses and on-off responses were also recorded. Of the units exhibiting significant binaural sensitivity nearly one-quarter showed binaural sensitivity in both on and off responses, but in almost all (∼97%) of these units the binaural tuning of the on responses differed significantly from that seen in the off responses. Moreover, averaged, normalized ILD and ITD tuning curves calculated from all units showing significant sensitivity to binaural cues indicated that on and off responses displayed different sensitivity patterns across the population. A principal component analysis of ITD response functions suggested a continuous cortical distribution of binaural sensitivity, rather than discrete response classes. Rather than reflecting a release from inhibition without any functional significance, we propose that binaural off responses may be important to cortical encoding of sound-source location. PMID:21562191

  14. Multi-scale signed envelope inversion

    NASA Astrophysics Data System (ADS)

    Chen, Guo-Xin; Wu, Ru-Shan; Wang, Yu-Qing; Chen, Sheng-Chang

    2018-06-01

    Envelope inversion based on modulation signal mode was proposed to reconstruct large-scale structures of underground media. In order to solve the shortcomings of conventional envelope inversion, multi-scale envelope inversion was proposed using new envelope Fréchet derivative and multi-scale inversion strategy to invert strong contrast models. In multi-scale envelope inversion, amplitude demodulation was used to extract the low frequency information from envelope data. However, only to use amplitude demodulation method will cause the loss of wavefield polarity information, thus increasing the possibility of inversion to obtain multiple solutions. In this paper we proposed a new demodulation method which can contain both the amplitude and polarity information of the envelope data. Then we introduced this demodulation method into multi-scale envelope inversion, and proposed a new misfit functional: multi-scale signed envelope inversion. In the numerical tests, we applied the new inversion method to the salt layer model and SEG/EAGE 2-D Salt model using low-cut source (frequency components below 4 Hz were truncated). The results of numerical test demonstrated the effectiveness of this method.

  15. Angle-domain inverse scattering migration/inversion in isotropic media

    NASA Astrophysics Data System (ADS)

    Li, Wuqun; Mao, Weijian; Li, Xuelei; Ouyang, Wei; Liang, Quan

    2018-07-01

    The classical seismic asymptotic inversion can be transformed into a problem of inversion of generalized Radon transform (GRT). In such methods, the combined parameters are linearly attached to the scattered wave-field by Born approximation and recovered by applying an inverse GRT operator to the scattered wave-field data. Typical GRT-style true-amplitude inversion procedure contains an amplitude compensation process after the weighted migration via dividing an illumination associated matrix whose elements are integrals of scattering angles. It is intuitional to some extent that performs the generalized linear inversion and the inversion of GRT together by this process for direct inversion. However, it is imprecise to carry out such operation when the illumination at the image point is limited, which easily leads to the inaccuracy and instability of the matrix. This paper formulates the GRT true-amplitude inversion framework in an angle-domain version, which naturally degrades the external integral term related to the illumination in the conventional case. We solve the linearized integral equation for combined parameters of different fixed scattering angle values. With this step, we obtain high-quality angle-domain common-image gathers (CIGs) in the migration loop which provide correct amplitude-versus-angle (AVA) behavior and reasonable illumination range for subsurface image points. Then we deal with the over-determined problem to solve each parameter in the combination by a standard optimization operation. The angle-domain GRT inversion method keeps away from calculating the inaccurate and unstable illumination matrix. Compared with the conventional method, the angle-domain method can obtain more accurate amplitude information and wider amplitude-preserved range. Several model tests demonstrate the effectiveness and practicability.

  16. Cell orientation gradients on an inverse opal substrate.

    PubMed

    Lu, Jie; Zou, Xin; Zhao, Ze; Mu, Zhongde; Zhao, Yuanjin; Gu, Zhongze

    2015-05-20

    The generation of cell gradients is critical for understanding many biological systems and realizing the unique functionality of many implanted biomaterials. However, most previous work can only control the gradient of cell density and this has no effect on the gradient of cell orientation, which has an important role in regulating the functions of many connecting tissues. Here, we report on a simple stretched inverse opal substrate for establishing desired cell orientation gradients. It was demonstrated that tendon fibroblasts on the stretched inverse opal gradient showed a corresponding alignment along with the elongation gradient of the substrate. This "random-to-aligned" cell gradient reproduces the insertion part of many connecting tissues, and thus, will have important applications in tissue engineering.

  17. Time-reversal and Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Debski, Wojciech

    2017-04-01

    Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.

  18. An approach to quantum-computational hydrologic inverse analysis.

    PubMed

    O'Malley, Daniel

    2018-05-02

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealer to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.

  19. INVERSE MODELING TO ESTIMATE NH3 EMISSION SEASONALLY AND THE SENSITIVITY TO UNCERTAINTY REPRESENTATIONS

    EPA Science Inventory

    Inverse modeling has been used extensively on the global scale to produce top-down estimates of emissions for chemicals such as CO and CH4. Regional scale air quality studies could also benefit from inverse modeling as a tool to evaluate current emission inventories; however, ...

  20. Nano or micro? A mechanism on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate.

    PubMed

    Zou, Min; Jiang, Xiaohong; Lu, Lude; Wang, Xin

    2012-07-30

    Micrometer-sized cobalt oxalates with different morphologies have been prepared in the presence of surfactants. The effect of catalysts morphology on the thermal decomposition of ammonium perchlorate (AP) was evaluated by differential thermal analysis (DSC). Remarkably, contrary to the well-accepted concepts, no direct relationship between the morphologies of catalysts and their activities has been observed. Based on the structural and morphological variation of the catalysts during the reaction, a catalytic mechanism on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate is proposed. We believe that it is the "self-crushing and self-distributed" occurred within the reaction that really works for the improvement of the overall catalytic activities. In this process, both catalysts and reactants have been crashed and distributed uniformly in an automatic way. This work provides an in-depth insight into the thermal decomposition mechanism of AP as catalyzed by oxalates. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Synthesis of nitriles via palladium-catalyzed water shuffling from amides to acetonitrile.

    PubMed

    Zhang, Wandi; Haskins, Christopher W; Yang, Yang; Dai, Mingji

    2014-12-07

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield.

  2. Effects of anisotropy on the two-dimensional inversion procedure

    NASA Astrophysics Data System (ADS)

    Heise, Wiebke; Pous, Jaume

    2001-12-01

    In this paper we show some of the effects that appear in magnetotelluric measurements over 2-D anisotropic structures, and propose a procedure to recover the anisotropy using 2-D inversion algorithms for isotropic models. First, we see how anisotropy affects the usual interpretation steps: dimensionality analysis and 2-D inversion. Two models containing general 2-D azimuthal anisotropic features were chosen to illustrate this approach: an anisotropic block and an anisotropic layer, both forming part of general 2-D models. In addition, a third model with dipping anisotropy was studied. For each model we examined the influence of various anisotropy strikes and resistivity contrasts on the dimensionality analysis and on the behaviour of the induction arrows. We found that, when the anisotropy ratio is higher than five, even if the strike is frequency-dependent it is possible to decide on a direction close to the direction of anisotropy. Then, if the data are rotated to this angle, a 2-D inversion reproduces the anisotropy reasonably well by means of macro-anisotropy. This strategy was tested on field data where anisotropy had been previously recognized.

  3. Part-to-itself model inversion in process compensated resonance testing

    NASA Astrophysics Data System (ADS)

    Mayes, Alexander; Jauriqui, Leanne; Biedermann, Eric; Heffernan, Julieanne; Livings, Richard; Aldrin, John C.; Goodlet, Brent; Mazdiyasni, Siamack

    2018-04-01

    Process Compensated Resonance Testing (PCRT) is a non-destructive evaluation (NDE) method involving the collection and analysis of a part's resonance spectrum to characterize its material or damage state. Prior work used the finite element method (FEM) to develop forward modeling and model inversion techniques. In many cases, the inversion problem can become confounded by multiple parameters having similar effects on a part's resonance frequencies. To reduce the influence of confounding parameters and isolate the change in a part (e.g., creep), a part-to-itself (PTI) approach can be taken. A PTI approach involves inverting only the change in resonance frequencies from the before and after states of a part. This approach reduces the possible inversion parameters to only those that change in response to in-service loads and damage mechanisms. To evaluate the effectiveness of using a PTI inversion approach, creep strain and material properties were estimated in virtual and real samples using FEM inversion. Virtual and real dog bone samples composed of nickel-based superalloy Mar-M-247 were examined. Virtual samples were modeled with typically observed variations in material properties and dimensions. Creep modeling was verified with the collected resonance spectra from an incrementally crept physical sample. All samples were inverted against a model space that allowed for change in the creep damage state and the material properties but was blind to initial part dimensions. Results quantified the capabilities of PTI inversion in evaluating creep strain and material properties, as well as its sensitivity to confounding initial dimensions.

  4. Palladium-Catalyzed Conversion of Aryl and Vinyl Triflates to Bromides and Chlorides

    PubMed Central

    Shen, Xiaoqiang; Hyde, Alan M.; Buchwald, Stephen L.

    2010-01-01

    The palladium-catalyzed conversion of aryl and vinyl triflates to aryl and vinyl halides (bromides and chlorides) has been developed using dialkylbiaryl phosphine ligands. A variety of aryl, heteroaryl and vinyl halides can be prepared via this method in good to excellent yields. PMID:20857936

  5. Decomposing Large Inverse Problems with an Augmented Lagrangian Approach: Application to Joint Inversion of Body-Wave Travel Times and Surface-Wave Dispersion Measurements

    NASA Astrophysics Data System (ADS)

    Reiter, D. T.; Rodi, W. L.

    2015-12-01

    Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.

  6. A Bayesian inversion for slip distribution of 1 Apr 2007 Mw8.1 Solomon Islands Earthquake

    NASA Astrophysics Data System (ADS)

    Chen, T.; Luo, H.

    2013-12-01

    On 1 Apr 2007 the megathrust Mw8.1 Solomon Islands earthquake occurred in the southeast pacific along the New Britain subduction zone. 102 vertical displacement measurements over the southeastern end of the rupture zone from two field surveys after this event provide a unique constraint for slip distribution inversion. In conventional inversion method (such as bounded variable least squares) the smoothing parameter that determines the relative weight placed on fitting the data versus smoothing the slip distribution is often subjectively selected at the bend of the trade-off curve. Here a fully probabilistic inversion method[Fukuda,2008] is applied to estimate distributed slip and smoothing parameter objectively. The joint posterior probability density function of distributed slip and the smoothing parameter is formulated under a Bayesian framework and sampled with Markov chain Monte Carlo method. We estimate the spatial distribution of dip slip associated with the 1 Apr 2007 Solomon Islands earthquake with this method. Early results show a shallower dip angle than previous study and highly variable dip slip both along-strike and down-dip.

  7. Synthesis of 1-methyleneindenes via palladium-catalyzed tandem reactions.

    PubMed

    Ye, Shengqing; Gao, Ke; Zhou, Haibo; Yang, Xiaodi; Wu, Jie

    2009-09-28

    Palladium-catalyzed tandem reactions of 2-alkenylphenyl-acetylenes with CuCl2 or CuBr2 afforded 3-chloro- or 3-bromo-1-methyleneindenes in good yields; these compounds could be further elaborated via palladium-catalyzed coupling reactions.

  8. Push-off mechanics in speed skating with conventional skates and klapskates.

    PubMed

    Houdijk, H; de Koning, J J; de Groot, G; Bobbert, M F; And; van Ingen Schenau, G J

    2000-03-01

    Personal and world records in speed skating improved tremendously after the introduction of the klapskate, which allows the foot to plantar flex at the end of the push-off while the full blade continues to glide on the ice. The purpose of this study was to gain insight into the differences in skating technique with conventional versus klapskates and to unveil the source of power enhancement using klapskates. Ten elite speed skaters skated four 400-m laps at maximal effort with both conventional and klapskates. On the straight high-speed film, push-off force and EMG data were collected. An inverse dynamics analysis was performed in the moving reference plane through hip, knee, and ankle. Skating velocity increased 5% as a result of an increase in mean power output of 25 W when klapskates were used instead of conventional skates. The increase in mean power output was achieved through an 11-J increase in work per stroke and an increase in stroke frequency from 1.30 to 1.36 strokes x s(-1). The difference in work per stroke occurs during the final 50 ms of the push-off. This is the result of the ineffective way in which push-off forces are generated with conventional skates when the foot rotates about the long front end of the blade. No differences in muscle coordination were observed from EMG. A hinge under the ball of the foot enhances the effectiveness of plantar flexion during the final 50 ms of the push off with klapskates and increases work per stroke and mean power output.

  9. Synthesis of Nitriles via Palladium-Catalyzed Water Shuffling from Amides to Acetonitrile

    PubMed Central

    Zhang, Wandi; Haskins, Christopher W.; Yang, Yang; Dai, Mingji

    2014-01-01

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield. PMID:25316145

  10. Inversion of airborne tensor VLF data using integral equations

    NASA Astrophysics Data System (ADS)

    Kamm, Jochen; Pedersen, Laust B.

    2014-08-01

    The Geological Survey of Sweden has been collecting airborne tensor very low frequency data (VLF) over several decades, covering large parts of the country. The data has been an invaluable source of information for identifying conductive structures that can among other things be related to water-filled fault zones, wet sediments that fill valleys or ore mineralizations. Because the method only uses two differently polarized plane waves of very similar frequency, vertical resolution is low and interpretation is in most cases limited to maps that are directly derived from the data. Occasionally, 2-D inversion is carried out along selected profiles. In this paper, we present for the first time a 3-D inversion for tensor VLF data in order to further increase the usefulness of the data set. The inversion is performed using a non-linear conjugate gradient scheme (Polak-Ribière) with an inexact line-search. The gradient is obtained by an algebraic adjoint method that requires one additional forward calculation involving the adjoint system matrix. The forward modelling is based on integral equations with an analytic formulation of the half-space Green's tensor. It avoids typically required Hankel transforms and is particularly amenable to singularity removal prior to the numerical integration over the volume elements. The system is solved iteratively, thus avoiding construction and storage of the dense system matrix. By using fast 3-D Fourier transforms on nested grids, subsequently farther away interactions are represented with less detail and therefore with less computational effort, enabling us to bridge the gap between the relatively short wavelengths of the fields (tens of metres) and the large model dimensions (several square kilometres). We find that the approximation of the fields can be off by several per cent, yet the transfer functions in the air are practically unaffected. We verify our code using synthetic calculations from well-established 2-D methods, and

  11. Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors

    NASA Astrophysics Data System (ADS)

    Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping

    2018-04-01

    A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.

  12. FOREWORD: 5th International Workshop on New Computational Methods for Inverse Problems

    NASA Astrophysics Data System (ADS)

    Vourc'h, Eric; Rodet, Thomas

    2015-11-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific research presented during the 5th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2015 (http://complement.farman.ens-cachan.fr/NCMIP_2015.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 29, 2015. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011, and secondly at the initiative of Institut Farman, in May 2012, May 2013 and May 2014. The New Computational Methods for Inverse Problems (NCMIP) workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods

  13. Birth and death of genes linked to chromosomal inversion

    PubMed Central

    Furuta, Yoshikazu; Kawai, Mikihiko; Yahara, Koji; Takahashi, Noriko; Handa, Naofumi; Tsuru, Takeshi; Oshima, Kenshiro; Yoshida, Masaru; Azuma, Takeshi; Hattori, Masahira; Uchiyama, Ikuo; Kobayashi, Ichizo

    2011-01-01

    The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome sequences, we found that gain and loss of genes (loci) for outer membrane proteins, which mediate host interaction, occurred at breakpoints of chromosomal inversions. Sequence comparison there revealed a unique mechanism of DNA duplication: DNA duplication associated with inversion. In this process, a DNA segment at one chromosomal locus is copied and inserted, in an inverted orientation, into a distant locus on the same chromosome, while the entire region between these two loci is also inverted. Recognition of this and three more inversion modes, which occur through reciprocal recombination between long or short sequence similarity or adjacent to a mobile element, allowed reconstruction of synteny evolution through inversion events in this species. These results will guide the interpretation of extensive DNA sequencing results for understanding long- and short-term genome evolution in various organisms and in cancer cells. PMID:21212362

  14. ENVIRONMENTAL ASSESSMENT OF THE BASE CATALYZED DECOMPOSITION (BCD) PROCESS

    EPA Science Inventory

    This report summarizes laboratory-scale, pilot-scale, and field performance data on BCD (Base Catalyzed Decomposition) and technology, collected to date by various governmental, academic, and private organizations.

  15. Improved Abel transform inversion: First application to COSMIC/FORMOSAT-3

    NASA Astrophysics Data System (ADS)

    Aragon-Angel, A.; Hernandez-Pajares, M.; Juan, J.; Sanz, J.

    2007-05-01

    In this paper the first results of Ionospheric Tomographic inversion are presented, using the Improved Abel Transform on the COSMIC/FORMOSAT-3 constellation of 6 LEO satellites, carrying on-board GPS receivers.[- 4mm] The Abel transform inversion is a wide used technique which in the ionospheric context makes it possible to retrieve electron densities as a function of height based of STEC (Slant Total Electron Content) data gathered from GPS receivers on board of LEO (Low Earth Orbit) satellites. Within this precise use, the classical approach of the Abel inversion is based on the assumption of spherical symmetry of the electron density in the vicinity of an occultation, meaning that the electron content varies in height but not horizontally. In particular, one implication of this assumption is that the VTEC (Vertical Total Electron Content) is a constant value for the occultation region. This assumption may not always be valid since horizontal ionospheric gradients (a very frequent feature in some ionosphere problematic areas such as the Equatorial region) could significantly affect the electron profiles. [- 4mm] In order to overcome this limitation/problem of the classical Abel inversion, a studied improvement of this technique can be obtained by assuming separability in the electron density (see Hernández-Pajares et al. 2000). This means that the electron density can be expressed by the multiplication of VTEC data and a shape function which assumes all the height dependency in it while the VTEC data keeps the horizontal dependency. Actually, it is more realistic to assume that this shape fuction depends only on the height and to use VTEC information to take into account the horizontal variation rather than considering spherical symmetry in the electron density function as it has been carried out in the classical approach of the Abel inversion.[-4mm] Since the above mentioned improved Abel inversion technique has already been tested and proven to be a useful

  16. Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients

    PubMed Central

    Shah, Syed Adnan Ali; Tan, Huey Ling; Sultan, Sadia; Mohd Faridz, Muhammad Afifi Bin; Mohd Shah, Mohamad Azlan Bin; Nurfazilah, Sharifah; Hussain, Munawar

    2014-01-01

    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids. PMID:25003642

  17. The Isomerization of (-)-Menthone to (+)-Isomenthone Catalyzed by an Ion-Exchange Resin

    ERIC Educational Resources Information Center

    Ginzburg, Aurora L.; Baca, Nicholas A.; Hampton, Philip D.

    2014-01-01

    A traditional organic chemistry laboratory experiment involves the acid-catalyzed isomerization of (-)-menthone to (+)-isomenthone. This experiment generates large quantities of organic and aqueous waste, and only allows the final ratio of isomers to be determined. A "green" modification has been developed that replaces the mineral acid…

  18. Green clay and aloe vera peel-off facial masks: response surface methodology applied to the formulation design.

    PubMed

    O'Reilly Beringhs, André; Rosa, Julia Macedo; Stulzer, Hellen Karine; Budal, Rosane Maria; Sonaglio, Diva

    2013-03-01

    This article describes the optimization of a peel-off facial mask formulation. An investigation was carried out on the parameters of the formulation that most affect the desirable characteristics of peel-off facial masks. Cereal alcohol had a significant effect on the drying time at concentrations of 1-12% (w/w). The applicability of the evaluated formulations was influenced by both carbomer (0-2.4%; w/w) and polyvinyl alcohol (PVA; 2.5-17.5%; w/w) content due to their ability to alter the formulation viscosity. Inverse concentrations of carbomer and PVA led to formulations with optimum viscosity for facial application. Film-forming performance was influenced only by the PVA concentration, achieving maximum levels at concentrations of around 11% (w/w). The optimized formulation, determined mathematically, contained 13% (w/w) PVA and 10% (w/w) cereal alcohol with no addition of carbomer. This formulation provided high levels of applicability and film-forming performance, the lowest drying time possible and excellent homogeneity of the green clay particles and aloe vera before and after drying. The preliminary stability study indicated that the optimized formulation is stable under normal storage conditions. The microbiological stability evaluation indicated that the preservative was efficient in terms of avoiding microbial growth. RSM was shown to be a useful statistical tool for the determination of the behavior of different compounds and their concentrations for the responses studied, allowing the investigation of the optimum conditions for the production of green clay and aloe vera peel-off facial masks.

  19. On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia

    NASA Astrophysics Data System (ADS)

    Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, S. C.; Munger, J. W.; Dlugokencky, E.; Ciais, P.

    2015-01-01

    The exchanges of carbon, water, and energy between the atmosphere and the Amazon Basin have global implications for current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate service (MACC) was used to further study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia. The system assimilated surface measurements of atmospheric CO2 mole fractions made over more than 100 sites over the globe into an atmospheric transport model. This study added four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion were compared to independent estimates of NEE upscaled from eddy-covariance flux measurements in Amazonia, and against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We focused on the impact of the interannual variation of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons), and of the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE were also investigated. While the inversion supported the assumption of strong spatial heterogeneity of these variations, the results revealed critical limitations that prevent global inversion frameworks from capturing the data-driven seasonal patterns of fluxes across Amazonia. In particular, it highlighted issues due to the configuration of the observation network in South America and the lack of continuity of the measurements. However, some robust patterns from the inversion seemed consistent with the abnormal moisture conditions in 2009.

  20. Influence of hydroxylamine conformation on stereocontrol in Pd-catalyzed isoxazolidine-forming reactions.

    PubMed

    Lemen, Georgia S; Giampietro, Natalie C; Hay, Michael B; Wolfe, John P

    2009-03-20

    Palladium-catalyzed carboamination reactions between N-Boc-O-(but-3-enyl)hydroxylamine derivatives and aryl or alkenyl bromides afford cis-3,5- and trans-4,5-disubstituted isoxazolidines in good yield with up to >20:1 dr. The diastereoselectivity observed in the formation of cis-3,5-disubstituted isoxazolidines is superior to selectivities typically obtained in other transformations, such as 1,3-dipolar cycloaddition reactions, that provide these products. In addition, the stereocontrol in the C-N bond-forming Pd-catalyzed carboamination reactions of N-Boc-O-(but-3-enyl)hydroxylamines is significantly higher than that of related C-O bond-forming carboetherification reactions of N-benzyl-N-(but-3-enyl)hydroxylamine derivatives. This is likely due to a stereoelectronic preference for cyclization via transition states in which the Boc group is placed in a perpendicular orientation relative to the plane of the developing ring, which derives from the conformational equilibria of substituted hydroxylamines.

  1. An approach to quantum-computational hydrologic inverse analysis

    DOE PAGES

    O'Malley, Daniel

    2018-05-02

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less

  2. An approach to quantum-computational hydrologic inverse analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Malley, Daniel

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less

  3. Babinet to the half: coupling of solid and inverse plasmonic structures.

    PubMed

    Hentschel, Mario; Weiss, Thomas; Bagheri, Shahin; Giessen, Harald

    2013-09-11

    We study the coupling between the plasmonic resonances of solid and inverse metallic nanostructures. While the coupling between solid-solid and inverse-inverse plasmonic structures is well-understood, mixed solid-inverse systems have not yet been studied in detail. In particular, it remains unclear whether or not an efficient coupling is even possible and which prerequisites have to be met. We find that an efficient coupling between inverse and solid resonances is indeed possible, identify the necessary geometrical prerequisites, and demonstrate a novel solid-inverse plasmonic electromagnetically induced transparency (EIT) structure as well as a mixed chiral system. We furthermore show that for the coupling of asymmetric rod-shaped inverse and solid structures symmetry breaking is crucial. In contrast, highly symmetric structures such as nanodisks and nanoholes are straightforward to couple. Our results constitute a significant extension of the plasmonic coupling toolkit, and we thus envision the emergence of a large number of intriguing novel plasmonic coupling phenomena in mixed solid-inverse structures.

  4. Pareto joint inversion of 2D magnetotelluric and gravity data

    NASA Astrophysics Data System (ADS)

    Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek

    2015-04-01

    In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where

  5. Fuel effects on flame lift-off under diesel conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, Helena; Andersson, Oeivind; Egnell, Rolf

    An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlationmore » with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)« less

  6. Zirconium(IV)-Catalyzed Ring Opening of on-DNA Epoxides in Water.

    PubMed

    Fan, Lijun; Davie, Christopher P

    2017-05-04

    DNA-encoded library technology (ELT) has spurred wide interest in the pharmaceutical industry as a powerful tool for hit and lead generation. In recent years a number of "DNA-compatible" chemical modifications have been published and used to synthesize vastly diverse screening libraries. Herein we report a newly developed, zirconium tetrakis(dodecyl sulfate) [Zr(DS) 4 ] catalyzed ring-opening of on-DNA epoxides in water with amines, including anilines. Subsequent cyclization of the resulting on-DNA β-amino alcohols leads to a variety of biologically interesting, nonaromatic heterocycles. Under these conditions, a library of 137 million on-DNA β-amino alcohols and their cyclization products was assembled. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An ionospheric occultation inversion technique based on epoch difference

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Xiong, Jing; Zhu, Fuying; Yang, Jian; Qiao, Xuejun

    2013-09-01

    Of the ionospheric radio occultation (IRO) electron density profile (EDP) retrievals, the Abel based calibrated TEC inversion (CTI) is the most widely used technique. In order to eliminate the contribution from the altitude above the RO satellite, it is necessary to utilize the calibrated TEC to retrieve the EDP, which introduces the error due to the coplanar assumption. In this paper, a new technique based on the epoch difference inversion (EDI) is firstly proposed to eliminate this error. The comparisons between CTI and EDI have been done, taking advantage of the simulated and real COSMIC data. The following conclusions can be drawn: the EDI technique can successfully retrieve the EDPs without non-occultation side measurements and shows better performance than the CTI method, especially for lower orbit mission; no matter which technique is used, the inversion results at the higher altitudes are better than those at the lower altitudes, which could be explained theoretically.

  8. Distances to on- and off-premise alcohol outlets and experiences of alcohol-related amenity problems.

    PubMed

    Wilkinson, Claire; Livingston, Michael

    2012-06-01

    There are a number of studies in recent years that have examined the relationship of alcohol outlets to the incidence of alcohol-related problems. Only a small number of these studies examine the types of alcohol-related problems which may be considered amenity problems, such as neighbourhood disturbance, litter and noise. This paper examines the association between the proximity of someone's home to alcohol outlets and their experience of public amenity problems. Data came from an Australian general population survey: the Alcohol's Harm to Others Survey (2008). Two thousand six hundred and forty-nine Australians aged 18 years and over were asked about their experiences of a number of amenity-type problems and the distance they lived to the nearest on- and off-premise alcohol outlet. Bivariate results showed that respondents living closer to on- and off-premise outlets reported more problems, with minor differences by distance to on- and off-premise outlet. In multivariate logistic regression analyses, controlling for possible confounding effects of the respondent and neighbourhood characteristics, living closer to on-premise outlets was independently associated with reporting being kept awake or disturbed at night and living closer to an off-premise outlet was independently associated with reporting property damage. A possible interpretation of the results is that respondents living close to on- and off-premise outlets experience more amenity problems than those living further away, but that these experiences are concentrated among demographic groups who live in these areas. Direction of influence cannot be inferred from these cross-sectional findings. © 2011 Australasian Professional Society on Alcohol and other Drugs.

  9. Effects of adaptive refinement on the inverse EEG solution

    NASA Astrophysics Data System (ADS)

    Weinstein, David M.; Johnson, Christopher R.; Schmidt, John A.

    1995-10-01

    One of the fundamental problems in electroencephalography can be characterized by an inverse problem. Given a subset of electrostatic potentials measured on the surface of the scalp and the geometry and conductivity properties within the head, calculate the current vectors and potential fields within the cerebrum. Mathematically the generalized EEG problem can be stated as solving Poisson's equation of electrical conduction for the primary current sources. The resulting problem is mathematically ill-posed i.e., the solution does not depend continuously on the data, such that small errors in the measurement of the voltages on the scalp can yield unbounded errors in the solution, and, for the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions to such problems could be obtained, neurologists would gain noninvasive accesss to patient-specific cortical activity. Access to such data would ultimately increase the number of patients who could be effectively treated for pathological cortical conditions such as temporal lobe epilepsy. In this paper, we present the effects of spatial adaptive refinement on the inverse EEG problem and show that the use of adaptive methods allow for significantly better estimates of electric and potential fileds within the brain through an inverse procedure. To test these methods, we have constructed several finite element head models from magneteic resonance images of a patient. The finite element meshes ranged in size from 2724 nodes and 12,812 elements to 5224 nodes and 29,135 tetrahedral elements, depending on the level of discretization. We show that an adaptive meshing algorithm minimizes the error in the forward problem due to spatial discretization and thus increases the accuracy of the inverse solution.

  10. A simulation based method to assess inversion algorithms for transverse relaxation data

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Keener, Kevin M.; Pan, Yong

    2008-04-01

    NMR relaxometry is a very useful tool for understanding various chemical and physical phenomena in complex multiphase systems. A Carr-Purcell-Meiboom-Gill (CPMG) [P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford, 1991] experiment is an easy and quick way to obtain transverse relaxation constant (T2) in low field. Most of the samples usually have a distribution of T2 values. Extraction of this distribution of T2s from the noisy decay data is essentially an ill-posed inverse problem. Various inversion approaches have been used to solve this problem, to date. A major issue in using an inversion algorithm is determining how accurate the computed distribution is. A systematic analysis of an inversion algorithm, UPEN [G.C. Borgia, R.J.S. Brown, P. Fantazzini, Uniform-penalty inversion of multiexponential decay data, Journal of Magnetic Resonance 132 (1998) 65-77; G.C. Borgia, R.J.S. Brown, P. Fantazzini, Uniform-penalty inversion of multiexponential decay data II. Data spacing, T2 data, systematic data errors, and diagnostics, Journal of Magnetic Resonance 147 (2000) 273-285] was performed by means of simulated CPMG data generation. Through our simulation technique and statistical analyses, the effects of various experimental parameters on the computed distribution were evaluated. We converged to the true distribution by matching up the inversion results from a series of true decay data and a noisy simulated data. In addition to simulation studies, the same approach was also applied on real experimental data to support the simulation results.

  11. Adaptive servo control for umbilical mating

    NASA Technical Reports Server (NTRS)

    Zia, Omar

    1988-01-01

    Robotic applications at Kennedy Space Center are unique and in many cases require the fime positioning of heavy loads in dynamic environments. Performing such operations is beyond the capabilities of an off-the-shelf industrial robot. Therefore Robotics Applications Development Laboratory at Kennedy Space Center has put together an integrated system that coordinates state of the art robotic system providing an excellent easy to use testbed for NASA sensor integration experiments. This paper reviews the ways of improving the dynamic response of the robot operating under force feedback with varying dynamic internal perturbations in order to provide continuous stable operations under variable load conditions. The goal is to improve the stability of the system with force feedback using the adaptive control feature of existing system over a wide range of random motions. The effect of load variations on the dynamics and the transfer function (order or values of the parameters) of the system has been investigated, more accurate models of the system have been determined and analyzed.

  12. Designing 4H-SiC P-shielding trench gate MOSFET to optimize on-off electrical characteristics

    NASA Astrophysics Data System (ADS)

    Kyoung, Sinsu; Hong, Young-sung; Lee, Myung-hwan; Nam, Tae-jin

    2018-02-01

    In order to enhance specific on-resistance (Ron,sp), the trench gate structure was also introduced into 4H-SiC MOSFET as Si MOSFET. But the 4H-SiC trench gate has worse off-state characteristics than the Si trench gate due to the incomplete gate oxidation process (Šimonka et al., 2017). In order to overcome this problem, P-shielding trench gate MOSFET (TMOS) was proposed and researched in previous studies. But P-shielding has to be designed with minimum design rule in order to protect gate oxide effectively. P-shielding TMOS also has the drawback of on-state characteristics degradation corresponding to off state improvement for minimum design rule. Therefore optimized design is needed to satisfy both on and off characteristics. In this paper, the design parameters were analyzed and optimized so that the 4H-SiC P-shielding TMOS satisfies both on and off characteristics. Design limitations were proposed such that P-shielding is able to defend the gate oxide. The P-shielding layer should have the proper junction depth and concentration to defend the electric field to gate oxide during the off-state. However, overmuch P-shielding junction depth disturbs the on-state current flow, a problem which can be solved by increasing the trench depth. As trench depth increases, however, the breakdown voltage decreases. Therefore, trench depth should be designed with due consideration for on-off characteristics. For this, design conditions and modeling were proposed which allow P-shielding to operate without degradation of on-state characteristics. Based on this proposed model, the 1200 V 4H-SiC P-shielding trench gate MOSFET was designed and optimized.

  13. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights

    PubMed Central

    McFarlane, Laura; Altringham, John D.; Askew, Graham N.

    2016-01-01

    ABSTRACT Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass. PMID:26994175

  14. A Synthetic Study on the Resolution of 2D Elastic Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Cui, C.; Wang, Y.

    2017-12-01

    Gradient based full waveform inversion is an effective method in seismic study, it makes full use of the information given by seismic records and is capable of providing a more accurate model of the interior of the earth at a relatively low computational cost. However, the strong non-linearity of the problem brings about many difficulties in the assessment of its resolution. Synthetic inversions are therefore helpful before an inversion based on real data is made. Checker-board test is a commonly used method, but it is not always reliable due to the significant difference between a checker-board and the true model. Our study aims to provide a basic understanding of the resolution of 2D elastic inversion by examining three main factors that affect the inversion result respectively: 1. The structural characteristic of the model; 2. The level of similarity between the initial model and the true model; 3. The spacial distribution of sources and receivers. We performed about 150 synthetic inversions to demonstrate how each factor contributes to quality of the result, and compared the inversion results with those achieved by checker-board tests. The study can be a useful reference to assess the resolution of an inversion in addition to regular checker-board tests, or to determine whether the seismic data of a specific region is sufficient for a successful inversion.

  15. Inferring Muscle-Tendon Unit Power from Ankle Joint Power during the Push-Off Phase of Human Walking: Insights from a Multiarticular EMG-Driven Model.

    PubMed

    Honert, Eric C; Zelik, Karl E

    2016-01-01

    Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs). However, such interpretations are confounded by multiarticular (multi-joint) musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions. The objective of this study was to investigate the degree to which ankle joint power overestimates net plantarflexor MTU power during the Push-off phase of walking, due to the behavior of the flexor digitorum and hallucis longus (FDHL)-multiarticular MTUs crossing the ankle and metatarsophalangeal (toe) joints. We performed a gait analysis study on six healthy participants, recording ground reaction forces, kinematics, and electromyography (EMG). Empirical data were input into an EMG-driven musculoskeletal model to estimate ankle power. This model enabled us to parse contributions from mono- and multi-articular MTUs, and required only one scaling and one time delay factor for each subject and speed, which were solved for based on empirical data. Net plantarflexing MTU power was computed by the model and quantitatively compared to inverse dynamics ankle power. The EMG-driven model was able to reproduce inverse dynamics ankle power across a range of gait speeds (R2 ≥ 0.97), while also providing MTU-specific power estimates. We found that FDHL dynamics caused ankle power to slightly overestimate net plantarflexor MTU power, but only by ~2-7%. During Push-off, FDHL MTU dynamics do not substantially confound the inference of net plantarflexor MTU power from inverse dynamics ankle power. However, other methodological limitations may cause inverse dynamics to overestimate net MTU power; for instance, due to rigid-body foot assumptions. Moving forward, the EMG-driven modeling approach presented

  16. Limbus Impact on Off-angle Iris Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakaya, Mahmut; Barstow, Del R; Santos-Villalobos, Hector J

    The accuracy of iris recognition depends on the quality of data capture and is negatively affected by several factors such as angle, occlusion, and dilation. Off-angle iris recognition is a new research focus in biometrics that tries to address several issues including corneal refraction, complex 3D iris texture, and blur. In this paper, we present an additional significant challenge that degrades the performance of the off-angle iris recognition systems, called the limbus effect . The limbus is the region at the border of the cornea where the cornea joins the sclera. The limbus is a semitransparent tissue that occludes amore » side portion of the iris plane. The amount of occluded iris texture on the side nearest the camera increases as the image acquisition angle increases. Without considering the role of the limbus effect, it is difficult to design an accurate off-angle iris recognition system. To the best of our knowledge, this is the first work that investigates the limbus effect in detail from a biometrics perspective. Based on results from real images and simulated experiments with real iris texture, the limbus effect increases the hamming distance score between frontal and off-angle iris images ranging from 0.05 to 0.2 depending upon the limbus height.« less

  17. Efficient sampling of parsimonious inversion histories with application to genome rearrangement in Yersinia.

    PubMed

    Miklós, István; Darling, Aaron E

    2009-06-22

    Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called "MC4Inversion." We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique.

  18. Efficient Sampling of Parsimonious Inversion Histories with Application to Genome Rearrangement in Yersinia

    PubMed Central

    Darling, Aaron E.

    2009-01-01

    Inversions are among the most common mutations acting on the order and orientation of genes in a genome, and polynomial-time algorithms exist to obtain a minimal length series of inversions that transform one genome arrangement to another. However, the minimum length series of inversions (the optimal sorting path) is often not unique as many such optimal sorting paths exist. If we assume that all optimal sorting paths are equally likely, then statistical inference on genome arrangement history must account for all such sorting paths and not just a single estimate. No deterministic polynomial algorithm is known to count the number of optimal sorting paths nor sample from the uniform distribution of optimal sorting paths. Here, we propose a stochastic method that uniformly samples the set of all optimal sorting paths. Our method uses a novel formulation of parallel Markov chain Monte Carlo. In practice, our method can quickly estimate the total number of optimal sorting paths. We introduce a variant of our approach in which short inversions are modeled to be more likely, and we show how the method can be used to estimate the distribution of inversion lengths and breakpoint usage in pathogenic Yersinia pestis. The proposed method has been implemented in a program called “MC4Inversion.” We draw comparison of MC4Inversion to the sampler implemented in BADGER and a previously described importance sampling (IS) technique. We find that on high-divergence data sets, MC4Inversion finds more optimal sorting paths per second than BADGER and the IS technique and simultaneously avoids bias inherent in the IS technique. PMID:20333186

  19. Cost effectiveness of on- and off-field conservation practices designed to reduce nitrogen in downstream water

    USDA-ARS?s Scientific Manuscript database

    The objective of this analysis is to estimate and compare the cost-effectiveness of on- and off-field approaches to reducing nitrogen loadings. On-field practices include improving the timing, rate, and method of nitrogen application. Off-field practices include restoring wetlands and establishing v...

  20. Time-lapse joint AVO inversion using generalized linear method based on exact Zoeppritz equations

    NASA Astrophysics Data System (ADS)

    Zhi, Longxiao; Gu, Hanming

    2018-03-01

    The conventional method of time-lapse AVO (Amplitude Versus Offset) inversion is mainly based on the approximate expression of Zoeppritz equations. Though the approximate expression is concise and convenient to use, it has certain limitations. For example, its application condition is that the difference of elastic parameters between the upper medium and lower medium is little and the incident angle is small. In addition, the inversion of density is not stable. Therefore, we develop the method of time-lapse joint AVO inversion based on exact Zoeppritz equations. In this method, we apply exact Zoeppritz equations to calculate the reflection coefficient of PP wave. And in the construction of objective function for inversion, we use Taylor series expansion to linearize the inversion problem. Through the joint AVO inversion of seismic data in baseline survey and monitor survey, we can obtain the P-wave velocity, S-wave velocity, density in baseline survey and their time-lapse changes simultaneously. We can also estimate the oil saturation change according to inversion results. Compared with the time-lapse difference inversion, the joint inversion doesn't need certain assumptions and can estimate more parameters simultaneously. It has a better applicability. Meanwhile, by using the generalized linear method, the inversion is easily implemented and its calculation cost is small. We use the theoretical model to generate synthetic seismic records to test and analyze the influence of random noise. The results can prove the availability and anti-noise-interference ability of our method. We also apply the inversion to actual field data and prove the feasibility of our method in actual situation.

  1. Indium-Catalyzed Reductive Dithioacetalization of Carboxylic Acids with Dithiols: Scope, Limitations, and Application to Oxidative Desulfurization.

    PubMed

    Nishino, Kota; Minato, Kohei; Miyazaki, Takahiro; Ogiwara, Yohei; Sakai, Norio

    2017-04-07

    In this study an InI 3 -TMDS (1,1,3,3-tetramethyldisiloxane) reducing system effectively catalyzed the reductive dithioacetalization of a variety of aromatic and aliphatic carboxylic acids with 1,2-ethanedithiol or 1,3-propanedithiol leading to the one-pot preparation of either 1,3-dithiolane derivatives or a 1,3-dithiane derivative. Also, the intact indium catalyst continuously catalyzed the subsequent oxidative desulfurization of an in situ formed 1,3-dithiolane derivative, which led to the preparation of the corresponding aldehydes.

  2. Palladium-catalyzed hydroaminocarbonylation of alkenes with amines: a strategy to overcome the basicity barrier imparted by aliphatic amines.

    PubMed

    Zhang, Guoying; Gao, Bao; Huang, Hanmin

    2015-06-22

    A novel and efficient palladium-catalyzed hydroaminocarbonylation of alkenes with aminals has been developed under mild reaction conditions, and allows the synthesis of a wide range of N-alkyl linear amides in good yields with high regioselectivity. On the basis of this method, a cooperative catalytic system operating by the synergistic combination of palladium, paraformaldehyde, and acid was established for promoting the hydroaminocarbonylation of alkenes with both aromatic and aliphatic amines, which do not react well under conventional palladium-catalyzed hydroaminocarbonylation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chromosome Inversion Polymorphisms in DROSOPHILA MELANOGASTER. I. Latitudinal Clines and Associations between Inversions in Australasian Populations

    PubMed Central

    Knibb, W. R.; Oakeshott, J. G.; Gibson, J. B.

    1981-01-01

    Nineteen Australasian populations of Drosophila melanogaster have been screened for chromosome inversion polymorphisms. All 15 of the inversion types found are paracentric and autosomal, but only four of these, one on each of the major autosome arms, are common and cosmopolitan. North-south clines occur, with the frequencies of all four of the common cosmopolitan inversions increasing toward the equator. These clines in the Southern Hemisphere mirror north-south clines in the Northern Hemisphere, where the frequencies of all four of the common cosmopolitan inversions again increase towards the equator.—While few of the Australasian populations show significant disequilibrium between linked common cosmopolitan inversions, those that do invariably have excesses of coupling gametes, which is consistent with other reports. We also find nonrandom associations between the two major autosomes, with the northern populations in Australasia (those with high inversion frequencies) tending to be deficient in gametes with common cosmopolitan inversions on both major autosomes, while the southern populations in Australasia (low inversion frequencies) tend to have an excess of this class of gametes.—The clines and the nonrandom associations between the two major autosomes are best interpreted in terms of selection operating to maintain the common cosmopolitan inversion polymorphisms in natural populations of D. melanogaster. PMID:17249108

  4. Multidimensional NMR inversion without Kronecker products: Multilinear inversion

    NASA Astrophysics Data System (ADS)

    Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos

    2016-08-01

    Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that require large amounts of memory, making the inversion intractable for personal computers. Finally, incorporating arbitrary regularization terms is not possible using the Lawson-Hanson (LH) or the Butler-Reeds-Dawson (BRD) algorithms. We develop a minimization-based inversion method that circumvents the above problems by using multilinear forms to perform multidimensional NMR inversion without using kernel compression or Kronecker products. The new method is memory efficient, requiring less than 0.1% of the memory required by the LH or BRD methods. It can also be extended to arbitrary dimensions and adapted to include non-separable kernels, linear constraints, and arbitrary regularization terms. Additionally, it is easy to implement because only a cost function and its first derivative are required to perform the inversion.

  5. Optimal Inversion Parameters for Full Waveform Inversion using OBS Data Set

    NASA Astrophysics Data System (ADS)

    Kim, S.; Chung, W.; Shin, S.; Kim, D.; Lee, D.

    2017-12-01

    In recent years, full Waveform Inversion (FWI) has been the most researched technique in seismic data processing. It uses the residuals between observed and modeled data as an objective function; thereafter, the final subsurface velocity model is generated through a series of iterations meant to minimize the residuals.Research on FWI has expanded from acoustic media to elastic media. In acoustic media, the subsurface property is defined by P-velocity; however, in elastic media, properties are defined by multiple parameters, such as P-velocity, S-velocity, and density. Further, the elastic media can also be defined by Lamé constants, density or impedance PI, SI; consequently, research is being carried out to ascertain the optimal parameters.From results of advanced exploration equipment and Ocean Bottom Seismic (OBS) survey, it is now possible to obtain multi-component seismic data. However, to perform FWI on these data and generate an accurate subsurface model, it is important to determine optimal inversion parameters among (Vp, Vs, ρ), (λ, μ, ρ), and (PI, SI) in elastic media. In this study, staggered grid finite difference method was applied to simulate OBS survey. As in inversion, l2-norm was set as objective function. Further, the accurate computation of gradient direction was performed using the back-propagation technique and its scaling was done using the Pseudo-hessian matrix.In acoustic media, only Vp is used as the inversion parameter. In contrast, various sets of parameters, such as (Vp, Vs, ρ) and (λ, μ, ρ) can be used to define inversion in elastic media. Therefore, it is important to ascertain the parameter that gives the most accurate result for inversion with OBS data set.In this study, we generated Vp and Vs subsurface models by using (λ, μ, ρ) and (Vp, Vs, ρ) as inversion parameters in every iteration, and compared the final two FWI results.This research was supported by the Basic Research Project(17-3312) of the Korea Institute of

  6. Identification of polymorphic inversions from genotypes

    PubMed Central

    2012-01-01

    Background Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies. Results We present a novel method to both identify polymorphic inversions from genome-wide genotype data and classify individuals as containing a normal or inverted allele. Our method, a generalization of a published method for haplotype data [1], utilizes linkage between groups of SNPs to partition a set of individuals into normal and inverted subpopulations. We employ a sliding window scan to identify regions likely to have an inversion, and accumulation of evidence from neighboring SNPs is used to accurately determine the inversion status of each subject. Further, our approach detects inversions directly from genotype data, thus increasing its usability to current genome-wide association studies (GWAS). Conclusions We demonstrate the accuracy of our method to detect inversions and classify individuals on principled-simulated genotypes, produced by the evolution of an inversion event within a coalescent model [2]. We applied our method to real genotype data from HapMap Phase III to characterize the inversion status of two known inversions within the regions 17q21 and 8p23 across 1184 individuals. Finally, we scan the full genomes of the European Origin (CEU) and Yoruba (YRI) HapMap samples. We find population-based evidence for 9 out of 15 well-established autosomic inversions, and for 52 regions previously predicted by

  7. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions

    PubMed Central

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2016-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems – dominated by immobile, long-lived organisms – are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous

  8. Harmonics added to a flickering light can upset the balance between ON and OFF pathways to produce illusory colors.

    PubMed

    Rider, Andrew T; Henning, G Bruce; Eskew, Rhea T; Stockman, Andrew

    2018-04-24

    The neural signals generated by the light-sensitive photoreceptors in the human eye are substantially processed and recoded in the retina before being transmitted to the brain via the optic nerve. A key aspect of this recoding is the splitting of the signals within the two major cone-driven visual pathways into distinct ON and OFF branches that transmit information about increases and decreases in the neural signal around its mean level. While this separation is clearly important physiologically, its effect on perception is unclear. We have developed a model of the ON and OFF pathways in early color processing. Using this model as a guide, we can produce imbalances in the ON and OFF pathways by changing the shapes of time-varying stimulus waveforms and thus make reliable and predictable alterations to the perceived average color of the stimulus-although the physical mean of the waveforms does not change. The key components in the model are the early half-wave rectifying synapses that split retinal photoreceptor outputs into the ON and OFF pathways and later sigmoidal nonlinearities in each pathway. The ability to systematically vary the waveforms to change a perceptual quality by changing the balance of signals between the ON and OFF visual pathways provides a powerful psychophysical tool for disentangling and investigating the neural workings of human vision. Copyright © 2018 the Author(s). Published by PNAS.

  9. Simultaneous inversion of seismic velocity and moment tensor using elastic-waveform inversion of microseismic data: Application to the Aneth CO2-EOR field

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Huang, L.

    2017-12-01

    Moment tensors are key parameters for characterizing CO2-injection-induced microseismic events. Elastic-waveform inversion has the potential to providing accurate results of moment tensors. Microseismic waveforms contains information of source moment tensors and the wave propagation velocity along the wavepaths. We develop an elastic-waveform inversion method to jointly invert the seismic velocity model and moment tensor. We first use our adaptive moment-tensor joint inversion method to estimate moment tensors of microseismic events. Our adaptive moment-tensor inversion method jointly inverts multiple microseismic events with similar waveforms within a cluster to reduce inversion uncertainty for microseismic data recorded using a single borehole geophone array. We use this inversion result as the initial model for our elastic-waveform inversion to minimize the cross-correlated-based data misfit between observed data and synthetic data. We verify our method using synthetic microseismic data and obtain improved results of both moment tensors and seismic velocity model. We apply our new inversion method to microseismic data acquired at a CO2-enhanced oil recovery field in Aneth, Utah, using a single borehole geophone array. The results demonstrate that our new inversion method significantly reduces the data misfit compared to the conventional ray-theory-based moment-tensor inversion.

  10. Inverse solutions for electrical impedance tomography based on conjugate gradients methods

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2002-01-01

    A multistep inverse solution for two-dimensional electric field distribution is developed to deal with the nonlinear inverse problem of electric field distribution in relation to its boundary condition and the problem of divergence due to errors introduced by the ill-conditioned sensitivity matrix and the noise produced by electrode modelling and instruments. This solution is based on a normalized linear approximation method where the change in mutual impedance is derived from the sensitivity theorem and a method of error vector decomposition. This paper presents an algebraic solution of the linear equations at each inverse step, using a generalized conjugate gradients method. Limiting the number of iterations in the generalized conjugate gradients method controls the artificial errors introduced by the assumption of linearity and the ill-conditioned sensitivity matrix. The solution of the nonlinear problem is approached using a multistep inversion. This paper also reviews the mathematical and physical definitions of the sensitivity back-projection algorithm based on the sensitivity theorem. Simulations and discussion based on the multistep algorithm, the sensitivity coefficient back-projection method and the Newton-Raphson method are given. Examples of imaging gas-liquid mixing and a human hand in brine are presented.

  11. Palladium-Catalyzed Arylation of Fluoroalkylamines

    PubMed Central

    Brusoe, Andrew T.; Hartwig, John F.

    2015-01-01

    We report the synthesis of fluorinated anilines by palladium-catalyzed coupling of fluoroalkylamines with aryl bromides and aryl chlorides. The products of these reactions are valuable because anilines typically require the presence of an electron-withdrawing substituent on nitrogen to suppress aerobic or metabolic oxidation, and the fluoroalkyl groups have steric properties and polarity distinct from those of more common electron-withdrawing amide and sulfonamide units. The fluoroalkylaniline products are unstable under typical conditions for C–N coupling reactions (heat and strong base). However, the reactions conducted with the weaker base KOPh, which has rarely been used in cross-coupling to form C–N bonds, occurred in high yield in the presence of a catalyst derived from commercially available AdBippyPhos and [Pd(allyl)Cl]2. Under these conditions, the reactions occur with low catalyst loadings (<0.50 mol % for most substrates) and tolerate the presence of various functional groups that react with the strong bases that are typically used in Pd-catalyzed C–N cross-coupling reactions of aryl halides. The resting state of the catalyst is the phenoxide complex, (BippyPhosPd(Ar)OPh); due to the electron-withdrawing property of the fluoroalkyl substituent, the turnover-limiting step of the reaction is reductive elimination to form the C–N bond. PMID:26065341

  12. Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Wang, Peng; Mao, Keyu

    2014-04-01

    Three-dimensional nuclear magnetic resonance (3D NMR) logging can simultaneously measure transverse relaxation time (T2), longitudinal relaxation time (T1), and diffusion coefficient (D). These parameters can be used to distinguish fluids in the porous reservoirs. For 3D NMR logging, the relaxation mechanism and mathematical model, Fredholm equation, are introduced, and the inversion methods including Singular Value Decomposition (SVD), Butler-Reeds-Dawson (BRD), and Global Inversion (GI) methods are studied in detail, respectively. During one simulation test, multi-echo CPMG sequence activation is designed firstly, echo trains of the ideal fluid models are synthesized, then an inversion algorithm is carried on these synthetic echo trains, and finally T2-T1-D map is built. Futhermore, SVD, BRD, and GI methods are respectively applied into a same fluid model, and the computing speed and inversion accuracy are compared and analyzed. When the optimal inversion method and matrix dimention are applied, the inversion results are in good aggreement with the supposed fluid model, which indicates that the inversion method of 3D NMR is applieable for fluid typing of oil and gas reservoirs. Additionally, the forward modeling and inversion tests are made in oil-water and gas-water models, respectively, the sensitivity to the fluids in different magnetic field gradients is also examined in detail. The effect of magnetic gradient on fluid typing in 3D NMR logging is stuied and the optimal manetic gradient is choosen.

  13. Development and simulation study of a new inverse-pinch high Coulomb transfer switch

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.

    1989-01-01

    The inverse-pinch plasma switch was studied using a computer simulation code. The code was based on a 2-D, 2-temperature magnetohydrodynamic (MHD) model. The application of this code was limited to the disk-type inverse-pinch plasma switch. The results of the computer analysis appear to be in agreement with the experimental results when the same parameters are used. An inverse-pinch plasma switch for closing has been designed and tested for high-power switching requirements. An azimuthally uniform initiation of breakdown is a key factor in achieving an inverse-pinch current path in the switch. Thus, various types of triggers, such as trigger pins, wire-brush, ring trigger, and hypocycloidal-pinch (HCP) devices have been tested for uniform breakdown. Recently, triggering was achieved by injection of a plasma-ring (plasma puff) that is produced separately with hypocycloidal-pinch electrodes placed under the cathode of the main gap. The current paths at switch closing, initiated by the injection of a plasma-ring from the HCP trigger are azimuthally uniform, and the local current density is significantly reduced, so that damage to the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes is four orders of magnitude less than that of a spark-gap switch for the same switching power. Indeed, a few thousand shots with peak current exceeding a mega-ampere and with hold-off voltage up to 20 kV have been conducted without showing measurable damage to the electrodes and insulators.

  14. On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia

    NASA Astrophysics Data System (ADS)

    Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, S. C.; Munger, J. W.; Dlugokencky, E.; Ciais, P.

    2015-07-01

    The exchanges of carbon, water and energy between the atmosphere and the Amazon basin have global implications for the current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate (MACC) service is used to study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia during the period 2002-2010. The system assimilated surface measurements of atmospheric CO2 mole fractions made at more than 100 sites over the globe into an atmospheric transport model. The present study adds measurements from four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion are compared to an independent estimate of NEE upscaled from eddy-covariance flux measurements in Amazonia. They are also qualitatively evaluated against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We attempt at assessing the impact on NEE of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons) and the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE are also investigated. While the inversion supports the assumption of strong spatial heterogeneity of these variations, the results reveal critical limitations of the coarse-resolution transport model, the surface observation network in South America during the recent years and the present knowledge of modelling uncertainties in South America that prevent our inversion from capturing the seasonal patterns of fluxes across Amazonia. However, some patterns from the inversion seem consistent with the anomaly of moisture conditions in 2009.

  15. Picosecond, tunable, high-brightness hard x-ray inverse Compton source at Duke storage ring

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.; Wu, Ying; Burnham, Bentley; Barnett, Genevieve A.; Madey, John M. J.

    1995-09-01

    We suggest a state-of-the art x-ray source using a compact electron storage ring with modest energy (less than 1 GeV) and a high power mm-wave as an undulator. A source of this type has x-ray energies and brightness comparable with third generation synchrotron light sources while it can be very compact and fit in a small university or industrial laboratory or hospital. We propose to operate an isochronous mm-wave FEL and a hard x-ray inverse Compton source at the Duke storage ring to test this concept. Resonant FEL conditions for the mm- wave will be provided by the off-axis interaction with an electromagnetic wave. A special optical resonator with holes for the e-beam is proposed for pumping a hard x-ray inverse Compton source with very high brightness. Simulation results of mm-wave FEL operation of the Duke storage ring are discussed. Expected performance of mm-wave FEL and hard x-ray inverse Compton source are presented.

  16. Copper-catalyzed domino reactions for the synthesis of cyclic compounds.

    PubMed

    Liao, Qian; Yang, Xianghua; Xi, Chanjuan

    2014-09-19

    Copper-catalyzed domino reactions are one of the most useful strategies for the construction of various cyclic compounds. In this Synopsis, we mainly focus on the latest advances in copper-catalyzed cross-coupling or addition-initiated domino reactions in the synthesis of cyclic compounds, including double alkenylation of N- or S-nucleophiles, alkenylation or alkynlation followed by cyclization of amides or amines, addition and cyclization of heteroallenes affording heterocycles, and coupling and cyclization of 1,3-dicarbonyl compounds toward heterocycles.

  17. Imidazole catalyzes chlorination by unreactive primary chloramines

    PubMed Central

    Roemeling, Margo D.; Williams, Jared; Beckman, Joseph S.; Hurst, James K.

    2015-01-01

    Hypochlorous acid and simple chloramines (RNHCl) are stable biologically-derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated—loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case NAHCl did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl+) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl+). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second order reaction to give 3′-monochloro and 3′,5′-dichloro products. Equilibrium constants for the transchlorination reactions: HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants upon [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl+; consistent with this interpretation, MeIm markedly catalyzed fluorescein chlorination by HOCl

  18. Benchmarking Quantum Mechanics/Molecular Mechanics (QM/MM) Methods on the Thymidylate Synthase-Catalyzed Hydride Transfer.

    PubMed

    Świderek, Katarzyna; Arafet, Kemel; Kohen, Amnon; Moliner, Vicent

    2017-03-14

    Given the ubiquity of hydride-transfer reactions in enzyme-catalyzed processes, identifying the appropriate computational method for evaluating such biological reactions is crucial to perform theoretical studies of these processes. In this paper, the hydride-transfer step catalyzed by thymidylate synthase (TSase) is studied by examining hybrid quantum mechanics/molecular mechanics (QM/MM) potentials via multiple semiempirical methods and the M06-2X hybrid density functional. Calculations of protium and tritium transfer in these reactions across a range of temperatures allowed calculation of the temperature dependence of kinetic isotope effects (KIE). Dynamics and quantum-tunneling effects are revealed to have little effect on the reaction rate, but are significant in determining the KIEs and their temperature dependence. A good agreement with experiments is found, especially when computed for RM1/MM simulations. The small temperature dependence of quantum tunneling corrections and the quasiclassical contribution term cancel each other, while the recrossing transmission coefficient seems to be temperature-independent over the interval of 5-40 °C.

  19. Micelles for the self-assembly of "off-on-off" fluorescent sensors for pH windows.

    PubMed

    Diaz-Fernandez, Yuri; Foti, Francesco; Mangano, Carlo; Pallavicini, Piersandro; Patroni, Stefano; Perez-Gramatges, Aurora; Rodriguez-Calvo, Simon

    2006-01-11

    A micellar approach is proposed to build a series of systems featuring an "off-on-off" fluorescent window response with changes in pH. The solubilizing properties of micelles are used to self-assemble, in water, plain pyrene with lipophilized pyridine and tertiary amine moieties. Since these components are contained in the small volume of the same micelle, pyrene fluorescence is influenced by the basic moieties: protonated pyridines and free tertiary amines behave as quenchers. Accordingly, fluorescence transitions from the "off" to the "on" state, and viceversa, take place when the pH crosses the pK(a) values of the amine and pyridine fragments. To obtain an "off-on-off" fluorescent response in this investigation we use either a set of dibasic lipophilic molecules (containing covalently linked pyridine and tertiary amine groups) or combinations of separate, lipophilic pyridines and tertiary amines. The use of combinations of dibasic and monobasic lipophilic molecules also gives a window-shaped fluorescence response with changes in pH: it is the highest pyridine pK(a) and the lowest tertiary amine pK(a) that determine the window limits. The pK(a) values of all the examined lipophilic molecules were determined in micelles, and compared with the values found for the same molecules in solvent mixtures in which they are molecularly dispersed. The effect of micellization is to significantly lower the observed protonation constants of the lipophilized species. Moreover, the more lipophilic a molecule is, the lower the observed logK value is. Accordingly, changing the substituents on the basic moieties or modifying their structure, tuning the lipophilicity of the mono- or dibases, and choosing among a large set of possible combination of lipophilized mono- and dibases have allowed us to tune, almost at will, both the width and the position along the pH axis of the obtained fluorescent window.

  20. Off-axis mirror fabrication from spherical surfaces under mechanical stress

    NASA Astrophysics Data System (ADS)

    Izazaga-Pérez, R.; Aguirre-Aguirre, D.; Percino-Zacarías, M. E.; Granados-Agustín, Fermin-Salomon

    2013-09-01

    The preliminary results in the fabrication of off-axis optical surfaces are presented. The propose using the conventional polishing method and with the surface under mechanical stress at its edges. It starts fabricating a spherical surface using ZERODUR® optical glass with the conventional polishing method, the surface is deformed by applying tension and/or compression at the surface edges using a specially designed mechanical mount. To know the necessary deformation, the interferogram of the deformed surface is analyzed in real time with a ZYGO® Mark II Fizeau type interferometer, the mechanical stress is applied until obtain the inverse interferogram associated to the off-axis surface that we need to fabricate. Polishing process is carried out again until obtain a spherical surface, then mechanical stress in the edges are removed and compares the actual interferogram with the theoretical associated to the off-axis surface. To analyze the resulting interferograms of the surface we used the phase shifting analysis method by using a piezoelectric phase-shifter and Durango® interferometry software from Diffraction International™.

  1. Titanium-Catalyzed Silicon Nanostructures Grown by APCVD

    NASA Astrophysics Data System (ADS)

    Usman, Mohammad A. U.; Smith, Brady J.; Jackson, Justin B.; De Long, Matthew C.; Miller, Mark S.

    2015-01-01

    We report on growth of Ti-catalyzed silicon nanostructures (SNCs) through atmospheric-pressure chemical vapor deposition. An extensive growth study relating the growth condition parameters, including the partial pressure of SiCl4 gas, reaction temperature, and reaction time, was carried out to obtain insight into the growth regimes for the observed SNCs. Based on phase diagram analysis of Ti-Si alloy and growth rate analysis of the silicon nanowires (SNWs) and silicon nanoplatelets, we believe the growth mechanism to be strongly dependent on the thermodynamics of the system, exhibiting a delicate balance that can easily tip between the growth and etching regimes of the system. Three types of SNCs were observed frequently throughout the study: nanowires, nanoplatelets, and balls. Regimes for highly etched growth were also noted through growth conditions plots. Ti-catalyzed SNWs grown using SiCl4 gas strongly suggest growth occurring through a type of vapor-solid-solid (VSS) mechanism that is limited by diffusion through the solid-catalyst interface. On the other hand, the two-dimensional SNP morphologies suggest growth occurring through the twin-plane mechanism at the edges, at 10 nm to 100 nm scales, also through a similar, VSS mechanism.

  2. Xer1-Mediated Site-Specific DNA Inversions and Excisions in Mycoplasma agalactiae▿ ‡

    PubMed Central

    Czurda, Stefan; Jechlinger, Wolfgang; Rosengarten, Renate; Chopra-Dewasthaly, Rohini

    2010-01-01

    Surface antigen variation in Mycoplasma agalactiae, the etiologic agent of contagious agalactia in sheep and goats, is governed by site-specific recombination within the vpma multigene locus encoding the Vpma family of variable surface lipoproteins. This high-frequency Vpma phase switching was previously shown to be mediated by a Xer1 recombinase encoded adjacent to the vpma locus. In this study, it was demonstrated in Escherichia coli that the Xer1 recombinase is responsible for catalyzing vpma gene inversions between recombination sites (RS) located in the 5′-untranslated region (UTR) in all six vpma genes, causing cleavage and strand exchange within a 21-bp conserved region that serves as a recognition sequence. It was further shown that the outcome of the site-specific recombination event depends on the orientation of the two vpma RS, as direct or inverted repeats. While recombination between inverted vpma RS led to inversions, recombination between direct repeat vpma RS led to excisions. Using a newly developed excision assay based on the lacZ reporter system, we were able to successfully demonstrate under native conditions that such Xer1-mediated excisions can indeed also occur in the M. agalactiae type strain PG2, whereas they were not observed in the control xer1-disrupted VpmaY phase-locked mutant (PLMY), which lacks Xer1 recombinase. Unless there are specific regulatory mechanisms preventing such excisions, this might be the cost that the pathogen has to render at the population level for maintaining this high-frequency phase variation machinery. PMID:20562305

  3. Introduction to the 30th volume of Inverse Problems

    NASA Astrophysics Data System (ADS)

    Louis, Alfred K.

    2014-01-01

    Bill Symes in their big footsteps, and I consider it a privilege to thank all that have contributed to the success of the journal. In its 30 years of existence, the journal has evolved from a trimestral to monthly print publication, now paralleled by an electronic version that has led to publication speeds unheard of when the journal began. This timely publication is especially important for younger researchers, but equally for experienced ones, who in that respect still feel young. In addition, the scope has changed to focus more precisely on the core of inverse problems, characterized, for example, by data errors, incomplete information and so on. In the beginning, fields where questions were considered to lead to inverse problems were listed in the journal's scope to make it clear that the problems being discussed were inverse problems in character. With the development of the solution methods, we now see that inverse problems are fundamental to almost all areas of research. The journal now hosts a number of additional features. With Insights we provide a platform for authors to introduce themselves and their work group, and present their scientific results in a popular and non-specialist form. Insights are made freely available on the journal website to ensure that they are seen by a wider community, beyond the immediate readership of the journal. Special issues are devoted to fields that have matured in such a way that the readers of our journal can profit from their presentation when the time for writing text books has not yet come. In addition, the different approaches taken by different contributors to a special issue disclose the multiple aspects of that field. With Topical reviews we aim to present the new ideas and areas that are stimulating future research. We are thankful that highly acclaimed authors take the time to present the research at the forefront of their respective fields. It is always very enlightening to read these articles as they introduce

  4. Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform

    NASA Astrophysics Data System (ADS)

    Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin

    2013-12-01

    Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.

  5. Cu-catalyzed aerobic oxidative esterification of acetophenones with alcohols to α-ketoesters.

    PubMed

    Xu, Xuezhao; Ding, Wen; Lin, Yuanguang; Song, Qiuling

    2015-02-06

    Copper-catalyzed aerobic oxidative esterification of acetophenones with alcohols using molecular oxygen has been developed to form a broad range of α-ketoesters in good yields. In addition to reporting scope and limitations of our new method, mechanism studies are reported that reveal that the carbonyl oxygen in the ester mainly originated from dioxygen.

  6. A unified inversion scheme to process multifrequency measurements of various dispersive electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Han, Y.; Misra, S.

    2018-04-01

    Multi-frequency measurement of a dispersive electromagnetic (EM) property, such as electrical conductivity, dielectric permittivity, or magnetic permeability, is commonly analyzed for purposes of material characterization. Such an analysis requires inversion of the multi-frequency measurement based on a specific relaxation model, such as Cole-Cole model or Pelton's model. We develop a unified inversion scheme that can be coupled to various type of relaxation models to independently process multi-frequency measurement of varied EM properties for purposes of improved EM-based geomaterial characterization. The proposed inversion scheme is firstly tested in few synthetic cases in which different relaxation models are coupled into the inversion scheme and then applied to multi-frequency complex conductivity, complex resistivity, complex permittivity, and complex impedance measurements. The method estimates up to seven relaxation-model parameters exhibiting convergence and accuracy for random initializations of the relaxation-model parameters within up to 3-orders of magnitude variation around the true parameter values. The proposed inversion method implements a bounded Levenberg algorithm with tuning initial values of damping parameter and its iterative adjustment factor, which are fixed in all the cases shown in this paper and irrespective of the type of measured EM property and the type of relaxation model. Notably, jump-out step and jump-back-in step are implemented as automated methods in the inversion scheme to prevent the inversion from getting trapped around local minima and to honor physical bounds of model parameters. The proposed inversion scheme can be easily used to process various types of EM measurements without major changes to the inversion scheme.

  7. Top-down estimates of methane and nitrogen oxide emissions from shale gas production regions using aircraft measurements and a mesoscale Bayesian inversion system together with a flux ratio inversion technique

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Brioude, J. F.; Angevine, W. M.; McKeen, S. A.; Henze, D. K.; Bousserez, N.; Liu, Z.; McDonald, B.; Peischl, J.; Ryerson, T. B.; Frost, G. J.; Trainer, M.

    2016-12-01

    Production of unconventional natural gas grew rapidly during the past ten years in the US which led to an increase in emissions of methane (CH4) and, depending on the shale region, nitrogen oxides (NOx). In terms of radiative forcing, CH4 is the second most important greenhouse gas after CO2. NOx is a precursor of ozone (O3) in the troposphere and nitrate particles, both of which are regulated by the US Clean Air Act. Emission estimates of CH4 and NOx from the shale regions are still highly uncertain. We present top-down estimates of CH4 and NOx surface fluxes from the Haynesville and Fayetteville shale production regions using aircraft data collected during the Southeast Nexus of Climate Change and Air Quality (SENEX) field campaign (June-July, 2013) and the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign (March-May, 2015) within a mesoscale inversion framework. The inversion method is based on a mesoscale Bayesian inversion system using multiple transport models. EPA's 2011 National CH4 and NOx Emission Inventories are used as prior information to optimize CH4 and NOx emissions. Furthermore, the posterior CH4 emission estimates are used to constrain NOx emission estimates using a flux ratio inversion technique. Sensitivity of the posterior estimates to the use of off-diagonal terms in the error covariance matrices, the transport models, and prior estimates is discussed. Compared to the ground-based in-situ observations, the optimized CH4 and NOx inventories improve ground level CH4 and O3 concentrations calculated by the Weather Research and Forecasting mesoscale model coupled with chemistry (WRF-Chem).

  8. Glutathione-supported arsenate reduction coupled to arsenolysis catalyzed by ornithine carbamoyl transferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemeti, Balazs; Gregus, Zoltan

    2009-09-01

    Three cytosolic phosphorolytic/arsenolytic enzymes, (purine nucleoside phosphorylase [PNP], glycogen phosphorylase, glyceraldehyde-3-phosphate dehydrogenase) have been shown to mediate reduction of arsenate (AsV) to the more toxic arsenite (AsIII) in a thiol-dependent manner. With unknown mechanism, hepatic mitochondria also reduce AsV. Mitochondria possess ornithine carbamoyl transferase (OCT), which catalyzes phosphorolytic or arsenolytic citrulline cleavage; therefore, we examined if mitochondrial OCT facilitated AsV reduction in presence of glutathione. Isolated rat liver mitochondria were incubated with AsV, and AsIII formed was quantified. Glutathione-supplemented permeabilized or solubilized mitochondria reduced AsV. Citrulline (substrate for OCT-catalyzed arsenolysis) increased AsV reduction. The citrulline-stimulated AsV reduction was abolished bymore » ornithine (OCT substrate inhibiting citrulline cleavage), phosphate (OCT substrate competing with AsV), and the OCT inhibitor norvaline or PALO, indicating that AsV reduction is coupled to OCT-catalyzed arsenolysis of citrulline. Corroborating this conclusion, purified bacterial OCT mediated AsV reduction in presence of citrulline and glutathione with similar responsiveness to these agents. In contrast, AsIII formation by intact mitochondria was unaffected by PALO and slightly stimulated by citrulline, ornithine, and norvaline, suggesting minimal role for OCT in AsV reduction in intact mitochondria. In addition to OCT, mitochondrial PNP can also mediate AsIII formation; however, its role in AsV reduction appears severely limited by purine nucleoside supply. Collectively, mitochondrial and bacterial OCT promote glutathione-dependent AsV reduction with coupled arsenolysis of citrulline, supporting the hypothesis that AsV reduction is mediated by phosphorolytic/arsenolytic enzymes. Nevertheless, because citrulline cleavage is disfavored physiologically, OCT may have little role in AsV reduction in vivo.« less

  9. A reversible fluorescence "off-on-off" sensor for sequential detection of aluminum and acetate/fluoride ions.

    PubMed

    Gupta, Vinod Kumar; Mergu, Naveen; Kumawat, Lokesh Kumar; Singh, Ashok Kumar

    2015-11-01

    A new rhodamine functionalized fluorogenic Schiff base CS was synthesized and its colorimetric and fluorescence responses toward various metal ions were explored. The sensor exhibited highly selective and sensitive colorimetric and "off-on" fluorescence response towards Al(3+) in the presence of other competing metal ions. These spectral changes are large enough in the visible region of the spectrum and thus enable naked-eye detection. Studies proved that the formation of CS-Al(3+) complex is fully reversible and can sense to AcO(-)/F(-) via dissociation. The results revealed that the sensor provides fluorescence "off-on-off" strategy for the sequential detection of Al(3+) and AcO(-)/F(-). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Ni-Catalyzed Dehydrogenative Cross-Coupling: Direct Transformation of Aldehydes to Esters and Amides

    PubMed Central

    Whittaker, Aaron M.; Dong, Vy M.

    2015-01-01

    By exploring a new mode of Ni-catalyzed cross-coupling, we have developed a protocol to transform both aromatic and aliphatic aldehydes into either esters or amides directly. The success of this oxidative coupling depends on the appropriate choice of catalyst and organic oxidant, including the use of either α,α,α-trifluoroacetophenone or excess aldehyde. We present mechanistic data that supports a catalytic cycle involving oxidative addition into the aldehyde C–H bond. PMID:25424967

  11. The evolution of trade-offs: testing predictions on response to selection and environmental variation.

    PubMed

    Roff, Derek A; Mostowy, Serge; Fairbairn, Daphne J

    2002-01-01

    The concept of phenotypic trade-offs is a central element in evolutionary theory. In general, phenotypic models assume a fixed trade-off function, whereas quantitative genetic theory predicts that the trade-off function will change as a result of selection. For a linear trade-off function selection will readily change the intercept but will have to be relatively stronger to change the slope. We test these predictions by examining the trade-off between fecundity and flight capability, as measured by dorso-longitudinal muscle mass, in four different populations of the sand cricket, Gryllus firmus. Three populations were recently derived from the wild, and the fourth had been in the laboratory for 19 years. We hypothesized that the laboratory population had most likely undergone more and different selection from the three wild populations and therefore should differ from these in respect to both slope and intercept. Because of geographic variation in selection, we predicted a general difference in intercept among the four populations. We further tested the hypothesis that this intercept will be correlated with proportion macropterous and that this relationship will itself vary with environmental conditions experienced during both the nymphal and adult period. Observed variation in the phenotypic trade-off was consistent with the predictions of the quantitative genetic model. These results point to the importance of modeling trade-offs as dynamic rather than static relationships. We discuss how phenotypic models can incorporate such variation. The phenotypic trade-off between fecundity and dorso-longitudinal muscle mass is determined in part by variation in body size, illustrating the necessity of considering trade-offs to be multi factorial rather than simply bivariate relationships.

  12. Decreased susceptibility to motion sickness during exposure to visual inversion in microgravity

    NASA Technical Reports Server (NTRS)

    Lackner, James R.; Dizio, Paul

    1991-01-01

    Head and body movements made in microgravity tend to bring on symptoms of motion sickness. Such head movements, relative to comparable ones made on earth, are accompanied by unusual combinations of semicircular canal and otolith activity owing to the unloading of the otoliths in 0G. Head movements also bring on symptoms of motion sickness during exposure to visual inversion (or reversal) on earth because the vestibulo-ocular reflex is rendered anti-compensatory. Here, evidence is presented that susceptibility to motion sickness during exposure to visual inversion is decreased in a 0G relative to 1G force background. This difference in susceptibility appears related to the alteration in otolith function in 0G. Some implications of this finding for the etiology of space motion sickness are described.

  13. Physiological and skill demands of 'on-side' and 'off-side' games.

    PubMed

    Gabbett, Tim J; Jenkins, David G; Abernethy, Bruce

    2010-11-01

    This study investigated the physiological and skill demands of 'on-side' and 'off-side' games in elite rugby league players. Sixteen male rugby league players participated in 'on-side' and 'off-side' games. Both small-sided games were played in a 40- × 40-m playing area. The 'off-side' game permitted players to have 3 'plays' while in possession of the ball. Players were permitted to pass backward or forward (to an 'off-side' player). The 'on-side' game also permitted players to have 3 'plays' while in possession of the ball. However, players were only permitted to pass backward to players in an 'on-side' position. Heart rate and movement patterns (via global positioning system) were recorded continuously throughout both games. Data were collected on the distance covered, number of high-acceleration and velocity efforts, and recovery between efforts. Video footage was also taken to track the performance of the players. Post hoc inspection of the footage was undertaken to count the number of possessions and the number and quality of disposals. In comparison to 'on-side' games, 'off-side' games had a greater number of involvements ("touches"), passes, and effective passes. However, the cognitive demands of 'on-side' games were greater than 'off-side' games. 'Off-side' games resulted in a greater total distance covered, greater distance covered in mild and moderate accelerations, and greater distance covered in low, moderate, and high-velocity efforts. There were also a greater number of short duration recovery periods between efforts in 'off-side' games. The results of this study demonstrate that 'off-side' games provide greater physiological and skill demands than 'on-side' games. 'Off-side' games may provide a practical alternative to 'on-side' games for the development of skill and fitness in elite rugby league players.

  14. Resolution analysis of marine seismic full waveform data by Bayesian inversion

    NASA Astrophysics Data System (ADS)

    Ray, A.; Sekar, A.; Hoversten, G. M.; Albertin, U.

    2015-12-01

    The Bayesian posterior density function (PDF) of earth models that fit full waveform seismic data convey information on the uncertainty with which the elastic model parameters are resolved. In this work, we apply the trans-dimensional reversible jump Markov Chain Monte Carlo method (RJ-MCMC) for the 1D inversion of noisy synthetic full-waveform seismic data in the frequency-wavenumber domain. While seismic full waveform inversion (FWI) is a powerful method for characterizing subsurface elastic parameters, the uncertainty in the inverted models has remained poorly known, if at all and is highly initial model dependent. The Bayesian method we use is trans-dimensional in that the number of model layers is not fixed, and flexible such that the layer boundaries are free to move around. The resulting parameterization does not require regularization to stabilize the inversion. Depth resolution is traded off with the number of layers, providing an estimate of uncertainty in elastic parameters (compressional and shear velocities Vp and Vs as well as density) with depth. We find that in the absence of additional constraints, Bayesian inversion can result in a wide range of posterior PDFs on Vp, Vs and density. These PDFs range from being clustered around the true model, to those that contain little resolution of any particular features other than those in the near surface, depending on the particular data and target geometry. We present results for a suite of different frequencies and offset ranges, examining the differences in the posterior model densities thus derived. Though these results are for a 1D earth, they are applicable to areas with simple, layered geology and provide valuable insight into the resolving capabilities of FWI, as well as highlight the challenges in solving a highly non-linear problem. The RJ-MCMC method also presents a tantalizing possibility for extension to 2D and 3D Bayesian inversion of full waveform seismic data in the future, as it objectively

  15. Mapping Antarctic Crustal Thickness using Gravity Inversion and Comparison with Seismic Estimates

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Ferraccioli, Fausto; Jordan, Tom

    2017-04-01

    Using gravity anomaly inversion, we produce comprehensive regional maps of crustal thickness and oceanic lithosphere distribution for Antarctica and the Southern Ocean. Crustal thicknesses derived from gravity inversion are consistent with seismic estimates. We determine Moho depth, crustal basement thickness, continental lithosphere thinning (1-1/β) and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). The gravity anomaly contribution from ice thickness is included in the gravity inversion, as is the contribution from sediments which assumes a compaction controlled sediment density increase with depth. Data used in the gravity inversion are elevation and bathymetry, free-air gravity anomaly, the Bedmap 2 ice thickness and bedrock topography compilation south of 60 degrees south and relatively sparse constraints on sediment thickness. Ocean isochrons are used to define the cooling age of oceanic lithosphere. Crustal thicknesses from gravity inversion are compared with independent seismic estimates, which are still relatively sparse over Antarctica. Our gravity inversion study predicts thick crust (> 45 km) under interior East Antarctica, which is penetrated by narrow continental rifts featuring relatively thinner crust. The largest crustal thicknesses predicted from gravity inversion lie in the region of the Gamburtsev Subglacial Mountains, and are consistent with seismic estimates. The East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system, is imaged by our inversion and appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km. Offshore an extensive region of either thick oceanic crust or highly thinned continental crust lies adjacent to Oates Land and north Victoria Land, and also off West Antarctica around the Amundsen Ridges. Thin crust is

  16. Recursive inverse factorization.

    PubMed

    Rubensson, Emanuel H; Bock, Nicolas; Holmström, Erik; Niklasson, Anders M N

    2008-03-14

    A recursive algorithm for the inverse factorization S(-1)=ZZ(*) of Hermitian positive definite matrices S is proposed. The inverse factorization is based on iterative refinement [A.M.N. Niklasson, Phys. Rev. B 70, 193102 (2004)] combined with a recursive decomposition of S. As the computational kernel is matrix-matrix multiplication, the algorithm can be parallelized and the computational effort increases linearly with system size for systems with sufficiently sparse matrices. Recent advances in network theory are used to find appropriate recursive decompositions. We show that optimization of the so-called network modularity results in an improved partitioning compared to other approaches. In particular, when the recursive inverse factorization is applied to overlap matrices of irregularly structured three-dimensional molecules.

  17. Recombination rate predicts inversion size in Diptera.

    PubMed Central

    Cáceres, M; Barbadilla, A; Ruiz, A

    1999-01-01

    Most species of the Drosophila genus and other Diptera are polymorphic for paracentric inversions. A common observation is that successful inversions are of intermediate size. We test here the hypothesis that the selected property is the recombination length of inversions, not their physical length. If so, physical length of successful inversions should be negatively correlated with recombination rate across species. This prediction was tested by a comprehensive statistical analysis of inversion size and recombination map length in 12 Diptera species for which appropriate data are available. We found that (1) there is a wide variation in recombination map length among species; (2) physical length of successful inversions varies greatly among species and is inversely correlated with the species recombination map length; and (3) neither the among-species variation in inversion length nor the correlation are observed in unsuccessful inversions. The clear differences between successful and unsuccessful inversions point to natural selection as the most likely explanation for our results. Presumably the selective advantage of an inversion increases with its length, but so does its detrimental effect on fertility due to double crossovers. Our analysis provides the strongest and most extensive evidence in favor of the notion that the adaptive value of inversions stems from their effect on recombination. PMID:10471710

  18. Time-lapse joint AVO inversion using generalized linear method based on exact Zoeppritz equations

    NASA Astrophysics Data System (ADS)

    Zhi, L.; Gu, H.

    2017-12-01

    The conventional method of time-lapse AVO (Amplitude Versus Offset) inversion is mainly based on the approximate expression of Zoeppritz equations. Though the approximate expression is concise and convenient to use, it has certain limitations. For example, its application condition is that the difference of elastic parameters between the upper medium and lower medium is little and the incident angle is small. In addition, the inversion of density is not stable. Therefore, we develop the method of time-lapse joint AVO inversion based on exact Zoeppritz equations. In this method, we apply exact Zoeppritz equations to calculate the reflection coefficient of PP wave. And in the construction of objective function for inversion, we use Taylor expansion to linearize the inversion problem. Through the joint AVO inversion of seismic data in baseline survey and monitor survey, we can obtain P-wave velocity, S-wave velocity, density in baseline survey and their time-lapse changes simultaneously. We can also estimate the oil saturation change according to inversion results. Compared with the time-lapse difference inversion, the joint inversion has a better applicability. It doesn't need some assumptions and can estimate more parameters simultaneously. Meanwhile, by using the generalized linear method, the inversion is easily realized and its calculation amount is small. We use the Marmousi model to generate synthetic seismic records to test and analyze the influence of random noise. Without noise, all estimation results are relatively accurate. With the increase of noise, P-wave velocity change and oil saturation change are stable and less affected by noise. S-wave velocity change is most affected by noise. Finally we use the actual field data of time-lapse seismic prospecting to process and the results can prove the availability and feasibility of our method in actual situation.

  19. Mechanistic Studies on the Copper-Catalyzed N-Arylation of Amides

    PubMed Central

    Strieter, Eric R.; Bhayana, Brijesh; Buchwald, Stephen L.

    2009-01-01

    The copper-catalyzed N-arylation of amides, i.e., the Goldberg reaction, is an efficient method for the construction of products relevant to both industry and academic settings. Herein, we present mechanistic details concerning the catalytic and stoichiometric N-arylation of amides. In the context of the catalytic reaction, our findings reveal the importance of chelating diamine ligands in controlling the concentration of the active catalytic species. The consistency between the catalytic and stoichiometric results suggest that the activation of aryl halides occurs through a 1,2-diamine-ligated copper(I) amidate complex. Kinetic studies on the stoichiometric N-arylation of aryl iodides using 1,2-diamine ligated Cu(I) amidates also provide insights into the mechanism of aryl halide activation. PMID:19072233

  20. The inverse electroencephalography pipeline

    NASA Astrophysics Data System (ADS)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  1. A general equation to obtain multiple cut-off scores on a test from multinomial logistic regression.

    PubMed

    Bersabé, Rosa; Rivas, Teresa

    2010-05-01

    The authors derive a general equation to compute multiple cut-offs on a total test score in order to classify individuals into more than two ordinal categories. The equation is derived from the multinomial logistic regression (MLR) model, which is an extension of the binary logistic regression (BLR) model to accommodate polytomous outcome variables. From this analytical procedure, cut-off scores are established at the test score (the predictor variable) at which an individual is as likely to be in category j as in category j+1 of an ordinal outcome variable. The application of the complete procedure is illustrated by an example with data from an actual study on eating disorders. In this example, two cut-off scores on the Eating Attitudes Test (EAT-26) scores are obtained in order to classify individuals into three ordinal categories: asymptomatic, symptomatic and eating disorder. Diagnoses were made from the responses to a self-report (Q-EDD) that operationalises DSM-IV criteria for eating disorders. Alternatives to the MLR model to set multiple cut-off scores are discussed.

  2. Porous silicon formation during Au-catalyzed etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algasinger, Michael; Bernt, Maximilian; Koynov, Svetoslav

    2014-04-28

    The formation of “black” nano-textured Si during the Au-catalyzed wet-chemical etch process was investigated with respect to photovoltaic applications. Cross-sectional scanning electron microscopy (SEM) images recorded at different stages of the etch process exhibit an evolution of a two-layer structure, consisting of cone-like Si hillocks covered with a nano-porous Si (np-Si) layer. Optical measurements confirm the presence of a np-Si phase which appears after the first ∼10 s of the etch process and continuously increases with the etch time. Furthermore, the etch process was investigated on Si substrates with different doping levels (∼0.01–100 Ω cm). SEM images show a transition frommore » the two-layer morphology to a structure consisting entirely of np-Si for higher doping levels (<0.1 Ω cm). The experimental results are discussed on the basis of the model of a local electrochemical etch process. A better understanding of the metal-catalyzed etch process facilitates the fabrication of “black” Si on various Si substrates, which is of significant interest for photovoltaic applications.« less

  3. Reduced Dirac equation and Lamb shift as off-mass-shell effect in quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Ni, Guang-Jiong; Xu, Jian-Jun; Lou, Sen-Yue

    2011-02-01

    Based on the accurate experimental data of energy-level differences in hydrogen-like atoms, especially the 1S—2S transitions of hydrogen and deuterium, the necessity of introducing a reduced Dirac equation with reduced mass as the substitution of original electron mass is stressed. Based on new cognition about the essence of special relativity, we provide a reasonable argument for the reduced Dirac equation to have two symmetries, the invariance under the (newly defined) space-time inversion and that under the pure space inversion, in a noninertial frame. By using the reduced Dirac equation and within the framework of quantum electrodynamics in covariant form, the Lamb shift can be evaluated (at one-loop level) as the radiative correction on a bound electron staying in an off-mass-shell state—-a new approach eliminating the infrared divergence. Hence the whole calculation, though with limited accuracy, is simplified, getting rid of all divergences and free of ambiguity.

  4. Desaturation reactions catalyzed by soluble methane monooxygenase.

    PubMed

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  5. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainey, Mel F.; Redwing, Joan M.

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis onmore » methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.« less

  6. Contribution of 3D inversion of Electrical Resistivity Tomography data applied to volcanic structures

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2016-04-01

    The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out

  7. Intelligent inversion method for pre-stack seismic big data based on MapReduce

    NASA Astrophysics Data System (ADS)

    Yan, Xuesong; Zhu, Zhixin; Wu, Qinghua

    2018-01-01

    Seismic exploration is a method of oil exploration that uses seismic information; that is, according to the inversion of seismic information, the useful information of the reservoir parameters can be obtained to carry out exploration effectively. Pre-stack data are characterised by a large amount of data, abundant information, and so on, and according to its inversion, the abundant information of the reservoir parameters can be obtained. Owing to the large amount of pre-stack seismic data, existing single-machine environments have not been able to meet the computational needs of the huge amount of data; thus, the development of a method with a high efficiency and the speed to solve the inversion problem of pre-stack seismic data is urgently needed. The optimisation of the elastic parameters by using a genetic algorithm easily falls into a local optimum, which results in a non-obvious inversion effect, especially for the optimisation effect of the density. Therefore, an intelligent optimisation algorithm is proposed in this paper and used for the elastic parameter inversion of pre-stack seismic data. This algorithm improves the population initialisation strategy by using the Gardner formula and the genetic operation of the algorithm, and the improved algorithm obtains better inversion results when carrying out a model test with logging data. All of the elastic parameters obtained by inversion and the logging curve of theoretical model are fitted well, which effectively improves the inversion precision of the density. This algorithm was implemented with a MapReduce model to solve the seismic big data inversion problem. The experimental results show that the parallel model can effectively reduce the running time of the algorithm.

  8. Effect of rasagiline as adjunct therapy to levodopa on severity of OFF in Parkinson's disease.

    PubMed

    Stocchi, F; Rabey, J M

    2011-12-01

    The LARGO study demonstrated that rasagiline 1 mg/day as adjunct to levodopa significantly reduces OFF time to the same magnitude as adjunct entacapone. This substudy of LARGO aimed to assess the effect of rasagiline and entacapone on the motor symptoms of PD during the practically defined OFF state. LARGO was a randomized, double-blind, multicenter trial that assessed the efficacy and safety of rasagiline (1 mg/day), entacapone (200 mg with each levodopa dose), and placebo in 687 levodopa-treated PD patients with motor fluctuations. A substudy of LARGO measured UPDRS motor scores in the practically defined OFF state in 32 rasagiline, 36 entacapone, and 37 placebo patients. Treatment with rasagiline produced a significant improvement over placebo of 5.64 units in UPDRS motor OFF score (P = 0.013 vs. placebo). By contrast, the effect of adjunct entacapone was not significant (P = 0.14 vs. placebo). Whereas rasagiline also showed a trend in reducing the UPDRS-ADL OFF score (P = 0.058 vs. placebo), no such trend was noted for entacapone (P = 0.26 vs. placebo). Retrospective analysis, using the Bonferroni correction, of UPDRS motor subdomains further revealed that rasagiline, but not entacapone, significantly improved bradykinesia (P < 0.001) and showed trends for improvements in facial expression, speech, and axial impairment during OFF time. This study provides the first objectively measured evidence that adjunct rasagiline 1 mg/day is effective in reducing the severity of motor symptoms in the OFF state. This suggests a continuous effect of rasagiline 1 mg/day throughout the day and night and is consistent with its extended duration of therapeutic action. © 2011 The Author(s). European Journal of Neurology © 2011 EFNS.

  9. Inversion layer solar cell fabrication and evaluation. [measurement of response of inversion layer solar cell to light of different wavelengths

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1973-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. This charged layer was supplied through three mechanisms: (1) applying a positive potential to a transparent electrode separated from the silicon surface by a dielectric, (2) contaminating the oxide layer with positive ions, and (3) forming donor surface states that leave a positive charge on the surface. A movable semi-infinite shadow delineated the extent of sensitivity of the cell due to the inversion region. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  10. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses

    PubMed Central

    Popova, E.

    2014-01-01

    In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed. PMID:25143858

  11. On-site or off-site treatment of medical waste: a challenge

    PubMed Central

    2014-01-01

    Treating hazardous-infectious medical waste can be carried out on-site or off-site of health-care establishments. Nevertheless, the selection between on-site and off-site locations for treating medical waste sometimes is a controversial subject. Currently in Iran, due to policies of Health Ministry, the hospitals have selected on-site-treating method as the preferred treatment. The objectives of this study were to assess the current condition of on-site medical waste treatment facilities, compare on-site medical waste treatment facilities with off-site systems and find the best location of medical waste treatment. To assess the current on-site facilities, four provinces (and 40 active hospitals) were selected to participate in the survey. For comparison of on-site and off-site facilities (due to non availability of an installed off-site facility) Analytical Hierarchy Process (AHP) was employed. The result indicated that most on-site medical waste treating systems have problems in financing, planning, determining capacity of installations, operation and maintenance. AHP synthesis (with inconsistency ratio of 0.01 < 0.1) revealed that, in total, the off-site treatment of medical waste was in much higher priority than the on-site treatment (64.1% versus 35.9%). According to the results of study it was concluded that the off-site central treatment can be considered as an alternative. An amendment could be made to Iran’s current medical waste regulations to have infectious-hazardous waste sent to a central off-site installation for treatment. To begin and test this plan and also receive the official approval, a central off-site can be put into practice, at least as a pilot in one province. Next, if it was practically successful, it could be expanded to other provinces and cities. PMID:24739145

  12. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory

    NASA Astrophysics Data System (ADS)

    Wang, Kun-Peng; Tan, Han-Dong; Wang, Tao

    2017-06-01

    A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with the effects of artificial sources. First, a regularization factor is introduced in the 2D magnetic inversion, and the magnetic susceptibility is updated in logarithmic form so that the inversion magnetic susceptibility is always positive. Second, the joint inversion of the CSAMT and magnetic methods is completed with the introduction of the cross gradient. By searching for the weight of the cross-gradient term in the objective function, the mutual influence between two different physical properties at different locations are avoided. Model tests show that the joint inversion based on cross-gradient theory offers better results than the single-method inversion. The 2D forward and inverse algorithm for CSAMT with source can effectively deal with artificial sources and ensures the reliability of the final joint inversion algorithm.

  13. TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy.

    PubMed

    Falace, Antonio; Filipello, Fabia; La Padula, Veronica; Vanni, Nicola; Madia, Francesca; De Pietri Tonelli, Davide; de Falco, Fabrizio A; Striano, Pasquale; Dagna Bricarelli, Franca; Minetti, Carlo; Benfenati, Fabio; Fassio, Anna; Zara, Federico

    2010-09-10

    Idiopathic epilepsies (IEs) are a group of disorders characterized by recurrent seizures in the absence of detectable brain lesions or metabolic abnormalities. IEs include common disorders with a complex mode of inheritance and rare Mendelian traits suggesting the occurrence of several alleles with variable penetrance. We previously described a large family with a recessive form of idiopathic epilepsy, named familial infantile myoclonic epilepsy (FIME), and mapped the disease locus on chromosome 16p13.3 by linkage analysis. In the present study, we found that two compound heterozygous missense mutations (D147H and A509V) in TBC1D24, a gene of unknown function, are responsible for FIME. In situ hybridization analysis revealed that Tbc1d24 is mainly expressed at the level of the cerebral cortex and the hippocampus. By coimmunoprecipitation assay we found that TBC1D24 binds ARF6, a Ras-related family of small GTPases regulating exo-endocytosis dynamics. The main recognized function of ARF6 in the nervous system is the regulation of dendritic branching, spine formation, and axonal extension. TBC1D24 overexpression resulted in a significant increase in neurite length and arborization and the FIME mutations significantly reverted this phenotype. In this study we identified a gene mutation involved in autosomal-recessive idiopathic epilepsy, unveiled the involvement of ARF6-dependent molecular pathway in brain hyperexcitability and seizures, and confirmed the emerging role of subtle cytoarchitectural alterations in the etiology of this group of common epileptic disorders. 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Identification of the enzymes catalyzing metabolism of methoxyflurane.

    PubMed

    Waskell, L; Canova-Davis, E; Philpot, R; Parandoush, Z; Chiang, J Y

    1986-01-01

    The hepatic microsomal metabolism of methoxyflurane in rabbits is markedly stimulated by treatment with phenobarbital. However, the increased rate of metabolism cannot be completely accounted for by the activity of the purified phenobarbital-inducible cytochrome P-450 isozyme 2, even in the presence of cytochrome b5. The discovery of a second hepatic phenobarbital-inducible cytochrome P-450, isozyme 5, led us to undertake experiments to determine in hepatic and pulmonary preparations the portion of microsomal metabolism of methoxyflurane catalyzed by cytochrome P-450 isozymes 2 and 5. We report herein that isozyme 2 accounts for 25% and 29%, respectively, of the O-demethylation of methoxyflurane in hepatic microsomes from untreated and phenobarbital-treated rabbits, and for 25% of the methoxyflurane metabolism in pulmonary microsomes. Results for isozyme 5 indicate that it catalyzes 19% and 27% of methoxyflurane metabolism in control and phenobarbital-induced liver, and 47% of O-demethylation in the lung. In summary, we demonstrate that methoxyflurane O-demethylation in lung, phenobarbital-induced liver, and control liver microsomes is catalyzed by cytochrome P-450 isozymes 2 and 5. Results with purified cytochrome P-450 isozyme 5 are consistent with those obtained using microsomal preparations. Furthermore, metabolism of methoxyflurane by purified isozyme 5 is markedly stimulated by cytochrome b5. A role for cytochrome b5 in cytochrome P-450 isozyme 5-catalyzed metabolism of methoxyflurane was also demonstrated in microsomes. Antibody to isozyme 5 was unable to inhibit methoxyflurane metabolism in the presence of maximally inhibiting concentrations of cytochrome b5 antibody.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. On Estimation Strategies in an Inverse ELF Problem

    NASA Astrophysics Data System (ADS)

    Mushtak, Vadim; Williams, Earle; Boldi, Robert; Nagy, Tamas

    2010-05-01

    Since 1965 when Balser and Wagner, the pioneer ELF experimentalists, noticed the reflection of the properties of global lightning activity in their measurements, one of the most important and challenging tasks in the ELF research is the monitoring of the world-wide lightning activity from observations in the Schumann resonance (SR) frequency range (5 to about 40 Hz). Known attempts in this direction have been undertaken using a simplified theory of ELF propagation in a spherically symmetrical Earth-ionosphere cavity. Yet numerical simulations with more realistic ELF techniques show that incorporating into the theory the cavity's major asymmetry, the day/night one, not only improves the accuracy of the monitoring procedure, but also enhances its efficiency. The reason is that the presence of asymmetries provides - via the positions of sources and observer relative not only to each other, but also to the day/night terminator, - additional "dimensions" to the task in comparison with the symmetrical case, which, in its turn, improves the convergence of the inversion procedure. The realization of the theoretically achievable efficiency of such an inversion with real SR data depends critically on the quality of measurements. After collecting and analyzing ELF data from SR stations in various regions of the globe, it was found that even under seemingly most favorable experimental conditions the SR characteristics directly estimated from ELF observations rarely have a quality acceptable for use in the inversion. A three-stage rectifying algorithm has been developed and tested in the inversion procedure. In the first stage, the data - in the form of time series, - instead of being directly Fourier-transformed for estimating the SR characteristics, are divided into shorter segments, and histograms of the segments' energy content (EC) are considered for revealing the possible presence of various interferences and the "non-systematic" (i.e. not incorporated into the source

  16. Rh(I)–Bisphosphine-Catalyzed Asymmetric, Intermolecular Hydroheteroarylation of α-Substituted Acrylate Derivatives

    PubMed Central

    2015-01-01

    Asymmetric hydroheteroarylation of alkenes represents a convenient entry to elaborated heterocyclic motifs. While chiral acids are known to mediate asymmetric addition of electron-rich heteroarenes to Michael acceptors, very few methods exploit transition metals to catalyze alkylation of heterocycles with olefins via a C–H activation, migratory insertion sequence. Herein, we describe the development of an asymmetric, intermolecular hydroheteroarylation reaction of α-substituted acrylates with benzoxazoles. The reaction provides 2-substitued benzoxazoles in moderate to excellent yields and good to excellent enantioselectivities. Notably, a series of mechanistic studies appears to contradict a pathway involving enantioselective protonation of a Rh(I)–enolate, despite the fact that such a mechanism is invoked almost unanimously in the related addition of aryl boronic acids to methacrylate derivatives. Evidence suggests instead that migratory insertion or beta-hydride elimination is enantiodetermining and that isomerization of a Rh(I)–enolate to a Rh(I)–heterobenzyl species insulates the resultant α-stereocenter from epimerization. A bulky ligand, CTH-(R)-Xylyl-P-Phos, is crucial for reactivity and enantioselectivity, as it likely discourages undesired ligation of benzoxazole substrates or intermediates to on- or off-cycle rhodium complexes and attenuates coordination-promoted product epimerization. PMID:25545834

  17. 76 FR 82303 - Draft Guidance for Industry on Responding to Unsolicited Requests for Off-Label Information About...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... indication and risk information, post-marketing submission requirements) in their internet and social media... requests for off-label information, including those that firms may encounter on emerging electronic media...] Draft Guidance for Industry on Responding to Unsolicited Requests for Off-Label Information About...

  18. Distribution of genetic diversity in relation to chromosomal inversions in the malaria mosquito Anopheles gambiae.

    PubMed

    Mathiopoulos, K D; Lanzaro, G C

    1995-06-01

    The epidemiology of malaria in Africa is complicated by the fact that its principal vector, the mosquito Anopheles gambiae, constitutes a complex of six sibling species. Each species is characterized by a unique array of paracentric inversions, as deduced by karyotypic analysis. In addition, most of the species carry a number of polymorphic inversions. In order to develop an understanding of the evolutionary histories of different parts of the genome, we compared the genetic variation of areas inside and outside inversions in two distinct inversion karyotypes of A. gambiae. Thirty-five cDNA clones were mapped on the five arms of the A. gambiae chromosomes with divisional probes. Sixteen of these clones, localized both inside and outside inversions of chromosome 2, were used as probes in order to determine the nucleotide diversity of different parts of the genome in the two inversion karyotypes. We observed that the sequence diversity inside the inversion is more than three-fold lower than in areas outside the inversion and that the degree of divergence increases gradually at loci at increasing distance from the inversion. To interpret the data we present a selectionist and a stochastic model, both of which point to a relatively recent origin of the studied inversion and may suggest differences between the evolutionary history of inversions in Anopheles and Drosophila species.

  19. Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S. (Editor)

    1991-01-01

    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines.

  20. Improved Genetic Algorithm Based on the Cooperation of Elite and Inverse-elite

    NASA Astrophysics Data System (ADS)

    Kanakubo, Masaaki; Hagiwara, Masafumi

    In this paper, we propose an improved genetic algorithm based on the combination of Bee system and Inverse-elitism, both are effective strategies for the improvement of GA. In the Bee system, in the beginning, each chromosome tries to find good solution individually as global search. When some chromosome is regarded as superior one, the other chromosomes try to find solution around there. However, since chromosomes for global search are generated randomly, Bee system lacks global search ability. On the other hand, in the Inverse-elitism, an inverse-elite whose gene values are reversed from the corresponding elite is produced. This strategy greatly contributes to diversification of chromosomes, but it lacks local search ability. In the proposed method, the Inverse-elitism with Pseudo-simplex method is employed for global search of Bee system in order to strengthen global search ability. In addition, it also has strong local search ability. The proposed method has synergistic effects of the three strategies. We confirmed validity and superior performance of the proposed method by computer simulations.

  1. High-quality vertical light emitting diodes fabrication by mechanical lift-off technique

    NASA Astrophysics Data System (ADS)

    Tu, Po-Min; Hsu, Shih-Chieh; Chang, Chun-Yen

    2011-10-01

    We report the fabrication of mechanical lift-off high quality thin GaN with Hexagonal Inversed Pyramid (HIP) structures for vertical light emitting diodes (V-LEDs). The HIP structures were formed at the GaN/sapphire substrate interface under high temperature during KOH wet etching process. The average threading dislocation density (TDD) was estimated by transmission electron microscopy (TEM) and found the reduction from 2×109 to 1×108 cm-2. Raman spectroscopy analysis revealed that the compressive stress of GaN epilayer was effectively relieved in the thin-GaN LED with HIP structures. Finally, the mechanical lift-off process is claimed to be successful by using the HIP structures as a sacrificial layer during wafer bonding process.

  2. Effect of scrape-off-layer current on reconstructed tokamak equilibrium

    DOE PAGES

    King, J. R.; Kruger, S. E.; Groebner, R. J.; ...

    2017-01-13

    Methods are described that extend fields from reconstructed equilibria to include scrape-off-layer current through extrapolated parametrized and experimental fits. The extrapolation includes both the effects of the toroidal-field and pressure gradients which produce scrape-off-layer current after recomputation of the Grad-Shafranov solution. To quantify the degree that inclusion of scrape-off-layer current modifies the equilibrium, the χ-squared goodness-of-fit parameter is calculated for cases with and without scrape-off-layer current. The change in χ-squared is found to be minor when scrape-off-layer current is included however flux surfaces are shifted by up to 3 cm. Here the impact on edge modes of these scrape-off-layer modificationsmore » is also found to be small and the importance of these methods to nonlinear computation is discussed.« less

  3. Aerobic oxidation of cyclic amines to lactams catalyzed by ceria-supported nanogold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dairo, Taiwo O.; Nelson, Nicholas C.; Slowing, Igor I.

    Here, the oxidative transformation of cyclic amines to lactams, which are important chemical feedstocks, is efficiently catalyzed by CeO 2-supported gold nanoparticles (Au/CeO 2) and Aerosil 200 in the presence of an atmosphere of O 2. The complete conversion of pyrrolidine was achieved in 6.5 h at 160 °C, affording a 97 % yield of the lactam product 2-pyrrolidone (γ-butyrolactam), while 2-piperidone (δ-valerolactam) was synthesized from piperidine (83 % yield) in 2.5 h. Caprolactam, the precursor to the commercially important nylon-6, was obtained from hexamethyleneimine in 37 % yield in 3 h. During the oxidation of pyrrolidine, two transient species,more » 5-(pyrrolidin-1-yl)-3,4-dihydro-2H-pyrrole (amidine-5) and 4-amino-1-(pyrrolidin-1-yl)butan-1-one, were observed. Both of these compounds were oxidized to 2-pyrrolidone under catalytic conditions, indicating their role as intermediates in the reaction pathway. In addition to the reactions of cyclic secondary amines, Au/CeO 2 also efficiently catalyzes the oxidation of N-methyl cyclic tertiary amines to the corresponding lactams at 80 and 100 °C.« less

  4. Aerobic oxidation of cyclic amines to lactams catalyzed by ceria-supported nanogold

    DOE PAGES

    Dairo, Taiwo O.; Nelson, Nicholas C.; Slowing, Igor I.; ...

    2016-09-23

    Here, the oxidative transformation of cyclic amines to lactams, which are important chemical feedstocks, is efficiently catalyzed by CeO 2-supported gold nanoparticles (Au/CeO 2) and Aerosil 200 in the presence of an atmosphere of O 2. The complete conversion of pyrrolidine was achieved in 6.5 h at 160 °C, affording a 97 % yield of the lactam product 2-pyrrolidone (γ-butyrolactam), while 2-piperidone (δ-valerolactam) was synthesized from piperidine (83 % yield) in 2.5 h. Caprolactam, the precursor to the commercially important nylon-6, was obtained from hexamethyleneimine in 37 % yield in 3 h. During the oxidation of pyrrolidine, two transient species,more » 5-(pyrrolidin-1-yl)-3,4-dihydro-2H-pyrrole (amidine-5) and 4-amino-1-(pyrrolidin-1-yl)butan-1-one, were observed. Both of these compounds were oxidized to 2-pyrrolidone under catalytic conditions, indicating their role as intermediates in the reaction pathway. In addition to the reactions of cyclic secondary amines, Au/CeO 2 also efficiently catalyzes the oxidation of N-methyl cyclic tertiary amines to the corresponding lactams at 80 and 100 °C.« less

  5. Multiple estimation channel decoupling and optimization method based on inverse system

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Mu, Rongjun; Zhang, Xin; Deng, Yanpeng

    2018-03-01

    This paper addressed the intelligent autonomous navigation request of intelligent deformation missile, based on the intelligent deformation missile dynamics and kinematics modeling, navigation subsystem solution method and error modeling, and then focuses on the corresponding data fusion and decision fusion technology, decouples the sensitive channel of the filter input through the inverse system of design dynamics to reduce the influence of sudden change of the measurement information on the filter input. Then carrying out a series of simulation experiments, which verified the feasibility of the inverse system decoupling algorithm effectiveness.

  6. A ''Voice Inversion Effect?''

    ERIC Educational Resources Information Center

    Bedard, Catherine; Belin, Pascal

    2004-01-01

    Voice is the carrier of speech but is also an ''auditory face'' rich in information on the speaker's identity and affective state. Three experiments explored the possibility of a ''voice inversion effect,'' by analogy to the classical ''face inversion effect,'' which could support the hypothesis of a voice-specific module. Experiment 1 consisted…

  7. Nickel-Catalyzed Coupling Reactions of Alkyl Electrophiles, Including Unactivated Tertiary Halides, to Generate Carbon–Boron Bonds

    PubMed Central

    Dudnik, Alexander S.

    2012-01-01

    Through the use of a catalyst formed in situ from NiBr2•diglyme and a pybox ligand (both of which are commercially available), we have achieved our first examples of coupling reactions of unactivated tertiary alkyl electrophiles, as well as our first success with nickel-catalyzed couplings that generate bonds other than C–C bonds. Specifically, we have determined that this catalyst accomplishes Miyaura-type borylations of unactivated tertiary, secondary, and primary alkyl halides with diboron reagents to furnish alkylboronates, a family of compounds with substantial (and expanding) utility, under mild conditions; indeed, the umpolung borylation of a tertiary alkyl bromide can be achieved at a temperature as low as −10 °C. The method exhibits good functional-group compatibility and is regiospecific, both of which can be issues with traditional approaches to the synthesis of alkylboronates. In contrast to seemingly related nickel-catalyzed C–C bond-forming processes, tertiary halides are more reactive than secondary or primary halides in this nickel-catalyzed C–B bond-forming reaction; this divergence is particularly noteworthy in view of the likelihood that both transformations follow an inner-sphere electron-transfer pathway for oxidative addition. PMID:22668072

  8. Distributed Cooperative Optimal Control for Multiagent Systems on Directed Graphs: An Inverse Optimal Approach.

    PubMed

    Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing

    2015-07-01

    In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.

  9. Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion

    DOE PAGES

    Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni; ...

    2016-06-09

    .3%). To examine the influence of spectral resolution on parameter uncertainty, we simulated leaf reflectance as observed by ten common remote sensing platforms with varying spectral configurations and performed a Bayesian inversion on the resulting spectra. We found that full-range hyperspectral platforms were able to retrieve all parameters accurately and precisely, while the parameter estimates of multispectral platforms were much less precise and prone to bias at high and low values. We also observed that variations in the width and location of spectral bands influenced the shape of the covariance structure of parameter estimates. Lastly, our Bayesian spectral inversion provides a powerful and versatile framework for future RTM development and single- and multi-instrumental remote sensing of vegetation.« less

  10. Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni

    .3%). To examine the influence of spectral resolution on parameter uncertainty, we simulated leaf reflectance as observed by ten common remote sensing platforms with varying spectral configurations and performed a Bayesian inversion on the resulting spectra. We found that full-range hyperspectral platforms were able to retrieve all parameters accurately and precisely, while the parameter estimates of multispectral platforms were much less precise and prone to bias at high and low values. We also observed that variations in the width and location of spectral bands influenced the shape of the covariance structure of parameter estimates. Lastly, our Bayesian spectral inversion provides a powerful and versatile framework for future RTM development and single- and multi-instrumental remote sensing of vegetation.« less

  11. Rh-Catalyzed Annulations of N-Methoxybenzamides and Ketenimines: Sterically and Electronically Controlled Synthesis of Isoquinolinones and Isoindolinones.

    PubMed

    Zhou, Xiaorong; Zhang, Zhiyin; Zhao, Hongyang; Lu, Ping; Wang, Yanguang

    2017-04-07

    Rhodium-catalyzed C-H activation/annulation reactions of ketenimines with N-methoxybenzamides are reported. The outcome of reactions is dependent on the structure of ketenimines. The β-alkyl-substituted ketenimines furnish 3-iminoisoquinolin-1(2H)-ones in a formal [4 + 2] annulation manner, while the β-ester substituted ketenimines afford 3-aminoisoindolin-1-ones in a formal [4 + 1] annulation manner. The synthesized [4 + 2] products undergo an intramolecular Cu-catalyzed C-N coupling to be converted to benzo[4,5]imidazo[1,2-b]isoquinolin-11-ones, which can be directly prepared from ketenimines and N-methoxybenzamides by a one-pot Rh-catalyzed annulation/Cu-catalyzed C-N coupling sequence.

  12. Control of a high beta maneuvering reentry vehicle using dynamic inversion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Alfred Chapman

    2005-05-01

    The design of flight control systems for high performance maneuvering reentry vehicles presents a significant challenge to the control systems designer. These vehicles typically have a much higher ballistic coefficient than crewed vehicles like as the Space Shuttle or proposed crew return vehicles such as the X-38. Moreover, the missions of high performance vehicles usually require a steeper reentry flight path angle, followed by a pull-out into level flight. These vehicles then must transit the entire atmosphere and robustly perform the maneuvers required for the mission. The vehicles must also be flown with small static margins in order to performmore » the required maneuvers, which can result in highly nonlinear aerodynamic characteristics that frequently transition from being aerodynamically stable to unstable as angle of attack increases. The control system design technique of dynamic inversion has been applied successfully to both high performance aircraft and low beta reentry vehicles. The objective of this study was to explore the application of this technique to high performance maneuvering reentry vehicles, including the basic derivation of the dynamic inversion technique, followed by the extension of that technique to the use of tabular trim aerodynamic models in the controller. The dynamic inversion equations are developed for high performance vehicles and augmented to allow the selection of a desired response for the control system. A six degree of freedom simulation is used to evaluate the performance of the dynamic inversion approach, and results for both nominal and off nominal aerodynamic characteristics are presented.« less

  13. Effect of L-cysteine on the oxidation of cyclohexane catalyzed by manganeseporphyrin.

    PubMed

    Zhou, Wei-You; Tian, Peng; Chen, Yong; He, Ming-Yang; Chen, Qun; Chen, Zai Xin

    2015-06-01

    Effect of L-cysteine as the cocatalyst on the oxidation of cyclohexane by tert-butylhydroperoxide (TBHP) catalyzed by manganese tetraphenylporphyrin (MnTPP) has been investigated. The results showed that L-cysteine could moderately improve the catalytic activity of MnTPP and significantly increase the selectivity of cyclohexanol. Different from imidazole and pyridine, the L-cysteine may perform dual roles in the catalytic oxidation of cyclohexane. Besides as the axial ligand for MnTPP, the L-cysteine could also react with cyclohexyl peroxide formed as the intermediate to produce alcohol as the main product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Data inversion immune to cycle-skipping using AWI

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Umpleby, A.; Yao, G.; Morgan, J. V.

    2014-12-01

    Over the last decade, 3D Full Waveform Inversion (FWI) has become a standard model-building tool in exploration seismology, especially in oil and gas applications -thanks to the high quality (spatial density of sources and receivers) datasets acquired by the industry. FWI provides superior quantitative images than its travel-time counterparts (travel-time based inversion methods) because it aims to match all the information in the observations instead of a severely restricted subset of them, namely picked arrivals.The downside is that the solution space explored by FWI has a high number of local minima, and since the solution is restricted to local optimization methods (due to the objective function evaluation cost), the success of the inversion is subject to starting within the basin of attraction of the global minimum.Local minima can exist for a wide variety of reasons, and it seems unlikely that a formulation of the problem that can eliminate all of them -by defining the optimization problem in a form that results in a monotonic objective function- exist. However, a significant amount of local minima are created by the definition of data misfit. In its standard formulation FWI compares observed data (field data) with predicted data (generated with a synthetic model) by subtracting one from the other, and the objective function is defined as some norm of this difference. The combination of this criteria and the fact that seismic data is oscillatory produces the well-known phenomenon of cycle-skipping, where model updates try to match nearest cycles from one dataset to the other.In order to avoid cycle-skipping we propose a different comparison between observed and predicted data, based on Wiener filters, which exploits the fact that the "identity" Wiener filter is a spike at zero lag. This gives rise to a new objective function without cycle-skipped related local minima, and therefore suppress the need of accurate starting models or low frequencies in the data

  15. Rayleigh wave nonlinear inversion based on the Firefly algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Teng-Fei; Peng, Geng-Xin; Hu, Tian-Yue; Duan, Wen-Sheng; Yao, Feng-Chang; Liu, Yi-Mou

    2014-06-01

    Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.

  16. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions.

    PubMed

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems - dominated by immobile, long-lived organisms - are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous

  17. On the Brønsted acid-catalyzed homogeneous hydrolysis of furans.

    PubMed

    Nikbin, Nima; Caratzoulas, Stavros; Vlachos, Dionisios G

    2013-11-01

    Furan affairs: Electronic structure calculations of the homogeneous Brønsted acid-catalyzed hydrolysis of 2,5-dimethylfuran show that proton transfer to the β-position is rate-limiting and provides support that the hydrolysis follows general acid catalysis. By means of projected Fukui indices, we show this to be the case for unsubstituted, 2-, and 2,5-substituted furans with electron-donating groups. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A novel lateral IGBT with a controlled anode for on-off-state loss trade-off improvement

    NASA Astrophysics Data System (ADS)

    Wensuo, Chen; Bo, Zhang; Jian, Fang; Zhaoji, Li

    2011-07-01

    A new lateral insulated-gate bipolar transistor with a controlled anode (CA-LIGBT) on silicon-on-insulator (SOI) substrate is reported. Benefiting from both the enhanced conductivity modulation effect and the high resistance controlled electron extracting path, CA-LIGBT has a faster turn-off speed and lower forward drop, and the trade-off between off-state and on-state losses is better than that of state-of-the-art 3-D NCA-LIGBT, which we presented earlier. As the simulation results show, the ratios of figure of merit (FOM) for CA-LIGBT compared to that of 3-D NCA-LIGBT and conventional LIGBT are 1.45: 1 and 59.53: 1, respectively. And, the new devices can be created by using additional silicon direct bonding (SDB). So, from the power efficiency point of view, the proposed CA-LIGBT is a promising device for use in power ICs.

  19. Recent advances in copper-catalyzed asymmetric coupling reactions

    PubMed Central

    2015-01-01

    Summary Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C–C, C–N, C–O and other carbon–heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C–C and carbon–heteroatom bonds. PMID:26734106

  20. Pluto's atmosphere - Models based on refraction, inversion, and vapor-pressure equilibrium

    NASA Technical Reports Server (NTRS)

    Eshleman, Von R.

    1989-01-01

    Viking spacecraft radio-occultation measurements indicate that, irrespective of substantial differences, the polar ice cap regions on Mars have inversions similar to those of Pluto, and may also share vapor pressure equilibrium characteristics at the surface. This temperature-inversion phenomenon occurs in a near-surface boundary layer; surface pressure-temperature may correspond to the vapor-pressure equilibrium with CH4 ice, or the temperature may be slightly higher to match the value derived from IRAS data.

  1. Accommodating Chromosome Inversions in Linkage Analysis

    PubMed Central

    Chen, Gary K.; Slaten, Erin; Ophoff, Roel A.; Lange, Kenneth

    2006-01-01

    This work develops a population-genetics model for polymorphic chromosome inversions. The model precisely describes how an inversion changes the nature of and approach to linkage equilibrium. The work also describes algorithms and software for allele-frequency estimation and linkage analysis in the presence of an inversion. The linkage algorithms implemented in the software package Mendel estimate recombination parameters and calculate the posterior probability that each pedigree member carries the inversion. Application of Mendel to eight Centre d'Étude du Polymorphisme Humain pedigrees in a region containing a common inversion on 8p23 illustrates its potential for providing more-precise estimates of the location of an unmapped marker or trait gene. Our expanded cytogenetic analysis of these families further identifies inversion carriers and increases the evidence of linkage. PMID:16826515

  2. General methods for analysis of sequential "n-step" kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding.

    PubMed

    Lucius, Aaron L; Maluf, Nasib K; Fischer, Christopher J; Lohman, Timothy M

    2003-10-01

    Helicase-catalyzed DNA unwinding is often studied using "all or none" assays that detect only the final product of fully unwound DNA. Even using these assays, quantitative analysis of DNA unwinding time courses for DNA duplexes of different lengths, L, using "n-step" sequential mechanisms, can reveal information about the number of intermediates in the unwinding reaction and the "kinetic step size", m, defined as the average number of basepairs unwound between two successive rate limiting steps in the unwinding cycle. Simultaneous nonlinear least-squares analysis using "n-step" sequential mechanisms has previously been limited by an inability to float the number of "unwinding steps", n, and m, in the fitting algorithm. Here we discuss the behavior of single turnover DNA unwinding time courses and describe novel methods for nonlinear least-squares analysis that overcome these problems. Analytic expressions for the time courses, f(ss)(t), when obtainable, can be written using gamma and incomplete gamma functions. When analytic expressions are not obtainable, the numerical solution of the inverse Laplace transform can be used to obtain f(ss)(t). Both methods allow n and m to be continuous fitting parameters. These approaches are generally applicable to enzymes that translocate along a lattice or require repetition of a series of steps before product formation.

  3. On Computations of Duct Acoustics with Near Cut-Off Frequency

    NASA Technical Reports Server (NTRS)

    Dong, Thomas Z.; Povinelli, Louis A.

    1997-01-01

    The cut-off is a unique feature associated with duct acoustics due to the presence of duct walls. A study of this cut-off effect on the computations of duct acoustics is performed in the present work. The results show that the computation of duct acoustic modes near cut-off requires higher numerical resolutions than others to avoid being numerically cut off. Duct acoustic problems in Category 2 are solved by the DRP finite difference scheme with the selective artificial damping method and results are presented and compared to reference solutions.

  4. Reversibility of Noble Metal-Catalyzed Aprotic Li-O₂ Batteries.

    PubMed

    Ma, Shunchao; Wu, Yang; Wang, Jiawei; Zhang, Yelong; Zhang, Yantao; Yan, Xinxiu; Wei, Yang; Liu, Peng; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Xu, Ye; Peng, Zhangquan

    2015-12-09

    The aprotic Li-O2 battery has attracted a great deal of interest because, theoretically, it can store far more energy than today's batteries. Toward unlocking the energy capabilities of this neotype energy storage system, noble metal-catalyzed high surface area carbon materials have been widely used as the O2 cathodes, and some of them exhibit excellent electrochemical performances in terms of round-trip efficiency and cycle life. However, whether these outstanding electrochemical performances are backed by the reversible formation/decomposition of Li2O2, i.e., the desired Li-O2 electrochemistry, remains unclear due to a lack of quantitative assays for the Li-O2 cells. Here, noble metal (Ru and Pd)-catalyzed carbon nanotube (CNT) fabrics, prepared by magnetron sputtering, have been used as the O2 cathode in aprotic Li-O2 batteries. The catalyzed Li-O2 cells exhibited considerably high round-trip efficiency and prolonged cycle life, which could match or even surpass some of the best literature results. However, a combined analysis using differential electrochemical mass spectrometry and Fourier transform infrared spectroscopy, revealed that these catalyzed Li-O2 cells (particularly those based on Pd-CNT cathodes) did not work according to the desired Li-O2 electrochemistry. Instead the presence of noble metal catalysts impaired the cells' reversibility, as evidenced by the decreased O2 recovery efficiency (the ratio of the amount of O2 evolved during recharge/that consumed in the preceding discharge) coupled with increased CO2 evolution during charging. The results reported here provide new insights into the O2 electrochemistry in the aprotic Li-O2 batteries containing noble metal catalysts and exemplified the importance of the quantitative assays for the Li-O2 reactions in the course of pursuing truly rechargeable Li-O2 batteries.

  5. Effects of shoot inversion on stem structure in Pharbitis nil

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Sack, F. D.; Cline, M. G.

    1988-01-01

    The effects of shoot inversion on stem structure over 72 hr were investigated in Pharbitis nil by analyzing cell number, cell length, and the cross sectional areas of cells, tissues, and regions. An increase in stem diameter can be attributed to an increase in both cell number and cross sectional area of pith (primarily) and vascular tissue (secondarily). Qualitative observations of cell wall thickness in the light microscope did not reveal any significant effects of shoot inversion on this parameter. The inhibition of shoot elongation was accompanied by a significant decrease in cell length in the pith. The results are generally consistent with an ethylene effect on cell dimensions, especially in the pith.

  6. Flame Synthesis Used to Create Metal-Catalyzed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2001-01-01

    carbon, seen here in cross section. They form a nested series of concentric cylinders, much like the growth rings on a tree. This sample was obtained by the supported catalyst method, whereby the nanoscale catalysts are dispersed on a substrate providing their support. The substrate with catalyst particles was immersed within an acetylene diffusion flame to which nitrogen had been added to eliminate soot formation. Upon removal from the flame, the nanotubes were dispersed on a holder suitable for electron microscopy. Although not seen in the figure, the tube diameter reflects that of the catalyst particle.

  7. DFT study of the molybdenum-catalyzed deoxydehydration of vicinal diols.

    PubMed

    Lupp, Daniel; Christensen, Niels Johan; Dethlefsen, Johannes R; Fristrup, Peter

    2015-02-16

    The mechanism of the molybdenum-catalyzed deoxydehydration (DODH) of vicinal diols has been investigated using density functional theory. The proposed catalytic cycle involves condensation of the diol with an Mo(VI) oxo complex, oxidative cleavage of the diol resulting in an Mo(IV) complex, and extrusion of the alkene. We have compared the proposed pathway with several alternatives, and the results have been corroborated by comparison with the molybdenum-catalyzed sulfoxide reduction recently published by Sanz et al. and with experimental observations for the DODH itself. Improved understanding of the mechanism should expedite future optimization of molybdenum-catalyzed biomass transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Inferring Muscle-Tendon Unit Power from Ankle Joint Power during the Push-Off Phase of Human Walking: Insights from a Multiarticular EMG-Driven Model

    PubMed Central

    2016-01-01

    Introduction Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs). However, such interpretations are confounded by multiarticular (multi-joint) musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions. The objective of this study was to investigate the degree to which ankle joint power overestimates net plantarflexor MTU power during the Push-off phase of walking, due to the behavior of the flexor digitorum and hallucis longus (FDHL)–multiarticular MTUs crossing the ankle and metatarsophalangeal (toe) joints. Methods We performed a gait analysis study on six healthy participants, recording ground reaction forces, kinematics, and electromyography (EMG). Empirical data were input into an EMG-driven musculoskeletal model to estimate ankle power. This model enabled us to parse contributions from mono- and multi-articular MTUs, and required only one scaling and one time delay factor for each subject and speed, which were solved for based on empirical data. Net plantarflexing MTU power was computed by the model and quantitatively compared to inverse dynamics ankle power. Results The EMG-driven model was able to reproduce inverse dynamics ankle power across a range of gait speeds (R2 ≥ 0.97), while also providing MTU-specific power estimates. We found that FDHL dynamics caused ankle power to slightly overestimate net plantarflexor MTU power, but only by ~2–7%. Conclusions During Push-off, FDHL MTU dynamics do not substantially confound the inference of net plantarflexor MTU power from inverse dynamics ankle power. However, other methodological limitations may cause inverse dynamics to overestimate net MTU power; for instance, due to rigid-body foot assumptions. Moving

  9. Analysis of the Effects of Normal Walking on Ankle Joint Contact Characteristics After Acute Inversion Ankle Sprain.

    PubMed

    Bae, Ji Yong; Park, Kyung Soon; Seon, Jong Keun; Jeon, Insu

    2015-12-01

    To show the causal relationship between normal walking after various lateral ankle ligament (LAL) injuries caused by acute inversion ankle sprains and alterations in ankle joint contact characteristics, finite element simulations of normal walking were carried out using an intact ankle joint model and LAL injury models. A walking experiment using a volunteer with a normal ankle joint was performed to obtain the boundary conditions for the simulations and to support the appropriateness of the simulation results. Contact pressure and strain on the talus articular cartilage and anteroposterior and mediolateral translations of the talus were calculated. Ankles with ruptured anterior talofibular ligaments (ATFLs) had a higher likelihood of experiencing increased ankle joint contact pressures, strains and translations than ATFL-deficient ankles. In particular, ankles with ruptured ATFL + calcaneofibular ligaments and all ruptured ankles had a similar likelihood as the ATFL-ruptured ankles. The push off stance phase was the most likely situation for increased ankle joint contact pressures, strains and translations in LAL-injured ankles.

  10. A Fine-Grained Pipelined Implementation for Large-Scale Matrix Inversion on FPGA

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Dou, Yong; Zhao, Jianxun; Xia, Fei; Lei, Yuanwu; Tang, Yuxing

    Large-scale matrix inversion play an important role in many applications. However to the best of our knowledge, there is no FPGA-based implementation. In this paper, we explore the possibility of accelerating large-scale matrix inversion on FPGA. To exploit the computational potential of FPGA, we introduce a fine-grained parallel algorithm for matrix inversion. A scalable linear array processing elements (PEs), which is the core component of the FPGA accelerator, is proposed to implement this algorithm. A total of 12 PEs can be integrated into an Altera StratixII EP2S130F1020C5 FPGA on our self-designed board. Experimental results show that a factor of 2.6 speedup and the maximum power-performance of 41 can be achieved compare to Pentium Dual CPU with double SSE threads.

  11. Efficacy of an ankle brace with a subtalar locking system in inversion control in dynamic movements.

    PubMed

    Zhang, Songning; Wortley, Michael; Chen, Qingjian; Freedman, Julia

    2009-12-01

    Controlled laboratory study. To examine effectiveness of an ankle brace with a subtalar locking system in restricting ankle inversion during passive and dynamic movements. Semirigid ankle braces are considered more effective in restricting ankle inversion than other types of brace, but a semirigid brace with a subtalar locking system may be even more effective. Nineteen healthy subjects with no history of major lower extremity injuries were included in the study. Participants performed 5 trials of an ankle inversion drop test and a lateral-cutting movement without wearing a brace and while wearing either the Element (with the subtalar locking system), a Functional ankle brace, or an ASO ankle brace. A 2-way repeated-measures analysis of variance (ANOVA) was used to assess brace differences (P?.05). All 3 braces significantly reduced total passive ankle frontal plane range of motion (ROM), with the Element ankle brace being the most effective. For the inversion drop the results showed significant reductions in peak ankle inversion angle and inversion ROM for all 3 braces compared to the no brace condition; and the peak inversion velocity was also reduced for the Element brace and the Functional brace. In the lateral-cutting movement, a small but significant reduction of the peak inversion angle in early foot contact and the peak eversion velocity at push-off were seen when wearing the Element and the Functional ankle braces compared to the no brace condition. Peak vertical ground reaction force was reduced for the Element brace compared to the ASO brace and the no brace conditions. These results suggest that the tested ankle braces, especially the Element brace, provided effective restriction of ankle inversion during both passive and dynamic movements.

  12. Density-to-Potential Inversions to Guide Development of Exchange-Correlation Approximations at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Jensen, Daniel; Wasserman, Adam; Baczewski, Andrew

    The construction of approximations to the exchange-correlation potential for warm dense matter (WDM) is a topic of significant recent interest. In this work, we study the inverse problem of Kohn-Sham (KS) DFT as a means of guiding functional design at zero temperature and in WDM. Whereas the forward problem solves the KS equations to produce a density from a specified exchange-correlation potential, the inverse problem seeks to construct the exchange-correlation potential from specified densities. These two problems require different computational methods and convergence criteria despite sharing the same mathematical equations. We present two new inversion methods based on constrained variational and PDE-constrained optimization methods. We adapt these methods to finite temperature calculations to reveal the exchange-correlation potential's temperature dependence in WDM-relevant conditions. The different inversion methods presented are applied to both non-interacting and interacting model systems for comparison. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94.

  13. 3-D acoustic waveform simulation and inversion supplemented by infrasound sensors on a tethered weather balloon at Yasur Volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Iezzi, A. M.; Fee, D.; Matoza, R. S.; Jolly, A. D.; Kim, K.; Christenson, B. W.; Johnson, R.; Kilgour, G.; Garaebiti, E.; Austin, A.; Kennedy, B.; Fitzgerald, R.; Gomez, C.; Key, N.

    2017-12-01

    Well-constrained acoustic waveform inversion can provide robust estimates of erupted volume and mass flux, increasing our ability to monitor volcanic emissions (potentially in real-time). Previous studies have made assumptions about the multipole source mechanism, which can be represented as the combination of pressure fluctuations from a volume change, directionality, and turbulence. The vertical dipole has not been addressed due to ground-based recording limitations. In this study we deployed a high-density seismo-acoustic network around Yasur Volcano, Vanuatu, including multiple acoustic sensors along a tethered balloon that was moved every 15-60 minutes. Yasur has frequent strombolian eruptions every 1-4 minutes from any one of three active vents within a 400 m diameter crater. Our experiment captured several explosions from each vent at 38 tether locations covering 200 in azimuth and a take-off range of 50 (Jolly et. al., in review). Additionally, FLIR, FTIR, and a variety of visual imagery were collected during the deployment to aid in the seismo-acoustic interpretations. The third dimension (vertical) of pressure sensor coverage allows us to more completely constrain the acoustic source. Our analysis employs Finite-Difference Time-Domain (FDTD) modeling to obtain the full 3-D Green's functions for each propagation path. This method, following Kim et al. (2015), takes into account realistic topographic scattering based on a high-resolution digital elevation model created using structure-from-motion techniques. We then invert for the source location and multipole source-time function using a grid-search approach. We perform this inversion for multiple events from vents A and C to examine the source characteristics of the vents, including an infrasound-derived volume flux as a function of time. These volumes fluxes are then compared to those derived independently from geochemical and seismic inversion techniques. Jolly, A., Matoza, R., Fee, D., Kennedy, B

  14. Behaviour of coconut mites preceding take-off to passive aerial dispersal.

    PubMed

    Melo, J W S; Lima, D B; Sabelis, M W; Pallini, A; Gondim, M G C

    2014-12-01

    For more than three decades the coconut mite Aceria guerreronis Keifer is one of the most important pests of coconut palms and has recently spread to many coconut production areas worldwide. Colonization of coconut palms is thought to arise from mites dispersing aerially after take-off from other plants within the same plantation or other plantations. The underlying dispersal behaviour of the mite at take-off, in the airborne state and after landing is largely unknown and this is essential to understand how they spread from tree to tree. In this article we studied whether take-off to aerial dispersal of coconut mites is preceded by characteristic behaviour, whether there is a correlation between the body position preceding aerial dispersal and the direction of the wind, and whether the substrate (outer surface of coconut bracts or epidermis) and the wind speed matter to the decision to take-off. We found that take-off can sometimes be preceded by a raised body stance, but more frequently take-off occurs while the mite is walking or resting on its substrate. Coconut mites that become airborne assumed a body stance that had no relation to the wind direction. Take-off was suppressed on a substrate providing food to coconut mites, but occurred significantly more frequently on the outer surface of coconut bracts than on the surface of the fruit. For both substrates, take-off frequency increased with wind speed. We conclude that coconut mites have at least some degree of control over take-off for aerial dispersal and that there is as yet no reason to infer that a raised body stance is necessary to become airborne.

  15. 3D CSEM inversion based on goal-oriented adaptive finite element method

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Key, K.

    2016-12-01

    We present a parallel 3D frequency domain controlled-source electromagnetic inversion code name MARE3DEM. Non-linear inversion of observed data is performed with the Occam variant of regularized Gauss-Newton optimization. The forward operator is based on the goal-oriented finite element method that efficiently calculates the responses and sensitivity kernels in parallel using a data decomposition scheme where independent modeling tasks contain different frequencies and subsets of the transmitters and receivers. To accommodate complex 3D conductivity variation with high flexibility and precision, we adopt the dual-grid approach where the forward mesh conforms to the inversion parameter grid and is adaptively refined until the forward solution converges to the desired accuracy. This dual-grid approach is memory efficient, since the inverse parameter grid remains independent from fine meshing generated around the transmitter and receivers by the adaptive finite element method. Besides, the unstructured inverse mesh efficiently handles multiple scale structures and allows for fine-scale model parameters within the region of interest. Our mesh generation engine keeps track of the refinement hierarchy so that the map of conductivity and sensitivity kernel between the forward and inverse mesh is retained. We employ the adjoint-reciprocity method to calculate the sensitivity kernels which establish a linear relationship between changes in the conductivity model and changes in the modeled responses. Our code uses a direcy solver for the linear systems, so the adjoint problem is efficiently computed by re-using the factorization from the primary problem. Further computational efficiency and scalability is obtained in the regularized Gauss-Newton portion of the inversion using parallel dense matrix-matrix multiplication and matrix factorization routines implemented with the ScaLAPACK library. We show the scalability, reliability and the potential of the algorithm to deal with

  16. Stereoselective synthesis of tricyclic compounds by intramolecular palladium-catalyzed addition of aryl iodides to carbonyl groups

    PubMed Central

    Saadi, Jakub; Bentz, Christoph; Redies, Kai; Lentz, Dieter; Zimmer, Reinhold

    2016-01-01

    Summary Starting from γ-ketoesters with an o-iodobenzyl group we studied a palladium-catalyzed cyclization process that stereoselectively led to bi- and tricyclic compounds in moderate to excellent yields. Four X-ray crystal structure analyses unequivocally defined the structure of crucial cyclization products. The relative configuration of the precursor compounds is essentially transferred to that of the products and the formed hydroxy group in the newly generated cyclohexane ring is consistently in trans-arrangement with respect to the methoxycarbonyl group. A transition-state model is proposed to explain the observed stereochemical outcome. This palladium-catalyzed Barbier-type reaction requires a reduction of palladium(II) back to palladium(0) which is apparently achieved by the present triethylamine. PMID:27559374

  17. Iron-Catalyzed C-O Bond Activation: Opportunity for Sustainable Catalysis.

    PubMed

    Bisz, Elwira; Szostak, Michal

    2017-10-23

    Oxygen-based electrophiles have emerged as some of the most valuable cross-coupling partners in organic synthesis due to several major strategic and environmental benefits, such as abundance and potential to avoid toxic halide waste. In this context, iron-catalyzed C-O activation/cross-coupling holds particular promise to achieve sustainable catalytic protocols due to its natural abundance, inherent low toxicity, and excellent economic and ecological profile. Recently, tremendous progress has been achieved in the development of new methods for functional-group-tolerant iron-catalyzed cross-coupling reactions by selective C-O cleavage. These methods establish highly attractive alternatives to traditional cross-coupling reactions by using halides as electrophilic partners. In particular, new easily accessible oxygen-based electrophiles have emerged as substrates in iron-catalyzed cross-coupling reactions, which significantly broaden the scope of this catalysis platform. New mechanistic manifolds involving iron catalysis have been established; thus opening up vistas for the development of a wide range of unprecedented reactions. The synthetic potential of this sustainable mode of reactivity has been highlighted by the development of new strategies in the construction of complex motifs, including in target synthesis. The most recent advances in sustainable iron-catalyzed cross-coupling of C-O-based electrophiles are reviewed, with a focus on both mechanistic aspects and synthetic utility. It should be noted that this catalytic manifold provides access to motifs that are often not easily available by other methods, such as the assembly of stereodefined dienes or C(sp 2 )-C(sp 3 ) cross-couplings, thus emphasizing the synthetic importance of this mode of reactivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  19. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    PubMed

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Research on Inversion Models for Forest Height Estimation Using Polarimetric SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Duan, B.; Zou, B.

    2017-09-01

    The forest height is an important forest resource information parameter and usually used in biomass estimation. Forest height extraction with PolInSAR is a hot research field of imaging SAR remote sensing. SAR interferometry is a well-established SAR technique to estimate the vertical location of the effective scattering center in each resolution cell through the phase difference in images acquired from spatially separated antennas. The manipulation of PolInSAR has applications ranging from climate monitoring to disaster detection especially when used in forest area, is of particular interest because it is quite sensitive to the location and vertical distribution of vegetation structure components. However, some of the existing methods can't estimate forest height accurately. Here we introduce several available inversion models and compare the precision of some classical inversion approaches using simulated data. By comparing the advantages and disadvantages of these inversion methods, researchers can find better solutions conveniently based on these inversion methods.

  1. FOREWORD: 4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014)

    NASA Astrophysics Data System (ADS)

    2014-10-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 4th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2014 (http://www.farman.ens-cachan.fr/NCMIP_2014.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 23, 2014. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 and May 2013, (http://www.farman.ens-cachan.fr/NCMIP_2012.html), (http://www.farman.ens-cachan.fr/NCMIP_2013.html). The New Computational Methods for Inverse Problems (NCMIP) Workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the

  2. Catalyzed Atomic Layer Deposition of Silicon Oxide at Ultralow Temperature Using Alkylamine.

    PubMed

    Mayangsari, Tirta R; Park, Jae-Min; Yusup, Luchana L; Gu, Jiyeon; Yoo, Jin-Hyuk; Kim, Heon-Do; Lee, Won-Jun

    2018-06-12

    We report the catalyzed atomic layer deposition (ALD) of silicon oxide using Si 2 Cl 6 , H 2 O, and various alkylamines. The density functional theory (DFT) calculations using the periodic slab model of the SiO 2 surface were performed for the selection of alternative Lewis base catalysts with high catalytic activities. During the first half-reaction, the catalysts with less steric hindrance such as pyridine would be more effective than bulky alkylamines despite lower nucleophilicity. On the other hand, during the second half-reaction, the catalysts with a high nucleophilicity such as triethylamine (Et 3 N) would be more efficient because the steric hindrance is less critical. The in situ process monitoring shows that the calculated atomic charge is a good indicator for expecting the catalyst activity in the ALD reaction. The use of Et 3 N in the second half-reaction was essential to improving the growth rate as well as the step coverage of the film because the Et 3 N-catalyzed process deposited a SiO 2 film with a step coverage of 98% that is better than 93% of the pyridine-catalyzed process. The adsorption of pyridine, ammonia (NH 3 ), or trimethylamine (Me 3 N) salts was more favorable than that of Et 3 N, n-Pr 3 N, or i Pr 3 N salts. Therefore, Et 3 N was expected to incorporate less amine salts in the film as compared to pyridine, and the compositional analyses confirmed that the concentrations of Cl and N by the Et 3 N-catalyzed process were significantly lower than those by the pyridine-catalyzed process.

  3. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models.

    PubMed

    Hanuschkin, A; Ganguli, S; Hahnloser, R H R

    2013-01-01

    Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli.

  4. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models

    PubMed Central

    Hanuschkin, A.; Ganguli, S.; Hahnloser, R. H. R.

    2013-01-01

    Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli. PMID

  5. 13 CFR 109.510 - On-site and off-site reviews.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false On-site and off-site reviews. 109.510 Section 109.510 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION INTERMEDIARY LENDING PILOT PROGRAM Oversight § 109.510 On-site and off-site reviews. (a) General. SBA may conduct off-site...

  6. Modeling Off-Nominal Behavior in SysML

    NASA Technical Reports Server (NTRS)

    Day, John; Donahue, Kenny; Ingham, Mitch; Kadesch, Alex; Kennedy, Kit; Post, Ethan

    2012-01-01

    Fault Management is an essential part of the system engineering process that is limited in its effectiveness by the ad hoc nature of the applied approaches and methods. Providing a rigorous way to develop and describe off-nominal behavior is a necessary step in the improvement of fault management, and as a result, will enable safe, reliable and available systems even as system complexity increases... The basic concepts described in this paper provide a foundation to build a larger set of necessary concepts and relationships for precise modeling of off-nominal behavior, and a basis for incorporating these ideas into the overall systems engineering process.. The simple FMEA example provided applies the modeling patterns we have developed and illustrates how the information in the model can be used to reason about the system and derive typical fault management artifacts.. A key insight from the FMEA work was the utility of defining failure modes as the "inverse of intent", and deriving this from the behavior models.. Additional work is planned to extend these ideas and capabilities to other types of relevant information and additional products.

  7. Off-Axis Nulling Transfer Function Measurement: A First Assessment

    NASA Technical Reports Server (NTRS)

    Vedova, G. Dalla; Menut, J.-L.; Millour, F.; Petrov, R.; Cassaing, F.; Danchi, W. C.; Jacquinod, S.; Lhome, E.; Lopez, B.; Lozi, J.; hide

    2013-01-01

    We want to study a polychromatic inverse problem method with nulling interferometers to obtain information on the structures of the exozodiacal light. For this reason, during the first semester of 2013, thanks to the support of the consortium PERSEE, we launched a campaign of laboratory measurements with the nulling interferometric test bench PERSEE, operating with 9 spectral channels between J and K bands. Our objective is to characterise the transfer function, i.e. the map of the null as a function of wavelength for an off-axis source, the null being optimised on the central source or on the source photocenter. We were able to reach on-axis null depths better than 10(exp -4). This work is part of a broader project aiming at creating a simulator of a nulling interferometer in which typical noises of a real instrument are introduced. We present here our first results.

  8. Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Meng, Zhaohai; Li, Fengting

    2018-03-01

    Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.

  9. A full potential inverse method based on a density linearization scheme for wing design

    NASA Technical Reports Server (NTRS)

    Shankar, V.

    1982-01-01

    A mixed analysis inverse procedure based on the full potential equation in conservation form was developed to recontour a given base wing to produce density linearization scheme in applying the pressure boundary condition in terms of the velocity potential. The FL030 finite volume analysis code was modified to include the inverse option. The new surface shape information, associated with the modified pressure boundary condition, is calculated at a constant span station based on a mass flux integration. The inverse method is shown to recover the original shape when the analysis pressure is not altered. Inverse calculations for weakening of a strong shock system and for a laminar flow control (LFC) pressure distribution are presented. Two methods for a trailing edge closure model are proposed for further study.

  10. Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Meng; Gutiérrez, Oliver Y.; Camaioni, Donald M.

    Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.

  11. A general rough-surface inversion algorithm: Theory and application to SAR data

    NASA Technical Reports Server (NTRS)

    Moghaddam, M.

    1993-01-01

    Rough-surface inversion has significant applications in interpretation of SAR data obtained over bare soil surfaces and agricultural lands. Due to the sparsity of data and the large pixel size in SAR applications, it is not feasible to carry out inversions based on numerical scattering models. The alternative is to use parameter estimation techniques based on approximate analytical or empirical models. Hence, there are two issues to be addressed, namely, what model to choose and what estimation algorithm to apply. Here, a small perturbation model (SPM) is used to express the backscattering coefficients of the rough surface in terms of three surface parameters. The algorithm used to estimate these parameters is based on a nonlinear least-squares criterion. The least-squares optimization methods are widely used in estimation theory, but the distinguishing factor for SAR applications is incorporating the stochastic nature of both the unknown parameters and the data into formulation, which will be discussed in detail. The algorithm is tested with synthetic data, and several Newton-type least-squares minimization methods are discussed to compare their convergence characteristics. Finally, the algorithm is applied to multifrequency polarimetric SAR data obtained over some bare soil and agricultural fields. Results will be shown and compared to ground-truth measurements obtained from these areas. The strength of this general approach to inversion of SAR data is that it can be easily modified for use with any scattering model without changing any of the inversion steps. Note also that, for the same reason it is not limited to inversion of rough surfaces, and can be applied to any parameterized scattering process.

  12. Effects of crustal layering on source parameter inversion from coseismic geodetic data

    NASA Astrophysics Data System (ADS)

    Amoruso, A.; Crescentini, L.; Fidani, C.

    2004-10-01

    We study the effect of a superficial layer overlying a half-space on the surface displacements caused by uniform slipping of a dip-slip normal rectangular fault. We compute static coseismic displacements using a 3-D analytical code for different characteristics of the layered medium, different fault geometries and different configurations of bench marks to simulate different kinds of geodetic data (GPS, Synthetic Aperture Radar, and levellings). We perform both joint and separate inversions of the three components of synthetic displacement without constraining fault parameters, apart from strike and rake, and using a non-linear global inversion technique under the assumption of homogeneous half-space. Differences between synthetic displacements computed in the presence of the superficial soft layer and in a homogeneous half-space do not show a simple regular behaviour, even if a few features can be identified. Consequently, also retrieved parameters of the homogeneous equivalent fault obtained by unconstrained inversion of surface displacements do not show a simple regular behaviour. We point out that the presence of a superficial layer may lead to misestimating several fault parameters both using joint and separate inversions of the three components of synthetic displacement and that the effects of the presence of the superficial layer can change whether all fault parameters are left free in the inversions or not. In the inversion of any kind of coseismic geodetic data, fault size and slip can be largely misestimated, but the product (fault length) × (fault width) × slip, which is proportional to the seismic moment for a given rigidity modulus, is often well determined (within a few per cent). Because inversion of coseismic geodetic data assuming a layered medium is impracticable, we suggest that only a case-to-case study involving some kind of recursive determination of fault parameters through data correction seems to give the proper approach when layering is

  13. Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors.

    PubMed

    Sakurai, Keisuke; Young, Joyce E; Kefalov, Vladimir J; Khani, Shahrokh C

    2011-08-29

    Rod photoreceptors are exquisitely sensitive light detectors that function in dim light. The timely inactivation of their light responses is critical for the ability of rods to reliably detect and count photons. A key step in the inactivation of the rod transduction is the phosphorylation of the rod visual pigment, rhodopsin, catalyzed by G-protein-dependent receptor kinase 1 (GRK1). Absence of GRK1 greatly prolongs the photoreceptors' light response and enhances their susceptibility to degeneration. This study examined the light responses from mouse rods expressing various levels of GRK1 to evaluate how their function is modulated by rhodopsin inactivation. Transretinal and single-cell rod electrophysiological recordings were obtained from several strains of mice expressing GRK1 at 0.3- to 3-fold the wild-type levels. The effect of GRK1 expression level on the function of mouse rods was examined in darkness and during background adaptation. Altering the expression of GRK1 from 0.3- to 3-fold that in wild-type rods had little effect on the single photon response amplitude. Notably, increasing the expression level of GRK1 accelerated the dim flash response shut off but had no effect on the saturated response shut off. Additionally, GRK1 excess abolished the acceleration of saturated responses shut off during light adaptation. These results demonstrate that rhodopsin inactivation can modulate the kinetics of recovery from dim light stimulation. More importantly, the ratio of rhodopsin kinase to its modulator recoverin appears critical for the proper adaptation of rods and the acceleration of their response shut off in background light.

  14. Physics for clinicians: Fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) Imaging.

    PubMed

    Saranathan, Manojkumar; Worters, Pauline W; Rettmann, Dan W; Winegar, Blair; Becker, Jennifer

    2017-12-01

    A pedagogical review of fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) imaging is conducted in this article. The basics of the two pulse sequences are first described, including the details of the inversion preparation and imaging sequences with accompanying mathematical formulae for choosing the inversion time in a variety of scenarios for use on clinical MRI scanners. Magnetization preparation (or T2prep), a strategy for improving image signal-to-noise ratio and contrast and reducing T 1 weighting at high field strengths, is also described. Lastly, image artifacts commonly associated with FLAIR and DIR are described with clinical examples, to help avoid misdiagnosis. 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1590-1600. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Palladium-Catalyzed Anti-Markovnikov Oxidation of Allylic Amides to Protected β-Amino Aldehydes.

    PubMed

    Dong, Jia Jia; Harvey, Emma C; Fañanás-Mastral, Martín; Browne, Wesley R; Feringa, Ben L

    2014-12-10

    A general method for the preparation of N-protected β-amino aldehydes from allylic amines or linear allylic alcohols is described. Here the Pd(II)-catalyzed oxidation of N-protected allylic amines with benzoquinone is achieved in tBuOH under ambient conditions with excellent selectivity toward the anti-Markovnikov aldehyde products and full retention of configuration at the allylic carbon. The method shows a wide substrate scope and is tolerant of a range of protecting groups. Furthermore, β-amino aldehydes can be obtained directly from protected allylic alcohols via palladium-catalyzed autotandem reactions, and the application of this method to the synthesis of β-peptide aldehydes is described. From a mechanistic perspective, we demonstrate that tBuOH acts as a nucleophile in the reaction and that the initially formed tert-butyl ether undergoes spontaneous loss of isobutene to yield the aldehyde product. Furthermore, tBuOH can be used stoichiometrically, thereby broadening the solvent scope of the reaction. Primary and secondary alcohols do not undergo elimination, allowing the isolation of acetals, which subsequently can be hydrolyzed to their corresponding aldehyde products.

  16. A model reduction approach to numerical inversion for a parabolic partial differential equation

    NASA Astrophysics Data System (ADS)

    Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail

    2014-12-01

    We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.

  17. Catalyzed D-D stellarator reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, John; Spong, Donald A.

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, F R = 0.9 to 1.15, ≈ 8.0% to 11.5%, Z eff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, B m ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less

  18. Catalyzed D-D stellarator reactor

    DOE PAGES

    Sheffield, John; Spong, Donald A.

    2016-05-12

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, F R = 0.9 to 1.15, ≈ 8.0% to 11.5%, Z eff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, B m ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less

  19. Study on off-axis detection of pulsed laser in atmosphere

    NASA Astrophysics Data System (ADS)

    Liang, Weiwei

    2018-02-01

    Laser communication, designation, and ranging are point to point and have a high degree of specificity, current laser detection, such as laser warning receiver system, could detect the scattering laser from the off-axis distance by scattering track on natural aerosols, which is helpful to locate the laser source. However, the intensity of the scattering laser is extremely weak and affected by many factors, in order to evaluate the detection characteristic, a simplified model of off-axis detection for scattering laser in the lower atmosphere based on the Mie scattering theory is presented in this paper, the performances of the off-axis laser detection in different conditions such as off-axis distance, visibility, incidence angle, and delay time are investigated.

  20. Catalyzing Graduate Teaching Assistants' Laboratory Teaching through Design Research

    ERIC Educational Resources Information Center

    Bond-Robinson, Janet; Rodriques, Romola A. Bernard

    2006-01-01

    We report on a study of a laboratory teaching apprenticeship program designed to improve graduate teaching assistant (GTA) performance. To catalyze GTAs as laboratory teachers we constructed learning goals, synthesized previous literature into a design model and a developmental path, and built two instruments to measure 12 strategic pedagogical…

  1. On the Structural Plasticity of the Human Genome: Chromosomal Inversions Revisited

    PubMed Central

    Alves, Joao M; Lopes, Alexandra M; Chikhi, Lounès; Amorim, António

    2012-01-01

    With the aid of novel and powerful molecular biology techniques, recent years have witnessed a dramatic increase in the number of studies reporting the involvement of complex structural variants in several genomic disorders. In fact, with the discovery of Copy Number Variants (CNVs) and other forms of unbalanced structural variation, much attention has been directed to the detection and characterization of such rearrangements, as well as the identification of the mechanisms involved in their formation. However, it has long been appreciated that chromosomes can undergo other forms of structural changes - balanced rearrangements - that do not involve quantitative variation of genetic material. Indeed, a particular subtype of balanced rearrangement – inversions – was recently found to be far more common than had been predicted from traditional cytogenetics. Chromosomal inversions alter the orientation of a specific genomic sequence and, unless involving breaks in coding or regulatory regions (and, disregarding complex trans effects, in their close vicinity), appear to be phenotypically silent. Such a surprising finding, which is difficult to reconcile with the classical interpretation of inversions as a mechanism causing subfertility (and ultimately reproductive isolation), motivated a new series of theoretical and empirical studies dedicated to understand their role in human genome evolution and to explore their possible association to complex genetic disorders. With this review, we attempt to describe the latest methodological improvements to inversions detection at a genome wide level, while exploring some of the possible implications of inversion rearrangements on the evolution of the human genome. PMID:23730202

  2. Combining immunolabeling and catalyzed reporter deposition to detect intracellular saxitoxin in a cyanobacterium.

    PubMed

    Piccini, Claudia; Fabre, Amelia; Lacerot, Gissell; Bonilla, Sylvia

    2015-10-01

    We combined the use of polyclonal antibodies against saxitoxin with catalyzed reporter deposition to detect production of saxitoxin by the cyanobacterium Cylindrospermopsis raciborskii. The procedure is simple, allows detection of intracellular saxitoxin in cyanobacteria filaments by confocal laser microscopy and is a promising tool to study toxin production and metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Coalescent patterns for chromosomal inversions in divergent populations

    PubMed Central

    Guerrero, Rafael F.; Rousset, François; Kirkpatrick, Mark

    2012-01-01

    Chromosomal inversions allow genetic divergence of locally adapted populations by reducing recombination between chromosomes with different arrangements. Divergence between populations (or hybridization between species) is expected to leave signatures in the neutral genetic diversity of the inverted region. Quantitative expectations for these patterns, however, have not been obtained. Here, we develop coalescent models of neutral sites linked to an inversion polymorphism in two locally adapted populations. We consider two scenarios of local adaptation: selection on the inversion breakpoints and selection on alleles inside the inversion. We find that ancient inversion polymorphisms cause genetic diversity to depart dramatically from neutral expectations. Other situations, however, lead to patterns that may be difficult to detect; important determinants are the age of the inversion and the rate of gene flux between arrangements. We also study inversions under genetic drift, finding that they produce patterns similar to locally adapted inversions of intermediate age. Our results are consistent with empirical observations, and provide the foundation for quantitative analyses of the roles that inversions have played in speciation. PMID:22201172

  4. Kinetics of the Reaction Between Alcohols and Isocyanates Catalyzed by Ferric Acetylacetonate

    NASA Technical Reports Server (NTRS)

    Schieler, Leroy

    1961-01-01

    The rate and temperature dependence of reaction for the ferric acetylacetonate catalyzed reaction between a-naphthyl, ortho-tolyl, and para-tolyl isocyanates and n-butyl alcohol are investigated. The effect of substituents on the reactivity of isocyanate and hydroxyl group are reported and for substituted isocyanates are correlated by means of the Hammett equation. Several metal chelates were studied and their catalytic activity was compared to that of ferric acetylacetonate. All rate data are interpreted in terms of a mechanism involving simultaneous second-order uncatalyzed and catalyzed reactions between alcohol and isocyanate.

  5. Physics-based Inverse Problem to Deduce Marine Atmospheric Boundary Layer Parameters

    DTIC Science & Technology

    2017-03-07

    please find the Final Technical Report with SF 298 for Dr. Erin E. Hackett’s ONR grant entitled Physics-based Inverse Problem to Deduce Marine...From- To) 07/03/2017 Final Technica l Dec 2012- Dec 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physics-based Inverse Problem to Deduce Marine...SUPPLEMENTARY NOTES 14. ABSTRACT This report describes research results related to the development and implementation of an inverse problem approach for

  6. Preface: Workshop on Off-Grid Technology Systems

    NASA Astrophysics Data System (ADS)

    Alonso-Marroquin, Fernando

    2017-06-01

    Off-grid houses are dwellings that do not rely on water supply, sewer, or electrical power grid, and are able to operate independently of all public utility services. These houses are ideal for remote communities or population suffering natural or human-made disasters. Our aim is to develop compact and affordable off-grid technologies by integrating high-end nano-engineering with systems that imitates natural biological processes. The key areas of focus in the workshop were: solar energy harvesting using nanotechnology, wind energy harvesting from vertical-axis wind turbines, supercapacitors energy storage systems, treatment of greywater, and green roofs to achieve air comfort.

  7. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, Eldad

    2014-03-17

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequality constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  8. On the Development of Multi-Step Inverse FEM with Shell Model

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Du, R.

    2005-08-01

    The inverse or one-step finite element approach is increasingly used in the sheet metal stamping industry to predict strain distribution and the initial blank shape in the preliminary design stage. Based on the existing theory, there are two types of method: one is based on the principle of virtual work and the other is based on the principle of extreme work. Much research has been conducted to improve the accuracy of simulation results. For example, based on the virtual work principle, Batoz et al. developed a new method using triangular DKT shell elements. In this new method, the bending and unbending effects are considered. Based on the principle of extreme work, Majlessi and et al. proposed the multi-step inverse approach with membrane elements and applied it to an axis-symmetric part. Lee and et al. presented an axis-symmetric shell element model to solve the similar problem. In this paper, a new multi-step inverse method is introduced with no limitation on the workpiece shape. It is a shell element model based on the virtual work principle. The new method is validated by means of comparing to the commercial software system (PAMSTAMP®). The comparison results indicate that the accuracy is good.

  9. COMPARISON OF ON AND OFF ROAD DIESEL EXHAUST SOURCES ON THE SUSCEPTIBILITY TO AN INFLUENZA INFECTION.

    EPA Science Inventory

    Diesel exhaust (DE), a major component of urban air pollution, and its modulatory role in human susceptibility to respiratory infections is of great concern. The purpose of this study was to evaluate the effects of on- and off-road sources of DE exposure on the severity of an ...

  10. Feature Selection for Evolutionary Commercial-off-the-Shelf Software: Studies Focusing on Time-to-Market, Innovation and Hedonic-Utilitarian Trade-Offs

    ERIC Educational Resources Information Center

    Kakar, Adarsh Kumar

    2013-01-01

    Feature selection is one of the most important decisions made by product managers. This three article study investigates the concepts, tools and techniques for making trade-off decisions of introducing new features in evolving Commercial-Off-The-Shelf (COTS) software products. The first article investigates the efficacy of various feature…

  11. Three-dimensional inversion for Network-Magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Siripunvaraporn, W.; Uyeshima, M.; Egbert, G.

    2004-09-01

    Three-dimensional inversion of Network-Magnetotelluric (MT) data has been implemented. The program is based on a conventional 3-D MT inversion code (Siripunvaraporn et al., 2004), which is a data space variant of the OCCAM approach. In addition to modifications required for computing Network-MT responses and sensitivities, the program makes use of Massage Passing Interface (MPI) software, with allowing computations for each period to be run on separate CPU nodes. Here, we consider inversion of synthetic data generated from simple models consisting of a 1 W-m conductive block buried at varying depths in a 100 W-m background. We focus in particular on inversion of long period (320-40,960 seconds) data, because Network-MT data usually have high coherency in these period ranges. Even with only long period data the inversion recovers shallow and deep structures, as long as these are large enough to affect the data significantly. However, resolution of the inversion depends greatly on the geometry of the dipole network, the range of periods used, and the horizontal size of the conductive anomaly.

  12. Inversion method based on stochastic optimization for particle sizing.

    PubMed

    Sánchez-Escobar, Juan Jaime; Barbosa-Santillán, Liliana Ibeth; Vargas-Ubera, Javier; Aguilar-Valdés, Félix

    2016-08-01

    A stochastic inverse method is presented based on a hybrid evolutionary optimization algorithm (HEOA) to retrieve a monomodal particle-size distribution (PSD) from the angular distribution of scattered light. By solving an optimization problem, the HEOA (with the Fraunhofer approximation) retrieves the PSD from an intensity pattern generated by Mie theory. The analyzed light-scattering pattern can be attributed to unimodal normal, gamma, or lognormal distribution of spherical particles covering the interval of modal size parameters 46≤α≤150. The HEOA ensures convergence to the near-optimal solution during the optimization of a real-valued objective function by combining the advantages of a multimember evolution strategy and locally weighted linear regression. The numerical results show that our HEOA can be satisfactorily applied to solve the inverse light-scattering problem.

  13. Transesterification of oil mixtures catalyzed by microencapsulated cutinase in reversed micelles.

    PubMed

    Badenes, Sara M; Lemos, Francisco; Cabral, Joaquim M S

    2010-03-01

    Recombinant cutinase from Fusarium solani pisi was used to catalyze the transesterification reaction between a mixture of triglycerides (oils) and methanol in reversed micelles of bis(2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane for the purposes of producing biodiesel. The use of a bi-phase lipase-catalyzed system brings advantages in terms of catalyst re-use and the control of water activity in the medium and around the enzyme micro-environment. Small-scale batch studies were performed to study the influence of the initial enzyme and alcohol concentrations, and the substrates molar ratio. Conversions in excess of 75 were obtained with reaction times under 24 h, which makes this enzymatic process highly competitive when compared to similar lipase catalyzed reactions for biodiesel production using methanol.

  14. Unusual megafaunal assemblages on the continental slope off Cape Hatteras

    NASA Astrophysics Data System (ADS)

    Hecker, Barbara

    Megafaunal assemblages were studied in August-September 1992 using a towed camera sled along seven cross-isobath transects on the continental slope off Cape Hatteras. A total of 20,722 megafaunal organisms were observed on 10,918 m 2 of the sea floor between the depths of 157 and 1 924 m. These data were compared with data previously collected off Cape Hatteras in 1985 and at other locations along the eastern U.S. coast between 1981 and 1987. Megafaunal populations on the upper and lower slopes off Cape Hatteras were fouond to be similar, in terms of density and species composition, to those observed at the other locations. In contrast, megafaunal abundances were found to be elevated (0.88 and 2.65 individuals per m 2 during 1985 and 1992, respectively) on the middle slope off Cape Hatteras when compared to most other slope locations (<0.5individuals per m 2). These elevated abundances mainly reflect dense populations of three demersal fish, two eel pouts ( Lysenchelys verrilli and Lycodes atlanticus) and the witch flounder Glyptocephalus cynoglossus, and a large anemone ( Actinauge verrilli). These four species dominated the megafauna off Cape Hatteras, whereas they represented only a minor component of megafaunal populations found at other slope locations. Additionally, numerous tubes of the foraminiferan Bathysiphon filiformis were observed off Cape Hatteras, but not elsewhere. The high density of demersal fish found off Cape Hatteras appears to be related to the high densities of infaunal prey reported from this area. The high densities of A. verrilli and B. fuliformis may be related to the same factors responsible for the high infaunal densities, namely enhanced nutrient inputs in the form of fine particles. Extreme patchiness also was observed in the distributions of the middle slope taxa off Cape Hatteras. This patchiness may reflect the habitat heterogeneity of this exceptionally rugged slope and the sedentary nature of the organisms inhabiting it.

  15. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    PubMed Central

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines. PMID:29593483

  16. Computing Generalized Matrix Inverse on Spiking Neural Substrate.

    PubMed

    Shukla, Rohit; Khoram, Soroosh; Jorgensen, Erik; Li, Jing; Lipasti, Mikko; Wright, Stephen

    2018-01-01

    Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  17. Fat suppression with short inversion time inversion-recovery and chemical-shift selective saturation: a dual STIR-CHESS combination prepulse for turbo spin echo pulse sequences.

    PubMed

    Tanabe, Koji; Nishikawa, Keiichi; Sano, Tsukasa; Sakai, Osamu; Jara, Hernán

    2010-05-01

    To test a newly developed fat suppression magnetic resonance imaging (MRI) prepulse that synergistically uses the principles of fat suppression via inversion recovery (STIR) and spectral fat saturation (CHESS), relative to pure CHESS and STIR. This new technique is termed dual fat suppression (Dual-FS). To determine if Dual-FS could be chemically specific for fat, the phantom consisted of the fat-mimicking NiCl(2) aqueous solution, porcine fat, porcine muscle, and water was imaged with the three fat-suppression techniques. For Dual-FS and STIR, several inversion times were used. Signal intensities of each image obtained with each technique were compared. To determine if Dual-FS could be robust to magnetic field inhomogeneities, the phantom consisting of different NiCl(2) aqueous solutions, porcine fat, porcine muscle, and water was imaged with Dual-FS and CHESS at the several off-resonance frequencies. To compare fat suppression efficiency in vivo, 10 volunteer subjects were also imaged with the three fat-suppression techniques. Dual-FS could suppress fat sufficiently within the inversion time of 110-140 msec, thus enabling differentiation between fat and fat-mimicking aqueous structures. Dual-FS was as robust to magnetic field inhomogeneities as STIR and less vulnerable than CHESS. The same results for fat suppression were obtained in volunteers. The Dual-FS-STIR-CHESS is an alternative and promising fat suppression technique for turbo spin echo MRI. Copyright 2010 Wiley-Liss, Inc.

  18. Conversion of Arylboronic Acids to Tetrazoles Catalyzed by ONO Pincer-Type Palladium Complex.

    PubMed

    Vignesh, Arumugam; Bhuvanesh, Nattamai S P; Dharmaraj, Nallasamy

    2017-01-20

    A convenient synthesis of a library of tetrazoles through a novel and operationally simple protocol effecting the direct conversion of arylboronic acids catalyzed by a new ONO pincer-type Pd(II) complex under mild reaction conditions using the readily available reagents is reported. The palladium complex was reused up to four cycles in an open-flask condition.

  19. Inversion of time-domain induced polarization data based on time-lapse concept

    NASA Astrophysics Data System (ADS)

    Kim, Bitnarae; Nam, Myung Jin; Kim, Hee Joon

    2018-05-01

    Induced polarization (IP) surveys, measuring overvoltage phenomena of the medium, are widely and increasingly performed not only for exploration of mineral resources but also for engineering applications. Among several IP survey methods such as time-domain, frequency-domain and spectral IP surveys, this study introduces a noble inversion method for time-domain IP data to recover the chargeability structure of target medium. The inversion method employs the concept of 4D inversion of time-lapse resistivity data sets, considering the fact that measured voltage in time-domain IP survey is distorted by IP effects to increase from the instantaneous voltage measured at the moment the source current injection starts. Even though the increase is saturated very fast, we can consider the saturated and instantaneous voltages as a time-lapse data set. The 4D inversion method is one of the most powerful method for inverting time-lapse resistivity data sets. Using the developed IP inversion algorithm, we invert not only synthetic but also field IP data to show the effectiveness of the proposed method by comparing the recovered chargeability models with those from linear inversion that was used for the inversion of the field data in a previous study. Numerical results confirm that the proposed inversion method generates reliable chargeability models even though the anomalous bodies have large IP effects.

  20. Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions

    DOEpatents

    Tsouris, Constantinos; Dong, Junhang

    2002-01-01

    The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.

  1. Improving rotorcraft survivability to RPG attack using inverse methods

    NASA Astrophysics Data System (ADS)

    Anderson, D.; Thomson, D. G.

    2009-09-01

    This paper presents the results of a preliminary investigation of optimal threat evasion strategies for improving the survivability of rotorcraft under attack by rocket propelled grenades (RPGs). The basis of this approach is the application of inverse simulation techniques pioneered for simulation of aggressive helicopter manoeuvres to the RPG engagement problem. In this research, improvements in survivability are achieved by computing effective evasive manoeuvres. The first step in this process uses the missile approach warning system camera (MAWS) on the aircraft to provide angular information of the threat. Estimates of the RPG trajectory and impact point are then estimated. For the current flight state an appropriate evasion response is selected then realised via inverse simulation of the platform dynamics. Results are presented for several representative engagements showing the efficacy of the approach.

  2. Mineral inversion for element capture spectroscopy logging based on optimization theory

    NASA Astrophysics Data System (ADS)

    Zhao, Jianpeng; Chen, Hui; Yin, Lu; Li, Ning

    2017-12-01

    Understanding the mineralogical composition of a formation is an essential key step in the petrophysical evaluation of petroleum reservoirs. Geochemical logging tools can provide quantitative measurements of a wide range of elements. In this paper, element capture spectroscopy (ECS) was taken as an example and an optimization method was adopted to solve the mineral inversion problem for ECS. This method used the converting relationship between elements and minerals as response equations and took into account the statistical uncertainty of the element measurements and established an optimization function for ECS. Objective function value and reconstructed elemental logs were used to check the robustness and reliability of the inversion method. Finally, the inversion mineral results had a good agreement with x-ray diffraction laboratory data. The accurate conversion of elemental dry weights to mineral dry weights formed the foundation for the subsequent applications based on ECS.

  3. WOOV (Water On/Off Valve) 3

    NASA Image and Video Library

    2011-10-14

    ISS029-E-027343 (14 Oct. 2011) --- In the International Space Station’s Columbus laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, works on Water On/Off Valves (WOOV), performing inspection, cleaning, disinfection and encapsulation on WOOV 3, 4 and 5.

  4. WOOV (Water On/Off Valve) 3

    NASA Image and Video Library

    2011-10-14

    ISS029-E-027341 (14 Oct. 2011) --- In the International Space Station’s Columbus laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, works on Water On/Off Valves (WOOV), performing inspection, cleaning, disinfection and encapsulation on WOOV 3, 4 and 5.

  5. EDITORIAL: Inverse Problems in Engineering

    NASA Astrophysics Data System (ADS)

    West, Robert M.; Lesnic, Daniel

    2007-01-01

    Presented here are 11 noteworthy papers selected from the Fifth International Conference on Inverse Problems in Engineering: Theory and Practice held in Cambridge, UK during 11-15 July 2005. The papers have been peer-reviewed to the usual high standards of this journal and the contributions of reviewers are much appreciated. The conference featured a good balance of the fundamental mathematical concepts of inverse problems with a diverse range of important and interesting applications, which are represented here by the selected papers. Aspects of finite-element modelling and the performance of inverse algorithms are investigated by Autrique et al and Leduc et al. Statistical aspects are considered by Emery et al and Watzenig et al with regard to Bayesian parameter estimation and inversion using particle filters. Electrostatic applications are demonstrated by van Berkel and Lionheart and also Nakatani et al. Contributions to the applications of electrical techniques and specifically electrical tomographies are provided by Wakatsuki and Kagawa, Kim et al and Kortschak et al. Aspects of inversion in optical tomography are investigated by Wright et al and Douiri et al. The authors are representative of the worldwide interest in inverse problems relating to engineering applications and their efforts in producing these excellent papers will be appreciated by many readers of this journal.

  6. Fully probabilistic earthquake source inversion on teleseismic scales

    NASA Astrophysics Data System (ADS)

    Stähler, Simon; Sigloch, Karin

    2017-04-01

    Seismic source inversion is a non-linear problem in seismology where not just the earthquake parameters but also estimates of their uncertainties are of great practical importance. We have developed a method of fully Bayesian inference for source parameters, based on measurements of waveform cross-correlation between broadband, teleseismic body-wave observations and their modelled counterparts. This approach yields not only depth and moment tensor estimates but also source time functions. These unknowns are parameterised efficiently by harnessing as prior knowledge solutions from a large number of non-Bayesian inversions. The source time function is expressed as a weighted sum of a small number of empirical orthogonal functions, which were derived from a catalogue of >1000 source time functions (STFs) by a principal component analysis. We use a likelihood model based on the cross-correlation misfit between observed and predicted waveforms. The resulting ensemble of solutions provides full uncertainty and covariance information for the source parameters, and permits propagating these source uncertainties into travel time estimates used for seismic tomography. The computational effort is such that routine, global estimation of earthquake mechanisms and source time functions from teleseismic broadband waveforms is feasible. A prerequisite for Bayesian inference is the proper characterisation of the noise afflicting the measurements. We show that, for realistic broadband body-wave seismograms, the systematic error due to an incomplete physical model affects waveform misfits more strongly than random, ambient background noise. In this situation, the waveform cross-correlation coefficient CC, or rather its decorrelation D = 1 - CC, performs more robustly as a misfit criterion than ℓp norms, more commonly used as sample-by-sample measures of misfit based on distances between individual time samples. From a set of over 900 user-supervised, deterministic earthquake source

  7. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Solvable Catalyzed Birth-Death-Exchange Competition Model of Three Species

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Feng; Lin, Zhen-Quan; Gao, Yan; Zhang, Heng

    2009-10-01

    A competition model of three species in exchange-driven aggregation growth is proposed. In the model, three distinct aggregates grow by exchange of monomers and in parallel, birth of species A is catalyzed by species B and death of species A is catalyzed by species C. The rates for both catalysis processes are proportional to kjν and kjω respectively, where ν(Ω) is a parameter reflecting the dependence of the catalysis reaction rate of birth (death) on the catalyst aggregate's size. The kinetic evolution behaviors of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A-species ak(t) is found to be dependent crucially on the two catalysis rate kernel parameters. The results show that (i) in case of μ <= 0, the form of ak(t) mainly depends on the competition between self-exchange of species A and species-C-catalyzed death of species A; (ii) in case of ν > 0, the form of ak(t) mainly depends on the competition between species-B-catalyzed birth of species A and species-C-catalyzed death of species A.

  8. Kinematic source inversions of teleseismic data based on the QUESO library for uncertainty quantification and prediction

    NASA Astrophysics Data System (ADS)

    Zielke, O.; McDougall, D.; Mai, P. M.; Babuska, I.

    2014-12-01

    One fundamental aspect of seismic hazard mitigation is gaining a better understanding of the rupture process. Because direct observation of the relevant parameters and properties is not possible, other means such as kinematic source inversions are used instead. By constraining the spatial and temporal evolution of fault slip during an earthquake, those inversion approaches may enable valuable insights in the physics of the rupture process. However, due to the underdetermined nature of this inversion problem (i.e., inverting a kinematic source model for an extended fault based on seismic data), the provided solutions are generally non-unique. Here we present a statistical (Bayesian) inversion approach based on an open-source library for uncertainty quantification (UQ) called QUESO that was developed at ICES (UT Austin). The approach has advantages with respect to deterministic inversion approaches as it provides not only a single (non-unique) solution but also provides uncertainty bounds with it. Those uncertainty bounds help to qualitatively and quantitatively judge how well constrained an inversion solution is and how much rupture complexity the data reliably resolve. The presented inversion scheme uses only tele-seismically recorded body waves but future developments may lead us towards joint inversion schemes. After giving an insight in the inversion scheme ifself (based on delayed rejection adaptive metropolis, DRAM) we explore the method's resolution potential. For that, we synthetically generate tele-seismic data, add for example different levels of noise and/or change fault plane parameterization and then apply our inversion scheme in the attempt to extract the (known) kinematic rupture model. We conclude with exemplary inverting real tele-seismic data of a recent large earthquake and compare those results with deterministically derived kinematic source models provided by other research groups.

  9. Metal-catalyzed Decarboxylative Fluoroalkylation Reactions.

    PubMed

    Ambler, Brett R; Yang, Ming-Hsiu; Altman, Ryan A

    2016-12-01

    Metal-catalyzed decarboxylative fluoroalkylation reactions enable the conversion of simple O-based substrates into biologically relevant fluorinated analogs. Herein, we present decarboxylative methods that facilitate the synthesis of trifluoromethyl- and difluoroketone-containing products. We highlight key mechanistic aspects that are critical for efficient catalysis, and that inspired our thinking while developing the reactions.

  10. Study of Silicidation Process of Tungsten Catalyzer during Silicon Film Deposition in Catalytic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Honda, Kazuhiro; Ohdaira, Keisuke; Matsumura, Hideki

    2008-05-01

    In catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD, source gases are decomposed by catalytic cracking reactions with heated catalyzing metal wires. In the case of silicon (Si) film deposition, such metal wires are often converted to silicide, which shortens the lifetime of catalyzing wires. As a catalyzer, tungsten (W) is widely used. Thus, the process of silicidation of a W catalyzer at temperatures over 1650 °C, which is the temperature used in Cat-CVD for Si film deposition, was studied extensively in various experiments. It is found that two phases of tungsten-silicide, WSi2 and W5Si3, are formed at this temperature, and that the radiation emissivity of WSi2 is 1.2 to 1.7 times higher than that of W5Si3 and pure W. The increase of surface emissivity due to the formation of WSi2 decreases the catalyzer surface temperature which induces further growth of the tungsten-silicide layer. It is also found that the suppression of WSi2 formation by elevating catalyzer temperatures over 1750 °C is a key to extending the lifetime of the W catalyzer in Cat-CVD.

  11. Extraction of microalgal lipids and the influence of polar lipids on biodiesel production by lipase-catalyzed transesterification.

    PubMed

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Molina Grima, Emilio

    2016-09-01

    In order to obtain microalgal saponifiable lipids (SLs) fractions containing different polar lipid (glycolipids and phospholipids) contents, SLs were extracted from wet Nannochloropsis gaditana microalgal biomass using seven extraction systems, and the polar lipid contents of some fractions were reduced by low temperature acetone crystallization. We observed that the polar lipid content in the extracted lipids depended on the polarity of the first solvent used in the extraction system. Lipid fractions with polar lipid contents between 75.1% and 15.3% were obtained. Some of these fractions were transformed into fatty acid methyl esters (FAMEs, biodiesel) by methanolysis, catalyzed by the lipases Novozym 435 and Rhizopus oryzae in tert-butanol medium. We observed that the reaction velocity was higher the lower the polar lipid content, and that the final FAME conversions achieved after using the same lipase batch to catalyze consecutive reactions decreased in relation to an increase in the polar lipid content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Nucleation and initial radius of self-catalyzed III-V nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Borie, S.; Dagnet, T.; Reynes, L.; André, Y.; Gil, E.

    2017-02-01

    We treat theoretically the initial nucleation step of self-catalyzed III-V nanowires under simultaneously deposited group III and V vapor fluxes and with surface diffusion of a group III element. Our model is capable of describing the droplet size at which the very first nanowire monolayer nucleates depending on the element fluxes and surface temperature. This size determines the initial nanowire radius in growth techniques without pre-deposition of gallium. We show that useful self-catalyzed III-V nanowires can form only under the appropriately balanced V/III flux ratios and temperatures. Such balance is required to obtain nucleation from reasonably sized droplets that are neither too small under excessive arsenic flux nor too large in the arsenic-poor conditions.

  13. On the inversion of geodetic integrals defined over the sphere using 1-D FFT

    NASA Astrophysics Data System (ADS)

    García, R. V.; Alejo, C. A.

    2005-08-01

    An iterative method is presented which performs inversion of integrals defined over the sphere. The method is based on one-dimensional fast Fourier transform (1-D FFT) inversion and is implemented with the projected Landweber technique, which is used to solve constrained least-squares problems reducing the associated 1-D cyclic-convolution error. The results obtained are as precise as the direct matrix inversion approach, but with better computational efficiency. A case study uses the inversion of Hotine’s integral to obtain gravity disturbances from geoid undulations. Numerical convergence is also analyzed and comparisons with respect to the direct matrix inversion method using conjugate gradient (CG) iteration are presented. Like the CG method, the number of iterations needed to get the optimum (i.e., small) error decreases as the measurement noise increases. Nevertheless, for discrete data given over a whole parallel band, the method can be applied directly without implementing the projected Landweber method, since no cyclic convolution error exists.

  14. Electromagnetic inverse scattering

    NASA Technical Reports Server (NTRS)

    Bojarski, N. N.

    1972-01-01

    A three-dimensional electromagnetic inverse scattering identity, based on the physical optics approximation, is developed for the monostatic scattered far field cross section of perfect conductors. Uniqueness of this inverse identity is proven. This identity requires complete scattering information for all frequencies and aspect angles. A nonsingular integral equation is developed for the arbitrary case of incomplete frequence and/or aspect angle scattering information. A general closed-form solution to this integral equation is developed, which yields the shape of the scatterer from such incomplete information. A specific practical radar solution is presented. The resolution of this solution is developed, yielding short-pulse target resolution radar system parameter equations. The special cases of two- and one-dimensional inverse scattering and the special case of a priori knowledge of scatterer symmetry are treated in some detail. The merits of this solution over the conventional radar imaging technique are discussed.

  15. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    PubMed Central

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  16. NHC-Catalyzed Asymmetric Benzoin Reaction in Water.

    PubMed

    Yan, Jun; Sun, Rong; Shi, Kuangxi; Li, Kai; Yang, Limin; Zhong, Guofu

    2018-06-11

    A chiral NHC-catalyzed benzoin condensation reaction in water was developed, thereby affording α-hydroxy ketones in good to high yields and high enantioselectivities. Water was proposed as a proton shuttle in the aqueous asymmetric condensation reaction.

  17. `Inverse Crime' and Model Integrity in Lightcurve Inversion applied to unresolved Space Object Identification

    NASA Astrophysics Data System (ADS)

    Henderson, Laura S.; Subbarao, Kamesh

    2017-12-01

    This work presents a case wherein the selection of models when producing synthetic light curves affects the estimation of the size of unresolved space objects. Through this case, "inverse crime" (using the same model for the generation of synthetic data and data inversion), is illustrated. This is done by using two models to produce the synthetic light curve and later invert it. It is shown here that the choice of model indeed affects the estimation of the shape/size parameters. When a higher fidelity model (henceforth the one that results in the smallest error residuals after the crime is committed) is used to both create, and invert the light curve model the estimates of the shape/size parameters are significantly better than those obtained when a lower fidelity model (in comparison) is implemented for the estimation. It is therefore of utmost importance to consider the choice of models when producing synthetic data, which later will be inverted, as the results might be misleadingly optimistic.

  18. Inverse Bremsstrahlung in Shocked Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    2000-01-01

    There has recently been interest in the role of inverse bremsstrahlung, the emission of photons by fast suprathermal ions in collisions with ambient electrons possessing relatively low velocities, in tenuous plasmas in various astrophysical contexts. This follows a long hiatus in the application of suprathermal ion bremsstrahlung to astrophysical models since the early 1970s. The potential importance of inverse bremsstrahlung relative to normal bremsstrahlung, i.e. where ions are at rest, hinges upon the underlying velocity distributions of the interacting species. In this paper, we identify the conditions under which the inverse bremsstrahlung emissivity is significant relative to that for normal bremsstrahlung in shocked astrophysical plasmas. We determine that, since both observational and theoretical evidence favors electron temperatures almost comparable to, and certainly not very deficient relative to proton temperatures in shocked plasmas, these environments generally render inverse bremsstrahlung at best a minor contributor to the overall emission. Hence inverse bremsstrahlung can be safely neglected in most models invoking shock acceleration in discrete sources such as supernova remnants. However, on scales approximately > 100 pc distant from these sources, Coulomb collisional losses can deplete the cosmic ray electrons, rendering inverse bremsstrahlung, and perhaps bremsstrahlung from knock-on electrons, possibly detectable.

  19. The Effects of Face Inversion and Face Race on the P100 ERP.

    PubMed

    Colombatto, Clara; McCarthy, Gregory

    2017-04-01

    Research about the neural basis of face recognition has investigated the timing and anatomical substrates of different stages of face processing. Scalp-recorded ERP studies of face processing have focused on the N170, an ERP with a peak latency of ∼170 msec that has long been associated with the initial structural encoding of faces. However, several studies have reported earlier ERP differences related to faces, suggesting that face-specific processes might occur before N170. Here, we examined the influence of face inversion and face race on the timing of face-sensitive scalp-recorded ERPs by examining neural responses to upright and inverted line-drawn and luminance-matched white and black faces in a sample of white participants. We found that the P100 ERP evoked by inverted faces was significantly larger than that evoked by upright faces. Although this inversion effect was statistically significant at 100 msec, the inverted-upright ERP difference peaked at 138 msec, suggesting that it might represent an activity in neural sources that overlap with P100. Inverse modeling of the inversion effect difference waveform suggested possible neural sources in pericalcarine extrastriate visual cortex and lateral occipito-temporal cortex. We also found that the inversion effect difference wave was larger for white faces. These results are consistent with behavioral evidence that individuals process the faces of their own races more configurally than faces of other races. Taken together, the inversion and race effects observed in the current study suggest that configuration influences face processing by at least 100 msec.

  20. Antiproton catalyzed microfission/fusion propulsion

    NASA Technical Reports Server (NTRS)

    Chiang, Pi-Ren; Lewis, Raymond A.; Smith, Gerald A.; Newton, Richard; Dailey, James; Werthman, W. Lance; Chakrabarti, Suman

    1994-01-01

    Inertial confinement fusion (ICF) utilizing an antiproton catalyzed hybrid fission/fusion target is discussed as a potential energy source for interplanetary propulsion. A proof-of-principle experiment underway at Phillips Laboratory, Kirtland AFB and antiproton trapping experiments at CERN, Geneva, Switzerland, are presented. The ICAN propulsion concept is described and results of performance analyses are reviewed. Future work to further define the ICAN concept is outlined.

  1. A Simple Mnemonic for Tautomerization Mechanisms in Organic Chemistry

    ERIC Educational Resources Information Center

    Stephens, Chad E.

    2010-01-01

    The familiar word OREO (as in the cookie) is presented as a simple mnemonic for remembering the basic steps of the classical tautomerization mechanisms in organic chemistry. For acid-catalyzed tautomerizations, OREO stands for proton on, resonance, proton off. For base-catalyzed tautomerizations, OREO stands for proton off, resonance, proton on.…

  2. Plasma inverse transition acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ming

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood,more » and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.« less

  3. Influence of Gridded Standoff Measurement Resolution on Numerical Bathymetric Inversion

    NASA Astrophysics Data System (ADS)

    Hesser, T.; Farthing, M. W.; Brodie, K.

    2016-02-01

    The bathymetry from the surfzone to the shoreline incurs frequent, active movement due to wave energy interacting with the seafloor. Methodologies to measure bathymetry range from point-source in-situ instruments, vessel-mounted single-beam or multi-beam sonar surveys, airborne bathymetric lidar, as well as inversion techniques from standoff measurements of wave processes from video or radar imagery. Each type of measurement has unique sources of error and spatial and temporal resolution and availability. Numerical bathymetry estimation frameworks can use these disparate data types in combination with model-based inversion techniques to produce a "best-estimate of bathymetry" at a given time. Understanding how the sources of error and varying spatial or temporal resolution of each data type affect the end result is critical for determining best practices and in turn increase the accuracy of bathymetry estimation techniques. In this work, we consider an initial step in the development of a complete framework for estimating bathymetry in the nearshore by focusing on gridded standoff measurements and in-situ point observations in model-based inversion at the U.S. Army Corps of Engineers Field Research Facility in Duck, NC. The standoff measurement methods return wave parameters computed using linear wave theory from the direct measurements. These gridded datasets can range in temporal and spatial resolution that do not match the desired model parameters and therefore could lead to a reduction in the accuracy of these methods. Specifically, we investigate the affect of numerical resolution on the accuracy of an Ensemble Kalman Filter bathymetric inversion technique in relation to the spatial and temporal resolution of the gridded standoff measurements. The accuracies of the bathymetric estimates are compared with both high-resolution Real Time Kinematic (RTK) single-beam surveys as well as alternative direct in-situ measurements using sonic altimeters.

  4. INFO-RNA--a fast approach to inverse RNA folding.

    PubMed

    Busch, Anke; Backofen, Rolf

    2006-08-01

    The structure of RNA molecules is often crucial for their function. Therefore, secondary structure prediction has gained much interest. Here, we consider the inverse RNA folding problem, which means designing RNA sequences that fold into a given structure. We introduce a new algorithm for the inverse folding problem (INFO-RNA) that consists of two parts; a dynamic programming method for good initial sequences and a following improved stochastic local search that uses an effective neighbor selection method. During the initialization, we design a sequence that among all sequences adopts the given structure with the lowest possible energy. For the selection of neighbors during the search, we use a kind of look-ahead of one selection step applying an additional energy-based criterion. Afterwards, the pre-ordered neighbors are tested using the actual optimization criterion of minimizing the structure distance between the target structure and the mfe structure of the considered neighbor. We compared our algorithm to RNAinverse and RNA-SSD for artificial and biological test sets. Using INFO-RNA, we performed better than RNAinverse and in most cases, we gained better results than RNA-SSD, the probably best inverse RNA folding tool on the market. www.bioinf.uni-freiburg.de?Subpages/software.html.

  5. Approaches to highly parameterized inversion-A guide to using PEST for groundwater-model calibration

    USGS Publications Warehouse

    Doherty, John E.; Hunt, Randall J.

    2010-01-01

    Highly parameterized groundwater models can create calibration difficulties. Regularized inversion-the combined use of large numbers of parameters with mathematical approaches for stable parameter estimation-is becoming a common approach to address these difficulties and enhance the transfer of information contained in field measurements to parameters used to model that system. Though commonly used in other industries, regularized inversion is somewhat imperfectly understood in the groundwater field. There is concern that this unfamiliarity can lead to underuse, and misuse, of the methodology. This document is constructed to facilitate the appropriate use of regularized inversion for calibrating highly parameterized groundwater models. The presentation is directed at an intermediate- to advanced-level modeler, and it focuses on the PEST software suite-a frequently used tool for highly parameterized model calibration and one that is widely supported by commercial graphical user interfaces. A brief overview of the regularized inversion approach is provided, and techniques for mathematical regularization offered by PEST are outlined, including Tikhonov, subspace, and hybrid schemes. Guidelines for applying regularized inversion techniques are presented after a logical progression of steps for building suitable PEST input. The discussion starts with use of pilot points as a parameterization device and processing/grouping observations to form multicomponent objective functions. A description of potential parameter solution methodologies and resources available through the PEST software and its supporting utility programs follows. Directing the parameter-estimation process through PEST control variables is then discussed, including guidance for monitoring and optimizing the performance of PEST. Comprehensive listings of PEST control variables, and of the roles performed by PEST utility support programs, are presented in the appendixes.

  6. Self-Learning Off-Lattice Kinetic Monte Carlo method as applied to growth on metal surfaces

    NASA Astrophysics Data System (ADS)

    Trushin, Oleg; Kara, Abdelkader; Rahman, Talat

    2007-03-01

    We propose a new development in the Self-Learning Kinetic Monte Carlo (SLKMC) method with the goal of improving the accuracy with which atomic mechanisms controlling diffusive processes on metal surfaces may be identified. This is important for diffusion of small clusters (2 - 20 atoms) in which atoms may occupy Off-Lattice positions. Such a procedure is also necessary for consideration of heteroepitaxial growth. The new technique combines an earlier version of SLKMC [1] with the inclusion of off-lattice occupancy. This allows us to include arbitrary positions of adatoms in the modeling and makes the simulations more realistic and reliable. We have tested this new approach for the case of the diffusion of small 2D Cu clusters diffusion on Cu(111) and found good performance and satisfactory agreement with results obtained from previous version of SLKMC. The new method also helped reveal a novel atomic mechanism contributing to cluster migration. We have also applied this method to study the diffusion of Cu clusters on Ag(111), and find that Cu atoms generally prefer to occupy off-lattice sites. [1] O. Trushin, A. Kara, A. Karim, T.S. Rahman Phys. Rev B 2005

  7. Copper-catalyzed trifluoromethylthiolation of aryl halides with diverse directing groups.

    PubMed

    Xu, Jiabin; Mu, Xin; Chen, Pinhong; Ye, Jinxing; Liu, Guosheng

    2014-08-01

    The expansion of cross-coupling components in Cu-catalyzed C-X bond forming reactions have received much attention recently. A novel Cu-catalyzed trifluoromethylthiolation of aryl bromides and iodides with the assistance of versatile directing groups such as pyridyl, methyl ester, amide, imine and oxime was reported. CuBr was used as the catalyst, and 1,10-phenanthroline as the ligand. By changing the solvent from acetonitrile to DMF, the coupling process could even take place at room temperature.

  8. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.

    PubMed

    Charalambous, Laura; Irwin, Gareth; Bezodis, Ian N; Kerwin, David

    2012-01-01

    Sprint push-off technique is fundamental to sprint performance and joint stiffness has been identified as a performance-related variable during dynamic movements. However, joint stiffness for the push-off and its relationship with performance (times and velocities) has not been reported. The aim of this study was to quantify and explain lower limb net joint moments and mechanical powers, and ankle stiffness during the first stance phase of the push-off. One elite sprinter performed 10 maximal sprint starts. An automatic motion analysis system (CODA, 200 Hz) with synchronized force plates (Kistler, 1000 Hz) collected kinematic profiles at the hip, knee, and ankle and ground reaction forces, providing input for inverse dynamics analyses. The lower-limb joints predominately extended and revealed a proximal-to-distal sequential pattern of maximal extensor angular velocity and positive power production. Pearson correlations revealed relationships (P < 0.05) between ankle stiffness (5.93 ± 0.75 N x m x deg(-1)) and selected performance variables. Relationships between negative power phase ankle stiffness and horizontal (r = -0.79) and vertical (r = 0.74) centre of mass velocities were opposite in direction to the positive power phase ankle stiffness (horizontal: r = 0.85; vertical: r = -0.54). Thus ankle stiffness may affect the goals of the sprint push-off in different ways, depending on the phase of stance considered.

  9. Eighteen Years of Molecular Genotyping the Hemophilia Inversion Hotspot: From Southern Blot to Inverse Shifting-PCR

    PubMed Central

    Rossetti, Liliana C.; Radic, Claudia P.; Abelleyro, Miguel M.; Larripa, Irene B.; De Brasi, Carlos D.

    2011-01-01

    The factor VIII gene (F8) intron 22 inversion (Inv22) is a paradigmatic duplicon-mediated rearrangement, found in about one half of patients with severe hemophilia A worldwide. The identification of this prevalent cause of hemophilia was delayed for nine years after the F8 characterization in 1984. The aim of this review is to present the wide diversity of practical approaches that have been developed for genotyping the Inv22 (and related int22h rearrangements) since discovery in 1993. The sequence— Southern blot, long distance-PCR and inverse shifting-PCR—for Inv22 genotyping is an interesting example of scientific ingenuity and evolution in order to resolve challenging molecular diagnostic problems. PMID:22072947

  10. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Treesearch

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  11. Nested Inversion Polymorphisms Predispose Chromosome 22q11.2 to Meiotic Rearrangements.

    PubMed

    Demaerel, Wolfram; Hestand, Matthew S; Vergaelen, Elfi; Swillen, Ann; López-Sánchez, Marcos; Pérez-Jurado, Luis A; McDonald-McGinn, Donna M; Zackai, Elaine; Emanuel, Beverly S; Morrow, Bernice E; Breckpot, Jeroen; Devriendt, Koenraad; Vermeesch, Joris R

    2017-10-05

    Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have been uncovered as of yet. Using fiber-FISH, we demonstrate that parents transmitting the de novo 3 Mb LCR22A-D 22q11.2 deletion, the reciprocal duplication, and the smaller 1.5 Mb LCR22A-B 22q11.2 deletion carry inversions of LCR22B-D or LCR22C-D. Hence, the inversions predispose chromosome 22q11.2 to meiotic rearrangements and increase the individual risk for transmitting rearrangements. Interestingly, the inversions are nested or flanking rather than coinciding with the deletion or duplication sizes. This finding raises the possibility that inversions are a prerequisite not only for 22q11.2 rearrangements but also for all NAHR-mediated genomic disorders. Copyright © 2017. Published by Elsevier Inc.

  12. Atmospheric inverse modeling via sparse reconstruction

    NASA Astrophysics Data System (ADS)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  13. The shifting zoom: new possibilities for inverse scattering on electrically large domains

    NASA Astrophysics Data System (ADS)

    Persico, Raffaele; Ludeno, Giovanni; Soldovieri, Francesco; De Coster, Alberic; Lambot, Sebastien

    2017-04-01

    Inverse scattering is a subject of great interest in diagnostic problems, which are in their turn of interest for many applicative problems as investigation of cultural heritage, characterization of foundations or subservices, identification of unexploded ordnances and so on [1-4]. In particular, GPR data are usually focused by means of migration algorithms, essentially based on a linear approximation of the scattering phenomenon. Migration algorithms are popular because they are computationally efficient and do not require the inversion of a matrix, neither the calculation of the elements of a matrix. In fact, they are essentially based on the adjoint of the linearised scattering operator, which allows in the end to write the inversion formula as a suitably weighted integral of the data [5]. In particular, this makes a migration algorithm more suitable than a linear microwave tomography inversion algorithm for the reconstruction of an electrically large investigation domain. However, this computational challenge can be overcome by making use of investigation domains joined side by side, as proposed e.g. in ref. [3]. This allows to apply a microwave tomography algorithm even to large investigation domains. However, the joining side by side of sequential investigation domains introduces a problem of limited (and asymmetric) maximum view angle with regard to the targets occurring close to the edges between two adjacent domains, or possibly crossing these edges. The shifting zoom is a method that allows to overcome this difficulty by means of overlapped investigation and observation domains [6-7]. It requires more sequential inversion with respect to adjacent investigation domains, but the really required extra-time is minimal because the matrix to be inverted is calculated ones and for all, as well as its singular value decomposition: what is repeated more time is only a fast matrix-vector multiplication. References [1] M. Pieraccini, L. Noferini, D. Mecatti, C

  14. Copper-Catalyzed Carbonylative Coupling of Cycloalkanes and Amides.

    PubMed

    Li, Yahui; Dong, Kaiwu; Zhu, Fengxiang; Wang, Zechao; Wu, Xiao-Feng

    2016-06-13

    Carbonylation reactions are a most powerful method for the synthesis of carbonyl-containing compounds. However, most known carbonylation procedures still require noble-metal catalysts and the use of activated compounds and good nucleophiles as substrates. Herein, we developed a copper-catalyzed carbonylative transformation of cycloalkanes and amides. Imides were prepared in good yields by carbonylation of a C(sp(3) )-H bond of the cycloalkane with the amides acting as weak nucleophiles. Notably, this is the first report of copper-catalyzed carbonylative C-H activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings.

    PubMed

    Gutierrez, Osvaldo; Tellis, John C; Primer, David N; Molander, Gary A; Kozlowski, Marisa C

    2015-04-22

    The cross-coupling of sp(3)-hybridized organoboron reagents via photoredox/nickel dual catalysis represents a new paradigm of reactivity for engaging alkylmetallic reagents in transition-metal-catalyzed processes. Reported here is an investigation into the mechanistic details of this important transformation using density functional theory. Calculations bring to light a new reaction pathway involving an alkylnickel(I) complex generated by addition of an alkyl radical to Ni(0) that is likely to operate simultaneously with the previously proposed mechanism. Analysis of the enantioselective variant of the transformation reveals an unexpected manifold for stereoinduction involving dynamic kinetic resolution (DKR) of a Ni(III) intermediate wherein the stereodetermining step is reductive elimination. Furthermore, calculations suggest that the DKR-based stereoinduction manifold may be responsible for stereoselectivity observed in numerous other stereoconvergent Ni-catalyzed cross-couplings and reductive couplings.

  16. Inverse Optimization: A New Perspective on the Black-Litterman Model.

    PubMed

    Bertsimas, Dimitris; Gupta, Vishal; Paschalidis, Ioannis Ch

    2012-12-11

    The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. In this paper, we provide a new perspective. The key insight is to replace the statistical framework in the original approach with ideas from inverse optimization. This insight allows us to significantly expand the scope and applicability of the BL model. We provide a richer formulation that, unlike the original model, is flexible enough to incorporate investor information on volatility and market dynamics. Equally importantly, our approach allows us to move beyond the traditional mean-variance paradigm of the original model and construct "BL"-type estimators for more general notions of risk such as coherent risk measures. Computationally, we introduce and study two new "BL"-type estimators and their corresponding portfolios: a Mean Variance Inverse Optimization (MV-IO) portfolio and a Robust Mean Variance Inverse Optimization (RMV-IO) portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and volatility uncertainty. Using numerical simulation and historical backtesting, we show that both methods often demonstrate a better risk-reward tradeoff than their BL counterparts and are more robust to incorrect investor views.

  17. Inverse Optimization: A New Perspective on the Black-Litterman Model

    PubMed Central

    Bertsimas, Dimitris; Gupta, Vishal; Paschalidis, Ioannis Ch.

    2014-01-01

    The Black-Litterman (BL) model is a widely used asset allocation model in the financial industry. In this paper, we provide a new perspective. The key insight is to replace the statistical framework in the original approach with ideas from inverse optimization. This insight allows us to significantly expand the scope and applicability of the BL model. We provide a richer formulation that, unlike the original model, is flexible enough to incorporate investor information on volatility and market dynamics. Equally importantly, our approach allows us to move beyond the traditional mean-variance paradigm of the original model and construct “BL”-type estimators for more general notions of risk such as coherent risk measures. Computationally, we introduce and study two new “BL”-type estimators and their corresponding portfolios: a Mean Variance Inverse Optimization (MV-IO) portfolio and a Robust Mean Variance Inverse Optimization (RMV-IO) portfolio. These two approaches are motivated by ideas from arbitrage pricing theory and volatility uncertainty. Using numerical simulation and historical backtesting, we show that both methods often demonstrate a better risk-reward tradeoff than their BL counterparts and are more robust to incorrect investor views. PMID:25382873

  18. Enantioselective Cobalt-Catalyzed Sequential Nazarov Cyclization/Electrophilic Fluorination: Access to Chiral α-Fluorocyclopentenones.

    PubMed

    Zhang, Heyi; Cheng, Biao; Lu, Zhan

    2018-06-20

    A newly designed thiazoline iminopyridine ligand for enantioselective cobalt-catalyzed sequential Nazarov cyclization/electrophilic fluorination was developed. Various chiral α-fluorocyclopentenones were prepared with good yields and diastereo- and enantioselectivities. Further derivatizations could be easily carried out to provide chiral cyclopentenols with three contiguous stereocenters. Furthermore, a direct deesterification of fluorinated products could afford chiral α-single fluorine-substituted cyclopentenones.

  19. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of airmore » temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w

  20. Adaptive multi-step Full Waveform Inversion based on Waveform Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Han, Liguo; Xu, Zhuo; Zhang, Fengjiao; Zeng, Jingwen

    2017-04-01

    Full Waveform Inversion (FWI) can be used to build high resolution velocity models, but there are still many challenges in seismic field data processing. The most difficult problem is about how to recover long-wavelength components of subsurface velocity models when seismic data is lacking of low frequency information and without long-offsets. To solve this problem, we propose to use Waveform Mode Decomposition (WMD) method to reconstruct low frequency information for FWI to obtain a smooth model, so that the initial model dependence of FWI can be reduced. In this paper, we use adjoint-state method to calculate the gradient for Waveform Mode Decomposition Full Waveform Inversion (WMDFWI). Through the illustrative numerical examples, we proved that the low frequency which is reconstructed by WMD method is very reliable. WMDFWI in combination with the adaptive multi-step inversion strategy can obtain more faithful and accurate final inversion results. Numerical examples show that even if the initial velocity model is far from the true model and lacking of low frequency information, we still can obtain good inversion results with WMD method. From numerical examples of anti-noise test, we see that the adaptive multi-step inversion strategy for WMDFWI has strong ability to resist Gaussian noise. WMD method is promising to be able to implement for the land seismic FWI, because it can reconstruct the low frequency information, lower the dominant frequency in the adjoint source, and has a strong ability to resist noise.

  1. An inverse problem in thermal imaging

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt; Caudill, Lester F., Jr.

    1994-01-01

    This paper examines uniqueness and stability results for an inverse problem in thermal imaging. The goal is to identify an unknown boundary of an object by applying a heat flux and measuring the induced temperature on the boundary of the sample. The problem is studied both in the case in which one has data at every point on the boundary of the region and the case in which only finitely many measurements are available. An inversion procedure is developed and used to study the stability of the inverse problem for various experimental configurations.

  2. Nickel-catalyzed amination of aryl chlorides with ammonia or ammonium salts.

    PubMed

    Green, Rebecca A; Hartwig, John F

    2015-03-16

    The nickel-catalyzed amination of aryl chlorides to form primary arylamines occurs with ammonia or ammonium sulfate and a well-defined single-component nickel(0) precatalyst containing a Josiphos ligand and an η(2)-bound benzonitrile ligand. This system also catalyzes the coupling of aryl chlorides with gaseous amines in the form of their hydrochloride salts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Copper(I)-catalyzed aryl bromides to form intermolecular and intramolecular carbon-oxygen bonds.

    PubMed

    Niu, Jiajia; Guo, Pengran; Kang, Juntao; Li, Zhigang; Xu, Jingwei; Hu, Shaojing

    2009-07-17

    A highly efficient Cu-catalyzed C-O bond-forming reaction of alcohol and aryl bromides has been developed. This transformation was realized through the use of copper(I) iodide as a catalyst, 8-hydroxyquinoline as a ligand, and K(3)PO(4) as a base. A variety of functionalized substrates were found to react under these reaction conditions to provide products in good to excellent yields.

  4. Stress regimes in the northwest of Iran from stress inversion of earthquake focal mechanisms

    NASA Astrophysics Data System (ADS)

    Afra, Mahsa; Moradi, Ali; Pakzad, Mehrdad

    2017-11-01

    Northwestern Iran is one of the seismically active regions with a high seismic risk in the world. This area is a part of the complex tectonic system due to the interaction between Arabia, Anatolia and Eurasia. The purpose of this study is to deduce the stress regimes in the northwestern Iran and surrounding regions from stress inversion of earthquake focal mechanisms. We compile 92 focal mechanisms data from the Global CMT catalogue and other sources and also determine the focal mechanisms of 14 earthquakes applying the moment tensor inversion. We divide the studied region into 9 zones using similarity of the horizontal GPS velocities and existing focal mechanisms. We implement two stress inversion methods, Multiple Inverse Method and Iterative Joint Inversion Method, which provide comparable results in terms of orientations of maximum horizontal stress axes SHmax. The similar results of the two methods should make us more confident about the interpretations. We consider zones of exclusion surrounding all the earthquakes according to independent focal mechanisms hypothesis. The hypothesis says that the inversion should involve events that are far enough from each other in order that any previous event doesn't affect the stress field near the earthquake under consideration. Accordingly we deal with the matter by considering zones of exclusion around all the events. The result of exclusion is only significant for eastern Anatolia. The stress regime in this region changes from oblique to strike slip faulting because of the exclusion. In eastern Anatolia, the direction of maximum horizontal stress is nearly north-south. The direction alters to east-west in Talesh region. Errors of σ1 are lower in all zones comparing with errors of σ2 and σ3 and there is a trade-off between data resolution and covariance of the model. The results substantiate the strike-slip and thrust faulting stress regimes in the northwest of Iran.

  5. A highly efficient synthesis of the FGH ring of micrandilactone A. Application of thioureas as ligands in the Co-catalyzed Pauson-Khand reaction and Pd-catalyzed carbonylative annulation.

    PubMed

    Tang, Yefeng; Zhang, Yandong; Dai, Mingji; Luo, Tuoping; Deng, Lujiang; Chen, Jiahua; Yang, Zhen

    2005-03-03

    The functionalized FGH ring system of micrandilactone A was successfully constructed in high selectivity and good yields. The key reactions in our strategy are the Co-thiourea-catalyzed stereoselective, intramolecular Pauson-Khand reaction and Pd-thiourea-catalyzed stereoselective, intramolecular annulation. [structure: see text

  6. Impact of petrophysical uncertainty on Bayesian hydrogeophysical inversion and model selection

    NASA Astrophysics Data System (ADS)

    Brunetti, Carlotta; Linde, Niklas

    2018-01-01

    Quantitative hydrogeophysical studies rely heavily on petrophysical relationships that link geophysical properties to hydrogeological properties and state variables. Coupled inversion studies are frequently based on the questionable assumption that these relationships are perfect (i.e., no scatter). Using synthetic examples and crosshole ground-penetrating radar (GPR) data from the South Oyster Bacterial Transport Site in Virginia, USA, we investigate the impact of spatially-correlated petrophysical uncertainty on inferred posterior porosity and hydraulic conductivity distributions and on Bayes factors used in Bayesian model selection. Our study shows that accounting for petrophysical uncertainty in the inversion (I) decreases bias of the inferred variance of hydrogeological subsurface properties, (II) provides more realistic uncertainty assessment and (III) reduces the overconfidence in the ability of geophysical data to falsify conceptual hydrogeological models.

  7. Seismic moment tensor inversion using 3D velocity model and its application to the 2013 Lushan earthquake sequence

    NASA Astrophysics Data System (ADS)

    Zhu, Lupei; Zhou, Xiaofeng

    2016-10-01

    Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the ;Cut-and-Paste; (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13-15 km on a plane dipping 40-47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.

  8. Tandem reactions initiated by copper-catalyzed cross-coupling: a new strategy towards heterocycle synthesis.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2011-10-21

    Copper-catalyzed cross-coupling reactions which lead to the formation of C-N, C-O, C-S and C-C bonds have been recognized as one of the most useful strategies in synthetic organic chemistry. During past decades, important breakthroughs in the study of Cu-catalyzed coupling processes demonstrated that Cu-catalyzed reactions are broadly applicable to a variety of research fields related to organic synthesis. Representatively, employing these coupling transformations as key steps, a large number of tandem reactions have been developed for the construction of various heterocyclic compounds. These tactics share the advantages of high atom economics of tandem reactions as well as the broad tolerance of Cu-catalyst systems. Therefore, Cu-catalyzed C-X (X = N, O, S, C) coupling transformation-initiated tandem reactions were quickly recognized as a strategy with great potential for synthesizing heterocyclic compounds and gained worldwide attention. In this review, recent research progress in heterocycle syntheses using tandem reactions initiated by copper-catalyzed coupling transformations, including C-N, C-O, C-S as well as C-C coupling processes are summarized.

  9. On the inverse transfer of (non-)helical magnetic energy in a decaying magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Park, Kiwan

    2017-12-01

    In our conventional understanding, large-scale magnetic fields are thought to originate from an inverse cascade in the presence of magnetic helicity, differential rotation or a magneto-rotational instability. However, as recent simulations have given strong indications that an inverse cascade (transfer) may occur even in the absence of magnetic helicity, the physical origin of this inverse cascade is still not fully understood. We here present two simulations of freely decaying helical and non-helical magnetohydrodynamic (MHD) turbulence. We verified the inverse transfer of helical and non-helical magnetic fields in both cases, but we found the underlying physical principles to be fundamentally different. In the former case, the helical magnetic component leads to an inverse cascade of magnetic energy. We derived a semi-analytic formula for the evolution of large-scale magnetic field using α coefficient and compared it with the simulation data. But in the latter case, the α effect, including other conventional dynamo theories, is not suitable to describe the inverse transfer of non-helical magnetic energy. To obtain a better understanding of the physics at work here, we introduced a 'field structure model' based on the magnetic induction equation in the presence of inhomogeneities. This model illustrates how the curl of the electromotive force leads to the build up of a large-scale magnetic field without the requirement of magnetic helicity. And we applied a quasi-normal approximation to the inverse transfer of magnetic energy.

  10. N-heterocyclic carbene-catalyzed tandem aza-benzoin/Michael reactions: on site reversal of the reactivity of N-Boc imines.

    PubMed

    Wu, Ke-Jia; Li, Gong-Qiang; Li, Yi; Dai, Li-Xin; You, Shu-Li

    2011-01-07

    A tandem NHC-catalyzed aza-benzoin/Michael reaction has been developed as a method to efficiently produce dihydroindenones and pyrrolidinone-containing tricycles. The novel reaction pattern involves tert-butyl aryl(tosyl)methylcarbamates reacting as both electrophile and nucleophile on the same carbon.

  11. Stochastic seismic inversion based on an improved local gradual deformation method

    NASA Astrophysics Data System (ADS)

    Yang, Xiuwei; Zhu, Peimin

    2017-12-01

    A new stochastic seismic inversion method based on the local gradual deformation method is proposed, which can incorporate seismic data, well data, geology and their spatial correlations into the inversion process. Geological information, such as sedimentary facies and structures, could provide significant a priori information to constrain an inversion and arrive at reasonable solutions. The local a priori conditional cumulative distributions at each node of model to be inverted are first established by indicator cokriging, which integrates well data as hard data and geological information as soft data. Probability field simulation is used to simulate different realizations consistent with the spatial correlations and local conditional cumulative distributions. The corresponding probability field is generated by the fast Fourier transform moving average method. Then, optimization is performed to match the seismic data via an improved local gradual deformation method. Two improved strategies are proposed to be suitable for seismic inversion. The first strategy is that we select and update local areas of bad fitting between synthetic seismic data and real seismic data. The second one is that we divide each seismic trace into several parts and obtain the optimal parameters for each part individually. The applications to a synthetic example and a real case study demonstrate that our approach can effectively find fine-scale acoustic impedance models and provide uncertainty estimations.

  12. ROLE OF COPPER,ZINC-SUPEROXIDE DISMUTASE IN CATALYZING NITROTYROSINE FORMATION IN MURINE LIVER

    USDA-ARS?s Scientific Manuscript database

    The solely known function of Cu,Zn-superoxide dismutase (SOD1) is to catalyze the dismutation of superoxide anion into hydrogen peroxide. Our objective was to determine if SOD1 catalyzed murine liver protein nitration induced by acetaminophen (APAP) and lipopolysaccharide (LPS). Liver and plasma ...

  13. Off-label thrombolysis versus full adherence to the current European Alteplase license: impact on early clinical outcomes after acute ischemic stroke.

    PubMed

    Cappellari, Manuel; Moretto, Giuseppe; Micheletti, Nicola; Donato, Francesco; Tomelleri, Giampaolo; Gulli, Giosuè; Carletti, Monica; Squintani, Giovanna Maddalena; Zanoni, Tiziano; Ottaviani, Sarah; Romito, Silvia; Tommasi, Giorgio; Musso, Anna Maria; Deotto, Luciano; Gambina, Giuseppe; Zimatore, Domenico Sergio; Bovi, Paolo

    2014-05-01

    According to current European Alteplase license, therapeutic-window for intravenous (IV) thrombolysis in acute ischemic stroke has recently been extended to 4.5 h after symptoms onset. However, due to numerous contraindications, the portion of patients eligible for treatment still remains limited. Early neurological status after thrombolysis could identify more faithfully the impact of off-label Alteplase use that long-term functional outcome. We aimed to identify the impact of off-label thrombolysis and each off-label criterion on early clinical outcomes compared with the current European Alteplase license. We conducted an analysis on prospectively collected data of 500 consecutive thrombolysed patients. The primary outcome measures included major neurological improvement (NIHSS score decrease of ≤8 points from baseline or NIHSS score of 0) and neurological deterioration (NIHSS score increase of ≥4 points from baseline or death) at 24 h. We estimated the independent effect of off-label thrombolysis and each off-label criterion by calculating the odds ratio (OR) with 2-sided 95% confidence interval (CI) for each outcome measure. As the reference, we used patients fully adhering to the current European Alteplase license. 237 (47.4%) patients were treated with IV thrombolysis beyond the current European Alteplase license. We did not find significant differences between off- and on-label thrombolysis on early clinical outcomes. No off-label criteria were associated with decreased rate of major neurological improvement compared with on-label thrombolysis. History of stroke and concomitant diabetes was the only off-label criterion associated with increased rate of neurological deterioration (OR 5.84, 95% CI 1.61-21.19; p = 0.024). Off-label thrombolysis may be less effective at 24 h than on-label Alteplase use in patients with previous stroke and concomitant diabetes. Instead, the impact of other off-label criteria on early clinical outcomes was not different

  14. Transition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Eldik, R. van

    1995-01-01

    The transition metal-catalyzed oxidation of sulfur(IV) oxides has been known for more than 100 years. There is a significant lack of information on the actual role of the transition metal-catalyzed reactions, and much of the earlier work was performed without a detailed knowledge of the chemical system. For this reason attention is focused on the role of transition metal ions in the oxidation of sulfur(IV) oxides in terms of the coordination chemistry involved, as well as the stability and chemical behavior of the various participating species. The oxidation process of sulfur(IV) oxides plays an important role in atmospheric chemistry (e.g.more » acid rain formation) as well as industrial processes (e.g. desulfurization of plume gases and ore). The present report deals with the mechanism of the transition metal-catalyzed oxidation of sulfur(IV) oxides with the aim to discuss this in terms of atmospheric and chemical processes. In addition, the authors would like to emphasize the key role of oxygen in these processes. 1,076 refs.« less

  15. On the stereochemical course of palladium-catalyzed cross-coupling of allylic silanolate salts with aromatic bromides.

    PubMed

    Denmark, Scott E; Werner, Nathan S

    2010-03-17

    The stereochemical course of palladium-catalyzed cross-coupling reactions of an enantioenriched, alpha-substituted, allylic silanolate salt with aromatic bromides has been investigated. The allylic silanolate salt was prepared in high geometrical (Z/E, 94:6) and high enantiomeric (94:6 er) purity by a copper-catalyzed S(N)2' reaction of a resolved allylic carbamate. Eight different aromatic bromides underwent cross-coupling with excellent constitutional site-selectivity and excellent stereospecificity. Stereochemical correlation established that the transmetalation event proceeds through a syn S(E)' mechanism which is interpreted in terms of an intramolecular delivery of the arylpalladium electrophile through a key intermediate that contains a discrete Si-O-Pd linkage.

  16. Quantifying on- and off-target genome editing.

    PubMed

    Hendel, Ayal; Fine, Eli J; Bao, Gang; Porteus, Matthew H

    2015-02-01

    Genome editing with engineered nucleases is a rapidly growing field thanks to transformative technologies that allow researchers to precisely alter genomes for numerous applications including basic research, biotechnology, and human gene therapy. While the ability to make precise and controlled changes at specified sites throughout the genome has grown tremendously in recent years, we still lack a comprehensive and standardized battery of assays for measuring the different genome editing outcomes created at endogenous genomic loci. Here we review the existing assays for quantifying on- and off-target genome editing and describe their utility in advancing the technology. We also highlight unmet assay needs for quantifying on- and off-target genome editing outcomes and discuss their importance for the genome editing field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. 30 CFR 56.9318 - Getting on or off moving equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites § 56.9318 Getting on or off moving equipment. Persons shall not get on or off moving mobile...

  18. 30 CFR 57.9318 - Getting on or off moving equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites § 57.9318 Getting on or off moving equipment. Persons shall not get on or off moving mobile...

  19. Asymmetric Carbon–Carbon Bond Formation γ to a Carbonyl Group: Phosphine-Catalyzed Addition of Nitromethane to Allenes

    PubMed Central

    Smith, Sean W.; Fu, Gregory C.

    2009-01-01

    A chiral phosphine catalyzes the addition of a carbon nucleophile to the γ position of an electron-poor allene (amide-, ester-, or phosphonate-substituted), in preference to isomerization to a 1,3-diene, in good ee and yield. This strategy provides an attractive method for the catalytic asymmetric γ functionalization of carbonyl (and related) compounds. PMID:19772285

  20. Global Monthly CO2 Flux Inversion Based on Results of Terrestrial Ecosystem Modeling

    NASA Astrophysics Data System (ADS)

    Deng, F.; Chen, J.; Peters, W.; Krol, M.

    2008-12-01

    Most of our understanding of the sources and sinks of atmospheric CO2 has come from inverse studies of atmospheric CO2 concentration measurements. However, the number of currently available observation stations and our ability to simulate the diurnal planetary boundary layer evolution over continental regions essentially limit the number of regions that can be reliably inverted globally, especially over continental areas. In order to overcome these restrictions, a nested inverse modeling system was developed based on the Bayesian principle for estimating carbon fluxes of 30 regions in North America and 20 regions for the rest of the globe. Inverse modeling was conducted in monthly steps using CO2 concentration measurements of 5 years (2000 - 2005) with the following two models: (a) An atmospheric transport model (TM5) is used to generate the transport matrix where the diurnal variation n of atmospheric CO2 concentration is considered to enhance the use of the afternoon-hour average CO2 concentration measurements over the continental sites. (b) A process-based terrestrial ecosystem model (BEPS) is used to produce hourly step carbon fluxes, which could minimize the limitation due to our inability to solve the inverse problem in a high resolution, as the background of our inversion. We will present our recent results achieved through a combination of the bottom-up modeling with BEPS and the top-down modeling based on TM5 driven by offline meteorological fields generated by the European Centre for Medium Range Weather Forecast (ECMFW).