Sample records for final approach phase

  1. Innovative Phase Change Approach for Significant Energy Savings

    DTIC Science & Technology

    2016-09-01

    September 2016 Innovative Phase Change Approach For Significant Energy Savings September 2016 8 After conducting a market survey...FINAL REPORT Innovative Phase Change Approach for Significant Energy Savings ESTCP Project EW-201138 SEPTEMBER 2016 Dr. Aly H Shaaban Applied...5a. CONTRACT NUMBER W912HQ-11-C-0011 Innovative Phase Change Approach for Significant Energy Savings 5b. GRANT NUMBER 5c. PROGRAM

  2. The Education of Attention as Explanation of Variability of Practice Effects : Learning the Final Approach Phase in a Flight Simulator

    ERIC Educational Resources Information Center

    Huet, Michael; Jacobs, David M.; Camachon, Cyril; Missenard, Olivier; Gray, Rob; Montagne, Gilles

    2011-01-01

    The present study reports two experiments in which a total of 20 participants without prior flight experience practiced the final approach phase in a fixed-base simulator. All participants received self-controlled concurrent feedback during 180 practice trials. Experiment 1 shows that participants learn more quickly under variable practice…

  3. Robust phase recovery in temporal speckle pattern interferometry using a 3D directional wavelet transform.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2009-08-01

    We propose an approach based on a 3D directional wavelet transform to retrieve optical phase distributions in temporal speckle pattern interferometry. We show that this approach can effectively recover phase distributions in time series of speckle interferograms that are affected by sets of adjacent nonmodulated pixels. The performance of this phase retrieval approach is analyzed by introducing a temporal carrier in the out-of-plane interferometer setup and assuming modulation loss and noise effects. The advantages and limitations of this approach are finally discussed.

  4. Using Inquiry Effectively.

    ERIC Educational Resources Information Center

    Bibens, Robert F.

    1980-01-01

    The inquiry approach to learning is based on three phases. The exploratory phase encourages students to investigate a particular topic; the invention phase asks students to consider what they have learned; the final phase assists students in discovering the inadequacies of their inventions. (JN)

  5. Binary-Phase Fourier Gratings for Nonuniform Array Generation

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Crow, Robert W.; Ashley, Paul R.

    2003-01-01

    We describe a design method for a binary-phase Fourier grating that generates an array of spots with nonuniform, user-defined intensities symmetric about the zeroth order. Like the Dammann fanout grating approach, the binary-phase Fourier grating uses only two phase levels in its grating surface profile to generate the final spot array. Unlike the Dammann fanout grating approach, this method allows for the generation of nonuniform, user-defined intensities within the final fanout pattern. Restrictions governing the specification and realization of the array's individual spot intensities are discussed. Design methods used to realize the grating employ both simulated annealing and nonlinear optimization approaches to locate optimal solutions to the grating design problem. The end-use application driving this development operates in the near- to mid-infrared spectrum - allowing for higher resolution in grating specification and fabrication with respect to wavelength than may be available in visible spectrum applications. Fabrication of a grating generating a user-defined nine spot pattern is accomplished in GaAs for the near-infrared. Characterization of the grating is provided through the measurement of individual spot intensities, array uniformity, and overall efficiency. Final measurements are compared to calculated values with a discussion of the results.

  6. Whole-machine calibration approach for phased array radar with self-test

    NASA Astrophysics Data System (ADS)

    Shen, Kai; Yao, Zhi-Cheng; Zhang, Jin-Chang; Yang, Jian

    2017-06-01

    The performance of the missile-borne phased array radar is greatly influenced by the inter-channel amplitude and phase inconsistencies. In order to ensure its performance, the amplitude and the phase characteristics of radar should be calibrated. Commonly used methods mainly focus on antenna calibration, such as FFT, REV, etc. However, the radar channel also contains T / R components, channels, ADC and messenger. In order to achieve on-based phased array radar amplitude information for rapid machine calibration and compensation, we adopt a high-precision plane scanning test platform for phase amplitude test. A calibration approach for the whole channel system based on the radar frequency source test is proposed. Finally, the advantages and the application prospect of this approach are analysed.

  7. Current good manufacturing practice regulation and investigational new drugs. Direct final rule.

    PubMed

    2006-01-17

    The Food and Drug Administration (FDA) is amending its current good manufacturing practice (CGMP) regulations for human drugs, including biological products, to exempt most investigational "Phase 1" drugs from complying with the requirements in FDA's regulations. FDA will instead exercise oversight of production of these drugs under the agency's general statutory CGMP authority and investigational new drug application (IND) authority. In addition, FDA is making available simultaneously with the publication of this direct final rule, a guidance document setting forth recommendations on approaches to CGMP compliance for the exempted Phase 1 drugs. Elsewhere in this issue of the Federal Register, FDA is publishing a companion proposed rule, under FDA's usual procedure for notice-and-comment rulemaking, to provide a procedural framework to finalize the rule in the event the agency receives any significant adverse comments and withdraws this direct final rule. The companion proposed rule and direct final rule are substantively identical. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of a draft guidance for industry entitled "INDs--Approaches to Complying With CGMP During Phase 1" to provide further guidance on the subject.

  8. Surface operations usability study utilizing Capstone phase I avionics : quick look report

    DOT National Transportation Integrated Search

    2000-10-07

    Evaluate usability, suitability and acceptability of of the surface moving map implemented within Capstone Phase 1 Avionics for surface operations : Task 1: Airport Surface Situational Awareness (ASSA) : Task 2: Surface-Final Approach Runway Occupanc...

  9. Open Scenario Study, Phase I. Volume 1. Assessment Overview and Results

    DTIC Science & Technology

    2008-03-01

    review of resources and requirements necessary to implement the response and improving civil military relations. Money Laudering Presents local...or money ? C. PHASE ONE APPROACH To systematically address these kinds of questions, IDA pursued a three-part approach that included reviewing the...their organizations a significant amount of time or money ? B. INTERVIEW QUESTIONS The final sponsor-approved version of the interview questions

  10. Comparison of two head-up displays in simulated standard and noise abatement night visual approaches

    NASA Technical Reports Server (NTRS)

    Cronn, F.; Palmer, E. A., III

    1975-01-01

    Situation and command head-up displays were evaluated for both standard and two segment noise abatement night visual approaches in a fixed base simulation of a DC-8 transport aircraft. The situation display provided glide slope and pitch attitude information. The command display provided glide slope information and flight path commands to capture a 3 deg glide slope. Landing approaches were flown in both zero wind and wind shear conditions. For both standard and noise abatement approaches, the situation display provided greater glidepath accuracy in the initial phase of the landing approaches, whereas the command display was more effective in the final approach phase. Glidepath accuracy was greater for the standard approaches than for the noise abatement approaches in all phases of the landing approach. Most of the pilots preferred the command display and the standard approach. Substantial agreement was found between each pilot's judgment of his performance and his actual performance.

  11. Microgravity experiments of nano-satellite docking mechanism for final rendezvous approach and docking phase

    NASA Astrophysics Data System (ADS)

    Ui, Kyoichi; Matunaga, Saburo; Satori, Shin; Ishikawa, Tomohiro

    2005-09-01

    Laboratory for Space Systems (LSS), Tokyo Institute of Technology (Tokyo Tech) conducted three-dimensional microgravity environment experiments about a docking mechanism for mothership-daughtership (MS-DS) nano-satellite using the facility of Japan Micro Gravity Center (JAMIC) with Hokkaido Institute of Technology (HIT). LSS has studied and developed a docking mechanism for MS-DS nano-satellite system in final rendezvous approach and docking phase since 2000. Consideration of the docking mechanism is to mate a nano-satellite stably while remaining control error of relative velocity and attitude because it is difficult for nano-satellite to have complicated attitude control and mating systems. Objective of the experiments is to verify fundamental grasping function based on our proposed docking methodology. The proposed docking sequence is divided between approach/grasping phase and guiding phase. In the approach/grasping phase, the docking mechanism grasps the nano-satellite even though the nano-satellite has relative position and attitude control errors as well as relative velocity in a docking space. In the guiding function, the docking mechanism guides the nano-satellite to a docking port while adjusting its attitude in order to transfer electrical power and fuel to the nano-satellite. In the paper, we describe the experimental system including the docking mechanism, control system, the daughtership system and the release mechanism, and describe results of microgravity experiments in JAMIC.

  12. Impact of Transportation on the Environment and Quality of Life.

    ERIC Educational Resources Information Center

    Schuster, James J.

    This paper discusses the changing role of civil engineers in developed nations. Transportation facilities generally follow a four phase approach before construction: long range systems planning, corridor location study, design location study, and final preparation of plans. Traditional engineering education emphasized the latter two phases but now…

  13. Machine learning–enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors

    DOE PAGES

    Li, Linglong; Yang, Yaodong; Zhang, Dawei; ...

    2018-03-30

    Exploration of phase transitions and construction of associated phase diagrams are of fundamental importance for condensed matter physics and materials science alike, and remain the focus of extensive research for both theoretical and experimental studies. For the latter, comprehensive studies involving scattering, thermodynamics, and modeling are typically required. We present a new approach to data mining multiple realizations of collective dynamics, measured through piezoelectric relaxation studies, to identify the onset of a structural phase transition in nanometer-scale volumes, that is, the probed volume of an atomic force microscope tip. Machine learning is used to analyze the multidimensional data sets describingmore » relaxation to voltage and thermal stimuli, producing the temperature-bias phase diagram for a relaxor crystal without the need to measure (or know) the order parameter. The suitability of the approach to determine the phase diagram is shown with simulations based on a two-dimensional Ising model. Finally, these results indicate that machine learning approaches can be used to determine phase transitions in ferroelectrics, providing a general, statistically significant, and robust approach toward determining the presence of critical regimes and phase boundaries.« less

  14. Machine learning–enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Linglong; Yang, Yaodong; Zhang, Dawei

    Exploration of phase transitions and construction of associated phase diagrams are of fundamental importance for condensed matter physics and materials science alike, and remain the focus of extensive research for both theoretical and experimental studies. For the latter, comprehensive studies involving scattering, thermodynamics, and modeling are typically required. We present a new approach to data mining multiple realizations of collective dynamics, measured through piezoelectric relaxation studies, to identify the onset of a structural phase transition in nanometer-scale volumes, that is, the probed volume of an atomic force microscope tip. Machine learning is used to analyze the multidimensional data sets describingmore » relaxation to voltage and thermal stimuli, producing the temperature-bias phase diagram for a relaxor crystal without the need to measure (or know) the order parameter. The suitability of the approach to determine the phase diagram is shown with simulations based on a two-dimensional Ising model. Finally, these results indicate that machine learning approaches can be used to determine phase transitions in ferroelectrics, providing a general, statistically significant, and robust approach toward determining the presence of critical regimes and phase boundaries.« less

  15. A Novel High-Density Phase and Amorphization of Nitrogen-Rich 1H-Tetrazole (CH2N4) under High Pressure

    PubMed Central

    Li, Wenbo; Huang, Xiaoli; Bao, Kuo; Zhao, Zhonglong; Huang, Yanping; Wang, Lu; Wu, Gang; Zhou, Bo; Duan, Defang; Li, Fangfei; Zhou, Qiang; Liu, Bingbing; Cui, Tian

    2017-01-01

    The high-pressure behaviors of nitrogen-rich 1H-tetrazole (CH2N4) have been investigated by in situ synchrotron X-ray diffraction (XRD) and Raman scattering up to 75 GPa. A first crystalline-to-crystalline phase transition is observed and identified above ~3 GPa with a large volume collapse (∼18% at 4.4 GPa) from phase I to phase II. The new phase II forms a dimer-like structure, belonging to P1 space group. Then, a crystalline-to-amorphous phase transition takes place over a large pressure range of 13.8 to 50 GPa, which is accompanied by an interphase region approaching paracrystalline state. When decompression from 75 GPa to ambient conditions, the final product keeps an irreversible amorphous state. Our ultraviolet (UV) absorption spectrum suggests the final product exhibits an increase in molecular conjugation. PMID:28218236

  16. A Novel High-Density Phase and Amorphization of Nitrogen-Rich 1H-Tetrazole (CH2N4) under High Pressure.

    PubMed

    Li, Wenbo; Huang, Xiaoli; Bao, Kuo; Zhao, Zhonglong; Huang, Yanping; Wang, Lu; Wu, Gang; Zhou, Bo; Duan, Defang; Li, Fangfei; Zhou, Qiang; Liu, Bingbing; Cui, Tian

    2017-02-20

    The high-pressure behaviors of nitrogen-rich 1H-tetrazole (CH 2 N 4 ) have been investigated by in situ synchrotron X-ray diffraction (XRD) and Raman scattering up to 75 GPa. A first crystalline-to-crystalline phase transition is observed and identified above ~3 GPa with a large volume collapse (∼18% at 4.4 GPa) from phase I to phase II. The new phase II forms a dimer-like structure, belonging to P1 space group. Then, a crystalline-to-amorphous phase transition takes place over a large pressure range of 13.8 to 50 GPa, which is accompanied by an interphase region approaching paracrystalline state. When decompression from 75 GPa to ambient conditions, the final product keeps an irreversible amorphous state. Our ultraviolet (UV) absorption spectrum suggests the final product exhibits an increase in molecular conjugation.

  17. SUSTAINABLE MANAGEMENT APPROACHES AND REVITALIZATION TOOLS-ELECTRONIC (SMARTE): OVERVIEW AND DEMONSTRATION FOR FINAL PHASE 3 CONFERENCE

    EPA Science Inventory

    The U.S. contingent of the U.S.-German Bilateral Working Group is developing Sustainable Management Approaches and Revitalization Tools-electronic (SMARTe). SMARTe is a web-based, decision support system designed to assist stakeholders in developing and evaluating alternative reu...

  18. Gas-Liquid Processing in Microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.; Twitchell, Alvin

    Processing gases and liquids together in microchannels having at least one dimension <1 mm has unique advantages for rapid heat and mass transfer. One approach for managing the two phases is to use porous structures as wicks within microchannels to segregate the liquid phase from the gas phase. Gas-liquid processing is accomplished by providing a gas flow path and inducing flow of the liquid phase through or along the wick under an induced pressure gradient. A variety of unit operations are enabled, including phase separation, partial condensation, absorption, desorption, and distillation. Results are reported of an investigation of microchannel phasemore » separation in a transparent, single-channel device. Next, heat exchange is integrated with the microchannel wick approach to create a partial condenser that also separates the condensate. Finally, the scale-up to a multi-channel phase separator is described.« less

  19. Practical Implementation of Semi-Automated As-Built Bim Creation for Complex Indoor Environments

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Jung, J.; Heo, J.

    2015-05-01

    In recent days, for efficient management and operation of existing buildings, the importance of as-built BIM is emphasized in AEC/FM domain. However, fully automated as-built BIM creation is a tough issue since newly-constructed buildings are becoming more complex. To manage this problem, our research group has developed a semi-automated approach, focusing on productive 3D as-built BIM creation for complex indoor environments. In order to test its feasibility for a variety of complex indoor environments, we applied the developed approach to model the `Charlotte stairs' in Lotte World Mall, Korea. The approach includes 4 main phases: data acquisition, data pre-processing, geometric drawing, and as-built BIM creation. In the data acquisition phase, due to its complex structure, we moved the scanner location several times to obtain the entire point clouds of the test site. After which, data pre-processing phase entailing point-cloud registration, noise removal, and coordinate transformation was followed. The 3D geometric drawing was created using the RANSAC-based plane detection and boundary tracing methods. Finally, in order to create a semantically-rich BIM, the geometric drawing was imported into the commercial BIM software. The final as-built BIM confirmed that the feasibility of the proposed approach in the complex indoor environment.

  20. Isotropic scalar image visualization of vector differential image data using the inverse Riesz transform.

    PubMed

    Larkin, Kieran G; Fletcher, Peter A

    2014-03-01

    X-ray Talbot moiré interferometers can now simultaneously generate two differential phase images of a specimen. The conventional approach to integrating differential phase is unstable and often leads to images with loss of visible detail. We propose a new reconstruction method based on the inverse Riesz transform. The Riesz approach is stable and the final image retains visibility of high resolution detail without directional bias. The outline Riesz theory is developed and an experimentally acquired X-ray differential phase data set is presented for qualitative visual appraisal. The inverse Riesz phase image is compared with two alternatives: the integrated (quantitative) phase and the modulus of the gradient of the phase. The inverse Riesz transform has the computational advantages of a unitary linear operator, and is implemented directly as a complex multiplication in the Fourier domain also known as the spiral phase transform.

  1. Isotropic scalar image visualization of vector differential image data using the inverse Riesz transform

    PubMed Central

    Larkin, Kieran G.; Fletcher, Peter A.

    2014-01-01

    X-ray Talbot moiré interferometers can now simultaneously generate two differential phase images of a specimen. The conventional approach to integrating differential phase is unstable and often leads to images with loss of visible detail. We propose a new reconstruction method based on the inverse Riesz transform. The Riesz approach is stable and the final image retains visibility of high resolution detail without directional bias. The outline Riesz theory is developed and an experimentally acquired X-ray differential phase data set is presented for qualitative visual appraisal. The inverse Riesz phase image is compared with two alternatives: the integrated (quantitative) phase and the modulus of the gradient of the phase. The inverse Riesz transform has the computational advantages of a unitary linear operator, and is implemented directly as a complex multiplication in the Fourier domain also known as the spiral phase transform. PMID:24688823

  2. Designing and Implementing an "Intelligent" Multimedia Tutoring System for Repair Tasks: Final Report.

    ERIC Educational Resources Information Center

    Baggett, Patricia

    1989-01-01

    The first part of this document is the final report of a research project (1984-1989) on designing and implementing an intelligent multimedia tutoring system for repair tasks. The problem/goal and approach, equipment and implementation, experimental work, and results are discussed for three phases of research: (1) developing and testing an…

  3. Intelligent Control Systems Research

    NASA Technical Reports Server (NTRS)

    Loparo, Kenneth A.

    1994-01-01

    Results of a three phase research program into intelligent control systems are presented. The first phase looked at implementing the lowest or direct level of a hierarchical control scheme using a reinforcement learning approach assuming no a priori information about the system under control. The second phase involved the design of an adaptive/optimizing level of the hierarchy and its interaction with the direct control level. The third and final phase of the research was aimed at combining the results of the previous phases with some a priori information about the controlled system.

  4. Engaging students in a community of learning: Renegotiating the learning environment.

    PubMed

    Theobald, Karen A; Windsor, Carol A; Forster, Elizabeth M

    2018-03-01

    Promoting student engagement in a student led environment can be challenging. This article reports on the process of design, implementation and evaluation of a student led learning approach in a small group tutorial environment in a three year Bachelor of Nursing program at an Australian university. The research employed three phases of data collection. The first phase explored student perceptions of learning and engagement in tutorials. The results informed the development of a web based learning resource. Phase two centred on implementation of a community of learning approach where students were supported to lead tutorial learning with peers. The final phase constituted an evaluation of the new approach. Findings suggest that students have the capacity to lead and engage in a community of learning and to assume greater ownership and responsibility where scaffolding is provided. Nonetheless, an ongoing whole of course approach to pedagogical change would better support this form of teaching and learning innovation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

    NASA Astrophysics Data System (ADS)

    Khan, Faisal; Enzmann, Frieder; Kersten, Michael

    2016-03-01

    Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squares support vector machine (LS-SVM, an algorithm for pixel-based multi-phase classification) approach. A receiver operating characteristic (ROC) analysis was performed on BH-corrected and uncorrected samples to show that BH correction is in fact an important prerequisite for accurate multi-phase classification. The combination of the two approaches was thus used to classify successfully three different more or less complex multi-phase rock core samples.

  6. Knowledge-based support for the participatory design and implementation of shift systems.

    PubMed

    Gissel, A; Knauth, P

    1998-01-01

    This study developed a knowledge-based software system to support the participatory design and implementation of shift systems as a joint planning process including shift workers, the workers' committee, and management. The system was developed using a model-based approach. During the 1st phase, group discussions were repeatedly conducted with 2 experts. Thereafter a structure model of the process was generated and subsequently refined by the experts in additional semistructured interviews. Next, a factual knowledge base of 1713 relevant studies was collected on the effects of shift work. Finally, a prototype of the knowledge-based system was tested on 12 case studies. During the first 2 phases of the system, important basic information about the tasks to be carried out is provided for the user. During the 3rd phase this approach uses the problem-solving method of case-based reasoning to determine a shift rota which has already proved successful in other applications. It can then be modified in the 4th phase according to the shift workers' preferences. The last 2 phases support the final testing and evaluation of the system. The application of this system has shown that it is possible to obtain shift rotas suitable to actual problems and representative of good ergonomic solutions. A knowledge-based approach seems to provide valuable support for the complex task of designing and implementing a new shift system. The separation of the task into several phases, the provision of information at all stages, and the integration of all parties concerned seem to be essential factors for the success of the application.

  7. Investigation of wing crack formation with a combined phase-field and experimental approach

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyun; Reber, Jacqueline E.; Hayman, Nicholas W.; Wheeler, Mary F.

    2016-08-01

    Fractures that propagate off of weak slip planes are known as wing cracks and often play important roles in both tectonic deformation and fluid flow across reservoir seals. Previous numerical models have produced the basic kinematics of wing crack openings but generally have not been able to capture fracture geometries seen in nature. Here we present both a phase-field modeling approach and a physical experiment using gelatin for a wing crack formation. By treating the fracture surfaces as diffusive zones instead of as discontinuities, the phase-field model does not require consideration of unpredictable rock properties or stress inhomogeneities around crack tips. It is shown by benchmarking the models with physical experiments that the numerical assumptions in the phase-field approach do not affect the final model predictions of wing crack nucleation and growth. With this study, we demonstrate that it is feasible to implement the formation of wing cracks in large scale phase-field reservoir models.

  8. Microwave Landing System signal requirements for conventional aircraft

    DOT National Transportation Integrated Search

    1972-07-01

    The results of analysis directed towards determining Microwave Landing System (MLS) signal requirements for conventional aircraft are discussed. The phases of flight considered include straight-in final approach, flareout, and rollout. A limited numb...

  9. Positive train control desense mitigation test : research phase 1.

    DOT National Transportation Integrated Search

    2016-05-01

    Final report for Positive Train Control (PTC) Desense Mitigation Test Research project includes description of Northeast Corridor (NEC) PTC deployments, PTC radio desense scenarios, PTC radio desense mitigation approaches, PTC radio desense mitigatio...

  10. Warm ''pasta'' phase in the Thomas-Fermi approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avancini, Sidney S.; Menezes, Debora P.; Chiacchiera, Silvia

    In the present article, the 'pasta' phase is studied at finite temperatures within a Thomas-Fermi (TF) approach. Relativistic mean-field models, both with constant and density-dependent couplings, are used to describe this frustrated system. We compare the present results with previous ones obtained within a phase-coexistence description and conclude that the TF approximation gives rise to a richer inner ''pasta'' phase structure and the homogeneous matter appears at higher densities. Finally, the transition density calculated within TF is compared with the results for this quantity obtained with other methods.

  11. Automated solar panel assembly line

    NASA Technical Reports Server (NTRS)

    Somberg, H.

    1981-01-01

    The initial stage of the automated solar panel assembly line program was devoted to concept development and proof of approach through simple experimental verification. In this phase, laboratory bench models were built to demonstrate and verify concepts. Following this phase was machine design and integration of the various machine elements. The third phase was machine assembly and debugging. In this phase, the various elements were operated as a unit and modifications were made as required. The final stage of development was the demonstration of the equipment in a pilot production operation.

  12. Dual-scale phase-field simulation of Mg-Al alloy solidification

    NASA Astrophysics Data System (ADS)

    Monas, A.; Shchyglo, O.; Höche, D.; Tegeler, M.; Steinbach, I.

    2015-06-01

    Phase-field simulations of the nucleation and growth of primary α-Mg phase as well as secondary, β-phase of a Mg-Al alloy are presented. The nucleation model for α- and β-Mg phases is based on the “free growth model” by Greer et al.. After the α-Mg phase solidification we study a divorced eutectic growth of α- and β-Mg phases in a zoomed in melt channel between α-phase dendrites. The simulated cooling curves and final microstructures of α-grains are compared with experiments. In order to further enhance the resolution of the interdendritic region a high-performance computing approach has been used allowing significant simulation speed gain when using supercomputing facilities.

  13. Small Changes and Lasting Effects (SCALE) Trial: The Formation of a Weight Loss Behavioral Intervention Using EVOLVE

    PubMed Central

    Phillips-Caesar, Erica G.; Winston, Ginger; Peterson, Janey C.; Wansink, Brian; Devine, Carol M.; Kanna, Balavanketsh; Michelin, Walid; Wethington, Elaine; Wells, Martin; Hollenberg, James; Charlson, Mary E.

    2015-01-01

    Background Obesity is a major health problem that disproportionately affects Black and Hispanic adults. This paper presents the rationale and innovative design of a small change eating and physical activity intervention (SC) combined with a positive affect and self-affirmation (PA/SA) intervention versus the SC intervention alone for weight loss. Methods Using a mixed methods translational model (EVOLVE), we designed and tested a SC approach intervention in overweight and/ or obese African American and Hispanic adults. In Phase I, we explored participant’s values and beliefs about the small change approach. In Phase II, we tested and refined the intervention and then, in Phase III we conducted a RCT. Participants were randomized to the SC approach with PA/SA intervention vs. a SC approach alone for 12 months. The primary outcome was clinically significant weight loss at 12 months. Results Over 4.5 years a total of 574 participants (67 in Phase I, 102 in Phase II and 405 in Phase III) were enrolled. Phase I findings were used to create a workbook based on real life experiences about weight loss and to refine the small change eating strategies. Phase II results shaped the recruitment and retention strategy for the RCT, as well as the final intervention. The RCT results are currently under analysis. Conclusion The present study seeks to determine if a SC approach combined with a PA/SA intervention will result in greater weight loss at 12 months in Black and Hispanic adults compared to a SC approach alone. PMID:25633208

  14. Symmetry breaking in occupation number based slave-particle methods

    NASA Astrophysics Data System (ADS)

    Georgescu, Alexandru B.; Ismail-Beigi, Sohrab

    2017-10-01

    We describe a theoretical approach to finding spontaneously symmetry-broken electronic phases due to strong electronic interactions when using recently developed slave-particle (slave-boson) approaches based on occupation numbers. We describe why, to date, spontaneous symmetry breaking has proven difficult to achieve in such approaches. We then provide a total energy based approach for introducing auxiliary symmetry-breaking fields into the solution of the slave-particle problem that leads to lowered total energies for symmetry-broken phases. We point out that not all slave-particle approaches yield energy lowering: the slave-particle model being used must explicitly describe the degrees of freedom that break symmetry. Finally, our total energy approach permits us to greatly simplify the formalism used to achieve a self-consistent solution between spinon and slave modes while increasing the numerical stability and greatly speeding up the calculations.

  15. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexandre

    2012-01-01

    This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

  16. Mars Science Laboratory Spacecraft During Cruise, Artist Concept

    NASA Image and Video Library

    2011-10-03

    This is an artist concept of NASA Mars Science Laboratory spacecraft during its cruise phase between launch and final approach to Mars. The spacecraft includes a disc-shaped cruise stage on the left attached to the aeroshell.

  17. Liquid-feed flame spray pyrolysis synthesis of oxide nanopowders for the processing of ceramic composites

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan John

    In the liquid-feed flame spray pyrolysis (LF-FSP) process, alcohol solutions of metalloorganic precursors are aerosolized by O2 and combusted. The metal oxide combustion products are rapidly quenched (< 10 ms) from flame temperatures of 1500°C to temperatures < 400° C, limiting particle growth. The resulting nanopowders are typically agglomerated but unaggregated. Here, we demonstrate two processing approaches to dense materials: nanopowders with the exact composition, and mixed single metal oxide nanopowders. The effect of the initial degree of phase separation on the final microstructures was determined by sintering studies. Our first studies included the production of yttrium aluminum garnet, Y3Al5O12 (YAG), tubes which we extruded from a thermoplastic/ceramic blend. At equivalent final densities, we found finer grain sizes in the from the mixed Y2O3 and Al2 O3 nanopowders, which was attributed to densification occurring before full transformation to the YAG phase. The enhanced densification in production of pure YAG from the reactive sintering process led us to produce composites in the YAG/alpha-Al 2O3 system. Finally, a third Y2O3 stabilized ZrO2 (YSZ) phase was added to further refine grain sizes using the same two processing approaches. In a separate study, single-phase metastable Al2O3 rich spinels with the composition MO•3Al 2O3 where M = Mg, Ni, and Co were sintered to produce dense MAl2O4/alpha-Al2O3 composites. All of these studies provide a test of the bottom-up approach; that is, how the initial length scale of mixing affects the final composite microstructure. Overall, the length scale of mixing is highly dependent upon the specific oxide composites studied. This work provides a processing framework to be adopted by other researchers to further refine microstructural size. LF-FSP flame temperatures were mapped using different alcohols with different heats of combustion: methanol, ethanol, 1-propanol, and n-butanol. The effect of different alcohols on particle size and phase was determined through studies on Al2O3, Y2O3 and TiO2 nanopowders. The final studies describe the morphology of composite nanopowders produced in the WO3-TiO2 and CuO-TiO2 systems. The composite nanopowders have novel morphology, and may offer novel electronic, optical, or catalytic properties.

  18. Active traffic management case study: phase 1 : final report.

    DOT National Transportation Integrated Search

    2016-03-01

    This study developed a systematic approach for using data from multiple sources to provide active traffic management : solutions. The feasibility of two active traffic management solutions is analyzed in this report: ramp-metering and real-time : cra...

  19. Technical approach to groundwater restoration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    The Technical Approach to Groundwater Restoration (TAGR) provides general technical guidance to implement the groundwater restoration phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The TAGR includes a brief overview of the surface remediation and groundwater restoration phases of the UMTRA Project and describes the regulatory requirements, the National Environmental Policy Act (NEPA) process, and regulatory compliance. A section on program strategy discusses program optimization, the role of risk assessment, the observational approach, strategies for meeting groundwater cleanup standards, and remedial action decision-making. A section on data requirements for groundwater restoration evaluates the data quality objectives (DQO) andmore » minimum data required to implement the options and comply with the standards. A section on sits implementation explores the development of a conceptual site model, approaches to site characterization, development of remedial action alternatives, selection of the groundwater restoration method, and remedial design and implementation in the context of site-specific documentation in the site observational work plan (SOWP) and the remedial action plan (RAP). Finally, the TAGR elaborates on groundwater monitoring necessary to evaluate compliance with the groundwater cleanup standards and protection of human health and the environment, and outlines licensing procedures.« less

  20. An introduction to shuttle/LDEF retrieval operations: The R-bar approach option. [orbital mechanics and braking schedule

    NASA Technical Reports Server (NTRS)

    Hall, W. M.

    1978-01-01

    Simulated orbiter direct approaches during long duration exposure facility (LDEF) retrieval operations reveal that the resultant orbiter jet plume fields can significantly disturb LDEF. An alternate approach technique which utilizes orbital mechanics forces in lieu of jets to brake the final orbiter/LDEF relative motion during the final approach, is described. Topics discussed include: rendezvous operations from the terminal phase initiation burn through braking at some standoff distance from LDEF, pilot and copilot activities, the cockpit instrumentation employed, and a convenient coordinate frame for studying the relative motion between two orbiting bodies. The basic equations of motion for operating on the LDEF radius vector are introduced. Practical considerations of implementing an R-bar approach, namely, orbiter/LDEF relative state uncertainties and orbiter control system limitations are explored. A possible R-bar approach strategy is developed and demonstrated.

  1. Entry, Descent, and Landing Operations Analysis for the Mars Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Desai, Prasun N.; Queen, Eric M.; Grover, Myron R.

    2008-01-01

    The Mars Phoenix lander was launched August 4, 2007 and remained in cruise for ten months before landing in the northern plains of Mars in May 2008. The one-month Entry, Descent, and Landing (EDL) operations phase prior to entry consisted of daily analyses, meetings, and decisions necessary to determine if trajectory correction maneuvers and environmental parameter updates to the spacecraft were required. An overview of the Phoenix EDL trajectory simulation and analysis that was performed during the EDL approach and operations phase is described in detail. The evolution of the Monte Carlo statistics and footprint ellipse during the final approach phase is also provided. The EDL operations effort accurately delivered the Phoenix lander to the desired landing region on May 25, 2008.

  2. Radiation-hardened backside-illuminated 512 x 512 charge-coupled device

    NASA Astrophysics Data System (ADS)

    Bates, Philip A.; Levine, Peter A.; Sauer, Donald J.; Hsueh, Fu-Lung; Shallcross, Frank V.; Smeltzer, Ronald K.; Meray, Grazyna M.; Taylor, Gordon C.; Tower, John R.

    1995-04-01

    A four-port 512 X 512 charge coupled device (CCD) imager hardened against proton displacement damage and total dose degradation has been fabricated and tested. The device is based upon an established thinned, backside illuminated, triple polysilicon, buried channel CCD process technology. The technology includes buried blooming drains. A three step approach has been taken to hardening the device. The first phase addressed hardening against proton displacement damage. The second phase addressed hardening against both proton displacement damage and total dose degradation. The third phase addresses final optimization of the design. Test results from the first and second phase efforts are presented. Plans for the third phase are discussed.

  3. [Risk management project: reactive or proactive approach?].

    PubMed

    Vastola, Pasquale; Saracino, Donato M T

    2006-01-01

    Risk management in healthcare refers to the process of developing strategies aimed at preventing and controlling the risk of occurrence of errors and harmful events. The final objective is primarily that of increasing patient safety and secondarily, that of reducing the financial burden of adverse events. The implementation of a risk management system is therefore of vital strategic importance. Nevertheless, a fundamental question that needs to be answered in the operational phase is: should a proactive or reactive approach to risk management be taken? In our view, proactive risk management has many advantages over a reactive approach and is therefore preferable. The reactive approach should be taken exclusively to obtain information regarding risk and errors, in the preliminary, as well as monitoring and follow-up phases of the project.

  4. A simple and versatile phase detector for heterodyne interferometers

    NASA Astrophysics Data System (ADS)

    Mlynek, A.; Faugel, H.; Eixenberger, H.; Pautasso, G.; Sellmair, G.

    2017-02-01

    The measurement of the relative phase of two sinusoidal electrical signals is a frequently encountered task in heterodyne interferometry, but also occurs in many other applications. Especially in interferometry, multi-radian detectors are often required, which track the temporal evolution of the phase difference and are able to register phase changes that exceed 2π. While a large variety of solutions to this problem is already known, we present an alternative approach, which pre-processes the signals with simple analog circuitry and digitizes two resulting voltages with an analog-to-digital converter (ADC), whose sampling frequency can be far below the frequency of the sinusoidal signals. Phase reconstruction is finally carried out by software. The main advantage of this approach is its simplicity, using only few low-cost hardware components and a standard 2-channel ADC with low performance requirements. We present an application on the two-color interferometer of the ASDEX Upgrade tokamak, where the relative phase of 40 MHz sinusoids is measured.

  5. Automatic Cell Segmentation Using a Shape-Classification Model in Immunohistochemically Stained Cytological Images

    NASA Astrophysics Data System (ADS)

    Shah, Shishir

    This paper presents a segmentation method for detecting cells in immunohistochemically stained cytological images. A two-phase approach to segmentation is used where an unsupervised clustering approach coupled with cluster merging based on a fitness function is used as the first phase to obtain a first approximation of the cell locations. A joint segmentation-classification approach incorporating ellipse as a shape model is used as the second phase to detect the final cell contour. The segmentation model estimates a multivariate density function of low-level image features from training samples and uses it as a measure of how likely each image pixel is to be a cell. This estimate is constrained by the zero level set, which is obtained as a solution to an implicit representation of an ellipse. Results of segmentation are presented and compared to ground truth measurements.

  6. Failure of riprap protection : phase II (final report).

    DOT National Transportation Integrated Search

    2008-06-01

    Riprap rundowns are often used by the New Mexico Department of Transportation (NMDOT) to : capture and drain the runoff approaching or leaving bridge decks. Rundowns are generally located at : the ends of a bridge deck to transport the water down the...

  7. Optical analysis of laser systems using interferometry

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Liberman, I.; Lawrence, G.; Seery, B. D.

    1980-06-01

    It is noted that previous approaches of predicting focal spot parameters involved the digitization of interference patterns of the optical components and propagation of the complex amplitude and phase of the wave front throughout the system. The present paper describes an approach in which the computational procedure is extended to produce computer plots of the final emerging wave front. It is shown that this enables direct comparison with the experimentally produced wave front of the total system and makes possible the optical analysis, design, and possible optimization of laser systems. A description is given of the computational procedure and the Twyman-Green and Smartt IR interferometers constructed to verify this approach. Finally, consideration is given to the implications of the results.

  8. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less

  9. Quantitative phase retrieval with arbitrary pupil and illumination

    DOE PAGES

    Claus, Rene A.; Naulleau, Patrick P.; Neureuther, Andrew R.; ...

    2015-10-02

    We present a general algorithm for combining measurements taken under various illumination and imaging conditions to quantitatively extract the amplitude and phase of an object wave. The algorithm uses the weak object transfer function, which incorporates arbitrary pupil functions and partially coherent illumination. The approach is extended beyond the weak object regime using an iterative algorithm. Finally, we demonstrate the method on measurements of Extreme Ultraviolet Lithography (EUV) multilayer mask defects taken in an EUV zone plate microscope with both a standard zone plate lens and a zone plate implementing Zernike phase contrast.

  10. USDOT guidance summary for connected vehicle pilot site deployments: security operational concept : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    This document provides guidance material in regards to security for the CV Pilots Deployment Concept Development Phase. An approach for developing the security operational concept is presented based on identifying the impacts of security breaches reg...

  11. Phase II Final Report on an Intelligent Tutoring System for Teaching Battlefield Command Reasoning Skills

    DTIC Science & Technology

    2004-03-01

    and current work is that most developers see unstructured language input as a useful complement to a Socratic tutoring approach. The general...demonstrating the possibility of Socratic tactical tutoring, led us , during the second half of our Phase II effort, away from unrestricted natural language ... language use . This often leads to faster, more useful processing, that is robust in the face of real-world input (ungrammatical, misspelled, or

  12. The education of attention as explanation of variability of practice effects: learning the final approach phase in a flight simulator.

    PubMed

    Huet, Michaël; Jacobs, David M; Camachon, Cyril; Missenard, Olivier; Gray, Rob; Montagne, Gilles

    2011-12-01

    The present study reports two experiments in which a total of 20 participants without prior flight experience practiced the final approach phase in a fixed-base simulator. All participants received self-controlled concurrent feedback during 180 practice trials. Experiment 1 shows that participants learn more quickly under variable practice conditions than under constant practice conditions. This finding is attributed to the education of attention to the more useful informational variables: Variability of practice reduces the usefulness of initially used informational variables, which leads to a quicker change in variable use, and hence to a larger improvement in performance. In the practice phase of Experiment 2 variability was selectively applied to some experimental factors but not to others. Participants tended to converge toward the variables that were useful in the specific conditions that they encountered during practice. This indicates that an explanation for variability of practice effects in terms of the education of attention is a useful alternative to traditional explanations based on the notion of the generalized motor program and to explanations based on the notions of noise and local minima.

  13. Modeling of microstructure evolution in direct metal laser sintering: A phase field approach

    NASA Astrophysics Data System (ADS)

    Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev

    2017-02-01

    Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.

  14. Intergrated Systems Biology Approach for Ovarian Cancer Biomarker Discovery — EDRN Public Portal

    Cancer.gov

    The overall objective is to validate serum protein markers for early diagnosis of ovarian cancer with the ultimate goal being to develop a multiparametric panel consisting of 2-4 novel markers with 10 known markers for phase 3 analysis. In phase 1, we will screen for markers able to pass a threshold of 98% specificity and 30% sensitivity in a cohort of 300 women. Markers that pass phase 1 validation will be investigated in a phase 2 PRoBE cohort with a 98% specificity and 70% sensitivity cut-off. Finally, markers that pass phase 2 validation will be evaluated in EDRN CVC laboratory specimens with a cut-off of > 98% specificity and 90% sensitivity.

  15. Nanoscale phase change memory materials.

    PubMed

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  16. Nocturnal Visual Orientation in Flying Insects: A Benchmark for the Design of Vision-based Sensors in Micro-Aerial Vehicles

    DTIC Science & Technology

    2011-03-12

    determine (1) the ability of Megalopta to approach and land on its nest entrance at night (using high-speed filming in bright infrared light), (2...lined with black-and-white patterns and filming their flight trajectories from below in infrared light), and (3) whether Megalopta uses...at the end of a flight tunnel so that we could record both the approach and the final landing phase (Figure 1). The approach was filmed over a

  17. ERISTAR: Earth Resources Information Storage, Transformation, Analysis, and Retrieval administrative report

    NASA Technical Reports Server (NTRS)

    Vachon, R. I.; Obrien, J. F., Jr.; Lueg, R. E.; Cox, J. E.

    1972-01-01

    The 1972 Systems Engineering program at Marshall Space Flight Center where 15 participants representing 15 U.S. universities, 1 NASA/MSFC employee, and another specially assigned faculty member, participated in an 11-week program is discussed. The Fellows became acquainted with the philosophy of systems engineering, and as a training exercise, used this approach to produce a conceptional design for an Earth Resources Information Storage, Transformation, Analysis, and Retrieval System. The program was conducted in three phases; approximately 3 weeks were devoted to seminars, tours, and other presentations to subject the participants to technical and other aspects of the information management problem. The second phase, 5 weeks in length, consisted of evaluating alternative solutions to problems, effecting initial trade-offs and performing preliminary design studies and analyses. The last 3 weeks were occupied with final trade-off sessions, final design analyses and preparation of a final report and oral presentation.

  18. A Cascaded Approach for Correcting Ionospheric Contamination with Large Amplitude in HF Skywave Radars

    PubMed Central

    Wei, Yinsheng; Guo, Rujiang; Xu, Rongqing; Tang, Xiudong

    2014-01-01

    Ionospheric phase perturbation with large amplitude causes broadening sea clutter's Bragg peaks to overlap each other; the performance of traditional decontamination methods about filtering Bragg peak is poor, which greatly limits the detection performance of HF skywave radars. In view of the ionospheric phase perturbation with large amplitude, this paper proposes a cascaded approach based on improved S-method to correct the ionospheric phase contamination. This approach consists of two correction steps. At the first step, a time-frequency distribution method based on improved S-method is adopted and an optimal detection method is designed to obtain a coarse ionospheric modulation estimation from the time-frequency distribution. At the second correction step, based on the phase gradient algorithm (PGA) is exploited to eliminate the residual contamination. Finally, use the measured data to verify the effectiveness of the method. Simulation results show the time-frequency resolution of this method is high and is not affected by the interference of the cross term; ionospheric phase perturbation with large amplitude can be corrected in low signal-to-noise (SNR); such a cascade correction method has a good effect. PMID:24578656

  19. General approach and scope. [rotor blade design optimization

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    This paper describes a joint activity involving NASA and Army researchers at the NASA Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure will be closely coupled, while acoustics and airframe dynamics will be decoupled and be accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is to be integrated with the first three disciplines. Finally, in phase 3, airframe dynamics will be fully integrated with the other four disciplines. This paper deals with details of the phase 1 approach and includes details of the optimization formulation, design variables, constraints, and objective function, as well as details of discipline interactions, analysis methods, and methods for validating the procedure.

  20. Galaxy Classroom Project Evaluation, Language Arts, Grades 3-5. Final Report.

    ERIC Educational Resources Information Center

    Guth, Gloria J. A.; Block, Clifford

    The GALAXY Language Arts Demonstration Program is a package of integrated curricular and instructional approaches that features the organization of instruction around themes presented through television broadcasts, children's literature, classroom activities, and the use of interactive technology. During the GALAXY Project demonstration phase for…

  1. Surface Stability and Growth Kinetics of Compound Semiconductors: An Ab Initio-Based Approach

    PubMed Central

    Kangawa, Yoshihiro; Akiyama, Toru; Ito, Tomonori; Shiraishi, Kenji; Nakayama, Takashi

    2013-01-01

    We review the surface stability and growth kinetics of III-V and III-nitride semiconductors. The theoretical approach used in these studies is based on ab initio calculations and includes gas-phase free energy. With this method, we can investigate the influence of growth conditions, such as partial pressure and temperature, on the surface stability and growth kinetics. First, we examine the feasibility of this approach by comparing calculated surface phase diagrams of GaAs(001) with experimental results. In addition, the Ga diffusion length on GaAs(001) during molecular beam epitaxy is discussed. Next, this approach is systematically applied to the reconstruction, adsorption and incorporation on various nitride semiconductor surfaces. The calculated results for nitride semiconductor surface reconstructions with polar, nonpolar, and semipolar orientations suggest that adlayer reconstructions generally appear on the polar and the semipolar surfaces. However, the stable ideal surface without adsorption is found on the nonpolar surfaces because the ideal surface satisfies the electron counting rule. Finally, the stability of hydrogen and the incorporation mechanisms of Mg and C during metalorganic vapor phase epitaxy are discussed. PMID:28811438

  2. Multiscale Analysis of Time Irreversibility Based on Phase-Space Reconstruction and Horizontal Visibility Graph Approach

    NASA Astrophysics Data System (ADS)

    Zhang, Yongping; Shang, Pengjian; Xiong, Hui; Xia, Jianan

    Time irreversibility is an important property of nonequilibrium dynamic systems. A visibility graph approach was recently proposed, and this approach is generally effective to measure time irreversibility of time series. However, its result may be unreliable when dealing with high-dimensional systems. In this work, we consider the joint concept of time irreversibility and adopt the phase-space reconstruction technique to improve this visibility graph approach. Compared with the previous approach, the improved approach gives a more accurate estimate for the irreversibility of time series, and is more effective to distinguish irreversible and reversible stochastic processes. We also use this approach to extract the multiscale irreversibility to account for the multiple inherent dynamics of time series. Finally, we apply the approach to detect the multiscale irreversibility of financial time series, and succeed to distinguish the time of financial crisis and the plateau. In addition, Asian stock indexes away from other indexes are clearly visible in higher time scales. Simulations and real data support the effectiveness of the improved approach when detecting time irreversibility.

  3. Digital image profilers for detecting faint sources which have bright companions, phase 2

    NASA Technical Reports Server (NTRS)

    Morris, Elena; Flint, Graham

    1991-01-01

    A breadboard image profiling system developed for the first phase of this project demonstrated the potential for detecting extremely faint optical sources in the presence of light companions. Experimental data derived from laboratory testing of the device supports the theory that image profilers of this type may approach the theoretical limit imposed by photon statistics. The objective of Phase 2 of this program is the development of a ground-based multichannel image profiling system capable of detecting faint stellar objects slightly displaced from brighter stars. We have finalized the multichannel image profiling system and attempted three field tests.

  4. Single pilot IFR operating problems determined from accidental data analysis

    NASA Technical Reports Server (NTRS)

    Forsyth, D. L.; Shaughnessy, J. D.

    1978-01-01

    The accident reports examined were restricted to instrument rated pilots flying in IFR weather. A brief examination was made of accidents which occurred during all phases of flight and which were due to all causes. A detailed examination was made of those accidents which involved a single pilot which occurred during the landing phases of flight, and were due to pilot error. Problem areas found include: (1) landing phase operations especially final approach, (2) pilot weather briefings, (3) night approaches in low IFR weather, (4) below minimum approaches, (5) aircraft icing, (6) imprecise navigation, (7) descending below minimum IFR altitudes, (8) fuel mismanagement, (9) pilot overconfidence, and (10) high pilot workload especially in twins. Some suggested areas of research included: (1) low cost deicing systems, (2) standardized navigation displays, (3) low cost low-altitude warning systems, (4) improved fuel management systems, (5) improved ATC communications, (6) more effective pilot training and experience acquisition methods, and (7) better weather data dissemination techniques.

  5. First-order system least squares and the energetic variational approach for two-phase flow

    NASA Astrophysics Data System (ADS)

    Adler, J. H.; Brannick, J.; Liu, C.; Manteuffel, T.; Zikatanov, L.

    2011-07-01

    This paper develops a first-order system least-squares (FOSLS) formulation for equations of two-phase flow. The main goal is to show that this discretization, along with numerical techniques such as nested iteration, algebraic multigrid, and adaptive local refinement, can be used to solve these types of complex fluid flow problems. In addition, from an energetic variational approach, it can be shown that an important quantity to preserve in a given simulation is the energy law. We discuss the energy law and inherent structure for two-phase flow using the Allen-Cahn interface model and indicate how it is related to other complex fluid models, such as magnetohydrodynamics. Finally, we show that, using the FOSLS framework, one can still satisfy the appropriate energy law globally while using well-known numerical techniques.

  6. Industrial applications study. Volume V. Bibliography of relevant literature. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Harry L.; Hamel, Bernard B.; Karamchetty, Som

    1976-12-01

    This five-volume report represents an initial Phase O evaluation of waste heat recovery and utilization potential in the manufacturing portion of the industrial sector. The scope of this initial phase was limited to the two-digit SIC level and addressed the feasibility of obtaining in-depth energy information in the industrial sector. Within this phase, a successful methodology and approaches for data gathering and assessment are established. Using these approaches, energy use and waste heat profiles were developed at the 2-digit level; with this data, waste heat utilization technologies were evaluated. The first section of the bibliography lists extensive citations for allmore » industries. The next section is composed of an extensive literature search with abstracts for industrial energy conservation. EPA publications on specific industries and general references conclude the publication. (MCW)« less

  7. GLISTRboost: Combining Multimodal MRI Segmentation, Registration, and Biophysical Tumor Growth Modeling with Gradient Boosting Machines for Glioma Segmentation.

    PubMed

    Bakas, Spyridon; Zeng, Ke; Sotiras, Aristeidis; Rathore, Saima; Akbari, Hamed; Gaonkar, Bilwaj; Rozycki, Martin; Pati, Sarthak; Davatzikos, Christos

    2016-01-01

    We present an approach for segmenting low- and high-grade gliomas in multimodal magnetic resonance imaging volumes. The proposed approach is based on a hybrid generative-discriminative model. Firstly, a generative approach based on an Expectation-Maximization framework that incorporates a glioma growth model is used to segment the brain scans into tumor, as well as healthy tissue labels. Secondly, a gradient boosting multi-class classification scheme is used to refine tumor labels based on information from multiple patients. Lastly, a probabilistic Bayesian strategy is employed to further refine and finalize the tumor segmentation based on patient-specific intensity statistics from the multiple modalities. We evaluated our approach in 186 cases during the training phase of the BRAin Tumor Segmentation (BRATS) 2015 challenge and report promising results. During the testing phase, the algorithm was additionally evaluated in 53 unseen cases, achieving the best performance among the competing methods.

  8. Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review

    PubMed Central

    Liu, Jianyi; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-01-01

    This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc.) that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads. PMID:28788198

  9. Comparison of phasing strategies for whole human genomes

    PubMed Central

    Kirkness, Ewen; Schork, Nicholas J.

    2018-01-01

    Humans are a diploid species that inherit one set of chromosomes paternally and one homologous set of chromosomes maternally. Unfortunately, most human sequencing initiatives ignore this fact in that they do not directly delineate the nucleotide content of the maternal and paternal copies of the 23 chromosomes individuals possess (i.e., they do not ‘phase’ the genome) often because of the costs and complexities of doing so. We compared 11 different widely-used approaches to phasing human genomes using the publicly available ‘Genome-In-A-Bottle’ (GIAB) phased version of the NA12878 genome as a gold standard. The phasing strategies we compared included laboratory-based assays that prepare DNA in unique ways to facilitate phasing as well as purely computational approaches that seek to reconstruct phase information from general sequencing reads and constructs or population-level haplotype frequency information obtained through a reference panel of haplotypes. To assess the performance of the 11 approaches, we used metrics that included, among others, switch error rates, haplotype block lengths, the proportion of fully phase-resolved genes, phasing accuracy and yield between pairs of SNVs. Our comparisons suggest that a hybrid or combined approach that leverages: 1. population-based phasing using the SHAPEIT software suite, 2. either genome-wide sequencing read data or parental genotypes, and 3. a large reference panel of variant and haplotype frequencies, provides a fast and efficient way to produce highly accurate phase-resolved individual human genomes. We found that for population-based approaches, phasing performance is enhanced with the addition of genome-wide read data; e.g., whole genome shotgun and/or RNA sequencing reads. Further, we found that the inclusion of parental genotype data within a population-based phasing strategy can provide as much as a ten-fold reduction in phasing errors. We also considered a majority voting scheme for the construction of a consensus haplotype combining multiple predictions for enhanced performance and site coverage. Finally, we also identified DNA sequence signatures associated with the genomic regions harboring phasing switch errors, which included regions of low polymorphism or SNV density. PMID:29621242

  10. Phase Transition between Black and Blue Phosphorenes: A Quantum Monte Carlo Study

    NASA Astrophysics Data System (ADS)

    Li, Lesheng; Yao, Yi; Reeves, Kyle; Kanai, Yosuke

    Phase transition of the more common black phosphorene to blue phosphorene is of great interest because they are predicted to exhibit unique electronic and optical properties. However, these two phases are predicted to be separated by a rather large energy barrier. In this work, we study the transition pathway between black and blue phosphorenes by using the variable cell nudge elastic band method combined with density functional theory calculation. We show how diffusion quantum Monte Carlo method can be used for determining the energetics of the phase transition and demonstrate the use of two approaches for removing finite-size errors. Finally, we predict how applied stress can be used to control the energetic balance between these two different phases of phosphorene.

  11. Market Assessment For Traveler Services, A Choice Modeling Study Phase Iii, Fast-Trac Deliverable, #16B: Final Choice Modeling Report

    DOT National Transportation Integrated Search

    1999-02-12

    FAST-TRAC : THIS REPORT DESCRIBES THE CHOICE MODEL STUDY OF THE FAST-TRAC (FASTER AND SAFER TRAVEL THROUGH TRAFFIC ROUTING AND ADVANCED CONTROLS) OPERATIONAL TEST IN SOUTHEAST MICHIGAN. CHOICE MODELING IS A STATED-PREFERENCE APPROACH IN WHICH RESP...

  12. A Novel Approach to Chemical Communications

    DTIC Science & Technology

    2010-06-17

    of droplets in the microfludic circuit. Figure 4. Generation of droplets in the microfludic circuit. Figure 5. Space-time plots showing anti-phase... microfludic circuit. Final Report W911NF-07-1-0639 Page 11 Table 2. A sampling of microfluidics experiments Fluid1 for drop genera- tion Fluid2

  13. SIMULTANEOUS PARTICLE AND MOLECULE MODELING (SPAMM): AN APPROACH FOR COMBINING SECTIONAL AEROSOL EQUATIONS AND ELEMENTARY GAS-PHASE REACTIONS. (R824970)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. A Key to Creativity: Children Write for Children.

    ERIC Educational Resources Information Center

    Caulfield, Jane

    1984-01-01

    A program in which very able older (14- to 15-year-olds) students write for younger ones (5- to 7-year-olds) features six-phase approach that includes composition of an idea, illustrations, the manufacturing process, optional animation, preview and publishing, and presentation of the final product. (CL)

  15. Certification of computational results

    NASA Technical Reports Server (NTRS)

    Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.

    1993-01-01

    A conceptually novel and powerful technique to achieve fault detection and fault tolerance in hardware and software systems is described. When used for software fault detection, this new technique uses time and software redundancy and can be outlined as follows. In the initial phase, a program is run to solve a problem and store the result. In addition, this program leaves behind a trail of data called a certification trail. In the second phase, another program is run which solves the original problem again. This program, however, has access to the certification trail left by the first program. Because of the availability of the certification trail, the second phase can be performed by a less complex program and can execute more quickly. In the final phase, the two results are compared and if they agree the results are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is that the second program must always generate either an error indication or a correct output even when the certification trail it receives from the first program is incorrect. The certification trail approach to fault tolerance is formalized and realizations of it are illustrated by considering algorithms for the following problems: convex hull, sorting, and shortest path. Cases in which the second phase can be run concurrently with the first and act as a monitor are discussed. The certification trail approach are compared to other approaches to fault tolerance.

  16. NASA/ARMY/BELL XV-15 Tiltrotor Low-Noise Terminal Area Operations Flight Research Program

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan D.; Conner, David A.; Decker, William A.; Marcolini, Michael A.; Klein, Peter D.

    2001-01-01

    To evaluate the noise reduction potential for tiltrotor aircraft, a series of three XV- 15 acoustic flight tests were conducted over a five-year period by a NASA/Army/Bell Helicopter team. Lower hemispherical noise characteristics for a wide range of steady-state terminal area type operating conditions were measured during the Phase I test and indicated that the takeoff and level flight conditions were not significant contributors to the total noise of tiltrotor operations. Phase I results were also used to design low-noise approach profiles that were tested later during the Phase 2 and Phase 3 tests. These latter phases used large area microphone arrays to directly measure ground noise footprints. Approach profiles emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. This paper will discuss the weather, aircraft, tracking, guidance, and acoustic instrumentation systems, as well as the approach profile design philosophy, and the overall test program philosophy. Acoustic results are presented to document the variation in tiltrotor noise due to changes in operating condition, indicating the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt. Recommendations are made for a final XV-15 test to define the acoustic benefits of the automated approach capability which has recently been added to this testbed aircraft.

  17. A structural topological optimization method for multi-displacement constraints and any initial topology configuration

    NASA Astrophysics Data System (ADS)

    Rong, J. H.; Yi, J. H.

    2010-10-01

    In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multi- displacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.

  18. Status Update on the NCRP Scientific Committee SC 5-1 Report: Decision Making for Late-Phase Recovery from Nuclear or Radiological Incidents - 13450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.Y.

    2013-07-01

    In August 2008, the U.S. Department of Homeland Security (DHS) issued its final Protective Action Guide (PAG) for radiological dispersal device (RDD) and improvised nuclear device (IND) incidents. This document specifies protective actions for public health during the early and intermediate phases and cleanup guidance for the late phase of RDD or IND incidents, and it discusses approaches to implementing the necessary actions. However, while the PAG provides specific guidance for the early and intermediate phases, it prescribes no equivalent guidance for the late-phase cleanup actions. Instead, the PAG offers a general description of a complex process using a site-specificmore » optimization approach. This approach does not predetermine cleanup levels but approaches the problem from the factors that would bear on the final agreed-on cleanup levels. Based on this approach, the decision-making process involves multifaceted considerations including public health, the environment, and the economy, as well as socio-political factors. In an effort to fully define the process and approach to be used in optimizing late-phase recovery and site restoration following an RDD or IND incident, DHS has tasked the NCRP with preparing a comprehensive report addressing all aspects of the optimization process. Preparation of the NCRP report is a three-year (2010-2013) project assigned to a scientific committee, the Scientific Committee (SC) 5-1; the report was initially titled, Approach to Optimizing Decision Making for Late- Phase Recovery from Nuclear or Radiological Terrorism Incidents. Members of SC 5-1 represent a broad range of expertise, including homeland security, health physics, risk and decision analysis, economics, environmental remediation and radioactive waste management, and communication. In the wake of the Fukushima nuclear accident of 2011, and guided by a recent process led by the White House through a Principal Level Exercise (PLE), the optimization approach has since been expanded to include off-site contamination from major nuclear power plant accidents as well as other nuclear or radiological incidents. The expanded application under the current guidance has thus led to a broadened scope of the report, which is reflected in its new title, Decision Making for Late-Phase Recovery from Nuclear or Radiological Incidents. The NCRP report, which is due for publication in 2013, will substantiate the current DHS guidance by clarifying and elaborating on the processes required for the development and implementation of procedures for optimizing decision making for late-phase recovery, enabling the establishment of cleanup goals on a site-specific basis. The report will contain a series of topics addressing important issues related to the long-term recovery from nuclear or radiological incidents. Special topics relevant to supporting the optimization of the decision-making process will include cost-benefit analysis, radioactive waste management, risk communication, stakeholder interaction, risk assessment, and decontamination approaches and techniques. The committee also evaluated past nuclear and radiological incidents for their relevance to the report, including the emerging issues associated with the Fukushima nuclear accident. Thus, due to the commonality of the late-phase issues (such as the potential widespread contamination following an event), the majority of the information pertaining to the response in the late-phase decision-making period, including site-specific optimization framework and approach, could be used or adapted for use in case of similar situations that are not due to terrorism, such as those that would be caused by major nuclear facility accidents or radiological incidents. To ensure that the report and the NCRP recommendations are current and relevant to the effective implementation of federal guidance, SC 5-1 has actively coordinated with the agencies of interest and other relevant stakeholders throughout the duration of the project. The resulting report will be an important resource to guide those involved in late-phase recovery efforts following a nuclear or radiological incident. (authors)« less

  19. Determination of the thickness of the embedding phase in 0D nanocomposites

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, D.; Sánchez-López, J. C.

    2017-11-01

    0D nanocomposites formed by small nanoparticles embedded in a second phase are very interesting systems which may show properties that are beyond those observed in the original constituents alone. One of the main parameters to understand the behavior of such nanocomposites is the determination of the separation between two adjacent nanoparticles, in other words, the thickness of the embedding phase. However, its experimental measurement is extremely complicated. Therefore, its evaluation is performed by an indirect approach using geometrical models. The ones typically used represent the nanoparticles by cubes or spheres. In this paper the used geometrical models are revised, and additional geometrical models based in other parallelohedra (hexagonal prism, rhombic and elongated dodecahedron and truncated octahedron) are presented. Additionally, a hybrid model that shows a transition between the spherical and tessellated models is proposed. Finally, the different approaches are tested on a set of titanium carbide/amorphous carbon (TiC/a-C) nanocomposite films to estimate the thickness of the a-C phase and explain the observed hardness properties.

  20. Dynamics of marginally trapped surfaces in a binary black hole merger: Growth and approach to equilibrium

    NASA Astrophysics Data System (ADS)

    Gupta, Anshu; Krishnan, Badri; Nielsen, Alex B.; Schnetter, Erik

    2018-04-01

    The behavior of quasilocal black hole horizons in a binary black hole merger is studied numerically. We compute the horizon multipole moments, fluxes, and other quantities on black hole horizons throughout the merger. These lead to a better qualitative and quantitative understanding of the coalescence of two black holes: how the final black hole is formed, initially grows, and then settles down to a Kerr black hole. We calculate the rate at which the final black hole approaches equilibrium in a fully nonperturbative situation and identify a time at which the linear ringdown phase begins. Finally, we provide additional support for the conjecture that fields at the horizon are correlated with fields in the wave zone by comparing the in-falling gravitational wave flux at the horizon to the outgoing flux as estimated from the gravitational waveform.

  1. Development of a Renormalization Group Approach to Multi-Scale Plasma Physics Computation

    DTIC Science & Technology

    2012-03-28

    with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a . REPORT...code) 29-12-2008 Final Technical Report From 29-12-2008 To 16-95-2011 (STTR PHASE II) DEVELOPMENT OF A RENORMALIZATION GROUP APPROACH TO MULTI-SCALE

  2. Chaos control in delayed phase space constructed by the Takens embedding theory

    NASA Astrophysics Data System (ADS)

    Hajiloo, R.; Salarieh, H.; Alasty, A.

    2018-01-01

    In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.

  3. Low-Cost Approaches to III–V Semiconductor Growth for Photovoltaic Applications

    DOE PAGES

    Greenaway, Ann L.; Boucher, Jason W.; Oener, Sebastian Z.; ...

    2017-08-31

    III–V semiconductors form the most efficient single- and multijunction photovoltaics. Metal–organic vapor-phase epitaxy, which uses toxic and pyrophoric gas-phase precursors, is the primary commercial growth method for these materials. In order for the use of highly efficient III–V-based devices to be expanded as the demand for renewable electricity grows, a lower-cost approach to the growth of these materials is needed. This Review focuses on three deposition techniques compatible with current device architectures: hydride vapor-phase epitaxy, close-spaced vapor transport, and thin-film vapor–liquid–solid growth. Here, we consider recent advances in each technique, including the available materials space, before providing an in-depth comparisonmore » of growth technology advantages and limitations and considering the impact of modifications to the method of production on the cost of the final photovoltaics.« less

  4. Ternary Polymeric Composites Exhibiting Bulk and Surface Quadruple-Shape Memory Properties.

    PubMed

    Buffington, Shelby Lois; Posnick, Benjamin M; Paul, Justine Elizabeth; Mather, Patrick T

    2018-06-19

    We report the design and characterization of a multiphase quadruple shape memory composite capable of switching between 4 programmed shapes, three temporary and one permanent. Our approach combined two previously reported fabrication methods by embedding an electrospun mat of PCL in a miscible blend of epoxy monomers and PMMA as a composite matrix. As epoxy polymerization occurred the matrix underwent phase separation between the epoxy and PMMA materials. This created a multiphase composite with PCL fibers and a two-phase matrix composed of phase-separated epoxy and PMMA. The resulting composite demonstrated three separate thermal transitions and amenability to mechanical programming of three separate temporary shapes in addition to one final, equilibrium shape. In addition, quadruple surface shape memory abilities are successfully demonstrated. The versatility of this approach offers a large degree of design flexibility for multi-shape memory materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quasiparticle mass enhancement approaching optimal doping in a high-T c superconductor

    DOE PAGES

    Ramshaw, B. J.; Sebastian, S. E.; McDonald, R. D.; ...

    2015-03-26

    In the quest for superconductors with higher transition temperatures (T c), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. In recent experiments it is suggested that the existence of the requisite broken-symmetry phase in the high-T c cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. Here, we used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa 2Cu 3O 6+δ over a wide range of doping, and observed magnetic quantum oscillations that reveal a strongmore » enhancement of the quasiparticle effective mass toward optimal doping. Finally, this mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p crit ≈ 0.18.« less

  6. Quasiparticle mass enhancement approaching optimal doping in a high-T c superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramshaw, B. J.; Sebastian, S. E.; McDonald, R. D.

    In the quest for superconductors with higher transition temperatures (T c), one emerging motif is that electronic interactions favorable for superconductivity can be enhanced by fluctuations of a broken-symmetry phase. In recent experiments it is suggested that the existence of the requisite broken-symmetry phase in the high-T c cuprates, but the impact of such a phase on the ground-state electronic interactions has remained unclear. Here, we used magnetic fields exceeding 90 tesla to access the underlying metallic state of the cuprate YBa 2Cu 3O 6+δ over a wide range of doping, and observed magnetic quantum oscillations that reveal a strongmore » enhancement of the quasiparticle effective mass toward optimal doping. Finally, this mass enhancement results from increasing electronic interactions approaching optimal doping, and suggests a quantum critical point at a hole doping of p crit ≈ 0.18.« less

  7. E-Mentoring for Professional Development of Pre-Service Teachers: A Case Study

    ERIC Educational Resources Information Center

    Kahraman, Mehmet; Kuzu, Abdullah

    2016-01-01

    This study focused on supporting the professional development of information technologies pre-service teachers with e-mentoring approach. The e-mentoring program was conducted in four basic phases; preparation, matching, interaction and finalizing. In the study, the data were collected via researcher journals, semi-structured interviews held with…

  8. Using Microcomputer-Based Logistics Models to Enhance Supportability Assessment for the USAF Productivity, Reliability, Availability and Maintainability (PRAM) Program Office: A Tailored Approach

    DTIC Science & Technology

    1989-09-01

    goes on to discuss how the innovation process should function within an organization, including five specific phases for successfully managing ... innovation : the recognition of opportunity; idea formulation; product defin- ition; prototype solution; and finally, technology utiliza- tion and diffusion

  9. Investigation of voids/cracking on the I-275 twin bridges over the Ohio River in Kenton County : Phase I : final report.

    DOT National Transportation Integrated Search

    2008-03-01

    An evaluation of the northbound bridge approach and the abutment wall of (Combs-Hehl) bridge on I-275 in Kenton County was conducted in September 2007. The inspection consisted of using ground penetrating radar to look for potential voids beneath the...

  10. Project C.O.P.S. Phase I, 1981-82. Final Report.

    ERIC Educational Resources Information Center

    Middlesex County Coll., Edison, NJ.

    A program entitled Project COPS (Career Oriented Peer Tutoring System) is a comprehensive peer tutoring and advisement approach that was undertaken to improve student retention at Middlesex County College in Edison, New Jersey. The principal goal of the project was to reach potentially unsuccessful entering freshmen students and to offer them…

  11. Leading Formative Assessment Change: A 3-Phase Approach

    ERIC Educational Resources Information Center

    Northwest Evaluation Association, 2016

    2016-01-01

    If you are seeking greater student engagement and growth, you need to integrate high-impact formative assessment practices into daily instruction. Read the final article in our five-part series to find advice aimed at leaders determined to bring classroom formative assessment practices district wide. Learn: (1) what you MUST consider when…

  12. Final Report of WITT Phase II. October 1, 1978-June 30, 1979.

    ERIC Educational Resources Information Center

    Schwartz, Lila; Voorhees, Anita E.

    Initiated as an innovative approach to career development, the Women in the Technologies (WITT) program aimed at the elimination of barriers to career advancement arising from sex stereotype related problems on the job. The process involved (1) establishment of linkages with business and industrial organizations, (2) presentation of a "needs…

  13. The Influence of Loss of Visual Cues on Pilot Performance During the Final Approach and Landing Phase of a Remotely Piloted Vehicle Mission

    NASA Technical Reports Server (NTRS)

    Howard, James C.

    1976-01-01

    Remotely piloted research vehicles (RPRVS) are currently being flown from fixed-base control centers, and visual information is supplied to the remote pilot by a TV camera mounted in the vehicle. In these circumstances, the possibility of a TV failure or an interruption in the downlink to the pilot must be considered. To determine the influence of loss of TV information on pilot performance during the final approach and landing phase of a mission, an experiment was conducted in which pilots were asked to fly a fixed-base simulation of a Piper PA-30 aircraft with loss of TV information occurring at altitudes of 15.24, 30.48, and 45.72 m (50, 100, and 150 ft). For this experiment, a specially designed display configuration was presented to four pilots in accordance with a Latin square design. Initial results indicate that pilots could not ensure successful landings from altitudes exceeding 15.24 m (.50 ft) without the visual cues supplied by the TV picture.

  14. A resolution approach of racemic phenylalanine with aqueous two-phase systems of chiral tropine ionic liquids.

    PubMed

    Wu, Haoran; Yao, Shun; Qian, Guofei; Yao, Tian; Song, Hang

    2015-10-30

    Aqueous two-phase systems (ATPS) based on tropine type chiral ionic liquids and inorganic salt solution were designed and prepared for the enantiomeric separation of racemic phenylalanine. The phase behavior of IL-based ATPS was comprehensive investigated, and phase equilibrium data were correlated by Merchuk equation. Various factors were also systematically investigated for their influence on separation efficiency. Under the appropriate conditions (0.13g/g [C8Tropine]pro, 35mg/g Cu(Ac)2, 20mg/g d,l-phenylalanine, 0.51g/g H2O and 0.30g/g K2HPO4), the enantiomeric excess value of phenylalanine in solid phase (mainly containing l-enantiomer) was 65%. Finally, the interaction mechanism was studied via 1D and 2D NMR. The results indicate that d-enantiomer of phenylalanine interacts more strongly with chiral ILs and Cu(2+) based on the chiral ion-pairs space coordination mechanism, which makes it tend to remain in the top IL-rich phase. By contrast, l-enantiomer is transferred into the solid phase. Above chiral ionic liquids aqueous two-phase systems have demonstrated obvious resolution to racemic phenylalanine and could be promising alterative resolution approach for racemic amino acids in aqueous circumstance. Copyright © 2015. Published by Elsevier B.V.

  15. Stochastic dynamics for reinfection by transmitted diseases

    NASA Astrophysics Data System (ADS)

    Barros, Alessandro S.; Pinho, Suani T. R.

    2017-06-01

    The use of stochastic models to study the dynamics of infectious diseases is an important tool to understand the epidemiological process. For several directly transmitted diseases, reinfection is a relevant process, which can be expressed by endogenous reactivation of the pathogen or by exogenous reinfection due to direct contact with an infected individual (with smaller reinfection rate σ β than infection rate β ). In this paper, we examine the stochastic susceptible, infected, recovered, infected (SIRI) model simulating the endogenous reactivation by a spontaneous reaction, while exogenous reinfection by a catalytic reaction. Analyzing the mean-field approximations of a site and pairs of sites, and Monte Carlo (MC) simulations for the particular case of exogenous reinfection, we obtained continuous phase transitions involving endemic, epidemic, and no transmission phases for the simple approach; the approach of pairs is better to describe the phase transition from endemic phase (susceptible, infected, susceptible (SIS)-like model) to epidemic phase (susceptible, infected, and removed or recovered (SIR)-like model) considering the comparison with MC results; the reinfection increases the peaks of outbreaks until the system reaches endemic phase. For the particular case of endogenous reactivation, the approach of pairs leads to a continuous phase transition from endemic phase (SIS-like model) to no transmission phase. Finally, there is no phase transition when both effects are taken into account. We hope the results of this study can be generalized for the susceptible, exposed, infected, and removed or recovered (SEIRIE) model, for which the state exposed (infected but not infectious), describing more realistically transmitted diseases such as tuberculosis. In future work, we also intend to investigate the effect of network topology on phase transitions when the SIRI model describes both transmitted diseases (σ <1 ) and social contagions (σ >1 ).

  16. Two-step ion-exchange chromatographic purification combined with reversed-phase chromatography to isolate C-peptide for mass spectrometric analysis.

    PubMed

    Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V

    2016-02-01

    A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Space Shuttle Orbiter Approach and Landing Test: Final Evaluation Report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Approach and Landing Test Program consisted of a series of steps leading to the demonstration of the capability of the Space Shuttle orbiter to safely approach and land under conditions similar to those planned for the final phases of an orbital flight. The tests were conducted with the orbiter mounted on top of a specially modified carrier aircraft. The first step provided airworthiness and performance verification of the carrier aircraft after modification. The second step consisted of three taxi tests and five flight tests with an inert unmanned orbiter. The third step consisted of three mated tests with an active manned orbiter. The fourth step consisted of five flights in which the orbiter was separated from the carrier aircraft. For the final two flights, the orbiter tail cone was replaced by dummy engines to simulate the actual orbital configuration. Landing gear braking and steering tests were accomplished during rollouts following the free flight landings. Ferry testing was integrated into the Approach and Landing Test Program to the extent possible. In addition, four ferry test flights were conducted with the orbiter mated to the carrier aircraft in the ferry configuration after the free-flight tests were completed.

  18. Extracting surface waves, hum and normal modes: time-scale phase-weighted stack and beyond

    NASA Astrophysics Data System (ADS)

    Ventosa, Sergi; Schimmel, Martin; Stutzmann, Eleonore

    2017-10-01

    Stacks of ambient noise correlations are routinely used to extract empirical Green's functions (EGFs) between station pairs. The time-frequency phase-weighted stack (tf-PWS) is a physically intuitive nonlinear denoising method that uses the phase coherence to improve EGF convergence when the performance of conventional linear averaging methods is not sufficient. The high computational cost of a continuous approach to the time-frequency transformation is currently a main limitation in ambient noise studies. We introduce the time-scale phase-weighted stack (ts-PWS) as an alternative extension of the phase-weighted stack that uses complex frames of wavelets to build a time-frequency representation that is much more efficient and fast to compute and that preserve the performance and flexibility of the tf-PWS. In addition, we propose two strategies: the unbiased phase coherence and the two-stage ts-PWS methods to further improve noise attenuation, quality of the extracted signals and convergence speed. We demonstrate that these approaches enable to extract minor- and major-arc Rayleigh waves (up to the sixth Rayleigh wave train) from many years of data from the GEOSCOPE global network. Finally we also show that fundamental spheroidal modes can be extracted from these EGF.

  19. Personnel launch system autoland development study

    NASA Technical Reports Server (NTRS)

    Bossi, J. A.; Langehough, M. A.; Tollefson, J. C.

    1991-01-01

    The Personnel Launch System (PLS) Autoland Development Study focused on development of the guidance and control system for the approach and landing (A/L) phase and the terminal area energy management (TAEM) phase. In the A/L phase, a straight-in trajectory profile was developed with an initial high glide slope, a pull-up and flare to lower glide slope, and the final flare touchdown. The TAEM system consisted of using a heading alignment cone spiral profile. The PLS autopilot was developed using integral LQG design techniques. The guidance and control design was verified using a nonlinear 6 DOF simulation. Simulation results demonstrated accurate steering during the TAEM phase and adequate autoland performance in the presence of wind turbulence and wind shear.

  20. A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Daude, F.; Galon, P.

    2018-06-01

    A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.

  1. A complete solution of cartographic displacement based on elastic beams model and Delaunay triangulation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Guo, Q.; Sun, Y.

    2014-04-01

    In map production and generalization, it is inevitable to arise some spatial conflicts, but the detection and resolution of these spatial conflicts still requires manual operation. It is become a bottleneck hindering the development of automated cartographic generalization. Displacement is the most useful contextual operator that is often used for resolving the conflicts arising between two or more map objects. Automated generalization researches have reported many approaches of displacement including sequential approaches and optimization approaches. As an excellent optimization approach on the basis of energy minimization principles, elastic beams model has been used in resolving displacement problem of roads and buildings for several times. However, to realize a complete displacement solution, techniques of conflict detection and spatial context analysis should be also take into consideration. So we proposed a complete solution of displacement based on the combined use of elastic beams model and constrained Delaunay triangulation (CDT) in this paper. The solution designed as a cyclic and iterative process containing two phases: detection phase and displacement phase. In detection phase, CDT of map is use to detect proximity conflicts, identify spatial relationships and structures, and construct auxiliary structure, so as to support the displacement phase on the basis of elastic beams. In addition, for the improvements of displacement algorithm, a method for adaptive parameters setting and a new iterative strategy are put forward. Finally, we implemented our solution on a testing map generalization platform, and successfully tested it against 2 hand-generated test datasets of roads and buildings respectively.

  2. Simulator evaluation of display concepts for pilot monitoring and control of space shuttle approach and landing. Phase 2: Manual flight control

    NASA Technical Reports Server (NTRS)

    Gartner, W. B.; Baldwin, K. M.

    1973-01-01

    A study of the display requirements for final approach management of the space shuttle orbiter vehicle is presented. An experimental display concept, providing a more direct, pictorial representation of the vehicle's movement relative to the selected approach path and aiming points, was developed and assessed as an aid to manual flight path control. Both head-up, windshield projections and head-down, panel mounted presentations of the experimental display were evaluated in a series of simulated orbiter approach sequence. Data obtained indicate that the experimental display would enable orbiter pilots to exercise greater flexibility in implementing alternative final approach control strategies. Touchdown position and airspeed dispersion criteria were satisfied on 91 percent of the approach sequences, representing various profile and wind effect conditions. Flight path control and airspeed management satisfied operationally-relevant criteria for the two-segment, power-off orbiter approach and were consistently more accurate and less variable when the full set of experimental display elements was available to the pilot. Approach control tended to be more precise when the head-up display was used; however, the data also indicate that the head-down display would provide adequate support for the manual control task.

  3. In-flight investigation of the effects of pilot location and control system design on airplane flying qualities for approach and landing

    NASA Technical Reports Server (NTRS)

    Weingarten, N. C.; Chalk, C. R.

    1982-01-01

    The handling qualities of large airplanes in the approach and landing flight phase were studied. The primary variables were relative pilot position with respect to center of rotation, command path time delays and phase shifts, augmentation schemes and levels of augmentation. It is indicated that the approach and landing task with large airplanes is a low bandwidth task. Low equivalent short period frequencies and relatively long time delays are tolerated only when the pilot is located at considerable distance forward of the center of rotation. The control problem experienced by the pilots, when seated behind the center of rotation, tended to occur at low altitude when they were using visual cues of rate of sink and altitude. A direct lift controller improved final flight path control of the shuttle like configurations.

  4. Bridging the gap between hospital and primary care: the pharmacist home visit.

    PubMed

    Ensing, Hendrik T; Koster, Ellen S; Stuijt, Clementine C M; van Dooren, Ad A; Bouvy, Marcel L

    2015-06-01

    Bridging the gap between hospital and primary care is important as transition from one healthcare setting to another increases the risk on drug-related problems and consequent readmissions. To reduce those risks, pharmacist interventions during and after hospitalization have been frequently studied, albeit with variable effects. Therefore, in this manuscript we propose a three phase approach to structurally address post-discharge drug-related problems. First, hospitals need to transfer up-todate medication information to community pharmacists. Second, the key phase of this approach consists of adequate follow-up at the patients' home. Pharmacists need to apply their clinical and communication skills to identify and analyze drug-related problems. Finally, to prevent and solve identified drug related problems a close collaboration within the primary care setting between pharmacists and general practitioners is of utmost importance. It is expected that such an approach results in improved quality of care and improved patient safety.

  5. Embodied intersubjective engagement in mother–infant tactile communication: a cross-cultural study of Japanese and Scottish mother–infant behaviors during infant pick-up

    PubMed Central

    Negayama, Koichi; Delafield-Butt, Jonathan T.; Momose, Keiko; Ishijima, Konomi; Kawahara, Noriko; Lux, Erin J.; Murphy, Andrew; Kaliarntas, Konstantinos

    2015-01-01

    This study examines the early development of cultural differences in a simple, embodied, and intersubjective engagement between mothers putting down, picking up, and carrying their infants between Japan and Scotland. Eleven Japanese and ten Scottish mothers with their 6- and then 9-month-old infants participated. Video and motion analyses were employed to measure motor patterns of the mothers’ approach to their infants, as well as their infants’ collaborative responses during put-down, pick-up, and carry phases. Japanese and Scottish mothers approached their infants with different styles and their infants responded differently to the short duration of separation during the trial. A greeting-like behavior of the arms and hands was prevalent in the Scottish mothers’ approach, but not in the Japanese mothers’ approach. Japanese mothers typically kneeled before making the final reach to pick-up their children, giving a closer, apparently gentler final approach of the torso than Scottish mothers, who bent at the waist with larger movements of the torso. Measures of the gap closure between the mothers’ hands to their infants’ heads revealed variably longer duration and distance gap closures with greater velocity by the Scottish mothers than by the Japanese mothers. Further, the sequence of Japanese mothers’ body actions on approach, contact, pick-up, and hold was more coordinated at 6 months than at 9 months. Scottish mothers were generally more variable on approach. Measures of infant participation and expressivity indicate more active participation in the negotiation during the separation and pick-up phases by Scottish infants. Thus, this paper demonstrates a culturally different onset of development of joint attention in pick-up. These differences reflect cultures of everyday interaction. PMID:25774139

  6. Embodied intersubjective engagement in mother-infant tactile communication: a cross-cultural study of Japanese and Scottish mother-infant behaviors during infant pick-up.

    PubMed

    Negayama, Koichi; Delafield-Butt, Jonathan T; Momose, Keiko; Ishijima, Konomi; Kawahara, Noriko; Lux, Erin J; Murphy, Andrew; Kaliarntas, Konstantinos

    2015-01-01

    This study examines the early development of cultural differences in a simple, embodied, and intersubjective engagement between mothers putting down, picking up, and carrying their infants between Japan and Scotland. Eleven Japanese and ten Scottish mothers with their 6- and then 9-month-old infants participated. Video and motion analyses were employed to measure motor patterns of the mothers' approach to their infants, as well as their infants' collaborative responses during put-down, pick-up, and carry phases. Japanese and Scottish mothers approached their infants with different styles and their infants responded differently to the short duration of separation during the trial. A greeting-like behavior of the arms and hands was prevalent in the Scottish mothers' approach, but not in the Japanese mothers' approach. Japanese mothers typically kneeled before making the final reach to pick-up their children, giving a closer, apparently gentler final approach of the torso than Scottish mothers, who bent at the waist with larger movements of the torso. Measures of the gap closure between the mothers' hands to their infants' heads revealed variably longer duration and distance gap closures with greater velocity by the Scottish mothers than by the Japanese mothers. Further, the sequence of Japanese mothers' body actions on approach, contact, pick-up, and hold was more coordinated at 6 months than at 9 months. Scottish mothers were generally more variable on approach. Measures of infant participation and expressivity indicate more active participation in the negotiation during the separation and pick-up phases by Scottish infants. Thus, this paper demonstrates a culturally different onset of development of joint attention in pick-up. These differences reflect cultures of everyday interaction.

  7. An Approach to Estimate the Flow Through an Irregular Fracture

    NASA Astrophysics Data System (ADS)

    Liu, Q. Q.; Fan, H. G.

    2011-09-01

    A new model to estimate the flow in a fracture has been developed in this paper. This model used two sinusoidal-varying walls with different phases to replace the flat planes in the cubic law model. The steady laminar flow between non-symmetric sinusoidal surfaces was numerically solved. The relationships between the effective hydraulic apertures and the phase retardation for different amplitudes and wavelengths are investigated respectively. Finally, a formula of the effective hydraulic aperture of the fracture was carried out based on the numerical results.

  8. Management of complex implant aesthetics: ensuring restorative design continuity with a comprehensive outcome-based strategy.

    PubMed

    Lee, E A; Jun, S K

    2001-09-01

    Since implant therapy must be dictated by prosthetic requirements, a protocol for the comprehensive and continuous integration of the restorative blueprint through the entire treatment planning and clinical execution phases is mandatory. This article demonstrates a systematic approach where the establishment of a final restorative treatment objective is incorporated into the diagnosis and subsequently integrated through every phase of clinical execution. Design continuity is ensured, and multidisciplinary cohesiveness is enhanced by providing clearly defined treatment objectives to every member of the clinical team.

  9. Phase Field Model of Hydraulic Fracturing in Poroelastic Media: Fracture Propagation, Arrest, and Branching Under Fluid Injection and Extraction

    NASA Astrophysics Data System (ADS)

    Santillán, David; Juanes, Ruben; Cueto-Felgueroso, Luis

    2018-03-01

    The simulation of fluid-driven fracture propagation in a porous medium is a major computational challenge, with applications in geosciences and engineering. The two main families of modeling approaches are those models that represent fractures as explicit discontinuities and solve the moving boundary problem and those that represent fractures as thin damaged zones, solving a continuum problem throughout. The latter family includes the so-called phase field models. Continuum approaches to fracture face validation and verification challenges, in particular grid convergence, well posedness, and physical relevance in practical scenarios. Here we propose a new quasi-static phase field formulation. The approach fully couples fluid flow in the fracture with deformation and flow in the porous medium, discretizes flow in the fracture on a lower-dimension manifold, and employs the fluid flux between the fracture and the porous solid as coupling variable. We present a numerical assessment of the model by studying the propagation of a fracture in the quarter five-spot configuration. We study the interplay between injection flow rate and rock properties and elucidate fracture propagation patterns under the leak-off toughness dominated regime as a function of injection rate, initial fracture length, and poromechanical properties. For the considered injection scenario, we show that the final fracture length depends on the injection rate, and three distinct patterns are observed. We also rationalize the system response using dimensional analysis to collapse the model results. Finally, we propose some simplifications that alleviate the computational cost of the simulations without significant loss of accuracy.

  10. The Feasibility of Generalized Acoustic Sensor Operator Training. Final Report for Period February 1974-February 1975.

    ERIC Educational Resources Information Center

    Daniels, Richard W.; Alden, David G.

    The feasibility of generalized approaches to training military personnel in the use of different types of sonar/acoustic warfare systems was explored. The initial phase of the project consisted of the analysis of representative sonar and acoustic equipment to identify training areas and operator performance requirements that could be subjected to…

  11. Wisconsin Technical College System Board Equity Staff Development Workshops and Services--Phase IV. Final Report.

    ERIC Educational Resources Information Center

    Baldus, Lorayne

    A staff development program on gender equity was conducted for personnel in Wisconsin's technical colleges using the train-the-trainer method. The training took two approaches: a class for college personnel and career challenge training for project directors of single parent and displaced homemaker grants. The inservice class resulted in increased…

  12. Action Research: Measuring Literacy Programme Participants' Learning Outcomes. Results of the Final Phase (2011-2014)

    ERIC Educational Resources Information Center

    Bolly, Madina; Jonas, Nicolas

    2015-01-01

    Action Research on Measuring Literacy Programme Participants' Learning Outcomes (RAMAA) aims to develop, implement and collaborate on the creation of a methodological approach to measure acquired learning and study the various factors that influence its development. This report examines how RAMAA I has been implemented over the past four years in…

  13. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development.

    PubMed

    Burt, T; Yoshida, K; Lappin, G; Vuong, L; John, C; de Wildt, S N; Sugiyama, Y; Rowland, M

    2016-04-01

    A number of drivers and developments suggest that microdosing and other phase 0 applications will experience increased utilization in the near-to-medium future. Increasing costs of drug development and ethical concerns about the risks of exposing humans and animals to novel chemical entities are important drivers in favor of these approaches, and can be expected only to increase in their relevance. An increasing body of research supports the validity of extrapolation from the limited drug exposure of phase 0 approaches to the full, therapeutic exposure, with modeling and simulations capable of extrapolating even non-linear scenarios. An increasing number of applications and design options demonstrate the versatility and flexibility these approaches offer to drug developers including the study of PK, bioavailability, DDI, and mechanistic PD effects. PET microdosing allows study of target localization, PK and receptor binding and occupancy, while Intra-Target Microdosing (ITM) allows study of local therapeutic-level acute PD coupled with systemic microdose-level exposure. Applications in vulnerable populations and extreme environments are attractive due to the unique risks of pharmacotherapy and increasing unmet healthcare needs. All phase 0 approaches depend on the validity of extrapolation from the limited-exposure scenario to the full exposure of therapeutic intent, but in the final analysis the potential for controlled human data to reduce uncertainty about drug properties is bound to be a valuable addition to the drug development process.

  14. Constellation Program Thermal and Environmental Control and Life Support System Status: 2009 - 2010

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Carrasquillo, Robyn L.; Bagdigian, Robert M.

    2009-01-01

    The Constellation Program (CxP) consists of spacecrafts, launch vehicles, and support systems to execute the Exploration Architecture. The Program is currently divided into three distinct phases. The first phase is to develop a vehicle to provide limited cargo resupply capability and allow crew member rotation to the International Space Station (ISS). The second phase is to support the return of humans to the moon. The final phase is currently envisioned to allow the delivery of humans and cargo to Mars for an extended time. To implement this phased approach the CxP is currently working on the first vehicle and support systems to replace the Space Shuttle and allow continued access to space. This paper provides a summary of the CxP Thermal and Environmental Control and Life Support (ECLS) work that that has occurred across the different parts of the Program in support of these three phases over the past year.

  15. Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys

    DOE PAGES

    Maier-Kiener, Verena; Schuh, Benjamin; George, Easo P.; ...

    2016-11-19

    The equiatomic high-entropy alloy (HEA), CrMnFeCoNi, has recently been shown to be microstructurally unstable, resulting in a multi-phase microstructure after intermediate-temperature annealing treatments. The decomposition occurs rapidly in the nanocrystalline (NC) state and after longer annealing times in coarse-grained states. To characterize the mechanical properties of differently annealed NC states containing multiple phases, nanoindentation was used in this paper. The results revealed besides drastic changes in hardness, also for the first time significant changes in the Young's modulus and strain rate sensitivity. Finally, nanoindentation of NC HEAs is, therefore, a useful complementary screening tool with high potential as a highmore » throughput approach to detect phase decomposition, which can also be used to qualitatively predict the long-term stability of single-phase HEAs.« less

  16. Simplified Aircraft-Based Paired Approach: Concept Definition and Initial Analysis

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.; Lohr, Gary W.; McKissick, Burnell T.; Abbott, Terence S.; Geurreiro, Nelson M.; Volk, Paul

    2013-01-01

    Simplified Aircraft-based Parallel Approach (SAPA) is an advanced concept proposed by the Federal Aviation Administration (FAA) to support dependent parallel approach operations to runways with lateral spacing closer than 2500 ft. At the request of the FAA, NASA performed an initial assessment of the potential performance and feasibility of the SAPA concept, including developing and assessing an operational implementation of the concept and conducting a Monte Carlo wake simulation study to examine the longitudinal spacing requirements. The SAPA concept was shown to have significant operational advantages in supporting the pairing of aircraft with dissimilar final approach speeds. The wake simulation study showed that support for dissimilar final approach speeds could be significantly enhanced through the use of a two-phased altitudebased longitudinal positioning requirement, with larger longitudinal positioning allowed for higher altitudes out of ground effect and tighter longitudinal positioning defined for altitudes near and in ground effect. While this assessment is preliminary and there are a number of operational issues still to be examined, it has shown the basic SAPA concept to be technically and operationally feasible.

  17. K* vector meson resonance dynamics in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ilner, Andrej; Cabrera, Daniel; Markert, Christina; Bratkovskaya, Elena

    2017-01-01

    We study the strange vector meson (K*,K¯* ) dynamics in relativistic heavy-ion collisions based on the microscopic parton-hadron-string dynamics (PHSD) transport approach which incorporates partonic and hadronic degrees of freedom, a phase transition from hadronic to partonic matter—quark-gluon-plasma (QGP)—and a dynamical hadronization of quarks and antiquarks as well as final hadronic interactions. We investigate the role of in-medium effects on the K*,K¯* meson dynamics by employing Breit-Wigner spectral functions for the K* with self-energies obtained from a self-consistent coupled-channel G -matrix approach. Furthermore, we confront the PHSD calculations with experimental data for p +p , Cu+Cu , and Au+Au collisions at energies up to √{sN N}=200 GeV. Our analysis shows that, at relativistic energies, most of the final K* (observed experimentally) are produced during the late hadronic phase, dominantly by the K +π →K* channel, such that the fraction of the K* from the QGP is small and can hardly be reconstructed from the final observables. The influence of the in-medium effects on the K* dynamics at energies typical of the BNL Relativistic Heavy Ion Collider is rather modest due to their dominant production at low baryon densities (but high meson densities); however, it increases with decreasing beam energy. Moreover, we find that the additional cut on the invariant-mass region of the K* further influences the shape and the height of the final spectra. This imposes severe constraints on the interpretation of the experimental results.

  18. Pyrrole-Imidazole Polyamides: Manual Solid-Phase Synthesis.

    PubMed

    Pauff, Steven M; Fallows, Andrew J; Mackay, Simon P; Su, Wu; Cullis, Paul M; Burley, Glenn A

    2015-12-01

    Pyrrole-imidazole polyamides (PAs) are a family of DNA-binding peptides that bind in the minor groove of double-stranded DNA (dsDNA) in a sequence-selective, programmable fashion. This protocol describes a detailed manual procedure for the solid-phase synthesis of this family of compounds. The protocol entails solution-phase synthesis of the Boc-protected pyrrole (Py) and imidazole (Im) carboxylic acid building blocks. This unit also describes the importance of choosing the appropriate condensing agent to form the amide linkages between each building block. Finally, a monomeric coupling protocol and a fragment-based approach are described that delivers PAs in 13% to 30% yield in 8 days. Copyright © 2015 John Wiley & Sons, Inc.

  19. Quantum State Reduction by Matter-Phase-Related Measurements in Optical Lattices

    PubMed Central

    Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Mekhov, Igor B.

    2017-01-01

    A many-body atomic system coupled to quantized light is subject to weak measurement. Instead of coupling light to the on-site density, we consider the quantum backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution. We demonstrate how this can lead to a new class of final states different from those possible with dissipative state preparation or conventional projective measurements. These states are characterised by a combination of Hamiltonian and measurement properties thus extending the measurement postulate for the case of strong competition with the system’s own evolution. PMID:28225012

  20. Quantum State Reduction by Matter-Phase-Related Measurements in Optical Lattices.

    PubMed

    Kozlowski, Wojciech; Caballero-Benitez, Santiago F; Mekhov, Igor B

    2017-02-22

    A many-body atomic system coupled to quantized light is subject to weak measurement. Instead of coupling light to the on-site density, we consider the quantum backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution. We demonstrate how this can lead to a new class of final states different from those possible with dissipative state preparation or conventional projective measurements. These states are characterised by a combination of Hamiltonian and measurement properties thus extending the measurement postulate for the case of strong competition with the system's own evolution.

  1. Development of 20 GHz monolithic transmit modules

    NASA Technical Reports Server (NTRS)

    Higgins, J. A.

    1988-01-01

    The history of the development of a transmit module for the band 17.7 to 20.2 GHz is presented. The module was to monolithically combine, on one chip, five bits of phase shift, a buffer amplifier and a power amplifier to produce 200 mW to the antenna element. The approach taken was MESFET ion implanted device technology. A common pinch-off voltage was decided upon for each application. The beginning of the total integration phases revealed hitherto unencountered hazards of large microwave circuit integration which were successfully overcome. Yield and customer considerations finally led to two separate chips, one containing the power amplifiers and the other containing the complete five bit phase shifter.

  2. DBR, Sub-wavelength grating, and Photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD.

    PubMed

    Kim, Jae Hwan Eric; Chrostowski, Lukas; Bisaillon, Eric; Plant, David V

    2007-08-06

    We demonstrate a Finite-Difference Time-Domain (FDTD) phase methodology to estimate resonant wavelengths in Fabry-Perot (FP) cavity structures. We validate the phase method in a conventional Vertical-Cavity Surface-Emitting Laser (VCSEL) structure using a transfer-matrix method, and compare results with a FDTD reflectance method. We extend this approach to a Sub-Wavelength Grating (SWG) and a Photonic Crystal (Phc) slab, either of which may replace one of the Distributed Bragg Reflectors (DBRs) in the VCSEL, and predict resonant conditions with varying lithographic parameters. Finally, we compare the resonant tunabilities of three different VCSEL structures, taking quality factors into account.

  3. Phase diagram for a two-dimensional, two-temperature, diffusive XY model.

    PubMed

    Reichl, Matthew D; Del Genio, Charo I; Bassler, Kevin E

    2010-10-01

    Using Monte Carlo simulations, we determine the phase diagram of a diffusive two-temperature conserved order parameter XY model. When the two temperatures are equal the system becomes the equilibrium XY model with the continuous Kosterlitz-Thouless (KT) vortex-antivortex unbinding phase transition. When the two temperatures are unequal the system is driven by an energy flow from the higher temperature heat-bath to the lower temperature one and reaches a far-from-equilibrium steady state. We show that the nonequilibrium phase diagram contains three phases: A homogenous disordered phase and two phases with long range, spin texture order. Two critical lines, representing continuous phase transitions from a homogenous disordered phase to two phases of long range order, meet at the equilibrium KT point. The shape of the nonequilibrium critical lines as they approach the KT point is described by a crossover exponent φ=2.52±0.05. Finally, we suggest that the transition between the two phases with long-range order is first-order, making the KT-point where all three phases meet a bicritical point.

  4. Moving Object Localization Based on UHF RFID Phase and Laser Clustering

    PubMed Central

    Fu, Yulu; Wang, Changlong; Liang, Gaoli; Zhang, Hua; Ur Rehman, Shafiq

    2018-01-01

    RFID (Radio Frequency Identification) offers a way to identify objects without any contact. However, positioning accuracy is limited since RFID neither provides distance nor bearing information about the tag. This paper proposes a new and innovative approach for the localization of moving object using a particle filter by incorporating RFID phase and laser-based clustering from 2d laser range data. First of all, we calculate phase-based velocity of the moving object based on RFID phase difference. Meanwhile, we separate laser range data into different clusters, and compute the distance-based velocity and moving direction of these clusters. We then compute and analyze the similarity between two velocities, and select K clusters having the best similarity score. We predict the particles according to the velocity and moving direction of laser clusters. Finally, we update the weights of the particles based on K clusters and achieve the localization of moving objects. The feasibility of this approach is validated on a Scitos G5 service robot and the results prove that we have successfully achieved a localization accuracy up to 0.25 m. PMID:29522458

  5. A facile mechanochemical approach to synthesize Zn-Al layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jun, E-mail: forsjun@whut.edu.cn; He, Xiaoman; Chen, Min

    2017-06-15

    In this study, a mechanochemical route to synthesize Zn-Al layered double hydroxide (LDH) was introduced, in which Zn basic carbonate and Al hydroxide were first dry milled into an activated state and then agitated in water to obtain the final products. The as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG) and Scanning electron microscopy (SEM). The products possessed a high crystallinity of Zn–Al LDH phase without any other impurities, proving a facile and effective preparation of Zn–Al LDH by using non-heating mechanochemical approach. - Highlights: • A non-heating mechanochemical route to synthesize Zn-Almore » LDH. • The products possessed high crystalline Zn-Al LDH phase. • No emission of other impurities or wastewater.« less

  6. Instructor perceptions of the accident likelihood faced by recently trained glider pilots.

    PubMed

    Jarvis, Steve; Harris, Don

    2011-12-01

    U.K. glider pilots with less than 10 h of solo flying time have been shown to have the highest accident rate and be most vulnerable to accidents during the 'final approach' phase. There were 58 gliding instructors who were asked to indicate what experience level they thought was associated with the highest accident rate and provide the reason behind their estimate. They were also asked to rank six flight phases by the relative probability of accidents to inexperienced pilots. The mean estimate for the accident peak was 296.3 h as pilot-in-command (SD = 337.9) with no instructor giving a figure of less than 10 h. Common reasons for these estimates were 'over-confidence', 'risk-taking', or 'complacency'. Instructors also ranked six flight phases by the likelihood of an accident being caused by inexperienced pilots during that phase. Despite the approach phase having the highest objective accident probability, it was only ranked fifth by instructors, indicating an underestimate of the danger it presents to newly trained pilots. The results suggest that instructors do not appreciate the high accident likelihood of early solo pilots or the main dangers they face. This has implications for the decisions made when sending pilots solo.

  7. Traffic Alert and Collision Avoidance System (TCAS): Cockpit Display of Traffic Information (CDTI) investigation. Phase 1: Feasibility study

    NASA Technical Reports Server (NTRS)

    Burgess, Malcolm; Davis, Dean; Hollister, Walter; Sorensen, John A.

    1991-01-01

    The possibility of the Threat Alert and Collision Avoidance System (TCAS) traffic sensor and display being used for meaningful Cockpit Display of Traffic Information (CDTI) applications has resulted in the Federal Aviation Administration initiating a project to establish the technical and operational requirements to realize this potential. Phase 1 of the project is presented here. Phase 1 was organized to define specific CDTI applications for the terminal area, to determine what has already been learned about CDTI technology relevant to these applications, and to define the engineering required to supply the remaining TCAS-CDTI technology for capacity benefit realization. The CDTI applications examined have been limited to those appropriate to the final approach and departure phases of flight.

  8. Phase-field modeling of mixing/demixing of regular binary mixtures with a composition-dependent viscosity

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2017-04-01

    We simulate the mixing (demixing) process of a quiescent binary liquid mixture with a composition-dependent viscosity which is instantaneously brought from the two-phase (one-phase) to the one-phase (two-phase) region of its phase diagram. Our theoretical approach follows a standard diffuse-interface model of partially miscible regular binary mixtures wherein convection and diffusion are coupled via a nonequilibrium capillary force, expressing the tendency of the phase-separating system to minimize its free energy. Based on 2D simulation results, we discuss the influence of viscosity ratio on basic statistics of the mixing (segregation) process triggered by a rapid heating (quench), assuming that the ratio of capillary to viscous forces (a.k.a. the fluidity coefficient) is large. We show that, for a phase-separating system, at a fixed value of the fluidity coefficient (with the continuous phase viscosity taken as a reference), the separation depth and the characteristic length of single-phase microdomains decrease monotonically for increasing values of the viscosity of the dispersed phase. This variation, however, is quite small, in agreement with experimental results. On the other hand, as one might expect, at a fixed viscosity of the dispersed phase both of the above statistics increase monotonically as the viscosity of the continuous phase decreases. Finally, we show that for a mixing system the attainment of a single-phase equilibrium state by coalescence and diffusion is retarded by an increase in the viscosity ratio at a fixed fluidity for the dispersed phase. In fact, for large enough values of the viscosity ratio, a thin film of the continuous phase becomes apparent when two drops of the minority phase approach each other, which further retards coalescence.

  9. Using certification trails to achieve software fault tolerance

    NASA Technical Reports Server (NTRS)

    Sullivan, Gregory F.; Masson, Gerald M.

    1993-01-01

    A conceptually novel and powerful technique to achieve fault tolerance in hardware and software systems is introduced. When used for software fault tolerance, this new technique uses time and software redundancy and can be outlined as follows. In the initial phase, a program is run to solve a problem and store the result. In addition, this program leaves behind a trail of data called a certification trail. In the second phase, another program is run which solves the original problem again. This program, however, has access to the certification trail left by the first program. Because of the availability of the certification trail, the second phase can be performed by a less complex program and can execute more quickly. In the final phase, the two results are accepted as correct; otherwise an error is indicated. An essential aspect of this approach is that the second program must always generate either an error indication or a correct output even when the certification trail it receives from the first program is incorrect. The certification trail approach to fault tolerance was formalized and it was illustrated by applying it to the fundamental problem of finding a minimum spanning tree. Cases in which the second phase can be run concorrectly with the first and act as a monitor are discussed. The certification trail approach was compared to other approaches to fault tolerance. Because of space limitations we have omitted examples of our technique applied to the Huffman tree, and convex hull problems. These can be found in the full version of this paper.

  10. An Analysis of a Comprehensive Evaluation Model for Guided Group Interaction Techniques with Juvenile Delinquents. Final Report.

    ERIC Educational Resources Information Center

    Silverman, Mitchell

    Reported are the first phase activities of a longitudinal project designed to evaluate the effectiveness of Guided Group Interaction (GGI) technique as a meaningful approach in the field of corrections. The main findings relate to the establishment of reliability for the main components of the Revised Behavior Scores System developed to assess the…

  11. Guidance Concept for a Mars Ascent Vehicle First Stage

    NASA Technical Reports Server (NTRS)

    Queen, Eric M.

    2000-01-01

    This paper presents a guidance concept for use on the first stage of a Mars Ascent Vehicle (MAV). The guidance is based on a calculus of variations approach similar to that used for the final phase of the Apollo Earth return guidance. A three degree-of-freedom (3DOF) Monte Carlo simulation is used to evaluate performance and robustness of the algorithm.

  12. Phase-change memory: A continuous multilevel compact model of subthreshold conduction and threshold switching

    NASA Astrophysics Data System (ADS)

    Pigot, Corentin; Gilibert, Fabien; Reyboz, Marina; Bocquet, Marc; Zuliani, Paola; Portal, Jean-Michel

    2018-04-01

    Phase-change memory (PCM) compact modeling of the threshold switching based on a thermal runaway in Poole–Frenkel conduction is proposed. Although this approach is often used in physical models, this is the first time it is implemented in a compact model. The model accuracy is validated by a good correlation between simulations and experimental data collected on a PCM cell embedded in a 90 nm technology. A wide range of intermediate states is measured and accurately modeled with a single set of parameters, allowing multilevel programing. A good convergence is exhibited even in snapback simulation owing to this fully continuous approach. Moreover, threshold properties extraction indicates a thermally enhanced switching, which validates the basic hypothesis of the model. Finally, it is shown that this model is compliant with a new drift-resilient cell-state metric. Once enriched with a phase transition module, this compact model is ready to be implemented in circuit simulators.

  13. Quench dynamics and nonequilibrium phase diagram of the bose-hubbard model.

    PubMed

    Kollath, Corinna; Läuchli, Andreas M; Altman, Ehud

    2007-05-04

    We investigate the time evolution of correlations in the Bose-Hubbard model following a quench from the superfluid to the Mott insulator. For large values of the final interaction strength the system approaches a distinctly nonequilibrium steady state that bears strong memory of the initial conditions. In contrast, when the final interaction strength is comparable to the hopping, the correlations are rather well approximated by those at thermal equilibrium. The existence of two distinct nonequilibrium regimes is surprising given the nonintegrability of the Bose-Hubbard model. We relate this phenomenon to the role of quasiparticle interactions in the Mott insulator.

  14. Dissipation-driven phase transitions in superconducting wires

    NASA Astrophysics Data System (ADS)

    Lobos, Alejandro; Iucci, Aníbal; Müller, Markus; Giamarchi, Thierry

    2010-03-01

    Narrow superconducting wires with diameter dξ0 (where ξ0 is the bulk superconducting coherence length) are quasi-1D systems in which fluctuations of the order parameter strongly affect low-temperature properties. Indeed, fluctuations cause the magnitude of the order parameter to temporarily vanish at some point along the wire, allowing its phase to slip by 2π, and to produce finite resistivity for all temperatures below Tc. In this work, we show that a weak coupling to a diffusive metallic film reinforces superconductivity in the wire through a quench of phase fluctuations. We analyze the effective phase-only action of the system by a perturbative renormalization-group and a self-consistent variational approach to obtain the critical points and phases at T=0. We predict a quantum phase transition towards a superconducting phase with long-range order as a function of the wire stiffness and coupling to the metal. Finally we discuss implications for the DC resistivity of the wire.

  15. The SOS-framework (Systems of Sedentary behaviours): an international transdisciplinary consensus framework for the study of determinants, research priorities and policy on sedentary behaviour across the life course: a DEDIPAC-study.

    PubMed

    Chastin, Sebastien F M; De Craemer, Marieke; Lien, Nanna; Bernaards, Claire; Buck, Christoph; Oppert, Jean-Michel; Nazare, Julie-Anne; Lakerveld, Jeroen; O'Donoghue, Grainne; Holdsworth, Michelle; Owen, Neville; Brug, Johannes; Cardon, Greet

    2016-07-15

    Ecological models are currently the most used approaches to classify and conceptualise determinants of sedentary behaviour, but these approaches are limited in their ability to capture the complexity of and interplay between determinants. The aim of the project described here was to develop a transdisciplinary dynamic framework, grounded in a system-based approach, for research on determinants of sedentary behaviour across the life span and intervention and policy planning and evaluation. A comprehensive concept mapping approach was used to develop the Systems Of Sedentary behaviours (SOS) framework, involving four main phases: (1) preparation, (2) generation of statements, (3) structuring (sorting and ranking), and (4) analysis and interpretation. The first two phases were undertaken between December 2013 and February 2015 by the DEDIPAC KH team (DEterminants of DIet and Physical Activity Knowledge Hub). The last two phases were completed during a two-day consensus meeting in June 2015. During the first phase, 550 factors regarding sedentary behaviour were listed across three age groups (i.e., youths, adults and older adults), which were reduced to a final list of 190 life course factors in phase 2 used during the consensus meeting. In total, 69 international delegates, seven invited experts and one concept mapping consultant attended the consensus meeting. The final framework obtained during that meeting consisted of six clusters of determinants: Physical Health and Wellbeing (71% consensus), Social and Cultural Context (59% consensus), Built and Natural Environment (65% consensus), Psychology and Behaviour (80% consensus), Politics and Economics (78% consensus), and Institutional and Home Settings (78% consensus). Conducting studies on Institutional Settings was ranked as the first research priority. The view that this framework captures a system-based map of determinants of sedentary behaviour was expressed by 89% of the participants. Through an international transdisciplinary consensus process, the SOS framework was developed for the determinants of sedentary behaviour through the life course. Investigating the influence of Institutional and Home Settings was deemed to be the most important area of research to focus on at present and potentially the most modifiable. The SOS framework can be used as an important tool to prioritise future research and to develop policies to reduce sedentary time.

  16. Optical Diagnostic System for Solar Sails: Phase 1 Final Report

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Blandino, Joseph R.; Caldwell, Douglas W.; Carroll, Joseph A.; Jenkins, Christopher H. M.; Pollock, Thomas C.

    2004-01-01

    NASA's In-Space Propulsion program recently selected AEC-ABLE Engineering and L'Garde, Inc. to develop scale-model solar sail hardware and demonstrate its functionality on the ground. Both are square sail designs with lightweight diagonal booms (<100 g/m) and ultra-thin membranes (<10 g/sq m). To support this technology, the authors are developing an integrated diagnostics instrumentation package for monitoring solar sail structures such as these in a near-term flight experiment. We refer to this activity as the "Optical Diagnostic System (ODS) for Solar Sails" project. The approach uses lightweight optics and photogrammetric techniques to measure solar sail membrane and boom shape and dynamics, thermography to map temperature, and non-optical sensors including MEMS accelerometers and load cells. The diagnostics package must measure key structural characteristics including deployment dynamics, sail support tension, boom and sail deflection, boom and sail natural frequencies, sail temperature, and sail integrity. This report summarizes work in the initial 6-month Phase I period (conceptual design phase) and complements the final presentation given in Huntsville, AL on January 14, 2004.

  17. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons.

    PubMed

    Cardano, Filippo; D'Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro

    2017-06-01

    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems.

  18. Space transfer vehicle concepts and requirements study, phase 2

    NASA Technical Reports Server (NTRS)

    Cannon, Jeffrey H.; Vinopal, Tim; Andrews, Dana; Richards, Bill; Weber, Gary; Paddock, Greg; Maricich, Peter; Bouton, Bruce; Hagen, Jim; Kolesar, Richard

    1992-01-01

    This final report is a compilation of the Phase 1 and Phase 2 study findings and is intended as a Space Transfer Vehicle (STV) 'users guide' rather than an exhaustive explanation of STV design details. It provides a database for design choices in the general areas of basing, reusability, propulsion, and staging; with selection criteria based on cost, performance, available infrastructure, risk, and technology. The report is organized into the following three parts: (1) design guide; (2) STV Phase 1 Concepts and Requirements Study Summary; and (3) STV Phase 2 Concepts and Requirements Study Summary. The overall objectives of the STV study were to: (1) define preferred STV concepts capable of accommodating future exploration missions in a cost-effective manner; (2) determine the level of technology development required to perform these missions in the most cost effective manner; and (3) develop a decision database of programmatic approaches for the development of an STV concept.

  19. Arctic Climate and Atmospheric Planetary Waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Haekkinen, S.

    2000-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.

  20. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons

    PubMed Central

    Cardano, Filippo; D’Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro

    2017-01-01

    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems. PMID:28569741

  1. Polarimetric glucose sensing using Brewster reflection applying a rotating retarder analyzer

    NASA Astrophysics Data System (ADS)

    Boeckle, Stefan; Rovati, Luigi L.; Ansari, Rafat R.

    2003-10-01

    Previously, we proposed a polarimetric method, that exploits the Brewster-reflection with the final goal of application to the human eye (reflection off the eye lens) for non-invasive glucose sensing. The linearly polarized reflected light of this optical scheme is rotated by the glucose molecules present in the aqueous humor, thus carries the blood glucose concentration information. A proof-of-concept experimental bench-top setup is presented, applying a multi-wavelength true phase measurement approach and a rotating phase retarder as an analyzer to measure the very small rotation angles and the complete polarization state of the measurement light.

  2. Detecting recurrence domains of dynamical systems by symbolic dynamics.

    PubMed

    beim Graben, Peter; Hutt, Axel

    2013-04-12

    We propose an algorithm for the detection of recurrence domains of complex dynamical systems from time series. Our approach exploits the characteristic checkerboard texture of recurrence domains exhibited in recurrence plots. In phase space, recurrence plots yield intersecting balls around sampling points that could be merged into cells of a phase space partition. We construct this partition by a rewriting grammar applied to the symbolic dynamics of time indices. A maximum entropy principle defines the optimal size of intersecting balls. The final application to high-dimensional brain signals yields an optimal symbolic recurrence plot revealing functional components of the signal.

  3. Many-body-localization: strong disorder perturbative approach for the local integrals of motion

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile

    2018-05-01

    For random quantum spin models, the strong disorder perturbative expansion of the local integrals of motion around the real-spin operators is revisited. The emphasis is on the links with other properties of the many-body-localized phase, in particular the memory in the dynamics of the local magnetizations and the statistics of matrix elements of local operators in the eigenstate basis. Finally, this approach is applied to analyze the many-body-localization transition in a toy model studied previously from the point of view of the entanglement entropy.

  4. Improved Diffuse Foreground Subtraction with the ILC Method: CMB Map and Angular Power Spectrum Using Planck and WMAP Observations

    NASA Astrophysics Data System (ADS)

    Sudevan, Vipin; Aluri, Pavan K.; Yadav, Sarvesh Kumar; Saha, Rajib; Souradeep, Tarun

    2017-06-01

    We report an improved technique for diffuse foreground minimization from Cosmic Microwave Background (CMB) maps using a new multiphase iterative harmonic space internal-linear-combination (HILC) approach. Our method nullifies a foreground leakage that was present in the old and usual iterative HILC method. In phase 1 of the multiphase technique, we obtain an initial cleaned map using the single iteration HILC approach over the desired portion of the sky. In phase 2, we obtain a final CMB map using the iterative HILC approach; however, now, to nullify the leakage, during each iteration, some of the regions of the sky that are not being cleaned in the current iteration are replaced by the corresponding cleaned portions of the phase 1 map. We bring all input frequency maps to a common and maximum possible beam and pixel resolution at the beginning of the analysis, which significantly reduces data redundancy, memory usage, and computational cost, and avoids, during the HILC weight calculation, the deconvolution of partial sky harmonic coefficients by the azimuthally symmetric beam and pixel window functions, which in a strict mathematical sense, are not well defined. Using WMAP 9 year and Planck 2015 frequency maps, we obtain foreground-cleaned CMB maps and a CMB angular power spectrum for the multipole range 2≤slant {\\ell }≤slant 2500. Our power spectrum matches the published Planck results with some differences at different multipole ranges. We validate our method by performing Monte Carlo simulations. Finally, we show that the weights for HILC foreground minimization have the intrinsic characteristic that they also tend to produce a statistically isotropic CMB map.

  5. Army-NASA aircrew/aircraft integration program. Phase 5: A3I Man-Machine Integration Design and Analysis System (MIDAS) software concept document

    NASA Technical Reports Server (NTRS)

    Banda, Carolyn; Bushnell, David; Chen, Scott; Chiu, Alex; Neukom, Christian; Nishimura, Sayuri; Prevost, Michael; Shankar, Renuka; Staveland, Lowell; Smith, Greg

    1992-01-01

    This is the Software Concept Document for the Man-machine Integration Design and Analysis System (MIDAS) being developed as part of Phase V of the Army-NASA Aircrew/Aircraft Integration (A3I) Progam. The approach taken in this program since its inception in 1984 is that of incremental development with clearly defined phases. Phase 1 began in 1984 and subsequent phases have progressed at approximately 10-16 month intervals. Each phase of development consists of planning, setting requirements, preliminary design, detailed design, implementation, testing, demonstration and documentation. Phase 5 began with an off-site planning meeting in November, 1990. It is expected that Phase 5 development will be complete and ready for demonstration to invited visitors from industry, government and academia in May, 1992. This document, produced during the preliminary design period of Phase 5, is intended to record the top level design concept for MIDAS as it is currently conceived. This document has two main objectives: (1) to inform interested readers of the goals of the MIDAS Phase 5 development period, and (2) to serve as the initial version of the MIDAS design document which will be continuously updated as the design evolves. Since this document is written fairly early in the design period, many design issues still remain unresolved. Some of the unresolved issues are mentioned later in this document in the sections on specific components. Readers are cautioned that this is not a final design document and that, as the design of MIDAS matures, some of the design ideas recorded in this document will change. The final design will be documented in a detailed design document published after the demonstrations.

  6. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development

    DOE PAGES

    Burt, T.; Yoshida, K.; Lappin, G.; ...

    2016-02-26

    A number of drivers and developments suggest that microdosing and other phase 0 applications will experience increased utilization in the near-to-medium future. Increasing costs of drug development and ethical concerns about the risks of exposing humans and animals to novel chemical entities are important drivers in favor of these approaches, and can be expected only to increase in their relevance. An increasing body of research supports the validity of extrapolation from the limited drug exposure of phase 0 approaches to the full, therapeutic exposure, with modeling and simulations capable of extrapolating even non-linear scenarios. An increasing number of applications andmore » design options demonstrate the versatility and flexibility these approaches offer to drug developers including the study of PK, bioavailability, DDI, and mechanistic PD effects. PET microdosing allows study of target localization, PK and receptor binding and occupancy, while Intra-Target Microdosing (ITM) allows study of local therapeutic-level acute PD coupled with systemic microdose-level exposure. Applications in vulnerable populations and extreme environments are attractive due to the unique risks of pharmacotherapy and increasing unmet healthcare needs. Lastly, all phase 0 approaches depend on the validity of extrapolation from the limited-exposure scenario to the full exposure of therapeutic intent, but in the final analysis the potential for controlled human data to reduce uncertainty about drug properties is bound to be a valuable addition to the drug development process.« less

  7. Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burt, T.; Yoshida, K.; Lappin, G.

    A number of drivers and developments suggest that microdosing and other phase 0 applications will experience increased utilization in the near-to-medium future. Increasing costs of drug development and ethical concerns about the risks of exposing humans and animals to novel chemical entities are important drivers in favor of these approaches, and can be expected only to increase in their relevance. An increasing body of research supports the validity of extrapolation from the limited drug exposure of phase 0 approaches to the full, therapeutic exposure, with modeling and simulations capable of extrapolating even non-linear scenarios. An increasing number of applications andmore » design options demonstrate the versatility and flexibility these approaches offer to drug developers including the study of PK, bioavailability, DDI, and mechanistic PD effects. PET microdosing allows study of target localization, PK and receptor binding and occupancy, while Intra-Target Microdosing (ITM) allows study of local therapeutic-level acute PD coupled with systemic microdose-level exposure. Applications in vulnerable populations and extreme environments are attractive due to the unique risks of pharmacotherapy and increasing unmet healthcare needs. Lastly, all phase 0 approaches depend on the validity of extrapolation from the limited-exposure scenario to the full exposure of therapeutic intent, but in the final analysis the potential for controlled human data to reduce uncertainty about drug properties is bound to be a valuable addition to the drug development process.« less

  8. Phase IV of Early Restoration | NOAA Gulf Spill Restoration

    Science.gov Websites

    Trustees published the Final Phase IV Early Restoration Plan and Environmental Assessments. The plan habitats. Useful Links: Final Phase IV Early Restoration Plan and Environmental Assessments (pdf, 4.8 MB ) Final Phase IV Early Restoration Plan and Environmental Assessments Executive Summary (pdf, 729 KB

  9. Data in support of three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes

    PubMed Central

    Gagaoua, Mohammed; Hafid, Kahina; Hoggas, Naouel

    2016-01-01

    This paper describes data related to a research article titled “Three Phase Partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes” (Gagaoua et al., 2015) [1]. Zingibain (EC 3.4.22.67), is a coagulant cysteine protease and a meat tenderizer agent that have been reported to produce satisfactory final products in dairy and meat technology, respectively. Zingibains were exclusively purified using chromatographic techniques with very low yield purification. This paper includes data of the effect of temperature, usual salts and organic solvents on the efficiency of the three phase partitioning (TPP) system. Also it includes data of the kinetic activity characterization of the purified zingibain using TPP purification approach. PMID:26909379

  10. On the relation between phase-field crack approximation and gradient damage modelling

    NASA Astrophysics Data System (ADS)

    Steinke, Christian; Zreid, Imadeddin; Kaliske, Michael

    2017-05-01

    The finite element implementation of a gradient enhanced microplane damage model is compared to a phase-field model for brittle fracture. Phase-field models and implicit gradient damage models share many similarities despite being conceived from very different standpoints. In both approaches, an additional differential equation and a length scale are introduced. However, while the phase-field method is formulated starting from the description of a crack in fracture mechanics, the gradient method starts from a continuum mechanics point of view. At first, the scope of application for both models is discussed to point out intersections. Then, the analysis of the employed mathematical methods and their rigorous comparison are presented. Finally, numerical examples are introduced to illustrate the findings of the comparison which are summarized in a conclusion at the end of the paper.

  11. Application of a swarm-based approach for phase unwrapping

    NASA Astrophysics Data System (ADS)

    da S. Maciel, Lucas; Albertazzi G., Armando, Jr.

    2014-07-01

    An algorithm for phase unwrapping based on swarm intelligence is proposed. The novel approach is based on the emergent behavior of swarms. This behavior is the result of the interactions between independent agents following a simple set of rules and is regarded as fast, flexible and robust. The rules here were designed with two purposes. Firstly, the collective behavior must result in a reliable map of the unwrapped phase. The unwrapping reliability was evaluated by each agent during run-time, based on the quality of the neighboring pixels. In addition, the rule set must result in a behavior that focuses on wrapped regions. Stigmergy and communication rules were implemented in order to enable each agent to seek less worked areas of the image. The agents were modeled as Finite-State Machines. Based on the availability of unwrappable pixels, each agent assumed a different state in order to better adapt itself to the surroundings. The implemented rule set was able to fulfill the requirements on reliability and focused unwrapping. The unwrapped phase map was comparable to those from established methods as the agents were able to reliably evaluate each pixel quality. Also, the unwrapping behavior, being observed in real time, was able to focus on workable areas as the agents communicated in order to find less traveled regions. The results were very positive for such a new approach to the phase unwrapping problem. Finally, the authors see great potential for future developments concerning the flexibility, robustness and processing times of the swarm-based algorithm.

  12. The Formative Method for Adapting Psychotherapy (FMAP): A community-based developmental approach to culturally adapting therapy

    PubMed Central

    Hwang, Wei-Chin

    2010-01-01

    How do we culturally adapt psychotherapy for ethnic minorities? Although there has been growing interest in doing so, few therapy adaptation frameworks have been developed. The majority of these frameworks take a top-down theoretical approach to adapting psychotherapy. The purpose of this paper is to introduce a community-based developmental approach to modifying psychotherapy for ethnic minorities. The Formative Method for Adapting Psychotherapy (FMAP) is a bottom-up approach that involves collaborating with consumers to generate and support ideas for therapy adaptation. It involves 5-phases that target developing, testing, and reformulating therapy modifications. These phases include: (a) generating knowledge and collaborating with stakeholders (b) integrating generated information with theory and empirical and clinical knowledge, (c) reviewing the initial culturally adapted clinical intervention with stakeholders and revising the culturally adapted intervention, (d) testing the culturally adapted intervention, and (e) finalizing the culturally adapted intervention. Application of the FMAP is illustrated using examples from a study adapting psychotherapy for Chinese Americans, but can also be readily applied to modify therapy for other ethnic groups. PMID:20625458

  13. Optimal savings and the value of population.

    PubMed

    Arrow, Kenneth J; Bensoussan, Alain; Feng, Qi; Sethi, Suresh P

    2007-11-20

    We study a model of economic growth in which an exogenously changing population enters in the objective function under total utilitarianism and into the state dynamics as the labor input to the production function. We consider an arbitrary population growth until it reaches a critical level (resp. saturation level) at which point it starts growing exponentially (resp. it stops growing altogether). This requires population as well as capital as state variables. By letting the population variable serve as the surrogate of time, we are still able to depict the optimal path and its convergence to the long-run equilibrium on a two-dimensional phase diagram. The phase diagram consists of a transient curve that reaches the classical curve associated with a positive exponential growth at the time the population reaches the critical level. In the case of an asymptotic population saturation, we expect the transient curve to approach the equilibrium as the population approaches its saturation level. Finally, we characterize the approaches to the classical curve and to the equilibrium.

  14. TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Vučičević, J.; Ayral, T.; Parcollet, O.

    2017-09-01

    We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, David W.; Gaither, Katherine N.; Polsky, Yarom

    Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site;more » (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.« less

  16. Optimal savings and the value of population

    PubMed Central

    Arrow, Kenneth J.; Bensoussan, Alain; Feng, Qi; Sethi, Suresh P.

    2007-01-01

    We study a model of economic growth in which an exogenously changing population enters in the objective function under total utilitarianism and into the state dynamics as the labor input to the production function. We consider an arbitrary population growth until it reaches a critical level (resp. saturation level) at which point it starts growing exponentially (resp. it stops growing altogether). This requires population as well as capital as state variables. By letting the population variable serve as the surrogate of time, we are still able to depict the optimal path and its convergence to the long-run equilibrium on a two-dimensional phase diagram. The phase diagram consists of a transient curve that reaches the classical curve associated with a positive exponential growth at the time the population reaches the critical level. In the case of an asymptotic population saturation, we expect the transient curve to approach the equilibrium as the population approaches its saturation level. Finally, we characterize the approaches to the classical curve and to the equilibrium. PMID:17984059

  17. Facile approach to the fabrication of a micropattern possessing nanoscale substructure.

    PubMed

    Ji, Qiang; Jiang, Xuesong; Yin, Jie

    2007-12-04

    On the basis of the combined technologies of photolithography and reaction-induced phase separation (RIPS), a facile approach has been successfully developed for the fabrication of a micropattern possessing nanoscale substructure on the thin film surface. This approach involves three steps. In the first step, a thin film was prepared by spin coating from a solution of a commercial random copolymer, polystyrene-r-poly(methyl methacrylate) (PS-r-PMMA) and a commercial crosslinker, trimethylolpropane triacrylate (TMPTA). In the second step, photolithograph was performed with the thin film using a 250 W high-pressure mercury lamp to produce the micropattern. Finally, the resulting micropattern was annealed at 200 degrees C for a certain time, and reaction-induced phase separation occurred. After soaking in chloroform for 4 h, nanoscale substructure was obtained. The whole processes were traced by atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS), and Fourier transform infrared (FTIR) spectroscopy, and the results supported the proposed structure.

  18. The Secondary Organic Aerosol Processor (SOAP v1.0) model: a unified model with different ranges of complexity based on the molecular surrogate approach

    NASA Astrophysics Data System (ADS)

    Couvidat, F.; Sartelet, K.

    2014-01-01

    The Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model is designed to be modular with different user options depending on the computing time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption on the aqueous phase of particles, activity coefficients, phase separation). Each surrogate can be hydrophilic (condenses only on the aqueous phase of particles), hydrophobic (condenses only on the organic phase of particles) or both (condenses on both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC thermodynamic model for short-range interactions and with the AIOMFAC parameterization for medium and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium and a dynamic representation of the organic aerosol. In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol (OA) is not at equilibrium with the gas phase because the organic phase could be semi-solid (very viscous liquid phase). The condensation or evaporation of organic compounds could then be limited by the diffusion in the organic phase due to the high viscosity. A dynamic representation of secondary organic aerosols (SOA) is used with OA divided into layers, the first layer at the center of the particle (slowly reaches equilibrium) and the final layer near the interface with the gas phase (quickly reaches equilibrium).

  19. Charge localization and ordering in A2Mn8O16 hollandite group oxides: Impact of density functional theory approaches

    NASA Astrophysics Data System (ADS)

    Kaltak, Merzuk; Fernández-Serra, Marivi; Hybertsen, Mark S.

    2017-12-01

    The phases of A2Mn8O16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3 d electrons are more explicitly considered with the DFT + U approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn3 + centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Finally, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.

  20. Tackling the Transition to UC: To Implement Unified Communications on Campus, It Often Pays to Take a Phased Approach

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2011-01-01

    In this article, the author talks about the challenges faced by two schools that lie, coincidentally, just 110 miles apart in the vast spaces of North Dakota. Both schools, members of the North Dakota University System, decided to forge ahead with a unified communications (UC) implementation. And while their final solutions differ, how the two…

  1. An Approach to the Teaching of Psychiatric Nursing in Diploma and Associate Degree Programs: Workshop Report.

    ERIC Educational Resources Information Center

    National League for Nursing, New York, NY. Mental Health and Psychiatric Nursing Advisory Service.

    This workshop was the third and final phase of a project to determine what goals, methods, content, and learning experiences in psychiatric-mental health nursing should be included in diploma and associate degree education for nursing in light of present day trends in psychiatric care. The project indicates that the hospital is no longer the focal…

  2. Computational cost of two alternative formulations of Cahn-Hilliard equations

    NASA Astrophysics Data System (ADS)

    Paszyński, Maciej; Gurgul, Grzegorz; Łoś, Marcin; Szeliga, Danuta

    2018-05-01

    In this paper we propose two formulations of Cahn-Hilliard equations, which have several applications in cancer growth modeling and material science phase-field simulations. The first formulation uses one C4 partial differential equations (PDEs) the second one uses two C2 PDEs. Finally, we compare the computational costs of direct solvers for both formulations, using the refined isogeometric analysis (rIGA) approach.

  3. Adaptive seamless designs: selection and prospective testing of hypotheses.

    PubMed

    Jennison, Christopher; Turnbull, Bruce W

    2007-01-01

    There is a current trend towards clinical protocols which involve an initial "selection" phase followed by a hypothesis testing phase. The selection phase may involve a choice between competing treatments or different dose levels of a drug, between different target populations, between different endpoints, or between a superiority and a non-inferiority hypothesis. Clearly there can be benefits in elapsed time and economy in organizational effort if both phases can be designed up front as one experiment, with little downtime between phases. Adaptive designs have been proposed as a way to handle these selection/testing problems. They offer flexibility and allow final inferences to depend on data from both phases, while maintaining control of overall false positive rates. We review and critique the methods, give worked examples and discuss the efficiency of adaptive designs relative to more conventional procedures. Where gains are possible using the adaptive approach, a variety of logistical, operational, data handling and other practical difficulties remain to be overcome if adaptive, seamless designs are to be effectively implemented.

  4. Ambiguity resolving based on cosine property of phase differences for 3D source localization with uniform circular array

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wang, Shuhong; Liu, Zhen; Wei, Xizhang

    2017-07-01

    Localization of a source whose half-wavelength is smaller than the array aperture would suffer from serious phase ambiguity problem, which also appears in recently proposed phase-based algorithms. In this paper, by using the centro-symmetry of fixed uniform circular array (UCA) with even number of sensors, the source's angles and range can be decoupled and a novel ambiguity resolving approach is addressed for phase-based algorithms of source's 3-D localization (azimuth angle, elevation angle, and range). In the proposed method, by using the cosine property of unambiguous phase differences, ambiguity searching and actual-value matching are first employed to obtain actual phase differences and corresponding source's angles. Then, the unambiguous angles are utilized to estimate the source's range based on a one dimension multiple signal classification (1-D MUSIC) estimator. Finally, simulation experiments investigate the influence of step size in search and SNR on performance of ambiguity resolution and demonstrate the satisfactory estimation performance of the proposed method.

  5. Computational Design and Discovery of Ni-Based Alloys and Coatings: Thermodynamic Approaches Validated by Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zi-Kui; Gleeson, Brian; Shang, Shunli

    This project developed computational tools that can complement and support experimental efforts in order to enable discovery and more efficient development of Ni-base structural materials and coatings. The project goal was reached through an integrated computation-predictive and experimental-validation approach, including first-principles calculations, thermodynamic CALPHAD (CALculation of PHAse Diagram), and experimental investigations on compositions relevant to Ni-base superalloys and coatings in terms of oxide layer growth and microstructure stabilities. The developed description included composition ranges typical for coating alloys and, hence, allow for prediction of thermodynamic properties for these material systems. The calculation of phase compositions, phase fraction, and phase stabilities,more » which are directly related to properties such as ductility and strength, was a valuable contribution, along with the collection of computational tools that are required to meet the increasing demands for strong, ductile and environmentally-protective coatings. Specifically, a suitable thermodynamic description for the Ni-Al-Cr-Co-Si-Hf-Y system was developed for bulk alloy and coating compositions. Experiments were performed to validate and refine the thermodynamics from the CALPHAD modeling approach. Additionally, alloys produced using predictions from the current computational models were studied in terms of their oxidation performance. Finally, results obtained from experiments aided in the development of a thermodynamic modeling automation tool called ESPEI/pycalphad - for more rapid discovery and development of new materials.« less

  6. Properties predictive modeling through the concept of a hybrid interphase existing between phases in contact

    NASA Astrophysics Data System (ADS)

    Portan, D. V.; Papanicolaou, G. C.

    2018-02-01

    From practical point of view, predictive modeling based on the physics of composite material behavior is wealth generating; by guiding material system selection and process choices, by cutting down on experimentation and associated costs; and by speeding up the time frame from the research stage to the market place. The presence of areas with different properties and the existence of an interphase between them have a pronounced influence on the behavior of a composite system. The Viscoelastic Hybrid Interphase Model (VHIM), considers the existence of a non-homogeneous viscoelastic and anisotropic interphase having properties depended on the degree of adhesion between the two phases in contact. The model applies for any physical/mechanical property (e.g. mechanical, thermal, electrical and/or biomechanical). Knowing the interphasial variation of a specific property one can predict the corresponding macroscopic behavior of the composite. Moreover, the model acts as an algorithm and a two-way approach can be used: (i) phases in contact may be chosen to get the desired properties of the final composite system or (ii) the initial phases in contact determine the final behavior of the composite system, that can be approximately predicted. The VHIM has been proven, amongst others, to be extremely useful in biomaterial designing for improved contact with human tissues.

  7. Autonomous stabilizer for incompressible photon fluids and solids

    NASA Astrophysics Data System (ADS)

    Ma, Ruichao; Owens, Clai; Houck, Andrew; Schuster, David I.; Simon, Jonathan

    2017-04-01

    We suggest a simple approach to populate photonic quantum materials at nonzero chemical potential and near-zero temperature. Taking inspiration from forced evaporation in cold-atom experiments, the essential ingredients for our low-entropy thermal reservoir are (a) interparticle interactions and (b) energy-dependent loss. The resulting thermal reservoir may then be coupled to a broad class of Hamiltonian systems to produce low-entropy quantum phases. We present an idealized picture of such a reservoir, deriving the scaling of reservoir entropy with system parameters, and then propose several practical implementations using only standard circuit quantum electrodynamics tools, and extract the fundamental performance limits. Finally, we explore, both analytically and numerically, the coupling of such a thermalizer to the paradigmatic Bose-Hubbard chain, where we employ it to stabilize an n =1 Mott phase. In this case, the performance is limited by the interplay of dynamically arrested thermalization of the Mott insulator and finite heat capacity of the thermalizer, characterized by its repumping rate. This work explores an approach to preparation of quantum phases of strongly interacting photons, and provides a potential route to topologically protected phases that are difficult to reach through adiabatic evolution.

  8. Entropy in universes evolving from initial to final de Sitter eras

    NASA Astrophysics Data System (ADS)

    Mimoso, José P.; Pavón, Diego

    2014-05-01

    This work studies the behavior of entropy in recent cosmological models that start with an initial de Sitter expansion phase, go through the conventional radiation and matter dominated eras to be followed by a final de Sitter epoch. In spite of their seemingly similarities (observationally they are close to the Λ-CDM model), different models deeply differ in their physics. The second law of thermodynamics encapsulates the underlying microscopic, statistical description, and hence we investigate it in the present work. Our study reveals that the entropy of the apparent horizon plus that of matter and radiation inside it, increases and is a concave function of the scale factor. Thus thermodynamic equilibrium is approached in the last de Sitter era, and this class of models is thermodynamically correct. Cosmological models that do not approach equilibrium appear in conflict with the second law of thermodynamics. (Based on Mimoso & Pavon 2013)

  9. Single-view phase retrieval of an extended sample by exploiting edge detection and sparsity

    DOE PAGES

    Tripathi, Ashish; McNulty, Ian; Munson, Todd; ...

    2016-10-14

    We propose a new approach to robustly retrieve the exit wave of an extended sample from its coherent diffraction pattern by exploiting sparsity of the sample's edges. This approach enables imaging of an extended sample with a single view, without ptychography. We introduce nonlinear optimization methods that promote sparsity, and we derive update rules to robustly recover the sample's exit wave. We test these methods on simulated samples by varying the sparsity of the edge-detected representation of the exit wave. Finally, our tests illustrate the strengths and limitations of the proposed method in imaging extended samples.

  10. Development of 0.5-5 W, 10K Reverse Brayton Cycle Cryocoolers - Phase II Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doty, F. D.; Boman, A.; Arnold, S.

    2001-10-15

    Miniature cryocoolers for the 8-30 K range are needed to provide 0.5-5 w of cooling to high sensitivity detectors (for long-wave-length IR, magnetism, mm-wave, X-ray, dark matter, and possibly y-ray detection) while maintaining low mass, ultra-low vibration, and good efficiency. This project presents a new approach to eliminating the problems normally encountered in efforts to build low-vibration, fieldable, miniature cryocoolers. Using the reverse Brayton Cycle (RBC), the approach applies and expands on existing spinner technology previously used only in Nuclear Magnetic Resonance (NMR) probes.

  11. OVMS-plus at the LBT: disturbance compensation simplified

    NASA Astrophysics Data System (ADS)

    Böhm, Michael; Pott, Jörg-Uwe; Borelli, José; Hinz, Phil; Defrère, Denis; Downey, Elwood; Hill, John; Summers, Kellee; Conrad, Al; Kürster, Martin; Herbst, Tom; Sawodny, Oliver

    2016-07-01

    In this paper we will briefly revisit the optical vibration measurement system (OVMS) at the Large Binocular Telescope (LBT) and how these values are used for disturbance compensation and particularly for the LBT Interferometer (LBTI) and the LBT Interferometric Camera for Near-Infrared and Visible Adaptive Interferometry for Astronomy (LINC-NIRVANA). We present the now centralized software architecture, called OVMS+, on which our approach is based and illustrate several challenges faced during the implementation phase. Finally, we will present measurement results from LBTI proving the effectiveness of the approach and the ability to compensate for a large fraction of the telescope induced vibrations.

  12. Space Shuttle flying qualities criteria assessment. Phase 5: Data acquistion and analysis

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Johnston, D. E.; Mcruer, D. T.

    1986-01-01

    The development of flying qualities experiments (OFQ) as a part of the Orbiter Experiments Program (OEX) was continued. The data base was extended to use the ground based cinetheodolite measurements of orbiter approach and landing. Onboard the cinetheodolite data were analyzed from flights STS 2 through 7 to identify the effective augmented vehicle dynamics, the control strategy employed by the pilot during preflare, shallow glide, and final flare segments of the landing, and the key approach and touchdown performance measures. A plan for an OFQ flying qualities data archive and processing is presented.

  13. Phase unwrapping in digital holography based on non-subsampled contourlet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-01-01

    In the digital holographic measurement of complex surfaces, phase unwrapping is a critical step for accurate reconstruction. The phases of the complex amplitudes calculated from interferometric holograms are disturbed by speckle noise, thus reliable unwrapping results are difficult to be obtained. Most of existing unwrapping algorithms implement denoising operations first to obtain noise-free phases and then conduct phase unwrapping pixel by pixel. This approach is sensitive to spikes and prone to unreliable results in practice. In this paper, a robust unwrapping algorithm based on the non-subsampled contourlet transform (NSCT) is developed. The multiscale and directional decomposition of NSCT enhances the boundary between adjacent phase levels and henceforth the influence of local noise can be eliminated in the transform domain. The wrapped phase map is segmented into several regions corresponding to different phase levels. Finally, an unwrapped phase map is obtained by elevating the phases of a whole segment instead of individual pixels to avoid unwrapping errors caused by local spikes. This algorithm is suitable for dealing with complex and noisy wavefronts. Its universality and superiority in the digital holographic interferometry have been demonstrated by both numerical analysis and practical experiments.

  14. Decision-theoretic designs for a series of trials with correlated treatment effects using the Sarmanov multivariate beta-binomial distribution.

    PubMed

    Hee, Siew Wan; Parsons, Nicholas; Stallard, Nigel

    2018-03-01

    The motivation for the work in this article is the setting in which a number of treatments are available for evaluation in phase II clinical trials and where it may be infeasible to try them concurrently because the intended population is small. This paper introduces an extension of previous work on decision-theoretic designs for a series of phase II trials. The program encompasses a series of sequential phase II trials with interim decision making and a single two-arm phase III trial. The design is based on a hybrid approach where the final analysis of the phase III data is based on a classical frequentist hypothesis test, whereas the trials are designed using a Bayesian decision-theoretic approach in which the unknown treatment effect is assumed to follow a known prior distribution. In addition, as treatments are intended for the same population it is not unrealistic to consider treatment effects to be correlated. Thus, the prior distribution will reflect this. Data from a randomized trial of severe arthritis of the hip are used to test the application of the design. We show that the design on average requires fewer patients in phase II than when the correlation is ignored. Correspondingly, the time required to recommend an efficacious treatment for phase III is quicker. © 2017 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Feasibility Demonstration of Exciplex Fluorescence Measurements in Evaporating Laminar Sprays of Diesel Fuel

    DTIC Science & Technology

    2011-05-15

    code) 1 FEASIBILITY DEMONSTRATION OF EXCIPLEX FLUORESCENCE MEASUREMENTS IN EVAPORATING LAMINAR SPRAYS OF DIESEL FUEL Final Technical Report Grant...fluorescence is found to increase with temperature up to 538 K and then declines. Fluorescence from the liquid phase, i.e. the exciplex (Naphthalene+TMPD...to have as well characterized a description of the spray environment and assess conclusively the potential of the exciplex approach for more

  16. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, K; Bltyhe, G M; Steen, W A

    2012-02-28

    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agentsmore » to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.« less

  17. THERMODYNAMICS OF FE-CU ALLOYS AS DESCRIBED BY A CLASSIC POTENTIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caro, A; Caro, M; Lopasso, E M

    2005-04-14

    The Fe-Cu system is of relevance to the nuclear industry because of the deleterious consequences of Cu precipitates in the mechanical properties of Fe. Several sets of classical potentials are used in molecular dynamics simulations studies of this system, in particular that proposed by Ludwig et al. (Modelling Simul. Mater. Sci. Eng. 6, 19 (1998)). In this work we extract thermodynamic information from this interatomic potentials. We obtain equilibrium phase diagram and find a reasonable agreement with the experimental phases in the regions of relevance to radiation damage studies. We compare the results with the predicted phase diagram based onmore » other potential, as calculated in previous work. We discuss the disagreements found between the phase diagram calculated here and experimental results, focusing on the pure components and discuss the applicability of these potentials; finally we suggest an approach to improve existing potentials for this system.« less

  18. Interferometric sensitivity and entanglement by scanning through quantum phase transitions in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Feldmann, P.; Gessner, M.; Gabbrielli, M.; Klempt, C.; Santos, L.; Pezzè, L.; Smerzi, A.

    2018-03-01

    Recent experiments demonstrated the generation of entanglement by quasiadiabatically driving through quantum phase transitions of a ferromagnetic spin-1 Bose-Einstein condensate in the presence of a tunable quadratic Zeeman shift. We analyze, in terms of the Fisher information, the interferometric value of the entanglement accessible by this approach. In addition to the Twin-Fock phase studied experimentally, we unveil a second regime, in the broken axisymmetry phase, which provides Heisenberg scaling of the quantum Fisher information and can be reached on shorter time scales. We identify optimal unitary transformations and an experimentally feasible optimal measurement prescription that maximize the interferometric sensitivity. We further ascertain that the Fisher information is robust with respect to nonadiabaticity and measurement noise. Finally, we show that the quasiadiabatic entanglement preparation schemes admit higher sensitivities than dynamical methods based on fast quenches.

  19. Effects of frustration on explosive synchronization

    NASA Astrophysics Data System (ADS)

    Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can

    2016-12-01

    In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.

  20. Interferogram conditioning for improved Fourier analysis and application to X-ray phase imaging by grating interferometry.

    PubMed

    Montaux-Lambert, Antoine; Mercère, Pascal; Primot, Jérôme

    2015-11-02

    An interferogram conditioning procedure, for subsequent phase retrieval by Fourier demodulation, is presented here as a fast iterative approach aiming at fulfilling the classical boundary conditions imposed by Fourier transform techniques. Interference fringe patterns with typical edge discontinuities were simulated in order to reveal the edge artifacts that classically appear in traditional Fourier analysis, and were consecutively used to demonstrate the correction efficiency of the proposed conditioning technique. Optimization of the algorithm parameters is also presented and discussed. Finally, the procedure was applied to grating-based interferometric measurements performed in the hard X-ray regime. The proposed algorithm enables nearly edge-artifact-free retrieval of the phase derivatives. A similar enhancement of the retrieved absorption and fringe visibility images is also achieved.

  1. Compact and highly stable quantum dots through optimized aqueous phase transfer

    NASA Astrophysics Data System (ADS)

    Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter

    2011-03-01

    A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.

  2. Quantum information processing in phase space: A modular variables approach

    NASA Astrophysics Data System (ADS)

    Ketterer, A.; Keller, A.; Walborn, S. P.; Coudreau, T.; Milman, P.

    2016-08-01

    Binary quantum information can be fault-tolerantly encoded in states defined in infinite-dimensional Hilbert spaces. Such states define a computational basis, and permit a perfect equivalence between continuous and discrete universal operations. The drawback of this encoding is that the corresponding logical states are unphysical, meaning infinitely localized in phase space. We use the modular variables formalism to show that, in a number of protocols relevant for quantum information and for the realization of fundamental tests of quantum mechanics, it is possible to loosen the requirements on the logical subspace without jeopardizing their usefulness or their successful implementation. Such protocols involve measurements of appropriately chosen modular variables that permit the readout of the encoded discrete quantum information from the corresponding logical states. Finally, we demonstrate the experimental feasibility of our approach by applying it to the transverse degrees of freedom of single photons.

  3. Bessel beam CARS of axially structured samples

    NASA Astrophysics Data System (ADS)

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-06-01

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

  4. Bessel beam CARS of axially structured samples.

    PubMed

    Heuke, Sandro; Zheng, Juanjuan; Akimov, Denis; Heintzmann, Rainer; Schmitt, Michael; Popp, Jürgen

    2015-06-05

    We report about a Bessel beam CARS approach for axial profiling of multi-layer structures. This study presents an experimental implementation for the generation of CARS by Bessel beam excitation using only passive optical elements. Furthermore, an analytical expression is provided describing the generated anti-Stokes field by a homogeneous sample. Based on the concept of coherent transfer functions, the underling resolving power of axially structured geometries is investigated. It is found that through the non-linearity of the CARS process in combination with the folded illumination geometry continuous phase-matching is achieved starting from homogeneous samples up to spatial sample frequencies at twice of the pumping electric field wave. The experimental and analytical findings are modeled by the implementation of the Debye Integral and scalar Green function approach. Finally, the goal of reconstructing an axially layered sample is demonstrated on the basis of the numerically simulated modulus and phase of the anti-Stokes far-field radiation pattern.

  5. Two-Phase and Graph-Based Clustering Methods for Accurate and Efficient Segmentation of Large Mass Spectrometry Images.

    PubMed

    Dexter, Alex; Race, Alan M; Steven, Rory T; Barnes, Jennifer R; Hulme, Heather; Goodwin, Richard J A; Styles, Iain B; Bunch, Josephine

    2017-11-07

    Clustering is widely used in MSI to segment anatomical features and differentiate tissue types, but existing approaches are both CPU and memory-intensive, limiting their application to small, single data sets. We propose a new approach that uses a graph-based algorithm with a two-phase sampling method that overcomes this limitation. We demonstrate the algorithm on a range of sample types and show that it can segment anatomical features that are not identified using commonly employed algorithms in MSI, and we validate our results on synthetic MSI data. We show that the algorithm is robust to fluctuations in data quality by successfully clustering data with a designed-in variance using data acquired with varying laser fluence. Finally, we show that this method is capable of generating accurate segmentations of large MSI data sets acquired on the newest generation of MSI instruments and evaluate these results by comparison with histopathology.

  6. A hybrid six-dimensional muon cooling channel using gas filled rf cavities

    DOE PAGES

    Stratakis, D.

    2017-09-25

    We describe an alternative cooling approach to prevent rf breakdown in magnetic fields that simultaneously reduces all six phase-space dimensions of a muon beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in discrete absorbers and replenishing the momentum loss only in the longitudinal direction through gas-filled rf cavities. The advantage of gas filled cavities is that they can run at high gradients in magnetic fields without breakdown. Using this approach, we show that our channel can achieve a decrease of the 6-dimensional phase-space volume by several orders of magnitude. With the aidmore » of numerical simulations, we demonstrate that the transmission of our proposed channel is comparable to that of an equivalent channel with vacuum rf cavities. Finally, we discuss the sensitivity of the channel performance to the choice of gas and operating pressure.« less

  7. The kinetics of heterogeneous nucleation and growth: an approach based on a grain explicit model

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, B.; Maillet, J.-B.; Denoual, C.

    2014-04-01

    A model for phase transitions initiated on grain boundaries is proposed and tested against numerical simulations: this approach, based on a grain explicit model, allows us to consider the granular structure, resulting in accurate predictions for a wide span of nucleation processes. Comparisons are made with classical models of homogeneous (JMAK: Johnson and Mehl 1939 Trans. Am. Inst. Min. Eng. 135 416; Avrami 1939 J. Chem. Phys. 7 1103; Kolmogorov 1937 Bull. Acad. Sci. USSR, Mat. Ser. 1 335) as well as heterogeneous (Cahn 1996 Thermodynamics and Kinetics of Phase Transformations Im et al (Pittsburgh: Materials Research Society)) nucleation. A transition scale based on material properties is proposed, allowing us to discriminate between random and site-saturated regimes. Finally, we discuss the relationship between an Avrami-type exponent and the transition regime, establishing conditions for its extraction from experiments.

  8. A hybrid six-dimensional muon cooling channel using gas filled rf cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakis, D.

    We describe an alternative cooling approach to prevent rf breakdown in magnetic fields that simultaneously reduces all six phase-space dimensions of a muon beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in discrete absorbers and replenishing the momentum loss only in the longitudinal direction through gas-filled rf cavities. The advantage of gas filled cavities is that they can run at high gradients in magnetic fields without breakdown. Using this approach, we show that our channel can achieve a decrease of the 6-dimensional phase-space volume by several orders of magnitude. With the aidmore » of numerical simulations, we demonstrate that the transmission of our proposed channel is comparable to that of an equivalent channel with vacuum rf cavities. Finally, we discuss the sensitivity of the channel performance to the choice of gas and operating pressure.« less

  9. Generation of fractional acoustic vortex with a discrete Archimedean spiral structure plate

    NASA Astrophysics Data System (ADS)

    Jia, Yu-Rou; Wei, Qi; Wu, Da-Jian; Xu, Zheng; Liu, Xiao-Jun

    2018-04-01

    Artificial structure plates engraved with discrete Archimedean spiral slits have been well designed to achieve fractional acoustic vortices (FAVs). The phase and pressure field distributions of FAVs are investigated theoretically and demonstrated numerically. It is found that the phase singularities relating to the integer and fractional parts of the topological charge (TC) result in dark spots in the upper half of the pressure field profile and a low-intensity stripe in the lower half of the pressure field profile, respectively. The dynamic progress of the FAV is also discussed in detail as TC increases from 1 to 2. With increasing TC from 1 to 1.5, the splitting of the phase singularity leads to the deviation of the phase of the FAV from the integer case and hence a new phase singularity occurs. As TC m increases from 1.5 to 2, two phase singularities of the FAV approach together and finally merge as a new central phase singularity. We further perform an experiment based on the Schlieren method to demonstrate the generation of the FAV.

  10. NFIRAOS in 2015: engineering for future integration of complex subsystems

    NASA Astrophysics Data System (ADS)

    Atwood, Jenny; Andersen, David; Byrnes, Peter; Densmore, Adam; Fitzsimmons, Joeleff; Herriot, Glen; Hill, Alexis

    2016-07-01

    The Narrow Field InfraRed Adaptive Optics System (NFIRAOS) will be the first-light facility Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). NFIRAOS will be able to host three science instruments that can take advantage of this high performance system. NRC Herzberg is leading the design effort for this critical TMT subsystem. As part of the final design phase of NFIRAOS, we have identified multiple subsystems to be sub-contracted to Canadian industry. The scope of work for each subcontract is guided by the NFIRAOS Work Breakdown Structure (WBS) and is divided into two phases: the completion of the final design and the fabrication, assembly and delivery of the final product. Integration of the subsystems at NRC will require a detailed understanding of the interfaces between the subsystems, and this work has begun by defining the interface physical characteristics, stability, local coordinate systems, and alignment features. In order to maintain our stringent performance requirements, the interface parameters for each subsystem are captured in multiple performance budgets, which allow a bottom-up error estimate. In this paper we discuss our approach for defining the interfaces in a consistent manner and present an example error budget that is influenced by multiple subsystems.

  11. Pressurizing Field-Effect Transistors of Few-Layer MoS 2 in a Diamond Anvil Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yabin; Ke, Feng; Ci, Penghong

    Hydrostatic pressure applied using diamond anvil cells (DAC) has been widely explored to modulate physical properties of materials by tuning their lattice degree of freedom. Independently, electrical field is able to tune the electronic degree of freedom of functional materials via, for example, the field-effect transistor (FET) configuration. Combining these two orthogonal approaches would allow discovery of new physical properties and phases going beyond the known phase space. Such experiments are, however, technically challenging and have not been demonstrated. In this paper, we report a feasible strategy to prepare and measure FETs in a DAC by lithographically patterning the nanodevicesmore » onto the diamond culet. Multiple-terminal FETs were fabricated in the DAC using few-layer MoS 2 and BN as the channel semiconductor and dielectric layer, respectively. It is found that the mobility, conductance, carrier concentration, and contact conductance of MoS 2 can all be significantly enhanced with pressure. Finally, we expect that the approach could enable unprecedented ways to explore new phases and properties of materials under coupled mechano-electrostatic modulation.« less

  12. Impact of Metal Droplets: A Numerical Approach to Solidification

    NASA Astrophysics Data System (ADS)

    Koldeweij, Robin; Mandamparambil, Rajesh; Lohse, Detlef

    2016-11-01

    Layer-wise deposition of material to produce complex products is a subject of increasing technological relevance. Subsequent deposition of droplets is one of the possible 3d printing technologies to accomplish this. The shape of the solidified droplet is crucial for product quality. We employ the volume-of-fluid method (in the form of the open-source code Gerris) to study liquid metal (in particular tin) droplet impact. Heat transfer has been implemented based on the enthalpy approach for the liquid-solid phase. Solidification is modeled by adding a sink term to the momentum equations, reducing Navier-Stokes to Darcy's law for high solid fraction. Good agreement is found when validating the results against experimental data. We then map out a phase diagram in which we distinguish between solidification behavior based on Weber and Stefan number. In an intermediate impact regime impact, solidification due to a retracting phase occurs. In this regime the maximum spreading diameter almost exclusively depends on Weber number. Droplet shape oscillations lead to a broad variation of the morphology of the solidified droplet and determine the final droplet height. TNO.

  13. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    NASA Technical Reports Server (NTRS)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  14. Automated recognition of helium speech. Phase I: Investigation of microprocessor based analysis/synthesis system

    NASA Astrophysics Data System (ADS)

    Jelinek, H. J.

    1986-01-01

    This is the Final Report of Electronic Design Associates on its Phase I SBIR project. The purpose of this project is to develop a method for correcting helium speech, as experienced in diver-surface communication. The goal of the Phase I study was to design, prototype, and evaluate a real time helium speech corrector system based upon digital signal processing techniques. The general approach was to develop hardware (an IBM PC board) to digitize helium speech and software (a LAMBDA computer based simulation) to translate the speech. As planned in the study proposal, this initial prototype may now be used to assess expected performance from a self contained real time system which uses an identical algorithm. The Final Report details the work carried out to produce the prototype system. Four major project tasks were: a signal processing scheme for converting helium speech to normal sounding speech was generated. The signal processing scheme was simulated on a general purpose (LAMDA) computer. Actual helium speech was supplied to the simulation and the converted speech was generated. An IBM-PC based 14 bit data Input/Output board was designed and built. A bibliography of references on speech processing was generated.

  15. Absence of luteal phase defect and spontaneous pregnancy in IVF patients despite GnRH-agonist trigger and "freeze all policy" without luteal phase support: a report of four cases.

    PubMed

    Gurbuz, Ali Sami; Deveer, Ruya; Ozcimen, Necati; Ozcimen, Emel Ebru; Lawrenz, Barbara; Banker, Manish; Garcia-Velasco, Juan Antonio; Fatemi, Human Mousavi

    2016-01-01

    Human chorionic gonadotropin (hCG) is commonly used for final oocyte maturation in "in vitro fertilization" (IVF)-treatment cycles, however, the main important risk is development of severe ovarian hyperstimulation syndrome (OHSS). OHSS can almost be avoided by using gonadotrophin-releasing-hormone agonist for final oocyte maturation in an antagonist protocol. However, primarily this approach lead to a very poor reproductive outcome, despite the use of a standard luteal phase support. The reason seems to be severe luteolysis. Obviously, luteolysis post-gonadotropin-releasing-hormone-agonist (post-GnRH-a) trigger is individual specific, and not all patients will develop a complete luteolysis, as expected previously. Luteolysis can been reverted by the administration of hCG. Unprotected intercourse around the time of ovulation induction and oocyte retrieval can lead to a spontaneous conception in IVF treatment and, endogenous hCG, produced by the trophoblast, will rescue the corpora lutea. Therefore, one should not rely on complete luteolysis after GnRH-a triggering and, especially patients for egg donation and pre-implantation-genetic diagnosis for single gene disorder, have to be counselled to avoid unprotected intercourse.

  16. Neuropsychiatric symptoms and quality of life in patients in the final phase of dementia.

    PubMed

    Koopmans, Raymond T C M; van der Molen, Marloes; Raats, Monique; Ettema, Teake P

    2009-01-01

    To assess neuropsychiatric symptoms and quality of life in a group of patients in the final phase of dementia. All patients with dementia (n = 216) residing on dementia special care units of two Dutch nursing homes were included in the study provided they met the criteria for the final phase of dementia. Neuropsychiatric symptoms were assessed with the Neuropsychiatric Inventory Nursing Home version (NPI-NH) and the Cohen Mansfield Agitation Inventory (CMAI). Quality of life was assessed with the QUALIDEM. Of the 216 dementia patients 39 met the criteria for the final phase of dementia. The patients showed a specific pattern of behaviours with a high prevalence of apathy, agitation and behaviours that were mainly observed during morning care such as making strange noises, grabbing, performing repetitious mannerism, spitting, hitting, screaming and pushing. Overall quality of life of these patients in the final phase of dementia was moderate. In this small sample, patients in the final phase of dementia show specific behavioural problems, that mainly should be addressed with psychosocial interventions. (c) 2008 John Wiley & Sons, Ltd.

  17. Prospectivity Modeling of Karstic Groundwater Using a Sequential Exploration Approach in Tepal Area, Iran

    NASA Astrophysics Data System (ADS)

    Sharifi, Fereydoun; Arab-Amiri, Ali Reza; Kamkar-Rouhani, Abolghasem; Yousefi, Mahyar; Davoodabadi-Farahani, Meysam

    2017-09-01

    The purpose of this study is water prospectivity modeling (WPM) for recognizing karstic water-bearing zones by using analyses of geo-exploration data in Kal-Qorno valley, located in Tepal area, north of Iran. For this, a sequential exploration method applied on geo-evidential data to delineate target areas for further exploration. In this regard, two major exploration phases including regional and local scales were performed. In the first phase, indicator geological features, structures and lithological units, were used to model groundwater prospectivity as a regional scale. In this phase, for karstic WPM, fuzzy lithological and structural evidence layers were generated and combined using fuzzy operators. After generating target areas using WPM, in the second phase geophysical surveys including gravimetry and geoelectrical resistivity were carried out on the recognized high potential zones as a local scale exploration. Finally the results of geophysical analyses in the second phase were used to select suitable drilling locations to access and extract karstic groundwater in the study area.

  18. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speck, Thomas; Menzel, Andreas M.; Bialké, Julian

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation ontomore » that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.« less

  19. Wetting Transitions Displayed by Persistent Active Particles

    NASA Astrophysics Data System (ADS)

    Sepúlveda, Néstor; Soto, Rodrigo

    2017-08-01

    A lattice model for active matter is studied numerically, showing that it displays wetting transitions between three distinctive phases when in contact with an impenetrable wall. The particles in the model move persistently, tumbling with a small rate α , and interact via exclusion volume only. When increasing the tumbling rates α , the system transits from total wetting to partial wetting and unwetting phases. In the first phase, a wetting film covers the wall, with increasing heights when α is reduced. The second phase is characterized by wetting droplets on the wall with a periodic spacing between them. Finally, the wall dries with few particles in contact with it. These phases present nonequilibrium transitions. The first transition, from partial to total wetting, is continuous and the fraction of dry sites vanishes continuously when decreasing the tumbling rate α . For the second transition, from partial wetting to dry, the mean droplet distance diverges logarithmically when approaching the critical tumbling rate, with saturation due to finite-size effects.

  20. A hybrid stochastic approach for self-location of wireless sensors in indoor environments.

    PubMed

    Lloret, Jaime; Tomas, Jesus; Garcia, Miguel; Canovas, Alejandro

    2009-01-01

    Indoor location systems, especially those using wireless sensor networks, are used in many application areas. While the need for these systems is widely proven, there is a clear lack of accuracy. Many of the implemented applications have high errors in their location estimation because of the issues arising in the indoor environment. Two different approaches had been proposed using WLAN location systems: on the one hand, the so-called deductive methods take into account the physical properties of signal propagation. These systems require a propagation model, an environment map, and the position of the radio-stations. On the other hand, the so-called inductive methods require a previous training phase where the system learns the received signal strength (RSS) in each location. This phase can be very time consuming. This paper proposes a new stochastic approach which is based on a combination of deductive and inductive methods whereby wireless sensors could determine their positions using WLAN technology inside a floor of a building. Our goal is to reduce the training phase in an indoor environment, but, without an loss of precision. Finally, we compare the measurements taken using our proposed method in a real environment with the measurements taken by other developed systems. Comparisons between the proposed system and other hybrid methods are also provided.

  1. A Hybrid Stochastic Approach for Self-Location of Wireless Sensors in Indoor Environments

    PubMed Central

    Lloret, Jaime; Tomas, Jesus; Garcia, Miguel; Canovas, Alejandro

    2009-01-01

    Indoor location systems, especially those using wireless sensor networks, are used in many application areas. While the need for these systems is widely proven, there is a clear lack of accuracy. Many of the implemented applications have high errors in their location estimation because of the issues arising in the indoor environment. Two different approaches had been proposed using WLAN location systems: on the one hand, the so-called deductive methods take into account the physical properties of signal propagation. These systems require a propagation model, an environment map, and the position of the radio-stations. On the other hand, the so-called inductive methods require a previous training phase where the system learns the received signal strength (RSS) in each location. This phase can be very time consuming. This paper proposes a new stochastic approach which is based on a combination of deductive and inductive methods whereby wireless sensors could determine their positions using WLAN technology inside a floor of a building. Our goal is to reduce the training phase in an indoor environment, but, without an loss of precision. Finally, we compare the measurements taken using our proposed method in a real environment with the measurements taken by other developed systems. Comparisons between the proposed system and other hybrid methods are also provided. PMID:22412334

  2. Dawn Auroral Breakup at Saturn Initiated by Auroral Arcs: UVIS/Cassini Beginning of Grand Finale Phase

    NASA Astrophysics Data System (ADS)

    Radioti, A.; Grodent, D.; Yao, Z. H.; Gérard, J.-C.; Badman, S. V.; Pryor, W.; Bonfond, B.

    2017-12-01

    We present Cassini auroral observations obtained on 11 November 2016 with the Ultraviolet Imaging Spectrograph at the beginning of the F-ring orbits and the Grand Finale phase of the mission. The spacecraft made a close approach to Saturn's southern pole and offered a remarkable view of the dayside and nightside aurora. With this sequence we identify, for the first time, the presence of dusk/midnight arcs, which are azimuthally spread from high to low latitudes, suggesting that their source region extends from the outer to middle/inner magnetosphere. The observed arcs could be auroral manifestations of plasma flows propagating toward the planet from the magnetotail, similar to terrestrial "auroral streamers." During the sequence the dawn auroral region brightens and expands poleward. We suggest that the dawn auroral breakup results from a combination of plasma instability and global-scale magnetic field reconfiguration, which is initiated by plasma flows propagating toward the planet. Alternatively, the dawn auroral enhancement could be triggered by tail magnetic reconnection.

  3. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer

    Buscheck, Thomas A.

    2012-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk : FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  4. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations

    DOE Data Explorer

    Buscheck, Thomas A.

    2000-01-01

    Active Management of Integrated Geothermal–CO2 Storage Reservoirs in Sedimentary Formations: An Approach to Improve Energy Recovery and Mitigate Risk: FY1 Final Report The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

  5. An international consensus algorithm for management of chronic postoperative inguinal pain.

    PubMed

    Lange, J F M; Kaufmann, R; Wijsmuller, A R; Pierie, J P E N; Ploeg, R J; Chen, D C; Amid, P K

    2015-02-01

    Tension-free mesh repair of inguinal hernia has led to uniformly low recurrence rates. Morbidity associated with this operation is mainly related to chronic pain. No consensus guidelines exist for the management of this condition. The goal of this study is to design an expert-based algorithm for diagnostic and therapeutic management of chronic inguinal postoperative pain (CPIP). A group of surgeons considered experts on inguinal hernia surgery was solicited to develop the algorithm. Consensus regarding each step of an algorithm proposed by the authors was sought by means of the Delphi method leading to a revised expert-based algorithm. With the input of 28 international experts, an algorithm for a stepwise approach for management of CPIP was created. 26 participants accepted the final algorithm as a consensus model. One participant could not agree with the final concept. One expert did not respond during the final phase. There is a need for guidelines with regard to management of CPIP. This algorithm can serve as a guide with regard to the diagnosis, management, and treatment of these patients and improve clinical outcomes. If an expectative phase of a few months has passed without any amelioration of CPIP, a multidisciplinary approach is indicated and a pain management team should be consulted. Pharmacologic, behavioral, and interventional modalities including nerve blocks are essential. If conservative measures fail and surgery is considered, triple neurectomy, correction for recurrence with or without neurectomy, and meshoma removal if indicated should be performed. Surgeons less experienced with remedial operations for CPIP should not hesitate to refer their patients to dedicated hernia surgeons.

  6. Sustainability in Health care by Allocating Resources Effectively (SHARE) 11: reporting outcomes of an evidence-driven approach to disinvestment in a local healthcare setting.

    PubMed

    Harris, Claire; Allen, Kelly; Ramsey, Wayne; King, Richard; Green, Sally

    2018-05-30

    This is the final paper in a thematic series reporting a program of Sustainability in Health care by Allocating Resources Effectively (SHARE) in a local healthcare setting. The SHARE Program was established to explore a systematic, integrated, evidence-based organisation-wide approach to disinvestment in a large Australian health service network. This paper summarises the findings, discusses the contribution of the SHARE Program to the body of knowledge and understanding of disinvestment in the local healthcare setting, and considers implications for policy, practice and research. The SHARE program was conducted in three phases. Phase One was undertaken to understand concepts and practices related to disinvestment and the implications for a local health service and, based on this information, to identify potential settings and methods for decision-making about disinvestment. The aim of Phase Two was to implement and evaluate the proposed methods to determine which were sustainable, effective and appropriate in a local health service. A review of the current literature incorporating the SHARE findings was conducted in Phase Three to contribute to the understanding of systematic approaches to disinvestment in the local healthcare context. SHARE differed from many other published examples of disinvestment in several ways: by seeking to identify and implement disinvestment opportunities within organisational infrastructure rather than as standalone projects; considering disinvestment in the context of all resource allocation decisions rather than in isolation; including allocation of non-monetary resources as well as financial decisions; and focusing on effective use of limited resources to optimise healthcare outcomes. The SHARE findings provide a rich source of new information about local health service decision-making, in a level of detail not previously reported, to inform others in similar situations. Multiple innovations related to disinvestment were found to be acceptable and feasible in the local setting. Factors influencing decision-making, implementation processes and final outcomes were identified; and methods for further exploration, or avoidance, in attempting disinvestment in this context are proposed based on these findings. The settings, frameworks, models, methods and tools arising from the SHARE findings have potential to enhance health care and patient outcomes.

  7. Systematic approaches to layered materials with strong electron correlations

    NASA Astrophysics Data System (ADS)

    Chung, Chung-Hou

    I present systematic large-N approaches to study the ground state magnetic orderings and charge transport of layered materials with strong electron correlations, including the organic material kappa-(BEDT-TTF)2X, and the antiferromagnetic insulators Cs2CuCl4 and SrCu2(BO3) 2. I model the electronic properties of the organic materials kappa-(BEDT-TTF) 2X with a fermionic SU(N) Hubbard-Heisenberg model on an anisotropic triangular lattice. The ground state phase diagram shows a metal-insulator transition and a depression of the density of states in the metallic phase which are consistent with the experiments. The magnetic properties of kappa-(BEDT-TTF) 2X are modeled by a bosonic Sp(N) quantum Heisenberg antiferromagnet on the same lattice. The phase diagram consists of five different phases as a function of the size of the spin and the degree of frustration: the Neel ordered phase, a (pi, pi) short-range-order (SRO) phase, an incommensurate (q, q) long-range-order (LRO) phase, a (q, q) SRO phase, and a decoupled chain phase. I apply the same Sp(N) approach on the same triangular lattice to model the magnetic properties of Cs2CuCl 4 both with and without a magnetic field. At zero field, I find the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The Sp(N) calculation of spin excitation spectrum shows a large upward quantum renormalization consistent with that seen in experiments. For fields perpendicular to the plane of spin rotation, I find that the spins form an incommensurate "cone" of polarization up to a saturation field where all spins are fully polarized. There is a large quantum renormalization of the zero-field incommensuration. The results are in apparent agreement with neutron scattering experiments. Finally, the magnetic properties of the insulator SrCu2(BO 3)2 is modeled by the Sp(N) quantum antiferromagnet on the Shastry-Sutherland lattice. In addition to the familiar Neel and dimer phases, I find a confining phase with plaquette order, and a topologically ordered phase with deconfined S = 1/2 spinons and helical spin correlations. The deconfined phase is contiguous to the dimer phase, and in a regime of couplings close to those appropriate for the material.

  8. Universal real-time highway information system development program : final report phase II.

    DOT National Transportation Integrated Search

    2009-01-01

    The final phase of a two phase effort was undertaken to establish data forms and communication protocols to provide the New York State Department of Transportation access to the unique highway data resource, HIVIS developed in the initial phase of th...

  9. Segmentation Approach Towards Phase-Contrast Microscopic Images of Activated Sludge to Monitor the Wastewater Treatment.

    PubMed

    Khan, Muhammad Burhan; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Lai, Koon Chun

    2017-12-01

    Image processing and analysis is an effective tool for monitoring and fault diagnosis of activated sludge (AS) wastewater treatment plants. The AS image comprise of flocs (microbial aggregates) and filamentous bacteria. In this paper, nine different approaches are proposed for image segmentation of phase-contrast microscopic (PCM) images of AS samples. The proposed strategies are assessed for their effectiveness from the perspective of microscopic artifacts associated with PCM. The first approach uses an algorithm that is based on the idea that different color space representation of images other than red-green-blue may have better contrast. The second uses an edge detection approach. The third strategy, employs a clustering algorithm for the segmentation and the fourth applies local adaptive thresholding. The fifth technique is based on texture-based segmentation and the sixth uses watershed algorithm. The seventh adopts a split-and-merge approach. The eighth employs Kittler's thresholding. Finally, the ninth uses a top-hat and bottom-hat filtering-based technique. The approaches are assessed, and analyzed critically with reference to the artifacts of PCM. Gold approximations of ground truth images are prepared to assess the segmentations. Overall, the edge detection-based approach exhibits the best results in terms of accuracy, and the texture-based algorithm in terms of false negative ratio. The respective scenarios are explained for suitability of edge detection and texture-based algorithms.

  10. Transition from a failing dentition to a removable implant-supported prosthesis: a staged approach.

    PubMed

    Cordaro, Luca; Torsello, Ferruccio; Ribeiro, Carlos Accorsi

    2010-05-01

    Patients with hopeless dentition often present difficulties in the management of the transitional phase to the final restoration. This article describes a staged approach to achieve a full-arch, implant-supported, removable prosthesis in patients with a hopeless dentition. The approach described allows the clinician to proceed in a staged manner and facilitate prosthetic steps by keeping fixed references for vertical dimension. This technique includes initial conservative periodontal care and, afterward, extraction of some strategic teeth, while others are temporarily maintained. At this point, the implants are positioned, and during the healing period, the remaining natural abutments are used for occlusal reference and to stabilize the removable provisional prosthesis. After osseointegration of the implants, the residual teeth are extracted and the final prosthesis is delivered. The main advantages of the technique include maintenance of function during treatment, stabilization of the removable provisional (especially in the mandibular arch), prosthetic-guided insertion of implants, and easier retrieval of prosthetic references. The main drawbacks are longer treatment time and the need for two surgical steps.

  11. A phase coherence approach to identifying co-located earthquakes and tremor

    NASA Astrophysics Data System (ADS)

    Hawthorne, J. C.; Ampuero, J.-P.

    2018-05-01

    We present and use a phase coherence approach to identify seismic signals that have similar path effects but different source time functions: co-located earthquakes and tremor. The method used is a phase coherence-based implementation of empirical matched field processing, modified to suit tremor analysis. It works by comparing the frequency-domain phases of waveforms generated by two sources recorded at multiple stations. We first cross-correlate the records of the two sources at a single station. If the sources are co-located, this cross-correlation eliminates the phases of the Green's function. It leaves the relative phases of the source time functions, which should be the same across all stations so long as the spatial extent of the sources are small compared with the seismic wavelength. We therefore search for cross-correlation phases that are consistent across stations as an indication of co-located sources. We also introduce a method to obtain relative locations between the two sources, based on back-projection of interstation phase coherence. We apply this technique to analyse two tremor-like signals that are thought to be composed of a number of earthquakes. First, we analyse a 20 s long seismic precursor to a M 3.9 earthquake in central Alaska. The analysis locates the precursor to within 2 km of the mainshock, and it identifies several bursts of energy—potentially foreshocks or groups of foreshocks—within the precursor. Second, we examine several minutes of volcanic tremor prior to an eruption at Redoubt Volcano. We confirm that the tremor source is located close to repeating earthquakes identified earlier in the tremor sequence. The amplitude of the tremor diminishes about 30 s before the eruption, but the phase coherence results suggest that the tremor may persist at some level through this final interval.

  12. Phase III of Early Restoration | NOAA Gulf Spill Restoration

    Science.gov Websites

    information about this phase of Early Restoration, including fact sheets on each project. The final Phase III 44 projects are documented in a final Record of Decision. Information about Phase III of Early Archive Home Phase III of Early Restoration Phase III of Early Restoration Beach habitat would be restored

  13. Automated red blood cells extraction from holographic images using fully convolutional neural networks.

    PubMed

    Yi, Faliu; Moon, Inkyu; Javidi, Bahram

    2017-10-01

    In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm.

  14. Automated red blood cells extraction from holographic images using fully convolutional neural networks

    PubMed Central

    Yi, Faliu; Moon, Inkyu; Javidi, Bahram

    2017-01-01

    In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm. PMID:29082078

  15. Multi-phase simultaneous segmentation of tumor in lung 4D-CT data with context information.

    PubMed

    Shen, Zhengwen; Wang, Huafeng; Xi, Weiwen; Deng, Xiaogang; Chen, Jin; Zhang, Yu

    2017-01-01

    Lung 4D computed tomography (4D-CT) plays an important role in high-precision radiotherapy because it characterizes respiratory motion, which is crucial for accurate target definition. However, the manual segmentation of a lung tumor is a heavy workload for doctors because of the large number of lung 4D-CT data slices. Meanwhile, tumor segmentation is still a notoriously challenging problem in computer-aided diagnosis. In this paper, we propose a new method based on an improved graph cut algorithm with context information constraint to find a convenient and robust approach of lung 4D-CT tumor segmentation. We combine all phases of the lung 4D-CT into a global graph, and construct a global energy function accordingly. The sub-graph is first constructed for each phase. A context cost term is enforced to achieve segmentation results in every phase by adding a context constraint between neighboring phases. A global energy function is finally constructed by combining all cost terms. The optimization is achieved by solving a max-flow/min-cut problem, which leads to simultaneous and robust segmentation of the tumor in all the lung 4D-CT phases. The effectiveness of our approach is validated through experiments on 10 different lung 4D-CT cases. The comparison with the graph cut without context constraint, the level set method and the graph cut with star shape prior demonstrates that the proposed method obtains more accurate and robust segmentation results.

  16. A thermodynamic approach to model the caloric properties of semicrystalline polymers

    NASA Astrophysics Data System (ADS)

    Lion, Alexander; Johlitz, Michael

    2016-05-01

    It is well known that the crystallisation and melting behaviour of semicrystalline polymers depends in a pronounced manner on the temperature history. If the polymer is in the liquid state above the melting point, and the temperature is reduced to a level below the glass transition, the final degree of crystallinity, the amount of the rigid amorphous phase and the configurational state of the mobile amorphous phase strongly depend on the cooling rate. If the temperature is increased afterwards, the extents of cold crystallisation and melting are functions of the heating rate. Since crystalline and amorphous phases exhibit different densities, the specific volume depends also on the temperature history. In this article, a thermodynamically based phenomenological approach is developed which allows for the constitutive representation of these phenomena in the time domain. The degree of crystallinity and the configuration of the amorphous phase are represented by two internal state variables whose evolution equations are formulated under consideration of the second law of thermodynamics. The model for the specific Gibbs free energy takes the chemical potentials of the different phases and the mixture entropy into account. For simplification, it is assumed that the amount of the rigid amorphous phase is proportional to the degree of crystallinity. An essential outcome of the model is an equation in closed form for the equilibrium degree of crystallinity in dependence on pressure and temperature. Numerical simulations demonstrate that the process dependences of crystallisation and melting under consideration of the glass transition are represented.

  17. A strategic approach for the design and operation of two-phase partitioning bioscrubbers for the treatment of volatile organic compounds.

    PubMed

    Yeom, Sung Ho; Daugulis, Andrew J; Nielsen, David R

    2010-01-01

    A strategic approach for the design of two-phase partitioning bioscrubbers (TPPBs) has been formulated using, as a basis, a re-evaluation of extensive literature data available for the degradation of benzene by Achromobacter xylosoxidans Y234 in TPPBs with n-hexadecane as the partitioning phase. Using a previously determined maintenance coefficient for benzene, we determined that an inlet benzene loading rate of 100 mg/h requires 5,928 mg cell mass at biological steady state and 243.0 mg O(2) /h. The total oxygen-transfer rates (TOTRs) into the TPPB increased by 83.5% with 33.3% of organic phase compared with a single aqueous phase and were significantly influenced by gas flow rate, whereas agitation has a minor affect. The fraction of organic phase used was suggested to be the primary parameter with which the TOTR into the TPPB may be altered. Although the presence of an organic solvent in the TPPB remarkably increased the TOTR, the total benzene transfer rate into the TPPB remained largely insensitive due to the intrinsic low Henry's law constant (or relatively high solubility) of benzene in water. Finally, we have integrated the elements of this analysis into a set of heuristic criteria that can serve as a guideline for the design of TPPB systems for future volatile organic compound treatment applications. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  18. Emerging therapies for Parkinson's disease.

    PubMed

    Poewe, Werner; Mahlknecht, Philipp; Jankovic, Joseph

    2012-08-01

    The experimental therapeutics of Parkinson's disease are reviewed, highlighting the current pipeline of emerging therapeutic approaches. This review includes novel approaches to dopaminergic drug delivery such as intraintestinal infusions or new extended-release formulations of levodopa and also intrapulmonary delivery of apomorphine as well as novel dopaminergic agents like the monoamine oxidase-B inhibitor safinamide or novel catechol-O-methyl transferase inhibitors. An even greater number of ongoing clinical trials assess the efficacy and safety of nondopaminergic approaches to enhance motor control or reduce motor complications like fluctuations and dyskinesias. These include adenosine A2A antagonists, α-adrenergic and serotonergic agonists as well as drugs acting on the glutamatergic system. Gene-based or cell-based intrastriatal delivery of therapeutic principles that enhance striatal dopaminergic transmission directly or via the stimulation of trophic activity has also reached phase II clinical development with encouraging results in some studies. Finally, a wide spectrum of agents with a potential for slowing disease progression is currently tested. A variety of medical and nonmedical interventions in different phases of clinical development provide an interesting and promising portfolio of emerging therapies for Parkinson's disease.

  19. A Novel Approach for Controlling the Band Formation in Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Farahani, H.; Xu, W.; van der Zwaag, S.

    2018-06-01

    Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.

  20. Statistical mechanics of the vertex-cover problem

    NASA Astrophysics Data System (ADS)

    Hartmann, Alexander K.; Weigt, Martin

    2003-10-01

    We review recent progress in the study of the vertex-cover problem (VC). The VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits a coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping the VC to a hard-core lattice gas, and then applying techniques such as the replica trick or the cavity approach. Using these methods, the phase diagram of the VC could be obtained exactly for connectivities c < e, where the VC is replica symmetric. Recently, this result could be confirmed using traditional mathematical techniques. For c > e, the solution of the VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for the VC. Finally, we describe recent results for the VC when studied on other ensembles of finite- and infinite-dimensional graphs.

  1. Digital phased array beamforming using single-bit delta-sigma conversion with non-uniform oversampling.

    PubMed

    Kozak, M; Karaman, M

    2001-07-01

    Digital beamforming based on oversampled delta-sigma (delta sigma) analog-to-digital (A/D) conversion can reduce the overall cost, size, and power consumption of phased array front-end processing. The signal resampling involved in dynamic delta sigma beamforming, however, disrupts synchronization between the modulators and demodulator, causing significant degradation in the signal-to-noise ratio. As a solution to this, we have explored a new digital beamforming approach based on non-uniform oversampling delta sigma A/D conversion. Using this approach, the echo signals received by the transducer array are sampled at time instants determined by the beamforming timing and then digitized by single-bit delta sigma A/D conversion prior to the coherent beam summation. The timing information involves a non-uniform sampling scheme employing different clocks at each array channel. The delta sigma coded beamsums obtained by adding the delayed 1-bit coded RF echo signals are then processed through a decimation filter to produce final beamforming outputs. The performance and validity of the proposed beamforming approach are assessed by means of emulations using experimental raw RF data.

  2. A Novel Approach for Controlling the Band Formation in Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Farahani, H.; Xu, W.; van der Zwaag, S.

    2018-03-01

    Formation of the microstructural ferrite/pearlite bands in medium Mn steels is an undesirable phenomenon commonly addressed through fast cooling treatments. In this study, a novel approach using the cyclic partial phase transformation concept is applied successfully to prevent microstructural band formation in a micro-chemically banded Fe-C-Mn-Si steel. The effectiveness of the new approach is assessed using the ASTM E1268-01 standard. The cyclic intercritical treatments lead to formation of isotropic microstructures even for cooling rates far below the critical one determined in conventional continuous cooling. In contrast, isothermal intercritical experiments have no effect on the critical cooling rate to suppress microstructural band formation. The origin of the suppression of band formation either by means of fast cooling or a cyclic partial phase transformation is investigated in detail. Theoretical modeling and microstructural observations confirm that band formation is suppressed only if the intercritical annealing treatment leads to partial reversion of the austenite-ferrite interfaces. The resulting interfacial Mn enrichment is responsible for suppression of the band formation upon final cooling at low cooling rates.

  3. Modeling mass transfer and reaction of dilute solutes in a ternary phase system by the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Fu, Yu-Hang; Bai, Lin; Luo, Kai-Hong; Jin, Yong; Cheng, Yi

    2017-04-01

    In this work, we propose a general approach for modeling mass transfer and reaction of dilute solute(s) in incompressible three-phase flows by introducing a collision operator in lattice Boltzmann (LB) method. An LB equation was used to simulate the solute dynamics among three different fluids, in which the newly expanded collision operator was used to depict the interface behavior of dilute solute(s). The multiscale analysis showed that the presented model can recover the macroscopic transport equations derived from the Maxwell-Stefan equation for dilute solutes in three-phase systems. Compared with the analytical equation of state of solute and dynamic behavior, these results are proven to constitute a generalized framework to simulate solute distributions in three-phase flows, including compound soluble in one phase, compound adsorbed on single-interface, compound in two phases, and solute soluble in three phases. Moreover, numerical simulations of benchmark cases, such as phase decomposition, multilayered planar interfaces, and liquid lens, were performed to test the stability and efficiency of the model. Finally, the multiphase mass transfer and reaction in Janus droplet transport in a straight microchannel were well reproduced.

  4. Probing exoplanet clouds with optical phase curves.

    PubMed

    Muñoz, Antonio García; Isaak, Kate G

    2015-11-03

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5.

  5. The Secondary Organic Aerosol Processor (SOAP v1.0) model: a unified model with different ranges of complexity based on the molecular surrogate approach

    NASA Astrophysics Data System (ADS)

    Couvidat, F.; Sartelet, K.

    2015-04-01

    In this paper the Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model determines the partitioning of organic compounds between the gas and particle phases. It is designed to be modular with different user options depending on the computation time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption into the aqueous phase of particles, activity coefficients and phase separation). Each surrogate can be hydrophilic (condenses only into the aqueous phase of particles), hydrophobic (condenses only into the organic phases of particles) or both (condenses into both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC (UNIversal Functional group Activity Coefficient; Fredenslund et al., 1975) thermodynamic model for short-range interactions and with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) parameterization for medium- and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium representation and a dynamic representation of organic aerosols (OAs). In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol is not at equilibrium with the gas phase because the organic phases could be semi-solid (very viscous liquid phase). The condensation-evaporation of organic compounds could then be limited by the diffusion in the organic phases due to the high viscosity. An implicit dynamic representation of secondary organic aerosols (SOAs) is available in SOAP with OAs divided into layers, the first layer being at the center of the particle (slowly reaches equilibrium) and the final layer being near the interface with the gas phase (quickly reaches equilibrium). Although this dynamic implicit representation is a simplified approach to model condensation-evaporation with a low number of layers and short CPU (central processing unit) time, it shows good agreements with an explicit representation of condensation-evaporation (no significant differences after a few hours of condensation).

  6. An efficient approach for computing the geometrical optics field reflected from a numerically specified surface

    NASA Technical Reports Server (NTRS)

    Mittra, R.; Rushdi, A.

    1979-01-01

    An approach for computing the geometrical optic fields reflected from a numerically specified surface is presented. The approach includes the step of deriving a specular point and begins with computing the reflected rays off the surface at the points where their coordinates, as well as the partial derivatives (or equivalently, the direction of the normal), are numerically specified. Then, a cluster of three adjacent rays are chosen to define a 'mean ray' and the divergence factor associated with this mean ray. Finally, the ampilitude, phase, and vector direction of the reflected field at a given observation point are derived by associating this point with the nearest mean ray and determining its position relative to such a ray.

  7. Rotational response of suspended particles to turbulent flow: laboratory and numerical synthesis

    NASA Astrophysics Data System (ADS)

    Variano, Evan; Zhao, Lihao; Byron, Margaret; Bellani, Gabriele; Tao, Yiheng; Andersson, Helge

    2014-11-01

    Using laboratory and DNS measurements, we consider how aspherical and inertial particles suspended in a turbulent flow act to ``filter'' the fluid-phase vorticity. We use three approaches to predict the magnitude and structure of this filter. The first approach is based on Buckingham's Pi theorem, which shows a clear result for the relationship between filter strength and particle aspect ratio. Results are less clear for the dependence of filter strength on Stokes number; we briefly discuss some issues in the proper definition of Stokes number for use in this context. The second approach to predicting filter strength is based on a consideration of vorticity and enstrophy spectra in the fluid phase. This method has a useful feature: it can be used to predict the filter a priori, without need for measurements as input. We compare the results of this approach to measurements as a method of validation. The third and final approach to predicting filter strength is from the consideration of torques experienced by particles, and how the ``angular slip'' or ``spin slip'' evolves in an unsteady flow. We show results from our DNS that indicate different flow conditions in which the spin slip is more or less important in setting the particle rotation dynamics. Collaboration made possible by the Peder Sather Center.

  8. Automatic extraction of numeric strings in unconstrained handwritten document images

    NASA Astrophysics Data System (ADS)

    Haji, M. Mehdi; Bui, Tien D.; Suen, Ching Y.

    2011-01-01

    Numeric strings such as identification numbers carry vital pieces of information in documents. In this paper, we present a novel algorithm for automatic extraction of numeric strings in unconstrained handwritten document images. The algorithm has two main phases: pruning and verification. In the pruning phase, the algorithm first performs a new segment-merge procedure on each text line, and then using a new regularity measure, it prunes all sequences of characters that are unlikely to be numeric strings. The segment-merge procedure is composed of two modules: a new explicit character segmentation algorithm which is based on analysis of skeletal graphs and a merging algorithm which is based on graph partitioning. All the candidate sequences that pass the pruning phase are sent to a recognition-based verification phase for the final decision. The recognition is based on a coarse-to-fine approach using probabilistic RBF networks. We developed our algorithm for the processing of real-world documents where letters and digits may be connected or broken in a document. The effectiveness of the proposed approach is shown by extensive experiments done on a real-world database of 607 documents which contains handwritten, machine-printed and mixed documents with different types of layouts and levels of noise.

  9. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    PubMed

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  10. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight.

    PubMed

    Matsuta, Naohiro; Hiryu, Shizuko; Fujioka, Emyo; Yamada, Yasufumi; Riquimaroux, Hiroshi; Watanabe, Yoshiaki

    2013-04-01

    The echolocation sounds of Japanese CF-FM bats (Rhinolophus ferrumequinum nippon) were measured while the bats pursued a moth (Goniocraspidum pryeri) in a flight chamber. Using a 31-channel microphone array system, we investigated how CF-FM bats adjust pulse direction and beam width according to prey position. During the search and approach phases, the horizontal and vertical beam widths were ±22±5 and ±13±5 deg, respectively. When bats entered the terminal phase approximately 1 m from a moth, distinctive evasive flight by G. pryeri was sometimes observed. Simultaneously, the bats broadened the beam widths of some emissions in both the horizontal (44% of emitted echolocation pulses) and vertical planes (71%). The expanded beam widths were ±36±7 deg (horizontal) and ±30±9 deg (vertical). When moths began evasive flight, the tracking accuracy decreased compared with that during the approach phase. However, in 97% of emissions during the terminal phase, the beam width was wider than the misalignment (the angular difference between the pulse and target directions). These findings indicate that bats actively adjust their beam width to retain the moving target within a spatial echolocation window during the final capture stages.

  11. Coherent receiver design based on digital signal processing in optical high-speed intersatellite links with M-phase-shift keying

    NASA Astrophysics Data System (ADS)

    Schaefer, Semjon; Gregory, Mark; Rosenkranz, Werner

    2016-11-01

    We present simulative and experimental investigations of different coherent receiver designs for high-speed optical intersatellite links. We focus on frequency offset (FO) compensation in homodyne and intradyne detection systems. The considered laser communication terminal uses an optical phase-locked loop (OPLL), which ensures stable homodyne detection. However, the hardware complexity increases with the modulation order. Therefore, we show that software-based intradyne detection is an attractive alternative for OPLL-based homodyne systems. Our approach is based on digital FO and phase noise compensation, in order to achieve a more flexible coherent detection scheme. Analytic results will further show the theoretical impact of the different detection schemes on the receiver sensitivity. Finally, we compare the schemes in terms of bit error ratio measurements and optimal receiver design.

  12. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA’s “Classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARMmore » Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. Finally, the coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.« less

  13. Contingency Planning for the Microwave Anisotropy Probe Mission

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael A.; Rohrbaugh, David; Schiff, Conrad; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) utilized a phasing loop/lunar encounter strategy to achieve a small amplitude Lissajous orbit about the Sun-Earth/Moon L2 libration point. The use of phasing loops was key in minimizing MAP's overall deltaV needs while also providing ample opportunities for contingency resolution. This paper will discuss the different contingencies and responses studied for MAP. These contingencies included accommodating excessive launch vehicle errors (beyond 3 sigma), splitting perigee maneuvers to achieve ground station coverage through the Deep Space Network (DSN), delaying the start of a perigee maneuver, aborting a perigee maneuver in the middle of execution, missing a perigee maneuver altogether, and missing the lunar encounter (crucial to achieving the final Lissajous orbit). It is determined that using a phasing loop approach permits many opportunities to correct for a majority of these contingencies.

  14. An Integrated Approach to Functional Engineering: An Engineering Database for Harness, Avionics and Software

    NASA Astrophysics Data System (ADS)

    Piras, Annamaria; Malucchi, Giovanni

    2012-08-01

    In the design and development phase of a new program one of the critical aspects is the integration of all the functional requirements of the system and the control of the overall consistency between the identified needs on one side and the available resources on the other side, especially when both the required needs and available resources are not yet consolidated, but they are evolving as the program maturity increases.The Integrated Engineering Harness Avionics and Software database (IDEHAS) is a tool that has been developed to support this process in the frame of the Avionics and Software disciplines through the different phases of the program. The tool is in fact designed to allow an incremental build up of the avionics and software systems, from the description of the high level architectural data (available in the early stages of the program) to the definition of the pin to pin connectivity information (typically consolidated in the design finalization stages) and finally to the construction and validation of the detailed telemetry parameters and commands to be used in the test phases and in the Mission Control Centre. The key feature of this approach and of the associated tool is that it allows the definition and the maintenance / update of all these data in a single, consistent environment.On one side a system level and concurrent approach requires the feasibility to easily integrate and update the best data available since the early stages of a program in order to improve confidence in the consistency and to control the design information.On the other side, the amount of information of different typologies and the cross-relationships among the data imply highly consolidated structures requiring lot of checks to guarantee the data content consistency with negative effects on simplicity and flexibility and often limiting the attention to special needs and to the interfaces with other disciplines.

  15. Using Pilots to Assess the Value and Approach of CMMI Implementation

    NASA Technical Reports Server (NTRS)

    Godfrey, Sara; Andary, James; Rosenberg, Linda

    2002-01-01

    At Goddard Space Flight Center (GSFC), we have chosen to use Capability Maturity Model Integrated (CMMI) to guide our process improvement program. Projects at GSFC consist of complex systems of software and hardware that control satellites, operate ground systems, run instruments, manage databases and data and support scientific research. It is a challenge to launch a process improvement program that encompasses our diverse systems, yet is manageable in terms of cost effectiveness. In order to establish the best approach for improvement, our process improvement effort was divided into three phases: 1) Pilot projects; 2) Staged implementation; and 3) Sustainment and continual improvement. During Phase 1 the focus of the activities was on a baselining process, using pre-appraisals in order to get a baseline for making a better cost and effort estimate for the improvement effort. Pilot pre-appraisals were conducted from different perspectives so different approaches for process implementation could be evaluated. Phase 1 also concentrated on establishing an improvement infrastructure and training of the improvement teams. At the time of this paper, three pilot appraisals have been completed. Our initial appraisal was performed in a flight software area, considering the flight software organization as the organization. The second appraisal was done from a project perspective, focusing on systems engineering and acquisition, and using the organization as GSFC. The final appraisal was in a ground support software area, again using GSFC as the organization. This paper will present our initial approach, lessons learned from all three pilots and the changes in our approach based on the lessons learned.

  16. Flat nonlinear optics: metasurfaces for efficient frequency mixing

    NASA Astrophysics Data System (ADS)

    Nookala, Nishant; Lee, Jongwon; Liu, Yingnan; Bishop, Wells; Tymchenko, Mykhailo; Gomez-Diaz, J. Sebastian; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus-Christian; Wolf, Omri; Brener, Igal; Alu, Andrea; Belkin, Mikhail A.

    2017-02-01

    Gradient metasurfaces, or ultrathin optical components with engineered transverse impedance gradients along the surface, are able to locally control the phase and amplitude of the scattered fields over subwavelength scales, enabling a broad range of linear components in a flat, integrable platform1-4. On the contrary, due to the weakness of their nonlinear optical responses, conventional nonlinear optical components are inherently bulky, with stringent requirements associated with phase matching and poor control over the phase and amplitude of the generated beam. Nonlinear metasurfaces have been recently proposed to enable frequency conversion in thin films without phase-matching constraints and subwavelength control of the local nonlinear phase5-8. However, the associated optical nonlinearities are far too small to produce significant nonlinear conversion efficiency and compete with conventional nonlinear components for pump intensities below the materials damage threshold. Here, we report multi-quantum-well based gradient nonlinear metasurfaces with second-order nonlinear susceptibility over 106 pm/V for second harmonic generation at a fundamental pump wavelength of 10 μm, 5-6 orders of magnitude larger than traditional crystals. Further, we demonstrate the efficacy of this approach to designing metasurfaces optimized for frequency conversion over a large range of wavelengths, by reporting multi-quantum-well and metasurface structures optimized for a pump wavelength of 6.7 μm. Finally, we demonstrate how the phase of this nonlinearly generated light can be locally controlled well below the diffraction limit using the Pancharatnam-Berry phase approach5,7,9, opening a new paradigm for ultrathin, flat nonlinear optical components.

  17. ADRC for spacecraft attitude and position synchronization in libration point orbits

    NASA Astrophysics Data System (ADS)

    Gao, Chen; Yuan, Jianping; Zhao, Yakun

    2018-04-01

    This paper addresses the problem of spacecraft attitude and position synchronization in libration point orbits between a leader and a follower. Using dual quaternion, the dimensionless relative coupled dynamical model is derived considering computation efficiency and accuracy. Then a model-independent dimensionless cascade pose-feedback active disturbance rejection controller is designed to spacecraft attitude and position tracking control problems considering parameter uncertainties and external disturbances. Numerical simulations for the final approach phase in spacecraft rendezvous and docking and formation flying are done, and the results show high-precision tracking errors and satisfactory convergent rates under bounded control torque and force which validate the proposed approach.

  18. [Mythodrama--a group psychotherapy model for work with children and adolescents].

    PubMed

    Guggenbühl, A

    1992-10-01

    This article discusses group psychotherapy as a possible crisis intervention technique for children and juveniles with behavioral problems at school or whose families are going through divorce, or as an intervention technique in trouble some school classes. The therapeutic group work at the Children and Juvenile Educational Counselling Centre in Bern, Switzerland, is described - "mythodrama" or the "tales, fiction and horror technique", a therapeutic approach which was developed during the last couple of years. The tale at the beginning of the article serves as an introduction and is followed by a description of the different phases of mythodrama. Finally, the main elements of this approach are summarized.

  19. Cardiotoxicity of the new cancer therapeutics- mechanisms of, and approaches to, the problem

    PubMed Central

    Force, Thomas; Kerkelä, Risto

    2009-01-01

    Cardiotoxicity of some targeted therapeutics, including monoclonal antibodies and small molecule inhibitors, is a reality. Herein we will examine why it occurs, focusing on molecular mechanisms to better understand the issue. We will also examine how big the problem is and, more importantly, how big it may become in the future. We will review models for detecting cardiotoxicity in the pre-clinical phase. We will also focus on two key areas that drive cardiotoxicity- multi-targeting and the inherent lack of selectivity of ATP-competitive antagonists. Finally, we will examine the issue of reversibility and discuss possible approaches to keeping patients on therapy. PMID:18617014

  20. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports.

    PubMed

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-11

    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Low Reynolds number suspension gravity currents.

    PubMed

    Saha, Sandeep; Salin, Dominique; Talon, Laurent

    2013-08-01

    The extension of a gravity current in a lock-exchange problem, proceeds as square root of time in the viscous-buoyancy phase, where there is a balance between gravitational and viscous forces. In the presence of particles however, this scenario is drastically altered, because sedimentation reduces the motive gravitational force and introduces a finite distance and time at which the gravity current halts. We investigate the spreading of low Reynolds number suspension gravity currents using a novel approach based on the Lattice-Boltzmann (LB) method. The suspension is modeled as a continuous medium with a concentration-dependent viscosity. The settling of particles is simulated using a drift flux function approach that enables us to capture sudden discontinuities in particle concentration that travel as kinematic shock waves. Thereafter a numerical investigation of lock-exchange flows between pure fluids of unequal viscosity, reveals the existence of wall layers which reduce the spreading rate substantially compared to the lubrication theory prediction. In suspension gravity currents, we observe that the settling of particles leads to the formation of two additional fronts: a horizontal front near the top that descends vertically and a sediment layer at the bottom which aggrandises due to deposition of particles. Three phases are identified in the spreading process: the final corresponding to the mutual approach of the two horizontal fronts while the laterally advancing front halts indicating that the suspension current stops even before all the particles have settled. The first two regimes represent a constant and a decreasing spreading rate respectively. Finally we conduct experiments to substantiate the conclusions of our numerical and theoretical investigation.

  2. Life cycle costing of food waste: A review of methodological approaches.

    PubMed

    De Menna, Fabio; Dietershagen, Jana; Loubiere, Marion; Vittuari, Matteo

    2018-03-01

    Food waste (FW) is a global problem that is receiving increasing attention due to its environmental and economic impacts. Appropriate FW prevention, valorization, and management routes could mitigate or avoid these effects. Life cycle thinking and approaches, such as life cycle costing (LCC), may represent suitable tools to assess the sustainability of these routes. This study analyzes different LCC methodological aspects and approaches to evaluate FW management and valorization routes. A systematic literature review was carried out with a focus on different LCC approaches, their application to food, FW, and waste systems, as well as on specific methodological aspects. The review consisted of three phases: a collection phase, an iterative phase with experts' consultation, and a final literature classification. Journal papers and reports were retrieved from selected databases and search engines. The standardization of LCC methodologies is still in its infancy due to a lack of consensus over definitions and approaches. Research on the life cycle cost of FW is limited and generally focused on FW management, rather than prevention or valorization of specific flows. FW prevention, valorization, and management require a consistent integration of LCC and Life Cycle Assessment (LCA) to avoid tradeoffs between environmental and economic impacts. This entails a proper investigation of methodological differences between attributional and consequential modelling in LCC, especially with regard to functional unit, system boundaries, multi-functionality, included cost, and assessed impacts. Further efforts could also aim at finding the most effective and transparent categorization of costs, in particular when dealing with multiple stakeholders sustaining costs of FW. Interpretation of results from LCC of FW should take into account the effect on larger economic systems. Additional key performance indicators and analytical tools could be included in consequential approaches. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Stereoselective synthesis of unsaturated α-amino acids.

    PubMed

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  4. Feasibility Study for Low Drag Acoustic Liners Final Report

    NASA Technical Reports Server (NTRS)

    Riedel, Brian; Wu, Jackie

    2017-01-01

    This report documents the design and structural analysis as a final deliverable for the Phase 1 contract activity. Also included is a community noise test plan, which is a key deliverable for Phase 2. Finally, a high-level estimate (Phase 3 deliverable) is provided for the work statement of Phases 2-4, which covers the build of two inlet test articles, planning and execution of a flight test with the test inlets, as well as data analysis and final documentation. The two test inlets will be compared to the production baseline inlet configuration. There is also a plan to test one of the inlets "hardwalled" using speed tape or some other similar tape to block the acoustic perforations.

  5. Fort Benning Land-Use Planning and Management Study

    DTIC Science & Technology

    1990-04-01

    process is three-tiered: (a) an initial phase that results in preliminary allocations for natural resources, (b) a second phase that focuses on...allocations of military training requirements, and (c) a final phase that resolves conflicts between the military and natural resource requirements and...assigns final allocations. 34. Initial phase : Natural resource allocations. The first step in this phase was to make allocations among natural resource

  6. Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li–Ni–Mn–Co–O System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam

    2016-02-27

    In an attempt to enlarge the normal spinel phase diagram for the quaternary Li-Ni-Mn-Co-O system, the transformation at moderate temperatures (150-210 °C) of layered Li 0.5(Ni 1-y-zMn yCo z)O 2 (Rmore » $$\\bar{3}$$m), which were obtained by an ambient-temperature extraction of lithium from Li 0.5(Ni 1-y-zMn yCo z)O 2, into normal spinel-like (Fd$$\\bar{3}$$m) Li(Ni 1-y-zMn yCo z) 2O 4 has been investigated. The phase-conversion mechanism has been studied by joint time-of-flight (TOF) neutron and X-ray diffractions, thermogravimetric analysis, and bond valence sum map. The ionic diffusion of lithium (3a, 6c) and nickel (3a, 3b) ions has been quantified as a function of temperature. The investigated spinel phases are metastable, and they are subject to change into rock-salt phases at higher temperatures. The phases have been characterized as cathodes in lithium-ion cells. Finally, the study may serve as a strategic model to access other metastable phases by low-temperature synthesis approaches.« less

  7. Next Generation CTAS Tools

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2000-01-01

    The FAA's Free Flight Phase 1 Office is in the process of deploying the current generation of CTAS tools, which are the Traffic Management Advisor (TMA) and the passive Final Approach Spacing Tool (pFAST), at selected centers and airports. Research at NASA is now focussed on extending the CTAS software and computer human interfaces to provide more advanced capabilities. The Multi-center TMA (McTMA) is designed to operate at airports where arrival flows originate from two or more centers whose boundaries are in close proximity to the TRACON boundary. McTMA will also include techniques for routing arrival flows away from congested airspace and around airspace reserved for arrivals into other hub airports. NASA is working with FAA and MITRE to build a prototype McTMA for the Philadelphia airport. The active Final Approach Spacing Tool (aFAST) provides speed and heading advisories to help controllers achieve accurate spacing between aircraft on final approach. These advisories will be integrated with those in the existing pFAST to provide a set of comprehensive advisories for controlling arrival traffic from the TRACON boundary to touchdown at complex, high-capacity airports. A research prototype of aFAST, designed for the Dallas-Fort Worth is in an advanced stage of development. The Expedite Departure Path (EDP) and Direct-To tools are designed to help controllers guide departing aircraft out of the TRACON airspace and to climb to cruise altitude along the most efficient routes.

  8. Using a Full Complex Site Transfer Function to Estimate Strong Ground Motion in Port-au-Prince (Haiti).

    NASA Astrophysics Data System (ADS)

    ST Fleur, S.; Courboulex, F.; Bertrand, E.; Mercier De Lepinay, B. F.; Hough, S. E.; Boisson, D.; Momplaisir, R.

    2017-12-01

    To assess the possible impact of a future earthquake in the urban area of Port-au-Prince (Haiti), we have implemented a simulation approach for complex ground motions produced by an earthquake. To this end, we have integrated local site effect in the prediction of strong ground motions in Port-au-Prince using the complex transfer functions method, which takes into account amplitude changes as well as phase changes. This technique is particularly suitable for basins where a conventional 1D digital approach proves inadequate, as is the case in Port-au-Prince. To do this, we use the results of the Standard Spectral Ratio (SSR) approach of St Fleur et al. (2016) to estimate the amplitude of the response of the site to a nearby rock site. Then, we determine the phase difference between sites, interpreted as changes in the phase of the signal related to local site conditions, using the signals of the 2010 earthquake aftershocks records. Finally, the accelerogram of the simulated earthquake is obtain using the technique of the inverse Fourier transform. The results of this study showed that the strongest soil motions are expected in neighborhoods of downtown Port-au-Prince and adjacent hills. In addition, this simulation method by complex transfer functions was validated by comparison with recorded actual data. Our simulated response spectra reproduce very well both the amplitude and the shape of the response spectra of recorded earthquakes. This new approach allowed to reproduce the lengthening of the signal that could be generated by surface waves at certain stations in the city of Port-au-Prince. However, two points of vigilance must be considered: (1) a good signal-to-noise ratio is necessary to obtain a robust estimate of the site-reference phase shift (ratio at least equal to 10); (2) unless the amplitude and phase changes are measured on strong motion records, this technique does not take non-linear effects into account.

  9. The pdf approach to turbulent polydispersed two-phase flows

    NASA Astrophysics Data System (ADS)

    Minier, Jean-Pierre; Peirano, Eric

    2001-10-01

    The purpose of this paper is to develop a probabilistic approach to turbulent polydispersed two-phase flows. The two-phase flows considered are composed of a continuous phase, which is a turbulent fluid, and a dispersed phase, which represents an ensemble of discrete particles (solid particles, droplets or bubbles). Gathering the difficulties of turbulent flows and of particle motion, the challenge is to work out a general modelling approach that meets three requirements: to treat accurately the physically relevant phenomena, to provide enough information to address issues of complex physics (combustion, polydispersed particle flows, …) and to remain tractable for general non-homogeneous flows. The present probabilistic approach models the statistical dynamics of the system and consists in simulating the joint probability density function (pdf) of a number of fluid and discrete particle properties. A new point is that both the fluid and the particles are included in the pdf description. The derivation of the joint pdf model for the fluid and for the discrete particles is worked out in several steps. The mathematical properties of stochastic processes are first recalled. The various hierarchies of pdf descriptions are detailed and the physical principles that are used in the construction of the models are explained. The Lagrangian one-particle probabilistic description is developed first for the fluid alone, then for the discrete particles and finally for the joint fluid and particle turbulent systems. In the case of the probabilistic description for the fluid alone or for the discrete particles alone, numerical computations are presented and discussed to illustrate how the method works in practice and the kind of information that can be extracted from it. Comments on the current modelling state and propositions for future investigations which try to link the present work with other ideas in physics are made at the end of the paper.

  10. Luteal Coasting and Individualization of Human Chorionic Gonadotropin Dose after Gonadotropin-Releasing Hormone Agonist Triggering for Final Oocyte Maturation—A Retrospective Proof-of-Concept Study

    PubMed Central

    Lawrenz, Barbara; Samir, Suzan; Garrido, Nicolas; Melado, Laura; Engelmann, Nils; Fatemi, Human M.

    2018-01-01

    Ovarian stimulation in a gonadotropin-releasing hormone (GnRH) antagonist protocol with the use of GnRH agonist for final oocyte maturation is the state-of-the-art treatment in patients with an expected or known high response to avoid or at least reduce significantly the risk for development of ovarian hyperstimulation syndrome (OHSS). Due to a shortened LH surge after administration of GnRH agonist in most patients, the luteal phase will be characterized by luteolysis and luteal phase insufficiency. Maintaining a sufficient luteal phase is crucial for achievement of a pregnancy; however, the optimal approach is still under debate. Administration of human chorionic gonadotropin (hCG) within 72 h rescues the corpora lutea function; however, the so far often used 1,500 IU still bear the risk for development of OHSS. The recently introduced concept of “luteal coasting” individualizes the luteal phase support by monitoring the progesterone concentrations and administering a rescue dosage of hCG when progesterone concentrations drop significantly. This retrospective proof-of-concept study explored the correlation between hCG dosages ranging from 375 up to 1,500 IU and the progesterone levels in the early and mid-luteal phases as well as the likelihood of pregnancy, both early and ongoing. The chance of pregnancy is highest with progesterone level ≥13 ng/ml at 48 h postoocyte retrieval. Among the small sample size of 52 women studied, it appears that appropriate progesterone levels can be achieved with hCG dosages as low as 375 IU. This may well optimize the chance of pregnancy while reducing the risk of OHSS associated with higher doses of hCG supplementation in the luteal phase. PMID:29497400

  11. Controlling Particle Morphologies at Fluid Interfaces: Macro- and Micro- approaches

    NASA Astrophysics Data System (ADS)

    Beesabathuni, Shilpa Naidu

    The controlled generation of varying shaped particles is important for many applications: consumer goods, biomedical diagnostics, food processing, adsorbents and pharmaceuticals which can benefit from the availability of geometrically complex and chemically inhomogeneous particles. This thesis presents two approaches to spherical and non-spherical particle synthesis using macro and microfluidics. In the first approach, a droplet microfluidic technique is explored to fabricate spherical conducting polymer, polyaniline, particles with precise control over morphology and functionality. Microfluidics has recently emerged as an important alternate to the synthesis of complex particles. The conducting polymer, polyaniline, is widely used and known for its stability, high conductivity, and favorable redox properties. In this approach, monodisperse micron-sized polyaniline spherical particles were synthesized using two-phase droplet microfluidics from Aniline and Ammonium persulfate oxidative polymerization in an oil-based continuous phase. The morphology of the polymerized particles is porous in nature which can be used for encapsulation as well as controlled release applications. Encapsulation of an enzyme, glucose oxidase, was also performed using the technique to synthesize microspheres for glucose sensing. The polymer microspheres were characterized using SEM, UV-Vis and EDX to understand the relationship between their microstructure and stability. In the second approach, molten drop impact in a cooling aqueous medium to generate non-spherical particles was explored. Viscoelastic wax based materials are widely used in many applications and their performance and application depends on the particle morphology and size. The deformation of millimeter size molten wax drops as they impacted an immiscible liquid interface was investigated. Spherical molten wax drops impinged on a cooling water bath, then deformed and as a result of solidification were arrested into various shapes such as ellipsoids, mushrooms, spherulites and discs. The final morphology of the wax particles is governed by the interfacial, inertial, viscous and thermal effects, which can be studied over a range of Weber, Capillary, Reynolds and Stefan numbers. A simplified Stefan problem for a spherical drop was solved. The time required to initiate a phase transition at the interface of the molten wax and water after impact was estimated and correlated with the drop deformation history and final wax particle shape to develop a capability to predict the shape. While the microfluidic synthesis approach offers precise control over morphology and functionality, large particle throughput is a limitation. The drop impact in a liquid medium emulsion approach is limited to crosslinking or heat sensitive materials but can be extended to large scale production for industrial applications. Both approaches are simple, robust and cost effective making them viable and attractive solutions for complex particle synthesis. The choice of the approach is dependent on considerations such as particle material, size, shape, throughput and end application.

  12. Simulation of phase equilibria

    NASA Astrophysics Data System (ADS)

    Martin, Marcus Gary

    The focus of this thesis is on the use of configurational bias Monte Carlo in the Gibbs ensemble. Unlike Metropolis Monte Carlo, which is reviewed in chapter I, configurational bias Monte Carlo uses an underlying Markov chain transition matrix which is asymmetric in such a way that it is more likely to attempt to move to a molecular conformation which has a lower energy than to one with a higher energy. Chapter II explains how this enables efficient simulation of molecules with complex architectures (long chains and branched molecules) for coexisting fluid phases (liquid, vapor, or supercritical), and also presents several of our recent extensions to this method. In chapter III we discuss the development of the Transferable Potentials for Phase Equilibria United Atom (TraPPE-UA) force field which accurately describes the fluid phase coexistence for linear and branched alkanes. Finally, in the fourth chapter the methods and the force field are applied to systems ranging from supercritical extraction to gas chromatography to illustrate the power and versatility of our approach.

  13. Phase segregation in multiphase turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Bianco, Federico; Soldati, Alfredo

    2014-11-01

    The phase segregation of a rapidly quenched mixture (namely spinodal decomposition) is numerically investigated. A phase field approach is considered. Direct numerical simulation of the coupled Navier-Stokes and Cahn-Hilliard equations is performed with spectral accuracy and focus has been put on domain growth scaling laws, in a wide range of regimes. The numerical method has been first validated against well known results of literature, then spinodal decomposition in a turbulent bounded flow (channel flow) has been considered. As for homogeneous isotropic case, turbulent fluctuations suppress the segregation process when surface tension at the interfaces is relatively low (namely low Weber number regimes). For these regimes, segregated domains size reaches a statistically steady state due to mixing and break-up phenomena. In contrast with homogenous and isotropic turbulence, the presence of mean shear, leads to a typical domain size that show a wall-distance dependence. Finally, preliminary results on the effects to the drag forces at the wall, due to phase segregation, have been discussed. Regione FVG, program PAR-FSC.

  14. A hybrid method for synthetic aperture ladar phase-error compensation

    NASA Astrophysics Data System (ADS)

    Hua, Zhili; Li, Hongping; Gu, Yongjian

    2009-07-01

    As a high resolution imaging sensor, synthetic aperture ladar data contain phase-error whose source include uncompensated platform motion and atmospheric turbulence distortion errors. Two previously devised methods, rank one phase-error estimation algorithm and iterative blind deconvolution are reexamined, of which a hybrid method that can recover both the images and PSF's without any a priori information on the PSF is built to speed up the convergence rate by the consideration in the choice of initialization. To be integrated into spotlight mode SAL imaging model respectively, three methods all can effectively reduce the phase-error distortion. For each approach, signal to noise ratio, root mean square error and CPU time are computed, from which we can see the convergence rate of the hybrid method can be improved because a more efficient initialization set of blind deconvolution. Moreover, by making a further discussion of the hybrid method, the weight distribution of ROPE and IBD is found to be an important factor that affects the final result of the whole compensation process.

  15. Probing metamaterials with structured light

    DOE PAGES

    Xu, Yun; Sun, Jingbo; Walasik, Wiktor; ...

    2016-11-03

    Photonic metamaterials and metasurfaces are nanostructured optical materials engineered to enable properties that have not been found in nature. Optical characterization of these structures is a challenging task. We report a reliable technique that is particularly useful for characterization of phase properties introduced by small and spatially inhomogeneous samples of metamaterials and metasurfaces. The proposed structured light, or vortex based interferometric method is used to directly visualize phase changes introduced by subwavelength-thick nanostructures. In order to demonstrate the efficiency of the proposed technique, we designed and fabricated several metasurface samples consisting of metal nano-antennas introducing different phase shifts and experimentallymore » measured phase shifts of the transmitted light. The experimental results are in good agreement with numerical simulations and with the designed properties of the antenna arrays. Finally, due to the presence of the singularity in the vortex beam, one of the potential applications of the proposed approach based on structured light is step-by-step probing of small fractions of the micro-scale samples or images.« less

  16. A Model System for the Design and Maintenance of Related Instruction Curriculum for Approved U.S. Department of Labor Apprenticeship Programs; Phase III. Final Report and Final Evaluation Report.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    A final report and final evaluation report of Phase III are provided for a project to establish a national clearinghouse for apprenticeship-related instructional materials. The final report provides a summary and a narrative account of these project activities: identification of materials; identification of apprenticeship curriculum needs;…

  17. Full-field stress determination in photoelasticity with phase shifting technique

    NASA Astrophysics Data System (ADS)

    Guo, Enhai; Liu, Yonggang; Han, Yongsheng; Arola, Dwayne; Zhang, Dongsheng

    2018-04-01

    Photoelasticity is an effective method for evaluating the stress and its spatial variations within a stressed body. In the present study, a method to determine the stress distribution by means of phase shifting and a modified shear-difference is proposed. First, the orientation of the first principal stress and the retardation between the principal stresses are determined in the full-field through phase shifting. Then, through bicubic interpolation and derivation of a modified shear-difference method, the internal stress is calculated from the point with a free boundary along its normal direction. A method to reduce integration error in the shear difference scheme is proposed and compared to the existing methods; the integration error is reduced when using theoretical photoelastic parameters to calculate the stress component with the same points. Results show that when the value of Δx/Δy approaches one, the error is minimum, and although the interpolation error is inevitable, it has limited influence on the accuracy of the result. Finally, examples are presented for determining the stresses in a circular plate and ring subjected to diametric loading. Results show that the proposed approach provides a complete solution for determining the full-field stresses in photoelastic models.

  18. Ag–Pt compositional intermetallics made from alloy nanoparticles

    DOE PAGES

    Pan, Yung -Tin; Yan, Yuqi; Shao, Yu -Tsun; ...

    2016-09-07

    Intermetallics are compounds with long-range structural order that often lies in a state of thermodynamic minimum. They are usually considered as favorable structures for catalysis due to their high activity and robust stability. However, formation of intermetallic compounds is often regarded as element specific. For instance, Ag and Pt do not form alloy in bulk phase through the conventional metallurgy approach in almost the entire range of composition. Herein, we demonstrate a bottom-up approach to create a new Ag–Pt compositional intermetallic phase from nanoparticles. By thermally treating the corresponding alloy nanoparticles in inert atmosphere, we obtained an intermetallic material thatmore » has an exceptionally narrow Ag/Pt ratio around 52/48 to 53/47, and a structure of interchangeable closely packed Ag and Pt layers with 85% on tetrahedral and 15% on octahedral sites. This rather unique stacking results in wavy patterns of Ag and Pt planes revealed by scanning transmission electron microscope (STEM). Finally, this Ag–Pt compositional intermetallic phase is highly active for electrochemical oxidation of formic acid at low anodic potentials, 5 times higher than its alloy nanoparticles, and 29 times higher than the reference Pt/C at 0.4 V (vs RHE) in current density.« less

  19. Bioattractors: dynamical systems theory and the evolution of regulatory processes

    PubMed Central

    Jaeger, Johannes; Monk, Nick

    2014-01-01

    In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype–phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait – such as attractors with associated basins and their bifurcations – define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. PMID:24882812

  20. Ag–Pt compositional intermetallics made from alloy nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yung -Tin; Yan, Yuqi; Shao, Yu -Tsun

    Intermetallics are compounds with long-range structural order that often lies in a state of thermodynamic minimum. They are usually considered as favorable structures for catalysis due to their high activity and robust stability. However, formation of intermetallic compounds is often regarded as element specific. For instance, Ag and Pt do not form alloy in bulk phase through the conventional metallurgy approach in almost the entire range of composition. Herein, we demonstrate a bottom-up approach to create a new Ag–Pt compositional intermetallic phase from nanoparticles. By thermally treating the corresponding alloy nanoparticles in inert atmosphere, we obtained an intermetallic material thatmore » has an exceptionally narrow Ag/Pt ratio around 52/48 to 53/47, and a structure of interchangeable closely packed Ag and Pt layers with 85% on tetrahedral and 15% on octahedral sites. This rather unique stacking results in wavy patterns of Ag and Pt planes revealed by scanning transmission electron microscope (STEM). Finally, this Ag–Pt compositional intermetallic phase is highly active for electrochemical oxidation of formic acid at low anodic potentials, 5 times higher than its alloy nanoparticles, and 29 times higher than the reference Pt/C at 0.4 V (vs RHE) in current density.« less

  1. Robust adaptive sliding mode control for uncertain systems with unknown time-varying delay input.

    PubMed

    Benamor, Anouar; Messaoud, Hassani

    2018-05-02

    This article focuses on robust adaptive sliding mode control law for uncertain discrete systems with unknown time-varying delay input, where the uncertainty is assumed unknown. The main results of this paper are divided into three phases. In the first phase, we propose a new sliding surface is derived within the Linear Matrix Inequalities (LMIs). In the second phase, using the new sliding surface, the novel Robust Sliding Mode Control (RSMC) is proposed where the upper bound of uncertainty is supposed known. Finally, the novel approach of Robust Adaptive Sliding ModeControl (RASMC) has been defined for this type of systems, where the upper limit of uncertainty which is assumed unknown. In this new approach, we have estimate the upper limit of uncertainties and we have determined the control law based on a sliding surface that will converge to zero. This novel control laws are been validated in simulation on an uncertain numerical system with good results and comparative study. This efficiency is emphasized through the application of the new controls on the two physical systems which are the process trainer PT326 and hydraulic system two tanks. Published by Elsevier Ltd.

  2. Dynamic bacterial community changes in the autothermal thermophilic aerobic digestion process with cell lysis activities, shaking and temperature increase.

    PubMed

    Cheng, Huijun; Asakura, Yuya; Kanda, Kosuke; Fukui, Ryo; Kawano, Yoshihisa; Okugawa, Yuki; Tashiro, Yukihiro; Sakai, Kenji

    2018-04-12

    Autothermal thermophilic aerobic digestion (ATAD) is conducted for stabilization of sludge waste and is driven by the action of various microorganisms under aerobic conditions. However, the mechanism controlling bacterial community changes during ATAD via three (initial, middle and final) phases is currently unclear. To investigate this mechanism, activity analysis and a microcosm assay with shaking were performed on a bacterial community during the initial, middle, and final phases of incubation. Cell lysis activities toward gram-negative bacteria, but not gram-positive bacteria, were detected in the ATAD samples in the middle and final phases. During shaking incubation in initial-phase samples at 30 °C, major operational taxonomic units (OTUs) related to Acinetobacter indicus and Arcobacter cibarius dramatically increased along with decreases in several major OTUs. In middle-phase samples at 45 °C, we observed a major alteration of OTUs related to Caldicellulosiruptor bescii and Aciditerrimonas ferrireducens, together with distinct decreases in several other OTUs. Final-phase samples maintained a stable bacterial community with major OTUs showing limited similarities to Heliorestis baculata, Caldicellulosiruptorbescii, and Ornatilinea apprima. In conclusion, the changes in the bacterial community observed during ATAD could be partially attributed to the cell lysis activity toward gram-negative bacteria in the middle and final phases. The microcosm assay suggested that certain physical factors, such as a high oxygen supply and shearing forces, also might contribute to bacterial community changes in the initial and middle phases, and to the stable bacterial community in the final phase of ATAD. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Atomistic to continuum modeling of solidification microstructures

    DOE PAGES

    Karma, Alain; Tourret, Damien

    2015-09-26

    We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked tomore » experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.« less

  4. Consistency of Post-Newtonian Waveforms with Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.; vanMeter, James R.; McWilliams, Sean T.; Centrella, Joan; Kelly, Bernard J.

    2007-01-01

    General relativity predicts the gravitational radiation signatures of mergers of compact binaries,such as coalescing binary black hole systems. Derivations of waveform predictions for such systems are required for optimal scientific analysis of observational gravitational wave data, and have so far been achieved primarily with the aid of the post-Newtonian (PN) approximation. The quaIity of this treatment is unclear, however, for the important late inspiral portion. We derive late-inspiral wave forms via a complementary approach, direct numerical simulation of Einstein's equations, which has recently matured sufficiently for such applications. We compare waveform phasing from simulations covering the last approximately 14 cycles of gravitational radiation from an equal-mass binary system of nonspinning black holes with corresponding 3PN and 3.5PN waveforms. We find phasing agreement consistent with internal error estimates based in either approach, at the level of one radian over approximately 10 cycles. The result suggests that PN waveforms for this system are effective roughly until the system reaches its last stable orbit just prior to the final merger.

  5. Vaccination Against Dengue: Challenges and Current Developments.

    PubMed

    Guy, Bruno; Lang, Jean; Saville, Melanie; Jackson, Nicholas

    2016-01-01

    Dengue is a growing threat worldwide, and the development of a vaccine is a public health priority. The completion of the active phase of two pivotal efficacy studies conducted in Asia and Latin America by Sanofi Pasteur has constituted an important step. Several other approaches are under development, and whichever technology is used, vaccine developers face several challenges linked to the particular nature and etiology of dengue disease. We start our review by defining questions and potential issues linked to dengue pathology and presenting the main types of vaccine approaches that have explored these questions; some of these candidates are in a late stage of clinical development. In the second part of the review, we focus on the Sanofi Pasteur dengue vaccine candidate, describing the steps from research to phase III efficacy studies. Finally, we discuss what could be the next steps, before and after vaccine introduction, to ensure that the vaccine will provide the best benefit with an acceptable safety profile to the identified target populations.

  6. Consistency of Post-Newtonian Waveforms with Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.; vanMeter, James R.; McWilliams, Sean T.; Cewntrella, Joan; Kelly, Bernard J.

    2006-01-01

    General relativity predicts the gravitational radiation signatures of mergers of compact binaries, such as coalescing binary black hole systems. Derivations of waveform predictions for such systems are required for optimal scientific analysis of observational gravitational wave data, and have so far been achieved primarily with the aid of the post-Newtonian (PN) approximation. The quality of this treatment is unclear, however, for the important late inspiral portion. We derive late-inspiral waveforms via a complementary approach, direct numerical simulation of Einstein's equations, which has recently matured sufficiently for such applications. We compare waveform phasing from simulations covering the last approximately 14 cycles of gravitational radiation from an equal-mass binary system of nonspinning black holes with the corresponding 3PN and 3.5PN orbital phasing. We find agreement consistent with internal error estimates based on either approach at the level of one radian over approximately 10 cycles. The result suggests that PN waveforms for this system are effective roughly until the system reaches its last stable orbit just prior to the final merger/

  7. A New Approach to Detect Mover Position in Linear Motors Using Magnetic Sensors

    PubMed Central

    Paul, Sarbajit; Chang, Junghwan

    2015-01-01

    A new method to detect the mover position of a linear motor is proposed in this paper. This method employs a simple cheap Hall Effect sensor-based magnetic sensor unit to detect the mover position of the linear motor. With the movement of the linear motor, Hall Effect sensor modules electrically separated 120° along with the idea of three phase balanced condition (va + vb + vc = 0) are used to produce three phase signals. The amplitude of the sensor output voltage signals are adjusted to unit amplitude to minimize the amplitude errors. With the unit amplitude signals three to two phase transformation is done to reduce the three multiples of harmonic components. The final output thus obtained is converted to position data by the use of arctangent function. The measurement accuracy of the new method is analyzed by experiments and compared with the conventional two phase method. Using the same number of sensor modules as the conventional two phase method, the proposed method gives more accurate position information compared to the conventional system where sensors are separated by 90° electrical angles. PMID:26506348

  8. Shape Measurement by Means of Phase Retrieval using a Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Agour, Mostafa; Huke, Philipp; Kopylow, Christoph V.; Falldorf, Claas

    2010-04-01

    We present a novel approach to investigate the shape of a diffusely reflecting technical object. It is based on a combination of a multiple-illumination contouring procedure and phase retrieval from a set of intensity measurements. Special consideration is given to the design of the experimental configuration for phase retrieval and the iterative algorithm to extract the 3D phase map. It is mainly based on a phase-only spatial light modulator (SLM) in the Fourier domain of a 4f-imaging system. The SLM is used to modulate the light incident in the Fourier plane with the transfer function of propagation. Thus, a set of consecutive intensity measurements of the wave field scattered by the investigated object in various propagation states can be realized in a common recording plane. In contrast to already existing methods, no mechanical adjustment is required during the recording process and thus the measuring time is considerably reduced. The method is applied to investigate the shape of micro-objects obtained from a metalforming process. Finally, the experimental results are compared to those provided by a standard interferometric contouring procedure.

  9. Formation of sodium bismuth titanate-barium titanate during solid-state synthesis

    DOE PAGES

    Hou, Dong; Aksel, Elena; Fancher, Chris M.; ...

    2017-01-12

    Phase formation of sodium bismuth titanate (Na 0.5Bi 0.5TiO 3 or NBT) and its solid solution with barium titanate (BaTiO 3 or BT) during the calcination process is studied using in situ high-temperature diffraction. The reactant powders were mixed and heated to 1000°C, while X-ray diffraction patterns were recorded continuously. Phase evolutions from starting materials to final perovskite products are observed, and different transient phases are identified. The formation mechanism of NBT and NBT–xBT perovskite structures is discussed, and a reaction sequence is suggested based on the observations. The in situ study leads to a new processing approach, which ismore » the use of nano-TiO 2, and gives insights to the particle size effect for solid-state synthesis products. Lastly, it was found that the use of nano-TiO 2 as reactant powder accelerates the synthesis process, decreases the formation of transient phases, and helps to obtain phase-pure products using a lower thermal budget.« less

  10. NUMERICAL SIMULATIONS OF KELVIN–HELMHOLTZ INSTABILITY: A TWO-DIMENSIONAL PARAMETRIC STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Chunlin; Chen, Yao, E-mail: chunlin.tian@sdu.edu.cn

    2016-06-10

    Using two-dimensional simulations, we numerically explore the dependences of Kelvin–Helmholtz (KH) instability upon various physical parameters, including viscosity, the width of the sheared layer, flow speed, and magnetic field strength. In most cases, a multi-vortex phase exists between the initial growth phase and the final single-vortex phase. The parametric study shows that the evolutionary properties, such as phase duration and vortex dynamics, are generally sensitive to these parameters, except in certain regimes. An interesting result is that for supersonic flows, the phase durations and saturation of velocity growth approach constant values asymptotically as the sonic Mach number increases. We confirmmore » that the linear coupling between magnetic field and KH modes is negligible if the magnetic field is weak enough. The morphological behavior suggests that the multi-vortex coalescence might be driven by the underlying wave–wave interaction. Based on these results, we present a preliminary discussion of several events observed in the solar corona. The numerical models need to be further improved to perform a practical diagnostic of the coronal plasma properties.« less

  11. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides

    NASA Astrophysics Data System (ADS)

    Kowligy, Abijith S.; Lind, Alex; Hickstein, Daniel D.; Carlson, David R.; Timmers, Henry; Nader, Nima; Cruz, Flavio C.; Ycas, Gabriel; Papp, Scott B.; Diddams, Scott A.

    2018-04-01

    We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-$\\chi^{(2)}$ nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive-wave generation in the 2.5--3 $\\text{\\mu}$m region and intra-pulse difference-frequency generation in the 4--5 $\\text{\\mu}$m region. By engineering the quasi-phase-matched grating profiles, tunable, narrow-band MIR and broadband MIR spectra are both observed in this geometry. Finally, we perform numerical modeling using a nonlinear envelope equation, which shows good quantitative agreement with the experiment---and can be used to inform waveguide designs to tailor the MIR frequency combs. Our results identify a path to a simple single-branch approach to mid-infrared frequency comb generation in a compact platform using commercial Er:fiber technology.

  12. Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites

    NASA Astrophysics Data System (ADS)

    Boumedienne, N.; Faska, Y.; Maaroufi, A.; Pinto, G.; Vicente, L.; Benavente, R.

    2017-05-01

    This paper reports on the elaboration and characterization of epoxy resin filled with metallic particles powder (aluminum, tin and zinc) composites. The scanning electron microscopy (SEM) pictures, density measurements and x-ray diffraction analysis (DRX) showed a homogeneous phase of obtained composites. The differential scanning calorimetry revealed a good adherence at matrix-filler interfaces, confirming the SEM observations. The measured glass transition temperatures depend on composites fillers' nature. Afterwards, the electrical conductivity of composites versus their fillers' contents has been investigated. The obtained results depict a nonlinear behavior, indicating an insulator to conductor phase transition at a conduction threshold; with high contrast of ten decades. Hence, the elaborated materials give a possibility to obtain dielectric or electrically conducting phases, which can to be interesting in the choice of desired applications. Finally, the obtained results have been successfully simulated on the basis of different percolation models approach combined with structural characterization inferences.

  13. Graphical Representations and Cluster Algorithms for Ice Rule Vertex Models.

    NASA Astrophysics Data System (ADS)

    Shtengel, Kirill; Chayes, L.

    2002-03-01

    We introduce a new class of polymer models which is closely related to loop models, recently a topic of intensive studies. These particular models arise as graphical representations for ice-rule vertex models. The associated cluster algorithms provide a unification and generalisation of most of the existing algorithms. For many lattices, percolation in the polymer models evidently indicates first order phase transitions in the vertex models. Critical phases can be understood as being susceptible to colour symmetry breaking in the polymer models. The analysis includes, but is certainly not limited to the square lattice six-vertex model. In particular, analytic criteria can be found for low temperature phases in other even coordinated 2D lattices such as the triangular lattice, or higher dimensional lattices such as the hyper-cubic lattices of arbitrary dimensionality. Finally, our approach can be generalised to the vertex models that do not obey the ice rule, such as the eight-vertex model.

  14. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides.

    PubMed

    Kowligy, Abijith S; Lind, Alex; Hickstein, Daniel D; Carlson, David R; Timmers, Henry; Nader, Nima; Cruz, Flavio C; Ycas, Gabriel; Papp, Scott B; Diddams, Scott A

    2018-04-15

    We experimentally demonstrate a simple configuration for mid-infrared (MIR) frequency comb generation in quasi-phase-matched lithium niobate waveguides using the cascaded-χ (2) nonlinearity. With nanojoule-scale pulses from an Er:fiber laser, we observe octave-spanning supercontinuum in the near-infrared with dispersive wave generation in the 2.5-3 μm region and intrapulse difference frequency generation in the 4-5 μm region. By engineering the quasi-phase-matched grating profiles, tunable, narrowband MIR and broadband MIR spectra are both observed in this geometry. Finally, we perform numerical modeling using a nonlinear envelope equation, which shows good quantitative agreement with the experiment-and can be used to inform waveguide designs to tailor the MIR frequency combs. Our results identify a path to a simple single-branch approach to mid-infrared frequency comb generation in a compact platform using commercial Er:fiber technology.

  15. Rendezvous and Docking Strategy for Crewed Segment of the Asteroid Redirect Mission

    NASA Technical Reports Server (NTRS)

    Hinkel, Heather D.; Cryan, Scott P.; D'Souza, Christopher; Dannemiller, David P.; Brazzel, Jack P.; Condon, Gerald L.; Othon, William L.; Williams, Jacob

    2014-01-01

    This paper will describe the overall rendezvous, proximity operations and docking (RPOD) strategy in support of the Asteroid Redirect Crewed Mission (ARCM), as part of the Asteroid Redirect Mission (ARM). The focus of the paper is on the crewed mission phase of ARM, starting with the establishment of Orion in the Distant Retrograde Orbit (DRO) and ending with docking to the Asteroid Redirect Vechicle (ARV). The paper will detail the sequence of maneuvers required to execute the rendezvous and proximity operations mission phases along with the on-board navigation strategies, including the final approach phase. The trajectories to be considered will include target vehicles in a DRO. The paper will also discuss the sensor requirements for rendezvous and docking and the various trade studies associated with the final sensor selection. Building on the sensor requirements and trade studies, the paper will include a candidate sensor concept of operations, which will drive the selection of the sensor suite; concurrently, it will be driven by higher level requirements on the system, such as crew timeline constraints and vehicle consummables. This paper will address how many of the seemingly competing requirements will have to be addressed to create a complete system and system design. The objective is to determine a sensor suite and trajectories that enable Orion to successfully rendezvous and dock with a target vehicle in trans lunar space. Finally, the paper will report on the status of a NASA action to look for synergy within RPOD, across the crewed and robotic asteroid missions.

  16. Array Phase Shifters: Theory and Technology

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2007-01-01

    While there are a myriad of applications for microwave phase shifters in instrumentation and metrology, power combining, amplifier linearization, and so on, the most prevalent use is in scanning phased-array antennas. And while this market continues to be dominated by military radar and tracking platforms, many commercial applications have emerged in the past decade or so. These new and potential applications span low-Earth-orbit (LEO) communications satellite constellations and collision warning radar, an aspect of the Intelligent Vehicle Highway System or Automated Highway System. In any case, the phase shifters represent a considerable portion of the overall antenna cost, with some estimates approaching 40 percent for receive arrays. Ferrite phase shifters continue to be the workhorse in military-phased arrays, and while there have been advances in thin film ferrite devices, the review of this device technology in the previous edition of this book is still highly relevant. This chapter will focus on three types of phase shifters that have matured in the past decade: GaAs MESFET monolithic microwave integrated circuit (MMIC), micro-electromechanical systems (MEMS), and thin film ferroelectric-based devices. A brief review of some novel devices including thin film ferrite phase shifters and superconducting switches for phase shifter applications will be provided. Finally, the effects of modulo 2 phase shift limitations, phase errors, and transient response on bit error rate degradation will be considered.

  17. Mathematical and Computational Foundations of Recurrence Quantifications

    NASA Astrophysics Data System (ADS)

    Marwan, Norbert; Webber, Charles L.

    Real-world systems possess deterministic trajectories, phase singularities and noise. Dynamic trajectories have been studied in temporal and frequency domains, but these are linear approaches. Basic to the field of nonlinear dynamics is the representation of trajectories in phase space. A variety of nonlinear tools such as the Lyapunov exponent, Kolmogorov-Sinai entropy, correlation dimension, etc. have successfully characterized trajectories in phase space, provided the systems studied were stationary in time. Ubiquitous in nature, however, are systems that are nonlinear and nonstationary, existing in noisy environments all of which are assumption breaking to otherwise powerful linear tools. What has been unfolding over the last quarter of a century, however, is the timely discovery and practical demonstration that the recurrences of system trajectories in phase space can provide important clues to the system designs from which they derive. In this chapter we will introduce the basics of recurrence plots (RP) and their quantification analysis (RQA). We will begin by summarizing the concept of phase space reconstructions. Then we will provide the mathematical underpinnings of recurrence plots followed by the details of recurrence quantifications. Finally, we will discuss computational approaches that have been implemented to make recurrence strategies feasible and useful. As computers become faster and computer languages advance, younger generations of researchers will be stimulated and encouraged to capture nonlinear recurrence patterns and quantification in even better formats. This particular branch of nonlinear dynamics remains wide open for the definition of new recurrence variables and new applications untouched to date.

  18. Vacuum to Antimatter-Rocket Interstellar Explorer System (VARIES): A Proposed Program for an Interstellar Rendezvous and Return Architecture

    NASA Astrophysics Data System (ADS)

    Obousy, R.

    While interstellar missions have been explored in the literature, one mission architecture has not received much attention, namely the interstellar rendezvous and return mission that could be accomplished on timescales comparable with a working scientist's career. Such a mission would involve an initial boost phase followed by a coasting phase to the target system. Next would be the deceleration and rendezvous phase, which would be followed by a period of scientific data gathering. Finally, there would be a second boost phase, aimed at returning the spacecraft back to the solar system, and subsequent coasting and deceleration phases upon return to our solar system. Such a mission would represent a precursor to a future manned interstellar mission; which in principle could safely return any astronauts back to Earth. In this paper a novel architecture is proposed that would allow for an unmanned interstellar rendezvous and return mission. The approach utilized for the Vacuum to Antimatter-Rocket Interstellar Explorer System (VARIES) would lead to system components and mission approaches that could be utilized for autonomous operation of other deep-space probes. Engineering solutions for such a mission will have a significant impact on future exploration and sample return missions for the outer planets. This paper introduces the general concept, with a mostly qualitative analysis. However, a full research program is introduced, and as this program progresses, more quantitative papers will be released.

  19. Demixing in simple dipolar mixtures: Integral equation versus density functional results

    NASA Astrophysics Data System (ADS)

    Range, Gabriel M.; Klapp, Sabine H. L.

    2004-09-01

    Using reference hypernetted chain (RHNC) integral equations and density functional theory in the modified mean-field (MMF) approximation we investigate the phase behavior of binary mixtures of dipolar hard spheres. The two species ( A and B ) differ only in their dipole moments mA and mB , and the central question investigated is under which conditions these asymmetric mixtures can exhibit demixing phase transitions in the fluid phase regime. Results from our two theoretical approaches turn out to strongly differ. Within the RHNC (which we apply to the isotropic high-temperature phase) demixing does indeed occur for dense systems with small interaction parameters Γ=mB2/mA2 . This result generalizes previously reported observations on demixing in mixtures of dipolar and neutral hard spheres (Γ=0) to the case of true dipolar hard sphere mixtures. The RHNC approach also indicates that these demixed fluid phases are isotropic at temperatures accessible by the theory, whereas isotropic-to-ferroelectric transitions occur only at larger Γ . The MMF theory, on the other hand, yields a different picture in which demixing occurs in combination with spontaneous ferroelectricity at all Γ considered. This discrepancy underlines the relevance of correlational effects for the existence of demixing transitions in dipolar systems without dispersive interactions. Indeed, supplementing the dipolar interactions by small, asymmetric amounts of van der Waals-like interactions (and thereby supporting the systems tendency to demix) one finally reaches good agreement between MMF and RHNC results.

  20. Wire constructions of Abelian topological phases in three or more dimensions

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Neupert, Titus; Chamon, Claudio; Mudry, Christopher

    2016-05-01

    Coupled-wire constructions have proven to be useful tools to characterize Abelian and non-Abelian topological states of matter in two spatial dimensions. In many cases, their success has been complemented by the vast arsenal of other theoretical tools available to study such systems. In three dimensions, however, much less is known about topological phases. Since the theoretical arsenal in this case is smaller, it stands to reason that wire constructions, which are based on one-dimensional physics, could play a useful role in developing a greater microscopic understanding of three-dimensional topological phases. In this paper, we provide a comprehensive strategy, based on the geometric arrangement of commuting projectors in the toric code, to generate and characterize coupled-wire realizations of strongly interacting three-dimensional topological phases. We show how this method can be used to construct pointlike and linelike excitations, and to determine the topological degeneracy. We also point out how, with minor modifications, the machinery already developed in two dimensions can be naturally applied to study the surface states of these systems, a fact that has implications for the study of surface topological order. Finally, we show that the strategy developed for the construction of three-dimensional topological phases generalizes readily to arbitrary dimensions, vastly expanding the existing landscape of coupled-wire theories. Throughout the paper, we discuss Zm topological order in three and four dimensions as a concrete example of this approach, but the approach itself is not limited to this type of topological order.

  1. Optimal design of the satellite constellation arrangement reconfiguration process

    NASA Astrophysics Data System (ADS)

    Fakoor, Mahdi; Bakhtiari, Majid; Soleymani, Mahshid

    2016-08-01

    In this article, a novel approach is introduced for the satellite constellation reconfiguration based on Lambert's theorem. Some critical problems are raised in reconfiguration phase, such as overall fuel cost minimization, collision avoidance between the satellites on the final orbital pattern, and necessary maneuvers for the satellites in order to be deployed in the desired position on the target constellation. To implement the reconfiguration phase of the satellite constellation arrangement at minimal cost, the hybrid Invasive Weed Optimization/Particle Swarm Optimization (IWO/PSO) algorithm is used to design sub-optimal transfer orbits for the satellites existing in the constellation. Also, the dynamic model of the problem will be modeled in such a way that, optimal assignment of the satellites to the initial and target orbits and optimal orbital transfer are combined in one step. Finally, we claim that our presented idea i.e. coupled non-simultaneous flight of satellites from the initial orbital pattern will lead to minimal cost. The obtained results show that by employing the presented method, the cost of reconfiguration process is reduced obviously.

  2. Adiabatic Quantum Anomaly Detection and Machine Learning

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen; Lidar, Daniel

    2012-02-01

    We present methods of anomaly detection and machine learning using adiabatic quantum computing. The machine learning algorithm is a boosting approach which seeks to optimally combine somewhat accurate classification functions to create a unified classifier which is much more accurate than its components. This algorithm then becomes the first part of the larger anomaly detection algorithm. In the anomaly detection routine, we first use adiabatic quantum computing to train two classifiers which detect two sets, the overlap of which forms the anomaly class. We call this the learning phase. Then, in the testing phase, the two learned classification functions are combined to form the final Hamiltonian for an adiabatic quantum computation, the low energy states of which represent the anomalies in a binary vector space.

  3. Operational Art in the Korean War: A Comparison between General MacArthur and General Walker

    DTIC Science & Technology

    2013-05-23

    went to Europe. During this time, he rapidly rose in rank and served as the chief of staff of the 42nd Infantry “ Rainbow ” Division. Although he was...development of an operational approach for the next and final phase of the war. His first consideration was the Taebaek mountain range. This generally...north south oriented mountain range limited the lateral movement between both coasts of the peninsula. There were only a few roads available.136 General

  4. Spatiotemporal multiplexing based on hexagonal multicore optical fibres

    DOE PAGES

    Chekhovskoy, I. S.; Sorokina, M. A.; Rubenchik, A. M.; ...

    2017-12-27

    Based on a genetic algorithm, we have solved in this paper the problem of finding the parameters of optical Gaussian pulses which make their efficient nonlinear combining possible in one of the peripheral cores of a 7-core hexagonal fibre. Two approaches based on individual selection of peak powers and field phases of the pulses launched into the fibre are considered. Finally, the found regimes of Gaussian pulse combining open up new possibilities for the development of devices for controlling optical radiation.

  5. Analysis of Crystallization Kinetics

    NASA Technical Reports Server (NTRS)

    Kelton, Kenneth F.

    1997-01-01

    A realistic computer model for polymorphic crystallization (i.e., initial and final phases with identical compositions), which includes time-dependent nucleation and cluster-size-dependent growth rates, is developed and tested by fits to experimental data. Model calculations are used to assess the validity of two of the more common approaches for the analysis of crystallization data. The effects of particle size on transformation kinetics, important for the crystallization of many systems of limited dimension including thin films, fine powders, and nanoparticles, are examined.

  6. Studies on the Inhalation Toxicity of Dyes Present in Colored Smoke Munitions. Phase III, Studies: Four-Week Inhalation Exposures of Rats to Dye Aerosols.

    DTIC Science & Technology

    1984-09-10

    0") AD STUDIES ON THE INHALATION TOXICITY CO• OF DYES PRESENT IN COLORED Ln SMOKE MUNIlIONS U FINAL REPORT FOR PHASE III STUDIES : SFOUR- ELK...3 RECIIEPIT’S CATA6.0G NUMBE.• 4. TITLE (and ,ubiltI.e) S. TYPE OF REPORT & PERIOD COygC r., Studies on the Inhalation Toxicity of Dyes Final: Phase...III Present in Colored Smoke Munitions. Final Report Fh for Phase 111 Studies : FoLr-Week Inhalation G. PERFORMING ORO. REPORT N,’,ER Exposures of Rats

  7. Probing exoplanet clouds with optical phase curves

    PubMed Central

    Muñoz, Antonio García; Isaak, Kate G.

    2015-01-01

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve—from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4–0.5. PMID:26489652

  8. Order Batching in Warehouses by Minimizing Total Tardiness: A Hybrid Approach of Weighted Association Rule Mining and Genetic Algorithms

    PubMed Central

    Taheri, Shahrooz; Mat Saman, Muhamad Zameri; Wong, Kuan Yew

    2013-01-01

    One of the cost-intensive issues in managing warehouses is the order picking problem which deals with the retrieval of items from their storage locations in order to meet customer requests. Many solution approaches have been proposed in order to minimize traveling distance in the process of order picking. However, in practice, customer orders have to be completed by certain due dates in order to avoid tardiness which is neglected in most of the related scientific papers. Consequently, we proposed a novel solution approach in order to minimize tardiness which consists of four phases. First of all, weighted association rule mining has been used to calculate associations between orders with respect to their due date. Next, a batching model based on binary integer programming has been formulated to maximize the associations between orders within each batch. Subsequently, the order picking phase will come up which used a Genetic Algorithm integrated with the Traveling Salesman Problem in order to identify the most suitable travel path. Finally, the Genetic Algorithm has been applied for sequencing the constructed batches in order to minimize tardiness. Illustrative examples and comparisons are presented to demonstrate the proficiency and solution quality of the proposed approach. PMID:23864823

  9. Order batching in warehouses by minimizing total tardiness: a hybrid approach of weighted association rule mining and genetic algorithms.

    PubMed

    Azadnia, Amir Hossein; Taheri, Shahrooz; Ghadimi, Pezhman; Saman, Muhamad Zameri Mat; Wong, Kuan Yew

    2013-01-01

    One of the cost-intensive issues in managing warehouses is the order picking problem which deals with the retrieval of items from their storage locations in order to meet customer requests. Many solution approaches have been proposed in order to minimize traveling distance in the process of order picking. However, in practice, customer orders have to be completed by certain due dates in order to avoid tardiness which is neglected in most of the related scientific papers. Consequently, we proposed a novel solution approach in order to minimize tardiness which consists of four phases. First of all, weighted association rule mining has been used to calculate associations between orders with respect to their due date. Next, a batching model based on binary integer programming has been formulated to maximize the associations between orders within each batch. Subsequently, the order picking phase will come up which used a Genetic Algorithm integrated with the Traveling Salesman Problem in order to identify the most suitable travel path. Finally, the Genetic Algorithm has been applied for sequencing the constructed batches in order to minimize tardiness. Illustrative examples and comparisons are presented to demonstrate the proficiency and solution quality of the proposed approach.

  10. Automated de novo phasing and model building of coiled-coil proteins.

    PubMed

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-03-01

    Models generated by de novo structure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein-protein complexes and de novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential of de novo models of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71-103% of the residues present in the deposited structures, had the correct sequence and had free R values that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, named CCsolve, combines methods for de novo structure prediction, initial phase estimation and automated model building into one pipeline. CCsolve is robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility of de novo phasing of protein-protein complexes, an approach that could also be employed for other small systems beyond coiled coils.

  11. Moving forward through consensus: protocol for a modified Delphi approach to determine the top research priorities in the field of orthopaedic oncology.

    PubMed

    Schneider, Patricia; Evaniew, Nathan; Rendon, Juan Sebastian; McKay, Paula; Randall, R Lor; Turcotte, Robert; Vélez, Roberto; Bhandari, Mohit; Ghert, Michelle

    2016-05-24

    Orthopaedic oncology researchers face several obstacles in the design and execution of randomised controlled trials, including finite fiscal resources to support the rising costs of clinical research and insufficient patient volume at individual sites. As a result, high-quality research to guide clinical practice has lagged behind other surgical subspecialties. A focused approach is imperative to design a research programme that is economical, streamlined and addresses clinically relevant endpoints. The primary objective of this study will be to use a consensus-based approach to identify research priorities for international clinical trials in orthopaedic oncology. We will conduct a 3-phase modified Delphi method consisting of 2 sequential rounds of anonymous web-based questionnaires (phases I and II), and an in-person consensus meeting (phase III). Participants will suggest research questions that they believe are of particular importance to the field (phase I), and individually rate each proposed question on 5 criteria (phase II). Research questions that meet predetermined consensus thresholds will be brought forward to the consensus meeting (phase III) for discussion by an expert panel. Following these discussions, the expert panel will be asked to assign scores for each research question, and research questions meeting predetermined criteria will be brought forward for final ranking. The expert panel will then be asked to rank the top 3 research questions, and these 3 research questions will be distributed to the initial group of participants for validation. An ethics application is currently under review with the Hamilton Integrated Research Ethics Board in Hamilton, Ontario, Canada. The results of this initiative will be disseminated through peer-reviewed publications and conference presentations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Work plan for conducting an ecological risk assessment at J-Field, Aberdeen Proving Ground, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlohowskyj, I.; Hayse, J.; Kuperman, R.

    1995-03-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland, and activities at the Edgewood Area since World War II have included the development, manufacture, testing, and destruction of chemical agents and munitions. The J-Field site was used to destroy chemical agents and munitions by open burning and open detonation. This work plan presents the approach proposed to conduct anmore » ecological risk assessment (ERA) as part of the RI/FS program at J-Field. This work plan identifies the locations and types of field studies proposed for each area of concern (AOC), the laboratory studies proposed to evaluate toxicity of media, and the methodology to be used in estimating doses to ecological receptors and discusses the approach that will be used to estimate and evaluate ecological risks at J-Field. Eight AOCs have been identified at J-Field, and the proposed ERA is designed to evaluate the potential for adverse impacts to ecological receptors from contaminated media at each AOC, as well as over the entire J-Field site. The proposed ERA approach consists of three major phases, incorporating field and laboratory studies as well as modeling. Phase 1 includes biotic surveys of the aquatic and terrestrial habitats, biological tissue sampling and analysis, and media toxicity testing at each AOC and appropriate reference locations. Phase 2 includes definitive toxicity testing of media from areas of known or suspected contamination or of media for which the Phase 1 results indicate toxicity or adverse ecological effects. In Phase 3, the uptake models initially developed in Phase 2 will be finalized, and contaminant dose to each receptor from all complete pathways will be estimated.« less

  13. New Approaches in Soil Organic Matter Fluorescence; A Solid Phase Fluorescence Approach

    NASA Astrophysics Data System (ADS)

    Bowman, M. M.; Sanclements, M.; McKnight, D. M.

    2017-12-01

    Fluorescence spectroscopy is a well-established technique to investigate the composition of organic matter in aquatic systems and is increasingly applied to soil organic matter (SOM). Current methods require that SOM be extracted into a liquid prior to analysis by fluorescence spectroscopy. Soil extractions introduce an additional layer of complexity as the composition of the organic matter dissolved into solution varies based upon the selected extractant. Water is one of the most commonly used extractant, but only extracts the water-soluble fraction of the SOM with the insoluble soil organic matter fluorescence remaining in the soil matrix. We propose the use of solid phase fluorescence on whole soils as a potential tool to look at the composition of organic matter without the extraction bias and gain a more complete understand of the potential for fluorescence as a tool in terrestrial studies. To date, the limited applications of solid phase fluorescence have ranged from food and agriculture to pharmaceutical with no clearly defined methods and limitations available. We are aware of no other studies that use solid phase fluorescence and thus no clear methods to look at SOM across a diverse set of soil types and ecosystems. With this new approach to fluorescence spectroscopy there are new challenges, such as blank correction, inner filter effect corrections, and sample preparation. This work outlines a novel method for analyzing soil organic matter using solid phase fluorescence across a wide range of soils collected from the National Ecological Observatory Network (NEON) eco-domains. This method has shown that organic matter content in soils must be diluted to 2% to reduce backscattering and oversaturation of the detector in forested soils. In mineral horizons (A) there is observed quenching of the humic-like organic matter, which is likely a result of organo-mineral complexation. Finally, we present preliminary comparisons between solid and liquid phase fluorescence, which provide new insights into fluorescence studies in terrestrial systems.

  14. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  15. Application of high-order numerical schemes and Newton-Krylov method to two-phase drift-flux model

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2017-08-07

    This study concerns the application and solver robustness of the Newton-Krylov method in solving two-phase flow drift-flux model problems using high-order numerical schemes. In our previous studies, the Newton-Krylov method has been proven as a promising solver for two-phase flow drift-flux model problems. However, these studies were limited to use first-order numerical schemes only. Moreover, the previous approach to treating the drift-flux closure correlations was later revealed to cause deteriorated solver convergence performance, when the mesh was highly refined, and also when higher-order numerical schemes were employed. In this study, a second-order spatial discretization scheme that has been tested withmore » two-fluid two-phase flow model was extended to solve drift-flux model problems. In order to improve solver robustness, and therefore efficiency, a new approach was proposed to treating the mean drift velocity of the gas phase as a primary nonlinear variable to the equation system. With this new approach, significant improvement in solver robustness was achieved. With highly refined mesh, the proposed treatment along with the Newton-Krylov solver were extensively tested with two-phase flow problems that cover a wide range of thermal-hydraulics conditions. Satisfactory convergence performances were observed for all test cases. Numerical verification was then performed in the form of mesh convergence studies, from which expected orders of accuracy were obtained for both the first-order and the second-order spatial discretization schemes. Finally, the drift-flux model, along with numerical methods presented, were validated with three sets of flow boiling experiments that cover different flow channel geometries (round tube, rectangular tube, and rod bundle), and a wide range of test conditions (pressure, mass flux, wall heat flux, inlet subcooling and outlet void fraction).« less

  16. Voyager planetary radio astronomy at neptune.

    PubMed

    Warwick, J W; Evans, D R; Peltzer, G R; Peltzer, R G; Romig, J H; Sawyer, C B; Riddle, A C; Schweitzer, A E; Desch, M D; Kaiser, M L; Farrell, W M; Carr, T D; de Pater, I; Staelin, D H; Gulkis, S; Poynter, R L; Boischot, A; Genova, F; Leblanc, Y; Lecacheux, A; Pedersen, B M; Zarka, P

    1989-12-15

    Detection of very intense short radio bursts from Neptune was possible as early as 30 days before closest approach and at least 22 days after closest approach. The bursts lay at frequencies in the range 100 to 1300 kilohertz, were narrowband and strongly polarized, and presumably originated in southern polar regions ofthe planet. Episodes of smooth emissions in the frequency range from 20 to 865 kilohertz were detected during an interval of at least 10 days around closest approach. The bursts and the smooth emissions can be described in terms of rotation in a period of 16.11 +/- 0.05 hours. The bursts came at regular intervals throughout the encounter, including episodes both before and after closest approach. The smooth emissions showed a half-cycle phase shift between the five episodes before and after closest approach. This experiment detected the foreshock of Neptune's magnetosphere and the impacts of dust at the times of ring-plane crossings and also near the time of closest approach. Finally, there is no evidence for Neptunian electrostatic discharges.

  17. Development of tropine-salt aqueous two-phase systems and removal of hydrophilic ionic liquids from aqueous solution.

    PubMed

    Wu, Haoran; Yao, Shun; Qian, Guofei; Song, Hang

    2016-08-26

    A novel aqueous two-phase systems (ATPS) composed of a small molecule organic compound tropine and an organic or inorganic salt aqueous solution has been developed for the first time. The phase behavior of tropine-salt ATPS was systemically investigated and the phase equilibrium data were measured in different temperatures and concentrations and correlated by the Merchuk equation with satisfactory results. The detection of the conductivity and particle size proved the formation of micelle in the process of forming tropine-salt ATPS. The separation application of the ATPS was assessed with the removal of hydrophilic benzothiazolium-based ionic liquids (ILs) from aqueous solution. The result showed that ILs were effectively extracted into the top tropine-rich phase. Finally, ILs in the top tropine-rich phase were further separated by the means of adsorption-desorption with DM301 macroporous resin and ethanol. The method of novel tropine-salt ATPS combined with adsorption-desorption is demonstrated a promising alternative thought and approach for the removal or recovery of hydrophilic compounds from aqueous media and also could provide a potential application for bio-separation. Copyright © 2016. Published by Elsevier B.V.

  18. Ionic liquid phase microextraction combined with fluorescence spectrometry for preconcentration and quantitation of carvedilol in pharmaceutical preparations and biological media.

    PubMed

    Zeeb, Mohsen; Mirza, Behrooz

    2015-04-30

    Carvedilol belongs to a group of medicines termed non-selective beta-adrenergic blocking agents. In the presented approach, a practical and environmentally friendly microextraction method based on the application of ionic liquids (ILs) was followed by fluorescence spectrometry for trace determination of carvedilol in pharmaceutical and biological media. A rapid and simple ionic liquid phase microextraction was utilized for preconcentration and extraction of carvedilol. A hydrophobic ionic liquid (IL) was applied as a microextraction solvent. In order to disperse the IL through the aqueous media and extract the analyte of interest, IL was injected into the sample solution and a proper temperature was applied and then for aggregating the IL-phase, the sample was cooled in an ice water-bath. The aqueous media was centrifuged and IL-phase collected at the bottom of the test tube was introduced to the micro-cell of spectrofluorimeter, in order to determine the concentration of the enriched analyte. Main parameters affecting the accuracy and precision of the proposed approach were investigated and optimized values were obtained. A linear response range of 10-250 μg I(-1) and a limit of detection (LOD) of 1.7 μg I(-1) were obtained. Finally, the presented method was utilized for trace determination of carvedilol in commercial pharmaceutical preparations and biological media.

  19. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model

    PubMed Central

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2013-01-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691

  20. A four-phase strategy for the implementation of reflectance confocal microscopy in dermatology.

    PubMed

    Hoogedoorn, L; Gerritsen, M J P; Wolberink, E A W; Peppelman, M; van de Kerkhof, P C M; van Erp, P E J

    2016-08-01

    Reflectance confocal microscopy (RCM) is gradually implemented in dermatology. Strategies for further implementation and practical 'hands on' guidelines are lacking. The primary outcome was to conduct a general strategy for further implementation of RCM. The secondary outcome was the diagnosis of psoriasis and differentiation of stable from unstable psoriatic plaques by means of the 'hands on' protocol, derived from the strategy. We used a four-phased model; an exploring phase, a systematic literature search, a clinical approach and, finally, an integration phase to develop a clinical guideline for RCM in psoriasis. Receiver operating characteristic curve statistics was applied to define the accuracy for the diagnosis of unstable psoriasis. A general strategy for further implementation of RCM and practical approach was developed to examine psoriasis by RCM and to distinguish stable from unstable psoriasis. Unstable psoriasis was diagnosed by epidermal inflammatory cell counts with a sensitivity and specificity of 91.7% and 98.3%, respectively, and with an accuracy of 0.92 (area under the curve). In addition, a monitoring model was proposed. This is the first study that shows a method for implementation of RCM in dermatology. The strategy and hands on protocol for psoriasis may serve as a model for other dermatological entities and additionally may lead to specialized ready-to-use RCM protocols for clinical dermatological practice. © 2016 European Academy of Dermatology and Venereology.

  1. High resolution human diffusion tensor imaging using 2-D navigated multi-shot SENSE EPI at 7 Tesla

    PubMed Central

    Jeong, Ha-Kyu; Gore, John C.; Anderson, Adam W.

    2012-01-01

    The combination of parallel imaging with partial Fourier acquisition has greatly improved the performance of diffusion-weighted single-shot EPI and is the preferred method for acquisitions at low to medium magnetic field strength such as 1.5 or 3 Tesla. Increased off-resonance effects and reduced transverse relaxation times at 7 Tesla, however, generate more significant artifacts than at lower magnetic field strength and limit data acquisition. Additional acceleration of k-space traversal using a multi-shot approach, which acquires a subset of k-space data after each excitation, reduces these artifacts relative to conventional single-shot acquisitions. However, corrections for motion-induced phase errors are not straightforward in accelerated, diffusion-weighted multi-shot EPI because of phase aliasing. In this study, we introduce a simple acquisition and corresponding reconstruction method for diffusion-weighted multi-shot EPI with parallel imaging suitable for use at high field. The reconstruction uses a simple modification of the standard SENSE algorithm to account for shot-to-shot phase errors; the method is called Image Reconstruction using Image-space Sampling functions (IRIS). Using this approach, reconstruction from highly aliased in vivo image data using 2-D navigator phase information is demonstrated for human diffusion-weighted imaging studies at 7 Tesla. The final reconstructed images show submillimeter in-plane resolution with no ghosts and much reduced blurring and off-resonance artifacts. PMID:22592941

  2. TNX GeoSiphon Cell (TGSC-1) Phase II Single Cell Deployment/Demonstration Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phifer, M.A.

    1999-04-15

    This Phase II final report documents the Phase II testing conducted from June 18, 1998 through November 13, 1998, and it focuses on the application of the siphon technology as a sub-component of the overall GeoSiphon Cell technology. [Q-TPL-T-00004

  3. Customer demand prediction of service-oriented manufacturing using the least square support vector machine optimized by particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Jin; Jiang, Zhibin; Wang, Kangzhou

    2017-07-01

    Many nonlinear customer satisfaction-related factors significantly influence the future customer demand for service-oriented manufacturing (SOM). To address this issue and enhance the prediction accuracy, this article develops a novel customer demand prediction approach for SOM. The approach combines the phase space reconstruction (PSR) technique with the optimized least square support vector machine (LSSVM). First, the prediction sample space is reconstructed by the PSR to enrich the time-series dynamics of the limited data sample. Then, the generalization and learning ability of the LSSVM are improved by the hybrid polynomial and radial basis function kernel. Finally, the key parameters of the LSSVM are optimized by the particle swarm optimization algorithm. In a real case study, the customer demand prediction of an air conditioner compressor is implemented. Furthermore, the effectiveness and validity of the proposed approach are demonstrated by comparison with other classical predication approaches.

  4. On the advantages of spring magnets compared to pure FePt: Strategy for rare-earth free permanent magnets following a bottom-up approach

    NASA Astrophysics Data System (ADS)

    Pousthomis, M.; Garnero, C.; Marcelot, C. G.; Blon, T.; Cayez, S.; Cassignol, C.; Du, V. A.; Krispin, M.; Arenal, R.; Soulantica, K.; Viau, G.; Lacroix, L.-M.

    2017-02-01

    Nanostructured magnets benefiting from efficient exchange-coupling between hard and soft grains represent an appealing approach for integrated miniaturized magnetic power sources. Using a bottom-up approach, nanostructured materials were prepared from binary assemblies of bcc FeCo and fcc FePt nanoparticles and compared with pure L10-FePt materials. The use of a bifunctional mercapto benzoic acid yields homogeneous assemblies of the two types of particles while reducing the organic matter amount. The 650 °C thermal annealing, mandatory to allow the L10-FePt phase transition, led to an important interdiffusion and thus decreased drastically the amount of soft phase present in the final composites. The analysis of recoil curves however evidenced the presence of an efficient interphase exchange coupling, which allows obtaining better magnetic performances than pure L10 FePt materials, energy product above 100 kJ m-3 being estimated for a Pt content of only 33%. These results clearly evidenced the interest of chemically grown nanoparticles for the preparation of performant spring-magnets, opening promising perspective for integrated subcentimetric magnets with optimized properties.

  5. Characterization of a Multi-element Clinical HIFU System Using Acoustic Holography and Nonlinear Modeling

    PubMed Central

    Kreider, Wayne; Yuldashev, Petr V.; Sapozhnikov, Oleg A.; Farr, Navid; Partanen, Ari; Bailey, Michael R.; Khokhlova, Vera A.

    2014-01-01

    High-intensity focused ultrasound (HIFU) is a treatment modality that relies on the delivery of acoustic energy to remote tissue sites to induce thermal and/or mechanical tissue ablation. To ensure the safety and efficacy of this medical technology, standard approaches are needed for accurately characterizing the acoustic pressures generated by clinical ultrasound sources under operating conditions. Characterization of HIFU fields is complicated by nonlinear wave propagation and the complexity of phased-array transducers. Previous work has described aspects of an approach that combines measurements and modeling, and here we demonstrate this approach for a clinical phased array transducer. First, low-amplitude hydrophone measurements were performed in water over a scan plane between the array and the focus. Second, these measurements were used to holographically reconstruct the surface vibrations of the transducer and to set a boundary condition for a 3-D acoustic propagation model. Finally, nonlinear simulations of the acoustic field were carried out over a range of source power levels. Simulation results were compared to pressure waveforms measured directly by hydrophone at both low and high power levels, demonstrating that details of the acoustic field including shock formation are quantitatively predicted. PMID:25004539

  6. Simultaneous multiplexing and encoding of multiple images based on a double random phase encryption system

    NASA Astrophysics Data System (ADS)

    Alfalou, Ayman; Mansour, Ali

    2009-09-01

    Nowadays, protecting information is a major issue in any transmission system, as showed by an increasing number of research papers related to this topic. Optical encoding methods, such as a Double Random Phase encryption system i.e. DRP, are widely used and cited in the literature. DRP systems have very simple principle and they are easily applicable to most images (B&W, gray levels or color). Moreover, some applications require an enhanced encoding level based on multiencryption scheme and including biometric keys (as digital fingerprints). The enhancement should be done without increasing transmitted or stored information. In order to achieve that goal, a new approach for simultaneous multiplexing & encoding of several target images is developed in this manuscript. By introducing two additional security levels, our approach enhances the security level of a classic "DRP" system. Our first security level consists in using several independent image-keys (randomly and structurally) along with a new multiplexing algorithm. At this level, several target images (multiencryption) are used. This part can reduce needed information (encoding information). At the second level a standard DRP system is included. Finally, our approach can detect if any vandalism attempt has been done on transmitted encrypted images.

  7. Label-free proteome profiling reveals developmental-dependent patterns in young barley grains.

    PubMed

    Kaspar-Schoenefeld, Stephanie; Merx, Kathleen; Jozefowicz, Anna Maria; Hartmann, Anja; Seiffert, Udo; Weschke, Winfriede; Matros, Andrea; Mock, Hans-Peter

    2016-06-30

    Due to its importance as a cereal crop worldwide, high interest in the determination of factors influencing barley grain quality exists. This study focusses on the elucidation of protein networks affecting early grain developmental processes. NanoLC-based separation coupled to label-free MS detection was applied to gain insights into biochemical processes during five different grain developmental phases (pre-storage until storage phase, 3days to 16days after flowering). Multivariate statistics revealed two distinct developmental patterns during the analysed grain developmental phases: proteins showed either highest abundance in the middle phase of development - in the transition phase - or at later developmental stages - within the storage phase. Verification of developmental patterns observed by proteomic analysis was done by applying hypothesis-driven approaches, namely Western Blot analysis and enzyme assays. High general metabolic activity of the grain with regard to protein synthesis, cell cycle regulation, defence against oxidative stress, and energy production via photosynthesis was observed in the transition phase. Proteins upregulated in the storage phase are related towards storage protein accumulation, and interestingly to the defence of storage reserves against pathogens. A mixed regulatory pattern for most enzymes detected in our study points to regulatory mechanisms at the level of protein isoforms. In-depth understanding of early grain developmental processes of cereal caryopses is of high importance as they influence final grain weight and quality. Our knowledge about these processes is still limited, especially on proteome level. To identify key mechanisms in early barley grain development, a label-free data-independent proteomics acquisition approach has been applied. Our data clearly show, that proteins either exhibit highest expression during cellularization and the switch to the storage phase (transition phase, 5-7 DAF), or during storage product accumulation (10-16 DAF). The results highlight versatile cellular metabolic activity in the transition phase and strong convergence towards storage product accumulation in the storage phase. Notably, both phases are characterized by particular protective mechanism, such as scavenging of oxidative stress and defence against pathogens, during the transition and the storage phase, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Intense and Broadband THz Source using Laser-Induced Gas Plasma

    DTIC Science & Technology

    2009-08-26

    Subject: STTR PHASE I FINAL REPORT Author: Norman Laman , Thomas Tongue Date: 8/26/09 STTR Topic #: AF08-009 Submission Date: 8/26/09...Phase I Final Report Report Period: 11/1/2008 – 7/31/2009 Contract: FA9550-09-C-0059 CLIN#: 0001CC Prepared by Norman Laman , Thomas Tongue...c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Subject: STTR PHASE I FINAL REPORT Author: Norman Laman

  9. Object acquisition and tracking for space-based surveillance. Final report, Dec 88-May 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-27

    This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase I) and N00014-89-C-0015 (Phase II). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processingmore » into time dependent, object-dependent, and data-dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.« less

  10. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

    PubMed

    Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkelin, S.V.; Sinyukov, Yu.M.

    A method allowing analysis of the overpopulation of phase space in heavy ion collisions in a model-independent way is proposed within the hydrodynamic approach. It makes it possible to extract a chemical potential of thermal pions at freeze-out, irrespective of the form of freeze-out (isothermal) hypersurface in Minkowski space and transverse flows on it. The contributions of resonance (with masses up to 2 GeV) decays to spectra, interferometry volumes, and phase-space densities are calculated and discussed in detail. The estimates of average phase-space densities and chemical potentials of thermal pions are obtained for SPS and RHIC energies. They demonstrate thatmore » multibosonic phenomena at those energies might be considered as a correction factor rather than as a significant physical effect. The analysis of the evolution of the pion average phase-space density in chemically frozen hadron systems shows that it is almost constant or slightly increases with time while the particle density and phase-space density at each space point decreases rapidly during the system's expansion. We found that, unlike the particle density, the average phase-space density has no direct link to the freeze-out criterion and final thermodynamic parameters, being connected rather to the initial phase-space density of hadronic matter formed in relativistic nucleus-nucleus collisions.« less

  12. Phase transitions in colloidal fluids: Kinetically or thermodynamically controlled?

    NASA Astrophysics Data System (ADS)

    Duran-Olivencia, Miguel A.; Yatsyshin, Peter; Lutsko, James F.; Kalliadasis, Serafim

    2017-11-01

    In recent years, a flurry of experimental observations suggests that most phase transitions occur in a multistage manner and via intermediate phases. These precursors to the final phase are commonly understood as the local minima of the free energy of the system. Inherently, the classical paradigm of nucleation has no capacity to describe neither the origin nor the role played by these precursors in the nucleation pathway. Here we present a systematic theoretical framework capable of describing the precursor phases in a self-consistent way. We demonstrate that nucleation precursors can appear even in situations involving a single free-energy barrier. This contradicts previous phenomenological approaches, which always characterise intermediate phases as the minima of a complex free-energy landscape. We show that a kinetically-induced mechanism temporarily stabilises an intermediate phase, which thus is not the result of a local minimum of the free energy but a consequence of the entropic cost of cluster formation. Moreover, the appearance of precursors does not seem to influence the overall nucleation time, which is governed by the free-energy barrier. The mechanism uncovered in this study can be used to explain recently reported experimental findings in crystallisation. European Research Council - Advanced Grant No. 247031; Engineering and Physical Sciences Research Council - Grant Nos. EP/L020564 and EP/L025159.

  13. Insight into the Am-O Phase Equilibria: A Thermodynamic Study Coupling High-Temperature XRD and CALPHAD Modeling.

    PubMed

    Epifano, Enrica; Guéneau, Christine; Belin, Renaud C; Vauchy, Romain; Lebreton, Florent; Richaud, Jean-Christophe; Joly, Alexis; Valot, Christophe; Martin, Philippe M

    2017-07-03

    In the frame of minor actinide transmutation, americium can be diluted in UO 2 and (U, Pu)O 2 fuels burned in fast neutron reactors. The first mandatory step to foresee the influence of Am on the in-reactor behavior of transmutation targets or fuel is to have fundamental knowledge of the Am-O binary system and, in particular, of the AmO 2-x phase. In this study, we coupled HT-XRD (high-temperature X-ray diffraction) experiments with CALPHAD thermodynamic modeling to provide new insights into the structural properties and phase equilibria in the AmO 2-x -AmO 1.61+x -Am 2 O 3 domain. Because of this approach, we were able for the first time to assess the relationships between temperature, lattice parameter, and hypostoichiometry for fcc AmO 2-x . We showed the presence of a hyperstoichiometric existence domain for the bcc AmO 1.61+x phase and the absence of a miscibility gap in the fcc AmO 2-x phase, contrary to previous representations of the phase diagram. Finally, with the new experimental data, a new CALPHAD thermodynamic model of the Am-O system was developed, and an improved version of the phase diagram is presented.

  14. Industrial approach to piezoelectric damping of large fighter aircraft components

    NASA Astrophysics Data System (ADS)

    Simpson, John; Schweiger, Johannes

    1998-06-01

    Different concepts to damp structural vibrations of the vertical tail of fighter aircraft are reported. The various requirements for a vertical tail bias an integrated approach for the design. Several active vibrations suppression concepts had been investigated during the preparatory phase of a research program shared by Daimler-Benz Aerospace Military Aircraft (Dasa), Daimler-Benz Forschung (DBF) and Deutsche Forschungsandstalt fuer Luftund Raumfahrt (DLR). Now in the main phase of the programme, four concepts were finally chosen: two concepts with aerodynamic control surfaces and two concepts with piezoelectric components. One piezo concept approach will be described rigorously, the other concepts are briefly addressed. In the Dasa concept, thin surface piezo actuators are set out carefully to flatten the dynamic portion of the combined static and dynamic maximum bending moment loading case directly in the shell structure. The second piezo concept by DLR involves pre-loaded lead zirconate titanate (PZT)-block actuators at host structure fixtures. To this end a research apparatus was designed and built as a full scale simplified fin box with carbon fiber reinformed plastic skins and an aluminium stringer-rib substructure restrained by relevant aircraft fixtures. It constitutes a benchmark 3D-structural impedance. The engineering design incorporates 7kg of PZT surface actuators. The structural system then should be excited to more than 15mm tip displacement amplitude. This prepares the final step to total A/C integration. Typical analysis methods using cyclic thermal analogies adapted to induced load levels are compared. Commercial approaches leading onto basic state space model interpretation wrt. actuator sizing and positioning, structural integrity constraints, FE-validation and testing are described. Both piezoelectric strategies are aimed at straight open-loop performance related to concept weight penalty and input electric power. The required actuators, power and integration are then enhanced to specification standards. An adapted qualification program plan is used to improve analytical read across, specifications, manufacturing decisions, handling requirements. The next research goals are outlined.

  15. Learning New Basic Movements for Robotics

    NASA Astrophysics Data System (ADS)

    Kober, Jens; Peters, Jan

    Obtaining novel skills is one of the most important problems in robotics. Machine learning techniques may be a promising approach for automatic and autonomous acquisition of movement policies. However, this requires both an appropriate policy representation and suitable learning algorithms. Employing the most recent form of the dynamical systems motor primitives originally introduced by Ijspeert et al. [1], we show how both discrete and rhythmic tasks can be learned using a concerted approach of both imitation and reinforcement learning, and present our current best performing learning algorithms. Finally, we show that it is possible to include a start-up phase in rhythmic primitives. We apply our approach to two elementary movements, i.e., Ball-in-a-Cup and Ball-Paddling, which can be learned on a real Barrett WAM robot arm at a pace similar to human learning.

  16. A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.

    2003-01-01

    In this paper we present, a comparison of trajectory optimization approaches for the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP). Quasi- Newton and Nelder-Meade Simplex. Several cost function parameterizations are considered for the direct approach. We choose one direct approach that appears to be the most flexible. Both the direct and indirect methods are applied to a variety of test cases which are chosen to demonstrate the performance of each method in different flight regimes. The first test case is a simple circular-to-circular coplanar rendezvous. The second test case is an elliptic-to-elliptic line of apsides rotation. The final test case is an orbit phasing maneuver sequence in a highly elliptic orbit. For each test case we present a comparison of the performance of all methods we consider in this paper.

  17. Stepwise pumping approach to improve free phase light hydrocarbon recovery from unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Cooper, Grant S.; Peralta, Richard C.; Kaluarachchi, Jagath J.

    1995-04-01

    A stepwise, time-varying pumping approach is developed to improve free phase oil recovery of light non-aqueous phase liquids (LNAPL) from a homogeneous, unconfined aquifer. Stepwise pumping is used to contain the floating oil plume and obtain efficient free oil recovery. The graphical plots. The approach uses ARMOS ©, an areal two-dimensional multiphase flow, finite-element simulation model. Systematic simulations of free oil area changes to pumping rates are analyzed. Pumping rates are determined that achieve LNAPL plume containment at different times (i.e. 90, 180 and 360 days) for a planning period of 360 days. These pumping rates are used in reverse order as a stepwise (monotonically increasing) pumping strategy. This stepwise pumping strategy is analyzed further by performing additional simulations at different pumping rates for the last pumping period. The final stepwise pumping strategy is varied by factors of -25% and +30% to evaluate sensitivity in the free oil recovery process. Stepwise pumping is compared to steady pumping rates to determine the best free oil recovery strategy. Stepwise pumping is shown to improve oil recovery by increasing recoveredoil volume (11%) and decreasing residual oil (15%) when compared with traditional steady pumping strategies. The best stepwise pumping strategy recovers more free oil by reducing the amount of residual oil left in the system due to pumping drawdown. This stepwise pumping pproach can be used to enhance free oil recovery and provide for cost-effective design and management of LNAPL cleanup.

  18. Toward a Rethinking of the Relativity Revolution

    NASA Astrophysics Data System (ADS)

    Siegel, Daniel

    2014-03-01

    This journey in the history of physics is offered in celebration of David Cassidy's Pais Prize. The journey, undertaken in part with the community of historians of physics and in part not, starts from a conventional characterization of the relativity revolution as an abrupt transition, in 1905, from pre-Einsteinian darkness to Einsteinian light, and ends with an alternative perspective on the relativity revolution, seeing it as a process extending over 50 years, in two phases: first, the protorelativity phase, lasting from the early 1880s to 1905, and involving initial treatments of the length contraction, the mass increase, and invariance properties; second, the Einsteinian phase, beginning with his recasting of the basic theoretical framework--with the inclusion now of the time dilation and the E = mc2 relationship--and continuing with the ensuing competition between the protorelativistic and Einsteinian approaches, issuing in the final triumph of the Einsteinian approach only in the early 1930s. A proper appreciation of the character and importance of the protorelativity phase of the relativity revolution is relevant to a variety of contexts: for the teaching of relativity theory, it makes available a more concrete and pictorial approach to the relativistic effects--retaining greater (length contraction) or somewhat lesser (mass increase) validity to the present day; for the ongoing discourse on the nature of scientific revolutions, it provides a perspective on the intricacies and complexities of those occurrences, and on the elements of continuity and gradualism in even the most radical changes; and for our general understanding of historical process in the history of the sciences, it shows the importance of the broader scientific research community for even the most individual accomplishments.

  19. Phase-based treatment of a complex severely mentally ill case involving complex posttraumatic stress disorder and psychosis related to Dandy Walker syndrome.

    PubMed

    Mauritz, Maria W; van de Sande, Roland; Goossens, Peter J J; van Achterberg, Theo; Draijer, Nel

    2014-01-01

    For patients with comorbid complex posttraumatic stress disorder (PTSD) and psychotic disorder, trauma-focused therapy may be difficult to endure. Phase-based treatment including (a) stabilization, (b) trauma-focused therapy, and (c) integration of personality with recovery of connection appears to be the treatment of choice. The objective of this article is to describe and evaluate the therapeutic process of a single case from a holistic perspective. We present a case report of a 47-year-old woman treated for severe complex PTSD resulting from repeated sexual and physical abuse in early childhood and moderate psychotic symptoms stemming from Dandy Walker Syndrome with hydrocephalus. The patient was treated with quetiapine (600-1,000 mg) and citalopram (40 mg). Stabilization consisted of intensive psychiatric nursing care in the home and stabilizing group treatment for complex PTSD. After stabilization, the following symptom domains showed improvement: self-regulation, self-esteem, assertiveness, avoidance of social activities, and negative cognitions. However, intrusions and arousal persisted and were therefore subsequently treated with prolonged imaginary exposure that also included narrative writing assignments and a final closing ritual. This intensive multidisciplinary, phase-based approach proved effective: All symptoms of complex PTSD were in full remission. Social integration and recovery were promoted with the reduction of polypharmacy and the provision of social skills training and lifestyle training. The present case shows a phase-based treatment approach with multidisciplinary collaborative care to be effective for the treatment of a case of complex PTSD with comorbid psychotic disorder stemming from severe neurological impairment. Replication of this promising approach is therefore called for.

  20. Charge distribution and transport properties in reduced ceria phases: A review

    NASA Astrophysics Data System (ADS)

    Shoko, E.; Smith, M. F.; McKenzie, Ross H.

    2011-12-01

    The question of the charge distribution in reduced ceria phases (CeO2-x) is important for understanding the microscopic physics of oxygen storage capacity, and the electronic and ionic conductivities in these materials. All these are key properties in the application of these materials in catalysis and electrochemical devices. Several approaches have been applied to study this problem, including ab initio methods. Recently [1], we applied the bond valence model (BVM) to discuss the charge distribution in several different crystallographic phases of reduced ceria. Here, we compare the BVM results to those from atomistic simulations to determine if there is consistency in the predictions of the two approaches. Our analysis shows that the two methods give a consistent picture of the charge distribution around oxygen vacancies in bulk reduced ceria phases. We then review the transport theory applicable to reduced ceria phases, providing useful relationships which enable comparison of experimental results obtained by different techniques. In particular, we compare transport parameters obtained from the observed optical absorption spectrum, α(ω), dc electrical conductivity with those predicted by small polaron theory and the Harrison method. The small polaron energy is comparable to that estimated from α(ω). However, we found a discrepancy between the value of the electron hopping matrix element, t, estimated from the Marcus-Hush formula and that obtained by the Harrison method. Part of this discrepancy could be attributed to the system lying in the crossover region between adiabatic and nonadiabatic whereas our calculations assumed the system to be nonadiabatic. Finally, by considering the relationship between the charge distribution and electronic conductivity, we suggest the possibility of low temperature metallic conductivity for intermediate phases, i.e., x˜0.3. This has not yet been experimentally observed.

  1. Validation of Technical Recommendations. Final Report. ISSOE Managing Student Progress.

    ERIC Educational Resources Information Center

    Ridley, Dennis; And Others

    This report is organized to provide a complete, logical presentation of the major steps taken in the third phase of research on dynamics of dissemination of the Instructional Support System for Occupational Education (ISSOE). It reports on the confirmation and validation of the Phase II Final Report on Dissemination Issues and the Phase III…

  2. UAS C2 Radio System - Final Phase 1 Development and Testing

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert; Shalkhauser, Kurt

    2017-01-01

    Phase 1 of the Command and Control Communications (C2) Subproject of NASA's UAS Integration in the National Airspace System Project included the development and testing of prototype C2 radio systems. This information paper provides an overview of the functionality and testing of the fifth and final Phase 1 generation of the prototype radio system.

  3. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Hu

    A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate ofmore » carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.« less

  4. X-ray Spectroscopy and Magnetism in Mineralogy

    NASA Astrophysics Data System (ADS)

    Sainctavit, Philippe; Brice-Profeta, Sandrine; Gaudry, Emilie; Letard, Isabelle; Arrio, Marie-Anne

    The objective of this paper is to present the kind of information that can be gained in the field of mineralogy from the use of x-ray magnetic spectroscopies. We review some of the questions that are unsettled and that could benefit from an interdisciplinary approach where magnetism, spectroscopy and mineralogy could be mixed. Most of the attention is focused on iron and some other 3d transition elements. The mineralogy of planetary cores and its relation with known meteorites are exemplified. The various oxide phases in the mantle and the nature of iron in these phases is also underlined. The presence of transition elements in insulating minerals and its relation with macroscopic properties such as the color of gemstones are reviewed. Finally an introduction to paleomagnetism is given with a special attention to nanomaghemites.

  5. Cascaded Microinverter PV System for Reduced Cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with anmore » embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.« less

  6. Recent advances in Lorentz microscopy

    DOE PAGES

    Phatak, C.; Petford-Long, A. K.; De Graef, M.

    2016-01-05

    Lorentz transmission electron microscopy (LTEM) has evolved from a qualitative magnetic domain observation technique to a quantitative technique for the determination of the magnetization state of a sample. Here, we describe recent developments in techniques and imaging modes, including the use of spherical aberration correction to improve the spatial resolution of LTEM into the single nanometer range, and novel in situ observation modes. We also review recent advances in the modeling of the wave optical magnetic phase shift as well as in the area of phase reconstruction by means of the Transport of Intensity Equation (TIE) approach, and discuss vectormore » field electron tomography, which has emerged as a powerful tool for the 3D reconstruction of magnetization configurations. Finally, we conclude this review with a brief overview of recent LTEM applications.« less

  7. Bioattractors: dynamical systems theory and the evolution of regulatory processes.

    PubMed

    Jaeger, Johannes; Monk, Nick

    2014-06-01

    In this paper, we illustrate how dynamical systems theory can provide a unifying conceptual framework for evolution of biological regulatory systems. Our argument is that the genotype-phenotype map can be characterized by the phase portrait of the underlying regulatory process. The features of this portrait--such as attractors with associated basins and their bifurcations--define the regulatory and evolutionary potential of a system. We show how the geometric analysis of phase space connects Waddington's epigenetic landscape to recent computational approaches for the study of robustness and evolvability in network evolution. We discuss how the geometry of phase space determines the probability of possible phenotypic transitions. Finally, we demonstrate how the active, self-organizing role of the environment in phenotypic evolution can be understood in terms of dynamical systems concepts. This approach yields mechanistic explanations that go beyond insights based on the simulation of evolving regulatory networks alone. Its predictions can now be tested by studying specific, experimentally tractable regulatory systems using the tools of modern systems biology. A systematic exploration of such systems will enable us to understand better the nature and origin of the phenotypic variability, which provides the substrate for evolution by natural selection. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  8. Selected Plant Metabolites Involved in Oxidation-Reduction Processes during Bud Dormancy and Ontogenetic Development in Sweet Cherry Buds (Prunus avium L.).

    PubMed

    Baldermann, Susanne; Homann, Thomas; Neugart, Susanne; Chmielewski, Frank-M; Götz, Klaus-Peter; Gödeke, Kristin; Huschek, Gerd; Morlock, Getrud E; Rawel, Harshadrai M

    2018-05-17

    Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.

  9. 3-methylcyclohexanone thiosemicarbazone: determination of E/Z isomerization barrier by dynamic high-performance liquid chromatography, configuration assignment and theoretical study of the mechanisms involved by the spontaneous, acid and base catalyzed processes.

    PubMed

    Carradori, Simone; Cirilli, Roberto; Dei Cicchi, Simona; Ferretti, Rosella; Menta, Sergio; Pierini, Marco; Secci, Daniela

    2012-12-21

    Here, we report on the simultaneous direct HPLC diastereo- and enantioseparation of 3-methylcyclohexanone thiosemicarbazone (3-MCET) on a polysaccharide-based chiral stationary phase under normal-phase conditions. The optimized chromatographic system was employed in dynamic HPLC experiments (DHPLC), as well as detection technique in a batch wise approach to determine the rate constants and the corresponding free energy activation barriers of the spontaneous, base- and acid-promoted E/Z diastereomerization of 3-MCET. The stereochemical characterization of four stereoisomers of 3-MCET was fully accomplished by integrating the results obtained by chemical correlation method with those derived by theoretical calculations and experimental investigations of circular dichroism (CD). As a final goal, a deepened analysis of the perturbing effect exercised by the stationary phase on rate constant values measured through DHPLC determinations as a function of the chromatographic separation factor α of the interconverting species was successfully accomplished. This revealed quite small deviations from the equivalent kinetic values obtained by off-column batch wise procedure, and suggested a possible effective correction of rate constants measured by DHPLC approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. A novel bio-safe phase separation process for preparing open-pore biodegradable polycaprolactone microparticles.

    PubMed

    Salerno, Aurelio; Domingo, Concepción

    2014-09-01

    Open-pore biodegradable microparticles are object of considerable interest for biomedical applications, particularly as cell and drug delivery carriers in tissue engineering and health care treatments. Furthermore, the engineering of microparticles with well definite size distribution and pore architecture by bio-safe fabrication routes is crucial to avoid the use of toxic compounds potentially harmful to cells and biological tissues. To achieve this important issue, in the present study a straightforward and bio-safe approach for fabricating porous biodegradable microparticles with controlled morphological and structural features down to the nanometer scale is developed. In particular, ethyl lactate is used as a non-toxic solvent for polycaprolactone particles fabrication via a thermal induced phase separation technique. The used approach allows achieving open-pore particles with mean particle size in the 150-250 μm range and a 3.5-7.9 m(2)/g specific surface area. Finally, the combination of thermal induced phase separation and porogen leaching techniques is employed for the first time to obtain multi-scaled porous microparticles with large external and internal pore sizes and potential improved characteristics for cell culture and tissue engineering. Samples were characterized to assess their thermal properties, morphology and crystalline structure features and textural properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A Physical Model for Three-Phase Compaction in Silicic Magma Reservoirs

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Parmigiani, Andrea

    2018-04-01

    We develop a model for phase separation in magma reservoirs containing a mixture of silicate melt, crystals, and fluids (exsolved volatiles). The interplay between the three phases controls the dynamics of phase separation and consequently the chemical and physical evolution of magma reservoirs. The model we propose is based on the two-phase damage theory approach of Bercovici et al. (2001, https://doi.org/10.1029/2000JB900430) and Bercovici and Ricard (2003, https://doi.org/10.1046/j.1365-246X.2003.01854.x) because it offers the leverage of considering interface (in the macroscopic limit) between phases that can deform depending on the mechanical work and phase changes taking place locally in the magma. Damage models also offer the advantage that pressure is defined uniquely to each phase and does not need to be equal among phases, which will enable us to consider, in future studies, the large capillary pressure at which fluids are mobilized in mature, crystal-rich, magma bodies. In this first analysis of three-phase compaction, we solve the three-phase compaction equations numerically for a simple 1-D problem where we focus on the effect of fluids on the efficiency of melt-crystal separation considering the competition between viscous and buoyancy stresses only. We contrast three sets of simulations to explore the behavior of three-phase compaction, a melt-crystal reference compaction scenario (two-phase compaction), a three-phase scenario without phase changes, and finally a three-phase scenario with a parameterized second boiling (crystallization-induced exsolution). The simulations show a dramatic difference between two-phase (melt crystals) and three-phase (melt-crystals-exsolved volatiles) compaction-driven phase separation. We find that the presence of a lighter, significantly less viscous fluid hinders melt-crystal separation.

  12. Finite element techniques in computational time series analysis of turbulent flows

    NASA Astrophysics Data System (ADS)

    Horenko, I.

    2009-04-01

    In recent years there has been considerable increase of interest in the mathematical modeling and analysis of complex systems that undergo transitions between several phases or regimes. Such systems can be found, e.g., in weather forecast (transitions between weather conditions), climate research (ice and warm ages), computational drug design (conformational transitions) and in econometrics (e.g., transitions between different phases of the market). In all cases, the accumulation of sufficiently detailed time series has led to the formation of huge databases, containing enormous but still undiscovered treasures of information. However, the extraction of essential dynamics and identification of the phases is usually hindered by the multidimensional nature of the signal, i.e., the information is "hidden" in the time series. The standard filtering approaches (like f.~e. wavelets-based spectral methods) have in general unfeasible numerical complexity in high-dimensions, other standard methods (like f.~e. Kalman-filter, MVAR, ARCH/GARCH etc.) impose some strong assumptions about the type of the underlying dynamics. Approach based on optimization of the specially constructed regularized functional (describing the quality of data description in terms of the certain amount of specified models) will be introduced. Based on this approach, several new adaptive mathematical methods for simultaneous EOF/SSA-like data-based dimension reduction and identification of hidden phases in high-dimensional time series will be presented. The methods exploit the topological structure of the analysed data an do not impose severe assumptions on the underlying dynamics. Special emphasis will be done on the mathematical assumptions and numerical cost of the constructed methods. The application of the presented methods will be first demonstrated on a toy example and the results will be compared with the ones obtained by standard approaches. The importance of accounting for the mathematical assumptions used in the analysis will be pointed up in this example. Finally, applications to analysis of meteorological and climate data will be presented.

  13. Functional Nanostructured Materials Based on Polymerized Surfactant Liquid Crystal Assemblies Liquid Crystal Assemblies

    NASA Astrophysics Data System (ADS)

    Gin, Douglas

    2003-03-01

    The development of materials with controlled nanostructures is one of the most important new areas of scientific research in chemistry and engineering. Our research group has developed a novel approach for making nanostructured polymer materials with unique functional properties using liquid crystals as starting materials. In this approach, we design polymerizable organic building blocks based on lyotropic liquid crystals (LLCs) (i.e., amphiphiles or surfactants) that carry, or can accommodate, a functional property of general interest. Through appropriate molecular design, these monomers self-assemble in the presence of water into fluid, yet ordered phase-separated, water-hydrocarbon assemblies with predictable nanoscale geometries. The architectures of these LLC phases can range from stacked two-dimensional lamellae to hexagonally ordered cylindrical channels with uniform feature sizes in the 1-10 nm range. These LLC phases are then photopolymerized into robust polymer networks with preservation of their small-scale structures. This approach allows us to investigate the effect of nanometer-scale architecture on important bulk properties, as well as to engineer chemical environments on the nanometer-scale for several areas of application. In this talk, new functional materials based on the polymerization of the lyotropic inverted hexagonal phase will be presented as one example of our general approach. Issues in the design and photopolymerization of functional amphiphilic monomers that adopt this LC architecture will be discussed. More importantly, the use of the resulting nanostructured polymer networks in three areas of application will be presented: (1) as templates for the synthesis of functional nanocomposites; (2) as tunable heterogeneous catalysts, and (3) as nanoporous membrane and separation media. In particular, issues pertaining to the contribution of nanoscale architecture to the performance of these systems will be highlighted. Opportunities for tailoring the nanoscale chemical environment and architecture of these materials through molecular design will be presented. Finally, the development of methods for controlling macroscopic orientation through processing will also be discussed.

  14. Measuring the Nonuniform Evaporation Dynamics of Sprayed Sessile Microdroplets with Quantitative Phase Imaging.

    PubMed

    Edwards, Chris; Arbabi, Amir; Bhaduri, Basanta; Wang, Xiaozhen; Ganti, Raman; Yunker, Peter J; Yodh, Arjun G; Popescu, Gabriel; Goddard, Lynford L

    2015-10-13

    We demonstrate real-time quantitative phase imaging as a new optical approach for measuring the evaporation dynamics of sessile microdroplets. Quantitative phase images of various droplets were captured during evaporation. The images enabled us to generate time-resolved three-dimensional topographic profiles of droplet shape with nanometer accuracy and, without any assumptions about droplet geometry, to directly measure important physical parameters that characterize surface wetting processes. Specifically, the time-dependent variation of the droplet height, volume, contact radius, contact angle distribution along the droplet's perimeter, and mass flux density for two different surface preparations are reported. The studies clearly demonstrate three phases of evaporation reported previously: pinned, depinned, and drying modes; the studies also reveal instances of partial pinning. Finally, the apparatus is employed to investigate the cooperative evaporation of the sprayed droplets. We observe and explain the neighbor-induced reduction in evaporation rate, that is, as compared to predictions for isolated droplets. In the future, the new experimental methods should stimulate the exploration of colloidal particle dynamics on the gas-liquid-solid interface.

  15. Recent advances in integrated multidisciplinary optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Walsh, Joanne L.; Pritchard, Jocelyn I.

    1992-01-01

    A joint activity involving NASA and Army researchers at NASA LaRC to develop optimization procedures to improve the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines is described. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure are closely coupled while acoustics and airframe dynamics are decoupled and are accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is integrated with the first three disciplines. Finally, in phase 3, airframe dynamics is integrated with the other four disciplines. Representative results from work performed to date are described. These include optimal placement of tuning masses for reduction of blade vibratory shear forces, integrated aerodynamic/dynamic optimization, and integrated aerodynamic/dynamic/structural optimization. Examples of validating procedures are described.

  16. Current good manufacturing practice and investigational new drugs intended for use in clinical trials. Final rule.

    PubMed

    2008-07-15

    The Food and Drug Administration (FDA) is amending the current good manufacturing practice (CGMP) regulations for human drugs, including biological products, to exempt most phase 1 investigational drugs from complying with the regulatory CGMP requirements. FDA will continue to exercise oversight of the manufacture of these drugs under FDA's general statutory CGMP authority and through review of the investigational new drug applications (IND). In addition, elsewhere in this issue of the Federal Register, FDA is announcing the availability of a guidance document entitled "Guidance for Industry: CGMP for Phase 1 Investigational Drugs" dated November 2007 (the companion guidance). This guidance document sets forth recommendations on approaches to compliance with statutory CGMP for the exempted phase 1 investigational drugs. FDA is taking this action to focus a manufacturer's effort on applying CGMP that is appropriate and meaningful for the manufacture of the earliest stage investigational drug products intended for use in phase 1 clinical trials while ensuring safety and quality. This action will also streamline and promote the drug development process.

  17. Recent advances in multidisciplinary optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Walsh, Joanne L.; Pritchard, Jocelyn I.

    1992-01-01

    A joint activity involving NASA and Army researchers at NASA LaRC to develop optimization procedures to improve the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines is described. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure are closely coupled while acoustics and airframe dynamics are decoupled and are accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is integrated with the first three disciplines. Finally, in phase 3, airframe dynamics is integrated with the other four disciplines. Representative results from work performed to date are described. These include optimal placement of tuning masses for reduction of blade vibratory shear forces, integrated aerodynamic/dynamic optimization, and integrated aerodynamic/dynamic/structural optimization. Examples of validating procedures are described.

  18. Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications

    PubMed Central

    Vegni, Lucio

    2018-01-01

    A modeling and design approach is proposed for nanoparticle-based electromagnetic devices. First, the structure properties were analytically studied using Maxwell’s equations. The method provides us a robust link between nanoparticles electromagnetic response (amplitude and phase) and their geometrical characteristics (shape, geometry, and dimensions). Secondly, new designs based on “metamaterial” concept are proposed, demonstrating great performances in terms of wide-angle range functionality and multi/wide behavior, compared to conventional devices working at the same frequencies. The approach offers potential applications to build-up new advanced platforms for sensing and medical diagnostics. Therefore, in the final part of the article, some practical examples are reported such as cancer detection, water content measurements, chemical analysis, glucose concentration measurements and blood diseases monitoring. PMID:29652853

  19. A Multiphase Validation of Atlas-Based Automatic and Semiautomatic Segmentation Strategies for Prostate MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Spencer; Rodrigues, George, E-mail: george.rodrigues@lhsc.on.ca; Department of Epidemiology/Biostatistics, University of Western Ontario, London

    2013-01-01

    Purpose: To perform a rigorous technological assessment and statistical validation of a software technology for anatomic delineations of the prostate on MRI datasets. Methods and Materials: A 3-phase validation strategy was used. Phase I consisted of anatomic atlas building using 100 prostate cancer MRI data sets to provide training data sets for the segmentation algorithms. In phase II, 2 experts contoured 15 new MRI prostate cancer cases using 3 approaches (manual, N points, and region of interest). In phase III, 5 new physicians with variable MRI prostate contouring experience segmented the same 15 phase II datasets using 3 approaches: manual,more » N points with no editing, and full autosegmentation with user editing allowed. Statistical analyses for time and accuracy (using Dice similarity coefficient) endpoints used traditional descriptive statistics, analysis of variance, analysis of covariance, and pooled Student t test. Results: In phase I, average (SD) total and per slice contouring time for the 2 physicians was 228 (75), 17 (3.5), 209 (65), and 15 seconds (3.9), respectively. In phase II, statistically significant differences in physician contouring time were observed based on physician, type of contouring, and case sequence. The N points strategy resulted in superior segmentation accuracy when initial autosegmented contours were compared with final contours. In phase III, statistically significant differences in contouring time were observed based on physician, type of contouring, and case sequence again. The average relative timesaving for N points and autosegmentation were 49% and 27%, respectively, compared with manual contouring. The N points and autosegmentation strategies resulted in average Dice values of 0.89 and 0.88, respectively. Pre- and postedited autosegmented contours demonstrated a higher average Dice similarity coefficient of 0.94. Conclusion: The software provided robust contours with minimal editing required. Observed time savings were seen for all physicians irrespective of experience level and baseline manual contouring speed.« less

  20. New Ground Truth Capability from InSAR Time Series Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, S; Vincent, P; Yang, D

    2005-07-13

    We demonstrate that next-generation interferometric synthetic aperture radar (InSAR) processing techniques applied to existing data provide rich InSAR ground truth content for exploitation in seismic source identification. InSAR time series analyses utilize tens of interferograms and can be implemented in different ways. In one such approach, conventional InSAR displacement maps are inverted in a final post-processing step. Alternatively, computationally intensive data reduction can be performed with specialized InSAR processing algorithms. The typical final result of these approaches is a synthesized set of cumulative displacement maps. Examples from our recent work demonstrate that these InSAR processing techniques can provide appealing newmore » ground truth capabilities. We construct movies showing the areal and temporal evolution of deformation associated with previous nuclear tests. In other analyses, we extract time histories of centimeter-scale surface displacement associated with tunneling. The potential exists to identify millimeter per year surface movements when sufficient data exists for InSAR techniques to isolate and remove phase signatures associated with digital elevation model errors and the atmosphere.« less

  1. Vertical Phase Segregation Induced by Dipolar Interactions in Planar Polymer Brushes

    DOE PAGES

    Mahalik, Jyoti P.; Sumpter, Bobby G.; Kumar, Rajeev

    2016-09-13

    In this paper, we present a generalized theory for studying structural properties of a planar dipolar polymer brush immersed in a polar solvent. We show that an explicit treatment of the dipolar interactions yields a macroscopic concentration dependent effective “chi” (the Flory–Huggins-like interaction) parameter. Furthermore, it is shown that the concentration dependent chi parameter promotes phase segregation in polymer solutions and brushes so that the polymer-poor phase consists of a finite/nonzero polymer concentration. Such a destabilization of the homogeneous phase by the dipolar interactions appears as vertical phase segregation in a planar polymer brush. In a vertically phase segregated polymermore » brush, the polymer-rich phase near the grafting surface coexists with the polymer-poor phase at the other end. Predictions of the theory are directly compared with prior reported experimental results for dipolar polymers in polar solvents. Excellent agreements with the experimental results are found, hinting that the dipolar interactions play a significant role in vertical phase segregation of planar polymer brushes. We also compare our field theoretical approach with the two-state and other models invoking ad hoc concentration dependence of the chi parameter. Interplay between the short-ranged excluded volume interactions and long-ranged dipolar interactions is shown to play an important role in affecting the vertical phase separation. Finally, effects of mismatch between the dipole moments of the polymer segments and the solvent molecules are investigated in detail.« less

  2. Explosion and Final State of an Unstable Reissner-Nordström Black Hole.

    PubMed

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Montero, Pedro J; Font, José A; Herdeiro, Carlos

    2016-04-08

    A Reissner-Nordström black hole (BH) is superradiantly unstable against spherical perturbations of a charged scalar field enclosed in a cavity, with a frequency lower than a critical value. We use numerical relativity techniques to follow the development of this unstable system-dubbed a charged BH bomb-into the nonlinear regime, solving the full Einstein-Maxwell-Klein-Gordon equations, in spherical symmetry. We show that (i) the process stops before all the charge is extracted from the BH, and (ii) the system settles down into a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. For a low scalar field charge q, the final state is approached smoothly and monotonically. For large q, however, the energy extraction overshoots, and an explosive phenomenon, akin to a bosenova, pushes some energy back into the BH. The charge extraction, by contrast, does not reverse.

  3. Structural design approaches for creating fat droplet and starch granule mimetics.

    PubMed

    McClements, David Julian; Chung, Cheryl; Wu, Bi-Cheng

    2017-02-22

    This article focuses on hydrogel-based strategies for creating reduced calorie foods with desirable physicochemical, sensory, and nutritional properties. Initially, the role of fat droplets and starch granules in foods is discussed, and then different methods for fabricating hydrogel beads are reviewed, including phase separation, antisolvent precipitation, injection, and emulsion template methods. Finally, the potential application of hydrogel beads as fat droplet and starch granule replacements is discussed. There is still a need for large-scale, high-throughout, and economical methods of fabricating hydrogel beads suitable for utilization within the food industry.

  4. EC96-43479-5

    NASA Image and Video Library

    1996-03-22

    During the final phase of tests with the HARV, Dryden technicians installed nose strakes, which were panels that fitted flush against the sides of the forward nose. When the HARV was at a high alpha, the aerodynamics of the nose caused a loss of directional stability. Extending one or both of the strakes results in strong side forces that, in turn, generated yaw control. This approach, along with the aircraft's Thrust Vectoring Control system, proved to be stability under flight conditions in which conventional surfaces, such as the vertical tails, were ineffective.

  5. Fluctuations and symmetry energy in nuclear fragmentation dynamics.

    PubMed

    Colonna, M

    2013-01-25

    Within a dynamical description of nuclear fragmentation, based on the liquid-gas phase transition scenario, we explore the relation between neutron-proton density fluctuations and nuclear symmetry energy. We show that, along the fragmentation path, isovector fluctuations follow the evolution of the local density and approach an equilibrium value connected to the local symmetry energy. Higher-density regions are characterized by smaller average asymmetry and narrower isotopic distributions. This dynamical analysis points out that fragment final state isospin fluctuations can probe the symmetry energy of the density domains from which fragments originate.

  6. 76 FR 2253 - TRICARE; Coverage of National Cancer Institute (NCI) Sponsored Phase I Studies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ... works. Phase II studies usually focus on a particular type of cancer. A Phase III trial tests a new drug... Secretary, DoD. ACTION: Final rule. SUMMARY: This final rule adds coverage of National Cancer Institute (NCI... evaluate how a new drug should be given (by mouth, injected into the blood, or injected into the muscle...

  7. Clearing the air: protocol for a systematic meta-narrative review on the harms and benefits of e-cigarettes and vapour devices.

    PubMed

    MacDonald, Marjorie; O'Leary, Renee; Stockwell, Tim; Reist, Dan

    2016-05-21

    Under the shadow of the tobacco epidemic, the sale and use of e-cigarettes and other vapour devices is increasing dramatically. A contentious debate has risen within public health over the harms and benefits of these devices. Clearing the Air seeks to clarify the issues with a systematic review that informs the pressing regulatory and public health decisions to be made regarding these new products. Using an integrated knowledge translation approach, public health researchers and knowledge users will work collaboratively throughout the project. Our research questions are the following: (1) What are the health risks and benefits of vapour devices, and how do these compare to cigarettes? (2) What is the harm reduction potential of vapour devices for individuals, the environment, and society? (3) Does youth vapour device experimentation lead to cigarette use? (4) Can vapour devices be effective aids for tobacco cessation? and (5) What is the potential toxicity of second-hand vapour? We are using meta-narrative review to synthesize studies from diverse research traditions because of its capacity to address contestations around a topic. The project has six phases. In the planning phase, we finalized the research questions. In the search phase, we are locating academic publications and grey literature aided by a research librarian. The mapping phase involves categorizing these papers into research traditions to understand different perspectives on the evidence for each research question. In the appraisal phase, we will select and evaluate the relevant papers. Finally, in the synthesis phase, using analytic techniques unique to meta-narrative methodology, we will compare and contrast the evidence from different research traditions to answer our research questions, identifying overarching meta-narratives. In the final stage, the full team will draft recommendations to be disseminated through a variety of knowledge translation strategies. Meta-narrative synthesis has the unique capacity to expose the debates that are influencing the interpretation of empirical studies on vapour devices. We seek to "clear the air" with an even-handed review of the evidence and an understanding of the tensions within public health so that we can offer clear-headed recommendations for policy, regulation, and future research. PROSPERO CRD42015025267.

  8. Development and testing of study tools and methods to examine ethnic bias and clinical decision-making among medical students in New Zealand: The Bias and Decision-Making in Medicine (BDMM) study.

    PubMed

    Harris, Ricci; Cormack, Donna; Curtis, Elana; Jones, Rhys; Stanley, James; Lacey, Cameron

    2016-07-11

    Health provider racial/ethnic bias and its relationship to clinical decision-making is an emerging area of research focus in understanding and addressing ethnic health inequities. Examining potential racial/ethnic bias among medical students may provide important information to inform medical education and training. This paper describes the development, pretesting and piloting of study content, tools and processes for an online study of racial/ethnic bias (comparing Māori and New Zealand European) and clinical decision-making among final year medical students in New Zealand (NZ). The study was developed, pretested and piloted using a staged process (eight stages within five phases). Phase 1 included three stages: 1) scoping and conceptual framework development; 2) literature review and identification of potential measures and items; and, 3) development and adaptation of study content. Three main components were identified to assess different aspects of racial/ethnic bias: (1) implicit racial/ethnic bias using NZ-specific Implicit Association Tests (IATs); (2) explicit racial/ethnic bias using direct questions; and, (3) clinical decision-making, using chronic disease vignettes. Phase 2 (stage 4) comprised expert review and refinement. Formal pretesting (Phase 3) included construct testing using sorting and rating tasks (stage 5) and cognitive interviewing (stage 6). Phase 4 (stage 7) involved content revision and building of the web-based study, followed by pilot testing in Phase 5 (stage 8). Materials identified for potential inclusion performed well in construct testing among six participants. This assisted in the prioritisation and selection of measures that worked best in the New Zealand context and aligned with constructs of interest. Findings from the cognitive interviewing (nine participants) on the clarity, meaning, and acceptability of measures led to changes in the final wording of items and ordering of questions. Piloting (18 participants) confirmed the overall functionality of the web-based questionnaire, with a few minor revisions made to the final study. Robust processes are required in the development of study content to assess racial/ethnic bias in order to optimise the validity of specific measures, ensure acceptability and minimise potential problems. This paper has utility for other researchers in this area by informing potential development approaches and identifying possible measurement tools.

  9. Preparation and application of in-fibre internal standardization solid-phase microextraction.

    PubMed

    Zhao, Wennan; Ouyang, Gangfeng; Pawliszyn, Janusz

    2007-03-01

    The in-fibre standardization method is a novel approach that has been developed for field sampling/sample preparation, in which an internal standard is pre-loaded onto a solid-phase microextraction (SPME) fibre for calibration of the extraction of target analytes in field samples. The same method can also be used for in-vial sample analysis. In this study, different techniques to load the standard to a non-porous SPME fibre were investigated. It was found that the appropriateness of the technique depends on the physical properties of the standards that are used for the analysis. Headspace extraction of the standard dissolved in pumping oil works well for volatile compounds. Conversely, headspace extraction of the pure standard is an effective approach for semi-volatile compounds. For compounds with low volatility, a syringe-fibre transfer method and direct extraction of the standard dissolved in a solvent exhibited a good reproducibility (<5% RSD). The main advantage of the approaches investigated in this study is that the standard generation vials can be reused for hundreds of analyses without exhibiting significant loss. Moreover, most of the standard loading processes studied can be performed automatically, which is efficient and precise. Finally, the standard loading technique and in-fibre standardization method were applied to a complex matrix (milk) and the results illustrated that the matrix effect can be effectively compensated for with this approach.

  10. Predicting critical temperatures of iron(II) spin crossover materials: Density functional theory plus U approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yachao, E-mail: yczhang@nano.gznc.edu.cn

    2014-12-07

    A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (αmore » and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.« less

  11. Destination pluto: New horizons performance during the approach phase

    NASA Astrophysics Data System (ADS)

    Flanigan, Sarah H.; Rogers, Gabe D.; Guo, Yanping; Kirk, Madeline N.; Weaver, Harold A.; Owen, William M.; Jackman, Coralie D.; Bauman, Jeremy; Pelletier, Frederic; Nelson, Derek; Stanbridge, Dale; Dumont, Phillip J.; Williams, Bobby; Stern, S. Alan; Olkin, Cathy B.; Young, Leslie A.; Ennico, Kimberly

    2016-11-01

    The New Horizons spacecraft began its journey to the Pluto-Charon system on January 19, 2006 on-board an Atlas V rocket from Cape Canaveral, Florida. As the first mission in NASA's New Frontiers program, the objective of the New Horizons mission is to perform the first exploration of ice dwarfs in the Kuiper Belt, extending knowledge of the solar system to include the icy "third zone" for the first time. Arriving at the correct time and correct position relative to Pluto on July 14, 2015 depended on the successful execution of a carefully choreographed sequence of events. The Core command sequence, which was developed and optimized over multiple years and included the highest-priority science observations during the closest approach period, was contingent on precise navigation to the Pluto-Charon system and nominal performance of the guidance and control (G&C) subsystem. The flyby and gravity assist of Jupiter on February 28, 2007 was critical in placing New Horizons on the path to Pluto. Once past Jupiter, trajectory correction maneuvers (TCMs) became the sole source of trajectory control since the spacecraft did not encounter any other planetary bodies along its flight path prior to Pluto. During the Pluto approach phase, which formally began on January 15, 2015, optical navigation images were captured primarily with the Long Range Reconnaissance Imager to refine spacecraft and Pluto-Charon system trajectory knowledge, which in turn was used to design TCMs. Orbit determination solutions were also used to update the spacecraft's on-board trajectory knowledge throughout the approach phase. Nominal performance of the G&C subsystem, accurate TCM designs, and high-quality orbit determination solutions resulted in final Pluto-relative B-plane arrival conditions that facilitated a successful first reconnaissance of the Pluto-Charon system.

  12. Microfluidic-SANS: insitu molecular insight into complex fluid processing and high throughput characterisation

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos; Watanabe, Takaichi; Cabral, Joao; Graham, Peter; Porcar, Lionel; Martel, Anne

    2014-03-01

    The coupling of microfluidics and small angle neutron scattering (SANS) is successfully demonstrated for the first time. We have developed novel microdevices with suitably low SANS background and high pressure compatibility for the investigation of flow-induced phenomena and high throughput phase mapping of complex fluids. We successfully obtained scattering profiles from 50 micron channels, in 10s - 100s second acquisition times. The microfluidic geometry enables the variation of both flow type and magnitude, beyond traditional rheo-SANS setups, and is exceptionally well-suited for complex fluids due to the commensurability of relevant time and lengthscales. We demonstrate our approach by studying model flow responsive systems, including surfactant/co-surfactant/water mixtures, with well-known equilibrium phase behaviour,: sodium dodecyl sulfate (SDS)/octanol/brine, cetyltrimethyl ammonium chloride (C16TAC)/pentanol/water and a model microemulsion system (C10E4 /decane/ D20), as well as polyelectrolyte solutions. Finally, using an online micromixer we are able to implement a high throughput approach, scanning in excess of 10 scattering profiles/min for a continuous aqueous surfactant dilution over two decades in concentration.

  13. γ-decay of {}_{8}^{16}{{\\rm{O}}}_{8}\\,{and}\\,{}_{7}^{16}{{\\rm{N}}}_{9} in proton-neutron Tamm-Dancoff and random phase approximations with optimized surface δ interaction

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Firoozi, B.

    2016-09-01

    γ-ray transitions from excited states of {}16{{N}} and {}16{{O}} isomers that appear in the γ spectrum of the {}616{{{C}}}10\\to {}716{{{N}}}9\\to {}816{{{O}}}8 beta decay chain are investigated. The theoretical approach used in this research starts with a mean-field potential consisting of a phenomenological Woods-Saxon potential including spin-orbit and Coulomb terms (for protons) in order to obtain single-particle energies and wave functions for nucleons in a nucleus. A schematic residual surface delta interaction is then employed on the top of the mean field and is treated within the proton-neutron Tamm-Dancoff approximation (pnTDA) and the proton-neutron random phase approximation. The goal is to use an optimized surface delta interaction interaction, as a residual interaction, to improve the results. We have used artificial intelligence algorithms to establish a good agreement between theoretical and experimental energy spectra. The final results of the ‘optimized’ calculations are reasonable via this approach.

  14. Reentry trajectory optimization with waypoint and no-fly zone constraints using multiphase convex programming

    NASA Astrophysics Data System (ADS)

    Zhao, Dang-Jun; Song, Zheng-Yu

    2017-08-01

    This study proposes a multiphase convex programming approach for rapid reentry trajectory generation that satisfies path, waypoint and no-fly zone (NFZ) constraints on Common Aerial Vehicles (CAVs). Because the time when the vehicle reaches the waypoint is unknown, the trajectory of the vehicle is divided into several phases according to the prescribed waypoints, rendering a multiphase optimization problem with free final time. Due to the requirement of rapidity, the minimum flight time of each phase index is preferred over other indices in this research. The sequential linearization is used to approximate the nonlinear dynamics of the vehicle as well as the nonlinear concave path constraints on the heat rate, dynamic pressure, and normal load; meanwhile, the convexification techniques are proposed to relax the concave constraints on control variables. Next, the original multiphase optimization problem is reformulated as a standard second-order convex programming problem. Theoretical analysis is conducted to show that the original problem and the converted problem have the same solution. Numerical results are presented to demonstrate that the proposed approach is efficient and effective.

  15. Fault-tolerant control of large space structures using the stable factorization approach

    NASA Technical Reports Server (NTRS)

    Razavi, H. C.; Mehra, R. K.; Vidyasagar, M.

    1986-01-01

    Large space structures are characterized by the following features: they are in general infinite-dimensional systems, and have large numbers of undamped or lightly damped poles. Any attempt to apply linear control theory to large space structures must therefore take into account these features. Phase I consisted of an attempt to apply the recently developed Stable Factorization (SF) design philosophy to problems of large space structures, with particular attention to the aspects of robustness and fault tolerance. The final report on the Phase I effort consists of four sections, each devoted to one task. The first three sections report theoretical results, while the last consists of a design example. Significant results were obtained in all four tasks of the project. More specifically, an innovative approach to order reduction was obtained, stabilizing controller structures for plants with an infinite number of unstable poles were determined under some conditions, conditions for simultaneous stabilizability of an infinite number of plants were explored, and a fault tolerance controller design that stabilizes a flexible structure model was obtained which is robust against one failure condition.

  16. Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys

    NASA Astrophysics Data System (ADS)

    Balakrishna, Ananya Renuka; Carter, W. Craig

    2018-04-01

    Diffusion-induced phase transitions typically change the lattice symmetry of the host material. In battery electrodes, for example, Li ions (diffusing species) are inserted between layers in a crystalline electrode material (host). This diffusion induces lattice distortions and defect formations in the electrode. The structural changes to the lattice symmetry affect the host material's properties. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model, which describes the composition field of a diffusing species, with a phase-field crystal (PFC) model, which describes the host-material lattice symmetry. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a diffusion-induced phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.

  17. Discharge, Relaxation, and Charge Model for the Lithium Trivanadate Electrode: Reactions, Phase Change, and Transport

    DOE PAGES

    Brady, Nicholas W.; Zhang, Qing; Knehr, K. W.; ...

    2016-10-26

    The electrochemical behavior of lithium trivanadate (LiV 3O 8) during lithiation, delithiation, and voltage recovery experiments is simulated using a crystal-scale model that accounts for solid-state diffusion, charge-transfer kinetics, and phase transformations. The kinetic expression for phase change was modeled using an approach inspired by the Avrami formulation for nucleation and growth. Numerical results indicate that the solid-state diffusion coefficient of lithium in LiV 3O 8 is ~ 10 -13 cm 2 s -1 and the equilibrium compositions in the two phase region (~2.5 V) are Li 2.5V 3O 8:Li 4V 3O 8. Agreement between the simulated and experimental resultsmore » is excellent. Relative to the lithiation curves, the experimental delithiation curves show significantly less overpotential and at low levels of lithiation (end of charge). Simulations are only able to capture this result by assuming that the solid-state mass-transfer resistance is less during delithiation. The proposed rationale for this difference is that the (100) face is inactive during lithiation, but active during delithiation. Finally, by assuming non-instantaneous phase-change kinetics, estimates are made for the overpotential due to imperfect phase change (supersaturation).« less

  18. Synchronization properties of network motifs: Influence of coupling delay and symmetry

    NASA Astrophysics Data System (ADS)

    D'Huys, O.; Vicente, R.; Erneux, T.; Danckaert, J.; Fischer, I.

    2008-09-01

    We investigate the effect of coupling delays on the synchronization properties of several network motifs. In particular, we analyze the synchronization patterns of unidirectionally coupled rings, bidirectionally coupled rings, and open chains of Kuramoto oscillators. Our approach includes an analytical and semianalytical study of the existence and stability of different in-phase and out-of-phase periodic solutions, complemented by numerical simulations. The delay is found to act differently on networks possessing different symmetries. While for the unidirectionally coupled ring the coupling delay is mainly observed to induce multistability, its effect on bidirectionally coupled rings is to enhance the most symmetric solution. We also study the influence of feedback and conclude that it also promotes the in-phase solution of the coupled oscillators. We finally discuss the relation between our theoretical results on delay-coupled Kuramoto oscillators and the synchronization properties of networks consisting of real-world delay-coupled oscillators, such as semiconductor laser arrays and neuronal circuits.

  19. A dynamical systems approach for estimating phase interactions between rhythms of different frequencies from experimental data.

    PubMed

    Onojima, Takayuki; Goto, Takahiro; Mizuhara, Hiroaki; Aoyagi, Toshio

    2018-01-01

    Synchronization of neural oscillations as a mechanism of brain function is attracting increasing attention. Neural oscillation is a rhythmic neural activity that can be easily observed by noninvasive electroencephalography (EEG). Neural oscillations show the same frequency and cross-frequency synchronization for various cognitive and perceptual functions. However, it is unclear how this neural synchronization is achieved by a dynamical system. If neural oscillations are weakly coupled oscillators, the dynamics of neural synchronization can be described theoretically using a phase oscillator model. We propose an estimation method to identify the phase oscillator model from real data of cross-frequency synchronized activities. The proposed method can estimate the coupling function governing the properties of synchronization. Furthermore, we examine the reliability of the proposed method using time-series data obtained from numerical simulation and an electronic circuit experiment, and show that our method can estimate the coupling function correctly. Finally, we estimate the coupling function between EEG oscillation and the speech sound envelope, and discuss the validity of these results.

  20. Particle formation and ordering in strongly correlated fermionic systems: Solving a model of quantum chromodynamics

    DOE PAGES

    Azaria, P.; Konik, R. M.; Lecheminant, P.; ...

    2016-08-03

    In our paper we study a (1+1)-dimensional version of the famous Nambu–Jona-Lasinio model of quantum chromodynamics (QCD2) both at zero and at finite baryon density. We use nonperturbative techniques (non-Abelian bosonization and the truncated conformal spectrum approach). When the baryon chemical potential, μ, is zero, we describe the formation of fermion three-quark (nucleons and Δ baryons) and boson (two-quark mesons, six-quark deuterons) bound states. We also study at μ=0 the formation of a topologically nontrivial phase. When the chemical potential exceeds the critical value and a finite baryon density appears, the model has a rich phase diagram which includes phasesmore » with a density wave and superfluid quasi-long-range (QLR) order, as well as a phase of a baryon Tomonaga-Luttinger liquid (strange metal). Finally, the QLR order results in either a condensation of scalar mesons (the density wave) or six-quark bound states (deuterons).« less

  1. Gran Telescopio Canarias Commissioning Instrument Optomechanics

    NASA Astrophysics Data System (ADS)

    Espejo, Carlos; Cuevas, Salvador; Sanchez, Beatriz; Flores, Ruben; Lara, Gerardo; Farah, Alejandro; Godoy, Javier; Bringas, Vicente; Chavoya, Armando; Dorantes, Ariel; Manuel Montoya, Juan; Rangel, Juan Carlos; Devaney, Nicholas; Castro, Javier; Cavaller, Luis

    2003-02-01

    Under a contract with the GRANTECAN, the Commissioning Instrument is a project developed by a team of Mexican scientists and engineers from the Instrumentation Department of the Astronomy Institute at the UNAM and the CIDESI Engineering Center. This paper will discuss in some detail the final Commissioning Instrument (CI) mechanical design and fabrication. We will also explain the error budget and the barrels design as well as their thermal compensation. The optical design and the control system are discussed in other papers. The CI will just act as a diagnostic tool for image quality verification during the GTC Commissioning Phase. This phase is a quality control process for achieving, verifying, and documenting the performance of each GTC sub-systems. This is a very important step for the telescope life. It will begin on starting day and will last for a year. The CI project started in December 2000. The critical design phase was reviewed in July 2001. The CI manufacturing is currently in progress and most parts are finished. We are now approaching the factory acceptance stage.

  2. Hardware test program for evaluation of baseline range/range rate sensor concept

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Hardware Test Program for evaluation of the baseline range/range rate sensor concept was initiated 11 September 1984. This ninth report covers the period 12 May through 11 June 1885. A contract amendment adding a second phase has extended the Hardware Test Program through 10 December 1985. The objective of the added program phase is to establish range and range measurement accuracy and radar signature characteristics for a typical spacecraft target. Phase I of the Hardware Test Program was designed to reduce the risks associated with the Range/Range Rate (R/R) Sensor baseline design approach. These risks are associated with achieving the sensor performance required for the two modes of operation, the Interrupted CW (ICW) mode for initial acquisition and tracking to close-in ranges, and the CW mode, providing coverage during the final docking maneuver. The risks associated with these modes of operation have to do with the realization of adequate sensitivity to operate to their individual maximum ranges.

  3. What is the role of culture, diversity, and community engagement in transdisciplinary translational science?

    PubMed

    Graham, Phillip W; Kim, Mimi M; Clinton-Sherrod, A Monique; Yaros, Anna; Richmond, Alan N; Jackson, Melvin; Corbie-Smith, Giselle

    2016-03-01

    Concepts of culture and diversity are necessary considerations in the scientific application of theory generation and developmental processes of preventive interventions; yet, culture and/or diversity are often overlooked until later stages (e.g., adaptation [T3] and dissemination [T4]) of the translational science process. Here, we present a conceptual framework focused on the seamless incorporation of culture and diversity throughout the various stages of the translational science process (T1-T5). Informed by a community-engaged research approach, this framework guides integration of cultural and diversity considerations at each phase with emphasis on the importance and value of "citizen scientists" being research partners to promote ecological validity. The integrated partnership covers the first phase of intervention development through final phases that ultimately facilitate more global, universal translation of changes in attitudes, norms, and systems. Our comprehensive model for incorporating culture and diversity into translational research provides a basis for further discussion and translational science development.

  4. Microstructure and Rheology of a Flow-Induced Structured Phase in Wormlike Micellar Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardiel Rivera, Joshua J.; Dohnalkova, Alice; Dubash, Neville

    2013-04-30

    Surfactant molecules found in soaps and detergents can self-assemble into a great variety of morphologies (e.g., spherical micelles, cylindrical micelles, and lamellar phases). The resulting morphology is highly affected by ionic strength, temperature, and flow conditions. In particular, cylindrical micelles in the presence of inorganic or organic salts can self-assemble into large flexible and elongated wormlike micelles. In equilibrium, the wormlike micelles transition from slightly entangled to branched and, finally, to multi-connected structures with increasing salt concentration. In our work, by introducing external flow conditions via microfluidics, these micellar structures can follow very different trajectories on the phase map andmore » new nanoporous structures can be created. This flow induced approach offers great potential to create novel materials and nanoporous scaffolds from wormlike micelles under ambient temperature and pressure, without any chemical and thermal means (1). As a result, this work provides attractive solutions for synthesizing new biocompatible materials under ambient conditions with biosensing, encapsulation, catalysis, photonics, and self-healing applications.« less

  5. Design of an Optical System for Phase Retrieval based on a Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Falldorf, Claas; Agour, Mostafa; von Kopylow, Christoph; Bergmann, Ralf B.

    2010-04-01

    We present an optical configuration for phase retrieval from a sequence of intensity measurements. The setup is based on a 4f-configuration with a phase modulating spatial light modulator (SLM) located in the Fourier domain. The SLM is used to modulate the incoming light with the transfer function of propagation, thus a sequence of propagated representations of the subjected wave field can be captured across a common sensor plane. The main advantage of this technique is the greatly reduced measurement time, since no mechanical adjustment of the camera sensor is required throughout the measurement process. The treatise is focused on the analysis of the wave field in the sensor domain. From the discussion a set of parameters is derived in order to minimize disturbing effects arising from the discrete nature of the SLM. Finally, the big potential of this approach is demonstrated by means of experimental investigations with regard to wave field sensing.

  6. Floquet Engineering in Quantum Chains

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; de la Torre, A.; Ron, A.; Hsieh, D.; Millis, A. J.

    2018-03-01

    We consider a one-dimensional interacting spinless fermion model, which displays the well-known Luttinger liquid (LL) to charge density wave (CDW) transition as a function of the ratio between the strength of the interaction U and the hopping J . We subject this system to a spatially uniform drive which is ramped up over a finite time interval and becomes time periodic in the long-time limit. We show that by using a density matrix renormalization group approach formulated for infinite system sizes, we can access the large-time limit even when the drive induces finite heating. When both the initial and long-time states are in the gapless (LL) phase, the final state has power-law correlations for all ramp speeds. However, when the initial and final state are gapped (CDW phase), we find a pseudothermal state with an effective temperature that depends on the ramp rate, both for the Magnus regime in which the drive frequency is very large compared to other scales in the system and in the opposite limit where the drive frequency is less than the gap. Remarkably, quantum defects (instantons) appear when the drive tunes the system through the quantum critical point, in a realization of the Kibble-Zurek mechanism.

  7. Dynamic Stacking Pathway of Perylene Dimers in Aromatic and Nonaromatic Solvents.

    PubMed

    Hollfelder, Manuel; Gekle, Stephan

    2015-08-13

    Using molecular dynamics simulations, we elucidate in detail the dynamics of the π-π stacking process of a perylene bisimide (PBI) dimer solvated in toluene. Our calculations show that the transition from the open (unstacked) to the stacked configuration is hindered by a small free energy barrier of approximately 1kBT in toluene but not in the nonaromatic solvent hexane. A similar effect is observed tor two non-covalently linked monomers. The origin of this barrier is traced back to π-π interactions between perylene and the aromatic solvent which are very similar in nature to those between two PBI monomers. The stacking process proceeds in three phases via two well-defined transition states: (i) in the first phase, the two PBI molecules share part of their respective solvation shells forming the first transition state. Further approach needs to squeeze out the shared solvent layer, thus creating the energy barrier. (ii) After removal of the separating solvent, the two PBIs form a second transition state with one monomer located at a random position in the other's solvation shell. (iii) Finally, the two PBIs slide on top of each other into their final stacked position.

  8. District heating and cooling systems for communities through power plant retrofit distribution network. Volume 3. Final report, September 1, 1978-May 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This final report of Phase I of the study presents Task 4, Technical Review and Assessment. The most-promising district-heating concept identified in the Phase I study for the Public Service Electric and Gas Company, Newark, New Jersey, is a hot-water system in which steam is extracted from an existing turbine and used to drive a new, small backpressure turbine-generator. The backpressure turbine provides heat for district heating and simultaneously provides additional electric-generating capacity to partially offset the capacity lost due to the steam extraction. This approach is the most-economical way to retrofit the stations studied for district heating while minimizingmore » electric-capacity loss. Nine fossil-fuel-fired stations within the PSE and G system were evaluated for possibly supplying heat for district heating and cooling in cogeneration operations, but only three were selected to supply the district-heating steam. They are Essex, Hudson, and Bergen. Plant retrofit, thermal distribution schemes, consumer-conversion scheme, and consumer-metering system are discussed. Extensive technical information is provided in 16 appendices, additional tables, figures, and drawings. (MCW)« less

  9. GnRHa to trigger final oocyte maturation: a time to reconsider.

    PubMed

    Humaidan, P; Papanikolaou, E G; Tarlatzis, B C

    2009-10-01

    Recently GnRH antagonist protocols for the prevention of a premature LH surge were introduced, allowing final oocyte maturation to be triggered with a single bolus of a GnRH agonist (GnRHa). GnRHa is as effective as hCG for the induction of ovulation, and apart from the LH surge a FSH surge is also induced. Until recently, prospective randomized studies reported a poor clinical outcome when GnRHa was used to trigger final oocyte maturation in IVF/ICSI antagonist protocols, presumably due to a luteal phase deficiency, despite standard luteal phase supplementation with progesterone and estradiol. As GnRHa triggering of final oocyte maturation could possess advantages over hCG triggering in terms of a reduced if not eliminated risk of ovarian hyperstimulation syndrome (OHSS) and the retrieval of more mature oocytes, the challenge has been to rescue the luteal phase. In the literature now several studies report a luteal phase rescue with a reproductive outcome comparable to that of hCG induced final oocyte maturation. Although more research is needed, GnRHa triggering is now a valid alternative with potential benefits.

  10. A combined experimental and computational thermodynamic study of difluoronitrobenzene isomers.

    PubMed

    Ribeiro da Silva, Manuel A V; Monte, Manuel J S; Lobo Ferreira, Ana I M C; Oliveira, Juliana A S A; Cimas, Álvaro

    2010-10-14

    This work reports the experimental and computational thermochemical study performed on three difluorinated nitrobenzene isomers: 2,4-difluoronitrobenzene (2,4-DFNB), 2,5-difluoronitrobenzene (2,5-DFNB), and 3,4-difluoronitrobenzene (3,4-DFNB). The standard (p° = 0.1 MPa) molar enthalpies of formation in the liquid phase of these compounds were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. A static method was used to perform the vapor pressure study of the referred compounds allowing the construction of the phase diagrams and determination of the respective triple point coordinates, as well as the standard molar enthalpies of vaporization, sublimation, and fusion for two of the isomers (2,4-DFNB and 3,4-DFNB). For 2,5-difluoronitrobenzene, only liquid vapor pressures were measured enabling the determination of the standard molar enthalpies of vaporization. Combining the thermodynamic parameters of the compounds studied, the following standard (p° = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were derived: Δ(f)H(m)° (2,4-DFNB, g) = -(296.3 ± 1.8) kJ · mol⁻¹, Δ(f)H(m)° (2,5-DFNB, g) = -(288.2 ± 2.1) kJ · mol⁻¹, and Δ(f)H(m)° (3,4-DFNB, g) = -(302.4 ± 2.1) kJ · mol⁻¹. Using the empirical scheme developed by Cox, several approaches were evaluated in order to identify the best method for estimating the standard molar gas phase enthalpies of formation of these compounds. The estimated values were compared to the ones obtained experimentally, and the approach providing the best comparison with experiment was used to estimate the thermodynamic behavior of the other difluorinated nitrobenzene isomers not included in this study. Additionally, the enthalpies of formation of these compounds along with the enthalpies of formation of the other isomers not studied experimentally, i.e., 2,3-DFNB, 2,6-DFNB, and 3,5-DFNB, were estimated using the composite G3MP2B3 approach together with adequate gas-phase working reactions. Furthermore, we also used this computational approach to calculate the gas-phase basicities, proton and electron affinities, and, finally, adiabatic ionization enthalpies.

  11. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.

    PubMed

    Stimulak, Mitja; Ravnik, Miha

    2014-09-07

    Blue phase colloidal crystals and dielectric nanoparticle/polymer doped blue phases are demonstrated to combine multiple components with different symmetries in one photonic material, creating a photonic crystal with variable and micro-controllable photonic band structure. In this composite photonic material, one contribution to the band structure is determined by the 3D periodic birefringent orientational profile of the blue phases, whereas the second contribution emerges from the regular array of the colloidal particles or from the dielectric/nanoparticle-doped defect network. Using the planewave expansion method, optical photonic bands of the blue phase I and II colloidal crystals and related nanoparticle/polymer doped blue phases are calculated, and then compared to blue phases with no particles and to face-centred-cubic and body-centred-cubic colloidal crystals in isotropic background. We find opening of local band gaps at particular points of Brillouin zone for blue phase colloidal crystals, where there were none in blue phases without particles or dopants. Particle size and filling fraction of the blue phase defect network are demonstrated as parameters that can directly tune the optical bands and local band gaps. In the blue phase I colloidal crystal with an additionally doped defect network, interestingly, we find an indirect total band gap (with the exception of one point) at the entire edge of SC irreducible zone. Finally, this work demonstrates the role of combining multiple - by symmetry - differently organised components in one photonic crystal material, which offers a novel approach towards tunable soft matter photonic materials.

  12. Investigation of acoustic emission coupling techniques

    NASA Technical Reports Server (NTRS)

    Jolly, W. D.

    1988-01-01

    A three-phase research program was initiated by NASA in 1983 to investigate the use of acoustic monitoring techniques to detect incipient failure in turbopump bearings. Two prototype acoustic coupler probes were designed and evaluated, and four units of the final probe design were fabricated. Success in this program could lead to development of an on-board monitor which could detect bearing damage in flight and reduce or eliminate the need for disassembly after each flight. This final report reviews the accomplishments of the first two phases and presents the results of fabrication and testing completed in the final phase of the research program.

  13. Roosevelt Hot Springs, Utah FORGE Earthquake Catalog

    DOE Data Explorer

    Pankow, Kris

    2018-03-21

    This is the set of earthquake catalogs developed for the Utah FORGE project. These are discussed in the "Utah FORGE Phase 2B Final Topical Report", which can be found on GDR under id: 1038 (See link 'Final Topical Report' in resources below). The details are in section: 'TASK 2B.12: SEISMIC MONITORING PHASE2B FINAL REPORT.' The catalogs are in an Excel file.

  14. The NASA Science Internet: An integrated approach to networking

    NASA Technical Reports Server (NTRS)

    Rounds, Fred

    1991-01-01

    An integrated approach to building a networking infrastructure is an absolute necessity for meeting the multidisciplinary science networking requirements of the Office of Space Science and Applications (OSSA) science community. These networking requirements include communication connectivity between computational resources, databases, and library systems, as well as to other scientists and researchers around the world. A consolidated networking approach allows strategic use of the existing science networking within the Federal government, and it provides networking capability that takes into consideration national and international trends towards multivendor and multiprotocol service. It also offers a practical vehicle for optimizing costs and maximizing performance. Finally, and perhaps most important to the development of high speed computing is that an integrated network constitutes a focus for phasing to the National Research and Education Network (NREN). The NASA Science Internet (NSI) program, established in mid 1988, is structured to provide just such an integrated network. A description of the NSI is presented.

  15. Flight Dynamics Mission Support and Quality Assurance Process

    NASA Technical Reports Server (NTRS)

    Oh, InHwan

    1996-01-01

    This paper summarizes the method of the Computer Sciences Corporation Flight Dynamics Operation (FDO) quality assurance approach to support the National Aeronautics and Space Administration Goddard Space Flight Center Flight Dynamics Support Branch. Historically, a strong need has existed for developing systematic quality assurance using methods that account for the unique nature and environment of satellite Flight Dynamics mission support. Over the past few years FDO has developed and implemented proactive quality assurance processes applied to each of the six phases of the Flight Dynamics mission support life cycle: systems and operations concept, system requirements and specifications, software development support, operations planing and training, launch support, and on-orbit mission operations. Rather than performing quality assurance as a final step after work is completed, quality assurance has been built in as work progresses in the form of process assurance. Process assurance activities occur throughout the Flight Dynamics mission support life cycle. The FDO Product Assurance Office developed process checklists for prephase process reviews, mission team orientations, in-progress reviews, and end-of-phase audits. This paper will outline the evolving history of FDO quality assurance approaches, discuss the tailoring of Computer Science Corporations's process assurance cycle procedures, describe some of the quality assurance approaches that have been or are being developed, and present some of the successful results.

  16. Design rules for phase-change materials in data storage applications.

    PubMed

    Lencer, Dominic; Salinga, Martin; Wuttig, Matthias

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Pilot performance in zero-visibility precision approach. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ephrath, A. R.

    1975-01-01

    The pilot's short-term decisions regarding performance assessment and failure monitoring is examined. The performance of airline pilots who flew simulated zero-visibility landing approaches is reported. Results indicate that the pilot's mode of participation in the control task has a strong effect on his workload, the induced workload being lowest when the pilot acts as a monitor during a coupled approach and highest when the pilot is an active element in the control loop. A marked increase in workload at altitudes below 500 ft. is documented at all participation modes; this increase is inversely related to distance-to-go. The participation mode is shown to have a dominant effect on failure-detection performance, with a failure in a monitored (coupled) axis being detected faster than a comparable failure in a manually-controlled axis. Touchdown performance is also documented. It is concluded that the conventional instrument panel and its associated displays are inadequate for zero-visibility operations in the final phases of the landing approach.

  18. Difference optimization: Automatic correction of relative frequency and phase for mean non-edited and edited GABA 1H MEGA-PRESS spectra

    NASA Astrophysics Data System (ADS)

    Cleve, Marianne; Krämer, Martin; Gussew, Alexander; Reichenbach, Jürgen R.

    2017-06-01

    Phase and frequency corrections of magnetic resonance spectroscopic data are of major importance to obtain reliable and unambiguous metabolite estimates as validated in recent research for single-shot scans with the same spectral fingerprint. However, when using the J-difference editing technique 1H MEGA-PRESS, misalignment between mean edited (ON ‾) and non-edited (OFF ‾) spectra that may remain even after correction of the corresponding individual single-shot scans results in subtraction artefacts compromising reliable GABA quantitation. We present a fully automatic routine that iteratively optimizes simultaneously relative frequencies and phases between the mean ON ‾ and OFF ‾ 1H MEGA-PRESS spectra while minimizing the sum of the magnitude of the difference spectrum (L1 norm). The proposed method was applied to simulated spectra at different SNR levels with deliberately preset frequency and phase errors. Difference optimization proved to be more sensitive to small signal fluctuations, as e.g. arising from subtraction artefacts, and outperformed the alternative spectral registration approach, that, in contrast to our proposed linear approach, uses a nonlinear least squares minimization (L2 norm), at all investigated levels of SNR. Moreover, the proposed method was applied to 47 MEGA-PRESS datasets acquired in vivo at 3 T. The results of the alignment between the mean OFF ‾ and ON ‾ spectra were compared by applying (a) no correction, (b) difference optimization or (c) spectral registration. Since the true frequency and phase errors are not known for in vivo data, manually corrected spectra were used as the gold standard reference (d). Automatically corrected data applying both, method (b) or method (c), showed distinct improvements of spectra quality as revealed by the mean Pearson correlation coefficient between corresponding real part mean DIFF ‾ spectra of Rbd = 0.997 ± 0.003 (method (b) vs. (d)), compared to Rad = 0.764 ± 0.220 (method (a) vs. (d)) with no alignment between OFF ‾ and ON ‾ . Method (c) revealed a slightly lower correlation coefficient of Rcd = 0.972 ± 0.028 compared to Rbd, that can be ascribed to small remaining subtraction artefacts in the final DIFF ‾ spectrum. In conclusion, difference optimization performs robustly with no restrictions regarding the input data range or user intervention and represents a complementary tool to optimize the final DIFF ‾ spectrum following the mandatory frequency and phase corrections of single ON and OFF scans prior to averaging.

  19. Difference optimization: Automatic correction of relative frequency and phase for mean non-edited and edited GABA 1H MEGA-PRESS spectra.

    PubMed

    Cleve, Marianne; Krämer, Martin; Gussew, Alexander; Reichenbach, Jürgen R

    2017-06-01

    Phase and frequency corrections of magnetic resonance spectroscopic data are of major importance to obtain reliable and unambiguous metabolite estimates as validated in recent research for single-shot scans with the same spectral fingerprint. However, when using the J-difference editing technique 1 H MEGA-PRESS, misalignment between mean edited (ON‾) and non-edited (OFF‾) spectra that may remain even after correction of the corresponding individual single-shot scans results in subtraction artefacts compromising reliable GABA quantitation. We present a fully automatic routine that iteratively optimizes simultaneously relative frequencies and phases between the mean ON‾ and OFF‾ 1 H MEGA-PRESS spectra while minimizing the sum of the magnitude of the difference spectrum (L 1 norm). The proposed method was applied to simulated spectra at different SNR levels with deliberately preset frequency and phase errors. Difference optimization proved to be more sensitive to small signal fluctuations, as e.g. arising from subtraction artefacts, and outperformed the alternative spectral registration approach, that, in contrast to our proposed linear approach, uses a nonlinear least squares minimization (L 2 norm), at all investigated levels of SNR. Moreover, the proposed method was applied to 47 MEGA-PRESS datasets acquired in vivo at 3T. The results of the alignment between the mean OFF‾ and ON‾ spectra were compared by applying (a) no correction, (b) difference optimization or (c) spectral registration. Since the true frequency and phase errors are not known for in vivo data, manually corrected spectra were used as the gold standard reference (d). Automatically corrected data applying both, method (b) or method (c), showed distinct improvements of spectra quality as revealed by the mean Pearson correlation coefficient between corresponding real part mean DIFF‾ spectra of R bd =0.997±0.003 (method (b) vs. (d)), compared to R ad =0.764±0.220 (method (a) vs. (d)) with no alignment between OFF‾ and ON‾. Method (c) revealed a slightly lower correlation coefficient of R cd =0.972±0.028 compared to R bd , that can be ascribed to small remaining subtraction artefacts in the final DIFF‾ spectrum. In conclusion, difference optimization performs robustly with no restrictions regarding the input data range or user intervention and represents a complementary tool to optimize the final DIFF‾ spectrum following the mandatory frequency and phase corrections of single ON and OFF scans prior to averaging. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Simulation of the Press Hardening Process and Prediction of the Final Mechanical Material Properties

    NASA Astrophysics Data System (ADS)

    Hochholdinger, Bernd; Hora, Pavel; Grass, Hannes; Lipp, Arnulf

    2011-08-01

    Press hardening is a well-established production process in the automotive industry today. The actual trend of this process technology points towards the manufacturing of parts with tailored properties. Since the knowledge of the mechanical properties of a structural part after forming and quenching is essential for the evaluation of for example the crash performance, an accurate as possible virtual assessment of the production process is more than ever necessary. In order to achieve this, the definition of reliable input parameters and boundary conditions for the thermo-mechanically coupled simulation of the process steps is required. One of the most important input parameters, especially regarding the final properties of the quenched material, is the contact heat transfer coefficient (IHTC). The CHTC depends on the effective pressure or the gap distance between part and tool. The CHTC at different contact pressures and gap distances is determined through inverse parameter identification. Furthermore a simulation strategy for the subsequent steps of the press hardening process as well as adequate modeling approaches for part and tools are discussed. For the prediction of the yield curves of the material after press hardening a phenomenological model is presented. This model requires the knowledge of the microstructure within the part. By post processing the nodal temperature history with a CCT diagram the quantitative distribution of the phase fractions martensite, bainite, ferrite and pearlite after press hardening is determined. The model itself is based on a Hockett-Sherby approach with the Hockett-Sherby parameters being defined in function of the phase fractions and a characteristic cooling rate.

  1. Demonstration of a Small Modular BioPower System Using Poultry Litter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John P. Reardon; Art Lilley; Jim Wimberly

    2002-05-22

    The purpose of this project was to assess poultry grower residue, or litter (manure plus absorbent biomass), as a fuel source for Community Power Corporation's small modular biopower system (SMB). A second objective was to assess the poultry industry to identify potential ''on-site'' applications of the SMB system using poultry litter residue as a fuel source, and to adapt CPC's existing SMB to generate electricity and heat from the poultry litter biomass fuel. Bench-scale testing and pilot testing were used to gain design information for the SMB retrofit. System design approach for the Phase II application of the SMB wasmore » the goal of Phase I testing. Cost estimates for an onsite poultry litter SMB were prepared. Finally, a market estimate was prepared for implementation of the on-farm SMB using poultry litter.« less

  2. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    DOE PAGES

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; ...

    2017-02-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wroughtlike microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistantmore » microstructures via simple heat treatments. Finally, the exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.« less

  3. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wroughtlike microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistantmore » microstructures via simple heat treatments. Finally, the exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.« less

  4. Development and Demonstration of a Magnesium-Intensive Vehicle Front-End Substructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Stephen D.; Forsmark, Joy H.; Osborne, Richard

    2016-07-01

    This project is the final phase (designated Phase III) of an extensive, nine-year effort with the objectives of developing a knowledge base and enabling technologies for the design, fabrication and performance evaluation of magnesium-intensive automotive front-end substructures intended to partially or completely replace all-steel comparators, providing a weight savings approaching 50% of the baseline. Benefits of extensive vehicle weight reduction in terms of fuel economy increase, extended vehicle range, vehicle performance and commensurate reductions in greenhouse gas emissions are well known. An exemplary vehicle substructure considered by the project is illustrated in Figure 1, along with the exterior vehicle appearance.more » This unibody front-end “substructure” is one physical objective of the ultimate design and engineering aspects established at the outset of the larger collective effort.« less

  5. Amateur Radio on the International Space Station - Phase 2 Hardware System

    NASA Technical Reports Server (NTRS)

    Bauer, F.; McFadin, L.; Bruninga, B.; Watarikawa, H.

    2003-01-01

    The International Space Station (ISS) ham radio system has been on-orbit for over 3 years. Since its first use in November 2000, the first seven expedition crews and three Soyuz taxi crews have utilized the amateur radio station in the Functional Cargo Block (also referred to as the FGB or Zarya module) to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. Early on, the Amateur Radio on the International Space Station (ARISS) international team devised a multi-phased hardware development approach for the ISS ham radio station. Three internal development Phases. Initial Phase 1, Mobile Radio Phase 2 and Permanently Mounted Phase 3 plus an externally mounted system, were proposed and agreed to by the ARISS team. The Phase 1 system hardware development which was started in 1996 has since been delivered to ISS. It is currently operational on 2 meters. The 70 cm system is expected to be installed and operated later this year. Since 2001, the ARISS international team have worked to bring the second generation ham system, called Phase 2, to flight qualification status. At this time, major portions of the Phase 2 hardware system have been delivered to ISS and will soon be installed and checked out. This paper intends to provide an overview of the Phase 1 system for background and then describe the capabilities of the Phase 2 radio system. It will also describe the current plans to finalize the Phase 1 and Phase 2 testing in Russia and outlines the plans to bring the Phase 2 hardware system to full operation.

  6. Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework

    PubMed Central

    Antonopoulos, Georgios C.; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available. PMID:26599984

  7. Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework.

    PubMed

    Antonopoulos, Georgios C; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.

  8. Industrial Technology Modernization Program. Project 28. Automation of Receiving, Receiving Inspection and Stores

    DTIC Science & Technology

    1987-06-15

    001 GENERAL DYNAMICS 00 FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Repc t JUNG 0 ?7 PROJECT 28 AUTOMATION...DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Report PROJECT 28 AUTOMATION OF RECEIVING, RECEIVING...13 6 PROJECT ASSUMPTIONS 20 7 PRELIMINARY/FINAL DESIGN AND FINDINGS 21 8 SYSTEM/EQUIPMENT/MACHINING SPECIFICATIONS 37 9 VENDOR/ INDUSTRY ANALYSIS

  9. Calculating Free Energies Using Scaled-Force Molecular Dynamics Algorithm

    NASA Technical Reports Server (NTRS)

    Darve, Eric; Wilson, Micahel A.; Pohorille, Andrew

    2000-01-01

    One common objective of molecular simulations in chemistry and biology is to calculate the free energy difference between different states of the system of interest. Examples of problems that have such an objective are calculations of receptor-ligand or protein-drug interactions, associations of molecules in response to hydrophobic, and electrostatic interactions or partition of molecules between immiscible liquids. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), 'native' state. Perhaps the best example of such a problem is folding of proteins or short RNA molecules. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to 'quasi non-ergodicity', whereby a part of phase space is inaccessible on timescales of the simulation. A host of strategies has been developed to improve efficiency of sampling the phase space. For example, some Monte Carlo techniques involve large steps which move the system between low-energy regions in phase space without the need for sampling the configurations corresponding to energy barriers (J-walking). Most strategies, however, rely on modifying probabilities of sampling low and high-energy regions in phase space such that transitions between states of interest are encouraged. Perhaps the simplest implementation of this strategy is to increase the temperature of the system. This approach was successfully used to identify denaturation pathways in several proteins, but it is clearly not applicable to protein folding. It is also not a successful method for determining free energy differences. Finally, the approach is likely to fail for systems with co-existing phases, such as water-membrane systems, because it may lead to spontaneous mixing. A similar difficulty may be encountered in any method relying on global modifications of phase space.

  10. Generalized Cahn-Hilliard equation for solutions with drastically different diffusion coefficients. Application to exsolution in ternary feldspar

    NASA Astrophysics Data System (ADS)

    Petrishcheva, E.; Abart, R.

    2012-04-01

    We address mathematical modeling and computer simulations of phase decomposition in a multicomponent system. As opposed to binary alloys with one common diffusion parameter, our main concern is phase decomposition in real geological systems under influence of strongly different interdiffusion coefficients, as it is frequently encountered in mineral solid solutions with coupled diffusion on different sub-lattices. Our goal is to explain deviations from equilibrium element partitioning which are often observed in nature, e.g., in a cooled ternary feldspar. To this end we first adopt the standard Cahn-Hilliard model to the multicomponent diffusion problem and account for arbitrary diffusion coefficients. This is done by using Onsager's approach such that flux of each component results from the combined action of chemical potentials of all components. In a second step the generalized Cahn-Hilliard equation is solved numerically using finite-elements approach. We introduce and investigate several decomposition scenarios that may produce systematic deviations from the equilibrium element partitioning. Both ideal solutions and ternary feldspar are considered. Typically, the slowest component is initially "frozen" and the decomposition effectively takes place only for two "fast" components. At this stage the deviations from the equilibrium element partitioning are indeed observed. These deviations may became "frozen" under conditions of cooling. The final equilibration of the system occurs on a considerably slower time scale. Therefore the system may indeed remain unaccomplished at the observation point. Our approach reveals the intrinsic reasons for the specific phase separation path and rigorously describes it by direct numerical solution of the generalized Cahn-Hilliard equation.

  11. Geometrical Phases in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Christian, Joy Julius

    In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a truly quantum regime, and allows, for the first time, the measurements of such phases associated with arbitrary non-cyclic evolutions of entangled linear-momentum photon -states. This non-classical manifestation of the geometrical phases is due to the entangled character of linear-momentum photon-states of two correlated photons produced by parametric down-conversion in non-linear crystals. Finally, the non-local aspect of the geometrical phase is contrasted with the fundamental non-locality of quantum mechanics due to the entangled character of quantum states.

  12. Study of different HILIC, mixed-mode, and other aqueous normal-phase approaches for the liquid chromatography/mass spectrometry-based determination of challenging polar pesticides.

    PubMed

    Vass, Andrea; Robles-Molina, José; Pérez-Ortega, Patricia; Gilbert-López, Bienvenida; Dernovics, Mihaly; Molina-Díaz, Antonio; García-Reyes, Juan F

    2016-07-01

    The aim of the study was to evaluate the performance of different chromatographic approaches for the liquid chromatography/mass spectrometry (LC-MS(/MS)) determination of 24 highly polar pesticides. The studied compounds, which are in most cases unsuitable for conventional LC-MS(/MS) multiresidue methods were tested with nine different chromatographic conditions, including two different hydrophilic interaction liquid chromatography (HILIC) columns, two zwitterionic-type mixed-mode columns, three normal-phase columns operated in HILIC-mode (bare silica and two silica-based chemically bonded columns (cyano and amino)), and two standard reversed-phase C18 columns. Different sets of chromatographic parameters in positive (for 17 analytes) and negative ionization modes (for nine analytes) were examined. In order to compare the different approaches, a semi-quantitative classification was proposed, calculated as the percentage of an empirical performance value, which consisted of three main features: (i) capacity factor (k) to characterize analyte separation from the void, (ii) relative response factor, and (iii) peak shape based on analytes' peak width. While no single method was able to provide appropriate detection of all the 24 studied species in a single run, the best suited approach for the compounds ionized in positive mode was based on a UHPLC HILIC column with 1.8 μm particle size, providing appropriate results for 22 out of the 24 species tested. In contrast, the detection of glyphosate and aminomethylphosphonic acid could only be achieved with a zwitterionic-type mixed-mode column, which proved to be suitable only for the pesticides detected in negative ion mode. Finally, the selected approach (UHPLC HILIC) was found to be useful for the determination of multiple pesticides in oranges using HILIC-ESI-MS/MS, with limits of quantitation in the low microgram per kilogram in most cases. Graphical Abstract HILIC improves separation of multiclass polar pesticides.

  13. Phase Transitions in Planning Problems: Design and Analysis of Parameterized Families of Hard Planning Problems

    NASA Technical Reports Server (NTRS)

    Hen, Itay; Rieffel, Eleanor G.; Do, Minh; Venturelli, Davide

    2014-01-01

    There are two common ways to evaluate algorithms: performance on benchmark problems derived from real applications and analysis of performance on parametrized families of problems. The two approaches complement each other, each having its advantages and disadvantages. The planning community has concentrated on the first approach, with few ways of generating parametrized families of hard problems known prior to this work. Our group's main interest is in comparing approaches to solving planning problems using a novel type of computational device - a quantum annealer - to existing state-of-the-art planning algorithms. Because only small-scale quantum annealers are available, we must compare on small problem sizes. Small problems are primarily useful for comparison only if they are instances of parametrized families of problems for which scaling analysis can be done. In this technical report, we discuss our approach to the generation of hard planning problems from classes of well-studied NP-complete problems that map naturally to planning problems or to aspects of planning problems that many practical planning problems share. These problem classes exhibit a phase transition between easy-to-solve and easy-to-show-unsolvable planning problems. The parametrized families of hard planning problems lie at the phase transition. The exponential scaling of hardness with problem size is apparent in these families even at very small problem sizes, thus enabling us to characterize even very small problems as hard. The families we developed will prove generally useful to the planning community in analyzing the performance of planning algorithms, providing a complementary approach to existing evaluation methods. We illustrate the hardness of these problems and their scaling with results on four state-of-the-art planners, observing significant differences between these planners on these problem families. Finally, we describe two general, and quite different, mappings of planning problems to QUBOs, the form of input required for a quantum annealing machine such as the D-Wave II.

  14. Analysis of pulsating spray flames propagating in lean two-phase mixtures with unity Lewis number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicoli, C.; Haldenwang, P.; Suard, S.

    2005-11-01

    Pulsating (or oscillatory) spray flames have recently been observed in experiments on two-phase combustion. Numerical studies have pointed out that such front oscillations can be obtained even with very simple models of homogeneous two-phase mixtures, including elementary vaporization schemes. The paper presents an analytical approach within the simple framework of the thermal-diffusive model, which is complemented by a vaporization rate independent of gas temperature, as soon as the latter reaches a certain thermal threshold ({theta}{sub v} in reduced form). The study involves the Damkoehler number (Da), the ratio of chemical reaction rate to vaporization rate, and the Zeldovich number (Ze)more » as essential parameters. We use the standard asymptotic method based on matched expansions in terms of 1/Ze. Linear analysis of two-phase flame stability is performed by studying, in the absence of differential diffusive effects (unity Lewis number), the linear growth rate of 2-D perturbations added to steady plane solutions and characterized by wavenumber k in the direction transverse to spreading. A domain of existence is found for the pulsating regime. It corresponds to mixture characteristics often met in air-fuel two-phase systems: low boiling temperature ({theta}{sub v} << 1), reaction rate not higher than vaporization rate (Da < 1, i.e., small droplets), and activation temperature assumed to be high compared with flame temperature (Ze {>=} 10). Satisfactory comparison with numerical simulations confirms the validity of the analytical approach; in particular, positive growth rates have been found for planar perturbations (k = 0) and for wrinkled fronts (k {ne} 0). Finally, comparison between predicted frequencies and experimental measurements is discussed.« less

  15. Saturn's Internal Magnetic Field Revealed by Cassini Grand Finale

    NASA Astrophysics Data System (ADS)

    Cao, H.; Dougherty, M. K.; Khurana, K. K.; Hunt, G. J.; Provan, G.; Kellock, S.; Burton, M. E.; Burk, T. A.

    2017-12-01

    Saturn's internal magnetic field has been puzzling since the first in-situ measurements during the Pioneer 11 Saturn flyby. Cassini magnetometer measurements prior to the Grand Finale phase established 1) the highly axisymmetric nature of Saturn's internal magnetic field with a dipole tilt smaller than 0.06 degrees, 2) at least an order of magnitude slower secular variation rate compared to that of the current geomagnetic field, and 3) expulsion of magnetic fluxes from the equatorial region towards high latitude. The highly axisymmetric nature of Saturn's intrinsic magnetic field not only challenges dynamo theory but also makes an accurate determination of the interior rotation rate of Saturn extremely difficult. The Cassini spacecraft entered the Grand Finale phase in April 2017, during which time the spacecraft dived through the gap between Saturn's atmosphere and the inner edge of the D-ring 22 times before descending into the deep atmosphere of Saturn. The unprecedented proximity to Saturn (reaching 2500 km above the cloud deck) and the highly inclined nature of the Grand Finale orbits provided an ideal opportunity to decode Saturn's internal magnetic field. The fluxgate magnetometer onboard Cassini made precise vector measurements during the Grand Finale phase. Magnetic signals from the interior of the planet, the magnetospheric ring current, the high-latitude field-aligned current (FAC) modulated by the 10.7 hour planetary period oscillation, and low-latitude FACs were observed during the Grand Finale phase. Here we report the magnetometer measurements during the Cassini Grand Finale phase, new features of Saturn's internal magnetic field revealed by these measurements (e.g., the high degree magnetic moments of Saturn, the level of axisymmetry beyond dipole), and implications for the deep interior of Saturn.

  16. Modeling and design for electromagnetic surface wave devices

    NASA Astrophysics Data System (ADS)

    La Spada, Luigi; Haq, Sajad; Hao, Yang

    2017-09-01

    A great deal of interest has reemerged recently in the study of surface waves. The possibility to control and manipulate electromagnetic wave propagations at will opens many new research areas and leads to lots of novel applications in engineering. In this paper, we will present a comprehensive modeling and design approach for surface wave cloaks, based on graded-refractive-index materials and the theory of transformation optics. It can be also applied to any other forms of surface wave manipulation, in terms of amplitude and phase. In this paper, we will present a general method to illustrate how this can be achieved from modeling to the final design. The proposed approach is validated to be versatile and allows ease in manufacturing, thereby demonstrating great potential for practical applications.

  17. Chemical Frustration. A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases, Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Daniel C

    2015-06-23

    Final technical report for "Chemical Frustration: A Design Principle for the Discovery of New Complex Alloy and Intermetallic Phases" funded by the Office of Science through the Materials Chemistry Program of the Office of Basic Energy Sciences.

  18. Model Orlando regionally efficient travel management coordination center (MORE TMCC), phase II : final report.

    DOT National Transportation Integrated Search

    2012-09-01

    The final report for the Model Orlando Regionally Efficient Travel Management Coordination Center (MORE TMCC) presents the details of : the 2-year process of the partial deployment of the original MORE TMCC design created in Phase I of this project...

  19. Facilitating cultural border crossing in urban secondary science classrooms: A study of inservice teachers

    NASA Astrophysics Data System (ADS)

    Monteiro, Anna Karina

    Research acknowledges that if students are to be successful science, they must learn to navigate and cross cultural borders that exist between their own cultures and the subculture of science. This dissertation utilized a mixed methods approach to explore how inservice science teachers working in urban schools construct their ideas of and apply the concepts about the culture of science and cultural border crossing as relevant to the teaching and learning of science. The study used the lenses of cultural capital, social constructivism, and cultural congruency in the design and analysis of each of the three phases of data collection. Phase I identified the perspectives of six inservice science teachers on science culture, cultural border crossing, and which border crossing methods, if any, they used during science teaching. Phase II took a dialectical approach as the teachers read about science culture and cultural border crossing during three informal professional learning community meetings. This phase explored how teachers constructed their understanding of cultural border crossing and how the concept applied to the teaching and learning of science. Phase III evaluated how teachers' perspectives changed from Phase I. In addition, classroom observations were used to determine whether teachers' practices in their science classrooms changed from Phase I to Phase III. All three phases collected data through qualitative (i.e., interviews, classroom observations, and surveys) and quantitative (Likert items) means. The findings indicated that teachers found great value in learning about the culture of science and cultural border crossing as it pertained to their teaching methods. This was not only evidenced by their interviews and surveys, but also in the methods they used in their classrooms. Final conclusions included how the use of student capital resources (prior experiences, understandings and knowledge, ideas an interests, and personal beliefs), if supported by science practices and skills increases student cultural capital. With a greater cultural capital, the students experience cultural congruency between their cultures and the culture of science, enabling them to cross such borders in the science classroom. The implications such findings have on teacher training programs and professional development are discussed.

  20. STS Approach and Landing Test (ALT): Flight 5 - Slow Motion video of pilot-induced oscillation (PIO)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    During 1977 the NASA Dryden Flight Research Center, Edwards, California, hosted the Approach and Landing Tests for the space shuttle prototype Enterprise. Since the shuttles would land initially on Rogers Dry Lakebed adjacent to Dryden on Edwards Air Force Base, NASA had already modified a Boeing 747 to carry them back to their launch site at Kennedy Space Center, Florida. Computer calculations and simulations had predicted the mated shuttle and 747 could fly together safely, but NASA wanted to verify that prediction in a controlled flight-test environment before the shuttles went into operation. The agency also wanted to glide test the orbiter to ensure it could land safely before sending it into space with human beings aboard. So NASA's Johnson Space Center, Houston, Texas, developed a three-phase test program. First, an unpiloted-captive phase tested the shuttle/747 combination without a crew on the Enterprise in case of a problem that required jettisoning the prototype. There were three taxi tests and five flight tests without a crew in the shuttle. That phase ended on March 2, 1977. The second or captive-active phase-completed on July 26, 1977, flew the orbiter mated to the 747 with a two-person crew inside. Finally there were five flights-completed on October 26, 1977, in which the orbiter separated from the Shuttle Carrier Aircraft (SCA, as the 747 was designated) and landed. Beginning on August 12, 1977, the first four landings took place uneventfully on lakebed runways, but the fifth occurred on the concrete, 15,000-foot runway at Edwards. For the first three flights, a tail cone was placed around the dummy main engines to reduce buffeting. The tail-cone fairing was removed for the last two flights. This movie clip begins with the Enterprise just prior to touchdown on the main runway at Edwards AFB after it's fifth and final unpowered free flight. Shuttle pilots Gordon Fullerton and Fred Haise were attempting a couple of firsts on this flight--a precision 'spot' landing on the concrete runway and flying the orbiter without it's tail-cone fairing, since the previous lakebed landing without the fairing had been made by Joe Engle and Richard Truly. Both Haise and Fullerton had prepared as well as possible for the variables of this mission by flying simulated approach profiles in NASA's shuttle training aircraft. However, as with most simulations, the performance wasn't completely identical to that of the real vehicle. Consequently Haise, the mission commander in the left seat, was too fast on the orbiter's landing approach. Deploying the speed brakes, he tried vainly to hit the assigned landing mark but in the stress of the moment, began to overcorrect the vehicle. The orbiter entered a pilot-induced oscillation or PIO along both it's roll and pitch axis causing the vehicle to begin to 'porpoise' down the runway. As it settled down to land it began to bounce from one main landing gear to the next before being brought under control and finally landed by the crew. Engineers at Dryden later determined that a roughly 270-millisecond time delay in the space shuttle's fly-by-wire system had been the cause of the problem, which was then explored with NASA Dryden's F-8 Digital Fly-By-Wire aircraft and corrected with a suppression filter integrated into the orbiter's flight control system.

  1. STS Approach and Landing Test (ALT): Flight 5 - pilot-induced oscillation (PIO) on landing

    NASA Technical Reports Server (NTRS)

    1977-01-01

    During 1977 the NASA Dryden Flight Research Center, Edwards, California, hosted the Approach and Landing Tests for the space shuttle prototype Enterprise. Since the shuttles would land initially on Rogers Dry Lakebed adjacent to Dryden on Edwards Air Force Base, NASA had already modified a Boeing 747 to carry them back to their launch site at Kennedy Space Center, Florida. Computer calculations and simulations had predicted the mated shuttle and 747 could fly together safely, but NASA wanted to verify that prediction in a controlled flight-test environment before the shuttles went into operation. The agency also wanted to glide test the orbiter to ensure it could land safely before sending it into space with human beings aboard. So NASA's Johnson Space Center, Houston, Texas, developed a three-phase test program. First, an unpiloted-captive phase tested the shuttle/747 combination without a crew on the Enterprise in case of a problem that required jettisoning the prototype. There were three taxi tests and five flight tests without a crew in the shuttle. That phase ended on March 2, 1977. The second or captive-active phase-completed on July 26, 1977, flew the orbiter mated to the 747 with a two-person crew inside. Finally there were five flights-completed on October 26, 1977, in which the orbiter separated from the Shuttle Carrier Aircraft (SCA, as the 747 was designated) and landed. Beginning on August 12, 1977, the first four landings took place uneventfully on lakebed runways, but the fifth occurred on the concrete, 15,000-foot runway at Edwards. For the first three flights, a tail cone was placed around the dummy main engines to reduce buffeting. The tail-cone fairing was removed for the last two flights. This movie clip begins with the Enterprise just prior to touchdown on the main runway at Edwards AFB after it's fifth and final unpowered free flight. Shuttle pilots Gordon Fullerton and Fred Haise were attempting a couple of firsts on this flight--a precision 'spot' landing on the concrete runway and flying the orbiter without it's tail-cone fairing, since the previous lakebed landing without the fairing had been made by Joe Engle and Richard Truly. Both Haise and Fullerton had prepared as well as possible for the variables of this mission by flying simulated approach profiles in NASA's shuttle training aircraft. However, as with most simulations, the performance wasn't completely identical to that of the real vehicle. Consequently Haise, the mission commander in the left seat, was too fast on the orbiter's landing approach. Deploying the speed brakes, he tried vainly to hit the assigned landing mark but in the stress of the moment, began to overcorrect the vehicle. The orbiter entered a pilot-induced oscillation or PIO along both it's roll and pitch axis causing the vehicle to begin to 'porpoise' down the runway. As it settled down to land it began to bounce from one main landing gear to the next before being brought under control and finally landed by the crew. Engineers at Dryden later determined that a roughly 270-millisecond time delay in the space shuttle's fly-by-wire system had been the cause of the problem, which was then explored with NASA Dryden's F-8 Digital Fly-By-Wire aircraft and corrected with a suppression filter integrated into the orbiter's flight control system.

  2. Fluctuation-induced continuous transition and quantum criticality in Dirac semimetals

    DOE PAGES

    Classen, Laura; Herbut, Igor F.; Scherer, Michael M.

    2017-09-20

    In this paper, we establish a scenario where fluctuations of new degrees of freedom at a quantum phase transition change the nature of a transition beyond the standard Landau-Ginzburg paradigm. To this end, we study the quantum phase transition of gapless Dirac fermions coupled to a Z 3 symmetric order parameter within a Gross-Neveu-Yukawa model in 2+1 dimensions, appropriate for the Kekulé transition in honeycomb lattice materials. For this model, the standard Landau-Ginzburg approach suggests a first-order transition due to the symmetry-allowed cubic terms in the action. At zero temperature, however, quantum fluctuations of the massless Dirac fermions have tomore » be included. We show that they reduce the putative first-order character of the transition and can even render it continuous, depending on the number of Dirac fermions N f. A nonperturbative functional renormalization group approach is employed to investigate the phase transition for a wide range of fermion numbers and we obtain the critical N f, where the nature of the transition changes. Furthermore, it is shown that for large N f the change from the first to second order of the transition as a function of dimension occurs exactly in the physical 2+1 dimensions. Finally, we compute the critical exponents and predict sizable corrections to scaling for N f = 2.« less

  3. Quantifying phase synchronization using instances of Hilbert phase slips

    NASA Astrophysics Data System (ADS)

    Govindan, R. B.

    2018-07-01

    We propose to quantify phase synchronization between two signals, x(t) and y(t), by calculating variance in the Hilbert phase of y(t) at instances of phase slips exhibited by x(t). The proposed approach is tested on numerically simulated coupled chaotic Roessler systems and second order autoregressive processes. Furthermore we compare the performance of the proposed and original approaches using uterine electromyogram signals and show that both approaches yield consistent results A standard phase synchronization approach, which involves unwrapping the Hilbert phases (ϕ1(t) and ϕ2(t)) of the two signals and analyzing the variance in the | n ṡϕ1(t) - m ṡϕ2(t) | , mod 2 π, (n and m are integers), was used for comparison. The synchronization indexes obtained from the proposed approach and the standard approach agree reasonably well in all of the systems studied in this work. Our results indicate that the proposed approach, unlike the traditional approach, does not require the non-invertible transformations - unwrapping of the phases and calculation of mod 2 π and it can be used to reliably to quantify phase synchrony between two signals.

  4. Does the Consecutive Interpreting Approach enhance medical English communication skills of Japanese-speaking students?

    PubMed

    Iizuka, Hideki; Lefor, Alan K

    2018-04-19

    To determine if the Consecutive Interpreting Approach enhances medical English communication skills of students in a Japanese medical university and to assess this method based on performance and student evaluations.  This is a three-phase study using a mixed-methods design, which starts with four language reproduction activities for 30 medical and 95 nursing students, followed by a quantitative analysis of perfect-match reproduction rates to assess changes over the duration of the study and qualitative error analysis of participants' language reproduction. The final stage included a scored course evaluation and free-form comments to evaluate this approach and to identify effective educational strategies to enhance medical English communication skills. Mean perfect-match reproduction rates of all participants over four reproduction activities differed statistically significantly (repeated measures ANOVA, p<0.0005). The overall perfect-match reproduction rates improved from 75.3 % to 90.1 % for nursing and 89.5 % to 91.6% for medical students. The final achievement levels of nursing and medical students were equivalent (test of equivalence, p<0.05). Details of lexical- and syntactic-level errors were identified. The course evaluation scores were 3.74 (n=30, SD = 0.59) and 3.77 (n=90, SD=0.54) for medical and nursing students respectively. Participants' medical English communication skills are enhanced using this approach. Participants expressed positive feedback regarding this instruction method. This approach may be effective to enhance the language skills of non-native English-speaking students seeking to practice medicine in English speaking countries.

  5. Does the Consecutive Interpreting Approach enhance medical English communication skills of Japanese-speaking students?

    PubMed Central

    Lefor, Alan K.

    2018-01-01

    Objectives To determine if the Consecutive Interpreting Approach enhances medical English communication skills of students in a Japanese medical university and to assess this method based on performance and student evaluations.   Methods  This is a three-phase study using a mixed-methods design, which starts with four language reproduction activities for 30 medical and 95 nursing students, followed by a quantitative analysis of perfect-match reproduction rates to assess changes over the duration of the study and qualitative error analysis of participants' language reproduction. The final stage included a scored course evaluation and free-form comments to evaluate this approach and to identify effective educational strategies to enhance medical English communication skills. Results Mean perfect-match reproduction rates of all participants over four reproduction activities differed statistically significantly (repeated measures ANOVA, p<0.0005). The overall perfect-match reproduction rates improved from 75.3 % to 90.1 % for nursing and 89.5 % to 91.6% for medical students. The final achievement levels of nursing and medical students were equivalent (test of equivalence, p<0.05). Details of lexical- and syntactic-level errors were identified. The course evaluation scores were 3.74 (n=30, SD = 0.59) and 3.77 (n=90, SD=0.54) for medical and nursing students respectively. Conclusions Participants’ medical English communication skills are enhanced using this approach. Participants expressed positive feedback regarding this instruction method. This approach may be effective to enhance the language skills of non-native English-speaking students seeking to practice medicine in English speaking countries. PMID:29677693

  6. An in-flight investigation of a twin fuselage configuration in approach and landing

    NASA Technical Reports Server (NTRS)

    Weingarten, N. C.

    1984-01-01

    An in-flight investigation of the flying qualities of a twin fuselage aircraft design in the approach and landing flight phase was carried out in the USAF/AFWAL Total In-Flight Simulator (TIFS). The objective was to determine the effects of actual motion and visual cues on the pilot when he was offset from the centerline of the aircraft. The experiment variables were lateral pilot offset position (0, 30 and 50 feet) and effective roll mode time constant (.6, 1.2, 2.4 seconds). The evaluation included the final approach, flare and touchdown. Lateral runway offsets and 15 knot crosswinds were used to increase the pilot's workload and force him to make large lateral corrections in the final portion of the approach. Results indicated that large normal accelerations rather than just vertical displacements in rolling maneuvers had the most significant degrading effect on pilot ratings. The normal accelerations are a result of large lateral offset and fast roll mode time constant and caused the pilot to make unnecessary pitch inputs and get into a coupled pitch/roll oscillation while he was making line up and crosswind corrections. A potential criteria for lateral pilot offset position effects is proposed. When the ratio of incremented normal aceleration at the pilot station to the steady state roll rate for a step input reaches .01 to .02 g/deg/sec a deterioration of pilot rating and flying qualities level can be expected.

  7. 19 CFR 207.21 - Final phase notice of scheduling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Final phase notice of scheduling. 207.21 Section 207.21 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION NONADJUDICATIVE INVESTIGATIONS INVESTIGATIONS OF WHETHER INJURY TO DOMESTIC INDUSTRIES RESULTS FROM IMPORTS SOLD AT LESS THAN FAIR VALUE OR FROM...

  8. Petitions for Reconsideration of Phase 2 GHG Emissions and Fuel Efficiency Standards for Medium and Heavy Duty Vehicles

    EPA Pesticide Factsheets

    EPA has received petitions for reconsideration or reconsideration of the October 25, 2016 final rulemaking entitled Greenhouse Gas Emissions and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles—Phase 2 Final Rule (81 FR 73,478)

  9. The Vocational Education Component of the Rhode Island Educational Management Information System.

    ERIC Educational Resources Information Center

    Galamaga, Donald P.; Bartolomeo, Paul A.

    The document describes the implementation (Phase Two) of the Vocational Educational module--one component of an educational management information system. Phase Two entails the technical effort of final system design, final output specifications, edit specifications, system software selection, computer programing, systems documentation and the…

  10. Numerical modeling of polymorphic transformation of oleic acid via near-infrared spectroscopy and factor analysis.

    PubMed

    Liu, Ling; Cheng, Yuliang; Sun, Xiulan; Pi, Fuwei

    2018-05-15

    Near-infrared (NIR) spectroscopy as a tool for direct and quantitatively screening the minute polymorphic transitions of bioactive fatty acids was assessed basing on a thermal heating process of oleic acid. Temperature-dependent NIR spectral profiles indicate that dynamical variances of COOH group dominate its γ → α phase transition, while the transition from active α to β phase mainly relates to the conformational transfer of acyl chain. Through operating multivariate curve resolution-alternating least squares with factor analysis, instantaneous contribution of each active polymorph during the transition process was illustrated for displaying the progressive evolutions of functional groups. Calculated contributions reveal that the α phase of oleic acid initially is present at around -18 °C, but sharply grows up around -2.2 °C from the transformation of γ phase and finally disappears at the melting point. On the other hand, the β phase of oleic acid is sole self-generation after melt even it embryonically appears at -2.2 °C. Such mathematical approach based on NIR spectroscopy and factor analysis calculation provides a volatile strategy in quantitatively exploring the transition processes of bioactive fatty acids; meanwhile, it maintains promising possibility for instantaneous quantifying each active polymorph of lipid materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Reconstructing the plinian and co-ignimbrite sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite

    PubMed Central

    Marti, Alejandro; Folch, Arnau; Costa, Antonio; Engwell, Samantha

    2016-01-01

    The 39 ka Campanian Ignimbrite (CI) super-eruption was the largest volcanic eruption of the past 200 ka in Europe. Tephra deposits indicate two distinct plume forming phases, Plinian and co-ignimbrite, characteristic of many caldera-forming eruptions. Previous numerical studies have characterized the eruption as a single-phase event, potentially leading to inaccurate assessment of eruption dynamics. To reconstruct the volume, intensity, and duration of the tephra dispersal, we applied a computational inversion method that explicitly accounts for the Plinian and co-ignimbrite phases and for gravitational spreading of the umbrella cloud. To verify the consistency of our results, we performed an additional single-phase inversion using an independent thickness dataset. Our better-fitting two-phase model suggests a higher mass eruption rate than previous studies, and estimates that 3/4 of the total fallout volume is co-ignimbrite in origin. Gravitational spreading of the umbrella cloud dominates tephra transport only within the first hundred kilometres due to strong stratospheric winds in our best-fit wind model. Finally, tephra fallout impacts would have interrupted the westward migration of modern hominid groups in Europe, possibly supporting the hypothesis of prolonged Neanderthal survival in South-Western Europe during the Middle to Upper Palaeolithic transition. PMID:26883449

  12. Development and validation of a fatigue assessment scale for U.S. construction workers.

    PubMed

    Zhang, Mingzong; Sparer, Emily H; Murphy, Lauren A; Dennerlein, Jack T; Fang, Dongping; Katz, Jeffrey N; Caban-Martinez, Alberto J

    2015-02-01

    To develop a fatigue assessment scale and test its reliability and validity for commercial construction workers. Using a two-phased approach, we first identified items (first phase) for the development of a Fatigue Assessment Scale for Construction Workers (FASCW) through review of existing scales in the scientific literature, key informant interviews (n = 11) and focus groups (three groups with six workers each) with construction workers. The second phase included assessment for the reliability, validity, and sensitivity of the new scale using a repeated-measures study design with a convenience sample of construction workers (n = 144). Phase one resulted in a 16-item preliminary scale that after factor analysis yielded a final 10-item scale with two sub-scales ("Lethargy" and "Bodily Ailment"). During phase two, the FASCW and its subscales demonstrated satisfactory internal consistency (alpha coefficients were FASCW [0.91], Lethargy [0.86] and Bodily Ailment [0.84]) and acceptable test-retest reliability (Pearson Correlations Coefficients: 0.59-0.68; Intraclass Correlation Coefficients: 0.74-0.80). Correlation analysis substantiated concurrent and convergent validity. A discriminant analysis demonstrated that the FASCW differentiated between groups with arthritis status and different work hours. The 10-item FASCW with good reliability and validity is an effective tool for assessing the severity of fatigue among construction workers. © 2015 Wiley Periodicals, Inc.

  13. Evaluating mitochondrial DNA variation in autism spectrum disorders

    PubMed Central

    HADJIXENOFONTOS, ATHENA; SCHMIDT, MICHAEL A.; WHITEHEAD, PATRICE L.; KONIDARI, IOANNA; HEDGES, DALE J.; WRIGHT, HARRY H.; ABRAMSON, RUTH K.; MENON, RAMKUMAR; WILLIAMS, SCOTT M.; CUCCARO, MICHAEL L.; HAINES, JONATHAN L.; GILBERT, JOHN R.; PERICAK-VANCE, MARGARET A.; MARTIN, EDEN R.; MCCAULEY, JACOB L.

    2012-01-01

    SUMMARY Despite the increasing speculation that oxidative stress and abnormal energy metabolism may play a role in Autism Spectrum Disorders (ASD), and the observation that patients with mitochondrial defects have symptoms consistent with ASD, there are no comprehensive published studies examining the role of mitochondrial variation in autism. Therefore, we have sought to comprehensively examine the role of mitochondrial DNA (mtDNA) variation with regard to ASD risk, employing a multi-phase approach. In phase 1 of our experiment, we examined 132 mtDNA single-nucleotide polymorphisms (SNPs) genotyped as part of our genome-wide association studies of ASD. In phase 2 we genotyped the major European mitochondrial haplogroup-defining variants within an expanded set of autism probands and controls. Finally in phase 3, we resequenced the entire mtDNA in a subset of our Caucasian samples (~400 proband-father pairs). In each phase we tested whether mitochondrial variation showed evidence of association to ASD. Despite a thorough interrogation of mtDNA variation, we found no evidence to suggest a major role for mtDNA variation in ASD susceptibility. Accordingly, while there may be attractive biological hints suggesting the role of mitochondria in ASD our data indicate that mtDNA variation is not a major contributing factor to the development of ASD. PMID:23130936

  14. Reconstructing the plinian and co-ignimbrite sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite.

    PubMed

    Marti, Alejandro; Folch, Arnau; Costa, Antonio; Engwell, Samantha

    2016-02-17

    The 39 ka Campanian Ignimbrite (CI) super-eruption was the largest volcanic eruption of the past 200 ka in Europe. Tephra deposits indicate two distinct plume forming phases, Plinian and co-ignimbrite, characteristic of many caldera-forming eruptions. Previous numerical studies have characterized the eruption as a single-phase event, potentially leading to inaccurate assessment of eruption dynamics. To reconstruct the volume, intensity, and duration of the tephra dispersal, we applied a computational inversion method that explicitly accounts for the Plinian and co-ignimbrite phases and for gravitational spreading of the umbrella cloud. To verify the consistency of our results, we performed an additional single-phase inversion using an independent thickness dataset. Our better-fitting two-phase model suggests a higher mass eruption rate than previous studies, and estimates that 3/4 of the total fallout volume is co-ignimbrite in origin. Gravitational spreading of the umbrella cloud dominates tephra transport only within the first hundred kilometres due to strong stratospheric winds in our best-fit wind model. Finally, tephra fallout impacts would have interrupted the westward migration of modern hominid groups in Europe, possibly supporting the hypothesis of prolonged Neanderthal survival in South-Western Europe during the Middle to Upper Palaeolithic transition.

  15. Roughness exponent in two-dimensional percolation, Potts model, and clock model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redinz, Jose Arnaldo; Martins, Marcelo Lobato

    We present a numerical study of the self-affine profiles obtained from configurations of the q-state Potts (with q=2,3, and 7) and p=10 clock models as well as from the occupation states for site percolation on the square lattice. The first and second order static phase transitions of the Potts model are located by a sharp change in the value of the roughness exponent {alpha} characterizing those profiles. The low temperature phase of the Potts model corresponds to flat ({alpha}{approx_equal}1) profiles, whereas its high temperature phase is associated with rough ({alpha}{approx_equal}0.5) ones. For the p=10 clock model, in addition to themore » flat (ferromagnetic) and rough (paramagnetic) profiles, an intermediate rough (0.5{lt}{alpha}{lt}1) phase{emdash}associated with a soft spin-wave one{emdash}is observed. Our results for the transition temperatures in the Potts and clock models are in agreement with the static values, showing that this approach is able to detect the phase transitions in these models directly from the spin configurations, without any reference to thermodynamical potentials, order parameters, or response functions. Finally, we show that the roughness exponent {alpha} is insensitive to geometric critical phenomena.« less

  16. A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks.

    PubMed

    Zhang, Qingguo; Fok, Mable P

    2017-01-09

    Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate's target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate's target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage-distance rate and the number of moved mobile sensors, when compare with other approaches.

  17. An Integrated Framework for Human-Robot Collaborative Manipulation.

    PubMed

    Sheng, Weihua; Thobbi, Anand; Gu, Ye

    2015-10-01

    This paper presents an integrated learning framework that enables humanoid robots to perform human-robot collaborative manipulation tasks. Specifically, a table-lifting task performed jointly by a human and a humanoid robot is chosen for validation purpose. The proposed framework is split into two phases: 1) phase I-learning to grasp the table and 2) phase II-learning to perform the manipulation task. An imitation learning approach is proposed for phase I. In phase II, the behavior of the robot is controlled by a combination of two types of controllers: 1) reactive and 2) proactive. The reactive controller lets the robot take a reactive control action to make the table horizontal. The proactive controller lets the robot take proactive actions based on human motion prediction. A measure of confidence of the prediction is also generated by the motion predictor. This confidence measure determines the leader/follower behavior of the robot. Hence, the robot can autonomously switch between the behaviors during the task. Finally, the performance of the human-robot team carrying out the collaborative manipulation task is experimentally evaluated on a platform consisting of a Nao humanoid robot and a Vicon motion capture system. Results show that the proposed framework can enable the robot to carry out the collaborative manipulation task successfully.

  18. Numerical modeling of polymorphic transformation of oleic acid via near-infrared spectroscopy and factor analysis

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Cheng, Yuliang; Sun, Xiulan; Pi, Fuwei

    2018-05-01

    Near-infrared (NIR) spectroscopy as a tool for direct and quantitatively screening the minute polymorphic transitions of bioactive fatty acids was assessed basing on a thermal heating process of oleic acid. Temperature-dependent NIR spectral profiles indicate that dynamical variances of COOH group dominate its γ → α phase transition, while the transition from active α to β phase mainly relates to the conformational transfer of acyl chain. Through operating multivariate curve resolution-alternating least squares with factor analysis, instantaneous contribution of each active polymorph during the transition process was illustrated for displaying the progressive evolutions of functional groups. Calculated contributions reveal that the α phase of oleic acid initially is present at around -18 °C, but sharply grows up around -2.2 °C from the transformation of γ phase and finally disappears at the melting point. On the other hand, the β phase of oleic acid is sole self-generation after melt even it embryonically appears at -2.2 °C. Such mathematical approach based on NIR spectroscopy and factor analysis calculation provides a volatile strategy in quantitatively exploring the transition processes of bioactive fatty acids; meanwhile, it maintains promising possibility for instantaneous quantifying each active polymorph of lipid materials.

  19. Efficient Semiparametric Inference Under Two-Phase Sampling, With Applications to Genetic Association Studies.

    PubMed

    Tao, Ran; Zeng, Donglin; Lin, Dan-Yu

    2017-01-01

    In modern epidemiological and clinical studies, the covariates of interest may involve genome sequencing, biomarker assay, or medical imaging and thus are prohibitively expensive to measure on a large number of subjects. A cost-effective solution is the two-phase design, under which the outcome and inexpensive covariates are observed for all subjects during the first phase and that information is used to select subjects for measurements of expensive covariates during the second phase. For example, subjects with extreme values of quantitative traits were selected for whole-exome sequencing in the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). Herein, we consider general two-phase designs, where the outcome can be continuous or discrete, and inexpensive covariates can be continuous and correlated with expensive covariates. We propose a semiparametric approach to regression analysis by approximating the conditional density functions of expensive covariates given inexpensive covariates with B-spline sieves. We devise a computationally efficient and numerically stable EM-algorithm to maximize the sieve likelihood. In addition, we establish the consistency, asymptotic normality, and asymptotic efficiency of the estimators. Furthermore, we demonstrate the superiority of the proposed methods over existing ones through extensive simulation studies. Finally, we present applications to the aforementioned NHLBI ESP.

  20. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Songgang

    2013-05-15

    The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia’s family of free-piston Stirling engines (FPSE). This TES technology is also appropriate for Rankine and Brayton power converters. Solar TES systems based on latent heat of fusion rather than molten salt temperature differences, have many advantages that include up to an order of magnitude higher energy storage density, much higher temperature operation, and elimination of pumped loops for most of Infinia’s design options. DOE has funded four different concepts for solar phase changemore » TES, including one other Infinia awarded project using heat pipes to transfer heat to and from the salt. The unique innovation in this project is an integrated TES/pool boiler heat transfer system that is the simplest approach identified to date and arguably has the best potential for minimizing the levelized cost of energy (LCOE). The Phase 1 objectives are to design, build and test a 1-hour TES proof-of-concept lab demonstrator integrated with an Infinia 3 kW Stirling engine, and to conduct a preliminary design of a 12-hour TES on-sun prototype.« less

  1. A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks

    PubMed Central

    Zhang, Qingguo; Fok, Mable P.

    2017-01-01

    Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate’s target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate’s target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage–distance rate and the number of moved mobile sensors, when compare with other approaches. PMID:28075365

  2. Phase retrieval from the phase-shift moiré fringe patterns in simultaneous dual-wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Cheng, Jinlong; Gao, Zhishan; Bie, Shuyou; Dou, Yimeng; Ni, Ruihu; Yuan, Qun

    2018-02-01

    Simultaneous dual-wavelength interferometry (SDWI) could extend the measured range of each single-wavelength interferometry. The moiré fringe generated in SDWI indirectly represents the information of the measured long synthetic-wavelength ({λ }{{S}}) phase, thus the phase demodulation is rather arduous. To address this issue, we present a method to convert the moiré fringe pattern into a synthetic-wavelength interferogram (moiré to synthetic-wavelength, MTS). After the square of the moiré fringe pattern in the MTS method, the additive moiré pattern is turned into a multiplicative one. And the synthetic-wavelength interferogram could be obtained by a low-pass filtering in spectrum of the multiplicative moiré fringe pattern. Therefore, when the dual-wavelength interferometer is implemented with the π/2 phase shift at {λ }{{S}}, a sequence of synthetic-wavelength phase-shift interferograms with π/2 phase shift could be obtained after the MTS method processing on the captured moiré fringe patterns. And then the synthetic-wavelength phase could be retrieved by the conventional phase-shift algorithm. Compared with other methods in SDWI, the proposed MTS approach could reduce the restriction of the phase shift and frame numbers for the adoption of the conventional phase-shift algorithm. Following, numerical simulations are executed to evaluate the performance of the MTS method in processing time, frames of interferograms and the phase shift error compensation. And the necessary linear carrier for MTS method is less than 0.11 times of the traditional dual-wavelength spatial-domain Fourier transform method. Finally, the deviations for MTS method in experiment are 0.97% for a step with the height of 7.8 μm and 1.11% for a Fresnel lens with the step height of 6.2328 μm.

  3. Theorems on symmetries and flux conservation in radiative transfer using the matrix operator theory.

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.

    1973-01-01

    The matrix operator approach to radiative transfer is shown to be a very powerful technique in establishing symmetry relations for multiple scattering in inhomogeneous atmospheres. Symmetries are derived for the reflection and transmission operators using only the symmetry of the phase function. These results will mean large savings in computer time and storage for performing calculations for realistic planetary atmospheres using this method. The results have also been extended to establish a condition on the reflection matrix of a boundary in order to preserve reciprocity. Finally energy conservation is rigorously proven for conservative scattering in inhomogeneous atmospheres.

  4. Electromagnetic wave propagating along a space curve

    NASA Astrophysics Data System (ADS)

    Lai, Meng-Yun; Wang, Yong-Long; Liang, Guo-Hua; Wang, Fan; Zong, Hong-Shi

    2018-03-01

    By using the thin-layer approach, we derive the effective equation for the electromagnetic wave propagating along a space curve. We find intrinsic spin-orbit, extrinsic spin-orbit, and extrinsic orbital angular-momentum and intrinsic orbital angular-momentum couplings induced by torsion, which can lead to geometric phase, spin, and orbital Hall effects. And we show the helicity inversion induced by curvature that can convert a right-handed circularly polarized electromagnetic wave into a left-handed polarized one, vice versa. Finally, we demonstrate that the gauge invariance of the effective dynamics is protected by the geometrically induced gauge potential.

  5. "Living versus dead": The Pasteurian paradigm and imperial vaccine research.

    PubMed

    Chakrabarti, Pratik

    2010-01-01

    The Semple antirabies vaccine was developed by David Semple in India in 1911. Semple introduced a peculiarly British approach within the Pasteurian tradition by using carbolized dead virus. This article studies this unique phase of vaccine research between 1910 and 1935 to show that in the debates and laboratory experiments around the potency and safety of vaccines, categories like "living" and "dead" were often used as ideological and moral denominations. These abstract and ideological debates were crucial in defining the final configuration of the Semple vaccine, the most popular antirabies vaccine used globally, and also in shaping international vaccination policies.

  6. "Living versus Dead":

    PubMed Central

    Chakrabarti, Pratik

    2010-01-01

    Summary The Semple antirabies vaccine was developed by David Semple in India in 1911. Semple introduced a peculiarly British approach within the Pasteurian tradition by using carbolized dead virus. This article studies this unique phase of vaccine research between 1910 and 1935 to show that in the debates and laboratory experiments around the potency and safety of vaccines, categories like "living" and "dead" were often used as ideological and moral denominations. These abstract and ideological debates were crucial in defining the final configuration of the Semple vaccine, the most popular antirabies vaccine used globally, and also in shaping international vaccination policies. PMID:21037397

  7. Transport regimes spanning magnetization-coupling phase space

    DOE PAGES

    Baalrud, Scott D.; Daligault, Jérôme

    2017-10-06

    The manner in which transport properties vary over the entire parameter-space of coupling and magnetization strength is explored in this paper. Four regimes are identified based on the relative size of the gyroradius compared to other fundamental length scales: the collision mean free path, Debye length, distance of closest approach, and interparticle spacing. Molecular dynamics simulations of self-diffusion and temperature anisotropy relaxation spanning the parameter space are found to agree well with the predicted boundaries. Finally, comparison with existing theories reveals regimes where they succeed, where they fail, and where no theory has yet been developed.

  8. Transport regimes spanning magnetization-coupling phase space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baalrud, Scott D.; Daligault, Jérôme

    The manner in which transport properties vary over the entire parameter-space of coupling and magnetization strength is explored in this paper. Four regimes are identified based on the relative size of the gyroradius compared to other fundamental length scales: the collision mean free path, Debye length, distance of closest approach, and interparticle spacing. Molecular dynamics simulations of self-diffusion and temperature anisotropy relaxation spanning the parameter space are found to agree well with the predicted boundaries. Finally, comparison with existing theories reveals regimes where they succeed, where they fail, and where no theory has yet been developed.

  9. SNC’s Dream Chaser Achieves Successful Free Flight at NASA Armstrong

    NASA Image and Video Library

    2017-11-17

    Sierra Nevada Corporation's Dream Chaser® spacecraft underwent a successful free-flight test on November 11, 2017 at NASA’s Armstrong Flight Research Center, Edwards, California. The test verified and validated the performance of the Dream Chaser in the critical final approach and landing phase of flight, meeting expected models for a future return from the International Space Station. The full-scale Dream Chaser test vehicle was lifted to 12,400 feet altitude by a 234-UT Chinook helicopter, released and flew a pre-planned flight path ending with a successful autonomous landing.

  10. Outdoor thermal monitoring of large scale structures by infrared thermography integrated in an ICT based architecture

    NASA Astrophysics Data System (ADS)

    Dumoulin, Jean; Crinière, Antoine; Averty, Rodolphe

    2015-04-01

    An infrared system has been developed to monitor transport infrastructures in a standalone configuration. Results obtained on bridges open to traffic allows to retrieve the inner structure of the decks. To complete this study, experiments were carried out over several months to monitor two reinforced concrete beams of 16 m long and 21 T each. Detection of a damaged area over one of the two beams was made by Pulse Phase Thermography approach. Measurements carried out over several months. Finally, conclusion on the robustness of the system is proposed and perspectives are presented.

  11. Statistical aspects of modeling the labor curve.

    PubMed

    Zhang, Jun; Troendle, James; Grantz, Katherine L; Reddy, Uma M

    2015-06-01

    In a recent review by Cohen and Friedman, several statistical questions on modeling labor curves were raised. This article illustrates that asking data to fit a preconceived model or letting a sufficiently flexible model fit observed data is the main difference in principles of statistical modeling between the original Friedman curve and our average labor curve. An evidence-based approach to construct a labor curve and establish normal values should allow the statistical model to fit observed data. In addition, the presence of the deceleration phase in the active phase of an average labor curve was questioned. Forcing a deceleration phase to be part of the labor curve may have artificially raised the speed of progression in the active phase with a particularly large impact on earlier labor between 4 and 6 cm. Finally, any labor curve is illustrative and may not be instructive in managing labor because of variations in individual labor pattern and large errors in measuring cervical dilation. With the tools commonly available, it may be more productive to establish a new partogram that takes the physiology of labor and contemporary obstetric population into account. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Regulatory controls on the hydrogeological characterization of a mixed waste disposal site, Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruebelmann, K.L.

    1990-01-01

    Following the detection of chlorinated volatile organic compounds in the groundwater beneath the SDA in the summer of 1987, hydrogeological characterization of the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory (INEL) was required by the Resource Conservation and Recovery Act (RCRA). The waste site, the Subsurface Disposal Area (SDA), is the subject of a RCRA Corrective Action Program. Regulatory requirements for the Corrective Action Program dictate a phased approach to evaluation of the SDA. In the first phase of the program, the SDA is the subject of a RCRA Facility Investigation (RIF), which will obtain information to fullymore » characterize the physical properties of the site, determine the nature and extent of contamination, and identify pathways for migration of contaminants. If the need for corrective measures is identified during the RIF, a Corrective Measures Study (CMS) will be performed as second phase. Information generated during the RIF will be used to aid in the selection and implementation of appropriate corrective measures to correct the release. Following the CMS, the final phase is the implementation of the selected corrective measures. 4 refs., 1 fig.« less

  13. Phase-space dynamics of opposition control in wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Hwang, Yongyun; Ibrahim, Joseph; Yang, Qiang; Doohan, Patrick

    2017-11-01

    The phase-space dynamics of wall-bounded shear flow in the presence of opposition control is explored by examining the behaviours of a pair of nonlinear equilibrium solutions (exact coherent structures), edge state and life time of turbulence at low Reynolds numbers. While the control modifies statistics and phase-space location of the edge state and the lower-branch equilibrium solution very little, it is also found to regularise the periodic orbit on the edge state by reverting a period-doubling bifurcation. Only the upper-branch equilibrium solution and mean turbulent state are significantly modified by the control, and, in phase space, they gradually approach the edge state on increasing the control gain. It is found that this behaviour results in a significant reduction of the life time of turbulence, indicating that the opposition control significantly increases the probability that the turbulent solution trajectory passes through the edge state. Finally, it is shown that the opposition control increases the critical Reynolds number of the onset of the equilibrium solutions, indicating its capability of transition delay. This work is sponsored by the Engineering and Physical Sciences Research Council (EPSRC) in the UK (EP/N019342/1).

  14. Heliocentric phasing performance of electric sail spacecraft

    NASA Astrophysics Data System (ADS)

    Mengali, Giovanni; Quarta, Alessandro A.; Aliasi, Generoso

    2016-10-01

    We investigate the heliocentric in-orbit repositioning problem of a spacecraft propelled by an Electric Solar Wind Sail. Given an initial circular parking orbit, we look for the heliocentric trajectory that minimizes the time required for the spacecraft to change its azimuthal position, along the initial orbit, of a (prescribed) phasing angle. The in-orbit repositioning problem can be solved using either a drift ahead or a drift behind maneuver and, in general, the flight times for the two cases are different for a given value of the phasing angle. However, there exists a critical azimuthal position, whose value is numerically found, which univocally establishes whether a drift ahead or behind trajectory is superior in terms of flight time it requires for the maneuver to be completed. We solve the optimization problem using an indirect approach for different values of both the spacecraft maximum propulsive acceleration and the phasing angle, and the solution is then specialized to a repositioning problem along the Earth's heliocentric orbit. Finally, we use the simulation results to obtain a first order estimate of the minimum flight times for a scientific mission towards triangular Lagrangian points of the Sun-[Earth+Moon] system.

  15. Advanced Stirling Convertor Update

    NASA Astrophysics Data System (ADS)

    Wood, J. Gary; Carroll, Cliff; Matejczyk, Dan; Penswick, L. B.; Soendker, E.

    2006-01-01

    This paper reports on the 88 We Advanced Stirling Convertor (ASC) currently being developed under Phase II of a NASA NRA program for possible use in advanced high specific power radioisotope space power systems. An early developmental unit, the Frequency Test Bed (FTB) which was built and tested in Phase I demonstrated 36% efficiency. The ASC-1 currently being developed under Phase II, uses a high temperature heater head to allow for operation at 850 °C and is expected to have an efficiency approaching 40% (based on AC electrical out) at a temperature ratio of 3.1. The final lightweight ASC-2 convertor to be developed in Phase III is expected to have a mass of approximately 1 kg. The implementation of the ASC would allow for much higher specific power radioisotope power systems, requiring significantly less radioisotope fuel than current systems. The first run of the ASC-1 occurred in September 2005, and full temperature operation was achieved in early October 2005. Presented is an update on progress on the ASC program as well as the plans for future development. Also presented are efforts being performed to ensure the ASC has the required long life already demonstrated in free-piston Stirling cryocoolers.

  16. Mission planning for on-orbit servicing through multiple servicing satellites: A new approach

    NASA Astrophysics Data System (ADS)

    Daneshjou, K.; Mohammadi-Dehabadi, A. A.; Bakhtiari, M.

    2017-09-01

    In this paper, a novel approach is proposed for the mission planning of on-orbit servicing such as visual inspection, active debris removal and refueling through multiple servicing satellites (SSs). The scheduling has been done with the aim of minimization of fuel consumption and mission duration. So a multi-objective optimization problem is dealt with here which is solved by employing particle swarm optimization algorithm. Also, Taguchi technique is employed for robust design of effective parameters of optimization problem. The day that the SSs have to leave parking orbit, transfer duration from parking orbit to final orbit, transfer duration between one target to another, and time spent for the SS on each target are the decision parameters which are obtained from the optimization problem. The raised idea is that in addition to the aforementioned decision parameters, eccentricity and inclination related to the initial orbit and also phase difference between the SSs on the initial orbit are identified by means of optimization problem, so that the designer has not much role on determining them. Furthermore, it is considered that the SS and the target rendezvous at the servicing point and the SS does not perform any phasing maneuver to reach the target. It should be noted that Lambert theorem is used for determination of the transfer orbit. The results show that the proposed approach reduces the fuel consumption and the mission duration significantly in comparison with the conventional approaches.

  17. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency

    PubMed Central

    Ma, Wen; Waffo-Teguo, Pierre; Jourdes, Michael; Li, Hua

    2016-01-01

    Astringency perception, as an essential parameter for high-quality red wine, is principally elicited by condensed tannins in diversified chemical structures. Condensed tannins, which are also known as proanthocyanidins (PAs), belong to the flavonoid class of polyphenols and are incorporated by multiple flavan-3-ols units according to their degree of polymerization (DP). However, the influence of DP size of PAs on astringency perception remains unclear for decades. This controversy was mainly attributed to the lack of efficient strategies to isolate the PAs in non-galloylated forms and with individual degree size from grape/wine. In the present study, the astringency intensity of purified and identified grape oligomeric tannins (DP ranged from 1 to 5) was firstly explored. A novel non-solid phase strategy was used to rapidly exclude the galloylated PAs from the non-galloylated PAs and fractionate the latter according to their DP size. Then, a series of PAs with individual DP size and galloylation were purified by an approach of preparative hydrophilic interaction chromatography. Furthermore, purified compounds were identified by both normal phase HPLC-FLD and reverse phase UHPLC-ESI-Q-TOF. Finally, the contribution of the astringency perception of the individual purified tannins was examined with a salivary protein binding ability test. The results were observed by HPLC-FLD and quantified by changes in PA concentration remaining in the filtrate. In summary, a new approach without a solid stationary phase was developed to isolate PAs according to their DP size. And a positive relationship between the DP of PAs and salivary protein affinity was revealed. PMID:27518822

  18. Estimating regional wheat yield from the shape of decreasing curves of green area index temporal profiles retrieved from MODIS data

    NASA Astrophysics Data System (ADS)

    Kouadio, Louis; Duveiller, Grégory; Djaby, Bakary; El Jarroudi, Moussa; Defourny, Pierre; Tychon, Bernard

    2012-08-01

    Earth observation data, owing to their synoptic, timely and repetitive coverage, have been recognized as a valuable tool for crop monitoring at different levels. At the field level, the close correlation between green leaf area (GLA) during maturation and grain yield in wheat revealed that the onset and rate of senescence appeared to be important factors for determining wheat grain yield. Our study sought to explore a simple approach for wheat yield forecasting at the regional level, based on metrics derived from the senescence phase of the green area index (GAI) retrieved from remote sensing data. This study took advantage of recent methodological improvements in which imagery with high revisit frequency but coarse spatial resolution can be exploited to derive crop-specific GAI time series by selecting pixels whose ground-projected instantaneous field of view is dominated by the target crop: winter wheat. A logistic function was used to characterize the GAI senescence phase and derive the metrics of this phase. Four regression-based models involving these metrics (i.e., the maximum GAI value, the senescence rate and the thermal time taken to reach 50% of the green surface in the senescent phase) were related to official wheat yield data. The performances of such models at this regional scale showed that final yield could be estimated with an RMSE of 0.57 ton ha-1, representing about 7% as relative RMSE. Such an approach may be considered as a first yield estimate that could be performed in order to provide better integrated yield assessments in operational systems.

  19. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency.

    PubMed

    Ma, Wen; Waffo-Teguo, Pierre; Jourdes, Michael; Li, Hua; Teissedre, Pierre-Louis

    2016-01-01

    Astringency perception, as an essential parameter for high-quality red wine, is principally elicited by condensed tannins in diversified chemical structures. Condensed tannins, which are also known as proanthocyanidins (PAs), belong to the flavonoid class of polyphenols and are incorporated by multiple flavan-3-ols units according to their degree of polymerization (DP). However, the influence of DP size of PAs on astringency perception remains unclear for decades. This controversy was mainly attributed to the lack of efficient strategies to isolate the PAs in non-galloylated forms and with individual degree size from grape/wine. In the present study, the astringency intensity of purified and identified grape oligomeric tannins (DP ranged from 1 to 5) was firstly explored. A novel non-solid phase strategy was used to rapidly exclude the galloylated PAs from the non-galloylated PAs and fractionate the latter according to their DP size. Then, a series of PAs with individual DP size and galloylation were purified by an approach of preparative hydrophilic interaction chromatography. Furthermore, purified compounds were identified by both normal phase HPLC-FLD and reverse phase UHPLC-ESI-Q-TOF. Finally, the contribution of the astringency perception of the individual purified tannins was examined with a salivary protein binding ability test. The results were observed by HPLC-FLD and quantified by changes in PA concentration remaining in the filtrate. In summary, a new approach without a solid stationary phase was developed to isolate PAs according to their DP size. And a positive relationship between the DP of PAs and salivary protein affinity was revealed.

  20. A Framework for Translating a High Level Security Policy into Low Level Security Mechanisms

    NASA Astrophysics Data System (ADS)

    Hassan, Ahmed A.; Bahgat, Waleed M.

    2010-01-01

    Security policies have different components; firewall, active directory, and IDS are some examples of these components. Enforcement of network security policies to low level security mechanisms faces some essential difficulties. Consistency, verification, and maintenance are the major ones of these difficulties. One approach to overcome these difficulties is to automate the process of translation of high level security policy into low level security mechanisms. This paper introduces a framework of an automation process that translates a high level security policy into low level security mechanisms. The framework is described in terms of three phases; in the first phase all network assets are categorized according to their roles in the network security and relations between them are identified to constitute the network security model. This proposed model is based on organization based access control (OrBAC). However, the proposed model extend the OrBAC model to include not only access control policy but also some other administrative security policies like auditing policy. Besides, the proposed model enables matching of each rule of the high level security policy with the corresponding ones of the low level security policy. Through the second phase of the proposed framework, the high level security policy is mapped into the network security model. The second phase could be considered as a translation of the high level security policy into an intermediate model level. Finally, the intermediate model level is translated automatically into low level security mechanism. The paper illustrates the applicability of proposed approach through an application example.

  1. Optimal investment for enhancing social concern about biodiversity conservation: a dynamic approach.

    PubMed

    Lee, Joung Hun; Iwasa, Yoh

    2012-11-01

    To maintain biodiversity conservation areas, we need to invest in activities, such as monitoring the condition of the ecosystem, preventing illegal exploitation, and removing harmful alien species. These require a constant supply of resources, the level of which is determined by the concern of the society about biodiversity conservation. In this paper, we study the optimal fraction of the resources to invest in activities for enhancing the social concern y(t) by environmental education, museum displays, publications, and media exposure. We search for the strategy that maximizes the time-integral of the quality of the conservation area x(t) with temporal discounting. Analyses based on dynamic programming and Pontryagin's maximum principle show that the optimal control consists of two phases: (1) in the first phase, the social concern level approaches to the final optimal value y(∗), (2) in the second phase, resources are allocated to both activities, and the social concern level is kept constant y(t) = y(∗). If the social concern starts from a low initial level, the optimal path includes a period in which the quality of the conservation area declines temporarily, because all the resources are invested to enhance the social concern. When the support rate increases with the quality of the conservation area itself x(t) as well as with the level of social concern y(t), both variables may increase simultaneously in the second phase. We discuss the implication of the results to good management of biodiversity conservation areas. 2012 Elsevier Inc. All rights reserved

  2. NALDA (Naval Aviation Logistics Data Analysis) CAI (computer aided instruction)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handler, B.H.; France, P.A.; Frey, S.C.

    Data Systems Engineering Organization (DSEO) personnel developed a prototype computer aided instruction CAI system for the Naval Aviation Logistics Data Analysis (NALDA) system. The objective of this project was to provide a CAI prototype that could be used as an enhancement to existing NALDA training. The CAI prototype project was performed in phases. The task undertaken in Phase I was to analyze the problem and the alternative solutions and to develop a set of recommendations on how best to proceed. The findings from Phase I are documented in Recommended CAI Approach for the NALDA System (Duncan et al., 1987). Inmore » Phase II, a structured design and specifications were developed, and a prototype CAI system was created. A report, NALDA CAI Prototype: Phase II Final Report, was written to record the findings and results of Phase II. NALDA CAI: Recommendations for an Advanced Instructional Model, is comprised of related papers encompassing research on computer aided instruction CAI, newly developing training technologies, instructional systems development, and an Advanced Instructional Model. These topics were selected because of their relevancy to the CAI needs of NALDA. These papers provide general background information on various aspects of CAI and give a broad overview of new technologies and their impact on the future design and development of training programs. The paper within have been index separately elsewhere.« less

  3. Chesapeake Bay Low Freshwater Inflow Study. Phase II. MAP FOLIO. Biota Assessment.

    DTIC Science & Technology

    1982-05-01

    conditions. These were: 1) Base Average -- average freshwater inflow conditions. by increased water consumption projected for the year 2020. 3) Base Drought...RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS. 1963- A TAI m - ii J May 1982 Chesapeake Bay Low Freshwater Inflow Study Phase II Biota Assessment Map...A PERIOD ZOVERED change was found to CIESAPEAKE BAY LOW FRESHWATER INFLOW STUDY FINAL BIOTA ASSESSMENT PHASE II: FINAL REPORT MAP FOLIO s PERFORMING

  4. Generalised syntheses of ordered mesoporous oxides: the atrane route

    NASA Astrophysics Data System (ADS)

    Cabrera, Saúl; El Haskouri, Jamal; Guillem, Carmen; Latorre, Julio; Beltrán-Porter, Aurelio; Beltrán-Porter, Daniel; Marcos, M. Dolores; Amorós *, Pedro

    2000-06-01

    A new simple and versatile technique to obtain mesoporous oxides is presented. While implying surfactant-assisted formation of mesostructured intermediates, the original chemical contribution of this approach lies in the use of atrane complexes as precursors. Without prejudice to their inherent unstability in aqueous solution, the atranes show a marked inertness towards hydrolysis. Bringing kinetic factors into play, it becomes possible to control the processes involved in the formation of the surfactant-inorganic phase composite micelles, which constitute the elemental building blocks of the mesostructures. Independent of the starting compositional complexity, both the mesostructured intermediates and the final mesoporous materials are chemically homogeneous. The final ordered mesoporous materials are thermally stable and show unimodal porosity, as well as homogeneous microstructure and texture. Examples of materials synthesised on account of the versatility of this new method, including siliceous, non siliceous and mixed oxides, are presented and discussed.

  5. Epic Allies: Development of a Gaming App to Improve Antiretroviral Therapy Adherence Among Young HIV-Positive Men Who Have Sex With Men.

    PubMed

    LeGrand, Sara; Muessig, Kathryn Elizabeth; McNulty, Tobias; Soni, Karina; Knudtson, Kelly; Lemann, Alex; Nwoko, Nkechinyere; Hightow-Weidman, Lisa B

    2016-05-13

    In the United States, the human immunodeficiency virus (HIV) disproportionately affects young men who have sex with men (YMSM). For HIV-positive individuals, adherence to antiretroviral therapy (ART) is critical for achieving optimal health outcomes and reducing secondary transmission of HIV. However, YMSM often struggle with ART adherence. Novel mobile phone apps that incorporate game-based mechanics and social networking elements represent a promising intervention approach for improving ART adherence among YMSM. This study used a multiphase, iterative development process to create an ART adherence app for YMSM. The three-phase development process included: (1) theory-based concept development jointly by public health researchers and the technology team, (2) assessment of the target population's ART adherence needs and app preferences and development and testing of a clickable app prototype, and (3) development and usability testing of the final app prototype. The initial theory-based app concept developed in Phase One included medication reminders, daily ART adherence tracking and visualization, ART educational modules, limited virtual interactions with other app users, and gamification elements. In Phase Two, adherence needs, including those related to information, motivation, and behavioral skills, were identified. Participants expressed preferences for an ART adherence app that was informational, interactive, social, and customizable. Based on the findings from Phase Two, additional gaming features were added in Phase Three, including an interactive battle, superhero app theme, and app storyline. Other features were modified to increase interactivity and customization options and integrate the game theme. During usability testing of the final prototype, participants were able to understand and navigate the app successfully and rated the app favorably. An iterative development process was critical for the development of an ART adherence game app that was viewed as highly acceptable, relevant, and useful by YMSM.

  6. Epic Allies: Development of a Gaming App to Improve Antiretroviral Therapy Adherence Among Young HIV-Positive Men Who Have Sex With Men

    PubMed Central

    Muessig, Kathryn Elizabeth; McNulty, Tobias; Soni, Karina; Knudtson, Kelly; Lemann, Alex; Nwoko, Nkechinyere; Hightow-Weidman, Lisa B

    2016-01-01

    Background In the United States, the human immunodeficiency virus (HIV) disproportionately affects young men who have sex with men (YMSM). For HIV-positive individuals, adherence to antiretroviral therapy (ART) is critical for achieving optimal health outcomes and reducing secondary transmission of HIV. However, YMSM often struggle with ART adherence. Novel mobile phone apps that incorporate game-based mechanics and social networking elements represent a promising intervention approach for improving ART adherence among YMSM. Objective This study used a multiphase, iterative development process to create an ART adherence app for YMSM. Methods The three-phase development process included: (1) theory-based concept development jointly by public health researchers and the technology team, (2) assessment of the target population’s ART adherence needs and app preferences and development and testing of a clickable app prototype, and (3) development and usability testing of the final app prototype. Results The initial theory-based app concept developed in Phase One included medication reminders, daily ART adherence tracking and visualization, ART educational modules, limited virtual interactions with other app users, and gamification elements. In Phase Two, adherence needs, including those related to information, motivation, and behavioral skills, were identified. Participants expressed preferences for an ART adherence app that was informational, interactive, social, and customizable. Based on the findings from Phase Two, additional gaming features were added in Phase Three, including an interactive battle, superhero app theme, and app storyline. Other features were modified to increase interactivity and customization options and integrate the game theme. During usability testing of the final prototype, participants were able to understand and navigate the app successfully and rated the app favorably. Conclusions An iterative development process was critical for the development of an ART adherence game app that was viewed as highly acceptable, relevant, and useful by YMSM. PMID:27178752

  7. Terminal area automatic navigation, guidance and control research using the Microwave Landing System (MLS). Part 5: Design and development of a Digital Integrated Automatic Landing System (DIALS) for steep final approach using modern control techniques

    NASA Technical Reports Server (NTRS)

    Halyo, N.

    1983-01-01

    The design and development of a 3-D Digital Integrated Automatic Landing System (DIALS) for the Terminal Configured Vehicle (TCV) Research Aircraft, a B-737-100 is described. The system was designed using sampled data Linear Quadratic Gaussian (LOG) methods, resulting in a direct digital design with a modern control structure which consists of a Kalman filter followed by a control gain matrix, all operating at 10 Hz. DIALS uses Microwave Landing System (MLS) position, body-mounted accelerometers, as well as on-board sensors usually available on commercial aircraft, but does not use inertial platforms. The phases of the final approach considered are the localizer and glideslope capture which may be performed simultaneously, localizer and steep glideslope track or hold, crab/decrab and flare to touchdown. DIALS captures, tracks and flares from steep glideslopes ranging from 2.5 deg to 5.5 deg, selected prior to glideslope capture. Digital Integrated Automatic Landing System is the first modern control design automatic landing system successfully flight tested. The results of an initial nonlinear simulation are presented here.

  8. Modification of linear prepolymers to tailor heterogeneous network formation through photo-initiated Polymerization-Induced Phase Separation

    PubMed Central

    Szczepanski, Caroline R.; Stansbury, Jeffrey W.

    2015-01-01

    Polymerization-induced phase separation (PIPS) was studied in ambient photopolymerizations of triethylene glycol dimethacrylate (TEGDMA) modified by poly(methyl methacrylate) (PMMA). The molecular weight of PMMA and the rate of network formation (through incident UV-irradiation) were varied to influence both the promotion of phase separation through increases in overall free energy, as well as the extent to which phase development occurs during polymerization through diffusion prior to network gelation. The overall free energy of the polymerizing system increases with PMMA molecular weight, such that PIPS is promoted thermodynamically at low loading levels (5 wt%) of a higher molecular weight PMMA (120 kDa), while a higher loading level (20 wt%) is needed to induce PIPS with lower PMMA molecular weight (11 kDa), and phase separation was not promoted at any loading level tested of the lowest molecular weight PMMA (1 kDa). Due to these differences in overall free energy, systems modified by PMMA (11 kDa) underwent phase separation via Nucleation and Growth, and systems modified by PMMA (120 kDa), followed the Spinodal Decomposition mechanism. Despite differences in phase structure, all materials form a continuous phase rich in TEGDMA homopolymer. At high irradiation intensity (Io=20mW/cm2), the rate of network formation prohibited significant phase separation, even when thermodynamically preferred. A staged curing approach, which utilizes low intensity irradiation (Io=300µW/cm2) for the first ~50% of reaction to allow phase separation via diffusion, followed by a high intensity flood-cure to achieve a high degree of conversion, was employed to form phase-separated networks with reduced polymerization stress yet equivalent final conversion and modulus. PMID:26190865

  9. Characterization of bonded stationary phase performance as a function of qualitative and quantitative chromatographic factors in chaotropic chromatography with risperidone and its impurities as model substances.

    PubMed

    Čolović, Jelena; Rmandić, Milena; Malenović, Anđelija

    2018-05-17

    Numerous stationary phases have been developed with the aim to provide desired performances during chromatographic analysis of the basic solutes in their protonated form. In this work, the procedure for the characterization of bonded stationary phase performance, when both qualitative and quantitative chromatographic factors were varied in chaotropic chromatography, was proposed. Risperidone and its three impurities were selected as model substances, while acetonitrile content in the mobile phase (20-30%), the pH of the aqueous phase (3.00-5.00), the content of chaotropic agents in the aqueous phase (10-100 mM), type of chaotropic agent (NaClO 4 , CF 3 COONa), and stationary phase type (Zorbax Eclipse XDB, Zorbax Extend) were studied as chromatographic factors. The proposed procedure implies the combination of D-optimal experimental design, indirect modeling, and polynomial-modified Gaussian model, while grid point search method was selected for the final choice of the experimental conditions which lead to the best possible stationary phase performance for basic solutes. Good agreement between experimentally obtained chromatogram and simulated chromatogram for chosen experimental conditions (25% acetonitrile, 75 mM of NaClO 4 , pH 4.00 on Zorbax Eclipse XDB column) confirmed the applicability of the proposed procedure. The additional point was selected for the verification of proposed procedure ability to distinguish changes in solutes' elution order. Simulated chromatogram for 21.5% acetonitrile, 85 mM of NaClO 4 , pH 5.00 on Zorbax Eclipse XDB column was in line with experimental data. Furthermore, the values of left and right peak half-widths obtained from indirect modeling were used in order to evaluate performances of differently modified stationary phases applying a half-width plots approach. The results from half-width plot approach as well as from the proposed procedure indicate higher efficiency and better separation performance of the stationary phase extra densely bonded and double end-capped with trimethylsilyl group than the stationary phase with the combination of end-capping and bidentate silane bonding for chromatographic analysis of basic solutes in RP-HPLC systems with chaotropic agents. Graphical abstract ᅟ.

  10. Combined Effect of Heating Rate and Microalloying Elements on Recrystallization During Annealing of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe

    2018-05-01

    Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.

  11. Combined Effect of Heating Rate and Microalloying Elements on Recrystallization During Annealing of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe

    2018-07-01

    Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.

  12. Neutron scattering as a probe of liquid crystal polymer-reinforced composite materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hjelm, R.P.; Douglas, E.P.; Benicewicz, B.C.

    1995-12-31

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to obtain nanoscale and molecular level information on the mechanism of reinforcement in liquid crystal polymer (LCP)-reinforced composites, to realize molecular-reinforced LCP composites, and to test the validity of the concept of molecular reinforcement. Small-angle neutron scattering was used to study the structures in the ternary phase diagram of LCP with liquid crystal thermosets and solvent on length scales ranging from 1-100 nm. The goal of the scattering measurements is to understand the phase morphologymore » and degree of segregation of the reinforcing and matrix components. This information helps elucidate the physics of self assembly in these systems. This work provides an experimental basis for a microengineering approach to composites of vastly improved properties.« less

  13. Explaining the unexpected success of the smoking ban in Italy: political strategy and transition to practice, 2000–2005.

    PubMed

    Mele, Valentina; Compagni, Amelia

    2010-01-01

    The approval (2003) and enforcement (2005) of a smoking ban in Italy have been viewed by many as an unexpectedly successful example of policy change. The present paper, by applying a processualist approach, concentrates on two policy cycles between 2000 and 2005. These had opposing outcomes: an incomplete decisional stage and an authoritative decision, enforced two years later. Through the analysis of the different phases of agenda setting, alternative specification and decision making, we have compared the quality of participation of policy entrepreneurs in the two cycles, their political strategies and, in these, the relevance of issue image. The case allows us to direct the attention of scholars and practitioners to an early phase of the policy implementation process – which we have named "transition to practice". This, managed with political strategy, might have strongly contributed to the final successful policy outcome.

  14. Long-range Prethermal Time Crystals

    NASA Astrophysics Data System (ADS)

    Machado, Francisco; Meyer, Gregory D.; Else, Dominic; Olund, Christopher; Nayak, Chetan; Yao, Norman Y.

    2017-04-01

    Driven quantum systems have recently enabled the realization of a discrete time crystal - an intrinsically out-of-equilibrium phase of matter. One strategy to prevent the drive-induced, runaway heating of the time crystal is the presence of strong disorder leading to many-body localization (MBL). A more elegant, disorder-less approach is simply to work in the prethermal regime where time crystalline order can persist to exponentially long times. One key difference between prethermal and MBL time crystals is that the former is prohibited from existing in one dimensional systems with short-range interactions. In this work, we demonstrate that long-range interactions can stabilize a one dimensional prethermal time crystal. By numerically studying the pre-thermal regime, we find evidence for a phase transition out of the time crystal as a function of increasing energy density. Finally, generalizations of previous analytical bounds for the heating time-scale of driven quantum systems to long-range interactions will also be discussed.

  15. Rare-earth nickelates RNiO3: thin films and heterostructures

    NASA Astrophysics Data System (ADS)

    Catalano, S.; Gibert, M.; Fowlie, J.; Íñiguez, J.; Triscone, J.-M.; Kreisel, J.

    2018-04-01

    This review stands in the larger framework of functional materials by focussing on heterostructures of rare-earth nickelates, described by the chemical formula RNiO3 where R is a trivalent rare-earth R  =  La, Pr, Nd, Sm, …, Lu. Nickelates are characterized by a rich phase diagram of structural and physical properties and serve as a benchmark for the physics of phase transitions in correlated oxides where electron–lattice coupling plays a key role. Much of the recent interest in nickelates concerns heterostructures, that is single layers of thin film, multilayers or superlattices, with the general objective of modulating their physical properties through strain control, confinement or interface effects. We will discuss the extensive studies on nickelate heterostructures as well as outline different approaches to tuning and controlling their physical properties and, finally, review application concepts for future devices.

  16. Rare-earth nickelates RNiO3: thin films and heterostructures.

    PubMed

    Catalano, S; Gibert, M; Fowlie, J; Íñiguez, J; Triscone, J-M; Kreisel, J

    2018-04-01

    This review stands in the larger framework of functional materials by focussing on heterostructures of rare-earth nickelates, described by the chemical formula RNiO 3 where R is a trivalent rare-earth R  =  La, Pr, Nd, Sm, …, Lu. Nickelates are characterized by a rich phase diagram of structural and physical properties and serve as a benchmark for the physics of phase transitions in correlated oxides where electron-lattice coupling plays a key role. Much of the recent interest in nickelates concerns heterostructures, that is single layers of thin film, multilayers or superlattices, with the general objective of modulating their physical properties through strain control, confinement or interface effects. We will discuss the extensive studies on nickelate heterostructures as well as outline different approaches to tuning and controlling their physical properties and, finally, review application concepts for future devices.

  17. [Mitochondrial and microcirculatory distress syndrome in the critical patient. Therapeutic implications].

    PubMed

    Navarrete, M L; Cerdeño, M C; Serra, M C; Conejero, R

    2013-10-01

    Mitochondrial and microcirculatory distress syndrome (MMDS) can occur during systemic inflammatory response syndrome (SIRS), and is characterized by cytopathic tissue hypoxia uncorrected by oxygen transport optimization, and associated with an acquired defect in the use of oxygen and energy production in mitochondria, leading to multiple organ dysfunction (MOD). We examine the pathogenesis of MMDS, new diagnostic methods, and recent therapeutic approaches adapted to each of the three phases in the evolution of the syndrome. In the initial phase, the aim is prevention and early reversal of mitochondrial dysfunction. Once the latter is established, the aim is to restore flow of the electron chain, mitochondrial respiration, and to avoid cellular energy collapse. Finally, in the third (resolution) stage, treatment should focus on stimulating mitochondrial biogenesis and the repair or replacement of damaged mitochondria. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  18. [Lung-brain interaction in the mechanically ventilated patient].

    PubMed

    López-Aguilar, J; Fernández-Gonzalo, M S; Turon, M; Quílez, M E; Gómez-Simón, V; Jódar, M M; Blanch, L

    2013-10-01

    Patients with acute lung injury or acute respiratory distress syndrome (ARDS) admitted to the ICU present neuropsychological alterations, which in most cases extend beyond the acute phase and have an important adverse effect upon quality of life. The aim of this review is to deepen in the analysis of the complex interaction between lung and brain in critically ill patients subjected to mechanical ventilation. This update first describes the neuropsychological alterations occurring both during the acute phase of ICU stay and at discharge, followed by an analysis of lung-brain interactions during mechanical ventilation, and finally explores the etiology and mechanisms leading to the neurological disorders observed in these patients. The management of critical patients requires an integral approach focused on minimizing the deleterious effects over the short, middle or long term. Copyright © 2012 Elsevier España, S.L. y SEMICYUC. All rights reserved.

  19. Physics, chemistry and pulmonary sequelae of thermodegradation events in long-mission space flight

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Sklar, Michael; Ramirez, W. Fred; Smith, Gerald J.; Morgenthaler, George W.; Oberdoerster, Guenter

    1993-01-01

    An event in which electronic insulation consisting of polytetrafluoroethylene undergoes thermodegradation on the Space Station Freedom is considered experimentally and theoretically from the initial chemistry and convective transport through pulmonary deposition in humans. The low-gravity enviroment impacts various stages of event simulation. Vapor-phase and particulate thermodegradation products were considered as potential spacecraft contaminants. A potential pathway for the production of ultrafine particles was identified. Different approaches to the simulation and prediction of contaminant transport were studied and used to predict the distribution of generic vapor-phase products in a Space Station model. A lung transport model was used to assess the pulmonary distribution of inhaled particles, and, finally, the impact of adaptation to low gravity on the human response to this inhalation risk was explored on the basis of known physiological modifications of the immune, endocrine, musculoskeletal and pulmonary systems that accompany space flight.

  20. Biochemical methane potential (BMP) of artichoke waste: the inoculum effect.

    PubMed

    Fabbri, Andrea; Serranti, Silvia; Bonifazi, Giuseppe

    2014-03-01

    The aim of this work was to investigate anaerobic digestibility of artichoke waste resulting from industrial transformation. A series of batch anaerobic digestion tests was performed in order to evaluate the biochemical methane potential of the matrix in respect of the process. A comparison of the different performances of the laboratory-scale reactors operating in mesophilic conditions and utilizing three different values of the inoculum/substrate ratio was carried out. The best performance was achieved with an inoculum/substrate ratio of 2. Artichoke-processing byproducts showed a classical organic waste decomposition behaviour: a fast start-up phase, an acclimation stage, and a final stabilization phase. Following this approach, artichoke waste reached chemical oxygen demand removal of about 90% in 40 days. The high methane yield (average 408.62 mL CH4 gvs (-1) voltatile solids), makes artichoke waste a good product to be utilized in anaerobic digestion plants for biogas production.

  1. A layered modulation method for pixel matching in online phase measuring profilometry

    NASA Astrophysics Data System (ADS)

    Li, Hongru; Feng, Guoying; Bourgade, Thomas; Yang, Peng; Zhou, Shouhuan; Asundi, Anand

    2016-10-01

    An online phase measuring profilometry with new layered modulation method for pixel matching is presented. In this method and in contrast with previous modulation matching methods, the captured images are enhanced by Retinex theory for better modulation distribution, and all different layer modulation masks are fully used to determine the displacement of a rectilinear moving object. High, medium and low modulation masks are obtained by performing binary segmentation with iterative Otsu method. The final shifting pixels are calculated based on centroid concept, and after that the aligned fringe patterns can be extracted from each frame. After performing Stoilov algorithm and a series of subsequent operations, the object profile on a translation stage is reconstructed. All procedures are carried out automatically, without setting specific parameters in advance. Numerical simulations are detailed and experimental results verify the validity and feasibility of the proposed approach.

  2. A fusion algorithm for infrared and visible based on guided filtering and phase congruency in NSST domain

    NASA Astrophysics Data System (ADS)

    Liu, Zhanwen; Feng, Yan; Chen, Hang; Jiao, Licheng

    2017-10-01

    A novel and effective image fusion method is proposed for creating a highly informative and smooth surface of fused image through merging visible and infrared images. Firstly, a two-scale non-subsampled shearlet transform (NSST) is employed to decompose the visible and infrared images into detail layers and one base layer. Then, phase congruency is adopted to extract the saliency maps from the detail layers and a guided filtering is proposed to compute the filtering output of base layer and saliency maps. Next, a novel weighted average technique is used to make full use of scene consistency for fusion and obtaining coefficients map. Finally the fusion image was acquired by taking inverse NSST of the fused coefficients map. Experiments show that the proposed approach can achieve better performance than other methods in terms of subjective visual effect and objective assessment.

  3. Scheil-Gulliver Constituent Diagrams

    NASA Astrophysics Data System (ADS)

    Pelton, Arthur D.; Eriksson, Gunnar; Bale, Christopher W.

    2017-06-01

    During solidification of alloys, conditions often approach those of Scheil-Gulliver cooling in which it is assumed that solid phases, once precipitated, remain unchanged. That is, they no longer react with the liquid or with each other. In the case of equilibrium solidification, equilibrium phase diagrams provide a valuable means of visualizing the effects of composition changes upon the final microstructure. In the present study, we propose for the first time the concept of Scheil-Gulliver constituent diagrams which play the same role as that in the case of Scheil-Gulliver cooling. It is shown how these diagrams can be calculated and plotted by the currently available thermodynamic database computing systems that combine Gibbs energy minimization software with large databases of optimized thermodynamic properties of solutions and compounds. Examples calculated using the FactSage system are presented for the Al-Li and Al-Mg-Zn systems, and for the Au-Bi-Sb-Pb system and its binary and ternary subsystems.

  4. A statistical method to estimate low-energy hadronic cross sections

    NASA Astrophysics Data System (ADS)

    Balassa, Gábor; Kovács, Péter; Wolf, György

    2018-02-01

    In this article we propose a model based on the Statistical Bootstrap approach to estimate the cross sections of different hadronic reactions up to a few GeV in c.m.s. energy. The method is based on the idea, when two particles collide a so-called fireball is formed, which after a short time period decays statistically into a specific final state. To calculate the probabilities we use a phase space description extended with quark combinatorial factors and the possibility of more than one fireball formation. In a few simple cases the probability of a specific final state can be calculated analytically, where we show that the model is able to reproduce the ratios of the considered cross sections. We also show that the model is able to describe proton-antiproton annihilation at rest. In the latter case we used a numerical method to calculate the more complicated final state probabilities. Additionally, we examined the formation of strange and charmed mesons as well, where we used existing data to fit the relevant model parameters.

  5. 77 FR 35425 - Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of Countervailing Duty... silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00, 8507.20.80... photovoltaic cells, and modules, laminates, and panels, consisting of crystalline silicon photovoltaic cells...

  6. 77 FR 3281 - High Pressure Steel Cylinders From China; Scheduling of the Final Phase of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ...)] High Pressure Steel Cylinders From China; Scheduling of the Final Phase of Countervailing Duty and... retarded, by reason of subsidized and less-than-fair-value imports from China of high pressure steel... (``high pressure steel cylinders''). High pressure steel cylinders are fabricated of chrome alloy steel...

  7. Space station final study report. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Volume 1 of the Final Study Report provides an Executive Summary of the Phase B study effort conducted under contract NAS8-36526. Space station Phase B implementation resulted in the timely establishment of preliminary design tasks, including trades and analyses. A comprehensive summary of project activities in conducting this study effort is included.

  8. Comparison of futility monitoring guidelines using completed phase III oncology trials.

    PubMed

    Zhang, Qiang; Freidlin, Boris; Korn, Edward L; Halabi, Susan; Mandrekar, Sumithra; Dignam, James J

    2017-02-01

    Futility (inefficacy) interim monitoring is an important component in the conduct of phase III clinical trials, especially in life-threatening diseases. Desirable futility monitoring guidelines allow timely stopping if the new therapy is harmful or if it is unlikely to demonstrate to be sufficiently effective if the trial were to continue to its final analysis. There are a number of analytical approaches that are used to construct futility monitoring boundaries. The most common approaches are based on conditional power, sequential testing of the alternative hypothesis, or sequential confidence intervals. The resulting futility boundaries vary considerably with respect to the level of evidence required for recommending stopping the study. We evaluate the performance of commonly used methods using event histories from completed phase III clinical trials of the Radiation Therapy Oncology Group, Cancer and Leukemia Group B, and North Central Cancer Treatment Group. We considered published superiority phase III trials with survival endpoints initiated after 1990. There are 52 studies available for this analysis from different disease sites. Total sample size and maximum number of events (statistical information) for each study were calculated using protocol-specified effect size, type I and type II error rates. In addition to the common futility approaches, we considered a recently proposed linear inefficacy boundary approach with an early harm look followed by several lack-of-efficacy analyses. For each futility approach, interim test statistics were generated for three schedules with different analysis frequency, and early stopping was recommended if the interim result crossed a futility stopping boundary. For trials not demonstrating superiority, the impact of each rule is summarized as savings on sample size, study duration, and information time scales. For negative studies, our results show that the futility approaches based on testing the alternative hypothesis and repeated confidence interval rules yielded less savings (compared to the other two rules). These boundaries are too conservative, especially during the first half of the study (<50% of information). The conditional power rules are too aggressive during the second half of the study (>50% of information) and may stop a trial even when there is a clinically meaningful treatment effect. The linear inefficacy boundary with three or more interim analyses provided the best results. For positive studies, we demonstrated that none of the futility rules would have stopped the trials. The linear inefficacy boundary futility approach is attractive from statistical, clinical, and logistical standpoints in clinical trials evaluating new anti-cancer agents.

  9. Housing decision making methods for initiation development phase process

    NASA Astrophysics Data System (ADS)

    Zainal, Rozlin; Kasim, Narimah; Sarpin, Norliana; Wee, Seow Ta; Shamsudin, Zarina

    2017-10-01

    Late delivery and sick housing project problems were attributed to poor decision making. These problems are the string of housing developer that prefers to create their own approach based on their experiences and expertise with the simplest approach by just applying the obtainable standards and rules in decision making. This paper seeks to identify the decision making methods for housing development at the initiation phase in Malaysia. The research involved Delphi method by using questionnaire survey which involved 50 numbers of developers as samples for the primary stage of collect data. However, only 34 developers contributed to the second stage of the information gathering process. At the last stage, only 12 developers were left for the final data collection process. Finding affirms that Malaysian developers prefer to make their investment decisions based on simple interpolation of historical data and using simple statistical or mathematical techniques in producing the required reports. It was suggested that they seemed to skip several important decision-making functions at the primary development stage. These shortcomings were mainly due to time and financial constraints and the lack of statistical or mathematical expertise among the professional and management groups in the developer organisations.

  10. Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication.

    PubMed

    Güder, Firat; Yang, Yang; Krüger, Michael; Stevens, Gregory B; Zacharias, Margit

    2010-12-01

    A versatile, low-cost, and flexible approach is presented for the fabrication of millimeter-long, sub-100 nm wide 1D nanochannels with tunable wall properties (wall thickness and material) over wafer-scale areas on glass, alumina, and silicon surfaces. This approach includes three fabrication steps. First, sub-100 nm photoresist line patterns were generated by near-field contact phase-shift lithography (NFC-PSL) using an inexpensive homemade borosilicate mask (NFC-PSM). Second, various metal oxides were directly coated on the resist patterns with low-temperature atomic layer deposition (ALD). Finally, the remaining photoresist was removed via an acetone dip, and then planar nanochannel arrays were formed on the substrate. In contrast to all the previous fabrication routes, the sub-100 nm photoresist line patterns produced by NFC-PSL are directly employed as a sacrificial layer for the creation of nanochannels. Because both the NFC-PSL and the ALD deposition are highly reproducible processes, the strategy proposed here can be regarded as a general route for nanochannel fabrication in a simplified and reliable manner. In addition, the fabricated nanochannels were used as templates to synthesize various organic and inorganic 1D nanostructures on the substrate surface.

  11. Governing nanobiotechnology: lessons from agricultural biotechnology regulation

    NASA Astrophysics Data System (ADS)

    Johnson, Robbin S.

    2011-04-01

    This article uses lessons from biotechnology to help inform the design of oversight for nanobiotechnology. Those lessons suggest the following: first, oversight needs to be broadly defined, encompassing not just regulatory findings around safety and efficacy, but also public understanding and acceptance of the technology and its products. Second, the intensity of scrutiny and review should reflect not just risks but also perceptions of risk. Finally, a global marketplace argues for uniform standards or commercially practical solutions to differences in standards. One way of designing oversight to achieve these purposes is to think about it in three phases—precaution, prudence, and promotion. Precaution comes early in the technology or product's development and reflects real and perceived uncertainties. Prudence governs when risks and hazards have been identified, containment approaches established, and benefits broadly defined. Transparency and public participation rise to the fore. The promotional phase moves toward shaping public understanding and acceptance and involves marketing issues rather than safety ones. This flexible, three-phase approach to oversight would have avoided some of the early regulatory problems with agricultural biotechnology. It also would have led to a more risk-adjusted pathway to regulatory approval. Furthermore, it would avoid some of the arbitrary, disruptive marketing issues that have arisen.

  12. A Bunch Compression Method for Free Electron Lasers that Avoids Parasitic Compressions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Stephen V.; Douglas, David R.; Tennant, Christopher D.

    2015-09-01

    Virtually all existing high energy (>few MeV) linac-driven FELs compress the electron bunch length though the use of off-crest acceleration on the rising side of the RF waveform followed by transport through a magnetic chicane. This approach has at least three flaws: 1) it is difficult to correct aberrations--particularly RF curvature, 2) rising side acceleration exacerbates space charge-induced distortion of the longitudinal phase space, and 3) all achromatic "negative compaction" compressors create parasitic compression during the final compression process, increasing the CSR-induced emittance growth. One can avoid these deficiencies by using acceleration on the falling side of the RF waveformmore » and a compressor with M 56>0. This approach offers multiple advantages: 1) It is readily achieved in beam lines supporting simple schemes for aberration compensation, 2) Longitudinal space charge (LSC)-induced phase space distortion tends, on the falling side of the RF waveform, to enhance the chirp, and 3) Compressors with M 56>0 can be configured to avoid spurious over-compression. We will discuss this bunch compression scheme in detail and give results of a successful beam test in April 2012 using the JLab UV Demo FEL« less

  13. Usability Methods for Ensuring Health Information Technology Safety: Evidence-Based Approaches. Contribution of the IMIA Working Group Health Informatics for Patient Safety.

    PubMed

    Borycki, E; Kushniruk, A; Nohr, C; Takeda, H; Kuwata, S; Carvalho, C; Bainbridge, M; Kannry, J

    2013-01-01

    Issues related to lack of system usability and potential safety hazards continue to be reported in the health information technology (HIT) literature. Usability engineering methods are increasingly used to ensure improved system usability and they are also beginning to be applied more widely for ensuring the safety of HIT applications. These methods are being used in the design and implementation of many HIT systems. In this paper we describe evidence-based approaches to applying usability engineering methods. A multi-phased approach to ensuring system usability and safety in healthcare is described. Usability inspection methods are first described including the development of evidence-based safety heuristics for HIT. Laboratory-based usability testing is then conducted under artificial conditions to test if a system has any base level usability problems that need to be corrected. Usability problems that are detected are corrected and then a new phase is initiated where the system is tested under more realistic conditions using clinical simulations. This phase may involve testing the system with simulated patients. Finally, an additional phase may be conducted, involving a naturalistic study of system use under real-world clinical conditions. The methods described have been employed in the analysis of the usability and safety of a wide range of HIT applications, including electronic health record systems, decision support systems and consumer health applications. It has been found that at least usability inspection and usability testing should be applied prior to the widespread release of HIT. However, wherever possible, additional layers of testing involving clinical simulations and a naturalistic evaluation will likely detect usability and safety issues that may not otherwise be detected prior to widespread system release. The framework presented in the paper can be applied in order to develop more usable and safer HIT, based on multiple layers of evidence.

  14. Capacity planning of link restorable optical networks under dynamic change of traffic

    NASA Astrophysics Data System (ADS)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2005-11-01

    Future backbone networks shall require full-survivability and support dynamic changes of traffic demands. The Generalized Survivable Networks (GSN) was proposed to meet these challenges. GSN is fully-survivable under dynamic traffic demand changes, so it offers a practical and guaranteed characterization framework for ASTN / ASON survivable network planning and bandwidth-on-demand resource allocation 4. The basic idea of GSN is to incorporate the non-blocking network concept into the survivable network models. In GSN, each network node must specify its I/O capacity bound which is taken as constraints for any allowable traffic demand matrix. In this paper, we consider the following generic GSN network design problem: Given the I/O bounds of each network node, find a routing scheme (and the corresponding rerouting scheme under failure) and the link capacity assignment (both working and spare) which minimize the cost, such that any traffic matrix consistent with the given I/O bounds can be feasibly routed and it is single-fault tolerant under the link restoration scheme. We first show how the initial, infeasible formal mixed integer programming formulation can be transformed into a more feasible problem using the duality transformation of the linear program. Then we show how the problem can be simplified using the Lagrangian Relaxation approach. Previous work has outlined a two-phase approach for solving this problem where the first phase optimizes the working capacity assignment and the second phase optimizes the spare capacity assignment. In this paper, we present a jointly optimized framework for dimensioning the survivable optical network with the GSN model. Experiment results show that the jointly optimized GSN can bring about on average of 3.8% cost savings when compared with the separate, two-phase approach. Finally, we perform a cost comparison and show that GSN can be deployed with a reasonable cost.

  15. THERMODYNAMICS AND KINETICS OF PHASE TRANSFORMATIONS IN PLUTONIUM ALLOYS - PART I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, P A; Kaufman, L; Liu, Z

    2004-08-18

    In this report we investigate order, stability, and phase transformations for a series of actinide-based alloys. The statics and kinetics of precipitation and ordering in this class of alloys are modeled with a scheme that couples fundamental information on the alloy energetics obtained from experimental and assessed thermo-chemical data to the CALPHAD approach commonly used in industry for designing alloys with engineering specificity with the help of the Thermo-Calc software application. The CALPHAD approach is applied to the study of the equilibrium thermodynamic properties of Pu-based alloys, Pu-X, where X=Al, Fe, Ga. The assessment of the equilibrium phase diagrams inmore » the whole range of alloy composition has been performed with the PARROT module of the Thermo-Calc application software. Predictions are made on the low temperature and Pu-rich side of the phase diagrams of Pu-Ga and Pu-Al for which controversy has been noted in the past. The validity of the assessed thermo-chemical database will be discussed by comparing predicted heats of transformation for pure Pu with measured values from differential scanning calorimetry analysis. An overall picture for the stability properties of Pu-Ga and Pu-Al that reconciles the results of past studies carried out on these alloys is proposed. Results on phase stability in the ternary Fe-Ga-Pu and Al-Fe-Pu alloys are discussed. The information collected in this study is then used to model metastability, long-term stability and aging for this class of alloys by coupling Thermo-Calc with DICTRA, a series of modules that allow the analysis of DIffusion Controlled TRAnsformations. Kinetics information is then summarized in so-called TTT (temperature-time-transformations) diagrams for the most relevant phases of actinide alloys. Specifically, results are presented on kinetics of phase transformations associated with the eutectoid-phase decomposition reaction occurring at low temperature, and with the martensitic transformation that takes place at low Ga content in Pu-Ga alloys. Finally, after a summary of the most salient results, suggestions are made for further studies at the micro- and mesoscales.« less

  16. A finite element approach to self-consistent field theory calculations of multiblock polymers

    NASA Astrophysics Data System (ADS)

    Ackerman, David M.; Delaney, Kris; Fredrickson, Glenn H.; Ganapathysubramanian, Baskar

    2017-02-01

    Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.

  17. An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images.

    PubMed

    Gumaei, Abdu; Sammouda, Rachid; Al-Salman, Abdul Malik; Alsanad, Ahmed

    2018-05-15

    Among several palmprint feature extraction methods the HOG-based method is attractive and performs well against changes in illumination and shadowing of palmprint images. However, it still lacks the robustness to extract the palmprint features at different rotation angles. To solve this problem, this paper presents a hybrid feature extraction method, named HOG-SGF that combines the histogram of oriented gradients (HOG) with a steerable Gaussian filter (SGF) to develop an effective palmprint recognition approach. The approach starts by processing all palmprint images by David Zhang's method to segment only the region of interests. Next, we extracted palmprint features based on the hybrid HOG-SGF feature extraction method. Then, an optimized auto-encoder (AE) was utilized to reduce the dimensionality of the extracted features. Finally, a fast and robust regularized extreme learning machine (RELM) was applied for the classification task. In the evaluation phase of the proposed approach, a number of experiments were conducted on three publicly available palmprint databases, namely MS-PolyU of multispectral palmprint images and CASIA and Tongji of contactless palmprint images. Experimentally, the results reveal that the proposed approach outperforms the existing state-of-the-art approaches even when a small number of training samples are used.

  18. A finite element approach to self-consistent field theory calculations of multiblock polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, David M.; Delaney, Kris; Fredrickson, Glenn H.

    Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibriummore » polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.« less

  19. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Industrialization

    NASA Technical Reports Server (NTRS)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Loucks, Mike; Carrico, John; Policastri, Daniel

    2017-01-01

    A new concept study was initiated to examine the architecture needed to gradually develop an economical, evolvable and sustainable lunar infrastructure using a public/private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop a lunar infrastructure system that would be mutually beneficial. This approach would also require NASA and its industry partners to share costs in the development phase and then transfer operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, communication towers and satellites, autonomous rover operations, landing pads and resource extraction operations. The public/private partnerships approach used in this study leveraged best practices from NASA's Commercial Orbital Transportation Services (COTS) program which introduced an innovative and economical approach for partnering with industry to develop commercial cargo services to the International Space Station. This program was planned together with the ISS Commercial Resupply Services (CRS) contracts which was responsible for initiating commercial cargo delivery services to the ISS for the first time. The public/private partnerships approach undertaken in the COTS program proved to be very successful in dramatically reducing development costs for these ISS cargo delivery services as well as substantially reducing operational costs. To continue on this successful path towards installing economical infrastructure services for LEO and beyond, this new study, named Lunar COTS (Commercial Operations and Transport Services), was conducted to examine extending the NASA COTS model to cis-lunar space and the lunar surface. The goals of the Lunar COTS concept are to: 1) develop and demonstrate affordable and commercial cis-lunar and surface capabilities, such as lunar cargo delivery and surface power generation, in partnership with industry; 2) incentivize industry to establish economical and sustainable lunar infrastructure services to support NASA missions and initiate lunar commerce; and 3) encourage creation of new space markets for economic growth and benefit. A phased-development approach was also studied to allow for incremental development and demonstration of capabilities needed to build a lunar infrastructure. This paper will describe the Lunar COTS concept goals, objectives and approach for building an economical and sustainable lunar infrastructure. It will also describe the technical challenges and advantages of developing and operating each infrastructure element. It will also describe the potential benefits and progress that can be accomplished in the initial phase of this Lunar COTS approach. Finally, the paper will also look forward to the potential of a robust lunar industrialization environment and its potential effect on the next 50 years of space exploration.

  20. Analysis, Implementation and Considerations for Liquid Crystals as a Reconfigurable Antennas Solution (LiCRAS) for Space

    NASA Astrophysics Data System (ADS)

    Doyle, Derek

    The space industry has predominantly relied on high gain reflector dish antenna apertures for performing communications, but is constantly investing in phase array antenna concepts to provide increased signal flexibility at reduced system costs in terms of finances and system resources. The problem with traditional phased arrays remains the significantly greater program cost and complexity added to the satellite by integrating arrays of antenna elements with dedicated amplifier and phase shifters to perform adaptive beam forming. Liquid Crystal Reflectarrays (LiCRas) offer some of the electrical beam forming capability of a phased array system with the component and design complexity in lines with a traditional reflector antenna aperture but without the risks associated with mechanical steering systems. The final solution is believed to be a hybrid approach that performs in between the boundaries set by the two current disparate approaches. Practical reflectarrays have been developed since the 90's as a means to control reflection of incident radiation off a flat structure that is electrically curved based on radiating elements and their reflection characteristics with tailored element phase delay. In the last decade several methods have been proposed to enable tunable reflectarrays where the electrical shape of the reflector can be steered by controlling the resonating properties of the elements on the reflector using a DC bias. These approaches range from complex fast switching MEMS and ferroelectric devices, to more robust but slower chemical changes. The aim of this work is to investigate the feasibility of a molecular transition approach in the form of liquid crystals which change permittivity based on the electrical field they are subjected to. In this work, particular attention will be paid to the impact of space environment on liquid crystal reflectarray materials and reflector architectures. Of particular interest are the effects on performance induced by the temperature extremes of space and the electromagnetic particle environment. These two items tend to drive much of the research and development for various space technologies and based on these physical influences, assertions can be made toward the space worthiness of such a material approach and can layout future R&D; needs to make certain LC RF devices feasible for space use. Moreover, in this work the performance metrics of such a technology will be addressed along with methods of construction from a space perspective where specific design considerations must be made based on the extreme environment that a typical space asset must endure.

  1. Comparing different stimulus configurations for population receptive field mapping in human fMRI

    PubMed Central

    Alvarez, Ivan; de Haas, Benjamin; Clark, Chris A.; Rees, Geraint; Schwarzkopf, D. Samuel

    2015-01-01

    Population receptive field (pRF) mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous “wedge and ring” stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time. PMID:25750620

  2. Programmable Oscillator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Lee, Clement G.; Nguyen, Huy

    2011-01-01

    A programmable oscillator is a frequency synthesizer with an output phase that tracks an arbitrary function. An offset, phase-locked loop circuit is used in combination with an error control feedback loop to precisely control the output phase of the oscillator. To down-convert the received signal, several stages of mixing may be employed with the compensation for the time-base distortion of the carrier occurring at any one of those stages. In the Goldstone Solar System Radar (GSSR), the compensation occurs in the mixing from an intermediate frequency (IF), whose value is dependent on the station and band, to a common IF used in the final stage of down-conversion to baseband. The programmable oscillator (PO) is used in the final stage of down-conversion to generate the IF, along with a time-varying phase component that matches the time-base distortion of the carrier, thus removing it from the final down-converted signal.

  3. Radiocarbon dating of the Late Cycladic building and destruction phases at Akrotiri, Thera: New evidence

    NASA Astrophysics Data System (ADS)

    Maniatis, Yannis

    2012-01-01

    Akrotiri was a flourishing prehistoric settlement on the Cycladic island of Santorini (Thera) until its life was ended by a huge volcanic eruption in the LCI period. There is much debate as to when this final destruction occurred. Based on the Egyptian historical dating this happened around 1540-1530 BC, while, based on radiocarbon and other scientific data, around 1640-1600 BC. This work is an attempt to date with radiocarbon the whole settlement's life starting from the earlier phases of occupation but focusing in the sequence of the latest events. The samples, coming from the deep shafts dug in the site for the pillars of the new shelter, are pieces of wood and charcoal from house architectural elements and other constructions, including the final earthquake victims temporary camps. Therefore, the dates obtained represent the beginning of the different cultural phases plus the latest events. The results provide novel absolute dates for the commencement of the LMC and LCI Phases at Akrotiri, giving mean ranges around 1820-1790 BC and 1775-1722 BC, respectively, while the final destruction is dated around 1622-1548 BC. These results show that the LCI phase started about 100 years earlier than estimated with the Egyptian Historical chronology while the final destruction around 60 years or less earlier.

  4. Tank waste remediation system retrieval and disposal mission readiness-to-proceed responses to internal independent assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaus, P.S.

    1998-01-06

    The US Department of Energy (DOE) is planning to make critical decisions during fiscal year (FY) 1998 regarding privatization contracts for the treatment of Hanford tank waste. Specifically, DOE, Richland Operations Office (RL), will make decisions related to proceeding with Phase 1 Privatization. In support of these decisions, the management and integration (M+I) contractor must be able to meet the requirements to support the Phase 1 privatization contractors. As part of the assessment of the Tank Waste Retrieval (TWR) Readiness-To-Proceed (RTP), an independent review of their process and products was required by the RL letter of August 8, 1997. Themore » Independent Review Team reviewed the adequacy of the planning that has been done by the M+I contractor to validate that, if the plans are carried out, there is reasonable assurance of success. Overall, the RTP Independent Review Team concluded that, if the planning by the M+I contractor team is carried out with adequate funding, there is reasonable assurance that the M+I contractor will be able to deliver waste to the privatization contractor for the duration of Phase 1. This conclusion was based on addressing the recommendations contained in the Independent Review Team`s Final Report and in the individual Criteria and Review Approach (CRA) forms completed during the assessment. The purpose of this report is to formally document the independent assessment and the RTP team responses to the Independent Review Team recommendations. It also provides closure logics for selected recommendations from a Lockheed Martin Hanford Corporation (LMHC) internal assessment of the Technical Basis Review (TBR) packages. This report contains the RTP recommendation closure process (Section 2.0); the closure tables (Section 3.0) which provide traceability between each review team recommendation and its corresponding Project Hanford Management Contract closure logic; and two attachments that formally document the Independent Review Team Final Report and the Internal Assessment Final Report.« less

  5. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John

    2005-01-01

    Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.

  6. Application of a Boson Expansion Formalism Based on the Random Phase Approximation to Samarium Isotopes

    NASA Astrophysics Data System (ADS)

    Jamaluddin, Muzhar Bin

    The Boson Expansion Theory of Kishimoto and Tamura has proved to be very successful in describing quadrupole collective motions in even-even nuclei. This theory, however, involves a complicated transformation from the Tamm-Dancoff phonons to the phonons of the Random Phase Approximation. In this thesis a Boson Expansion formalism, derived directly from the Random Phase Approximation and set forth by Pedracchi and Tamura, is used to derive the boson forms of the nuclear Hamiltonian and the electromagnetic transition operator. Detailed discussions of the formalism of Pedrocchi and Tamura and its extension needed to perform realistic calculations are presented. The technique used to deriving the boson forms and the formulae used in the calculations are also given a thorough treatment to demonstrate the simplicity of this approach. Finally, the theory is tested by applying it to calculate the energy levels and some electromagnetic properties of the Samarium isotopes. The results show that the present theory is capable of describing the range of behavior from a vibrational to a rotational character of the Samarium isotopes as good as the previous theory.

  7. Deformation behaviour of Rheocast A356 Al alloy at microlevel considering approximated RVEs

    NASA Astrophysics Data System (ADS)

    Islam, Sk. Tanbir; Das, Prosenjit; Das, Santanu

    2015-03-01

    A micromechanical approach is considered here to predict the deformation behaviour of Rheocast A356 (Al-Si-Mg) alloy. Two representative volume elements (RVEs) are modelled in the finite element (FE) framework. Two dimensional approximated microstructures are generated assuming elliptic grains, based on the grain size, shape factor and area fraction of the primary Al phase of the said alloy at different processing condition. Plastic instability is shown using stress and strain distribution between the Al rich primary and Si rich eutectic phases under different boundary conditions. Boundary conditions are applied on the approximated RVEs in such a manner, so that they represent the real life situation depending on their position on a cylindrical tensile test sample. FE analysis is carried out using commercial finite element code ABAQUS without specifying any damage or failure criteria. Micro-level in-homogeneity leads to incompatible deformation between the constituent phases of the rheocast alloy and steers plastic strain localisation. Plastic stain localised regions within the RVEs are predicted as the favourable sites for void nucleation. Subsequent growth of nucleated voids leads to final failure of the materials under investigation.

  8. Perturbative study of the QCD phase diagram for heavy quarks at nonzero chemical potential: Two-loop corrections

    NASA Astrophysics Data System (ADS)

    Maelger, J.; Reinosa, U.; Serreau, J.

    2018-04-01

    We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.

  9. A dynamical systems approach for estimating phase interactions between rhythms of different frequencies from experimental data

    PubMed Central

    Goto, Takahiro; Aoyagi, Toshio

    2018-01-01

    Synchronization of neural oscillations as a mechanism of brain function is attracting increasing attention. Neural oscillation is a rhythmic neural activity that can be easily observed by noninvasive electroencephalography (EEG). Neural oscillations show the same frequency and cross-frequency synchronization for various cognitive and perceptual functions. However, it is unclear how this neural synchronization is achieved by a dynamical system. If neural oscillations are weakly coupled oscillators, the dynamics of neural synchronization can be described theoretically using a phase oscillator model. We propose an estimation method to identify the phase oscillator model from real data of cross-frequency synchronized activities. The proposed method can estimate the coupling function governing the properties of synchronization. Furthermore, we examine the reliability of the proposed method using time-series data obtained from numerical simulation and an electronic circuit experiment, and show that our method can estimate the coupling function correctly. Finally, we estimate the coupling function between EEG oscillation and the speech sound envelope, and discuss the validity of these results. PMID:29337999

  10. RASSP final technical report

    NASA Astrophysics Data System (ADS)

    1992-10-01

    The overall objective of the DARPA/Tri-Service RASSP program is to demonstrate a capability to rapidly specify, produce, and yield domain-specific, affordable signal processors for use in Department of Defense systems such as automatic target acquisition, tracking, and recognition, electronic countermeasures, communications, and SIGINT. The objective of the study phase is to specify a recommended program plan for the government to use as a template for procurement of the RASSP design system and demonstration program. To accomplish that objective, the study phase program tasks are to specify a development methodology for signal processors (adaptable to various organizational design styles, and application areas), analyze the requirements in CAD/CAE tools to support the development methodology, identify the state and development plans of the industry relative to this area, and to recommend the additional developments not currently being addressed by the industry, which are recommended as RASSP developments. In addition, the RASSP study phase will define a linking approach for electronically linking design centers to manufacturing centers so a complete cycle for prototyping can be accomplished with significantly reduced cycle time.

  11. A numerical model for the simulation of low Mach number gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Daru, V.; Duluc, M.-C.; Le Quéré, P.; Juric, D.

    2010-03-01

    This work is devoted to the numerical simulation of gas-liquid flows. The liquid phase is considered as incompressible, while the gas phase is treated as compressible in the low Mach number approach. We present a model and a numerical method aimed at the computation of such two-phase flows. The numerical model uses a lagrangian front-tracking method to deal with the interface. The model being validated with a 1-D reference solution, results in the 2-D case are presented. Two air bubbles are enclosed in a rigid cavity and surrounded with liquid water. As the initial pressure of the two bubbles is set to different values, an oscillatory motion is induced in which the bubbles undergo alternate compression and dilatation associated with alternate internal heating and cooling. This oscillatory motion can not be sustained and a damping is finally observed. It is shown in the present work that thermal conductivity of the liquid has a significant effect on both the frequency and the damping time scale of the oscillations.

  12. Is the step-wise tiered approach for ERA of pharmaceuticals useful for the assessment of cancer therapeutic drugs present in marine environment?

    PubMed

    Aguirre-Martínez, G V; Okello, C; Salamanca, M J; Garrido, C; Del Valls, T A; Martín-Díaz, M L

    2016-01-01

    Methotrexate (MTX) and tamoxifen (TMX) cancer therapeutic drugs have been detected within the aquatic environment. Nevertheless, MTX and TMX research is essentially bio-medically orientated, with few studies addressing the question of its toxicity in fresh water organisms, and none to its' effect in the marine environment. To the authors' knowledge, Environmental Risk Assessments (ERA) for pharmaceuticals has mainly been designed for freshwater and terrestrial environments (European Medicines Agency-EMEA guideline, 2006). Therefore, the purpose of this research was (1) to assess effect of MTX and TMX in marine organism using the EMEA guideline, (2) to develop an ERA methodology for marine environment, and (3) to evaluate the suitability of including a biomarker approach in Phase III. To reach these aims, a risk assessment of MTX and TMX was performed following EMEA guideline, including a 2-tier approach during Phase III, applying lysosomal membrane stability (LMS) as a screening biomarker in tier-1 and a battery of biochemical biomarkers in tier-2. Results from Phase II indicated that MTX was not toxic for bacteria, microalgae and sea urchin at the concentrations tested, thus no further assessment was required, while TMX indicated a possible risk. Therefore, Phase III was performed for only TMX. Ruditapes philippinarum were exposed during 14 days to TMX (0.1, 1, 10, 50 μg L(-1)). At the end of the experiment, clams exposed to environmental concentration indicated significant changes in LMS compared to the control (p<0.01); thus a second tier was applied. A significant induction of biomarkers (activity of Ethoxyresorufin O-deethylase [EROD], glutathione S-transferase [GST], glutathione peroxidase [GPX], and lipid peroxidation [LPO] levels) was observed in digestive gland tissues of clams compared with control (p<0.01). Finally, this study indicated that MTX was not toxic at an environmental concentration, whilst TMX was potentially toxic for marine biota. This study has shown the necessity to create specific guidelines in order to evaluate effects of pharmaceuticals in marine environment which includes sensitive endpoints. The inadequacy of current EMEA guideline to predict chemotherapy agents toxicity in Phase II was displayed whilst the usefulness of other tests were demonstrated. The 2-tier approach, applied in Phase III, appears to be suitable for an ERA of cancer therapeutic drugs in the marine environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Toxicity Identification and Evaluation for the Effluent from Wastewater Treatment Plant in Industrial Complex using D.magna

    NASA Astrophysics Data System (ADS)

    Lee, S.; Keum, H.; Chun Sang, H.

    2015-12-01

    In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a wastewater treatment plant in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (6,900 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration (450, 100, 80, 5,300, 0.66, 2,200mg/L) was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Keywords : TIE, D. magna, Industrial waste water Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  14. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    PubMed

    Islam, Aminul; Teo, Siow Hwa; Rahman, M Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.

  15. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal

    PubMed Central

    Islam, Aminul; Teo, Siow Hwa; Rahman, M. Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33–41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed. PMID:26700479

  16. Thermodynamic constraints on the amplitude of quantum oscillations

    DOE PAGES

    Shekhter, Arkady; Modic, K. A.; McDonald, R. D.; ...

    2017-03-23

    Magneto-quantum oscillation experiments in high-temperature superconductors show a strong thermally induced suppression of the oscillation amplitude approaching the critical dopings [B. J. Ramshaw et al., Science 348, 317 (2014); H. Shishido et al., Phys. Rev. Lett. 104, 057008 (2010); P. Walmsley et al., Phys. Rev. Lett. 110, 257002 (2013)]—in support of a quantum-critical origin of their phase diagrams. In this paper, we suggest that, in addition to a thermodynamic mass enhancement, these experiments may directly indicate the increasing role of quantum fluctuations that suppress the quantum oscillation amplitude through inelastic scattering. Finally, we show that the traditional theoretical approaches beyondmore » Lifshitz-Kosevich to calculate the oscillation amplitude in correlated metals result in a contradiction with the third law of thermodynamics and suggest a way to rectify this problem.« less

  17. The practice of agent-based model visualization.

    PubMed

    Dorin, Alan; Geard, Nicholas

    2014-01-01

    We discuss approaches to agent-based model visualization. Agent-based modeling has its own requirements for visualization, some shared with other forms of simulation software, and some unique to this approach. In particular, agent-based models are typified by complexity, dynamism, nonequilibrium and transient behavior, heterogeneity, and a researcher's interest in both individual- and aggregate-level behavior. These are all traits requiring careful consideration in the design, experimentation, and communication of results. In the case of all but final communication for dissemination, researchers may not make their visualizations public. Hence, the knowledge of how to visualize during these earlier stages is unavailable to the research community in a readily accessible form. Here we explore means by which all phases of agent-based modeling can benefit from visualization, and we provide examples from the available literature and online sources to illustrate key stages and techniques.

  18. RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference

    PubMed Central

    Maples, Brian K.; Gravel, Simon; Kenny, Eimear E.; Bustamante, Carlos D.

    2013-01-01

    Local-ancestry inference is an important step in the genetic analysis of fully sequenced human genomes. Current methods can only detect continental-level ancestry (i.e., European versus African versus Asian) accurately even when using millions of markers. Here, we present RFMix, a powerful discriminative modeling approach that is faster (∼30×) and more accurate than existing methods. We accomplish this by using a conditional random field parameterized by random forests trained on reference panels. RFMix is capable of learning from the admixed samples themselves to boost performance and autocorrect phasing errors. RFMix shows high sensitivity and specificity in simulated Hispanics/Latinos and African Americans and admixed Europeans, Africans, and Asians. Finally, we demonstrate that African Americans in HapMap contain modest (but nonzero) levels of Native American ancestry (∼0.4%). PMID:23910464

  19. New approach to canonical partition functions computation in Nf=2 lattice QCD at finite baryon density

    NASA Astrophysics Data System (ADS)

    Bornyakov, V. G.; Boyda, D. L.; Goy, V. A.; Molochkov, A. V.; Nakamura, Atsushi; Nikolaev, A. A.; Zakharov, V. I.

    2017-05-01

    We propose and test a new approach to computation of canonical partition functions in lattice QCD at finite density. We suggest a few steps procedure. We first compute numerically the quark number density for imaginary chemical potential i μq I . Then we restore the grand canonical partition function for imaginary chemical potential using the fitting procedure for the quark number density. Finally we compute the canonical partition functions using high precision numerical Fourier transformation. Additionally we compute the canonical partition functions using the known method of the hopping parameter expansion and compare results obtained by two methods in the deconfining as well as in the confining phases. The agreement between two methods indicates the validity of the new method. Our numerical results are obtained in two flavor lattice QCD with clover improved Wilson fermions.

  20. Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack

    NASA Astrophysics Data System (ADS)

    Monti, F.; Gaume, J.; van Herwijnen, A.; Schweizer, J.

    2015-08-01

    The process of dry-snow slab avalanche formation can be divided into two phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation based on shear stress and strength. Though it is known that both the properties of the weak layer and the slab play a major role in avalanche release, most previous approaches only considered slab properties in terms of slab depth, average density and skier penetration. For example, for the skier stability index, the additional stress (e.g. due to a skier) at the depth of the weak layer is calculated by assuming that the snow cover can be considered a semi-infinite, elastic half-space. We suggest a new approach based on a simplification of the multi-layered elasticity theory in order to easily compute the additional stress due to a skier at the depth of the weak layer taking into account the layering of the snow slab and the substratum. We first tested the proposed approach on simplified snow profiles, then on manually observed snow profiles including a stability test and, finally, on simulated snow profiles. Our simple approach well reproduced the additional stress obtained by finite element simulations for the simplified profiles - except that the sequence of layering in the slab cannot be replicated. Once implemented into the classical skier stability index and applied to manually observed snow profiles classified into different stability classes, the classification accuracy improved with the new approach. Finally, we implemented the refined skier stability index into the 1-D snow cover model SNOWPACK. For the two study cases presented in this paper, this approach showed promising results even though further verification is still needed. In the future, we intend to implement the proposed approach for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.

Top