Sample records for final dry solids

  1. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process.

    PubMed

    Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka; Yang, Mingshi

    2013-04-15

    Freeze-drying and spray-drying are often applied drying techniques for biopharmaceutical formulations. The formation of different solid forms upon drying is often dependent on the complex interplay between excipient selection and process parameters. The purpose of this study was to investigate the influence of the chosen drying method on the solid state form. Mannitol-lysozyme solutions of 20mg/mL, with the amount of lysozyme varying between 2.5% and 50% (w/w) of total solid content, were freeze-dried and spray-dried, respectively. The resulting solid state of mannitol was analysed by near-infrared spectroscopy in combination with multivariate analysis and further, results were verified with X-ray powder diffraction. It was seen that the prevalence of the mannitol polymorphic form shifted from β-mannitol to δ-mannitol with increasing protein concentration in freeze-dried formulations. In spray-dried formulations an increase in protein concentration resulted in a shift from β-mannitol to α-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying process in itself, rather than the temperature, that leads to the observed solid state changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Hybrid Drying of Carrot Preliminary Processed with Ultrasonically Assisted Osmotic Dehydration

    PubMed Central

    2017-01-01

    Summary In this paper the kinetics of osmotic dehydration of carrot and the influence of this pretreatment on the post-drying processes and the quality of obtained products are analysed. Osmotic dehydration was carried out in the aqueous fructose solution in two different ways: with and without ultrasound assistance. In the first part of the research, the kinetics of osmotic dehydration was analysed on the basis of osmotic dewatering rate, water loss and solid gain. Next, the effective time of dehydration was determined and in the second part of research samples were initially dehydrated for 30 min and dried. Five different procedures of drying were established on the grounds of convective method enhanced with microwave and infrared radiation. The influence of osmotic dehydration on the drying kinetics and final product quality was analysed. It was found that it did not influence the drying kinetics significantly but positively affected the final product quality. Negligible influence on the drying kinetics was attributed to solid uptake, which may block the pores, hindering heat and mass transfer. It was also concluded that the application of microwave and/or infrared radiation during convective drying significantly influenced the kinetics of the final stage of drying. A proper combination of aforementioned techniques of hybrid drying allows reducing the drying time. Differences between the particular dehydration methods and drying schedules were discussed. PMID:28867949

  3. Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste.

    PubMed

    Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco; Pontoni, Ludovico

    2014-10-01

    This work investigates the role of the moisture content on anaerobic digestion of food waste, as representative of rapidly biodegradable substrates, analysing the role of volatile fatty acid production on process kinetics. A range of total solids from 4.5% to 19.2% is considered in order to compare methane yields and kinetics of reactors operated under wet to dry conditions. The experimental results show a reduction of the specific final methane yield of 4.3% and 40.8% in semi-dry and dry conditions compared with wet conditions. A decreasing trend of the specific initial methane production rate is observed when increasing the total solids concentration. Because of lack of water, volatile fatty acids accumulation occurs during the first step of the process at semi-dry and dry conditions, which is considered to be responsible for the reduction of process kinetic rates. The total volatile fatty acids concentration and speciation are proposed as indicators of process development at different total solids content. © The Author(s) 2014.

  4. Spray drying formulation of amorphous solid dispersions.

    PubMed

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Influence of effective stress and dry density on the permeability of municipal solid waste.

    PubMed

    Zhang, Zhenying; Wang, Yingfeng; Xu, Hui; Fang, Yuehua; Wu, Dazhi

    2018-05-01

    A landfill is one of the main sites for disposal of municipal solid waste and the current landfill disposal system faces several problems. For instance, excessive leachate water is an important factor leading to landfill instability. Understanding the permeability characteristics of municipal solid waste is a relevant topic in the field of environmental geotechnical engineering. In this paper, the current research progress on permeability characteristics of municipal solid waste is discussed. A review of recent studies indicates that the research in this field is divided into two categories based on the experimental method employed: field tests and laboratory tests. This paper summarizes test methods, landfill locations, waste ages, dry densities and permeability coefficients across different studies that focus on permeability characteristics. Additionally, an experimental study on compressibility and permeability characteristics of fresh municipal solid waste under different effective stresses and compression times was carried out. Moreover, the relationships between the permeability coefficient and effective stress as well as dry density were obtained and a permeability prediction model was established. Finally, the experimental results from the existing literature and this paper were compared and the effects of effective stress and dry density on the permeability characteristics of municipal solid waste were summarized. This study provides the basis for analysis of leachate production in a landfill.

  6. Bio-drying of municipal solid waste with high water content by aeration procedures regulation and inoculation.

    PubMed

    Zhang, Dong-Qing; He, Pin-Jing; Jin, Tai-Feng; Shao, Li-Ming

    2008-12-01

    To improve the water content reduction of municipal solid waste with high water content, the operations of supplementing a hydrolytic stage prior to aerobic degradation and inoculating the bio-drying products were conducted. A 'bio-drying index' was used to evaluate the bio-drying performance. For the aerobic processes, the inoculation accelerated organics degradation, enhanced the lignocelluloses degradation rate by 10.4%, and lowered water content by 7.0%. For the combined hydrolytic-aerobic processes, the inoculum addition had almost no positive effect on the bio-drying efficiency, but it enhanced the lignocelluloses degradation rate by 9.6% and strengthened the acidogenesis in the hydrolytic stage. Compared with the aerobic processes, the combined processes had a higher bio-drying index (4.20 for non-inoculated and 3.67 for the inoculated trials). Moreover, the lowest final water content occurred in the combined process without inoculation (50.5% decreased from an initial 72.0%).

  7. Influence of storage, heat treatment, and solids composition on the bleaching of whey with hydrogen peroxide.

    PubMed

    Li, Xiaomeng E; Campbell, Rachel E; Fox, Aaron J; Gerard, Patrick D; Drake, MaryAnne

    2012-07-01

    The residual annatto colorant in liquid whey is bleached to provide a desired neutral color in dried whey ingredients. This study evaluated the influence of starter culture, whey solids and composition, and spray drying on bleaching efficacy. Cheddar cheese whey with annatto was manufactured with starter culture or by addition of lactic acid and rennet. Pasteurized fat-separated whey was ultrafiltered (retentate) and spray dried to 34% whey protein concentrate (WPC34). Aliquots were bleached at 60 °C for 1 h (hydrogen peroxide, 250 ppm), before pasteurization, after pasteurization, after storage at 3 °C and after freezing at -20 °C. Aliquots of retentate were bleached analogously immediately and after storage at 3 or -20 °C. Freshly spray dried WPC34 was rehydrated to 9% (w/w) solids and bleached. In a final experiment, pasteurized fat-separated whey was ultrafiltered and spray dried to WPC34 and WPC80. The WPC34 and WPC80 retentates were diluted to 7 or 9% solids (w/w) and bleached at 50 °C for 1 h. Freshly spray-dried WPC34 and WPC80 were rehydrated to 9 or 12% solids and bleached. Bleaching efficacy was measured by extraction and quantification of norbixin. Each experiment was replicated 3 times. Starter culture, fat separation, or pasteurization did not impact bleaching efficacy (P > 0.05) while cold or frozen storage decreased bleaching efficacy (P < 0.05). Bleaching efficacy of 80% (w/w) protein liquid retentate was higher than liquid whey or 34% (w/w) protein liquid retentate (P < 0.05). Processing steps, particularly holding times and solids composition, influence bleaching efficacy of whey. Optimization of whey bleaching conditions is important to reduce the negative effects of bleaching on the flavor of dried whey ingredients. This study established that liquid storage and whey composition are critical processing points that influence bleaching efficacy. © 2012 Institute of Food Technologists®

  8. Reductive capacity measurement of waste forms for secondary radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Yang, Jung-Seok; Serne, R. Jeffrey

    2015-12-01

    The reductive capacities of dry ingredients and final solid waste forms were measured using both the Cr(VI) and Ce(IV) methods and the results were compared. Blast furnace slag (BFS), sodium sulfide, SnF2, and SnCl2 used as dry ingredients to make various waste forms showed significantly higher reductive capacities compared to other ingredients regardless of which method was used. Although the BFS exhibits appreciable reductive capacity, it requires greater amounts of time to fully react. In almost all cases, the Ce(IV) method yielded larger reductive capacity values than those from the Cr(VI) method and can be used as an upper boundmore » for the reductive capacity of the dry ingredients and waste forms, because the Ce(IV) method subjects the solids to a strong acid (low pH) condition that dissolves much more of the solids. Because the Cr(VI) method relies on a neutral pH condition, the Cr(VI) method can be used to estimate primarily the waste form surface-related and readily dissolvable reductive capacity. However, the Cr(VI) method does not measure the total reductive capacity of the waste form, the long-term reductive capacity afforded by very slowly dissolving solids, or the reductive capacity present in the interior pores and internal locations of the solids.« less

  9. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste.

    PubMed

    Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin

    2015-03-01

    Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.

  10. Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity.

    PubMed

    Teixeira, C C C; Mendonça, L M; Bergamaschi, M M; Queiroz, R H C; Souza, G E P; Antunes, L M G; Freitas, L A P

    2016-04-01

    This work aimed at improving the solubility of curcumin by the preparation of spray-dried ternary solid dispersions containing Gelucire®50/13-Aerosil® and quantifying the resulting in vivo oral bioavailability and anti-inflammatory activity. The solid dispersion containing 40% of curcumin was characterised by calorimetry, infrared spectroscopy and X-ray powder diffraction. The solubility and dissolution rate of curcumin in aqueous HCl or phosphate buffer improved up to 3600- and 7.3-fold, respectively. Accelerated stability test demonstrated that the solid dispersion was stable for 9 months. The pharmacokinetic study showed a 5.5-fold increase in curcumin in rat blood plasma when compared to unprocessed curcumin. The solid dispersion also provided enhanced anti-inflammatory activity in rat paw oedema. Finally, the solid dispersion proposed here is a promising way to enhance curcumin bioavailability at an industrial pharmaceutical perspective, since its preparation applies the spray drying, which is an easy to scale up technique. The findings herein stimulate further in vivo evaluations and clinical tests as a cancer and Alzheimer chemoprevention agent.

  11. Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers.

    PubMed

    Zhao, Xuebing; Dong, Lei; Chen, Liang; Liu, Dehua

    2013-05-01

    Formiline pretreatment pertains to a biomass fractionation process. In the present work, Formiline-pretreated sugarcane bagasse was hydrolyzed with cellulases by batch and multi-step fed-batch processes at 20% solid loading. For wet pulp, after 144 h incubation with cellulase loading of 10 FPU/g dry solid, fed-batch process obtained ~150 g/L glucose and ~80% glucan conversion, while batch process obtained ~130 g/L glucose with corresponding ~70% glucan conversion. Solid loading could be further increased to 30% for the acetone-dried pulp. By fed-batch hydrolysis of the dried pulp in pH 4.8 buffer solution, glucose concentration could be 247.3±1.6 g/L with corresponding 86.1±0.6% glucan conversion. The enzymatic hydrolyzates could be well converted to ethanol by a subsequent fermentation using Saccharomices cerevisiae with ethanol titer of 60-70 g/L. Batch and fed-batch SSF indicated that Formiline-pretreated substrate showed excellent fermentability. The final ethanol concentration was 80 g/L with corresponding 82.7% of theoretical yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  13. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  14. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  15. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  16. 49 CFR 173.217 - Carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Carbon dioxide, solid (dry ice). 173.217 Section... Class 7 § 173.217 Carbon dioxide, solid (dry ice). (a) Carbon dioxide, solid (dry ice), when offered for... marked on two sides “WARNING CO2 SOLID (DRY ICE).” (2) Other packagings containing solid carbon dioxide...

  17. Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr; Badyda, Krzysztof

    2011-12-01

    The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.

  18. Electro-dewatering of wastewater sludge: influence of the operating conditions and their interactions effects.

    PubMed

    Mahmoud, Akrama; Olivier, Jérémy; Vaxelaire, Jean; Hoadley, Andrew F A

    2011-04-01

    Electric field-assisted dewatering, also called electro-dewatering (EDW), is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. The application of these additional fields can be applied to either or both dewatering stages (filtration and/or compression), or as a pre-or post-treatment of the dewatering process. In this study, the performance of the EDW on wastewater sludge was investigated. Experiments were carried out on a laboratory filtration/compression cell, provided with electrodes, in order to apply an electrical field. The chosen operating conditions pressure (200-1200 kPa) and voltage (10-50 V) are sufficient to remove a significant proportion of the water that cannot be removed using mechanical dewatering technologies alone. A response surface methodology (RSM) was used to evaluate the effects of the processing parameters of EDW on (i) the final dry solids content, which is a fundamental dewatering parameter and an excellent indicator of the extent of EDW and (ii) the energy consumption calculated for each additional mass of water removed. A two-factor central composite design was used to establish the optimum conditions for the EDW of wastewater sludge. Experiments showed that the use of an electric field combined with mechanical compression requires less than 10 and 25% of the theoretical thermal drying energy for the low and moderate voltages cases, respectively. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  19. Aerogel Projects Ongoing in MSFC's Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Shular, David A.; Smithers, Gweneth A.; Plawsky, Joel L.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    When we speak of an aerogel material, we are referring more to process and structure am to a specific substance. Aerogel, considered the lightest solid material, has been made from silica for seventy years. Resorcinol-formaldehyde, organic aerogels have been developed more recently. However, aerogel can be made from almost any type of substance, even lead. Because an aerogel is mostly air (about 99 %), the solid substance used will affect the weight very little. The term "aerogel" connotes the sol-gel process used to manufacture the material. The aerogel begins as a liquid "sol," becomes a solid "alcogel," and is then dried to become an "aerogel." The final product has a unique structure, useful for exploitation. It is an "open pore" system with nano-sized particles and pores, has very high surface area, and is highly interconnected. Besides low weight, aerogels have ultimate (lowest) values in other properties: thermal conductivity, refractive index, sound speed, and dielectric constant. Aerogels were first prepared in 1931 by Steven Kistler, who used a supercritical drying step to replace the liquid in a gel with air, preserving the structure (1). Kistler's procedure involved a water-to-alcohol exchange step; in the 1970's, this step was eliminated when a French investigator introduced the use of tetramethylorthosilicate. Still, alcohol drying involved dangerously high temperatures and pressures. In the 1980's, the Microstructured Materials Group at Berkeley Laboratory found that the alcohol in the gel could be replaced with liquid carbon dioxide before supercritical drying, which greatly improved safety (2). 'Me most recent major contribution has been that of Deshpande, Smith and Brinker in New Mexico, who are working to eliminate the supercritical drying step (3). When aerogels were first being developed, they were evaporatively dried. However, the wet gel, when dried, underwent severe shrinkage and cracking; this product was termed "xerogel." When the autoclave drying step was introduced, the final product was without cracks and showed only minimal shrinkage; this product was termed "aerogel." In the 1990's, Deshpande, Smith and Brinker developed an evaporative drying procedure in which the wet gel is chemically "capped" so that the material, which undergoes shrinkage, springs back to its original size when evaporatively dried. This new type of xerogel, while uncracked and almost the same size as the wet gel, differs from the autoclave-dried product in that it is less porous (approximately 70%, as compared to 99% for aerogels).

  20. Utilization of household food waste for the production of ethanol at high dry material content.

    PubMed

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield.

  1. Utilization of household food waste for the production of ethanol at high dry material content

    PubMed Central

    2014-01-01

    Background Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Results Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. Conclusions In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield. PMID:24401142

  2. Lyophilization -Solid Waste Treatment

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin

    2004-01-01

    This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.

  3. Sterilization of space hardware.

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1971-01-01

    Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.

  4. Preparation and storage of isotopically labeled reduced nicotinamide adenine dinucleotide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Northrop, D.B.; Duggleby, R.G.

    1987-09-01

    A method for obtaining highly purified NADH in a dry, solid, and stable form is described. The method involves improvements of the ion-exchange and reversed-phase chromatographic procedures of C. J. Newton and S. M. Faynor, and D. B. Northrop. The necessary time to prepare pure NADH has been reduced to a few hours. The final product, obtained by drying the nucleotide from absolute ethanol, shows no detectable decomposition either during the drying procedure or during storage under nitrogen gas at -20 degrees C for several months. Using dry product prepared from fixed volumes of ethanolic solution, standardized solutions of knownmore » amounts of the highly purified and stored NADH can be obtained in a few seconds.« less

  5. The effect of mixing ratio variation of sludge and organic solid waste on biodrying process

    NASA Astrophysics Data System (ADS)

    Nasution, A. C.; Kristanto, G. A.

    2018-01-01

    In this study, organic waste was co-biodried with sludge cake to determine which mixing ratio gave the best result. The organic waste was consisted of dried leaves and green leaves, while the sludge cake was obtained from a waste water treatment plant in Bekasi. The experiment was performed on 3 lab-scale reactors with same specifications. After 21 days of experiment, it was found that the reactor with the lowest mixing fraction of sludge (5:1) has the best temperature profile and highest moisture content depletion compared with others. Initial moisture content and initial volatile solid content of this reactor’s feedstock was 52.25% and 82.4% respectively. The airflow rate was 10 lpm. After biodrying was done, the final moisture content of the feedstock from Reactor C was 22.0% and the final volatile solid content was 75.9%.The final calorific value after biodrying process was 3179,28kcal/kg.

  6. Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes.

    PubMed

    Rudrangi, Shashi Ravi Suman; Bhomia, Ruchir; Trivedi, Vivek; Vine, George J; Mitchell, John C; Alexander, Bruce David; Wicks, Stephen Richard

    2015-02-20

    The main objective of this study was to investigate different manufacturing processes claimed to promote inclusion complexation between indomethacin and cyclodextrins in order to enhance the apparent solubility and dissolution properties of indomethacin. Especially, the effectiveness of supercritical carbon dioxide processing for preparing solid drug-cyclodextrin inclusion complexes was investigated and compared to other preparation methods. The complexes were prepared by physical mixing, co-evaporation, freeze drying from aqueous solution, spray drying and supercritical carbon dioxide processing methods. The prepared complexes were then evaluated by scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, solubility and dissolution studies. The method of preparation of the inclusion complexes was shown to influence the physicochemical properties of the formed complexes. Indomethacin exists in a highly crystalline solid form. Physical mixing of indomethacin and methyl-β-cyclodextrin appeared not to reduce the degree of crystallinity of the drug. The co-evaporated and freeze dried complexes had a lower degree of crystallinity than the physical mix; however the lowest degree of crystallinity was achieved in complexes prepared by spray drying and supercritical carbon dioxide processing methods. All systems based on methyl-β-cyclodextrin exhibited better dissolution properties than the drug alone. The greatest improvement in drug dissolution properties was obtained from complexes prepared using supercritical carbon dioxide processing, thereafter by spray drying, freeze drying, co-evaporation and finally by physical mixing. Supercritical carbon dioxide processing is well known as an energy efficient alternative to other pharmaceutical processes and may have application for the preparation of solid-state drug-cyclodextrin inclusion complexes. It is an effective and economic method that allows the formation of solid complexes with a high yield, without the use of organic solvents and problems associated with their residues. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology.

    PubMed

    Qi, Jianping; Lu, Y I; Wu, Wei

    2015-01-01

    Solid dosage forms are better than liquid dosage forms in many ways, such as improved physical and chemical stability, ease of storage and transportation, improved handling properties, and patient compliance. Therefore, it is required to transform dosage forms of liquid origins into solid dosage forms. The functional approaches are to absorb the liquids by solid excipients or through drying. The conventional drying technologies for this purpose include drying by heating, vacuum-, freeze- and spray-drying, etc. Among these drying technologies, fluidbed drying emerges as a new technology that possesses unique advantages. Fluid-bed drying or coating is highly efficient in solvent removal, can be performed at relatively low temperatures, and is a one-step process to manufacture formulations in pellet forms. In this article, the status of the art of manufacturing solid dosage forms from bulk liquids by fluid-bed drying technology was reviewed emphasizing on its application in solid dispersion, inclusion complexes, self-microemulsifying systems, and various nanoscale drug delivery systems.

  8. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  9. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  10. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  11. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  12. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  13. Rapid measurement of the yield stress of anaerobically-digested solid waste using slump tests.

    PubMed

    Garcia-Bernet, D; Loisel, D; Guizard, G; Buffière, P; Steyer, J P; Escudié, R

    2011-04-01

    The anaerobic digestion of solid waste is usually performed using dry or semi-dry technology. Incoming waste and fermenting digestate are pasty media and thus, at the industrial scale, their suitability for pumping and mixing is a prerequisite at the industrial scale. However, their rheology has been poorly characterised in the literature because there is no suitable experimental system for analysing heterogeneous media composed of coarse particles. We have developed a practical rheometrical test, a "slump test", for the analysis of actual digested solid waste. It makes it possible to estimate yield stress from the final slump height. From the slump behavior, we conclude that digestates behave as visco-elastic materials. The yield stress of different digested waste was measured between 200 and 800Pa. We show that the media containing smaller particles or with higher moisture content are characterised by smaller yield stresses. This study thus demonstrates the impact of the origin of the digestate on the yield stress. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. HIDEF Igniter Technology Program. Phase I. Final Report. Appendix A. Polyhedral Boranes in Pyrotechnic Applications

    DTIC Science & Technology

    1980-06-15

    confirmed by its infrared ab- sorption sivcirum. Thtf s.ills of this invention arc especially useful as high encr.uy fuel«, because of their hi^h...very strcn.c acid, having an equivalence point at a pH of 7. The infrared ab- sorption sp’.ctrum (-I- tic add, which, free of solvent of crysta...ia the reaction vessel is collected, washed thoroughly with dry ether and dri^d to give 2.’J8 g. of a white solid. The infrared ab- sorption

  15. Drying of Pigment-Cellulose Nanofibril Substrates

    PubMed Central

    Timofeev, Oleg; Torvinen, Katariina; Sievänen, Jenni; Kaljunen, Timo; Kouko, Jarmo; Ketoja, Jukka A.

    2014-01-01

    A new substrate containing cellulose nanofibrils and inorganic pigment particles has been developed for printed electronics applications. The studied composite structure contains 80% fillers and is mechanically stable and flexible. Before drying, the solids content can be as low as 20% due to the high water binding capacity of the cellulose nanofibrils. We have studied several drying methods and their effects on the substrate properties. The aim is to achieve a tight, smooth surface keeping the drying efficiency simultaneously at a high level. The methods studied include: (1) drying on a hot metal surface; (2) air impingement drying; and (3) hot pressing. Somewhat surprisingly, drying rates measured for the pigment-cellulose nanofibril substrates were quite similar to those for the reference board sheets. Very high dewatering rates were observed for the hot pressing at high moisture contents. The drying method had significant effects on the final substrate properties, especially on short-range surface smoothness. The best smoothness was obtained with a combination of impingement and contact drying. The mechanical properties of the sheets were also affected by the drying method and associated temperature. PMID:28788220

  16. Methods of deoxygenating metals having oxygen dissolved therein in a solid solution

    DOEpatents

    Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Xia, Yang; Zhou, Chengshang

    2017-06-06

    A method of deoxygenating metal can include forming a mixture of: a metal having oxygen dissolved therein in a solid solution, at least one of metallic magnesium and magnesium hydride, and a magnesium-containing salt. The mixture can be heated at a deoxygenation temperature for a period of time under a hydrogen-containing atmosphere to form a deoxygenated metal. The deoxygenated metal can then be cooled. The deoxygenated metal can optionally be subjected to leaching to remove by-products, followed by washing and drying to produce a final deoxygenated metal.

  17. Electro-dewatering of wastewater sludge: An investigation of the relationship between filtrate flow rate and electric current.

    PubMed

    Olivier, Jérémy; Conrardy, Jean-Baptiste; Mahmoud, Akrama; Vaxelaire, Jean

    2015-10-01

    Compared to conventional dewatering techniques, electrical assisted mechanical dewatering, also called electro-dewatering (EDW) is an alternative and an effective technology for the dewatering of sewage sludge with low energy consumption. The objectives of this study were to evaluate the dewatering performance and to determine the influence of the process parameters (e.g. applied electric current, applied voltage, and the initial amount of dry solids) on the kinetics of EDW-process for activated urban sludge. Also significant efforts have been devoted herein to provide comprehensive information about the EDW mechanisms and to understand the relationship between these operating conditions with regards to develop a qualitative and quantitative understanding model of the electro-dewatering process and then produce a robust design methodology. The results showed a very strong correlation between the applied electric current and the filtrate flow rate and consequently the electro-dewatering kinetics. A higher applied electric current leads to faster EDW kinetics and a higher final dry solids content. In contrast, the results of this work showed a significant enhancement of the dewatering kinetics by decreasing the mass of the dry solids introduced into the cell (commonly known as the sludge loading). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Assessment of a combined dry anaerobic digestion and post-composting treatment facility for source-separated organic household waste, using material and substance flow analysis and life cycle inventory.

    PubMed

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2017-08-01

    The fate of total solids, volatile solids, total organic carbon, fossil carbon, biogenic carbon and 17 substances (As, Ca, CaCO 3 , Cd, Cl, Cr, Cu, H, Hg, K, Mg, N, Ni, O, P, Pb, S, Zn) in a combined dry anaerobic digestion and post-composting facility were assessed. Mass balances showed good results with low uncertainties for non-volatile substances, while balances for nitrogen, carbon, volatile solids and total organic carbon showed larger but reasonable uncertainties, due to volatilisation and emissions into the air. Material and substance flow analyses were performed in order to obtain transfer coefficients for a combined dry anaerobic digestion and post-composting facility. All metals passed through the facility and ended up in compost or residues, but all concentrations of metals in the compost complied with legislation. About 23% of the carbon content of the organic waste was transferred to the biogas, 24% to the compost, 13% to residues and 40% into the atmosphere. For nitrogen, 69% was transferred to the compost, 10% volatilised to the biofilter, 11% directly into the atmosphere and 10% to residues. Finally, a full life cycle inventory was conducted for the combined dry anaerobic digestion and post-composting facility, including waste received, fuel consumption, energy use, gaseous emissions, products, energy production and chemical composition of the compost produced. Copyright © 2017. Published by Elsevier Ltd.

  19. Enhanced sludge dewatering by electrofiltration. A feasibility study.

    PubMed

    Saveyn, H; Huybregts, L; Van der Meeren, P

    2001-01-01

    Sludge treatment is a major issue in today's waste water treatment. One of the problems encountered is the limiting dewaterability of mainly biological sludges, causing high final treatment costs for incineration or landfill. Although during recent years, improvements are realised in the field of dewatering, the actual dry solids content after dewatering remains at a maximum value of about 35%. In order to increase the dry solids content, the technique of electrofiltration was investigated. Electrofiltration is the combination of two known techniques, traditional pressure filtration and electroosmotic/electrophoretic dewatering. Pressure filtration is based on pressure as the driving force for dewatering a sludge. Limitations hereby lie in the clogging of the filter cloth due to the build-up of the filtercake. Electroosmotic/electrophoretic dewatering is based on an electric field to separate sludge colloid particles from the surrounding liquid by placing the sludge liquor between two oppositely charged electrodes. In this case, mobile sludge particles will move to one electrode due to their natural surface charge, and the liquid phase will be collected at the oppositely charged electrode. Combination of both techniques makes it possible to create a more homogeneous filter cake and prevent the filter from clogging, resulting in higher cake dry solids contents and shorter filtration cycles. To investigate the feasibility of this technique for the dewatering of activated sludge, a filter unit was developed for investigations on lab scale. Multiple dewatering tests were performed in which the electric parameters for electrofiltration were varied. It was derived from these experiments that very high filter cake dry solids contents (to more than 60%), and short filtration cycles were attainable by using a relatively small electric DC field. The power consumption was very low compared to the power needed to dewater sludge by thermal drying techniques. For this reason, this technique seems very promising for the dewatering of biological sludges.

  20. Structural and evaporative evolutions in desiccating sessile drops of blood

    NASA Astrophysics Data System (ADS)

    Sobac, B.; Brutin, D.

    2011-07-01

    We report an experimental investigation of the drying of a deposited drop of whole blood. Flow motion, adhesion, gelation, and fracturation all occur during the evaporation of this complex matter, leading to a final typical pattern. Two distinct regimes of evaporation are highlighted: the first is driven by convection, diffusion, and gelation in a liquid phase, whereas the second, with a much slower rate of evaporation, is characterized by the mass transport of the liquid left over in the gellified biocomponent matter. A diffusion model of the drying process allows a prediction of the transition between these two regimes of evaporation. Moreover, the formation of cracks and other events occurring during the drying are examined and shown to be driven by critical solid mass concentrations.

  1. Production of Conidia by the Fungus Metarhizium anisopliae Using Solid-State Fermentation.

    PubMed

    Loera-Corral, Octavio; Porcayo-Loza, Javier; Montesinos-Matias, Roberto; Favela-Torres, Ernesto

    2016-01-01

    This chapter describes the production of conidia by Metarhizium anisopliae using solid-state fermentation. Before production of conidia, procedures for strains conservation, reactivation, and propagation are essential in order to provide genetic stability of the strains. The strain is conserved in freeze-dried vials and then reactivated through insect inoculation. Rice is used as a substrate for the conidia production in two different bioreactors: plastic bags and tubular bioreactor. The CO2 production in the tubular bioreactors is measured with a respirometer; this system allows calculating indirect growth parameters as lag time (tlag) (25-35 h), maximum rate of CO2 production (rCO2 max) (0.5-0.7 mg/gdm h), specific rate of CO2 production (μ) (0.10-0.15 1/h), and final CO2 production (CO2) (100-120 mg/gdm). Conidial yield per gram of dry substrate (gdm) should be above 1 × 10(9) conidia/gdm after 10 days of incubation. Germination and viability of conidia obtained after 10 days of incubation should be above 80 % and 75 %, respectively. Bioassays using of Tenebrio molitor as a host insect should yield a final mortality above 80 %.

  2. Method of altering the effective bulk density of solid material and the resulting product

    DOEpatents

    Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.

    1983-01-01

    A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.

  3. Potential application of biodrying to treat solid waste

    NASA Astrophysics Data System (ADS)

    Zaman, Badrus; Oktiawan, Wiharyanto; Hadiwidodo, Mochtar; Sutrisno, Endro; Purwono; Wardana, Irawan Wisnu

    2018-02-01

    The generation of solid waste around the world creates problems if not properly managed. The method of processing solid waste by burning or landfill is currently not optimal. The availability of land where the final processing (TPA) is critical, looking for a new TPA alternative will be difficult and expensive, especially in big cities. The processing of solid waste using bio drying technology has the potential to produce renewable energy and prevention of climate change. Solid waste processing products can serve as Refuse Derived Fuel (RDF), reduce water content of solid waste, meningkatkan kualitas lindi and increase the amount of recycled solid waste that is not completely separated from home. Biodrying technology is capable of enhancing the partial disintegration and hydrolysis of macromolecule organic compounds (such as C-Organic, cellulose, hemicellulose, lignin, total nitrogen). The application of biodrying has the potential to reduce greenhouse gas emissions such as carbon dioxide (CO2), methane (CH4), and dinitrooksida (N2O). These gases cause global warming.

  4. Solid-state, triboelectrostatic and dissolution characteristics of spray-dried piroxicam-glucosamine solid dispersions.

    PubMed

    Adebisi, Adeola O; Kaialy, Waseem; Hussain, Tariq; Al-Hamidi, Hiba; Nokhodchi, Ali; Conway, Barbara R; Asare-Addo, Kofi

    2016-10-01

    This work explores the use of both spray drying and d-glucosamine HCl (GLU) as a hydrophilic carrier to improve the dissolution rate of piroxicam (PXM) whilst investigating the electrostatic charges associated with the spray drying process. Spray dried PXM:GLU solid dispersions were prepared and characterised (XRPD, DSC, SEM). Dissolution and triboelectric charging were also conducted. The results showed that the spray dried PXM alone, without GLU produced some PXM form II (DSC results) with no enhancement in solubility relative to that of the parent PXM. XRPD results also showed the spray drying process to decrease the crystallinity of GLU and solid dispersions produced. The presence of GLU improved the dissolution rate of PXM. Spray dried PXM: GLU at a ratio of 2:1 had the most improved dissolution. The spray drying process generally yielded PXM-GLU spherical particles of around 2.5μm which may have contributed to the improved dissolution. PXM showed a higher tendency for charging in comparison to the carrier GLU (-3.8 versus 0.5nC/g for untreated material and -7.5 versus 3.1nC/g for spray dried materials). Spray dried PXM and spray dried GLU demonstrated higher charge densities than untreated PXM and untreated GLU, respectively. Regardless of PXM:GLU ratio, all spray dried PXM:GLU solid dispersions showed a negligible charge density (net-CMR: 0.1-0.3nC/g). Spray drying of PXM:GLU solid dispersions can be used to produce formulation powders with practically no charge and thereby improving handling as well as dissolution behaviour of PXM. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Understanding particulate coating microstructure development

    NASA Astrophysics Data System (ADS)

    Roberts, Christine Cardinal

    How a dispersion of particulates suspended in a solvent dries into a solid coating often is more important to the final coating quality than even its composition. Essential properties like porosity, strength, gloss, particulate order, and concentration gradients are all determined by the way the particles come together as the coating dries. Cryogenic scanning electron microscopy (cryoSEM) is one of the most effective methods to directly visualize a drying coating during film formation. Using this method, the coating is frozen, arresting particulate motion and solidifying the sample so that it be imaged in an SEM. In this thesis, the microstructure development of particulate coatings was explored with several case studies. First, the effect of drying conditions was determined on the collapse of hollow latex particles, which are inexpensive whiteners for paint. Using cryoSEM, it was found that collapse occurs during the last stages of drying and is most likely to occur at high drying temperatures, humidity, and with low binder concentration. From these results, a theoretical model was proposed for the collapse of a hollow latex particle. CryoSEM was also used to verify a theoretical model for the particulate concentration gradients that may develop in a coating during drying for various evaporation, sedimentation and particulate diffusion rates. This work created a simple drying map that will allow others to predict the character of a drying coating based on easily calculable parameters. Finally, the effect of temperature on the coalescence and cracking of latex coatings was explored. A new drying regime for latex coatings was identified, where partial coalescence of particles does not prevent cracking. Silica was shown to be an environmentally friendly additive for preventing crack formation in this regime.

  6. The effect of spray-drying parameters on the flavor of nonfat dry milk and milk protein concentrate 70.

    PubMed

    Park, Curtis W; Stout, Mark A; Drake, MaryAnne

    2016-12-01

    Unit operations during production influence the sensory properties of nonfat dry milk (NFDM) and milk protein concentrate (MPC). Off-flavors in dried dairy ingredients decrease consumer acceptance of ingredient applications. Previous work has shown that spray-drying parameters affect physical and sensory properties of whole milk powder and whey protein concentrate. The objective of this study was to determine the effect of inlet temperature and feed solids concentration on the flavor of NFDM and MPC 70% (MPC70). Condensed skim milk (50% solids) and condensed liquid MPC70 (32% solids) were produced using pilot-scale dairy processing equipment. The condensed products were then spray dried at either 160, 210, or 260°C inlet temperature and 30, 40, or 50% total solids for NFDM and 12, 22, or 32% for MPC70 in a randomized order. The entire experiment was replicated 3 times. Flavor of the NFDM and MPC70 was evaluated by sensory and instrumental volatile compound analyses. Surface free fat, particle size, and furosine were also analyzed. Both main effects (30, 40, and 50% solids and 160, 210, and 260°C inlet temperature) and interactions between solids concentration and inlet temperature were investigated. Interactions were not significant. In general, results were consistent for NFDM and MPC70. Increasing inlet temperature and feed solids concentration increased sweet aromatic flavor and decreased cardboard flavor and associated lipid oxidation products. Increases in furosine with increased inlet temperature and solids concentration indicated increased Maillard reactions during drying. Particle size increased and surface free fat decreased with increasing inlet temperature and solids concentration. These results demonstrate that increasing inlet temperatures and solids concentration during spray drying decrease off-flavor intensities in NFDM and MPC70 even though the heat treatment is greater compared with low temperature and low solids. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Blood drop patterns: Formation and applications.

    PubMed

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Solidification of hesperidin nanosuspension by spray drying optimized by design of experiment (DoE).

    PubMed

    Wei, Qionghua; Keck, Cornelia M; Müller, Rainer H

    2018-01-01

    To accelerate the determination of optimal spray drying parameters, a "Design of Experiment" (DoE) software was applied to produce well redispersible hesperidin nanocrystals. For final solid dosage forms, aqueous liquid nanosuspensions need to be solidified, whereas spray drying is a large-scale cost-effective industrial process. A nanosuspension with 18% (w/w) of hesperidin stabilized by 1% (w/w) of poloxamer 188 was produced by wet bead milling. The sizes of original and redispersed spray-dried nanosuspensions were determined by laser diffractometry (LD) and photon correlation spectroscopy (PCS) and used as effect parameters. In addition, light microscopy was performed to judge the redispersion quality. After a two-step design of MODDE 9, screening model and response surface model (RSM), the inlet temperature of spray dryer and the concentration of protectant (polyvinylpyrrolidone, PVP K25) were identified as the most important factors affecting the redispersion of nanocrystals. As predicted in the RSM modeling, when 5% (w/w) of PVP K25 was added in an 18% (w/w) of hesperidin nanosuspension, subsequently spray-dried at an inlet temperature of 100 °C, well redispersed solid nanocrystals with an average particle size of 276 nm were obtained. By the use of PVP K25, the saturation solubility of the redispersed nanocrystals in water was improved to 86.81 µg/ml, about 2.5-fold of the original nanosuspension. In addition, the dissolution velocity was accelerated. This was attributed to the additional effects of steric stabilization on the nanocrystals and solubilization by the PVP polymer from spray drying.

  9. Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out

    NASA Astrophysics Data System (ADS)

    Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen

    2014-05-01

    The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.

  10. Effect of decompression drying treatment on physical properties of solid foods.

    PubMed

    Morikawa, Takuya; Takada, Norihisa; Miura, Makoto

    2017-04-01

    This study used a decompression drying instrument to investigate the effects of a drying treatment on the physical properties of solid foods. Commercial tofu was used as a model food and was treated at different temperature and pressure conditions in a drying chamber. Overall, high temperatures resulted in better drying. Additionally, pressure in the chamber influenced the drying conditions of samples. Differences in physical properties, such as food texture, shrinkage, and color were observed among some samples, even with similar moisture content. This was caused by differences in moisture distribution in the food, which seems to have manifested as a thin, dried film on the surfaces of samples. It caused inefficient drying and changes in physical properties. Control of the drying conditions (i.e. pressure and heat supply) has relations with not only physical properties, but also the drying efficiency of solid foods.

  11. Dry coating, a novel coating technology for solid pharmaceutical dosage forms.

    PubMed

    Luo, Yanfeng; Zhu, Jesse; Ma, Yingliang; Zhang, Hui

    2008-06-24

    Dry coating is a coating technology for solid pharmaceutical dosage forms derived from powder coating of metals. In this technology, powdered coating materials are directly coated onto solid dosage forms without using any solvent, and then heated and cured to form a coat. As a result, this technology can overcome such disadvantages caused by solvents in conventional liquid coating as serious air pollution, high time- and energy-consumption and expensive operation cost encountered by liquid coating. Several dry coating technologies, including plasticizer-dry-coating, electrostatic-dry-coating, heat-dry-coating and plasticizer-electrostatic-heat-dry-coating have been developed and extensively reported. This mini-review summarized the fundamental principles and coating processes of various dry coating technologies, and thoroughly analyzed their advantages and disadvantages as well as commercialization potentials.

  12. Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.

    PubMed

    Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi

    2012-01-01

    The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800  tons with per capita solid waste generation rate of 0.609  kg  person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36  ton  year(-1)) in 1999 to 7.22% (10, 165  ton  year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.

  13. Processing waste fats into a fuel oil substitute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pudel, F.; Lengenfeld, P.

    1993-12-31

    Waste fats have a high energy potential. They also contain impurities. For example, fats used for deep-frying contain high contents of solids, water, and chlorides. The process described in this paper removes the impurities by simple processing such as screening, washing, separating, drying, and filtering. The final quality of processed fat allows its use as a fuel oil substitute, and also as a raw material for chemical production.

  14. The use of LCA in selecting the best MSW management system.

    PubMed

    De Feo, Giovanni; Malvano, Carmela

    2009-06-01

    This paper focuses on the study of eleven environmental impact categories produced by several municipal solid waste management systems (scenarios) operating on a provincial scale in Southern Italy. In particular, the analysis takes into account 12 management scenarios with 16 management phases for each one. The only difference among ten of the scenarios (separated kerbside collection of all recyclables, glass excepted, composting of putrescibles, RDF pressed bales production and incineration, final landfilling) is the percentage of separated collection varying in the range of 35-80%, while the other two scenarios, for 80% of separate collection, consider different alternatives in the disposal of treatment residues (dry residue sorting and final landfilling or direct disposal in landfill). The potential impacts induced on the environmental components were analysed using the life cycle assessment (LCA) procedure called "WISARD" (Waste Integrated System Assessment for Recovery and Disposal). Paper recycling was the phase with the greatest influence on avoided impacts, while the collection logistics of dry residue was the phase with the greatest influence on produced impacts. For six impact categories (renewable and total energy use, water, suspended solids and oxydable matters index, eutrophication and hazardous waste production), for high percentages of separate collection a management system based on recovery and recycling but without incineration would be preferable.

  15. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wychen, Stefanie; Laurens, Lieve M. L.

    2016-01-13

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575 deg. C is covered for ash content.

  16. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eitouni, Hany; Yang, Jin; Pratt, Russell

    2014-09-29

    The purpose of this project was for Seeo to develop a high energy lithium based technology with targets of over 500 Wh/l and 325 Wh/kg. Seeo would leverage the work already achieved with its unique proprietary solid polymer DryLyteTM technology in cells which had a specific energy density of 220 Wh/kg. The development work was focused on establishing a dual electrolyte system, coated cathode particle techniques, various types of additives, and different conductive salts. The program had a duration of three years, with Seeo delivering the final cells at the end of 2014 for evaluation by a DOE laboratory.

  17. Elucidation of key aroma compounds in traditional dry fermented sausages using different extraction techniques.

    PubMed

    Corral, Sara; Salvador, Ana; Flores, Mónica

    2015-04-01

    The use of different extraction techniques - solid phase microextraction (SPME) and solvent assisted flavour evaporation (SAFE) - can deliver different aroma profiles and it is essential to determine which is most suitable to extract the aroma compounds from dry fermented sausages. Forty-five aroma-active compounds were detected by SPME and SAFE, with 11 of them reported for the first time as aroma compounds in dry fermented sausages: ethyl 3-hydroxy butanoate, trimethyl pyrazine, D-pantolactone, isobutyl hexanoate, ethyl benzoate, α-terpineol, ethyl 3-pyridinecarboxylate, benzothiazole, 2,3-dihydrothiophene, methyl eugenol, γ-nonalactone. The aroma concentration and odour activity values (OAVs) were calculated. Flavour reconstitution analyses were performed using 20 odorants with OAVs above 1 obtained from the SAFE and SPME extracts to prepare the aroma model. SPME and SAFE techniques were complementary and necessary to reproduce the overall dry fermented sausage aroma. The final aroma model included the odorants from both extraction techniques (SPME and SAFE) but it was necessary to incorporate the compounds 2,4-decadienal (E,E), benzothiazole, methyl eugenol, α-terpineol, and eugenol to the final aroma model to evoked the fresh sausage aroma although a lowest cured meat aroma note was perceived. © 2014 Society of Chemical Industry.

  18. Comparative study of subtalar arthrodesis after calcaneal frature malunion with autologous bone graft or freeze-dried xenograft.

    PubMed

    Henning, Carlo; Poglia, Gabriel; Leie, Murilo Anderson; Galia, Carlos Roberto

    2015-12-01

    Calcaneal fracture malunion may evolve into arthrosis and severe foot deformities. The aim of this study was to identify differences in bony union following corrective subtalar arthrodesis with interposition of autologous tricortical bone graft or freeze-dried bovine xenograft. We prospectively evaluated 12 patients who underwent subtalar arthrodesis, six patients received autografts and 6 received freeze-dried bovine xenografts. After a mean followup of 58 weeks, the patients were clinical assessed using AOFAS scale and the visual analog scale (VAS) for pain and for final radiographic parameters measurement. Two blind raters evaluated the length of time required for solid union of the arthrodesis and graft integration by retrospective radiographic examination. In the autograft group, AOFAS score improved from a preoperative average of 37 to 64 points postoperatively (p = 0.02) and mean VAS score improved from 4.7 to 1.9 (p = 0.028). In the xenograft group, AOFAS score improved from 38 to 74 points (p = 0.02) and VAS from 5.5 to 2.7 (p = 0.046). Solid union was achieved in all cases in the autograft group at an average of 5.3 weeks and in five cases in the xenograft group at 8.8 weeks (p = 0.077). Graft integration occurred after an average of 10.7 weeks in the autograft group and 28.8 weeks in the xenograft group (p = 0.016). With the numbers available, no significant difference could be detected in the length of time required for solid union of subtalar arthrodesis between groups, although time to integration of freeze-dried bovine xenografts was statistically higher. Clinical and functional improvement was observed in both groups.

  19. Polygonal crack patterns by drying thin films under quasi-two-dimensional confinement

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Lowensohn, Janna; Burton, Justin

    Cracks patterns such as T/Y junction cracks in dried mud are ubiquitous in nature. Although the conditions for cracking in solids is well-known, cracks in colloidal and granular systems are more complex. Here we report the formations of polygonal cracks by drying thin films of corn starch ( 10 μm in diameter) under quasi-2D confinement. We find there are two drying stages before the films are completely dried. Initially, a compaction front invades throughout the film. Then, a second drying stage ''percolates'' throughout the film with a characteristic branching pattern, leading to a dense packing of particles connected by liquid capillary bridges. Finally, polygonal cracks appear as the remaining liquid dries. The same drying kinetics occur for films with different thickness, h, except that fractal-like fracture patterns form in thin films, where the thickness is comparable to the particle size, while polygons form in thick films with many layers of particles. We also find that the average area of the polygons, A, in fully dried films scales with the thickness, A hβ , where β 1 . 5 , and the prefactor depends on the initial packing fraction of the suspension. This form is consistent with a simple energy balance criterion for crack formation.

  20. Effect of dried solids of nejayote on broiler growth.

    PubMed

    Velasco-Martinez, M; Angulo, O; Vazquez-Couturier, D L; Arroyo-Lara, A; Monroy-Rivera, J A

    1997-11-01

    The purpose of the present study was to test the suitability of the solids of nejayote (a waste product from the tortilla industry) in diets for broilers. The nejayote was obtained from two different tortilla-making factories and the solids were obtained by centrifuge then dried in a hot-air drier. Diets were formulated to be isocaloric and isonitrogenous according to the NRC dietary requirements (1994). Nejayote solids were supplemented at 2, 4, and 6% of the diet. Results show that the content of protein and calcium in the dried solids of nejayote were 5 and 13%, respectively. The performance of broilers fed diets supplemented with dried nejayote did not differ from that of those fed the control diet. Therefore, it is concluded that nejayote solids are suitable for broiler feed and do not affect growth performance. Utilization of nejayote solids at higher levels is a possibility provided that no adverse effects on body weight, feed utilization, and feed:gain ratios are observed.

  1. Effects of Drying Process on an IgG1 Monoclonal Antibody Using Solid-State Hydrogen Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS).

    PubMed

    Moussa, Ehab M; Wilson, Nathan E; Zhou, Qi Tony; Singh, Satish K; Nema, Sandeep; Topp, Elizabeth M

    2018-01-03

    Lyophilization and spray drying are widely used to manufacture solid forms of therapeutic proteins. Lyophilization is used to stabilize proteins vulnerable to degradation in solution, whereas spray drying is mainly used to prepare inhalation powders or as an alternative to freezing for storing bulk drug substance. Both processes impose stresses that may adversely affect protein structure, stability and bioactivity. Here, we compared lyophilization with and without controlled ice nucleation, and spray drying for their effects on the solid-state conformation and matrix interactions of a model IgG1 monoclonal antibody (mAb). Solid-state conformation and matrix interactions of the mAb were probed using solid-state hydrogen-deuterium exchange with mass spectrometric analysis (ssHDX-MS), and solid-state Fourier transform infrared (ssFTIR) and solid-state fluorescence spectroscopies. mAb conformation and/or matrix interactions were most perturbed in mannitol-containing samples and the distribution of states was more heterogeneous in sucrose and trehalose samples that were spray dried. The findings demonstrate the sensitivity of ssHDX-MS to changes weakly indicated by spectroscopic methods, and support the broader use of ssHDX-MS to probe formulation and process effects on proteins in solid samples.

  2. The influence of process parameters in production of lipopeptide iturin A using aerated packed bed bioreactors in solid-state fermentation.

    PubMed

    Piedrahíta-Aguirre, C A; Bastos, R G; Carvalho, A L; Monte Alegre, R

    2014-08-01

    The strain Bacillus iso 1 co-produces the lipopeptide iturin A and biopolymer poly-γ-glutamic acid (γ-PGA) in solid-state fermentation of substrate consisting of soybean meal, wheat bran with rice husks as an inert support. The effects of pressure drop, oxygen consumption, medium permeability and temperature profile were studied in an aerated packed bed bioreactor to produce iturin A, diameter of which was 50 mm and bed height 300 mm. The highest concentrations of iturin A and γ-PGA were 5.58 and 3.58 g/kg-dry substrate, respectively, at 0.4 L/min after 96 h of fermentation. The low oxygen uptake rates, being 23.34 and 22.56 mg O2/kg-dry solid substrate for each air flow rate tested generated 5.75 W/kg-dry substrate that increased the fermentation temperature at 3.7 °C. The highest pressure drop was 561 Pa/m at 0.8 L/min in 24 h. This is the highest concentration of iturin A produced to date in an aerated packed bed bioreactor in solid-state fermentation. The results can be useful to design strategies to scale-up process of iturin A in aerated packed bed bioreactors. Low concentration of γ-PGA affected seriously pressure drop, decreasing the viability of the process due to generation of huge pressure gradients with volumetric air flow rates. Also, the low oxygenation favored the iturin A production due to the reduction of free void by γ-PGA production, and finally, the low oxygen consumption generated low metabolic heat. The results show that it must control the pressure gradients to scale-up the process of iturin A production.

  3. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  4. Comparison of different drying methods on the physical properties, bioactive compounds and antioxidant activity of raspberry powders.

    PubMed

    Si, Xu; Chen, Qinqin; Bi, Jinfeng; Wu, Xinye; Yi, Jianyong; Zhou, Linyan; Li, Zhaolu

    2016-04-01

    Dehydration has been considered as one of the traditional but most effective techniques for perishable fruits. Raspberry powders obtained after dehydration can be added as ingredients into food formulations such as bakery and dairy products. In this study, raspberry powders obtained by hot air drying (HAD), infrared radiation drying (IRD), hot air and explosion puffing drying (HA-EPD), infrared radiation and microwave vacuum drying (IR-MVD) and freeze drying (FD) were compared on physical properties, bioactive compounds and antioxidant activity. Drying techniques affected the physical properties, bioactive compounds and antioxidant activity of raspberry powders greatly. FD led to significantly higher (P < 0.05) values of water solubility (45.26%), soluble solid (63.46%), hygroscopicity (18.06%), color parameters and anthocyanin retention (60.70%) of raspberry powder compared with other drying methods. However, thermal drying techniques, especially combined drying methods, were superior to FD in final total polyphenol content, total flavonoid content and antioxidant activity. The combined drying methods, especially IR-MVD, showed the highest total polyphenol content (123.22 g GAE kg(-1) dw) and total flavonoid content (0.30 g CAE kg(-1) dw). Additionally, IR-MVD performed better in antioxidant activity retention. Overall, combined drying methods, especially IR-MVD, were found to result in better quality of raspberry powders among the thermal drying techniques. IR-MVD could be recommended for use in the drying industry because of its advantages in time saving and nutrient retention. © 2015 Society of Chemical Industry.

  5. Drying paint: from micro-scale dynamics to mechanical instabilities

    NASA Astrophysics Data System (ADS)

    Goehring, Lucas; Li, Joaquim; Kiatkirakajorn, Pree-Cha

    2017-04-01

    Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarize the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients in a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle X-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities-shear-banding and fracture-can be controlled. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  6. Prediction of Phase Behavior of Spray-Dried Amorphous Solid Dispersions: Assessment of Thermodynamic Models, Standard Screening Methods and a Novel Atomization Screening Device with Regard to Prediction Accuracy

    PubMed Central

    Chavez, Pierre-François; Meeus, Joke; Robin, Florent; Schubert, Martin Alexander; Somville, Pascal

    2018-01-01

    The evaluation of drug–polymer miscibility in the early phase of drug development is essential to ensure successful amorphous solid dispersion (ASD) manufacturing. This work investigates the comparison of thermodynamic models, conventional experimental screening methods (solvent casting, quench cooling), and a novel atomization screening device based on their ability to predict drug–polymer miscibility, solid state properties (Tg value and width), and adequate polymer selection during the development of spray-dried amorphous solid dispersions (SDASDs). Binary ASDs of four drugs and seven polymers were produced at 20:80, 40:60, 60:40, and 80:20 (w/w). Samples were systematically analyzed using modulated differential scanning calorimetry (mDSC) and X-ray powder diffraction (XRPD). Principal component analysis (PCA) was used to qualitatively assess the predictability of screening methods with regards to SDASD development. Poor correlation was found between theoretical models and experimentally-obtained results. Additionally, the limited ability of usual screening methods to predict the miscibility of SDASDs did not guarantee the appropriate selection of lead excipient for the manufacturing of robust SDASDs. Contrary to standard approaches, our novel screening device allowed the selection of optimal polymer and drug loading and established insight into the final properties and performance of SDASDs at an early stage, therefore enabling the optimization of the scaled-up late-stage development. PMID:29518936

  7. Assessment of Dry Powder Inhaler Carrier Targeted Design: A Comparative Case Study of Diverse Anomeric Compositions and Physical Properties of Lactose.

    PubMed

    Pinto, Joana T; Zellnitz, Sarah; Guidi, Tomaso; Roblegg, Eva; Paudel, Amrit

    2018-06-19

    The pulmonary administration landscape has rapidly advanced in recent years. Targeted design of particles by spray-drying for dry powder inhaler development offers an invaluable tool for engineering of new carriers. In this work, different formulation and process aspects of spray-drying were exploited to produce new lactose carriers. Using an integrated approach, lactose was spray-dried in the presence of polyethylene glycol 200 (PEG 200), and the in vitro performance of the resulting particles was compared with other grades of lactose with varying anomeric compositions and/or physical properties. The anomeric composition of lactose in lactose-PEG 200 feed solutions of variable compositions was analyzed via polarimetry at different temperatures. These results were correlated with the solid-state and anomeric composition of the resulting spray-dried particles using modulated differential scanning calorimetry and wide-angle X-ray scattering. The distinct selected grades of lactose were characterized in terms of their micromeritic properties using laser diffraction, helium pycnometry, and gas adsorption, and their particle surface morphologies were evaluated via scanning electron microscopy. Adhesive mixtures of the different lactose carriers with inhalable-sized salbutamol sulfate, as a model drug, were prepared in low doses and evaluated for their blend homogeneity and aerodynamic performance using a Next Generation Impactor. Characterization of the spray-dried particles revealed that predominantly crystalline (in an anomeric ratio 0.8:1 of α to β) spherical particles with a mean size of 50.9 ± 0.4 μm could be produced. Finally, it was apparent that micromeritic, in particular, the shape, and surface properties (inherent to solid-state and anomeric composition) of carrier particles dominantly control DPI delivery. This provided an insight into the relatively inferior performance of the adhesive blends containing the spherical spray-dried lactose-PEG 200 composites.

  8. Solid Lipid Nanoparticle assemblies (SLNas) for an anti-TB inhalation treatment-A Design of Experiments approach to investigate the influence of pre-freezing conditions on the powder respirability.

    PubMed

    Maretti, Eleonora; Rustichelli, Cecilia; Romagnoli, Marcello; Balducci, Anna Giulia; Buttini, Francesca; Sacchetti, Francesca; Leo, Eliana; Iannuccelli, Valentina

    2016-09-10

    For direct intramacrophagic antitubercular therapy, pulmonary administration through Dry Powder Inhaler (DPI) devices is a reasonable option. For the achievement of efficacious aerosolisation, rifampicin-loaded Solid Lipid Nanoparticle assemblies (SLNas) were developed using the melt emulsifying technique followed by freeze-drying. Indeed, this drying method can cause freezing or drying stresses compromising powder respirability. It is the aim of this research to offer novel information regarding pre-freezing variables. These included type and concentration of cryoprotectants, pre-freezing temperature, and nanoparticle concentration in the suspension. In particular, the effects of such variables were observed at two main levels. First of all, on SLNas characteristics - i.e., size, polydispersity index, zeta-potential, circularity, density, and drug loading. Secondly, on powder respirability, taking into account aerodynamic diameter, emitted dose, and respirable fraction. Considering the complexity of the factors involved in a successful respirable powder, a Design of Experiments (DoE) approach was adopted as a statistical tool for evaluating the effect of pre-freezing conditions. Interestingly, the most favourable impact on powder respirability was exerted by quick-freezing combined with a certain grade of sample dilution before the pre-freezing step without the use of cryoprotectants. In such conditions, a very high SLNas respirable fraction (>50%) was achieved, along with acceptable yields in the final dry powder as well as a reduction of powder mass to be introduced into DPI capsules with benefits in terms of administered drug dose feasibility. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  10. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  11. Experimental study on drying kinetic of cassava starch in a pneumatic drying system

    NASA Astrophysics Data System (ADS)

    Suherman, Kumoro, Andri Cahyo; Kusworo, Tutuk Djoko

    2015-12-01

    The aims of this study are to present the experimental research on the drying of cassava starch in a pneumatic dryer, to describe its drying curves, as well as to calculate its thermal efficiency. The effects of operating conditions, namely the inlet air temperature (60-100 °C) and solid-gas flow rate ratio (Ms/Mg 0.1-0.3) were studied. Heat transfer is accomplished through convection mechanism in a drying chamber based on the principle of direct contact between the heated air and the moist material. During the drying process, intensive heat and mass transfer between the drying air and the cassava starch take place. In order to meet the SNI standards on solid water content, the drying process was done in two cycles. The higher the temperature of the drying air, the lower the water content of the solids exiting the dryer. Thermal efficiency of the 2nd cycle was found to be lower than the 1st cycle.

  12. Corroboration of naringin effects on the intestinal absorption and pharmacokinetic behavior of candesartan cilexetil solid dispersions using in-situ rat models.

    PubMed

    Surampalli, Gurunath; K Nanjwade, Basavaraj; Patil, P A

    2015-01-01

    The aim of this study was to corroborate the effects of naringin, a P-glycoprotein inhibitor, on the intestinal absorption and pharmacokinetics of candesartan (CDS) from candesartan cilexetil (CAN) solid dispersions using in-situ rat models. Intestinal transport and absorption studies were examined by in-situ single pass perfusion and closed-loop models. We evaluated the intestinal membrane damage in the presence of naringin by measuring the release of protein and alkaline phosphatase (ALP). We noticed 1.47-fold increase in Peff of CDS from freeze-dried CAN-loaded solid dispersions with naringin (15 mg/kg, w/w) when compared with freeze-dried solid dispersion without naringin using in-situ single pass intestinal perfusion model. However, no intestinal membrane damage was observed in the presence of naringin. Our findings from in-situ closed-loop pharmacokinetic studies showed 1.34-fold increase in AUC with elevated Cmax and shortened tmax for freeze-dried solid dispersion with naringin as compared to freeze-dried solid dispersion without naringin. This study demonstrated that increased solubilization (favored by freeze-dried solid dispersion) and efflux pump inhibition (using naringin), the relative bioavailability of CDS can be increased, suggesting an alternative potential for improving oral bioavailability of CAN.

  13. Friction between footwear and floor covered with solid particles under dry and wet conditions.

    PubMed

    Li, Kai Way; Meng, Fanxing; Zhang, Wei

    2014-01-01

    Solid particles on the floor, both dry and wet, are common but their effects on the friction on the floor were seldom discussed in the literature. In this study, friction measurements were conducted to test the effects of particle size of solid contaminants on the friction coefficient on the floor under footwear, floor, and surface conditions. The results supported the hypothesis that particle size of solids affected the friction coefficient and the effects depended on footwear, floor, and surface conditions. On dry surfaces, solid particles resulted in friction loss when the Neolite footwear pad was used. On the other hand, solid particles provided additional friction when measured with the ethylene vinyl acetate (EVA) footwear pad. On wet surfaces, introducing solid particles made the floors more slip-resistant and such effects depended on particle size. This study provides information for better understanding of the mechanism of slipping when solid contaminants are present.

  14. Integration of active pharmaceutical ingredient solid form selection and particle engineering into drug product design.

    PubMed

    Ticehurst, Martyn David; Marziano, Ivan

    2015-06-01

    This review seeks to offer a broad perspective that encompasses an understanding of the drug product attributes affected by active pharmaceutical ingredient (API) physical properties, their link to solid form selection and the role of particle engineering. While the crucial role of active pharmaceutical ingredient (API) solid form selection is universally acknowledged in the pharmaceutical industry, the value of increasing effort to understanding the link between solid form, API physical properties and drug product formulation and manufacture is now also being recognised. A truly holistic strategy for drug product development should focus on connecting solid form selection, particle engineering and formulation design to both exploit opportunities to access simpler manufacturing operations and prevent failures. Modelling and predictive tools that assist in establishing these links early in product development are discussed. In addition, the potential for differences between the ingoing API physical properties and those in the final product caused by drug product processing is considered. The focus of this review is on oral solid dosage forms and dry powder inhaler products for lung delivery. © 2015 Royal Pharmaceutical Society.

  15. A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine.

    PubMed

    Mahmah, Osama; Tabbakh, Rami; Kelly, Adrian; Paradkar, Anant

    2014-02-01

    To compare the properties of solid dispersions of felodipine for oral bioavailability enhancement using two different polymers, polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS), by hot-melt extrusion (HME) and spray drying. Felodipine solid dispersions were prepared by HME and spray drying techniques. PVP and HPMCAS were used as polymer matrices at different drug : polymer ratios (1 : 1, 1 : 2 and 1 : 3). Detailed characterization was performed using differential scanning calorimetry, powder X-ray diffractometry, scanning electron microscopy and in-vitro dissolution testing. Dissolution profiles were evaluated in the presence of sodium dodecyl sulphate. Stability of different solid dispersions was studied under accelerated conditions (40°C/75% RH) over 8 weeks. Spray-dried formulations were found to release felodipine faster than melt extruded formulations for both polymer matrices. Solid dispersions containing HMPCAS exhibited higher drug release rates and better wettability than those produced with a PVP matrix. No significant differences in stability were observed except with HPMCAS at a 1 : 1 ratio, where crystallization was detected in spray-dried formulations. Solid dispersions of felodipine produced by spray drying exhibited more rapid drug release than corresponding melt extruded formulations, although in some cases improved stability was observed for melt extruded formulations. © 2013 Royal Pharmaceutical Society.

  16. A comparative study of spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions.

    PubMed

    Dontireddy, Rakesh; Crean, Abina M

    2011-10-01

    Poor water solubility of new chemical entities (NCEs) is one of the major challenges the pharmaceutical industry currently faces. The purpose of this study was to investigate the feasibility of freeze-drying as an alternative technique to spray-drying to produce solid dispersions of poorly water-soluble drugs. Also investigated was the use of aqueous solvent mixtures in place of pure solvent for the production of solid dispersions. Aqueous solvent systems would reduce the environmental impact of pure organic solvent systems. Spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions exhibited differences in dissolution behavior. Freeze-dried dispersions exhibited faster dissolution rates than the corresponding spray-dried dispersions. Spray-dried systems prepared using both solvent systems (20% v/v and 96% v/v ethanol) displayed similar dissolution performance despite displaying differences in glass transition temperatures (T(g)) and surface areas. All dispersions showed drug/polymer interactions indicated by positive deviations in T(g) from the predicted values calculated using the Couchman-Karasz equation. Fourier transform infrared (FTIR) spectroscopic results confirmed the conversion of crystalline drug to the amorphous in the dispersions. Stability studies were preformed at 40°C and 75% relative humidity to investigate the physical stability of prepared dispersions. Recrystallization was observed after a month and the resultant dispersions were tested for their dissolution performance to compare with the dissolution performance of the dispersions prior to the stability study. The dissolution rate of the freeze-dried dispersions remained higher than both spray-dried dispersions after storage.

  17. Process for producing silicon

    DOEpatents

    Olson, J.M.; Carleton, K.L.

    1982-06-10

    A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  18. Process for producing silicon

    DOEpatents

    Olson, Jerry M.; Carleton, Karen L.

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  19. Using a mass balance to determine the potency loss during the production of a pharmaceutical blend.

    PubMed

    Mackaplow, Michael B

    2010-09-01

    The manufacture of a blend containing the active pharmaceutical ingredient (API) and inert excipients is a precursor for the production of most pharmaceutical capsules and tablets. However, if there is a net water gain or preferential loss of API during production, the potency of the final drug product may be less than the target value. We use a mass balance to predict the mean potency loss during the production of a blend via wet granulation and fluidized bed drying. The result is an explicit analytical equation for the change in blend potency a function of net water gain, solids losses (both regular and high-potency), and the fraction of excipients added extragranularly. This model predicts that each 1% gain in moisture content (as determined by a loss on drying test) will decrease the API concentration of the final blend at least 1% LC. The effect of pre-blend solid losses increases with their degree of superpotency. This work supports Quality by Design by providing a rational method to set the process design space to minimize blend potency losses. When an overage is necessary, the model can help justify it by providing a quantitative, first-principles understanding of the sources of potency loss. The analysis is applicable to other manufacturing processes where the primary sources of potency loss are net water gain and/or mass losses.

  20. Energy content of municipal solid waste bales.

    PubMed

    Ozbay, Ismail; Durmusoglu, Ertan

    2013-07-01

    Baling technology is a preferred method for temporary storage of municipal solid waste (MSW) prior to final disposal. If incineration is intended for final disposal of the bales, the energy content of the baled MSW gains importance. In this study, nine cylindrical bales containing a mix of different waste materials were constructed and several parameters, including total carbon (TC), total organic carbon (TOC), total Kjeldahl nitrogen, moisture content, loss on ignition, gross calorific value and net calorific value (NCV) were determined before the baling and at the end of 10 months of storage. In addition, the relationships between the waste materials and the energy contents of the bales were investigated by the bivariate correlation analyses. At the end, linear regression models were developed in order to forecast the decrease of energy content during storage. While the NCVs of the waste materials before the baling ranged between 6.2 and 23.7 MJ kg(-1) dry basis, they ranged from 1.0 to 16.4 MJ kg(-1) dry basis at the end of the storage period. Moreover, food wastes exhibited the highest negative correlation with NCVs, whereas plastics have significant positive correlation with both NCVs and TCs. Similarly, TOCs and carbon/nitrogen ratios decreased with the increase in food amounts inside the bales. In addition, textile, wood and yard wastes increase the energy content of the bales slightly over the storage period.

  1. Droplet-Surface Impingement Dynamics for Intelligent Spray Design

    NASA Technical Reports Server (NTRS)

    Wal, Randy L. Vander; Kizito, John P.; Tryggvason, Gretar

    2004-01-01

    Spray cooling has high potential in thermal management and life support systems by overcoming the deleterious effect of microgravity upon two-phase heat transfer. In particular spray cooling offers several advantages in heat flux removal that include the following: 1) By maintaining a wetted surface, spray droplets impinge upon a thin fluid film rather than a dry solid surface; 2. Most heat transfer surfaces will not be smooth but rough. Roughness can enhance conductive cooling, aid liquid removal by flow channeling; and 3. Spray momentum can be used to a) substitute for gravity delivering fluid to the surface, b) prevent local dryout and potential thermal runaway and c) facilitate liquid and vapor removal. Yet high momentum results in high We and Re numbers characterizing the individual spray droplets. Beyond an impingement threshold, droplets splash rather than spread. Heat flux declines and spray cooling efficiency can markedly decrease. Accordingly we are investigating droplet impingement upon a) dry solid surfaces, b) fluid films, c) rough surfaces and determining splashing thresholds and relationships for both dry surfaces and those covered by fluid films. We are presently developing engineering correlations delineating the boundary between splashing and non-splashing regions. Determining the splash/non-splash boundary is important for many practical applications. Coating and cooling processes would each benefit from near-term empirical relations and subsequent models. Such demonstrations can guide theoretical development by providing definitive testing of its predictive capabilities. Thus, empirical relations describing the boundary between splash and non-splash are given for drops impinging upon a dry solid surface and upon a thin fluid film covering a similar surface. Analytical simplification of the power laws describing the boundary between the splash and non-splash regions yields insight into the engineering parameters governing the splash and non-splash outcomes of the fluid droplets. The power law correlation is shown separating the splashing versus non-splashing regions as developed for droplets impinging upon a dry solid surface. Splashing upon a dry surface is reasonably described by Ca greater than 0.85, reflecting the competing roles of surface tension and viscosity. The power law correlation is shown separating the splashing versus non-splashing regions as developed for droplets impinging upon a thin fluid film covering the solid surface. Splashing upon a thin fluid film, as described by v (pd/s) greater than 63, is governed by fluid density and surface tension, but is rather independent of viscosity. Finally, the data presented here suggests that a more direct dependence upon the surface tension and viscosity, given a better understanding of their interplay, would allow accurate description of the droplet-surface impacts for more complicated situations involving non-Newtonian fluids, specifically those exhibiting viscoelastic behavior.

  2. Experimental study on the drying of natural latex medical gloves

    NASA Astrophysics Data System (ADS)

    Chankrachang, Mano; Yongyingsakthavorn, Pisit; Tohsan, Atitaya; Nontakaew, Udomkiat

    2018-01-01

    The purpose of this research was to study latex film drying at 70 °C using a laboratory drying oven. Two different total solid content (TSC) latex compounds, which 45% TSC and 35% TSC were used. The undried latex films were prepared according to the common procedures used in latex gloves manufacturers, that is, by dry coagulant dipping process. The experimental results such as initial moisture content, the amount of moisture and drying time of latex films in each latex compound formula were determined. After that, the results were projected to calculate on the production capacity expand by 1 million piece/day of natural latex medical gloves. Finally, the rate of moisture entering the latex drying oven and the energy consumption of the drying oven were estimated. The results indicated that when the 35% TSC of latex compound was used. The initial moisture content of latex film was higher than 45% TSC of latex compound about 7%. The drying time of 35% TSC was longer than 45% TSC for 2.5 min and consume more energy about 10%. As a result, the 45% TSC latex compound was the better way to saving energy and managing humidity in the production line. Therefore, it was found to very useful to an approximate design length and size of actual of latex drying oven and the rate of moisture entering the oven as well.

  3. Rolling dry-coupled transducers for ultrasonic inspections of aging aircraft structures

    NASA Astrophysics Data System (ADS)

    Komsky, Igor N.

    2004-07-01

    Some advanced aircraft materials or coatings are porous or otherwise sensitive to the application of water, gel, or some other ultrasonic couplants. To overcome the problems associated with the liquid coupling medium, dry-coupled rolling modules were developed at Northwestern University for the transmission of both longitudinal and transverse ultrasonic waves at frequencies up to 10 MHz. Dry-coupled ultrasonic modules contain solid core internal stators and solid or flexible external rotors with the flexible polymer substrates. Two types of the dry-coupled modules are under development. Cylindrical base transducer modules include solid core cylindrical rotors with flexible polymer substrates that rotate around the stators with ultrasonic elements. Dry-coupled modules with elongated bases contain solid core stators and flexible track-like polymer substrates that rotate around the stators as rotors of the modules. The elongated base modules have larger contact interfaces with the inspection surface in comparison with the cylindrical base modules. Some designs of the dry-coupled rolling modules contain several ultrasonic elements with different incident angles or a variable angle unit for rapid adjustments of incident angles. The prototype dry-coupled rolling modules were integrated with the portable ultrasonic inspection systems and tested on a number of Boeing aircraft structures.

  4. Production of a solid fuel using sewage sludge and spent cooking oil by immersion frying.

    PubMed

    Wu, Zhonghua; Zhang, Jing; Li, Zhanyong; Xie, Jian; Mujumdar, Arun S

    2012-12-01

    Sewage sludge and spent cooking oil are two main waste sources of modern Chinese cities. In this paper, the immersion frying method using spent cooking oil as the heating medium was applied to dry and convert wet sewage sludge into a solid fuel. The drying and oil uptake curves were plotted to demonstrate the fry-drying characteristics of the sewage sludge. Parametric studies were carried out to identify the governing parameters in the frying drying operation. It was found that at frying oil temperatures of 140-160°C, the wet sewage sludge could be dried completely in 6-9 min and converted into a solid fuel with a high calorific value of 21.55-24.08 MJ/kg. The fuel structure, chemical components, pyrolysis and combustion characteristics were investigated and the experimental results showed the solid fuel had a porous internal structure and a low ignition temperature of 250°C due to presence of oil. The frying drying mechanism was also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: methane production modeling.

    PubMed

    Fdez-Güelfo, L A; Alvarez-Gallego, C; Sales, D; García, L I Romero

    2012-03-01

    The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55°C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y(pMAX) and θ(MIN)) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms (μ(max)) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d(-1) (K=1.391 d(-1); Y(pMAX)=1.167 L CH(4)/gDOC(c); θ(MIN)=7.924 days) vs. 0.135 d(-1) (K=1.282 d(-1); Y(pMAX)=1.150 L CH(4)/gDOC(c); θ(MIN)=9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Particle Engineering Via Mechanical Dry Coating in the Design of Pharmaceutical Solid Dosage Forms.

    PubMed

    Qu, Li; Morton, David A V; Zhou, Qi Tony

    2015-01-01

    Cohesive powders are problematic in the manufacturing of pharmaceutical solid dosage forms because they exhibit poor flowability, fluidization and aerosolization. These undesirable bulk properties of cohesive powders represent a fundamental challenge in the design of efficient pharmaceutical manufacturing processes. Recently, mechanical dry coating has attracted increasing attention as it can improve the bulk properties of cohesive powders in a cheaper, simpler, safer and more environment-friendly way than the existing solvent-based counterparts. In this review, mechanical dry coating techniques are outlined and their potential applications in formulation and manufacturing of pharmaceutical solid dosage forms are discussed. Reported data from the literature have shown that mechanical dry coating holds promise for the design of superior pharmaceutical solid formulations or manufacturing processes by engineering the interfaces of cohesive powders in an efficient and economical way.

  7. Torrefaction Processing for Human Solid Waste Management

    NASA Technical Reports Server (NTRS)

    Serio, Michael A.; Cosgrove, Joseph E.; Wójtowicz, Marek A.; Stapleton, Thomas J.; Nalette, Tim A.; Ewert, Michael K.; Lee, Jeffrey; Fisher, John

    2016-01-01

    This study involved a torrefaction (mild pyrolysis) processing approach that could be used to sterilize feces and produce a stable, odor-free solid product that can be stored or recycled, and also to simultaneously recover moisture. It was demonstrated that mild heating (200-250 C) in nitrogen or air was adequate for torrefaction of a fecal simulant and an analog of human solid waste (canine feces). The net result was a nearly undetectable odor (for the canine feces), complete recovery of moisture, some additional water production, a modest reduction of the dry solid mass, and the production of small amounts of gas and liquid. The liquid product is mainly water, with a small Total Organic Carbon content. The amount of solid vs gas plus liquid products can be controlled by adjusting the torrefaction conditions (final temperature, holding time), and the current work has shown that the benefits of torrefaction could be achieved in a low temperature range (< 250 C). These temperatures are compatible with the PTFE bag materials historically used by NASA for fecal waste containment and will reduce the energy consumption of the process. The solid product was a dry material that did not support bacterial growth and was hydrophobic relative to the starting material. In the case of canine feces, the solid product was a mechanically friable material that could be easily compacted to a significantly smaller volume (approx. 50%). The proposed Torrefaction Processing Unit (TPU) would be designed to be compatible with the Universal Waste Management System (UWMS), now under development by NASA. A stand-alone TPU could be used to treat the canister from the UWMS, along with other types of wet solid wastes, with either conventional or microwave heating. Over time, a more complete integration of the TPU and the UWMS could be achieved, but will require design changes in both units.

  8. Effect of air-flow on biodrying method of municipal solid waste in Indonesia

    NASA Astrophysics Data System (ADS)

    Kristanto, Gabriel Andari; Hanany, Ismi

    2017-11-01

    The process of bio-drying could be an interesting solution for municipal solid waste management and energy demand in Indonesia. By using the heat from bio-degradation process consists in bio-drying, moisture content in a solid waste can be reduced. Solid wastes with a low moisture content, could be used as a fuel with a good energy content. In this study, 85% of garden wastes and 15% of food waste from Indonesia's municipal solid waste were bio-dried in aerobic condition using 3 variations of air flow-rates, which were 8 L/min.kg; 10 L/min.kg; and 12 L/min.kg. The experiment performs with three different reactors with known volume 75cm × 50cm × 40cm and using Styrofoam as an insulation. The process of bio-drying lasted 21 days. In the end, the experiment with 10 L/min.kg aeration, has the lowest moisture contents about 23% with high temperature and NHV about 3595.29 kcal/kg.

  9. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), themore » Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.« less

  10. Albendazole nanocrystals with improved pharmacokinetic performance in mice.

    PubMed

    Paredes, Alejandro J; Bruni, Sergio Sánchez; Allemandi, Daniel; Lanusse, Carlos; Palma, Santiago D

    2018-02-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic agent with poor aqueous solubility, which leads to poor/erratic bioavailability and therapeutic failures. Here, we aimed to produce a novel formulation of ABZ nanocrystals (ABZNC) and assess its pharmacokinetic performance in mice. Results/methodology: ABZNC were prepared by high-pressure homogenization and spray-drying processes. Redispersion capacity and solid yield were measured in order to obtain an optimized product. The final particle size was 415.69±7.40 nm and the solid yield was 72.32%. The pharmacokinetic parameters obtained in a mice model for ABZNC were enhanced (p < 0.05) with respect to the control formulation. ABZNC with improved pharmacokinetic behavior were produced by a simple, inexpensive and potentially scalable methodology.

  11. Water-Soluble Dried Blood Spot in Protein Analysis: A Proof-of-Concept Study.

    PubMed

    Rosting, Cecilie; Gjelstad, Astrid; Halvorsen, Trine Grønhaug

    2015-08-04

    In the present work human chorionic gonadotropin (hCG) was used as a model protein in a proof-of-concept study combining water-soluble dried blood spot (DBS) material in liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based protein analysis. A water-soluble material consisting of commercially available carboxymethyl cellulose (CMC) was evaluated as sampling material for this purpose. The material dissolved readily at physiological pH. Different sample preparation methods were evaluated, and in the final method, 15 μL of whole blood was deposited and dried on CMC before the whole spot was dissolved prior to cleanup by immunoaffinity extraction, tryptic digest, and preconcentration by solid-phase extraction (SPE). The results indicated complete dissolution of hCG from the spots, acceptable limit of detection (LOD) (0.1 IU/mL), linearity (R(2) = 0.959), accuracy (16%), and precision (≤22%). Long-term stability (45 days) of hCG in dried spots at reduced temperatures (≤8 °C) was also demonstrated. The analyte recovery was comparable to the commercially available nonsolvable cellulose material (FTA DMPK-C card).

  12. Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer

    DOE PAGES

    Patel, Viral K.; Gluesenkamp, Kyle R.; Goodman, Dakota; ...

    2018-02-28

    Electric clothes dryers consume about 6% of US residential electricity consumption. Using a solid-state technology without refrigerant, thermoelectric (TE) heat pump dryers have the potential to be more efficient than units based on electric resistance and less expensive than units based on vapor compression. This study presents a steady state TE dryer model, and validates the model against results from an experimental prototype. The system model is composed of a TE heat pump element model coupled with a psychrometric dryer sub-model. Experimental results had energy factors (EFs) of up to 2.95 kg of dry cloth per kWh (6.51 lb c/kWh),more » with a dry time of 159 min. A faster dry time of 96 min was also achieved at an EF of 2.54 kg c/kWh (5.60 lb c/kWh). The model was able to replicate the experimental results within 5% of EF and 5% of dry time values. Finally, the results are used to identify important parameters that affect dryer performance, such as relative humidity of air leaving the drum.« less

  13. Experimental evaluation and thermodynamic system modeling of thermoelectric heat pump clothes dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Viral K.; Gluesenkamp, Kyle R.; Goodman, Dakota

    Electric clothes dryers consume about 6% of US residential electricity consumption. Using a solid-state technology without refrigerant, thermoelectric (TE) heat pump dryers have the potential to be more efficient than units based on electric resistance and less expensive than units based on vapor compression. This study presents a steady state TE dryer model, and validates the model against results from an experimental prototype. The system model is composed of a TE heat pump element model coupled with a psychrometric dryer sub-model. Experimental results had energy factors (EFs) of up to 2.95 kg of dry cloth per kWh (6.51 lb c/kWh),more » with a dry time of 159 min. A faster dry time of 96 min was also achieved at an EF of 2.54 kg c/kWh (5.60 lb c/kWh). The model was able to replicate the experimental results within 5% of EF and 5% of dry time values. Finally, the results are used to identify important parameters that affect dryer performance, such as relative humidity of air leaving the drum.« less

  14. Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion

    PubMed Central

    2013-01-01

    Background In solid-state anaerobic digestion (AD) bioprocesses, hydrolytic and acidogenic microbial metabolisms have not yet been clarified. Since these stages are particularly important for the establishment of the biological reaction, better knowledge could optimize the process performances by process parameters adjustment. Results This study demonstrated the effect of total solids (TS) content on microbial fermentation of wheat straw with six different TS contents ranging from wet to dry conditions (10 to 33% TS). Three groups of metabolic behaviors were distinguished based on wheat straw conversion rates with 2,200, 1,600, and 1,400 mmol.kgVS-1 of fermentative products under wet (10 and 14% TS), dry (19 to 28% TS), and highly dry (28 to 33% TS) conditions, respectively. Furthermore, both wet and dry fermentations showed acetic and butyric acid metabolisms, whereas a mainly butyric acid metabolism occurred in highly dry fermentation. Conclusion Substrate conversion was reduced with no changes of the metabolic pathways until a clear limit at 28% TS content, which corresponded to the threshold value of free water content of wheat straw. This study suggested that metabolic pathways present a limit of TS content for high-solid AD. PMID:24261971

  15. Reversed phase HPLC analysis of stability and microstructural effects on degradation kinetics of β-carotene encapsulated in freeze-dried maltodextrin-emulsion systems.

    PubMed

    Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H

    2012-09-26

    Degradation of dispersed lipophilic compounds in hydrophilic solids depends upon matrix stability and lipid physicochemical properties. This study investigated effects of solid microstructure and size of lipid droplets on the stability of dispersed β-carotene in freeze-dried systems. Emulsions of β-carotene in sunflower oil were dispersed in maltodextrin systems (M040/DE6, M100/DE11, and M250/DE25.5) (8% w/w oil) and prefrozen at various freezing conditions prior to freeze-drying to control nucleation and subsequent pore size and structural collapse of freeze-dried solids. The particle size, physical state, and β-carotene contents of freeze-dried emulsions were measured during storage at various water activity (a(w)) using a laser particle size analyzer, differential scanning calorimeter, and high performance liquid chromatography (HPLC), respectively. The results showed that M040 stabilized emulsions in low temperature freezing exhibited lipid crystallization. Collapse of solids in storage at a(w) which plasticized systems to the rubbery state led to flow and increased the size of oil droplets. Degradation of β-carotene analyzed using a reversed-phase C(30) column followed first-order kinetics. Porosity of solids had a major effect on β-carotene stability; however, the highest stability was found in fully plasticized and collapsed solids.

  16. Whey-cheese production using freeze-dried kefir culture as a starter.

    PubMed

    Dimitrellou, D; Kourkoutas, Y; Banat, I M; Marchant, R; Koutinas, A A

    2007-10-01

    The aim of the present study was to evaluate the use of a freeze-dried kefir culture in the production of a novel type of whey-cheese similar to traditional Greek Myzithra-cheese, to achieve improvement of the quality characteristics of the final product and the extension of shelf-life. The use of kefir culture as a starter led to increased lactic acid concentrations and decreased pH values in the final product compared with whey-cheese without starter culture. The effect of the starter culture on production of aroma-related compounds responsible for cheese flavour was also studied using the solid phase microextraction gas chromatography/mass spectrometry technique. Spoilage in unsalted kefir-whey-cheese was observed on the thirteenth and the twentieth day of preservation at 10 and 5 degrees C, respectively, while the corresponding times for unsalted whey-cheese preservation were 11 and 14 days. The cheeses produced were characterized as high-quality products during the preliminary sensory evaluation. An indication of increased preservation time was attributed to the freeze-dried kefir culture, which also seemed to suppress growth of pathogens. The results suggested the use of kefir culture as a means to extend the shelf-life of dairy products with reduced or no salt content.

  17. Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by-products.

    PubMed

    Lim, Kar; Ma, Mitzi; Dolan, Kirk D

    2011-09-01

    The effect of spray drying on degradation of nutraceutical components in cull blueberry extract was investigated. Samples collected before and after spray drying were tested for antioxidant capacity using oxygen radical absorbance capacity (ORAC(FL) ) and total phenolics; and for individual anthocyanidins. In Study 1, four different levels of maltodextrin (blueberry solids to maltodextrin ratios of 5: 95, 10: 90, 30: 70, and 50: 50) were spray dried a pilot-scale spray dryer. There was significantly higher retention of nutraceutical components with increased levels of maltodextrin indicating a protective effect of maltodextrin on the nutraceutical components during spray drying. In Study 2, the air inlet temperature of the spray dryer was kept constant for all runs at 150 °C, with 2 different outlet temperatures of 80 and 90 °C. The degradation of nutraceutical components was not significantly different at the 2 selected outlet temperatures. ORAC(FL) reduction for blueberry samples after spray drying was 66.3% to 69.6%. After spray drying, total phenolics reduction for blueberry was 8.2% to 17.5%. Individual anthocyanidin reduction for blueberry was 50% to 70%. The experimental spray dried powders compared favorably to commercial blueberry powders. Results of the study show that use of blueberry by-products is feasible to make a value-added powder. Results can be used by producers to estimate final nutraceutical content of spray-dried blueberry by-products. © 2011 Institute of Food Technologists®

  18. Dynamics of initial drop splashing on a dry smooth surface.

    PubMed

    Wu, Zhenlong; Cao, Yihua

    2017-01-01

    We simulate the onset and evolution of the earliest splashing of an infinite cylindrical liquid drop on a smooth dry solid surface. A tiny splash is observed to be emitted out of the rim of the lamella in the early stage of the impact. We find that the onset time of the splash is primarily dependent on the characteristic timescale, which is defined by the impact velocity as well as the drop radius, with no strong dependence on either the liquid viscosity or surface tension. Three regimes are found to be responsible for different splashing patterns. The outermost ejected droplets keep extending radially at a uniform speed proportional to the impact speed. Finally, we discuss the underlying mechanism which is responsible for the occurrence of the initial drop splash in the study.

  19. Use of Spray-Dried Dispersions in Early Pharmaceutical Development: Theoretical and Practical Challenges.

    PubMed

    Li, Jinjiang; Patel, Dhaval; Wang, George

    2017-03-01

    Spray-dried dispersions (SDDs) have become an important formulation technology for the pharmaceutical product development of poorly water-soluble (PWS) compounds. Although this technology is now widely used in the industry, especially in the early-phase development, the lack of mechanistic understanding still causes difficulty in selecting excipients and predicting stability of SDD-based drug products. In this review, the authors aim to discuss several principles of polymer science pertaining to the development of SDDs, in terms of selecting polymers and solvents, optimizing drug loading, as well as assessing physical stability on storage and supersaturation maintenance after dissolution, from both thermodynamic and kinetic considerations. In order to choose compatible solvents with both polymers and active pharmaceutical ingredients (APIs), a symmetric Flory-Huggins interaction (Δχ ∼0) approach was introduced. Regarding spray drying of polymer-API solutions, low critical solution temperature (LCST) was discussed for setting the inlet temperature for drying. In addition, after being exposed to moisture, SDDs are practically converted to ternary systems with asymmetric Flory-Huggins interactions, which are thermodynamically not favored. In this case, the kinetics of phase separation plays a significant role during the storage and dissolution of SDD-based drug products. The impact of polymers on the supersaturation maintenance of APIs in dissolution media was also discussed. Moreover, the nature of SDDs, with reference to solid solution and the notion of solid solubility, was examined in the context of pharmaceutical application. Finally, the importance of robust analytical techniques to characterize the SDD-based drug products was emphasized, considering their complexity.

  20. Preparation and Characterization of the Solid Spherical HMX/F2602 by the Suspension Spray-Drying Method

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Li, Xiaodong; Wang, Jingyu; Ye, Baoyun; Wang, Cailing

    2016-10-01

    Solid spherical octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine/fluororubber2602 (HMX/F2602) was prepared by the suspension spray-drying method as follows: firstly, thinning octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) was obtained by a solvent-anti-solvent method. Secondly, thinning HMX suspended in ethyl acetate solvent in a solution of a binder-F2602-was made into a suspension. Finally, the samples were prepared by spray drying. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), and its thermal stability as well as mechanical and spark sensitivities were measured. The results of SEM showed that the grain of HMX/F2602 was solid spherical and the particle distribution was homogeneous. The results of XPS indicated that F2602 can be successfully coated on the surface of HMX crystals. Compared to raw HMX, th characteristic drop height was increased from 19.60 to 40.37 cm, an increase of 79.10%. The friction sensitivities of HMX reduced from 100 to 28% and the spark sensitivity of HMX/F2602 increased. The critical explosion temperatures of raw HMX and HMX/F2602 were 275.43 and 274.30°C, respectively. The amount of gas evolution of raw HMX and HMX/F2602 was 0.15 and 0.12 ml.(5 g)-1, respectively. The results of DSC and vacuum stability tests (VSTs) indicate that the thermal stability of HMX/F2602 was equal to that of raw HMX and HMX and F2602 had good compatibility.

  1. Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: electrical variables analysis.

    PubMed

    Citeau, M; Olivier, J; Mahmoud, A; Vaxelaire, J; Larue, O; Vorobiev, E

    2012-09-15

    Pressurised electro-osmotic dewatering (PEOD) of two sewage sludges (activated and anaerobically digested) was studied under constant electric current (C.C.) and constant voltage (C.V.) with a laboratory chamber simulating closely an industrial filter. The influence of sludge characteristics, process parameters, and electrode/filter cloth position was investigated. The next parameters were tested: 40 and 80 A/m², 20, 30, and 50 V-for digested sludge dewatering; and 20, 40 and 80 A/m², 20, 30, and 50 V-for activated sludge dewatering. Effects of filter cloth electric resistance and initial cake thickness were also investigated. The application of PEOD provides a gain of 12 points of dry solids content for the digested sludge (47.0% w/w) and for the activated sludge (31.7% w/w). In PEOD processed at C.C. or at C.V., the dewatering flow rate was similar for the same electric field intensity. In C.C. mode, both the electric resistance of cake and voltage increase, causing a temperature rise by ohmic effect. In C.V. mode, a current intensity peak was observed in the earlier dewatering period. Applying at first a constant current and later on a constant voltage, permitted to have better control of ohmic heating effect. The dewatering rate was not significantly affected by the presence of filter cloth on electrodes, but the use of a thin filter cloth reduced remarkably the energy consumption compared to a thicker one: 69% of reduction energy input at 45% w/w of dry solids content. The reduction of the initial cake thickness is advantageous to increase the final dry solids content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, Deborah A.; Farthing, George A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  3. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, Deborah A.; Farthing, George A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  4. Particle Engineering in Pharmaceutical Solids Processing: Surface Energy 
Considerations

    PubMed Central

    Williams, Daryl R.

    2015-01-01

    During the past 10 years particle engineering in the pharmaceutical industry has become a topic of increasing importance. Engineers and pharmacists need to understand and control a range of key unit manufacturing operations such as milling, granulation, crystallisation, powder mixing and dry powder inhaled drugs which can be very challenging. It has now become very clear that in many of these particle processing operations, the surface energy of the starting, intermediate or final products is a key factor in understanding the processing operation and or the final product performance. This review will consider the surface energy and surface energy heterogeneity of crystalline solids, methods for the measurement of surface energy, effects of milling on powder surface energy, adhesion and cohesion on powder mixtures, crystal habits and surface energy, surface energy and powder granulation processes, performance of DPI systems and finally crystallisation conditions and surface energy. This review will conclude that the importance of surface energy as a significant factor in understanding the performance of many particulate pharmaceutical products and processes has now been clearly established. It is still nevertheless, work in progress both in terms of development of methods and establishing the limits for when surface energy is the key variable of relevance. PMID:25876912

  5. Robustness of Tomato Quality Evaluation Using a Portable Vis-SWNIRS for Dry Matter and Colour

    PubMed Central

    Subedi, P. P.; Walsh, K. B.

    2017-01-01

    The utility of a handheld visible-short wave near infrared spectrophotometer utilising an interactance optical geometry was assessed in context of the noninvasive determination of intact tomato dry matter content, as an index of final ripe soluble solids content, and colouration, as an index of maturation to guide a decision to harvest. Partial least squares regression model robustness was demonstrated through the use of populations of different harvest dates or growing conditions for calibration and prediction. Dry matter predictions of independent populations of fruit achieved R2 ranging from 0.86 to 0.92 and bias from −0.14 to 0.03%. For a CIE a⁎ colour model, prediction R2 ranged from 0.85 to 0.96 and bias from −1.18 to −0.08. Updating the calibration model with new samples to extend range in the attribute of interest and in sample matrix is key to better prediction performance. The handheld spectrometry system is recommended for practical implementation in tomato cultivation. PMID:29333161

  6. Comparison between hot-melt extrusion and spray-drying for manufacturing solid dispersions of the graft copolymer of ethylene glycol and vinylalcohol.

    PubMed

    Guns, Sandra; Dereymaker, Aswin; Kayaert, Pieterjan; Mathot, Vincent; Martens, Johan A; Van den Mooter, Guy

    2011-03-01

    To investigate the effect of the manufacturing method (spray-drying or hot-melt extrusion) on the kinetic miscibility of miconazole and the graft copolymer poly(ethyleneglycol-g-vinylalcohol). The effect of heat pre-treatment of solutions used for spray-drying and the use of spray-dried copolymer as excipient for hot-melt extrusion was investigated. The solid dispersions were prepared at different drug-polymer ratios and analyzed with modulated differential scanning calorimetry and X-ray powder diffraction. Miconazole either mixed with the PEG-fraction of the copolymer or crystallized in the same or a different polymorph as the starting material. The kinetic miscibility was higher for the solid dispersions obtained from solutions which were pre-heated compared to those spray-dried from solutions at ambient temperature. Hot-melt extrusion resulted in an even higher mixing capability. Here the use of the spray-dried copolymer did not show any benefit concerning the kinetic miscibility of the drug and copolymer, but it resulted in a remarkable decrease in the torque experienced by the extruder allowing extrusion at lower temperature and torque. The manufacturing method has an influence on the mixing capacity and phase behavior of solid dispersions. Heat pre-treatment of the solutions before spray-drying can result in a higher kinetic miscibility. Amorphization of the copolymer by spray-drying before using it as an excipient for hot-melt extrusion can be a manufacturing benefit.

  7. Electrodialytic remediation of municipal solid waste incineration residues using different membranes.

    PubMed

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M

    2017-02-01

    In the present work, three different commercial membrane brands were used in an identical electrodialytic cell setup and operating conditions, in order to reduce the leaching of metals and salt anions of two types of municipal solid waste incineration residues: air pollution control residues of a semi-dry flue-gas cleaning system and fly ashes from a plant with wet flue-gas cleaning system. The results showed a general reduction of the leaching in both residues after ED remediation. For the following elements, the leaching was found to be different after ED treatment depending on the membrane used, with statistical significance: • Air pollution control residues of the semi-dry flue-gas cleaning system: Cr, Cu, Ni, Pb, Zn; • Fly ashes from a plant with wet flue-gas cleaning system: Al, Ba, Cu, Ni, Zn, Cl, SO 4 . Final leaching values for some elements and membranes, but not the majority, were below than those of certified coal fly ash (e.g. Al or Cr), a material which is commonly used in construction materials; at the same time, some of these values were reduced to below the Danish law thresholds on the use of contaminated soil in constructions. These results show the potential of ED as a technology to upgrade municipal solid waste incineration residues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Addition of polyaluminiumchloride (PACl) to waste activated sludge to mitigate the negative effects of its sticky phase in dewatering-drying operations.

    PubMed

    Peeters, Bart; Dewil, Raf; Vernimmen, Luc; Van den Bogaert, Benno; Smets, Ilse Y

    2013-07-01

    This paper presents a new application of polyaluminiumchloride (PACl) as a conditioner for waste activated sludge prior its dewatering and drying. It is demonstrated at lab scale with a shear test-based protocol that a dose ranging from 50 to 150 g PACl/kg MLSS (mixed liquor suspended solids) mitigates the stickiness of partially dried sludge with a dry solids content between 25 and 60 %DS (dry solids). E.g., at a solids dryness of 46% DS the shear stress required to have the pre-consolidated sludge slip over a steel surface is reduced with 35%. The salient feature of PACl is further supported by torque data from a full scale decanter centrifuge used to dewater waste sludge. The maximal torque developed by the screw conveyor inside the decanter centrifuge is substantially reduced with 20% in the case the sludge feed is conditioned with PACl. The beneficial effect of waste sludge conditioning with PACl is proposed to be the result of the bound water associated with the aluminium polymers in PACl solutions which act as a type of lubrication for the intrinsically sticky sludge solids during the course of drying. It can be anticipated that PACl addition to waste sludge will become a technically feasible and very effective method to avoid worldwide fouling problems in direct sludge dryers, and to reduce torque issues in indirect sludge dryers as well as in sludge decanter centrifuges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. 21 CFR 184.1979a - Reduced lactose whey.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....199 (dry sample), entitled “Fat in Dried Milk (45)—Official Final Action.” (iii) Ash content, 11 to 27...—Official Final Action” under the heading “Dried Milk, Nonfat Dry Milk, and Malted Milk.” (iv) Lactose... section 16.192, entitled “Moisture (41)—Official Final Action” under the heading “Dried Milk, Nonfat Dry...

  10. 21 CFR 184.1979a - Reduced lactose whey.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....199 (dry sample), entitled “Fat in Dried Milk (45)—Official Final Action.” (iii) Ash content, 11 to 27...—Official Final Action” under the heading “Dried Milk, Nonfat Dry Milk, and Malted Milk.” (iv) Lactose... section 16.192, entitled “Moisture (41)—Official Final Action” under the heading “Dried Milk, Nonfat Dry...

  11. Liquid molded hollow cell core composite articles

    NASA Technical Reports Server (NTRS)

    Bernetich, Karl R. (Inventor)

    2005-01-01

    A hollow core composite assembly 10 is provided, including a hollow core base 12 having at least one open core surface 14, a bondable solid film 22 applied to the open core surface 14, at least one dry face ply 30 laid up dry and placed on top of the solid film 22, and a liquid resin 32 applied to the at least one dry face ply 30 and then cured.

  12. Preparation and evaluation of solid dispersion of atorvastatin calcium with Soluplus® by spray drying technique.

    PubMed

    Ha, Eun-Sol; Baek, In-hwan; Cho, Wonkyung; Hwang, Sung-Joo; Kim, Min-Soo

    2014-01-01

    The aim of the present study was to investigate the effect of Soluplus® on the solubility of atorvastatin calcium and to develop a solid dispersion formulation that can improve the oral bioavailability of atorvastatin calcium. We demonstrated that Soluplus® increases the aqueous solubility of atorvastatin calcium. Several solid dispersion formulations of atorvastatin calcium with Soluplus® were prepared at various drug : carrier ratios by spray drying. Physicochemical analysis demonstrated that atorvastatin calcium is amorphous in each solid dispersion, and the 2 : 8 drug : carrier ratio provided the highest degree of sustained atorvastatin supersaturation. Pharmacokinetic analysis in rats revealed that the 2 : 8 dispersion significantly improved the oral bioavailability of atorvastatin. This study demonstrates that spray-dried Soluplus® solid dispersions can be an effective method for achieving higher atorvastatin plasma levels.

  13. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, D.A.; Farthing, G.A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  14. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, D.A.; Farthing, G.A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  15. Porosity and water activity effects on stability of crystalline β-carotene in freeze-dried solids.

    PubMed

    Harnkarnsujarit, Nathdanai; Charoenrein, Sanguansri; Roos, Yrjö H

    2012-11-01

    Stability of entrapped crystalline β-carotene as affected by water activity, solids microstructure, and composition of freeze-dried systems was investigated. Aliquots (1000 mm(3) , 20% w/w solids) of solutions of maltodextrins of various dextrose equivalents (M040:DE6, M100:DE11, and M250:DE25.5), M100-sugars (1:1 glucose, fructose and sucrose), and agar for gelation with dispersed β-carotene were frozen at -20, -40, or -80 °C and freeze-dried. Glass transition and α-relaxation temperatures were determined with differential scanning calorimetry and dynamic mechanical analysis, respectively. β-Carotene contents were monitored spectrophotometrically. In the glassy solids, pore microstructure had a major effect on β-carotene stability. Small pores with thin walls and large surface area allowed β-carotene exposure to oxygen which led to a higher loss, whereas structural collapse enhanced stability of β-carotene by decreasing exposure to oxygen. As water plasticized matrices, an increase in molecular mobility in the matrix enhanced β-carotene degradation. Stability of dispersed β-carotene was highest at around 0.2 a(w) , but decreasing structural relaxation times above the glass transition correlated well with the rate of β-carotene degradation at higher a(w) . Microstructure, a(w) , and component mobility are important factors in the control of stability of β-carotene in freeze-dried solids. β-Carotene expresses various nutritional benefits; however, it is sensitive to oxygen and the degradation contributes to loss of nutritional values as well as product color. To increase stability of β-carotene in freeze-dried foods, the amount of oxygen penetration need to be limited. The modification of freeze-dried food structures, for example, porosity and structural collapse, components, and humidity effectively enhance the stability of dispersed β-carotene in freeze-dried solids. © 2012 Institute of Food Technologists®

  16. Surfactant-Free Solid Dispersions of Hydrophobic Drugs in an Amorphous Sugar Matrix Dried from an Organic Solvent.

    PubMed

    Takeda, Koji; Gotoda, Yuto; Hirota, Daichi; Hidaka, Fumihiro; Sato, Tomo; Matsuura, Tsutashi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi

    2017-03-06

    The technique for homogeneously dispersing hydrophobic drugs in a water-soluble solid matrix (solid dispersion) is a subject that has been extensively investigated in the pharmaceutical industry. Herein, a novel technique for dispersing a solid, without the need to use a surfactant, is reported. A freeze-dried amorphous sugar sample was dissolved in an organic solvent, which contained a soluble model hydrophobic component. The suspension of the sugar and the model hydrophobic component was vacuum foam dried to give a solid powder. Four types of sugars and methanol were used as representative sugars and the organic medium. Four model drugs (indomethacin, ibuprofen, gliclazide, and nifedipine) were employed. Differential scanning calorimetry analyses indicated that the sugar and model drug (100:1) did not undergo segregation during the drying process. The dissolution of the hydrophobic drugs in water from the solid dispersion was then evaluated, and the results indicated that the C max and AUC 0-60 min of the hydrophobic drug in water were increased when the surfactant-free solid dispersion was used. Palatinose and/or α-maltose were superior to the other tested carbohydrates in increasing C max and AUC 0-60 min for all tested model drugs, and the model drug with a lower water solubility tended to exhibit a greater extent of over-dissolution.

  17. Impact of surfactants on the crystallization of aqueous suspensions of celecoxib amorphous solid dispersion spray dried particles.

    PubMed

    Chen, Jie; Ormes, James D; Higgins, John D; Taylor, Lynne S

    2015-02-02

    Amorphous solid dispersions are frequently prepared by spray drying. It is important that the resultant spray dried particles do not crystallize during formulation, storage, and upon administration. The goal of the current study was to evaluate the impact of surfactants on the crystallization of celecoxib amorphous solid dispersions (ASD), suspended in aqueous media. Solid dispersions of celecoxib with hydroxypropylmethylcellulose acetate succinate were manufactured by spray drying, and aqueous suspensions were prepared by adding the particles to acidified media containing various surfactants. Nucleation induction times were evaluated for celecoxib in the presence and absence of surfactants. The impact of the surfactants on drug and polymer leaching from the solid dispersion particles was also evaluated. Sodium dodecyl sulfate and Polysorbate 80 were found to promote crystallization from the ASD suspensions, while other surfactants including sodium taurocholate and Triton X100 were found to inhibit crystallization. The promotion or inhibition of crystallization was found to be related to the impact of the surfactant on the nucleation behavior of celecoxib, as well as the tendency to promote leaching of the drug from the ASD particle into the suspending medium. It was concluded that surfactant choice is critical to avoid failure of amorphous solid dispersions through crystallization of the drug.

  18. Total selenium in irrigation drain inflows to the Salton Sea, California, April 2009

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for the final sampling period (April 2009) of a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium and total suspended solids were determined in water samples. Total selenium, percent total organic carbon, and particle size were determined in sediments. Mean total selenium concentrations in water ranged from 0.98 to 22.9 micrograms per liter. Total selenium concentrations in sediment ranged from 0.078 to 5.0 micrograms per gram dry weight.

  19. Good Housekeeping Implementation for Improving Efficiency in Cassava Starch Industry (Case Study : Margoyoso District, Pati Regency)

    NASA Astrophysics Data System (ADS)

    Aji, Wijayanto Setyo; Purwanto; Suherman, S.

    2018-02-01

    Cassava starch industry is one of the leading small-medium enterprises (SMEs) in Pati Regency. Cassava starch industry released waste that reduces the quantity of final product and potentially contamined the environment. This study was conducted to observe the feasibility of good housekeeping implementation to reduce waste and at the same time improve efficiency of production process. Good housekeeping opportunities are consideration by three aspect, technical, economy and environmental. Good housekeeping opportunities involved water conservation and waste reduction. These included reuse of water in washing process, improving workers awareness in drying section and packaging section. Implementation of these opportunities can reduce water consumption, reduce wastewater and solid waste generation also increased quantity of final product.

  20. Change in enzyme production by gradually drying culture substrate during solid-state fermentation.

    PubMed

    Ito, Kazunari; Gomi, Katsuya; Kariyama, Masahiro; Miyake, Tsuyoshi

    2015-06-01

    The influence of drying the culture substrate during solid-state fermentation on enzyme production was investigated using a non-airflow box. The drying caused a significant increase in enzyme production, while the mycelium content decreased slightly. This suggests that changes in the water content in the substrate during culture affect enzyme production in fungi. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Determination of lead in flour samples directly by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Tinas, Hande; Ozbek, Nil; Akman, Suleyman

    2018-02-01

    In this study, lead concentrations in various flour samples were determined by high-resolution continuum source graphite furnace atomic absorption spectrometry with solid sampling. Since samples were analyzed directly, the risks and disadvantages of sample digestion were eliminated. Solid flour samples were dried, weighed on the platforms, Pd was added as a modifier and introduced directly into a graphite tube using a manual solid sampler. Platforms and tubes were coated with Zr. The optimized pyrolysis and atomization temperatures were 800 °C and 2200 °C, respectively. The sensitivities of lead in various flour certified reference materials (CRMs) and aqueous standards were not significantly different. Therefore, aqueous standards were safely used for calibration. The absolute limit of detection and characteristic mass were 7.2 pg and 9.0 pg of lead, respectively. The lead concentrations in different types of flour samples were found in the range of 25-52 μg kg- 1. Finally, homogeneity factors representing the heterogeneity of analyte distribution for lead in flour samples were determined.

  2. Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy

    PubMed Central

    Ferro, Monica; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco

    2017-01-01

    Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1H fast MAS NMR and 13C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles. PMID:28228859

  3. Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy.

    PubMed

    Ferro, Monica; Castiglione, Franca; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea

    2017-01-01

    Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1 H fast MAS NMR and 13 C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13 C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13 C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles.

  4. Production, properties, and applications of hydrocolloid cellular solids.

    PubMed

    Nussinovitch, Amos

    2005-02-01

    Many common synthetic and edible materials are, in fact, cellular solids. When classifying the structure of cellular solids, a few variables, such as open vs. closed cells, flexible vs. brittle cell walls, cell-size distribution, cell-wall thickness, cell shape, the uniformity of the structure of the cellular solid and the different scales of length are taken into account. Compressive stress-strain relationships of most cellular solids can be easily identified according to their characteristic sigmoid shape, reflecting three deformation mechanisms: (i) elastic distortion under small strains, (ii) collapse and/or fracture of the cell walls, and (iii) densification. Various techniques are used to produce hydrocolloid (gum) cellular solids. The products of these include (i) sponges, obtained when the drying gel contains the occasionally produced gas bubbles; (ii) sponges produced by the immobilization of microorganisms; (iii) solid foams produced by drying foamed solutions or gels containing oils, and (iv) hydrocolloid sponges produced by enzymatic reactions. The porosity of the manufactured cellular solid is subject to change and depends on its composition and the processing technique. The porosity is controlled by a range of methods and the resulting surface structures can be investigated by microscopy and analyzed using fractal methods. Models used to describe stress-strain behaviors of hydrocolloid cellular solids as well as multilayered products and composites are discussed in detail in this manuscript. Hydrocolloid cellular solids have numerous purposes, simple and complex, ranging from dried texturized fruits to carriers of vitamins and other essential micronutrients. They can also be used to control the acoustic response of specific dry food products, and have a great potential for future use in countless different fields, from novel foods and packaging to medicine and medical care, daily commodities, farming and agriculture, and the environmental, chemical, and even electronic industries.

  5. Effect of filter media thickness on the performance of sand drying beds used for faecal sludge management.

    PubMed

    Manga, M; Evans, B E; Camargo-Valero, M A; Horan, N J

    2016-12-01

    The effect of sand filter media thickness on the performance of faecal sludge (FS) drying beds was determined in terms of: dewatering time, contaminant load removal efficiency, solids generation rate, nutrient content and helminth eggs viability in the dried sludge. A mixture of ventilated improved pit latrine sludge and septage in the ratio 1:2 was dewatered using three pilot-scale sludge drying beds with sand media thicknesses of 150, 250 and 350 mm. Five dewatering cycles were conducted and monitored for each drying bed. Although the 150 mm filter had the shortest average dewatering time of 3.65 days followed by 250 mm and 350 mm filters with 3.83 and 4.02 days, respectively, there was no significant difference (p > 0.05) attributable to filter media thickness configurations. However, there was a significant difference for the percolate contaminant loads in the removal and recovery efficiency of suspended solids, total solids, total volatile solids, nitrogen species, total phosphorus, chemical oxygen demand, dissolved chemical oxygen demand and biochemical oxygen demand, with the highest removal efficiency for each parameter achieved by the 350 mm filter. There were also significant differences in the nutrient content (NPK) and helminth eggs viability of the solids generated by the tested filters. Filtering media configurations similar to 350 mm have the greatest potential for optimising nutrient recovery from FS.

  6. Conceptual design of fast-ignition laser fusion reactor FALCON-D

    NASA Astrophysics Data System (ADS)

    Goto, T.; Someya, Y.; Ogawa, Y.; Hiwatari, R.; Asaoka, Y.; Okano, K.; Sunahara, A.; Johzaki, T.

    2009-07-01

    A new conceptual design of the laser fusion power plant FALCON-D (Fast-ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast-ignition method can achieve sufficient fusion gain for a commercial operation (~100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5-6 m radius). 1D/2D simulations by hydrodynamic codes showed a possibility of achieving sufficient gain with a laser energy of 400 kJ, i.e. a 40 MJ target yield. The design feasibility of the compact dry wall chamber and the solid breeder blanket system was shown through thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. Moderate electric output (~400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall reactor concept not only reduces several difficulties associated with a liquid wall system but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance period. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R&D issues required for this design are also discussed.

  7. Dynamics of initial drop splashing on a dry smooth surface

    PubMed Central

    Wu, Zhenlong; Cao, Yihua

    2017-01-01

    We simulate the onset and evolution of the earliest splashing of an infinite cylindrical liquid drop on a smooth dry solid surface. A tiny splash is observed to be emitted out of the rim of the lamella in the early stage of the impact. We find that the onset time of the splash is primarily dependent on the characteristic timescale, which is defined by the impact velocity as well as the drop radius, with no strong dependence on either the liquid viscosity or surface tension. Three regimes are found to be responsible for different splashing patterns. The outermost ejected droplets keep extending radially at a uniform speed proportional to the impact speed. Finally, we discuss the underlying mechanism which is responsible for the occurrence of the initial drop splash in the study. PMID:28493989

  8. A stable live bacterial vaccine.

    PubMed

    Kunda, Nitesh K; Wafula, Denis; Tram, Meilinn; Wu, Terry H; Muttil, Pavan

    2016-06-01

    Formulating vaccines into a dry form enhances its thermal stability. This is critical to prevent administering damaged and ineffective vaccines, and to reduce its final cost. A number of vaccines in the market as well as those being evaluated in the clinical setting are in a dry solid state; yet none of these vaccines have achieved long-term stability at high temperatures. We used spray-drying to formulate a recombinant live attenuated Listeria monocytogenes (Lm; expressing Francisella tularensis immune protective antigen pathogenicity island protein IglC) bacterial vaccine into a thermostable dry powder using various sugars and an amino acid. Lm powder vaccine showed minimal loss in viability when stored for more than a year at ambient room temperature (∼23°C) or for 180days at 40°C. High temperature viability was achieved by maintaining an inert atmosphere in the storage container and removing oxygen free radicals that damage bacterial membranes. Further, in vitro antigenicity was confirmed by infecting a dendritic cell line with cultures derived from spray dried Lm and detection of an intracellularly expressed protective antigen. A combination of stabilizing excipients, a cost effective one-step drying process, and appropriate storage conditions could provide a viable option for producing, storing and transporting heat-sensitive vaccines, especially in regions of the world that require them the most. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Thin layer drying of cassava starch using continuous vibrated fluidized bed dryer

    NASA Astrophysics Data System (ADS)

    Suherman, Trisnaningtyas, Rona

    2015-12-01

    This paper present the experimental work and thin layer modelling of cassava starch drying in continuous vibrated fluidized bed dryer. The experimental data was used to validate nine thin layer models of drying curve. Cassava starch with 0.21 initial moisture content was dried in different air drying temperature (50°C, 55°C, 60°C, 65°C, 70°C), different weir height in bed (0 and 1 cm), and different solid feed flow (10 and 30 gr.minute-1). The result showed air dryer temperature has a significant effect on drying curve, while the weir height and solid flow rate are slightly. Based on value of R2, χ2, and RMSE, Page Model is the most accurate simulation for thin layer drying model of cassava starch.

  10. Optimization of a method for preparing solid complexes of essential clove oil with β-cyclodextrins.

    PubMed

    Hernández-Sánchez, Pilar; López-Miranda, Santiago; Guardiola, Lucía; Serrano-Martínez, Ana; Gabaldón, José Antonio; Nuñez-Delicado, Estrella

    2017-01-01

    Clove oil (CO) is an aromatic oily liquid used in the food, cosmetics and pharmaceutical industries for its functional properties. However, its disadvantages of pungent taste, volatility, light sensitivity and poor water solubility can be solved by applying microencapsulation or complexation techniques. Essential CO was successfully solubilized in aqueous solution by forming inclusion complexes with β-cyclodextrins (β-CDs). Moreover, phase solubility studies demonstrated that essential CO also forms insoluble complexes with β-CDs. Based on these results, essential CO-β-CD solid complexes were prepared by the novel approach of microwave irradiation (MWI), followed by three different drying methods: vacuum oven drying (VO), freeze-drying (FD) or spray-drying (SD). FD was the best option for drying the CO-β-CD solid complexes, followed by VO and SD. MWI can be used efficiently to prepare essential CO-β-CD complexes with good yield on an industrial scale. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. A parametric analysis of waves propagating in a porous solid saturated by a three-phase fluid.

    PubMed

    Santos, Juan E; Savioli, Gabriela B

    2015-11-01

    This paper presents an analysis of a model for the propagation of waves in a poroelastic solid saturated by a three-phase viscous, compressible fluid. The constitutive relations and the equations of motion are stated first. Then a plane wave analysis determines the phase velocities and attenuation coefficients of the four compressional waves and one shear wave that propagate in this type of medium. A procedure to compute the elastic constants in the constitutive relations is defined next. Assuming the knowledge of the shear modulus of the dry matrix, the other elastic constants in the stress-strain relations are determined by employing ideal gedanken experiments generalizing those of Biot's theory for single-phase fluids. These experiments yield expressions for the elastic constants in terms of the properties of the individual solid and fluids phases. Finally the phase velocities and attenuation coefficients of all waves are computed for a sample of Berea sandstone saturated by oil, gas, and water.

  12. Experimental research of solid waste drying in the process of thermal processing

    NASA Astrophysics Data System (ADS)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  13. Aerosolization Characteristics of Dry Powder Inhaler Formulations for the Excipient Enhanced Growth (EEG) Application: Effect of Spray Drying Process Conditions on Aerosol Performance

    PubMed Central

    Son, Yoen-Ju; Longest, P. Worth; Hindle, Michael

    2013-01-01

    The aim of this study was to develop a spray dried submicrometer powder formulation suitable for the excipient enhanced growth (EEG) application. Combination particles were prepared using the Buchi Nano spray dryer B-90. A number of spray drying and formulation variables were investigated with the aims of producing dry powder formulations that were readily dispersed upon aerosolization and maximizing the fraction of submicrometer particles. Albuterol sulfate, mannitol, L-leucine, and poloxamer 188 were selected as a model drug, hygroscopic excipient, dispersibility enhancer and surfactant, respectively. Formulations were assessed by scanning electron microscopy and aerosol performance following aerosolization using an Aerolizer® dry powder inhaler (DPI). In vitro drug deposition was studied using a realistic mouth-throat (MT) model. Based on the in vitro aerosolization results, the best performing submicrometer powder formulation consisted of albuterol sulfate, mannitol, L-leucine and poloxamer 188 in a ratio of 30:48:20:2, containing 0.5% solids in a water:ethanol (80:20% v/v) solution which was spray dried at 70 °C. The submicrometer particle fraction (FPF1μm/ED) of this final formulation was 28.3% with more than 80% of the capsule contents being emitted during aerosolization. This formulation also showed 4.1% MT deposition. The developed combination formulation delivered a powder aerosol developed for the EEG application with high dispersion efficiency and low MT deposition from a convenient DPI device platform. PMID:23313343

  14. A Comparison between Use of Spray and Freeze Drying Techniques for Preparation of Solid Self-Microemulsifying Formulation of Valsartan and In Vitro and In Vivo Evaluation

    PubMed Central

    Singh, Sanjay Kumar; Vuddanda, Parameswara Rao; Singh, Sanjay; Srivastava, Anand Kumar

    2013-01-01

    The objective of the present study was to develop self micro emulsifying formulation (SMEF) of valsartan to improve its oral bioavailability. The formulations were screened on the basis of solubility, stability, emulsification efficiency, particle size and zeta potential. The optimized liquid SMEF contains valsartan (20% w/w), Capmul MCM C8 (16% w/w), Tween 80 (42.66% w/w) and PEG 400 (21.33% w/w) as drug, oil, surfactant and co-surfactant, respectively. Further, Liquid SMEF was adsorbed on Aerosol 200 by spray and freeze drying methods in the ratio of 2 : 1 and transformed into free flowing powder. Both the optimized liquid and solid SMEF had the particle size <200 nm with rapid reconstitution properties. Both drying methods are equally capable for producing stable solid SMEF and immediate release of drug in in vitro and in vivo conditions. However, the solid SMEF produced by spray drying method showed high flowability and compressibility. The solid state characterization employing the FTIR, DSC and XRD studies indicated insignificant interaction of drug with lipid and adsorbed excipient. The relative bioavailability of solid SMEF was approximately 1.5 to 3.0 folds higher than marketed formulation and pure drug. Thus, the developed solid SMEF illustrates an alternative delivery of valsartan as compared to existing formulations with improved bioavailability. PMID:23971048

  15. Photoelectrochemical cells for conversion of solar energy to electricity and methods of their manufacture

    DOEpatents

    Skotheim, Terje

    1984-04-10

    A photoelectric device is disclosed which comprises first and second layers of semiconductive material, each of a different bandgap, with a layer of dry solid polymer electrolyte disposed between the two semiconductor layers. A layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte is further interposed between the dry solid polymer electrolyte and the first semiconductor layer. A method of manufacturing such devices is also disclosed.

  16. Study on Enhanced Dissolution of Azilsartan-Loaded Solid Dispersion, Prepared by Combining Wet Milling and Spray-Drying Technologies.

    PubMed

    Lu, Tianshu; Sun, Yinghua; Ding, Dawei; Zhang, Qi; Fan, Rui; He, Zhonggui; Wang, Jing

    2017-02-01

    The purpose of this study was to develop a combination method of wet milling and spray-drying technologies to prepare the solid dispersion and improve the dissolution rate of poorly water-soluble drug candidates. Azilsartan (AZL) was selected as the model drug for its poor water solubility. In the study, AZL-loaded solid dispersion was prepared with polyethylene glycol 6000 (PEG6000) and hydroxypropyl cellulose with super low viscosity (HPC-SL) as stabilizers by using combination of wet grinding and spray-drying methods. The high AZL loading solid dispersion was then characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Besides, dissolution test was carried out by the paddle method and stability investigation was also conducted. As a result, the dissolution rate of the solid dispersion tablets was found to be greater than conventional tablets, but in close agreement with market tablets. Furthermore, the formulation was shown to be stable at 40 ± 2°C and 75 ± 5% for at least 6 months, owing to its decreased particle size, morphology, and its crystal form. It was concluded that the combination of wet milling and spray-drying approaches to prepare solid dispersion would be a prospective method to improve the dissolution rate of poorly water-soluble drugs.

  17. Pharmaceutical spray drying: solid-dose process technology platform for the 21st century.

    PubMed

    Snyder, Herman E

    2012-07-01

    Requirement for precise control of solid-dosage particle properties created with a scalable process technology are continuing to expand in the pharmaceutical industry. Alternate methods of drug delivery, limited active drug substance solubility and the need to improve drug product stability under room-temperature conditions are some of the pharmaceutical applications that can benefit from spray-drying technology. Used widely for decades in other industries with production rates up to several tons per hour, pharmaceutical uses for spray drying are expanding beyond excipient production and solvent removal from crystalline material. Creation of active pharmaceutical-ingredient particles with combinations of unique target properties are now more common. This review of spray-drying technology fundamentals provides a brief perspective on the internal process 'mechanics', which combine with both the liquid and solid properties of a formulation to enable high-throughput, continuous manufacturing of precision powder properties.

  18. Using Flory-Huggins phase diagrams as a pre-formulation tool for the production of amorphous solid dispersions: a comparison between hot-melt extrusion and spray drying.

    PubMed

    Tian, Yiwei; Caron, Vincent; Jones, David S; Healy, Anne-Marie; Andrews, Gavin P

    2014-02-01

    Amorphous drug forms provide a useful method of enhancing the dissolution performance of poorly water-soluble drugs; however, they are inherently unstable. In this article, we have used Flory-Huggins theory to predict drug solubility and miscibility in polymer candidates, and used this information to compare spray drying and melt extrusion as processes to manufacture solid dispersions. Solid dispersions were prepared using two different techniques (hot-melt extrusion and spray drying), and characterised using a combination of thermal (thermogravimetric analysis and differential scanning calorimetry), spectroscopic (Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction methods. Spray drying permitted generation of amorphous solid dispersions across a wider drug concentration than melt extrusion. Melt extrusion provided sufficient energy for more intimate mixing to be achieved between drug and polymer, which may improve physical stability. It was also confirmed that stronger drug-polymer interactions might be generated through melt extrusion. Remixing and dissolution of recrystallised felodipine into the polymeric matrices did occur during the modulated differential scanning calorimetry analysis, but the complementary information provided from FTIR confirms that all freshly prepared spray-dried samples were amorphous with the existence of amorphous drug domains within high drug-loaded samples. Using temperature-composition phase diagrams to probe the relevance of temperature and drug composition in specific polymer candidates facilitates polymer screening for the purpose of formulating solid dispersions. © 2013 Royal Pharmaceutical Society.

  19. Method of making a functionally graded material

    DOEpatents

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.

    2001-01-01

    A gelcasting method of making an internally graded article includes the steps of: preparing at least two slurries, each of the slurries including a different gelcastable powder suspended in a gelcasting solution, the slurries characterized by having comparable shrinkage upon drying and sintering thereof; casting the slurries into a mold having a selected shape, wherein relative proportions of the slurries is varied in at least one direction within the selected shape; gelling the slurries to form a solid gel while preserving the variation in relative proportions of the slurries; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying because of the variation in relative proportions of the starting slurries. A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  20. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  1. Freeze drying method

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  2. Characterization of the Factors that Influence Sinapine Concentration in Rapeseed Meal during Fermentation

    PubMed Central

    Niu, Yanxing; Jiang, Mulan; Guo, Mian; Wan, Chuyun; Hu, Shuangxi; Jin, Hu; Huang, Fenghong

    2015-01-01

    We analyzed and compared the difference in sinapine concentration in rapeseed meal between the filamentous fungus, Trametes sp 48424, and the yeast, Saccharomyces cerevisiae, in both liquid and solid-state fermentation. During liquid and solid-state fermentation by Trametes sp 48424, the sinapine concentration decreased significantly. In contrast, the liquid and solid-state fermentation process by Saccharomyces cerevisiae just slightly decreased the sinapine concentration (P ≤ 0.05). After the solid-state fermented samples were dried, the concentration of sinapine in rapeseed meal decreased significantly in Saccharomyces cerevisiae. Based on the measurement of laccase activity, we observed that laccase induced the decrease in the concentration of sinapine during fermentation with Trametes sp 48424. In order to eliminate the influence of microorganisms and the metabolites produced during fermentation, high moisture rapeseed meal and the original rapeseed meal were dried at 90°C and 105°C, respectively. During drying, the concentration of sinapine in high moisture rapeseed meal decreased rapidly and we obtained a high correlation coefficient between the concentration of sinapine and loss of moisture. Our results suggest that drying and enzymes, especially laccase that is produced during the solid-state fermentation process, may be the main factors that affect the concentration of sinapine in rapeseed meal. PMID:25606856

  3. Alternative Manufacturing Concepts for Solid Oral Dosage Forms From Drug Nanosuspensions Using Fluid Dispensing and Forced Drying Technology.

    PubMed

    Bonhoeffer, Bastian; Kwade, Arno; Juhnke, Michael

    2018-03-01

    Flexible manufacturing technologies for solid oral dosage forms with a continuous adjustability of the manufactured dose strength are of interest for applications in personalized medicine. This study explored the feasibility of using microvalve technology for the manufacturing of different solid oral dosage form concepts. Hard gelatin capsules filled with excipients, placebo tablets, and polymer films, placed in hard gelatin capsules after drying, were considered as substrates. For each concept, a basic understanding of relevant formulation parameters and their impact on dissolution behavior has been established. Suitable matrix formers, present either on the substrate or directly in the drug nanosuspension, proved to be essential to prevent nanoparticle agglomeration of the drug nanoparticles and to ensure a fast dissolution behavior. Furthermore, convection and radiation drying methods were investigated for the fast drying of drug nanosuspensions dispensed onto polymer films, which were then placed in hard gelatin capsules. Changes in morphology and in drug and matrix former distribution were observed for increasing drying intensity. However, even fast drying times below 1 min could be realized, while maintaining the nanoparticulate drug structure and a good dissolution behavior. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Linear fully dry polymer actuators

    NASA Astrophysics Data System (ADS)

    De Rossi, Danilo; Mazzoldi, Alberto

    1999-05-01

    In the last period, the interest in the development of devices that emulate the properties of the 'par excellence' biological actuator, the human muscle, is considerably grown. The recent advances in the field of conducting polymers open new interesting prospects in this direction: from this point of view polyaniline (PANi), since it is easily produced in fiber form, represents an interesting material. In this conference we report the development of a linear actuator prototype that makes use of PANi fiber. All fabrication steps (fiber extrusion, solid polymer electrolyte preparation, compound realization) and experimental set-up for the electromechanical characterization are described. Quantitative measurements of isotonic length changes and isometric stress generation during electrochemical stimulation are reported. An overall assessment of PANi fibers actuative properties in wet and dry conditions is reported and possible future developments are proposed. Finally, continuum and lumped parameter models formulated to describe passive and active contractile properties of conducting polymer actuators are briefly outlined.

  5. Modification of the solid-state nature of sulfathiazole and sulfathiazole sodium by spray drying.

    PubMed

    Bianco, Stefano; Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Nolan, Lorraine; Hu, Yun; Healy, Anne Marie

    2012-06-01

    Solid-state characterisation of a drug following pharmaceutical processing and upon storage is fundamental to successful dosage form development. The aim of the study was to investigate the effects of using different solvents, feed concentrations and spray drier configuration on the solid-state nature of the highly polymorphic model drug, sulfathiazole (ST) and its sodium salt (STNa). The drugs were spray-dried from ethanol, acetone and mixtures of these organic solvents with water. Additionally, STNa was spray-dried from pure water. The physicochemical properties including the physical stability of the spray-dried powders were compared to the unprocessed materials. Spray drying of ST from either acetonic or ethanolic solutions with the spray drier operating in a closed cycle mode yielded crystalline powders. In contrast, the powders obtained from ethanolic solutions with the spray drier operating in an open cycle mode were amorphous. Amorphous ST crystallised to pure form I at ≤35 % relative humidity (RH) or to polymorphic mixtures at higher RH values. The usual crystal habit of form I is needle-like, but spherical particles of this polymorph were generated by spray drying. STNa solutions resulted in an amorphous material upon processing, regardless of the solvent and the spray drier configuration employed. Moisture induced crystallisation of amorphous STNa to a sesquihydrate, whilst crystallisation upon heating gave rise to a new anhydrous polymorph. This study indicated that control of processing and storage parameters can be exploited to produce drugs with a specific/desired solid-state nature.

  6. Nondestructive determination of dry matter and soluble solids content in dehydrator onions and garlics using a handheld visible and near infrared instrument

    USDA-ARS?s Scientific Manuscript database

    A non-destructive method based on visible and near-infrared spectroscopy was investigated for determining the dry matter and soluble solids contents of dehydrator onions at the base, equatorial, and shoulder locations and of garlic cloves at the equatorial location. The interactance spectrum (400-10...

  7. An Evaluation of the Functionality of Advanced Fuel Research Prototype Dry Pyrolyzer for Destruction of Solid Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Wignarajah, K.; Howard, Kevin; Serio, Mike; Kroo, Eric

    2004-01-01

    The prototype dry pyrolyser delivered to Ames Research Center is the end-product of a Phase I1 Small Business Initiative Research (SBIR) project. Some of the major advantages of pyrolysis for processing solid wastes are that it can process solid wastes, it permits elemental recycling while conserving oxygen use, and it can function as a pretreatment for combustion processes. One of the disadvantages of pyrolysis is the formation of tars. By controlling the rate of heating, tar formation can be minimized. This paper presents data on the pyrolysis of various space station wastes. The performance of the pyrolyser is also discussed and appropriate modifications suggested to improve the performance of the dry pyrolyzer.

  8. Transformation of Swine Manure and Algal Consortia to Value-added Products

    NASA Astrophysics Data System (ADS)

    Sharara, Mahmoud A.

    The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations. This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product. First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects. Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m-3 at 760°C, and 3.6 MJ m-3 at 960°C. Finally, life cycle assessment (LCA) was used to evaluate a proposed swine manure management system that includes a thermochemical conversion sub-system: drying, gasification, and producer-gas combustion (boiler). Liquid manure storage (uncovered tank) was the biggest contributor to GHG emissions. Liquid slurry management stages were credited with the highest fossil fuel use. Improvements to separation and drying technologies can improve this conversion scenario.

  9. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.

    PubMed

    Sarciaux, J M; Mansour, S; Hageman, M J; Nail, S L

    1999-12-01

    The objective of this study was to identify critical formulation and processing variables affecting aggregation of bovine IgG during freeze-drying when no lyoprotective solute is used. Parameters examined were phosphate buffer concentration and counterion (Na versus K phosphate), added salts, cooling rate, IgG concentration, residual moisture level, and presence of a surfactant. No soluble aggregates were detected in any formulation after either freezing/thawing or freeze-drying. No insoluble aggregates were detected in any formulation after freezing, but insoluble aggregate levels were always detectable after freeze-drying. The data are consistent with a mechanism of aggregate formation involving denaturation of IgG at the ice/freeze-concentrate interface which is reversible upon freeze-thawing, but becomes irreversible after freeze-drying and reconstitution. Rapid cooling (by quenching in liquid nitrogen) results in more and larger aggregates than slow cooling on the shelf of the freeze-dryer. This observation is consistent with surface area measurements and environmental electron microscopic data showing a higher surface area of freeze-dried solids after fast cooling. Annealing of rapidly cooled solutions results in significantly less aggregation in reconstituted freeze-dried solids than in nonannealed controls, with a corresponding decrease in specific surface area of the freeze-dried, annealed system. Increasing the concentration of IgG significantly improves the stability of IgG against freeze-drying-induced aggregation, which may be explained by a smaller percentage of the protein residing at the ice/freeze-concentrate interface as IgG concentration is increased. A sodium phosphate buffer system consistently results in more turbid reconstituted solids than a potassium phosphate buffer system at the same concentration, but this effect is not attributable to a pH shift during freezing. Added salts such as NaCl or KCl contribute markedly to insoluble aggregate formation. Both sodium and potassium chloride contribute more to turbidity of the reconstituted solid than either sodium or potassium phosphate buffers at similar ionic strength, with sodium chloride resulting in a substantially higher level of aggregates than potassium chloride. At a given cooling rate, the specific surface area of dried solids is approximately a factor of 2 higher for the formulation containing sodium chloride than the formulation containing potassium chloride. Turbidity is also influenced by the extent of secondary drying, which underscores the importance of minimizing secondary drying of this system. Including a surfactant such as polysorbate 80, either in the formulation or in the water used for reconstitution, decreased, but did not eliminate, insoluble aggregates. There was no correlation between pharmaceutically acceptability of the freeze-dried cake and insoluble aggregate levels in the reconstituted product.

  10. Effect of the temperature on the spray drying of Roselle extracts (Hibiscus sabdariffa L.).

    PubMed

    Gonzalez-Palomares, Salvador; Estarrón-Espinosa, Mirna; Gómez-Leyva, Juan Florencio; Andrade-González, Isaac

    2009-03-01

    The effect of the drying temperature on the volatile components and sensory acceptance of the Roselle (Hibiscus sabdariffa) extract in powder was investigated. The Roselle extraction was carried out by maceration with 7 L of 30% ethanol (v/v), 560 g of fresh Roselle calyces for 168 h. The Roselle extracts were spray dried at different temperatures 150, 160, 170, 180, 190, 200 and 210 degrees C, giving different outlet values about yield and final moisture. The volatile compounds in Roselle extract and dried samples were performed using needles of solid phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS HP-5890). Twenty volatile compounds were identified in the extracts among them terpenoids, esters, hydrocarbons and aldehydes. Fourteen volatile compounds were identified in the powder sample, but only ten were present in the Roselle extract. This indicates that some compounds were lost and some others were generated due to a degradation process. An acceptability sensory analysis showed that the best powder sample was the Roselle extract dehydrated using temperature between 190 degrees C and 200 degrees C (p<0.05). There was not statistically significant difference in the pH of Roselle extracts ranging from 3.4 to 3.9. It was concluded that the spray drying temperature of the Roselle extracts has an effect on the volatile compounds losses.

  11. Solid and Liquid Waste Drying Bag

    NASA Technical Reports Server (NTRS)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  12. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fdez-Gueelfo, L.A., E-mail: alberto.fdezguelfo@uca.es; Alvarez-Gallego, C.; Sales, D.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71more » g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.« less

  13. Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake.

    PubMed

    Jørgensen, Henning; Sanadi, Anand R; Felby, Claus; Lange, Niels Erik Krebs; Fischer, Morten; Ernst, Steffen

    2010-05-01

    Palm kernel press cake (PKC) is a residue from palm oil extraction presently only used as a low protein feed supplement. PKC contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into bioethanol or in other biorefinery processes. Using a combination of mannanase, beta-mannosidase, and cellulases, it was possible without any pretreatment to hydrolyze PKC at solid concentrations of 35% dry matter with mannose yields up to 88% of theoretical. Fermentation was tested using Saccharomyces cerevisiae in both a separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) setup. The hydrolysates could readily be fermented without addition of nutrients and with average fermentation yields of 0.43 +/- 0.02 g/g based on consumed mannose and glucose. Employing SSF, final ethanol concentrations of 70 g/kg was achieved in 216 h, corresponding to an ethanol yield of 70% of theoretical or 200 g ethanol/kg PKC. Testing various enzyme mixtures revealed that including cellulases in combination with mannanases significantly improved ethanol yields. Processing PKC to ethanol resulted in a solid residue enriched in protein from 17% to 28%, a 70% increase, thereby potentially making a high-protein containing feed supplement.

  14. Melt extrusion vs. spray drying: The effect of processing methods on crystalline content of naproxen-povidone formulations.

    PubMed

    Haser, Abbe; Cao, Tu; Lubach, Joe; Listro, Tony; Acquarulo, Larry; Zhang, Feng

    2017-05-01

    Our hypothesis is that melt extrusion is a more suitable processing method than spray drying to prepare amorphous solid dispersions of drugs with a high crystallization tendency. Naproxen-povidone K25 was used as the model system in this study. Naproxen-povidone K25 solid dispersions at 30% and 60% drug loadings were characterized by modulated DSC, powder X-ray diffraction, FT-IR, and solid-state 13 C NMR to identify phase separation and drug recrystallization during processing and storage. At 30% drug loading, hydrogen bond (H-bond) sites of povidone K25 were not saturated and the glass transition (T g ) temperature of the formulation was higher. As a result, both melt-extruded and spray-dried materials were amorphous initially and remained so after storage at 40°C. At 60% drug loading, H-bond sites were saturated, and T g was low. We were not able to prepare amorphous materials. The initial crystallinity of the formulations was 0.4%±0.2% and 5.6%±0.6%, and increased to 2.7%±0.3% and 21.6%±1.0% for melt-extruded and spray-dried materials, respectively. Spray-dried material was more susceptible to re-crystallization during processing, due to the high diffusivity of naproxen molecules in the formulation matrix and lack of kinetic stabilization from polymer solution. A larger number of crystalline nucleation sites and high surface area made the spray-dried material more susceptible to recrystallization during storage. This study demonstrated the unique advantages of melt extrusion over spray drying for the preparation of amorphous solid dispersions of naproxen at high drug level. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of Ultrasound Assistance on Dehydration Processes and Bioactive Component Retention of Osmo-Dried Sour Cherries.

    PubMed

    Siucińska, Karolina; Mieszczakowska-Frąc, Monika; Połubok, Aleksandra; Konopacka, Dorota

    2016-07-01

    Despite having numerous health benefits, dried sour cherries have proven to be more acceptable to consumers when infused with sugar or other sweeteners to enhance their flavor, which, in turn, leads to serious anthocyanin losses. For this reason, a consideration was made for the application of ultrasound to accelerate solid gain and shorten drying time, thus favoring bioactive component retention. To determine the usefulness of ultrasound as a tool for sour cherry osmotic infusion enhancement, the effect of sonication time on dehydration effectiveness, as well as the stability of bioactive components during osmotic treatment and consecutive convective drying, was investigated. Fruits were osmo-dehydrated using a 60% sucrose solution for 120 min (40 °C), during which, ultrasound of 25 kHz (0.4 W/cm(2) ), was applied for 0, 30, 60, 90, and 120 min, after which, the fruits were convectively dried. In the range of the applied ultrasound energy no significant effect of sonication on mass transfer intensification was observed; moreover, longer acoustic treatment seemed to retard moisture removal during subsequent convective drying, which can be related to the breakdown of the parenchyma cell walls caused by the prolonged ultrasound (US) action. It was concluded that although US assistance could be considered neutral for bioactive component retention, excessive sonication time can lead to some anthocyanin deterioration. According to high-performance liquid chromatography analysis, the particular anthocyanin alterations, both during dehydration and final drying, occurred in a similar way. Sonication time prolongation caused approximately 10% more bioactive compound deterioration, than earlier, shorter trials. © 2016 Institute of Food Technologists®

  16. Thermodynamics of gas and steam-blast eruptions

    USGS Publications Warehouse

    Mastin, L.G.

    1995-01-01

    Eruptions of gas or steam and non-juvenile debris are common in volcanic and hydrothermal areas. From reports of non-juvenile eruptions or eruptive sequences world-wide, at least three types (or end-members) can be identified: (1) those involving rock and liquid water initially at boiling-point temperatures ('boiling-point eruptions'); (2) those powered by gas (primarily water vapor) at initial temperatures approaching magmatic ('gas eruptions'); and (3) those caused by rapid mixing of hot rock and ground- or surface water ('mixing eruptions'). For these eruption types, the mechanical energy released, final temperatures, liquid water contents and maximum theoretical velocities are compared by assuming that the erupting mixtures of rock and fluid thermally equilibrate, then decompress isentropically from initial, near-surface pressure (???10 MPa) to atmospheric pressure. Maximum mechanical energy release is by far greatest for gas eruptions (??????1.3 MJ/kg of fluid-rock mixture)-about one-half that of an equivalent mass of gunpowder and one-fourth that of TNT. It is somewhat less for mixing eruptions (??????0.4 MJ/kg), and least for boiling-point eruptions (??????0.25 MJ/kg). The final water contents of crupted boiling-point mixtures are usually high, producing wet, sloppy deposits. Final erupted mixtures from gas eruptions are nearly always dry, whereas those from mixing eruptions vary from wet to dry. If all the enthalpy released in the eruptions were converted to kinetic energy, the final velocity (vmax) of these mixtures could range up to 670 m/s for boiling-point eruptions and 1820 m/s for gas eruptions (highest for high initial pressure and mass fractions of rock (mr) near zero). For mixing eruptions, vmax ranges up to 1150 m/s. All observed eruption velocities are less than 400 m/s, largely because (1) most solid material is expelled when mr is high, hence vmax is low; (2) observations are made of large blocks the velocities of which may be less than the average for the mixture; (3) heat from solid particles is not efficiently transferred to the fluid during the eruptions; and (4) maximum velocities are reduced by choked flow or friction in the conduit. ?? 1995 Springer-Verlag.

  17. Solubility enhancement of BCS Class II drug by solid phospholipid dispersions: Spray drying versus freeze-drying.

    PubMed

    Fong, Sophia Yui Kau; Ibisogly, Asiye; Bauer-Brandl, Annette

    2015-12-30

    The poor aqueous solubility of BCS Class II drugs represents a major challenge for oral dosage form development. Using celecoxib (CXB) as model drug, the current study adopted a novel solid phospholipid nanoparticle (SPLN) approach and compared the effect of two commonly used industrial manufacturing methods, spray- and freeze-drying, on the solubility and dissolution enhancement of CXB. CXB was formulated with Phospholipoid E80 (PL) and trehalose at different CXB:PL:trehalose ratios, of which 1:10:16 was the optimal formulation. Spherical amorphous SPLNs with average diameters <1μm were produced by spray-drying; while amorphous 'matrix'-like structures of solid PL dispersion with larger particle sizes were prepared by freeze-drying. Formulations from both methods significantly enhanced the dissolution rates, apparent solubility, and molecularly dissolved concentration of CXB in phosphate buffer (PBS, pH 6.5) and in biorelevant fasted state simulated intestinal fluid (FaSSIF, pH 6.5) (p<0.05). While similar dissolution rates were found, the spray-dried SPLNs had a larger enhancement in apparent solubility (29- to 132-fold) as well as molecular solubility (18-fold) of CXB at equilibrium (p<0.05). The strong capability of the spray-dried SPLNs to attain 'true' supersaturation state makes them a promising approach for bioavailability enhancement of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Anaerobic digestion performance of sweet potato vine and animal manure under wet, semi-dry, and dry conditions.

    PubMed

    Zhang, Enlan; Li, Jiajia; Zhang, Keqiang; Wang, Feng; Yang, Houhua; Zhi, Suli; Liu, Guangqing

    2018-03-22

    Sweet potato vine (SPV) is an abundant agricultural waste, which is easy to obtain at low cost and has the potential to produce clean energy via anaerobic digestion (AD). The main objectives of this study were to reveal methane production and process stability of SPV and the mixtures with animal manure under various total solid conditions, to verify synergetic effect in co-digestion of SPV and manure in AD systems, and to determine the kinetics characteristics during the full AD process. The results showed that SPV was desirable feedstock for AD with 200.22 mL/g VS added of methane yield in wet anaerobic digestion and 12.20 L methane /L working volume in dry anaerobic digestion (D-AD). Synergistic effects were found in semi-dry anaerobic digestion and D-AD with each two mixing feedstock. In contrast with SPV mono-digestion, co-digestion with manure increased methane yield within the range of 14.34-49.11% in different AD digesters. The values of final volatile fatty acids to total alkalinity (TA) were below 0.4 and the values of final pH were within the range of 7.4-8.2 in all the reactors, which supported a positive relationship between carbohydrate hydrolysis and methanogenesis during AD process. The mathematical modified first order model was applied to estimate substrate biodegradability and methane production potential well with conversion constant ranged from 0.0003 to 0.0953 1/day, which indicated that co-digestion increased hydrolysis efficiency and metabolic activity. This work provides useful information to improve the utilization and stability of digestion using SPV and livestock or poultry manure as substrates.

  19. Improved estimates of filtered total mercury loadings and total mercury concentrations of solids from potential sources to Sinclair Inlet, Kitsap County, Washington

    USGS Publications Warehouse

    Paulson, Anthony J.; Conn, Kathleen E.; DeWild, John F.

    2013-01-01

    Previous investigations examined sources and sinks of mercury to Sinclair Inlet based on historic and new data. This included an evaluation of mercury concentrations from various sources and mercury loadings from industrial discharges and groundwater flowing from the Bremerton naval complex to Sinclair Inlet. This report provides new data from four potential sources of mercury to Sinclair Inlet: (1) filtered and particulate total mercury concentrations of creek water during the wet season, (2) filtered and particulate total mercury releases from the Navy steam plant following changes in the water softening process and discharge operations, (3) release of mercury from soils to groundwater in two landfill areas at the Bremerton naval complex, and (4) total mercury concentrations of solids in dry dock sumps that were not affected by bias from sequential sampling. The previous estimate of the loading of filtered total mercury from Sinclair Inlet creeks was based solely on dry season samples. Concentrations of filtered total mercury in creek samples collected during wet weather were significantly higher than dry weather concentrations, which increased the estimated loading of filtered total mercury from creek basins from 27.1 to 78.1 grams per year. Changes in the concentrations and loading of filtered and particulate total mercury in the effluent of the steam plant were investigated after the water softening process was changed from ion-exchange to reverse osmosis and the discharge of stack blow-down wash began to be diverted to the municipal water-treatment plant. These changes reduced the concentrations of filtered and particulate total mercury from the steam plant of the Bremerton naval complex, which resulted in reduced loadings of filtered total mercury from 5.9 to 0.15 grams per year. Previous investigations identified three fill areas on the Bremerton naval complex, of which the western fill area is thought to be the largest source of mercury on the base. Studies of groundwater in the other two fill areas were conducted under worst-case higher high tidal conditions. A December 2011 study found that concentrations of filtered total mercury in the well in the fill area on the eastern boundary of the Bremerton naval complex were less than or equal to 11 nanograms per liter, indicating that releases from the eastern area were unlikely. In addition, concentrations of total mercury of solids were low (<3 milligrams per kilogram). In contrast, data from the November 2011 study indicated that the concentrations of filtered total mercury in the well located in the central fill area had tidally influenced concentrations of up to 500 nanograms per liter and elevated concentrations of total mercury of solids (29–41 milligrams per kilogram). This suggests that releases from this area, which has not been previously studied in detail, may be substantial. Previous measurements of total mercury of suspended solids in the dry dock discharges revealed high concentration of total mercury when suspended-solids concentrations were low. However, this result could have been owing to bias from sequential sampling during changing suspended‑solids concentrations. Sampling of two dry dock systems on the complex in a manner that precluded this bias confirmed that suspended-solids concentrations and total mercury concentrations of suspended solids varied considerably during pumping cycles. These new data result in revised estimates of solids loadings from the dry docks. Although most of the solids discharged by the dry docks seem to be recycled Operable Unit B Marine sediment, a total of about 3.2 metric tons of solids per year containing high concentrations of total mercury were estimated to be discharged by the two dry dock systems. A simple calculation, in which solids (from dry docks, the steam plant, and tidal flushing of the largest stormwater drain) are widely dispersed throughout Operable Unit B Marine, suggests that Bremerton naval complex solids would likely have little effect on Operable Unit B Marine sediments because of high concentrations of mercury already present in the sediment.

  20. New Insight into Sugarcane Industry Waste Utilization (Press Mud) for Cleaner Biobutanol Production by Using C. acetobutylicum NRRL B-527.

    PubMed

    Nimbalkar, Pranhita R; Khedkar, Manisha A; Gaikwad, Shashank G; Chavan, Prakash V; Bankar, Sandip B

    2017-11-01

    In the present study, press mud, a sugar industry waste, was explored for biobutanol production to strengthen agricultural economy. The fermentative production of biobutanol was investigated via series of steps, viz. characterization, drying, acid hydrolysis, detoxification, and fermentation. Press mud contains an adequate amount of cellulose (22.3%) and hemicellulose (21.67%) on dry basis, and hence, it can be utilized for further acetone-butanol-ethanol (ABE) production. Drying experiments were conducted in the temperature range of 60-120 °C to circumvent microbial spoilage and enhance storability of press mud. Furthermore, acidic pretreatment variables, viz. sulfuric acid concentration, solid to liquid ratio, and time, were optimized using response surface methodology. The corresponding values were found to be 1.5% (v/v), 1:5 g/mL, and 15 min, respectively. In addition, detoxification studies were also conducted using activated charcoal, which removed almost 93-97% phenolics and around 98% furans, which are toxic to microorganisms during fermentation. Finally, the batch fermentation of detoxified press mud slurry (the sample dried at 100 °C and pretreated) using Clostridium acetobutylicum NRRL B-527 resulted in a higher butanol production of 4.43 g/L with a total ABE of 6.69 g/L.

  1. The Role of Sub- and Supercritical CO2 as "Processing Solvent" for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes.

    PubMed

    Nowak, Sascha; Winter, Martin

    2017-03-06

    Quantitative electrolyte extraction from lithium ion batteries (LIB) is of great interest for recycling processes. Following the generally valid EU legal guidelines for the recycling of batteries, 50 wt % of a LIB cell has to be recovered, which cannot be achieved without the electrolyte; hence, the electrolyte represents a target component for the recycling of LIBs. Additionally, fluoride or fluorinated compounds, as inevitably present in LIB electrolytes, can hamper or even damage recycling processes in industry and have to be removed from the solid LIB parts, as well. Finally, extraction is a necessary tool for LIB electrolyte aging analysis as well as for post-mortem investigations in general, because a qualitative overview can already be achieved after a few minutes of extraction for well-aged, apparently "dry" LIB cells, where the electrolyte is deeply penetrated or even gellified in the solid battery materials.

  2. 3D Printing of Carbon Nanotubes-Based Microsupercapacitors.

    PubMed

    Yu, Wei; Zhou, Han; Li, Ben Q; Ding, Shujiang

    2017-02-08

    A novel 3D printing procedure is presented for fabricating carbon-nanotubes (CNTs)-based microsupercapacitors. The 3D printer uses a CNTs ink slurry with a moderate solid content and prints a stream of continuous droplets. Appropriate control of a heated base is applied to facilitate the solvent removal and adhesion between printed layers and to improve the structure integrity without structure delamination or distortion upon drying. The 3D-printed electrodes for microsupercapacitors are characterized by SEM, laser scanning confocal microscope, and step profiler. Effect of process parameters on 3D printing is also studied. The final solid-state microsupercapacitors are assembled with the printed multilayer CNTs structures and poly(vinyl alcohol)-H 3 PO 4 gel as the interdigitated microelectrodes and electrolyte. The electrochemical performance of 3D printed microsupercapacitors is also tested, showing a significant areal capacitance and excellent cycle stability.

  3. Evaluation of Lipid Content in Microalgae Biomass Using Palm Oil Mill Effluent (Pome)

    NASA Astrophysics Data System (ADS)

    Kamyab, Hesam; Chelliapan, Shreeshivadasan; Shahbazian-Yassar, Reza; Din, Mohd Fadhil Md; Khademi, Tayebeh; Kumar, Ashok; Rezania, Shahabaldin

    2017-08-01

    The scope of this study is to assess the main component of palm oil mill effluent (POME) to be used as organic carbon for microalgae. The applicable parameters such as optical density, chlorophyll content, mixed liquor suspended solid, mixed liquor volatile suspended solid, cell dry weight (CDW), carbon:total nitrogen ratio and growth rate were also investigated in this study. The characteristics and morphological features of the isolates showed similarity with Chlorella. Chlorella pyrenoidosa ( CP) was found to be a dominant species in POME and Chlorella vulgaris ( CV) could grow well in POME. Furthermore, the optimal lipid production was obtained at the ratio 95:05 CDW with highest lipid production by CP compared to CV. At day 20, CDW for CV species was obtained at 193 mg/L and with lipid content at 56 mg/L. Finally, the concentration ratio at 50:50 showed a higher absorbance of chlorophyll a for both strains.

  4. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement

    PubMed Central

    Patel, Bhavesh B.; Patel, Jayvadan K.; Chakraborty, Subhashis; Shukla, Dali

    2013-01-01

    Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale. PMID:27134535

  6. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement.

    PubMed

    Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis; Shukla, Dali

    2015-09-01

    Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale.

  7. Magnetically Enhanced Solid-Liquid Separation

    NASA Astrophysics Data System (ADS)

    Rey, C. M.; Keller, K.; Fuchs, B.

    2005-07-01

    DuPont is developing an entirely new method of solid-liquid filtration involving the use of magnetic fields and magnetic field gradients. The new hybrid process, entitled Magnetically Enhanced Solid-Liquid Separation (MESLS), is designed to improve the de-watering kinetics and reduce the residual moisture content of solid particulates mechanically separated from liquid slurries. Gravitation, pressure, temperature, centrifugation, and fluid dynamics have dictated traditional solid-liquid separation for the past 50 years. The introduction of an external field (i.e. the magnetic field) offers the promise to manipulate particle behavior in an entirely new manner, which leads to increased process efficiency. Traditional solid-liquid separation typically consists of two primary steps. The first is a mechanical step in which the solid particulate is separated from the liquid using e.g. gas pressure through a filter membrane, centrifugation, etc. The second step is a thermal drying process, which is required due to imperfect mechanical separation. The thermal drying process is over 100-200 times less energy efficient than the mechanical step. Since enormous volumes of materials are processed each year, more efficient mechanical solid-liquid separations can be leveraged into dramatic reductions in overall energy consumption by reducing downstream drying requirements have a tremendous impact on energy consumption. Using DuPont's MESLS process, initial test results showed four very important effects of the magnetic field on the solid-liquid filtration process: 1) reduction of the time to reach gas breakthrough, 2) less loss of solid into the filtrate, 3) reduction of the (solids) residual moisture content, and 4) acceleration of the de-watering kinetics. These test results and their potential impact on future commercial solid-liquid filtration is discussed. New applications can be found in mining, chemical and bioprocesses.

  8. The influence of microwave-assisted drying techniques on the rehydration behavior of blueberries (Vaccinium corymbosum L.).

    PubMed

    Zielinska, Magdalena; Markowski, Marek

    2016-04-01

    The aim of this study was to determine the effect of: (a) different drying methods, (b) hot air temperature in a convection oven, and (c) the moisture content of fruits dehydrated by multi-stage drying which involves a transition between different stages of drying, on the rehydration kinetics of dry blueberries. Models describing rehydration kinetics were also studied. Blueberries dehydrated by multi-stage microwave-assisted drying, which involved a hot air pre-drying step at 80 °C until the achievement of a moisture content of 1.95 kg H2O kg(-1)DM, were characterized by significantly higher rates of initial and successive rehydration as well as smaller initial loss of soluble solids in comparison with the samples dried by other methods. The highest initial rehydration rate and the smallest loss of soluble solids after 30 min of soaking were determined at 0.46 min(-1) and 0.29 kg DM kg(-1)DM, respectively. The Peleg model and the first-order-kinetic model fit the experimental data well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Solid-liquid extraction of alkali metals and organic compounds by leaching of food industry residues.

    PubMed

    Yu, Chaowei; Zheng, Yi; Cheng, Yu-Shen; Jenkins, Bryan M; Zhang, Ruihong; VanderGheynst, Jean S

    2010-06-01

    Leaching was studied for its application in extracting inorganic and organic constituents from fresh fermented grape pomace, air-dried fermented grape pomace and air-dried sugar beet pulp. Samples of each feedstock were leached in water at ambient temperature for 30 or 120 min at dry solid-to-liquid ratios of 1/20 and 1/50 kg/L. Leaching removed 82% of sodium, 86% of potassium, and 76% of chlorine from sugar beet pulp, and reduced total ash concentration in air-dry fermented grape pomace from 8.2% to 2.9% of dry matter, 8.2% to 4.4% in fresh fermented grape pomace, and 12.5% to 5.4% in sugar beet pulp. Glycerol (7-11 mg/dry g), ethanol (131-158 mg/dry g), and acetic acid (24-31 mg/dry g) were also extracted from fermented grape pomace. These results indicate that leaching is a beneficial pretreatment step for improving the quality of food processing residues for thermochemical and biochemical conversion. (c) 2010 Elsevier Ltd. All rights reserved.

  10. 76 FR 52867 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... coating solids, as applied] Baked Air dried Coating type Kilograms Pounds per per liter gallon (lb/ kg/l... per volume of coating solids, as applied] Baked Air dried Coating type kg/l lb/gal kg/l lb/gal General....3 lb/gal was revised to 3.34 lb/gal in the Baked--``General, One Component'' and ``General, Multi...

  11. Polyelectrolyte flocculation of grain stillage for improved clarification and water recovery within bioethanol production facilities.

    PubMed

    Menkhaus, Todd J; Anderson, Jason; Lane, Samuel; Waddell, Evan

    2010-04-01

    Polyelectrolytes were investigated for flocculation of a corn whole stillage stream to improve solid-liquid clarification operations and reduce downstream utility requirements for evaporation and drying within a bioethanol process. Despite a negative zeta potential for the stillage solids, an anionic polyelectrolyte was found to provide the best flocculation. At the optimal dosage of 1.1mg polymer/g dry suspended solids, an anionic flocculant provided a clarified stream with only 0.15% w/w suspended solids (equivalent to a total dissolved solid to total suspended solid ratio greater than 40, and a viscosity reduction of 39% compared to an unflocculated "clarified" stream). The resulting solids cake had greater than 40% w/w solids, and more than 80% water recovery was found in the clarified stream. Addition of flocculant improved filtration flux by six fold and/or would allow for up to a 4-times higher flow rate if using a decanting centrifuge for clarification of corn stillage. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Bench Remarks: Carbon Dioxide.

    ERIC Educational Resources Information Center

    Bent, Henry A.

    1987-01-01

    Discusses the properties of carbon dioxide in its solid "dry ice" stage. Suggests several demonstrations and experiments that use dry ice to illustrate Avogadro's Law, Boyle's Law, Kinetic-Molecular Theory, and the effects of dry ice in basic solution, in limewater, and in acetone. (TW)

  13. Sludge accumulation pattern inside oxidation ditch case study.

    PubMed

    Fouad, Moharram; El-Morsy, Ahmed

    2014-01-01

    The sludge accumulation pattern of an oxidation ditch (OD) plant treating municipal wastewater was observed under dry and wet weather conditions, during 3 years of operation. The accumulation patterns along the ditches and their rates were revealed. In addition, the composition of the accumulation was investigated. Finally, the ratio of sand and volatile particles, mixed liquor suspended solids (MLSS), and mixed liquor volatile suspended solids, as well as the removal efficiency were also observed against the accumulated sludge. Further, a laboratory-scale channel was used to investigate the settleability of grit after mixing with variable values of MLSS. The observed results indicated that the economical design and operation of ODs using a velocity value between 0.3-0.35 m/s is not recommended, to avoid the settling of all solids. High values of MLSS and sludge age need high horizontal velocity (more than 0.35 m/s) and more power to avoid settling problems and system failure. The influence of flow velocity on the sludge settleability was studied, enabling better planning of future ditch design and operation.

  14. Tin recovery from tin slag using electrolysis method

    NASA Astrophysics Data System (ADS)

    Jumari, Arif; Purwanto, Agus; Nur, Adrian; Budiman, Annata Wahyu; Lerian, Metty; Paramita, Fransisca A.

    2018-02-01

    The process in industry, including in mining industry, would surely give negative effect such as waste polluting to the environment. Some of waste could be potentially reutilized to be a commodity with the higher economic value. Tin slag is one of them. The aim of this research was to recover the tin contained in tin slag. Before coming to the electrolysis, tin slag must be treated by dissolution. The grinded tin slag was dissolved into HCl solution to form a slurry. During dissolution, the slurry was agitated and heated, and finally filtered. The filtrate obtained was then electrolyzed. During the process of electrolysis, solid material precipitated on the used cathode. The precipitated solid was then separated and dried. The solid was then analyzed using XRD, XRF and SEM. The XRD analysis showed that the longest time of dissolution and electrolysis the highest the purity obtained in the product. The SEM analysis showed that the longest time of electrolysis the smallest tin particle obtained. Optimum time achieved in this research was 2 hours for the recovering time and 3 hours for the electrolysis time, with 9% tin recovered.

  15. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus.

    PubMed

    Lavra, Zênia Maria Maciel; Pereira de Santana, Davi; Ré, Maria Inês

    2017-01-01

    Efavirenz (EFV), a first-line anti-HIV drug largely used as part of antiretroviral therapies, is practically insoluble in water and belongs to BCS class II (low solubility/high permeability). The aim of this study was to improve the solubility and dissolution performances of EFV by formulating an amorphous solid dispersion of the drug in polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus ® ) using spray-drying technique. To this purpose, spray-dried dispersions of EFV in Soluplus ® at different mass ratios (1:1.25, 1:7, 1:10) were prepared and characterized using particle size measurements, SEM, XRD, DSC, FTIR and Raman microscopy mapping. Solubility and dissolution were determined in different media. Stability was studied at accelerated conditions (40 °C/75% RH) and ambient conditions for 12 months. DSC and XRD analyses confirmed the EFV amorphous state. FTIR spectroscopy analyses revealed possible drug-polymer molecular interaction. Solubility and dissolution rate of EFV was enhanced remarkably in the developed spray-dried solid dispersions, as a function of the polymer concentration. Spray-drying was concluded to be a proper technique to formulate a physically stable dispersion of amorphous EFV in Soluplus ® , when protected from moisture.

  16. Drying characteristics of pumpkin ( Cucurbita moschata) slices in convective and freeze dryer

    NASA Astrophysics Data System (ADS)

    Caliskan, Gulsah; Dirim, Safiye Nur

    2017-06-01

    This study was intended to determine the drying and rehydration kinetics of convective and freeze dried pumpkin slices (0.5 × 3.5 × 0.5 cm). A pilot scale tray drier (at 80 ± 2 °C inlet temperature, 1 m s-1 air velocity) and freeze drier (13.33 kPa absolute pressure, condenser temperature of -48 ± 2 °C) were used for the drying experiments. Drying curves were fitted to six well-known thin layer drying models. Nonlinear regression analysis was used to evaluate the parameters of the selected models by using statistical software SPSS 16.0 (SPSS Inc., USA). For the convective and freeze drying processes of pumpkin slices, the highest R2 values, and the lowest RMSE as well as χ2 values were obtained from Page model. The effective moisture diffusivity (Deff) of the convective and freeze dried pumpkin slices were obtained from the Fick's diffusion model, and they were found to be 2.233 × 10-7 and 3.040 × 10-9 m2s-1, respectively. Specific moisture extraction rate, moisture extraction rate, and specific energy consumption values were almost twice in freeze drying process. Depending on the results, moisture contents and water activity values of pumpkin slices were in acceptable limits for safe storage of products. The rehydration behaviour of [at 18 ± 2 and 100 ± 2 °C for 1:25, 1:50, 1:75, 1:100, and 1:125 solid:liquid ratios (w:w)] dried pumpkin slices was determined by Peleg's model with the highest R2. The highest total soluble solid loss of pumpkin slices was observed for the rehydration experiment which performed at 1:25 solid: liquid ratio (w:w). Rehydration ratio of freeze dried slices was found 2-3 times higher than convective dried slices.

  17. Characterization of biomasses, concentrates, and permeates of dried powder of Kombucha fermentation of spinach (Amaranthus sp.) and broccoli (Brassica oleracea) with membrane microfiltration and freeze drying techniques for natural sources of folic acid

    NASA Astrophysics Data System (ADS)

    Nugraha, Tutun; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi; Maryati, Yati

    2017-11-01

    Fermentation of spinach (Amaranthus sp) and Broccoli (Brassica oleracea) using Kombucha Culture has been shown to produce biomass that has the potential to become natural sources of folic acid. To produce the materials, following the fermentation, the biomass was filtered using membrane microfiltration (0.15 µm) at a pressure of 40 psia, at room temperature, yielding the concentrate and the permeate fractions. Following this step, freeze drying process was done on the biomass feeds, as well as on the concentrate and permeate fractions. For the freeze drying stage, the samples were frozen, and the condenser was kept at -50°C for 40 hours, while the pressure in the chamber was set at 200 Pa. Freeze drying results showed that the final products, have differences in compositions, as well as differences in the dominat monomers of folates. After water content was driven out, freeze drying increased the concentrations of folic acid in the dried products, and was found to be the highest in the concentrate fractions. Freeze drying has been shown to be capable of protecting the folates from heat and oxidative damages that typicaly occur with other types of drying. The final freeze dried concentrates of fermentation of spinach and broccoli were found to contain folic acid at 2531.88 µg/mL and 1626.94 µg/mL, total solids at 87.23% and 88.65 %, total sugar at 22.66 µg/mL and 25.13 µg/mL, total reducing sugar at 34.46 mg/mL and 15.22 mg/mL, as well as disolved protein concentrations at 0.93 mg/mL and 1.45 mg/mL. Liquid Chromatography Mass Spectometry (LC-MS) identification of the folates in the freeze dried concentrates of fermented spinach and broccoli was done using folic acid and glutamic acid standard solutions as the reference materials. The results showed the presence of folic acid and showed that the dominant monomers of molecules of folates with molecular weights of 441.44 Da. and 441.54 Da. for spinach and broccoli respectively. Moreover, the monomers of glutamic acid were also found at molecular weights of 147.21 Da. and 147.35 Da. for spinach and broccoli respectively. Thus, it has been shown that kombucha fermentation of spinach and broccoli, followed by membrane microfiltration and freeze drying process, could produce dried materials with high concentrations of folates that have the potential to be used as naturally derived sources of folic acid.

  18. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michele, Pognani, E-mail: michele.pognani@unimi.it; Giuliana, D’Imporzano, E-mail: giuliana.dimporzano@unimi.it; Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi

    2015-01-15

    Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doingmore » so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.« less

  19. Raman mapping of mannitol/lysozyme particles produced via spray drying and single droplet drying.

    PubMed

    Pajander, Jari Pekka; Matero, Sanni; Sloth, Jakob; Wan, Feng; Rantanen, Jukka; Yang, Mingshi

    2015-06-01

    This study aimed to investigate the effect of a model protein on the solid state of a commonly used bulk agent in spray-dried formulations. A series of lysozyme/mannitol formulations were spray-dried using a lab-scale spray dryer. Further, the surface temperature of drying droplet/particles was monitored using the DRYING KINETICS ANALYZER™ (DKA) with controllable drying conditions mimicking the spray-drying process to estimate the drying kinetics of the lysozyme/mannitol formulations. The mannitol polymorphism and the spatial distribution of lysozyme in the particles were examined using X-ray powder diffractometry (XRPD) and Raman microscopy. Partial Least Squares Discriminant Analysis was used for analyzing the Raman microscopy data. XRPD results indicated that a mixture of β-mannitol and α-mannitol was produced in the spray-drying process which was supported by the Raman analysis, whereas Raman analysis indicated that a mixture of α-mannitol and δ-mannitol was detected in the single particles from DKA. In addition Raman mapping indicated that the presence of lysozyme seemed to favor the appearance of α-mannitol in the particles from DKA evidenced by close proximity of lysozyme and mannitol in the particles. It suggested that the presence of lysozyme tend to induce metastable solid state forms upon the drying process.

  20. Mathematical modeling of ethanol production in solid-state fermentation based on solid medium' dry weight variation.

    PubMed

    Mazaheri, Davood; Shojaosadati, Seyed Abbas; Zamir, Seyed Morteza; Mousavi, Seyyed Mohammad

    2018-04-21

    In this work, mathematical modeling of ethanol production in solid-state fermentation (SSF) has been done based on the variation in the dry weight of solid medium. This method was previously used for mathematical modeling of enzyme production; however, the model should be modified to predict the production of a volatile compound like ethanol. The experimental results of bioethanol production from the mixture of carob pods and wheat bran by Zymomonas mobilis in SSF were used for the model validation. Exponential and logistic kinetic models were used for modeling the growth of microorganism. In both cases, the model predictions matched well with the experimental results during the exponential growth phase, indicating the good ability of solid medium weight variation method for modeling a volatile product formation in solid-state fermentation. In addition, using logistic model, better predictions were obtained.

  1. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance.

    PubMed

    Tan, Angel; Rao, Shasha; Prestidge, Clive A

    2013-12-01

    The diversity of lipid excipients available commercially has enabled versatile formulation design of lipid-based drug delivery systems for enhancing the oral absorption of poorly water-soluble drugs, such as emulsions, microemulsions, micelles, liposomes, niosomes and various self-emulsifying systems. The transformation of liquid lipid-based systems into solid dosage forms has been investigated for several decades, and has recently become a core subject of pharmaceutical research as solidification is regarded as viable means for stabilising lipid colloidal systems while eliminating stringent processing requirements associated with liquid systems. This review describes the types of pharmaceutical grade excipients (silica nanoparticle/microparticle, polysaccharide, polymer and protein-based materials) used as solid carriers and the current state of knowledge on the liquid-to-solid conversion approaches. Details are primarily focused on the solid-state physicochemical properties and redispersion capacity of various dry lipid-based formulations, and how these relate to the in vitro drug release and solubilisation, lipid carrier digestion and cell permeation performances. Numerous in vivo proof-of-concept studies are presented to highlight the viability of these dry lipid-based formulations. This review is significant in directing future research work in fostering translation of dry lipid-based formulations into clinical applications.

  2. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds

    PubMed Central

    2011-01-01

    Background Softwoods are the dominant source of lignocellulosic biomass in the northern hemisphere, and have been investigated worldwide as a renewable substrate for cellulosic ethanol production. One challenge to using softwoods, which is particularly acute with pine, is that the pretreatment process produces inhibitory compounds detrimental to the growth and metabolic activity of fermenting organisms. To overcome the challenge of bioconversion in the presence of inhibitory compounds, especially at high solids loading, a strain of Saccharomyces cerevisiae was subjected to evolutionary engineering and adaptation for fermentation of pretreated pine wood (Pinus taeda). Results An industrial strain of Saccharomyces, XR122N, was evolved using pretreated pine; the resulting daughter strain, AJP50, produced ethanol much more rapidly than its parent in fermentations of pretreated pine. Adaptation, by preculturing of the industrial yeast XR122N and the evolved strains in 7% dry weight per volume (w/v) pretreated pine solids prior to inoculation into higher solids concentrations, improved fermentation performance of all strains compared with direct inoculation into high solids. Growth comparisons between XR122N and AJP50 in model hydrolysate media containing inhibitory compounds found in pretreated biomass showed that AJP50 exited lag phase faster under all conditions tested. This was due, in part, to the ability of AJP50 to rapidly convert furfural and hydroxymethylfurfural to their less toxic alcohol derivatives, and to recover from reactive oxygen species damage more quickly than XR122N. Under industrially relevant conditions of 17.5% w/v pretreated pine solids loading, additional evolutionary engineering was required to decrease the pronounced lag phase. Using a combination of adaptation by inoculation first into a solids loading of 7% w/v for 24 hours, followed by a 10% v/v inoculum (approximately equivalent to 1 g/L dry cell weight) into 17.5% w/v solids, the final strain (AJP50) produced ethanol at more than 80% of the maximum theoretical yield after 72 hours of fermentation, and reached more than 90% of the maximum theoretical yield after 120 hours of fermentation. Conclusions Our results show that fermentation of pretreated pine containing liquid and solids, including any inhibitory compounds generated during pretreatment, is possible at higher solids loadings than those previously reported in the literature. Using our evolved strain, efficient fermentation with reduced inoculum sizes and shortened process times was possible, thereby improving the overall economic viability of a woody biomass-to-ethanol conversion process. PMID:22074982

  3. Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giudicianni, Paola, E-mail: giudicianni@irc.cnr.it; Bozza, Pio, E-mail: pi.bozza@studenti.unina.it; Sorrentino, Giancarlo, E-mail: g.sorrentino@unina.it

    2015-10-15

    Graphical abstract: Display Omitted - Highlights: • A domestic scale prototype for the pre-treatment of OFMSW has been tested. • Two grinding techniques are compared and thermopress is used for the drying stage. • Increasing temperature up to 170 °C reduces energy consumption of the drying stage. • In the range 5–10 bar a reduction of 97% of the initial volume is obtained. • In most cases energy recovery from the dried waste matches energy consumption. - Abstract: In the present study a thermo-mechanical treatment for the disposal of the Organic Fraction of Municipal Solid Waste (OFMSW) at apartment ormore » condominium scale is proposed. The process presents several advantages allowing to perform a significant volume and moisture reduction of the produced waste at domestic scale thus producing a material with an increased storability and improved characteristics (e.g. calorific value) that make it available for further alternative uses. The assessment of the applicability of the proposed waste pretreatment in a new scheme of waste management system requires several research steps involving different competences and application scales. In this context, a preliminary study is needed targeting to the evaluation and minimization of the energy consumption associated to the process. To this aim, in the present paper, two configurations of a domestic appliance prototype have been presented and the effect of some operating variables has been investigated in order to select the proper configuration and the best set of operating conditions capable to minimize the duration and the energy consumption of the process. The performances of the prototype have been also tested on three model mixtures representing a possible daily domestic waste and compared with an existing commercially available appliance. The results obtained show that a daily application of the process is feasible given the short treatment time required and the energy consumption comparable to the one of the common domestic appliances. Finally, the evaluation of the energy recovered in the final product per unit weight of raw material shows that in most cases it is comparable to the energy required from the treatment.« less

  4. Moisture and drug solid-state monitoring during a continuous drying process using empirical and mass balance models.

    PubMed

    Fonteyne, Margot; Gildemyn, Delphine; Peeters, Elisabeth; Mortier, Séverine Thérèse F C; Vercruysse, Jurgen; Gernaey, Krist V; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; De Beer, Thomas

    2014-08-01

    Classically, the end point detection during fluid bed drying has been performed using indirect parameters, such as the product temperature or the humidity of the outlet drying air. This paper aims at comparing those classic methods to both in-line moisture and solid-state determination by means of Process Analytical Technology (PAT) tools (Raman and NIR spectroscopy) and a mass balance approach. The six-segmented fluid bed drying system being part of a fully continuous from-powder-to-tablet production line (ConsiGma™-25) was used for this study. A theophylline:lactose:PVP (30:67.5:2.5) blend was chosen as model formulation. For the development of the NIR-based moisture determination model, 15 calibration experiments in the fluid bed dryer were performed. Six test experiments were conducted afterwards, and the product was monitored in-line with NIR and Raman spectroscopy during drying. The results (drying endpoint and residual moisture) obtained via the NIR-based moisture determination model, the classical approach by means of indirect parameters and the mass balance model were then compared. Our conclusion is that the PAT-based method is most suited for use in a production set-up. Secondly, the different size fractions of the dried granules obtained during different experiments (fines, yield and oversized granules) were compared separately, revealing differences in both solid state of theophylline and moisture content between the different granule size fractions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. 40 CFR Appendix to Subpart G of... - Applicant Questionnaire for Modification of Secondary Treatment Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...

  6. 40 CFR Appendix to Subpart G of... - Applicant Questionnaire for Modification of Secondary Treatment Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... upon which your application for a modification is based: —BOD5 ___ mg/L —Suspended solids ___ mg/L —pH... dry weather —average wet weather —maximum —annual average BOD5 (mg/L) for the following plant flows: —minimum —average dry weather —average wet weather —maximum —annual average Suspended solids (mg/L) for the...

  7. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    PubMed

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  8. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  9. The effect of drying and size reduction pretreatments on recovery of inorganic crop nutrients from inedible wheat residues

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Alazraki, M. P.; Judkins, J.

    2003-01-01

    Inorganic nutrients can be easily recovered from ALS crop residue solid wastes by aqueous leaching. However, oven drying and milling pretreatment of these residues has been frequently required to accommodate crop scientists and facility storage limitations. As part of a research study that will compare three different bioreactor technologies for processing these wastes, we realized that different drying and size-reduction pretreatments had been utilized for each technology. This paper compares the effects of residue pretreatment on recovery of nutrients by leaching. Pretreatments included three drying methods [fresh, oven-dried (70 degrees C overnight), and freeze-dried] and two size reduction methods [chopped (2 cm length) and milled (2 mm diameter)]. Determination of mass balances (dry weight and ash content of solids) before and after leaching indicated solubilization was least for fresh residues (23% dry weight loss and 50% for ash loss), and most for freeze-dried residues (41-47% dry weight loss and nearly 100% for ash loss). Mineral recovery of major elements (NO3, PO4, K, Ca, and Mg) in leachates was poorest for fresh residues. P and K recovery in leachates were best for oven-dried residues and Ca, Mg, and N recovery best for freeze-dried residues. The differences in recovery for N, P, and K in leachates were minimal between chopping and milling and slightly better for Ca and Mg from milled residues.

  10. Microstructurally tailored ceramics for advanced energy applications by thermoreversible gelcasting

    NASA Astrophysics Data System (ADS)

    Shanti, Noah Omar

    Thermoreversible gelcasting (TRG) is an advantageous technique for rapidly producing bulk, net-shape ceramics and laminates. In this method, ceramic powder is suspended in warm acrylate triblock copolymer/alcohol solutions that reversibly gel upon cooling by the formation of endblock aggregates, to produce slurries which are cast into molds. Gel properties can be tailored by controlling the endblock and midblock lengths of the copolymer network-former and selecting an appropriate alcohol solvent. This research focuses on expanding and improving TRG techniques, focusing specifically on advanced energy applications including the solid oxide fuel cell (SOFC). Rapid drying of filled gels can lead to warping and cracking caused by high differential capillary stresses. A new drying technique using concentrated, alcohol-based solutions as liquid desiccants (LDs) to greatly reduce warping is introduced. The optimal LD is a poly(tert-butyl acrylate)/isopropyl alcohol solution with 5 mol% tert-butyl acrylate units. Alcohol emissions during drying are completely eliminated by combining initial drying in an LD with final stage drying in a vacuum oven having an in-line solvent trap. Porous ceramics are important structures for many applications, including SOFCs. Pore network geometries are tailored by the addition of fugitive fillers to TRG slurries. Uniform spherical, bimodal spherical and uniform fibrous fillers are used. Three-dimensional pore structures are visualized by X-ray computed tomography, allowing for direct measurements of physical parameters such as concentration and morphology as well as transport properties such as tortuosity. Tortuosity values as low as 1.52 are achieved when 60 vol% of solids are uniform spherical filler. Functionally graded laminates with layers ranging from 10 mum to > 1 mm thick are produced with a new technique that combines TRG with tape casting. Gels used for bulk casting are not suitable for use with tape casting, and appropriate base gels are selected for this technique. Each layer is cast in a single pass, and the layers are directly laminated. The anode support, anode functional layer, and electrolyte of anode-supported SOFCs are produced using this technique. The performance of SOFCs produced this way is not yet equal to that of traditionally processed cells, but shows the promise of this technique.

  11. Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues.

    PubMed

    Bauer, Alexander; Mayr, Herwig; Hopfner-Sixt, Katharina; Amon, Thomas

    2009-06-01

    The Austrian "green electricity act" (Okostromgesetz) has led to an increase in biogas power plant size and consequently to an increased use of biomass. A biogas power plant with a generating capacity of 500 kW(el) consumes up to 38,000 kg of biomass per day. 260 ha of cropland is required to produce this mass. The high water content of biomass necessitates a high transport volume for energy crops and fermentation residues. The transport and application of fermentation residues to farmland is the last step in this logistic chain. The use of fermentation residues as fertilizer closes the nutrient cycle and is a central element in the efficient use of biomass for power production. Treatment of fermentation residues by separation into liquid and solid phases may be a solution to the transport problem. This paper presents detailed results from the monitoring of two biogas plants and from the analysis of the separation of fermentation residues. Furthermore, two different separator technologies for the separation of fermentation residues of biogas plants were analyzed. The examined biogas plants correspond to the current technological state of the art and have designs developed specifically for the utilization of energy crops. The hydraulic retention time ranged between 45.0 and 83.7 days. The specific methane yields were 0.40-0.43 m(3)N CH(4) per kg VS. The volume loads ranged between 3.69 and 4.00 kg VS/m(3). The degree of degradation was between 77.3% and 82.14%. The screw extractor separator was better suited for biogas slurry separation than the rotary screen separator. The screw extractor separator exhibited a high throughput and good separation efficiency. The efficiency of slurry separation depended on the dry matter content of the fermentation residue. The higher the dry matter content, the higher the proportion of solid phase after separation. In this project, we found that the fermentation residues could be divided into 79.2% fluid phase with a dry matter content of 4.5% and 20.8% solid phase with a dry matter content of 19.3%. Dry matter, volatile solids and carbon, raw ash and phosphate--in relation to the mass--accumulated strongly in the solid phase. Nitrogen and ammonia nitrogen were slightly enriched in the solid phase. Only the potassium content decreased slightly in the solid phase.

  12. Degradation kinetics of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside during hot air and vacuum drying in mulberry (Morus alba L.) fruit: A comparative study based on solid food system.

    PubMed

    Zhou, Mo; Chen, Qinqin; Bi, Jinfeng; Wang, Yixiu; Wu, Xinye

    2017-08-15

    The aim of this study is to ascertain the degradation kinetic of anthocyanin in dehydration process of solid food system. Mulberry fruit was treated by hot air and vacuum drying at 60 and 75°C. The contents of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were determined by using high performance liquid chromatography. Kinetic and thermodynamic parameters were calculated for analysing the degradation characteristics. Model fitting results showed monomeric anthocyanin degradations were followed the second-order kinetic. Vacuum drying presented high kinetic rate constants and low t 1/2 values. Thermodynamic parameters including the activation energy, enthalpy change and entropy change appeared significant differences between hot air and vacuum drying. Both heating techniques showed similar effects on polyphenol oxidase activities. These results indicate the anthocyanin degradation kinetic in solid food system is different from that in liquid and the oxygen can be regarded as a catalyst to accelerate the degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Improved methods for the determination of drying conditions and fraction insoluble solids (FIS) in biomass pretreatment slurry

    DOE PAGES

    Sluiter, Amie; Sluiter, Justin; Wolfrum, Ed; ...

    2016-05-20

    Accurate and precise chemical characterization of biomass feedstocks and process intermediates is a requirement for successful technical and economic evaluation of biofuel conversion technologies. The uncertainty in primary measurements of the fraction insoluble solid (FIS) content of dilute acid pretreated corn stover slurry is the major contributor to uncertainty in yield calculations for enzymatic hydrolysis of cellulose to glucose. This uncertainty is propagated through process models and impacts modeled fuel costs. The challenge in measuring FIS is obtaining an accurate measurement of insoluble matter in the pretreated materials, while appropriately accounting for all biomass derived components. Three methods were testedmore » to improve this measurement. One used physical separation of liquid and solid phases, and two utilized direct determination of dry matter content in two fractions. We offer a comparison of drying methods. Lastly, our results show utilizing a microwave dryer to directly determine dry matter content is the optimal method for determining FIS, based on the low time requirements and the method optimization done using model slurries.« less

  14. Dry coating of solid dosage forms: an overview of processes and applications.

    PubMed

    Foppoli, Anastasia Anna; Maroni, Alessandra; Cerea, Matteo; Zema, Lucia; Gazzaniga, Andrea

    2017-12-01

    Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous coating systems can be overcome, such as toxicological, environmental, and safety-related issues on the one hand as well as costly drying phases and impaired product stability on the other. The considerable advantages related to solventless coating has been prompting a strong research interest in this field of pharmaceutics. In the article, processes and applications relevant to techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-melt coating and coating by photocuring, while the latter encompass press coating and powder coating. Moreover, solventless techniques, such as injection molding and three-dimensional printing by fused deposition modeling, which are not purposely conceived for coating, are also discussed in that they would open new perspectives in the manufacturing of coated-like dosage forms.

  15. The Change of Total Anthocyanins in Blueberries and Their Antioxidant Effect After Drying and Freezing

    PubMed Central

    Srzednicki, George

    2004-01-01

    This study examined the effects of freezing, storage, and cabinet drying on the anthocyanin content and antioxidant activity of blueberries (Vaccinium corymbosum L). Fresh samples were stored for two weeks at 5°C while frozen samples were kept for up to three months at −20°C. There were two drying treatments, one including osmotic pretreatment followed by cabinet drying and the other involving only cabinet drying. Total anthocyanins found in fresh blueberries were 7.2 ± 0.5 mg/g dry matter, expressed as cyanidin 3-rutinoside equivalents. In comparison with fresh samples, total anthocyanins in untreated and pretreated dried blueberries were significantly reduced to 4.3 ± 0.1 mg/g solid content, 41% loss, and 3.7 ± 0.2 mg/g solid content, 49% loss, respectively. Osmotic treatment followed by a thermal treatment had a greater effect on anthocyanin loss than the thermal treatment alone. In contrast, the frozen samples did not show any significant decrease in anthocyanin level during three months of storage. Measurement of the antioxidant activity of anthocyanin extracts from blueberries showed there was no significant difference between fresh, dried, and frozen blueberries. PMID:15577185

  16. 78 FR 58986 - Dry Cargo Residue Discharges in the Great Lakes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ...-AA89 Dry Cargo Residue Discharges in the Great Lakes AGENCY: Coast Guard, DHS. ACTION: Notice of... final rule to regulate discharges of dry cargo residue (DCR) in the Great Lakes. The Coast Guard... final rule to regulate discharges of dry cargo residue in the Great Lakes. In August 2008, the Coast...

  17. Design Status of the Capillary Brine Residual in Containment Water Recovery System

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargusingh, Miriam

    2016-01-01

    One of the goals of the AES Life Support System (LSS) Project is to achieve 98% water loop closure for long duration human exploration missions beyond low Earth orbit. To meet this objective, the AES LSS Project is developing technologies to recover water from wastewater brine; highly concentrated waste products generated from a primary water recovery system. The state of the art system used aboard the International Space Station (ISS) has the potential to recover up to 85% water from unine wastewater, leaving a significant amounts of water in the waste brine, the recovery of which is a critical technology gap that must be filled in order to enable long duration human exploration. Recovering water from the urine wastewater brine is complicated by the concentration of solids as water is removed from the brine, and the concentration of the corrosive, toxic chemicals used to stabilize the urine which fouls and degrades water processing hardware, and poses a hazard to operators and crew. Brine Residual in Containment (BRIC) is focused on solids management through a process of "in-place" drying - the drying of brines within the container used for final disposal. Application of in-place drying has the potential to improve the safety and reliability of the system by reducing the exposure to crew and hardware to the problematic brine residual. Through a collaboration between the NASA Johnson Space Center and Portland Status University, a novel water recovery system was developed that utilizes containment geometry to support passive capillary flow and static phase separation allowing free surface evaporation to take place in a microgravity environment. A notional design for an ISS demonstration system was developed. This paper describes the concept for the system level design.

  18. Design Status of the Capillary Brine Residual in Containment Water Recovery System

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.; Callahan, Michael R.; Garison, John; Houng, Benjamin; Weislogel, Mark M.

    2016-01-01

    One of the goals of the AES Life Support System (LSS) Project is to achieve 98% water loop closure for long duration human exploration missions beyond low Earth orbit. To meet this objective, the AES LSS Project is developing technologies to recover water from wastewater brine; highly concentrated waste products generated from a primary water recovery system. The state of the art system used aboard the International Space Station (ISS) has the potential to recover up to 85% water from unine wastewater, leaving a significant amounts of water in the waste brine, the recovery of which is critical technology gap that must be filled in order to enable long duration human exploration. Recovering water from the urine wastewater brine is complicated by the concentration of solids as water is removed from the brine, and the concentration of the corrosive, toxic chemicals used to stabilize the urine which fouls and degrades water processing hardware, and poses a hazard to operators and crew. Brine Residual in Containment (BRIC) is focused on solids management through a process of "in-place" drying - the drying of brines within the container used for final disposal. Application of in-place drying has the potential to improve the safety and reliability of the system by reducing the exposure to curew and hardware to the problematic brine residual. Through a collaboration between the NASA Johnson Space Center and Portland Status University, a novel water recovery system was developed that utilizes containment geometry to support passive capillary flow and static phase separation allowing free surface evaporation to take place in a microgravity environment. A notional design for an ISS demonstration system was developed. This paper describes the testing performed to characterize the performance of the system as well as the status of the system level design.

  19. K West Basin Sand Filter Backwash Sample Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiskum, Sandra K.; Smoot, Margaret R.; Coffey, Deborah S.

    A sand filter is used to help maintain water clarity at the K West Basin where highly radioactive sludge is stored. Eventually that sand filter will require disposal. The radionuclide content of the solids trapped in the sand filter will affect the selection of the sand filter disposal pathway. The Pacific Northwest National Laboratory (PNNL) was contracted by the K Basin Operations & Plateau Remediation Project (operations contractor CH2M Hill) to analyze the radionuclide content of the solids collected from the backwash of the K West Basin sand filter. The radionuclide composition in the sand filter backwash solids will bemore » used by CH2M Hill to determine if the sand filter media and retained sludge solids will be designated as transuranic waste for disposal purposes or can be processed through less expensive means. On October 19, 2015, K Basin Operations & Plateau Remediation Project staff backwashed the sand filter into the North Load-Out Pit (NLOP) and immediately collected sample slurry from a sampling tube positioned 24 in. above the NLOP floor. The 764 g sand filter backwash slurry sample, KW-105 SFBW-001, was submitted to PNNL for analysis on October 20, 2015. Solids from the slurry sample were consolidated into two samples (i.e., a primary and a duplicate sample) by centrifuging and measured for mass (0.82 g combined – wet centrifuged solids basis) and volume (0.80 mL combined). The solids were a dark brown/orange color, consistent with iron oxide/hydroxide. The solids were dried; the combined dry solids mass was 0.1113 g, corresponding to 0.0146 weight percent (wt%) solids in the original submitted sample slurry. The solids were acid-digested using nitric and hydrochloric acids. Insoluble solids developed upon dilution with 0.5 M HNO 3, corresponding to an average 6.5 wt% of the initial dry solids content. The acid digestate and insoluble solids were analyzed separately by gamma spectrometry. Nominally, 7.7% of the 60Co was present in the insoluble solids; less than 1% of other gamma-emitters (i.e., 137Cs, 154/155Eu, and 241Am) were present in the insoluble solids. Aliquots of the acid digestate were analyzed directly using gamma energy analysis (GEA) and after separations for 238Pu, 239+240Pu, 237Np, and 241Am radioisotopes using alpha energy analysis (AEA). The 90Sr was measured by liquid scintillation counting (LSC) on the Sr-separated fraction. The plutonium isotopic distribution of the acid digestate was analyzed following Pu separations by thermal ionization mass spectrometry (TIMS). A table summarizes the results for the primary and duplicate samples. The 239+240Pu concentration (µCi/g dry) relative to 90Sr and to 137Cs concentrations (µCi/g dry) was examined. The K West Basin sludge has a 239+240Pu/ 90Sr ranging from 0.1 to 1.2 and the 239+240Pu/ 137Cs ratio ranging from 0.10 to 0.47. In contrast, the sand filter backwash solids 239+240Pu/ 90Sr ratio was 10.6 and the 239+240Pu/ 137Cs ratio was 2.0. The ratio differences indicate a relative enhancement of the Pu concentration in the sand filter solids relative to the 137Cs and 90Sr sludge concentrations currently in the K West Basin. A dose-to-curie radioisotope evaluation of the sand filter waste form may need to consider this dissimilarity.« less

  20. Determination of parabens and endocrine-disrupting alkylphenols in soil by gas chromatography-mass spectrometry following matrix solid-phase dispersion or in-column microwave-assisted extraction: a comparative study.

    PubMed

    Pérez, R A; Albero, B; Miguel, E; Sánchez-Brunete, C

    2012-03-01

    Two rapid methods were evaluated for the simultaneous extraction of seven parabens and two alkylphenols from soil based on matrix solid-phase dispersion (MSPD) and microwave-assisted extraction (MAE). Soil extracts were derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide and analyzed by gas chromatography with mass spectrometry. Extraction and clean-up of samples were carried out by both methods in a single step. A glass sample holder, inside the microwave cell, was used in MAE to allow the simultaneous extraction and clean-up of samples and shorten the MAE procedure. The detection limits achieved by MSPD were lower than those obtained by MAE because the presence of matrix interferences increased with this extraction method. The extraction yields obtained by MSPD and MAE for three different types of soils were compared. Both procedures showed good recoveries and sensitivity for the determination of parabens and alkylphenols in two of the soils assayed, however, only MSPD yielded good recoveries with the other soil. Finally, MSPD was applied to the analysis of soils collected in different sites of Spain. In most of the samples analyzed, methylparaben and butylparaben were detected at levels ranging from 1.21 to 8.04 ng g(-1) dry weight and 0.48 to 1.02 ng g(-1) dry weight, respectively.

  1. Optimization of pectin extraction and antioxidant activities from Jerusalem artichoke

    NASA Astrophysics Data System (ADS)

    Liu, Shengyi; Shi, Xuejie; Xu, Lanlan; Yi, Yuetao

    2016-03-01

    Jerusalem artichoke is an economic crop widely planted in saline-alkaline soil. The use of Jerusalem artichoke is of great significance. In this study, the response surface method was employed to optimize the effects of processing variables (extraction temperature, pH, extraction time, and liquid-to-solid ratio) on the yield of Jerusalem artichoke pectin. Under the optimal extraction conditions: pH 1.52, 63.62 min, 100°C and a liquid-to-solid ratio of 44.4 mL/g, the maximum pectin yield was predicted to be 18.76%. Experiments were conducted under these optimal conditions and a pectin yield of 18.52±0.90% was obtained, which validated the model prediction. The effects of diff erent drying methods (freeze drying, spray drying and vacuum drying) on the properties of Jerusalem artichoke pectin were evaluated and they were compared with apple pectin. FTIR spectral analysis showed no major structural diff erences in Jerusalem artichoke pectin samples produced by various drying treatments. The antioxidant activities of pectin dried by diff erent methods were investigated using in vitro hydroxyl and DPPH radical scavenging systems. The results revealed that the activities of spray dried pectin (SDP) and apple pectin (AP) were stronger than those of vacuum oven dried pectin (ODP) and vacuum freeze dried pectin (FDP). Therefore compared with the other two drying methods, the spray drying method was the best.

  2. Enhancement of solubility and antidiabetic effects of Repaglinide using spray drying technique in STZ-induced diabetic rats.

    PubMed

    Varshosaz, Jaleh; Minayian, Mohsen; Ahmadi, Mahdieh; Ghassami, Erfaneh

    2017-09-01

    The purpose of the study was to enhance the solubility of the poorly water-soluble drug, Repaglinide using spray drying based solid dispersion technique by different carriers including Eudragit E100, hydroxyl propyl cellulose Mw 80 000 and poly vinyl pyrollidone K30. Optimization of the best formulation was carried out according to drug solubility, release profile, particle size and angle of repose of the solid dispersions. The optimized sample was characterized using X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The morphology of the dispersions was studied by SEM. The blood glucose lowering effect of spray dried solid dispersions was studied in normal and streptozocin-induced diabetic rats. The results showed that Eudragit E100 in 1:3 ratio could enhance drug solubility by 100-fold. DSC studies indicated a marked change in melting point of the drug possibly due to strong hydrogen bonds between the drug and Eudragit, while FT-IR study did not show obvious interactions between them. According to XRPD results Repaglinide converted to an amorphous state in the spray dried dispersions. Spray dried Repaglinide reduced the blood glucose level significantly during the 8 h of obtaining blood samples in comparison with untreated drug (p < 0.05).

  3. Design, characterization, and aerosol dispersion performance modeling of advanced spray-dried microparticulate/nanoparticulate mannitol powders for targeted pulmonary delivery as dry powder inhalers.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-04-01

    The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns.

  4. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    PubMed Central

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  5. SolidBiomass

    Science.gov Websites

    , soybeans, cotton, sorghum, barley, oats, rice, rye, canola, dry edible beans, peanuts, safflower, sunflower maintain ecological and agricultural functions. Data for 2012, in dry metric tons/year. NREL UrbanWood This , in dry metric tons/year. NREL SecMill This field contains data for secondary mill residues by county

  6. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    Given the increasing importance of reducing development time for new pharmaceutical products, formulation and process development scientists must continually look for ways to "work smarter, not harder." Within the product development arena, this means reducing the amount of trial and error empiricism in arriving at a formulation and identification of processing conditions which will result in a quality final dosage form. Characterization of the freezing behavior of the intended formulation is necessary for developing processing conditions which will result in the shortest drying time while maintaining all critical quality attributes of the freeze-dried product. Analysis of frozen systems was discussed in detail, particularly with respect to the glass transition as the physical event underlying collapse during freeze-drying, eutectic mixture formation, and crystallization events upon warming of frozen systems. Experiments to determine how freezing and freeze-drying behavior is affected by changes in the composition of the formulation are often useful in establishing the "robustness" of a formulation. It is not uncommon for seemingly subtle changes in composition of the formulation, such as a change in formulation pH, buffer salt, drug concentration, or an additional excipient, to result in striking differences in freezing and freeze-drying behavior. With regard to selecting a formulation, it is wise to keep the formulation as simple as possible. If a buffer is needed, a minimum concentration should be used. The same principle applies to added salts: If used at all, the concentration should be kept to a minimum. For many proteins a combination of an amorphous excipient, such as a disaccharide, and a crystallizing excipient, such as glycine, will result in a suitable combination of chemical stability and physical stability of the freeze-dried solid. Concepts of heat and mass transfer are valuable in rational design of processing conditions. Heat transfer by conduction--the dominant mechanism of heat transfer in freeze-drying--is inefficient at the pressures used in freeze-drying. Steps should be taken to improve the thermal contact between the product and the shelf of the freeze dryer, such as eliminating metal trays from the drying process. Quantitation of the heat transfer coefficient for the geometry used is a useful way of assessing the impact of changes in the system such as elimination of product trays and changes in the vial. Because heat transfer by conduction through the vapor increases with increasing pressure, the commonly held point of view that "the lower the pressure, the better" is not true with respect to process efficiency. The optimum pressure for a given product is a function of the temperature at which freeze-drying is carried out, and lower pressures are needed at low product temperatures. The controlling resistance to mass transfer is almost always the resistance of the partially dried solids above the submination interface. This resistance can be minimized by avoiding fill volumes of more than about half the volume of the container. The development scientist should also recognize that very high concentrations of solute may not be appropriate for optimum freeze-drying, particularly if the resistance of the dried product layer increases sharply with concentration. Although the last 10 years has seen the publication of a significant body of literature of great value in allowing development scientists and engineers to "work smarter," there is still much work needed in both the science and the technology of freeze-drying. Scientific development is needed for improving analytical methodology for characterization of frozen systems and freeze-dried solids. A better understanding of the relationship between molecular mobility and reactivity is needed to allow accurate prediction of product stability at the intended storage temperature based on accelerated stability at higher temperatures. This requires that the temperature dependence of glass transition-associated mobility, particularly at temperatures below the glass transition, be studied in greater depth. The relevance of the concept of strong and fragile glasses to frozen systems and freeze-dried solids has only begun to be explored. The list of pharmaceutically acceptable protective solutes is very short, and more imagination--and work--is needed in order to develop pharmaceutically acceptable alternative stabilizers. There is a need for technology development in process monitoring, particularly in developing a way to measure the status of the product during freezing and freeze-drying without placing temperature measurement probes in individual vials of product. The current practice of placing thermocouples in vials is uncertain with respect to reliability of the data, inconsistent with elimination of personnel in close proximity to open vials of product in an aseptic environment, and incompatible with technology for automatic material handling in freeze-drying. In addition, a method for controlling the degree of supercooling during freezing would allow better control of freezing rate and would, in many cases, result in more consistent product quality.

  7. Extraction condition optimization and effects of drying methods on physicochemical properties and antioxidant activities of polysaccharides from comfrey (Symphytum officinale L.) root.

    PubMed

    Shang, Hongmei; Zhou, Haizhu; Duan, Mengying; Li, Ran; Wu, Hongxin; Lou, Yujie

    2018-06-01

    This study was designed to investigate the extraction conditions of polysaccharides from comfrey (Symphytum officinale L.) root (CRPs) using response surface methodology (RSM). The effects of three variables including liquid-solid ratio, extraction time and extraction temperature on the extraction yield of CRPs were taken into consideration. Moreover, the effects of drying methods including hot air drying (HD), vacuum drying (VD) and freeze drying (FD) on the physicochemical properties and antioxidant activities of CRPs were evaluated. The optimal conditions to extract the polysaccharides were as follows: liquid-solid ratio (15mL/g), extraction time (74min), and extraction temperature (95°C), allowed a maximum polysaccharides yield of 22.87%. Different drying methods had significant effects on the physicochemical properties of CRPs such as the chemical composition (contents of total polysaccharides and uronic acid), relative viscosity, solubility and molecular weight. CRPs drying with FD method showed stronger reducing power and radical scavenging capacities against DPPH and ABTS radicals compared with CRPs drying with HD and VD methods. Therefore, freeze drying served as a good method for keeping the antioxidant activities of polysaccharides from comfrey root. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. 21 CFR 146.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... hydrolyzed starch. (c) The term dried glucose sirup means the product obtained by drying glucose sirup. (d... the incomplete hydrolysis of any edible starch. The solids of glucose sirup contain not less than 40...

  9. 27 CFR 24.202 - Dried fruit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... exclusive of pulp). Pure dry sugar may be used for sweetening. After complete fermentation or complete fermentation and sweetening, the finished product may not have a total solids content that exceeds 35 degrees...

  10. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols

    PubMed Central

    Meenach, Samantha A; Vogt, Frederick G; Anderson, Kimberly W; Hilt, J Zach; McGarry, Ronald C; Mansour, Heidi M

    2013-01-01

    Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and confocal Raman microscopy (CRM), and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the spray-drying process had a significant effect on the solid-state particle properties and that a higher pump rate produced the most optimal system. Advanced dry powder inhalers of inhalable lipopolymers for targeted dry powder inhalation delivery were successfully achieved. PMID:23355776

  11. Enzyme activities and substrate degradation during white rot fungi growth on sugar-cane straw in a solid state fermentation.

    PubMed

    Ortega, G M; Martinez, E O; González, P C; Betancourt, D; Otero, M A

    1993-03-01

    Two strains of Pleurotus spp., grown in solid state fermentation on sugar-cane straw, degraded the dry matter by 50% after 60 days. The rate of substrate consumption and the dry weight of fruiting bodies decreased in consecutive flushings. Both strains vigorously attacked hemicellulose (80% of total degradation) and lignin (70%). Fruiting bodies were rich in protein and lipids, and had a low content of carbohydrates and ash.

  12. Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.

    PubMed

    Capece, Maxx; Davé, Rajesh

    2015-06-01

    Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Treating of solid earthen material and a method for measuring moisture content and resistivity of solid earthen material

    DOEpatents

    Heath, William; Richardson, Richard; Goheen, Steven

    1994-01-01

    The present invention includes a method of treating solid earthen material having volatile, semi-volatile and non-volatile contaminants. Six electrodes are inserted into a region of earthen material to be treated in a substantially equilateral hexagonal arrangement. Six phases of voltages are applied to corresponding electrodes. The voltages are adjusted within a first range of voltages to create multiple current paths between pairs of the electrodes. The current paths are evenly distributed throughout the region defined by the electrodes and therefore uniformly heat the region. The region of earthen material is heated to a temperature sufficient to substantially remove volatile and semi-volatile contaminants. This temperature is less than a melting temperature of the earthen material. The voltages are then increased to a second range of voltages effective to create dry regions around the electrodes. The dry regions have a perimeter which define a boundary between the dry regions and the earthen material exterior to the dry regions. Corona discharge occurs at the boundaries of the dry regions. As voltages are increased further, the dry regions move radially outward from the electrodes through the entire region. The corona boundaries decompose the non-volatilized contaminants remaining in the region. The hexagonal arrangement of electrodes is also preferable for measuring resistivity and moisture content of the earthen material. The electric field created between the electrodes is readily discernable and therefore facilitates accurate measurements.

  14. Condensed milk storage and evaporation affect the flavor of nonfat dry milk.

    PubMed

    Park, Curtis W; Drake, MaryAnne

    2016-12-01

    Unit operations in nonfat dry milk (NFDM) manufacture influence sensory properties, and consequently, its use and acceptance in ingredient applications. Condensed skim milk may be stored at refrigeration temperatures for extended periods before spray drying due to shipping or lack of drying capacity. Currently, NFDM processors have 2 options for milk concentration up to 30% solids: evaporation (E) or reverse osmosis (RO). The objective of this study was to determine the effect of condensed milk storage and milk concentration method (E vs. RO) on the flavor of NFDM and investigate mechanisms behind flavor differences. For experiment 1, skim milk was pasteurized and concentrated to 30% solids by E or RO and then either stored for 24h at 4°C or concentrated to 50% solids by E and spray dried immediately. To investigate mechanisms behind the results from experiment 1, experiment 2 was constructed. In experiment 2, pasteurized skim milk was subjected to 1 of 4 treatments: control (no E), heated in the evaporator without vacuum, E concentration to 30% solids, or E concentration to 40% solids. The milks were then diluted to the same solids content and evaluated. Volatile compounds were also measured during concentration in the vapor separator of the evaporator. Sensory properties were evaluated by descriptive sensory analysis and instrumental volatile compound analysis was conducted to evaluate volatile compounds. Interaction effects between storage and method of concentration were investigated. In experiment 1, E decreased sweet aromatic flavor and many characteristic milk flavor compounds and increased cardboard and cooked flavors in NFDM compared with RO. Liquid storage increased cardboard flavor and hexanal and octanal and decreased sweet aromatic flavors and vanillin concentration. Results from experiment 2 indicated that the characteristic milk flavors and their associated volatile compounds were removed by the vapor separator in the evaporator due to the heat and vacuum applied during concentration. These results demonstrate that off-flavors are significantly reduced when RO is used in place of E and storage of condensed milk is avoided. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.

    PubMed

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard

    2015-08-01

    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying. © 2015 Institute of Food Technologists®

  16. Recovery of steroidal alkaloids from potato peels using pressurized liquid extraction.

    PubMed

    Hossain, Mohammad B; Rawson, Ashish; Aguiló-Aguayo, Ingrid; Brunton, Nigel P; Rai, Dilip K

    2015-05-13

    A higher yield of glycoalkaloids was recovered from potato peels using pressurized liquid extraction (1.92 mg/g dried potato peels) compared to conventional solid-liquid extraction (0.981 mg/g dried potato peels). Response surface methodology deduced the optimal temperature and extracting solvent (methanol) for the pressurized liquid extraction (PLE) of glycoalkaloids as 80 °C in 89% methanol. Using these two optimum PLE conditions, levels of individual steroidal alkaloids obtained were of 597, 873, 374 and 75 µg/g dried potato peel for α-solanine, α-chaconine, solanidine and demissidine respectively. Corresponding values for solid liquid extraction were 59%, 46%, 40% and 52% lower for α-solanine, α-chaconine, solanidine and demissidine respectively.

  17. Biomass drying in a pulsed fluidized bed without inert bed particles

    DOE PAGES

    Jia, Dening; Bi, Xiaotao; Lim, C. Jim; ...

    2016-08-29

    Batch drying was performed in the pulsed fluidized bed with various species of biomass particles as an indicator of gas–solid contact efficiency and mass transfer rate under different operating conditions including pulsation duty cycle and particle size distribution. The fluidization of cohesive biomass particles benefited from the shorter opening time of pulsed gas flow and increased peak pressure drop. The presence of fines enhanced gas–solid contact of large and irregular biomass particles, as well as the mass transfer efficiency. A drying model based on two-phase theory was proposed, from which effective diffusivity was calculated for various gas flow rates, temperaturemore » and pulsation frequency. Intricate relationship was discovered between pulsation frequency and effective diffusivity, as mass transfer was deeply connected with the hydrodynamics. Effective diffusivity was also found to be proportional to gas flow rate and drying temperature. In conclusion, operating near the natural frequency of the system also favored drying and mass transfer.« less

  18. Comparison between 2 methods of solid-liquid extraction for the production of Cinchona calisaya elixir: an experimental kinetics and numerical modeling approach.

    PubMed

    Naviglio, Daniele; Formato, Andrea; Gallo, Monica

    2014-09-01

    The purpose of this study is to compare the extraction process for the production of China elixir starting from the same vegetable mixture, as performed by conventional maceration or a cyclically pressurized extraction process (rapid solid-liquid dynamic extraction) using the Naviglio Extractor. Dry residue was used as a marker for the kinetics of the extraction process because it was proportional to the amount of active principles extracted and, therefore, to their total concentration in the solution. UV spectra of the hydroalcoholic extracts allowed for the identification of the predominant chemical species in the extracts, while the organoleptic tests carried out on the final product provided an indication of the acceptance of the beverage and highlighted features that were not detectable by instrumental analytical techniques. In addition, a numerical simulation of the process has been performed, obtaining useful information about the timing of the process (time history) as well as its mathematical description. © 2014 Institute of Food Technologists®

  19. Jamming of three-dimensional prolate granular materials.

    PubMed

    Desmond, K; Franklin, Scott V

    2006-03-01

    We have found that the ability of long thin rods to jam into a solidlike state in response to a local perturbation depends upon both the particle aspect ratio and the container size. The dynamic phase diagram in this parameter space reveals a broad transition region separating granular stick-slip and solidlike behavior. In this transition region the pile displays both solid and stick-slip behavior. We measure the force on a small object pulled through the pile, and find the fluctuation spectra to have power law tails with an exponent characteristic of the region. The exponent varies from beta=-2 in the stick-slip region to beta=-1 in the solid region. These values reflect the different origins--granular rearrangements vs dry friction--of the fluctuations. Finally, the packing fraction shows only a slight dependence on container size, but depends on aspect ratio in a manner predicted by mean-field theory and implies an aspect-ratio-independent contact number of =5.25 +/- 0.03.

  20. Advances in drying: Volume 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mujumdar, A.S.

    1987-01-01

    Topics covered in this volume include recent thoughts in modeling of drying phenomena, use of computers in rational design of drying particulates, recent advances in drying of wood, and heat/mass transfer phenomena in drying of solids. As the readers will no doubt notice, special effort is made to ensure the truly international nature of the contents of this serial publication. As existing knowledge on drying and dryers becomes more widely and readily accessible, it is expected that more and more dryers will be designed rationally rather than built solely with the benefit of empiricism.

  1. Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality.

    PubMed

    Rodríguez, Óscar; Eim, Valeria; Rosselló, Carmen; Femenia, Antoni; Cárcel, Juan A; Simal, Susana

    2018-03-01

    Drying gives rise to products with a long shelf life by reducing the water activity to a level that is sufficiently low to inhibit the growth of microorganisms, enzymatic reactions and other deteriorative reactions. Despite the benefits of this operation, the quality of heat sensitive products is diminished when high temperatures are used. The use of low drying temperatures reduces the heat damage but, because of a longer drying time, oxidation reactions occur and a reduction of the quality is also observed. Thus, drying is a method that lends itself to being intensified. For this reason, alternative techniques are being studied. Power ultrasound is considered as an emerging and promising technology in the food industry. The potential of this technology relies on its ability to accelerate the mass transfer processes in solid-liquid and solid-gas systems. Intensification of the drying process with power ultrasound can be achieved by modifying the product behavior during drying, using pre-treatments such as soaking in a liquid medium assisted acoustically or, during the drying process itself, by applying power ultrasound in the gaseous medium. This review summarises the effects of the application of the power ultrasound on the quality of different dried products, such as fruits and vegetables, when the acoustic energy is intended to intensify the drying process, either when the application is performed before pretreatment or during the drying process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Fundamental aspects of polyimide dry film and composite lubrication: A review

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1982-01-01

    The tribological properties of polyimide dry films and composites are reviewed. Friction coefficients, wear rates, transfer film characteristics, wear surface morphology, and possible wear mechanisms of several different polyimide films, polyimide-bonded solid lubricants, polyimide solid bodies, and polyimide composites are discussed. Such parameters as temperature, type of atmosphere, load, contact stress, and specimen configuration are investigated. Data from an accelerated test device (Pin-on-Disk) are compared to similar data obtained from an end use application test device (plain spherical bearing).

  3. Militarily-Significant Properties of Atmospheric Water Vapor and Its Adsorbed Surface Layers

    DTIC Science & Technology

    1988-08-01

    Depend- ency of Cell (Vapor) Current vs. Saturation Ratio, for Humidification by Ultrasonic Nebulizer (Solid Points) and Drying Down (Hollow Points... Humidification (Solid Points) and "Hyster- esis" Effects During Drying-Down (Hollow Points) .................... 77 42. More Data Fromi New cell (Figures 36-38...thus it is 3! heavily involved in the " greenhouse " effect. The high-powered CO2 laser operates at 10.6 jm in this window. Aside from its obvious role in

  4. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, Luc

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  5. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOEpatents

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  6. A new approach for concurrently improving performance of South Korean food waste valorization and renewable energy recovery via dry anaerobic digestion under mesophilic and thermophilic conditions.

    PubMed

    Nguyen, Dinh Duc; Yeop, Jeong Seong; Choi, Jaehoon; Kim, Sungsu; Chang, Soon Woong; Jeon, Byong-Hun; Guo, Wenshan; Ngo, Huu Hao

    2017-08-01

    Dry semicontinuous anaerobic digestion (AD) of South Korean food waste (FW) under four solid loading rates (SLRs) (2.30-9.21kg total solids (TS)/m 3 day) and at a fixed TS content was compared between two digesters, one each under mesophilic and thermophilic conditions. Biogas production and organic matter reduction in both digesters followed similar trends, increasing with rising SLR. Inhibitor (intermediate products of the anaerobic fermentation process) effects on the digesters' performance were not observed under the studied conditions. In all cases tested, the digesters' best performance was achieved at the SLR of 9.21kg TS/m 3 day, with 74.02% and 80.98% reduction of volatile solids (VS), 0.87 and 0.90m 3 biogas/kg VS removed , and 0.65 (65% CH 4 ) and 0.73 (60.02% CH 4 ) m 3 biogas/kg VS fed , under mesophilic and thermophilic conditions, respectively. Thermophilic dry AD is recommended for FW treatment in South Korea because it is more efficient and has higher energy recovery potential when compared to mesophilic dry AD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Volatile compound changes during shelf life of dried Boletus edulis: comparison between SPME-GC-MS and PTR-ToF-MS analysis.

    PubMed

    Aprea, Eugenio; Romano, Andrea; Betta, Emanuela; Biasioli, Franco; Cappellin, Luca; Fanti, Marco; Gasperi, Flavia

    2015-01-01

    Drying process is commonly used to allow long time storage of valuable porcini mushrooms (Boletus edulis). Although considered a stable product dried porcini flavour changes during storage. Monitoring of volatile compounds during shelf life may help to understand the nature of the observed changes. In the present work two mass spectrometric techniques were used to monitor the evolution of volatile compounds during commercial shelf life of dried porcini. Solid phase microextraction (SPME) coupled to gas chromatography - mass spectrometry (GC-MS) allowed the identification of 66 volatile compounds, 36 of which reported for the first time, monitored during the commercial shelf life of dried porcini. Proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS) , a direct injection mass spectrometric technique, was shown to be a fast and sensitive instrument for the general monitoring of volatile compound evolution during storage of dried porcini. Furthermore, PTR-ToF-MS grants access to compounds whose determination would otherwise require lengthy pre-concentration and/or derivatization steps such as ammonia and small volatile amines. The two techniques, both used for the first time to study dried porcini, provided detailed description of time evolution of volatile compounds during shelf life. Alcohols, aldehydes, ketones and monoterpenes diminish during the storage while carboxylic acids, pyrazines, lactones and amines increase. The storage temperature modifies the rate of the observed changes influencing the final quality of the dried porcini. We showed the advantages of both techniques, suggesting a strategy to be adopted to follow time evolution of volatile compounds in food products during shelf life, based on the identification of compounds by GC-MS and the rapid time monitoring by PTR-ToF-MS measurements in order to maximize the advantages of both techniques. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Microencapsuling aerial conidia of Trichoderma harzianum through spray drying at elevated temperatures

    USDA-ARS?s Scientific Manuscript database

    Trichoderma conidia are mostly produced by solid fermentation systems. Inoculum is produced by liquid culturing, and then transferred to solid substrate for aerial conidial production. Aerial conidia of T. harzianum are hydrophilic in nature, and it is difficult to separate them from the solid subst...

  9. Volatile compounds of Celta dry-cured 'lacón' as affected by cross-breeding with Duroc and Landrace genotypes.

    PubMed

    Lorenzo, José M; Fonseca, Sonia

    2014-11-01

    Dry-cured 'lacón' is a traditional cured meat product made in the north-west of Spain from the pigs' foreleg, with similar manufacturing process to that used in dry-cured ham. The aim of this study was to assess the influence of cross-breeding of Celta pig with Landrace or Duroc breeds on the formation of volatile compounds through the manufacture of 'lacón'. 'Lacón' from the crosses with Duroc presented lower final moisture (534 g kg(-1) ) and higher intra-muscular fat content [144 g kg(-1) dry matter (DM)] than 'lacón' from Celta pure breed (587 g kg(-1) and 36 g kg(-1) DM, respectively). Volatile compounds were extracted by solid-phase microextraction and analysed by gas chromatography-mass spectrometry. Volatile compounds from 'lacón' were affected by cross-breeding. The total amount of volatile compounds significantly (P < 0.001) increased during the manufacturing process, this increase being more marked in samples from the Landrace cross-breed. The most abundant group of flavour compounds at the end of the manufacturing process was esters in the three batches, followed by aldehydes, hydrocarbons and alcohols. The most abundant ester at the end of the process was hexanoic acid methyl ester, while the aldehyde found in a higher amount was hexanal. The profile of volatile compounds was affected by cross-breed, especially at the end of the 'lacón' dry-curing process. © 2014 Society of Chemical Industry.

  10. Preparation and characterization of solid dispersion freeze-dried efavirenz - polyvinylpyrrolidone K-30.

    PubMed

    Fitriani, Lili; Haqi, Alianshar; Zaini, Erizal

    2016-01-01

    The aim of this research is to prepare and characterize solid dispersion of efavirenz - polyvinylpyrrolidone (PVP) K-30 by freeze drying to increase its solubility. Solid dispersion of efavirenz - PVP K-30 was prepared by solvent evaporation method with ratio 2:1, 1:1, and 1:2 and dried using a freeze dryer. Characterizations were done by scanning electron microscopy (SEM), powder X-ray diffraction analysis, differential thermal analysis (DTA), and Fourier transform infrared (FT-IR) spectroscopy. Solubility test was carried out in CO2-free distilled water, and efavirenz assay was conducted using high-performance liquid chromatography with acetonitrile:acetic acid (80:20) as the mobile phases. Powder X-ray diffractogram showed a decrease in the peak intensity, which indicated the crystalline altered to amorphous phase. DTA thermal analysis showed a decrease in the melting point of the solid dispersion compared to intact efavirenz. SEM results indicated the changes in the morphology of the crystal into an amorphous form compared to pure components. FT-IR spectroscopy analysis showed a shift wavenumber of the spectrum efavirenz and PVP K-30. The solubility of solid dispersion at ratio 2:1, 1:1, and 1:2 was 6.777 μg/mL, 6.936 μg/mL, and 14,672 μg/mL, respectively, whereas the solubility of intact efavirenz was 0.250 μg/mL. In conclusion, the solubility of solid dispersion increased significantly (P < 0.05).

  11. Biomimetic Dissolution: A Tool to Predict Amorphous Solid Dispersion Performance.

    PubMed

    Puppolo, Michael M; Hughey, Justin R; Dillon, Traciann; Storey, David; Jansen-Varnum, Susan

    2017-11-01

    The presented study describes the development of a membrane permeation non-sink dissolution method that can provide analysis of complete drug speciation and emulate the in vivo performance of poorly water-soluble Biopharmaceutical Classification System class II compounds. The designed membrane permeation methodology permits evaluation of free/dissolved/unbound drug from amorphous solid dispersion formulations with the use of a two-cell apparatus, biorelevant dissolution media, and a biomimetic polymer membrane. It offers insight into oral drug dissolution, permeation, and absorption. Amorphous solid dispersions of felodipine were prepared by hot melt extrusion and spray drying techniques and evaluated for in vitro performance. Prior to ranking performance of extruded and spray-dried felodipine solid dispersions, optimization of the dissolution methodology was performed for parameters such as agitation rate, membrane type, and membrane pore size. The particle size and zeta potential were analyzed during dissolution experiments to understand drug/polymer speciation and supersaturation sustainment of felodipine solid dispersions. Bland-Altman analysis was performed to measure the agreement or equivalence between dissolution profiles acquired using polymer membranes and porcine intestines and to establish the biomimetic nature of the treated polymer membranes. The utility of the membrane permeation dissolution methodology is seen during the evaluation of felodipine solid dispersions produced by spray drying and hot melt extrusion. The membrane permeation dissolution methodology can suggest formulation performance and be employed as a screening tool for selection of candidates to move forward to pharmacokinetic studies. Furthermore, the presented model is a cost-effective technique.

  12. Solidification of nanosuspensions for the production of solid oral dosage forms and inhalable dry powders.

    PubMed

    Malamatari, Maria; Somavarapu, Satyanarayana; Taylor, Kevin M G; Buckton, Graham

    2016-01-01

    Nanosuspensions combine the advantages of nanotherapeutics (e.g. increased dissolution rate and saturation solubility) with ease of commercialisation. Transformation of nanosuspensions to solid oral and inhalable dosage forms minimises the physical instability associated with their liquid state, enhances patient compliance and enables targeted oral and pulmonary drug delivery. This review outlines solidification methods for nanosuspensions. It includes spray and freeze drying as the most widely used techniques. Fluidised-bed coating, granulation and pelletisation are also discussed as they yield nanocrystalline formulations with more straightforward downstream processing to tablets or capsules. Spray-freeze drying, aerosol flow reactor and printing of nanosuspensions are also presented as promising alternative solidification techniques. Results regarding the solid state, in vitro dissolution and/or aerosolisation efficiency of the nanocrystalline formulations are given and combined with available in vivo data. Focus is placed on the redispersibility of the solid nanocrystalline formulations, which is a prerequisite for their clinical application. A few solidified nanocrystalline products are already on the market and many more are in development. Oral and inhalable nanoparticle formulations are expected to have great potential especially in the areas of personalised medicine and delivery of high drug doses (e.g. antibiotics) to the lungs, respectively.

  13. 27 CFR 24.202 - Dried fruit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the fresh fruit may be added. If it is desired not to restore the moisture content of the dried fruit to that of the fresh fruit, or if the moisture content is not known, sufficient water may be added to... deficient in sugar, sufficient pure dry sugar may be added to increase the total solids content to 25...

  14. 27 CFR 24.202 - Dried fruit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the fresh fruit may be added. If it is desired not to restore the moisture content of the dried fruit to that of the fresh fruit, or if the moisture content is not known, sufficient water may be added to... deficient in sugar, sufficient pure dry sugar may be added to increase the total solids content to 25...

  15. 27 CFR 24.202 - Dried fruit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the fresh fruit may be added. If it is desired not to restore the moisture content of the dried fruit to that of the fresh fruit, or if the moisture content is not known, sufficient water may be added to... deficient in sugar, sufficient pure dry sugar may be added to increase the total solids content to 25...

  16. 27 CFR 24.202 - Dried fruit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the fresh fruit may be added. If it is desired not to restore the moisture content of the dried fruit to that of the fresh fruit, or if the moisture content is not known, sufficient water may be added to... deficient in sugar, sufficient pure dry sugar may be added to increase the total solids content to 25...

  17. Investigating alternative solutions for adsorption-contact drying when burning vegetable wastes

    NASA Astrophysics Data System (ADS)

    Golubkovich, A. V.

    2007-06-01

    Results are presented from investigation of three alternative solutions for adsorption-contact drying: combined (with cooling by means of outdoor air), with afterburning of combustible matters, and with limited adsorption of moisture using solid products of fuel combustion. Mathematical models and simplified expressions for calculating the time taken for the fuel drying to proceed are proposed.

  18. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Warner, Kathryn A.

    1999-01-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.

  19. Cardboard proportions and total solids contents as driving factors in dry co-fermentation of food waste.

    PubMed

    Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Bernet, Nicolas; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-01-01

    This study evaluated the influence of the co-substrate proportions (0-60% of cardboard in dry basis) and the initial total solid contents (20-40%) on the batch fermentation performance. Maximum hydrogen yields were obtained when mono-fermenting food waste at high solids contents (89mlH 2 ·gVS -1 ). The hydrogen yields were lower when increasing the proportions of cardboard. The lower hydrogen yields at higher proportions of cardboard were translated into higher yields of caproic acid (up to 70.1gCOD·kgCOD bio -1 ), produced by consumption of acetic acid and hydrogen. The highest substrate conversions were achieved at low proportions of cardboard, indicating a stabilization effect due to higher buffering capacities in co-fermentation. Clostridiales were predominant in all operational conditions. This study opens up new possibilities for using the cardboard proportions for controlling the production of high added-value products in dry co-fermentation of food waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Warner, K.A.

    1999-06-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.

  1. Effect of the corn breaking method on oil distribution between stillage phases of dry-grind corn ethanol production.

    PubMed

    Wang, H; Wang, T; Johnson, L A; Pometto, A L

    2008-11-12

    The majority of fuel ethanol in the United States is produced by using the dry-grind corn ethanol process. The corn oil that is contained in the coproduct, distillers' dried grains with solubles (DDGS), can be recovered for use as a biodiesel feedstock. Oil removal will also improve the feed quality of DDGS. The most economical way to remove oil is considered to be at the centrifugation step for separating thin stillage (liquid) from coarse solids after distilling the ethanol. The more oil there is in the liquid, the more it can be recovered by centrifugation. Therefore, we studied the effects of corn preparation and grinding methods on oil distribution between liquid and solid phases. Grinding the corn to three different particle sizes, flaking, flaking and grinding, and flaking and extruding were used to break up the corn kernel before fermentation, and their effects on oil distribution between the liquid and solid phases were examined by simulating an industrial decanter centrifuge. Total oil contents were measured in the liquid and solids after centrifugation. Dry matter yield and oil partitioning in the thin stillage were highly positively correlated. Flaking slightly reduced bound fat. The flaked and then extruded corn meal released the highest amount of free oil, about 25% compared to 7% for the average of the other treatments. The freed oil from flaking, however, became nonextractable after the flaked corn was ground. Fine grinding alone had little effect on oil partitioning.

  2. Method for net-shaping using aerogels

    DOEpatents

    Brinker, C. Jeffrey; Ashey, Carol S.; Reed, Scott T.; Sriram, Chunangad S.; Harris, Thomas M.

    2001-01-01

    A method of net-shaping using aerogel materials is provided by first forming a sol, aging the sol to form a gel, with the gel having a fluid component and having been formed into a medium selected from the group consisting of a powder, bulk material, or granular aerobeads, derivatizing the surface of the gel to render the surface unreactive toward further condensation, removing a portion of the fluid component of the final shaped gel to form a partially dried medium, placing the medium into a cavity, wherein the volume of said medium is less that the volume of the cavity, and removing a portion of the fluid component of the medium. The removal, such as by heating at a temperature of approximately less than 50.degree. C., applying a vacuum, or both, causes the volume of the medium to increase and to form a solid aerogel. The material can be easily removed by exposing the material to a solvent, thereby reducing the volume of the material. In another embodiment, the gel is derivatized and then formed into a shaped medium, where subsequent drying reduces the volume of the shaped medium, forming a net-shaping material. Upon further drying, the material increases in volume to fill a cavity. The present invention is both a method of net-shaping and the material produced by the method.

  3. Uncovering the Terahertz Spectrum of Copper Sulfate Pentahydrate.

    PubMed

    Ruggiero, Michael T; Korter, Timothy M

    2016-01-21

    Terahertz vibrational spectroscopy has evolved into a powerful tool for the detection and characterization of transition metal sulfate compounds, specifically for its ability to differentiate between various hydrated forms with high specificity. Copper(II) sulfate is one such system where multiple crystalline hydrates have had their terahertz spectra fully assigned, and the unique spectral fingerprints of the forms allows for characterization of multicomponent systems with relative ease. Yet the most commonly occurring form, copper(II) sulfate pentahydrate (CuSO4·5H2O), has proven elusive due to the presence of a broad absorption across much of the terahertz region, making the unambiguous identification of its spectral signature difficult. Here, it is shown that the sub-100 cm(-1) spectrum of CuSO4·5H2O is obscured by absorption from adsorbed water and that controlled drying reveals sharp underlying features. The crystalline composition of the samples was monitored in parallel by X-ray diffraction as a function of drying time, supporting the spectroscopic results. Finally, the terahertz spectrum of CuSO4·5H2O was fully assigned using solid-state density functional theory simulations, helping attribute the additional absorptions that appear after excessive drying to formation of CuSO4·3H2O.

  4. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis

    PubMed Central

    Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies. PMID:25051352

  5. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis.

    PubMed

    Yi, Jing; Dong, Bin; Jin, Jingwei; Dai, Xiaohu

    2014-01-01

    The total solids content of feedstocks affects the performances of anaerobic digestion and the change of total solids content will lead the change of microbial morphology in systems. In order to increase the efficiency of anaerobic digestion, it is necessary to understand the role of the total solids content on the behavior of the microbial communities involved in anaerobic digestion of organic matter from wet to dry technology. The performances of mesophilic anaerobic digestion of food waste with different total solids contents from 5% to 20% were compared and the microbial communities in reactors were investigated using 454 pyrosequencing technology. Three stable anaerobic digestion processes were achieved for food waste biodegradation and methane generation. Better performances mainly including volatile solids reduction and methane yield were obtained in the reactors with higher total solids content. Pyrosequencing results revealed significant shifts in bacterial community with increasing total solids contents. The proportion of phylum Chloroflexi decreased obviously with increasing total solids contents while other functional bacteria showed increasing trend. Methanosarcina absolutely dominated in archaeal communities in three reactors and the relative abundance of this group showed increasing trend with increasing total solids contents. These results revealed the effects of the total solids content on the performance parameters and the behavior of the microbial communities involved in the anaerobic digestion of food waste from wet to dry technologies.

  6. Integrated system of phytodepuration and water reclamation: A comparative evaluation of four municipal wastewater treatment plants.

    PubMed

    Petroselli, Andrea; Giannotti, Maurizio; Marras, Tatiana; Allegrini, Elena

    2017-06-03

    In dry regions, water resources have become increasingly limited, and the use of alternative sources is considered one of the main strategies in sustainable water management. A highly viable alternative to commonly used water resources is treated municipal wastewater, which could strongly benefit from advanced and low-cost techniques for depuration, such as the integrated system of phytodepuration (ISP). The current manuscript investigates four Italian case studies with different sizes and characteristics. The raw wastewaters and final effluents were sampled on a monthly basis over a period of up to five years, allowing the quantification of the ISP performances. The results obtained show that the investigated plants are characterized by an average efficiency value of approximately 83% for chemical oxygen demand removal, 84% for biochemical oxygen demand, 89% for total nitrogen, 91% for total phosphorus, and 85% for total suspended solids. Moreover, for three of the case studies, the ISP final effluent is suitable for irrigation, and in the fourth case study, the final effluent can be released in surface water.

  7. Decontamination of materials contaminated with Bacillus anthracis and Bacillus thuringiensis Al Hakam spores using PES-Solid, a solid source of peracetic acid.

    PubMed

    Buhr, T L; Wells, C M; Young, A A; Minter, Z A; Johnson, C A; Payne, A N; McPherson, D C

    2013-08-01

    To develop test methods and evaluate survival of Bacillus anthracis Ames, B. anthracis ∆Sterne and B. thuringiensis Al Hakam spores after exposure to PES-Solid (a solid source of peracetic acid), including PES-Solid formulations with bacteriostatic surfactants. Spores (≥ 7 logs) were dried on seven different test materials and treated with three different PES-Solid formulations (or preneutralized controls) at room temperature for 15 min. There was either no spore survival or less than 1 log (<10 spores) of spore survival in 56 of 63 test combinations (strain, formulation and substrate). Less than 2.7 logs (<180 spores) survived in the remaining seven test combinations. The highest spore survival rates were seen on water-dispersible chemical agent resistant coating (CARC-W) and Naval ship topcoat (NTC). Electron microscopy and Coulter analysis showed that all spore structures were intact after spore inactivation with PES-Solid. Three PES-Solid formulations inactivated Bacillus spores that were dried on seven different materials. A test method was developed to show that PES-Solid formulations effectively inactivate Bacillus spores on different materials. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation

    PubMed Central

    Wu, Xiao; Hayes, Don; Zwischenberger, Joseph B; Kuhn, Robert J; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design, develop, and optimize respirable tacrolimus microparticles and nanoparticles and multifunctional tacrolimus lung surfactant mimic particles for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced at different pump rates by advanced spray-drying particle engineering design from organic solution in closed mode. In addition, multifunctional tacrolimus lung surfactant mimic dry powder particles were prepared by co-dissolving tacrolimus and lung surfactant mimic phospholipids in methanol, followed by advanced co-spray-drying particle engineering design technology in closed mode. The lung surfactant mimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol]. Laser diffraction particle sizing indicated that the particle size distributions were suitable for pulmonary delivery, whereas scanning electron microscopy imaging indicated that these particles had both optimal particle morphology and surface morphology. Increasing the pump rate percent of tacrolimus solution resulted in a larger particle size. X-ray powder diffraction patterns and differential scanning calorimetry thermograms indicated that spray drying produced particles with higher amounts of amorphous phase. X-ray powder diffraction and differential scanning calorimetry also confirmed the preservation of the phospholipid bilayer structure in the solid state for all engineered respirable particles. Furthermore, it was observed in hot-stage micrographs that raw tacrolimus displayed a liquid crystal transition following the main phase transition, which is consistent with its interfacial properties. Water vapor uptake and lyotropic phase transitions in the solid state at varying levels of relative humidity were determined by gravimetric vapor sorption technique. Water content in the various powders was very low and well within the levels necessary for dry powder inhalation, as quantified by Karl Fisher coulometric titration. Conclusively, advanced spray-drying particle engineering design from organic solution in closed mode was successfully used to design and optimize solid-state particles in the respirable size range necessary for targeted pulmonary delivery, particularly for the deep lung. These particles were dry, stable, and had optimal properties for dry powder inhalation as a novel pulmonary nanomedicine. PMID:23403805

  9. Survey of industrial dryers for solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, A.S.; Jensen, W.P.

    1976-07-01

    A study was directed toward obtaining data for an estimate of the current and anticipated energy demand for industrial drying operations for solid materials. Twenty-seven dryer types, including those utilizing both direct and indirect heat sources, were identified and are described. Results of an analysis made on 17 dryer types and based on data obtained from several of the largest solids dryer manufacturers indicate that industrial dryers for solids currently consume about 1.3 x 10/sup 18/ J (1.2 quads) of energy. This represents nearly 4 percent of the total United States industrial energy use. Several examples of steps being takenmore » by industry to reduce energy requirements for solids drying are included. Still further action to reduce energy consumption of dryers is possible; implementation will depend upon the extent to which incentives are provided by fuel scarcity, fuel costs, and the perfection of new technology by industry alone and in programs with the Federal Government.« less

  10. A modified method for COD determination of solid waste, using a commercial COD kit and an adapted disposable weighing support.

    PubMed

    André, L; Pauss, A; Ribeiro, T

    2017-03-01

    The chemical oxygen demand (COD) is an essential parameter in waste management, particularly when monitoring wet anaerobic digestion processes. An adapted method to determine COD was developed for solid waste (total solids >15%). This method used commercial COD tubes and did not require sample dilution. A homemade plastic weighing support was used to transfer the solid sample into COD tubes. Potassium hydrogen phthalate and glucose used as standards showed an excellent repeatability. A small underestimation of the theoretical COD value (standard values around 5% lower than theoretical values) was also observed, mainly due to the intrinsic COD of the weighing support and to measurement uncertainties. The adapted COD method was tested using various solid wastes in the range of 1-8 mg COD , determining the COD of dried and ground cellulose, cattle manure, straw and a mixed-substrate sample. This new adapted method could be used to monitor and design dry anaerobic digestion processes.

  11. Impact of operating conditions on performance of a novel gas double-dynamic solid-state fermentation bioreactor (GDSFB).

    PubMed

    Chen, Hongzhang; Li, Yanjun; Xu, Fujian

    2013-11-01

    A self-designed novel solid-state fermentation (SSF) bioreactor named "gas double-dynamic solid-state fermentation bioreactor (GDSFB)" showed great success in processes for the production of several valuable products. For the present study, a simple GDSFB (2 L in volume) was designed to investigate the impact of exhaust time on SSF performance. Both air pressure and vent aperture significantly influenced the exhaust time. The production of cellulase by Penicillium decumbens JUA10 was studied in this bioreactor. When the vent aperture was maintained at 0.2 cm, the highest FPA activity of 17.2 IU/g dry solid-state medium was obtained at an air pressure of 0.2 MPa (gauge pressure). When the air pressure was maintained at 0.2 MPa, a vent aperture of 0.3 cm gave the highest FPA activity of 18.0 IU/g dry solid-state medium. Further analysis revealed that the exhaust time was a crucial indicator of good performance in GDSFB.

  12. Potential sources of variation that influence the final moisture content of kiln-dried hardwood lumber

    Treesearch

    Hongmei Gu; Timothy M. Young; William W. Moschler; Brian H. Bond

    2004-01-01

    Excessive variability in the final moisture content (MC) of hardwood lumber may have a significant impact on secondary wood processing and final product performance. Sources of final MC variation during kiln- drying have been studied in prior research. A test examining the final MC of red oak (Quercus spp.) and yellow-poplar (Liriodendron tulipifera) lumber after kiln-...

  13. Measurement of thyroxine and its glucuronide in municipal wastewater and solids using weak anion exchange solid phase extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Brown, Alistair K; Wong, Charles S

    2017-11-24

    A solids extraction method, using sonication in combination with weak anion exchange solid phase extraction, was created to extract thyroxine (T4) and thyroxine-O-β-d-glucuronide (T4-Glc) simultaneously from wastewaters and sludges, and to quantify these compounds via reversed-phase ultra-high performance liquid chromatography-tandem mass spectrometry. The method limits of quantification were all in the low ng/g (dry weight solids) range for both T4 and T4-Glc: 2.13 and 2.63ng/g respectively in primary wastewater, 4.3 and 28.3ng/g for primary suspended solids, for 1.1 and 3.7ng/g for return activated sludge. Precision for measurements of T4 and T4-Glc were 2.6 and 6.5% (intraday) and 9.6 and 5.7% (interday) respectively, while linearity was 0.9967 and 0.9943 respectively. Overall recoveries for T4 and T4-Glc in primary suspended solids were 94% and 95%, and 86 and 101% in primary wastewater, respectively. Extraction efficiency tests using primary sludge determined that one methanol aliquot was sufficient during the extraction process as opposed to 2 or 3 aliquots. Mass loadings at the North Main Wastewater Treatment Plant in Winnipeg, Canada showed 316%, 714%, and 714% greater T4-Glc than T4 associated with the suspended solids of the primary, secondary, and final effluent respectively, yet 765% more T4 than T4-Glc associated with the solids of the mixed liquor. Moreover, 26% of T4 and 49% of T4-Glc were associated with the suspended solids during the treatment process. This method demonstrates the need to assess accurately both metabolite conjugates of contaminants of emerging concern, as well as the sorbed levels of particle-reactive analytes such as T4 in the aquatic environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Development of apple chips technology

    NASA Astrophysics Data System (ADS)

    Kowalska, Hanna; Marzec, Agata; Kowalska, Jolanta; Samborska, Kinga; Tywonek, Małgorzata; Lenart, Andrzej

    2018-05-01

    For develop of apple chips technology without chemical preservation osmotic dehydration in cherry or apple juice concentrates or fructooligosaccharide solutions and convection drying were used. Studies included the effect of dehydration on the mass transfer in apples and the quality of the final product. The temperature, type of osmotic solution and its concentration were changeable. The fruit were tested on mass transfer indicators, stability (water activity), texture (breaking test) and nutritional value (polyphenol content, acidity). Sensory evaluation was also performed. On this basis, the verification of all options was made and the most acceptable samples were selected. Concentration of osmotic solutions at 25°Brix limited solids gain in apples. Under these conditions, the phenomenon of osmosis caused 8-10 times greater water loss than solids gain. Increasing the concentration of solutions up to 50°Brix had a significantly greater impact on mass exchange in apples, compared to increasing the temperature from 40 to 60 °C. Osmotic dehydration before drying did not significantly affect the water activity but increase of the temperature negatively affected on breaking force of the chips. Chips obtained by osmotic dehydration of apples in a cherry concentrate solution contained significantly more polyphenols, and were characterized by a higher acidity than the variants obtained by dehydration in concentrated apple juice. Furthermore, they were marked by red color which has been thought as part of the attractiveness of the product. The least sensory acceptable chips were prepared using osmotic pre-treatment in cherry concentrated juice solution with the addition of fructooligosaccharide.

  15. On Characterizing Particle Shape

    NASA Technical Reports Server (NTRS)

    Ennis, Bryan J.; Rickman, Douglas; Rollins, A. Brent; Ennis, Brandon

    2014-01-01

    It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength.

  16. Preliminary Feasibility Testing of the BRIC Brine Water Recovery Concept

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Pensinger, Stuart J.; Pickering, Karen D.

    2012-01-01

    The Brine Residual In-Containment (BRIC) concept is being developed as a new technology to recover water from spacecraft wastewater brines. Such capability is considered critical to closing the water loop and achieving a sustained human presence in space. The intention of the BRIC concept is to increase the robustness and efficiency of the dewatering process by performing drying inside the container used for the final disposal of the residual brine solid. Recent efforts in the development of BRIC have focused on preliminary feasibility testing using a laboratory- assembled pre-prototype unit. Observations of the drying behavior of actual brine solutions processed under BRIC-like conditions has been of particular interest. To date, experiments conducted with three types of analogue spacecraft wastewater brines have confirmed the basic premise behind the proposed application of in-place drying. Specifically, the dried residual mass from these solutions have tended to exhibit characteristics of adhesion and flow that are expected to continue to challenge process stream management designs typically used in spacecraft systems. Yet, these same characteristics may favor the development of capillary- and surface-tension-based approaches currently envisioned as part of an ultimate microgravity-compatible BRIC design. In addition, preliminary feasibility testing of the BRIC pre-prototype confirmed that high rates of water recovery, up to 98% of the available brine water, may be possible while still removing the majority of the brine contaminants from the influent brine stream. These and other early observations from testing are reported.

  17. Preliminary Feasibility Testing of the BRIC Brine Water Recovery Concept

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Pensinger, Stuart; Pickering, Karen D.

    2011-01-01

    The Brine Residual In-Containment (BRIC) concept was developed as a new technology to recover water from spacecraft wastewater brines. Such capability is considered critical to closing the water loop and achieving a sustained human presence in space. The intention of the BRIC concept is to increase the robustness and efficiency of the dewatering process by performing drying inside the container used for the final disposal of the residual brine solid. Recent efforts in the development of BRIC have focused on preliminary feasibility testing using a laboratory- assembled pre-prototype unit. Observations of the drying behavior of actual brine solutions processed under BRIC-like conditions has been of particular interest. To date, experiments conducted with three types of analogue spacecraft wastewater brines have confirmed the basic premise behind the proposed application of in-place drying for these solutions. Specifically, the dried residual mass from these solutions have tended to exhibit characteristics of adhesion and flow that are expected to continue to challenge process stream management in spacecraft brine dewatering system designs. Yet, these same characteristics may favor the development of capillary- and surface-tension-based approaches envisioned as part of an ultimate microgravity-compatible BRIC design. In addition, preliminary feasibility testing of the BRIC pre-prototype confirmed that high rates of water recovery, up to 98% of the available brine water, may be possible while still removing the majority of the brine contaminants from the influent brine stream. These and other observations from testing are reported.

  18. Modifying Si-based consolidants through the addition of colloidal nano-particles

    NASA Astrophysics Data System (ADS)

    Ksinopoulou, E.; Bakolas, A.; Moropoulou, A.

    2016-04-01

    The modification of silicon-based stone consolidants has been the subject of many scientific studies aiming to overcome the commonly reported drawbacks of these materials, such as the tendency to shrink and crack during drying. The addition of nano-particle dispersions into silica matrix has been found to enhance their effectiveness in several ways. Objective of the current research was to study the preparation of particle-modified consolidants (PMC), consisting of an ethyl silicate matrix (TEOS) loaded with colloidal silica (SiO2) nano-particles and oxide titania (TiO2) particles. The effect of the polyacrylic acid on the dispersion stability was also investigated, by varying its concentration into PMC samples. The prepared materials were allowed to dry in two different relative humidity environments and then evaluated based on their stability in the sol phase, the aggregation sizes, determined through dynamic light scattering, the % solids content and their morphological characteristics, observed via scanning electron microscopy (SEM-EDAX). Mercury intrusion porosimetry was also applied to investigate the microstructural characteristics and differences between the prepared consolidants. Significant role in the final form of the material is played by both the initial molar ratios in the mixtures, as well as the conditions where the drying and aging takes place. Based on the results, the three-component PMCs appear to be promising in stone consolidation, as they show a reduction in cracking and shrinkage during drying and a more porous network, compared with the siliceous material, or the two-component TEOS-SiO2 formulation.

  19. Impact of saccharides on the drying kinetics of agarose gels measured by in-situ interferometry

    NASA Astrophysics Data System (ADS)

    Mao, Bosi; Divoux, Thibaut; Snabre, Patrick

    2017-01-01

    Agarose gels are viscoelastic soft solids that display a porous microstructure filled with water at 90% w/w or more. Despite an extensive use in food industry and microbiology, little is known about the drying kinetics of such squishy solids, which suffers from a lack of time-resolved local measurements. Moreover, only scattered empirical observations are available on the role of the gel composition on the drying kinetics. Here we study by in-situ interferometry the drying of agarose gels of various compositions cast in Petri dishes. The gel thinning is associated with the displacement of interference fringes that are analyzed using an efficient spatiotemporal filtering method, which allows us to assess local thinning rates as low as 10 nm/s with high accuracy. The gel thinning rate measured at the center of the dish appears as a robust observable to quantify the role of additives on the gel drying kinetics and compare the drying speed of agarose gels loaded with various non-gelling saccharides of increasing molecular weights. Our work shows that saccharides systematically decrease the agarose gel thinning rate up to a factor two, and exemplifies interferometry as a powerful tool to quantify the impact of additives on the drying kinetics of polymer gels.

  20. Fluidization and drying of biomass particles in a vibrating fluidized bed with pulsed gas flow

    DOE PAGES

    Jia, Dening; Cathary, Océane; Peng, Jianghong; ...

    2015-10-01

    Fluidization of biomass particles in the absence of inert bed materials has been tested in a pulsed fluidized bed with vibration, with the pulsation frequency ranging from 033 to 6.67 Hz. Intermittent fluidization at 033 Hz and apparently 'normal' fluidization at 6.67 Hz with regular bubble patterns were observed. Pulsation has proven to be effective in overcoming the bridging of irregular biomass particles induced by strong inter-particle forces. The vibration is only effective when the pulsation is inadequate, either at too low a frequency or too low in amplitude. We dried biomass in order to quantify the effectiveness of gasmore » pulsation for fluidized bed dryers and torrefiers in terms of gas-solid contact efficiency and heat and mass transfer rates. Furthermore, the effects of gas flow rate, bed temperature, pulsation frequency and vibration intensity on drying performance have been systematically investigated. While higher temperature and gas flow rate are favored in drying, there exists an optimal range of pulsation frequency between 0.75 Hz and 1.5 Hz where gas-solid contact is enhanced in both the constant rate drying and falling rate drying periods.« less

  1. Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency.

    PubMed

    Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P

    2018-02-01

    Drug nanosuspension is one of the established methods to improve the bioavailability of poorly soluble drugs. Drug physical properties aspect (morphology, solid state, starting size et al) is a critical parameter determining the production efficiency. Some drug modification approaches such as spray-drying were proved to improve the millability of drug powders. However, the mechanism behind those improved performances is unclear. This study is to systematically investigate the influence of those physical properties. Five different APIs (active pharmaceutical ingredients) with different millabilities, i.e. resveratrol, hesperetin, glibenclamide, rutin, and quercetin, were processed by standard high pressure homogenization (HPH), wet bead milling (WBM), and a combinative method of spray-drying and HPH. Smaller starting sizes of certain APIs could accelerate the particle size reduction velocity during both HPH and WBM processes. Spherical particles were observed for almost all spray-dried powders (except spray-dried hesperetin) after spray-drying. The crystallinity of some spray-dried samples such as rutin and glibenclamide became much lower than their corresponding unmodified powders. Almost all spray-dried drug powders after HPH processes could lead to smaller nanocrystal particle size than unmodified APIs. The modified microstructure instead of solid state after spray-drying explained the potential reason for improved nanosizing efficiency. In addition, the contribution of starting size on the production efficiency was also critical according to both HPH and WBM results.

  2. Physical Properties and Effect in a Battery of Safety Pharmacology Models for Three Structurally Distinct Enteric Polymers Employed as Spray-Dried Dispersion Carriers

    PubMed Central

    Fryer, Ryan M.; Patel, Mita; Zhang, Xiaomei; Baum-Kroker, Katja S.; Muthukumarana, Akalushi; Linehan, Brian; Tseng, Yin-Chao

    2016-01-01

    Establishing a wide therapeutic index (TI) for pre-clinical safety is important during lead optimization (LO) in research, prior to clinical development, although is often limited by a molecules physiochemical characteristics. Recent advances in the application of the innovative vibrating mesh spray-drying technology to prepare amorphous solid dispersions may offer an opportunity to achieve high plasma concentrations of poorly soluble NCEs to enable testing and establishment of a wide TI in safety pharmacology studies. While some of the amorphous solid dispersion carriers are generally recognized as safe for clinical use, whether they are sufficiently benign to enable in vivo pharmacology studies has not been sufficiently demonstrated. Thus, the physical properties, and effect in a battery of in vivo safety pharmacology models, were assessed in three classes of polymers employed as spray-dried dispersion carriers. The polymers (HPMC-AS, Eudragit, PVAP) displayed low affinity with acetone/methanol, suitable for solvent-based spray drying. The water sorption of the polymers was moderate, and the degree of hysteresis of HPMC-AS was smaller than Eudragit and PVAP indicating the intermolecular interaction of water-cellulose molecules is weaker than water-acrylate or water-polyvinyl molecules. The polymer particles were well-suspended without aggregation with a mean particle size less than 3 μm in an aqueous vehicle. When tested in conscious Wistar Han rats in safety pharmacology models (n = 6–8/dose/polymer) investigating effects on CNS, gastrointestinal, and cardiovascular function, no liabilities were identified at any dose tested (30–300 mg/kg PO, suspension). In brief, the polymers had no effect in a modified Irwin test that included observational and evoked endpoints related to stereotypies, excitation, sedation, pain/anesthesia, autonomic balance, reflexes, and others. No effect of the polymers on gastric emptying or intestinal transit was observed when measured using a barium sulfate tracer material. Finally, in telemetry-instrumented rats the polymers had no effect on acute or 24-h mean blood pressure and heart rate values at doses up to 300 mg/kg. Thus, the properties of the three enteric polymers are appropriate as spray-dried dispersion carriers and were benign in a battery of safety pharmacology studies, demonstrating their applicability to enable in vivo safety pharmacology profiling of poorly soluble molecules during LO. PMID:27790142

  3. Multivariate optimization of headspace trap for furan and furfural simultaneous determination in sponge cake.

    PubMed

    Cepeda-Vázquez, Mayela; Blumenthal, David; Camel, Valérie; Rega, Barbara

    2017-03-01

    Furan, a possibly carcinogenic compound to humans, and furfural, a naturally occurring volatile contributing to aroma, can be both found in thermally treated foods. These process-induced compounds, formed by close reaction pathways, play an important role as markers of food safety and quality. A method capable of simultaneously quantifying both molecules is thus highly relevant for developing mitigation strategies and preserving the sensory properties of food at the same time. We have developed a unique reliable and sensitive headspace trap (HS trap) extraction method coupled to GC-MS for the simultaneous quantification of furan and furfural in a solid processed food (sponge cake). HS Trap extraction has been optimized using an optimal design of experiments (O-DOE) approach, considering four instrumental and two sample preparation variables, as well as a blocking factor identified during preliminary assays. Multicriteria and multiple response optimization was performed based on a desirability function, yielding the following conditions: thermostatting temperature, 65°C; thermostatting time, 15min; number of pressurization cycles, 4; dry purge time, 0.9min; water / sample amount ratio (dry basis), 16; and total amount (water + sample amount, dry basis), 10g. The performances of the optimized method were also assessed: repeatability (RSD: ≤3.3% for furan and ≤2.6% for furfural), intermediate precision (RSD: 4.0% for furan and 4.3% for furfural), linearity (R 2 : 0.9957 for furan and 0.9996 for furfural), LOD (0.50ng furan g sample dry basis -1 and 10.2ng furfural g sample dry basis -1 ), LOQ (0.99ng furan g sample dry basis -1 and 41.1ng furfural g sample dry basis -1 ). Matrix effect was observed mainly for furan. Finally, the optimized method was applied to other sponge cakes with different matrix characteristics and levels of analytes. Copyright © 2016. Published by Elsevier B.V.

  4. Microencapsulation of menhaden fish oil containing soluble rice bran fiber using spray drying technology.

    PubMed

    Wan, Yuting; Bankston, Joseph David; Bechtel, Peter J; Sathivel, Subramaniam

    2011-05-01

    Emulsion (EFMO) containing purified menhaden oil (PMO) and soluble rice bran fiber (SRBF) was dried in a pilot scale spray dryer and produced microencapsulated PMO with SRBF (MFMO). EFMO had well isolated spherical droplets with the size of 1 to 10 μm and showed pseudoplastic fluid and viscoelastic characteristics. EFMO had lower lipid oxidation than the emulsion containing PMO without SRBF when both emulsions were stored at 20 and 40 °C for 88 h, which indicated that the SRBF reduced the lipid oxidation in the EFMO. The estimated MFMO production rate (3.45 × 10(-5) kg dry solids/s) was higher than the actual production rate (2.31 × 10(-5) kg dry solids/s). The energy required to spray dry the EFMO was 12232 kJ/kg of emulsion. EPA and DHA contents of MFMO were 11.52% and 4.51%, respectively. The particle size of 90% MFMO ranged from 8 to 62 μm, and the volume-length diameter of MFMO was 28.5 μm. © 2011 Institute of Food Technologists®

  5. Osmotic dehydration of Braeburn variety apples in the production of sustainable food products

    NASA Astrophysics Data System (ADS)

    Ciurzyńska, Agnieszka; Cichowska, Joanna; Kowalska, Hanna; Czajkowska, Kinga; Lenart, Andrzej

    2018-01-01

    The aim of this work was to investigate the effects of osmotic dehydration conditions on the properties of osmotically pre-treated dried apples. The scope of research included analysing the most important mass exchange coefficients, i.e. water loss, solid gain, reduced water content and water activity, as well as colour changes of the obtained dried product. In the study, apples were osmotically dehydrated in one of two 60% solutions: sucrose or sucrose with an addition of chokeberry juice concentrate, for 30 and 120 min, in temperatures of 40 and 60°C. Ultrasound was also used during the first 30 min of the dehydration process. After osmotic pre-treatment, apples were subjected to innovative convective drying with the puffing effect, and to freeze-drying. Temperature and dehydration time increased the effectiveness of mass exchange during osmotic dehydration. The addition of chokeberry juice concentrate to standard sucrose solution and the use of ultrasound did not change the value of solid gain and reduced water content. Water activity of the dried apple tissue was not significantly changed after osmotic dehydration, while changes in colour were significant.

  6. Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples.

    PubMed

    Dalmau, Maria Esperanza; Bornhorst, Gail M; Eim, Valeria; Rosselló, Carmen; Simal, Susana

    2017-01-15

    The influence of processing (freezing at -196°C in liquid N2, FN sample; freeze-drying at -50°C and 30Pa, FD sample; and convective drying at 60°C and 2m/s, CD sample) on apple (var. Granny Smith) behavior during in vitro gastric digestion was investigated. Dried apples (FD and CD samples) were rehydrated prior to digestion. Changes in carbohydrate composition, moisture, soluble solids, acidity, total polyphenol content (TPC), and antioxidant activity (AA) of apple samples were measured at different times during digestion. Processing resulted in disruption of the cellular structure during digestion, as observed by scanning electron microscopy, light microscopy, and changes in carbohydrate composition. Moisture content increased (6-11% dmo), while soluble solids (55-78% dmo), acidity (44-72% dmo), total polyphenol content (30-61% dmo), and antioxidant activity (41-87%) decreased in all samples after digestion. Mathematical models (Weibull and exponential models) were used to better evaluate the influence of processing on apple behavior during gastric digestion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste.

    PubMed

    Zhang, Y; Banks, C J

    2013-02-01

    Particle size may significantly affect the speed and stability of anaerobic digestion, and matching the choice of particle size reduction equipment to digester type can thus determine the success or failure of the process. In the current research the organic fraction of municipal solid waste was processed using a combination of a shear shredder, rotary cutter and wet macerator to produce streams with different particle size distributions. The pre-processed waste was used in trials in semi-continuous 'wet' and 'dry' digesters at organic loading rate (OLR) up to 6kg volatile solids (VS) m(-3)day(-1). The results indicated that while difference in the particle size distribution did not change the specific biogas yield, the digester performance was affected. In the 'dry' digesters the finer particle size led to acidification and ultimately to process failure at the highest OLR. In 'wet' digestion a fine particle size led to severe foaming and the process could not be operated above 5kgVSm(-3)day(-1). Although the trial was not designed as a direct comparison between 'wet' and 'dry' digestion, the specific biogas yield of the 'dry' digesters was 90% of that produced by 'wet' digesters fed on the same waste at the same OLR. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Air-drying beds reduce the quantities of antibiotic resistance genes and class 1 integrons in residual municipal wastewater solids.

    PubMed

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2013-09-03

    This study investigated whether air-drying beds reduce antibiotic resistance gene (ARG) concentrations in residual municipal wastewater solids. Three laboratory-scale drying beds were operated for a period of nearly 100 days. Real-time PCR was used to quantify 16S rRNA genes, 16S rRNA genes specific to fecal bacteria (AllBac) and human fecal bacteria (HF183), the integrase gene of class 1 integrons (intI1), and five ARGs representing a cross-section of antibiotic classes and resistance mechanisms (erm(B), sul1, tet(A), tet(W), and tet(X)). Air-drying beds were capable of reducing all gene target concentrations by 1 to 5 orders of magnitude, and the nature of this reduction was consistent with both a net decrease in the number of bacterial cells and a lack of selection within the microbial community. Half-lives varied between 1.5 d (HF183) and 5.4 d (tet(X)) during the first 20 d of treatment. After the first 20 d of treatment, however, half-lives varied between 8.6 d (tet(X)) and 19.3 d (AllBac), and 16S rRNA gene, intI1, and sul1 concentrations did not change (P > 0.05). These results demonstrate that air-drying beds can reduce ARG and intI1 concentrations in residual municipal wastewater solids within timeframes typical of operating practices.

  9. 40 CFR Table 12 to Subpart Ddddd... - Alternative Emission Limits for New or Reconstructed Boilers and Process Heaters That Commenced...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .../solid fossil fuels on an annual heat input basis a. Particulate Matter 0.008 lb per MMBtu of heat input... all subcategories designed to burn solid fuel that combust at least 10 percent coal/solid fossil fuels.../solid fossil fuel a. CO 90 ppm by volume on a dry basis corrected to 3 percent oxygen 1 hr minimum...

  10. 40 CFR Table 12 to Subpart Ddddd... - Alternative Emission Limits for New or Reconstructed Boilers and Process Heaters That Commenced...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../solid fossil fuels on an annual heat input basis a. Particulate Matter 0.008 lb per MMBtu of heat input... all subcategories designed to burn solid fuel that combust at least 10 percent coal/solid fossil fuels.../solid fossil fuel a. CO 90 ppm by volume on a dry basis corrected to 3 percent oxygen 1 hr minimum...

  11. Inactivation of Indigenous Viruses in Raw Sludge by Air Drying

    PubMed Central

    Brashear, David A.; Ward, Richard L.

    1983-01-01

    Air drying of raw sludge caused inactivation of indigenous viruses. A gradual loss of infectivity occurred with the loss of water until the solids content reached about 80%. A more rapid decline of viral infectivity occurred with further dewatering. PMID:6309080

  12. Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste.

    PubMed

    Liotta, Flavia; Chatellier, Patrice; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

    2015-01-01

    The role of total solids (TS) content in anaerobic digestion of selected complex organic matter, e.g. rice straw and food waste, was investigated. A range of TS from wet (4.5%) to dry (23%) was evaluated. A modified version of the Anaerobic Digestion Model No.1 for a complex organic substrate is proposed to take into account the effect of the TS content on anaerobic digestion. A linear function that correlates the kinetic constants of three specific processes (i.e. disintegration, acetate and propionate up-take) was included in the model. Results of biomethanation and volatile fatty acids production tests were used to calibrate the proposed model. Model simulations showed a good agreement between numerical and observed data.

  13. Method of making a functionally graded material

    DOEpatents

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.; Moorhead, Arthur J.

    2002-01-01

    A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  14. Pretreatment of dried distillers grains with solubles by soaking in aqueous ammonia and subsequent enzymatic/dilute acid hydrolysis to produce fermentable sugars

    USDA-ARS?s Scientific Manuscript database

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15% w/w NH4OH solution at a solid:liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied...

  15. Enabling safe dry cake disposal of bauxite residue by deliquoring and washing with a membrane filter press.

    PubMed

    Kinnarinen, Teemu; Lubieniecki, Boguslaw; Holliday, Lloyd; Helsto, Jaakko-Juhani; Häkkinen, Antti

    2015-03-01

    Dry cake disposal is the preferred technique for the disposal of bauxite residue, when considering environmental issues together with possible future utilisation of the solids. In order to perform dry cake disposal in an economical way, the deliquoring of the residue must be carried out efficiently, and it is also important to wash the obtained solids well to minimise the amount of soluble soda within the solids. The study presented in this article aims at detecting the most important variables influencing the deliquoring and washing of bauxite residue, performed with a horizontal membrane filter press and by determining the optimal washing conditions. The results obtained from pilot-scale experiments are evaluated by considering the properties of the solids, for instance, the residual alkali and aluminium content, as well as the consumption of wash liquid. Two different cake washing techniques, namely classic washing and channel washing, are also used and their performances compared. The results show that cake washing can be performed successfully in a horizontal membrane filter press, and significant improvements in the recovery of alkali and aluminium can be achieved compared with pressure filtration carried out without washing, or especially compared with the more traditionally used vacuum filtration. © The Author(s) 2015.

  16. Relating physico-chemical properties of frozen green peas (Pisum sativum L.) to sensory quality.

    PubMed

    Nleya, Kathleen M; Minnaar, Amanda; de Kock, Henriëtte L

    2014-03-30

    The acceptability of frozen green peas depends on their sensory quality. There is a need to relate physico-chemical parameters to sensory quality. In this research, six brands of frozen green peas representing product sold for retail and caterer's markets were purchased and subjected to descriptive sensory evaluation and physico-chemical analyses (including dry matter content, alcohol insoluble solids content, starch content, °Brix, residual peroxidase activity, size sorting, hardness using texture analysis and colour measurements) to assess and explain product quality. The sensory quality of frozen green peas, particularly texture properties, were well explained using physico-chemical methods of analysis notably alcohol insoluble solids, starch content, hardness and °Brix. Generally, retail class peas were of superior sensory quality to caterer's class peas although one caterer's brand was comparable to the retail brands. Retail class peas were sweeter, smaller, greener, more moist and more tender than the caterer's peas. Retail class peas also had higher °Brix, a(*) , hue and chroma values; lower starch, alcohol insoluble solids, dry matter content and hardness measured. The sensory quality of frozen green peas can be partially predicted by measuring physico-chemical parameters particularly °Brix and to a lesser extent hardness by texture analyser, alcohol insoluble solids, dry matter and starch content. © 2013 Society of Chemical Industry.

  17. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajeena Beevi, B., E-mail: sajeenanazer@gmail.com; Madhu, G., E-mail: profmadhugopal@gmail.com; Sahoo, Deepak Kumar, E-mail: dksahoo@gmail.com

    2015-02-15

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day{sup −1}. • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration ofmore » 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day{sup −1}.« less

  18. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    PubMed

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon ® VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon ® VA 64, Soluplus ® and Eudragit ® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon ® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon ® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  19. Improvements In solar dry kiln design

    Treesearch

    E. M. Wengert

    1971-01-01

    Interest in solar drying of lumber has increased in recent years because previous results had indicated that: Drying times are shorter and final moisture contents are lower in solar drying than in air drying; much less lumber degrade occurs in solar drying when compared to air drying; and the cost of energy is less in solar drying than in kiln drying. Work in the field...

  20. Experimental and numerical investigations on freeze-drying of porous media with prebuilt porosity

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yang, Jing; Hu, Dapeng; Pan, Yanqiu; Wang, Shihao; Chen, Guohua

    2018-05-01

    Freeze-drying of initially porous frozen material was investigated aimed at improving the process economics by reducing drying time and raising productivity. Experimental results showed that freeze-drying can be significantly enhanced by the frozen material with prebuilt porosity, and about 31% of drying time can be saved compared with the conventionally solid frozen material under the tested operating conditions. A multiphase transport model was formulated based on the local mass non-equilibrium assumption. Numerical results showed excellent agreements between measured and predicted drying curves. Analyses of saturation and temperature profiles displayed that volumetric sublimation-desorption can occur for the initially porous frozen material.

  1. Reducing cassava toxicity by heap-fermentation in Uganda.

    PubMed

    Essers, A J; Ebong, C; van der Grift, R M; Nout, M J; Otim-Nape, W; Rosling, H

    1995-05-01

    Processing of cassava roots by the Alur tribe in Uganda includes a stage of solid substrate fermentation in heaps. Changes in cyanogen levels during the process, microflora involved, and protein levels, amino acid patterns and mycotoxin contamination of the final products were studied. Processing was monitored at six rural households and repeated at laboratory site, comparing it to sun-drying. Flour samples from rural households were analysed for residual cyanogens, mutagenicity, cytotoxicity and aflatoxins. Mean (+/- SD) total cyanogen levels in flours collected at rural households were 20.3 (+/- 16.8) mg CN equivalents kg-1 dry weight in 1990 (n = 23) and 65.7 (+/- 56.7) in 1992 (n = 21). Mean (+/- SD) levels of cyanohydrins plus HCN were 9.1 (+/- 8.7) in the 1992 flours. Total cyanogen levels in the village monitored batches were reduced considerably by heap-fermentation from 436.3 (+/- 140.7) to 20.4 (+/- 14.0) mg CN equivalents kg-1 dry weight cassava. Residual cyanogen levels were positively correlated with particle size of the resulting crumbs. Heap-fermentation was significantly more effective in reducing cyanogen levels than sun-drying alone, but did not always result in innocuous levels of of cyanogens. Dominant mycelial growth was from the fungi Neurospora sitophila, Geotrichum candidum and Rhizopus oryzae. No mutagenicity, cytotoxicity nor aflatoxins could be detected in the flours. Protein quantity and quality were not significantly reduced. Cassava gel viscosity pattern was modified to the consumers' preference by this method. As the removal of cyanogens was more efficient and we found no new obvious health risk, heap-fermentation can be regarded as an improvement compared to sun-drying alone in areas where cassava varieties with higher cyanogen levels prevail, but we recommend optimisation of the process for ensuring still safer products.

  2. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality.

    PubMed

    Korang-Yeboah, Maxwell; Srinivasan, Charudharshini; Siddiqui, Akhtar; Awotwe-Otoo, David; Cruz, Celia N; Muhammad, Ashraf

    2018-01-01

    Optical coherence tomography freeze-drying microscopy (OCT-FDM) is a novel technique that allows the three-dimensional imaging of a drug product during the entire lyophilization process. OCT-FDM consists of a single-vial freeze dryer (SVFD) affixed with an optical coherence tomography (OCT) imaging system. Unlike the conventional techniques, such as modulated differential scanning calorimetry (mDSC) and light transmission freeze-drying microscopy, used for predicting the product collapse temperature (Tc), the OCT-FDM approach seeks to mimic the actual product and process conditions during the lyophilization process. However, there is limited understanding on the application of this emerging technique to the design of the lyophilization process. In this study, we investigated the suitability of OCT-FDM technique in designing a lyophilization process. Moreover, we compared the product quality attributes of the resulting lyophilized product manufactured using Tc, a critical process control parameter, as determined by OCT-FDM versus as estimated by mDSC. OCT-FDM analysis revealed the absence of collapse even for the low protein concentration (5 mg/ml) and low solid content formulation (1%w/v) studied. This was confirmed by lab scale lyophilization. In addition, lyophilization cycles designed using Tc values obtained from OCT-FDM were more efficient with higher sublimation rate and mass flux than the conventional cycles, since drying was conducted at higher shelf temperature. Finally, the quality attributes of the products lyophilized using Tc determined by OCT-FDM and mDSC were similar, and product shrinkage and cracks were observed in all the batches of freeze-dried products irrespective of the technique employed in predicting Tc.

  3. Effective moisture diffusivity and activation energy of rambutan seed under different drying methods to promote storage stability

    NASA Astrophysics Data System (ADS)

    Ahmad, So'bah; Shamsul Anuar, Mohd; Saleena Taip, Farah; Shamsudin, Rosnah; M, Siti Roha A.

    2017-05-01

    The effects of two drying methods, oven and microwave drying on the effective moisture diffusivity and activation energy of rambutan seed were studied. Effective moisture diffusivity and activation energy are the main indicators used for moisture movement within the material. Hence, it is beneficial to determine an appropriate drying method to attain a final moisture content of rambutan seed that potentially could be used as secondary sources in the industry. An appropriate final moisture content will provide better storage stability that can extend the lifespan of the rambutan seed. The rambutan seeds were dried with two drying methods (oven and microwave) at two level of the process variables (oven temperature; 40°C and 60°C and microwave power; 250W and 1000W) at constant initial moisture contents. The result showed that a higher value of effective moisture diffusivity and less activation energy were observed in microwave drying compared to oven drying. This finding portrays microwave drying expedites the moisture removal to achieve the required final moisture content and the most appropriate drying method for longer storage stability for rambutan seed. With respect to the process variables; higher oven temperatures and lower microwave powers also exhibit similar trends. Hopefully, this study would provide a baseline data to determine an appropriate drying method for longer storage period for turning waste to by-products.

  4. Physicochemical characterization and water vapor sorption of organic solution advanced spray-dried inhalable trehalose microparticles and nanoparticles for targeted dry powder pulmonary inhalation delivery.

    PubMed

    Li, Xiaojian; Mansour, Heidi M

    2011-12-01

    Novel advanced spray-dried inhalable trehalose microparticulate/nanoparticulate powders with low water content were successfully produced by organic solution advanced spray drying from dilute solution under various spray-drying conditions. Laser diffraction was used to determine the volumetric particle size and size distribution. Particle morphology and surface morphology was imaged and examined by scanning electron microscopy. Hot-stage microscopy was used to visualize the presence/absence of birefringency before and following particle engineering design pharmaceutical processing, as well as phase transition behavior upon heating. Water content in the solid state was quantified by Karl Fisher (KF) coulometric titration. Solid-state phase transitions and degree of molecular order were examined by differential scanning calorimetry (DSC) and powder X-ray diffraction, respectively. Scanning electron microscopy showed a correlation between particle morphology, surface morphology, and spray drying pump rate. All advanced spray-dried microparticulate/nanoparticulate trehalose powders were in the respirable size range and exhibited a unimodal distribution. All spray-dried powders had very low water content, as quantified by KF. The absence of crystallinity in spray-dried particles was reflected in the powder X-ray diffractograms and confirmed by thermal analysis. DSC thermal analysis indicated that the novel advanced spray-dried inhalable trehalose microparticles and nanoparticles exhibited a clear glass transition (T(g)). This is consistent with the formation of the amorphous glassy state. Spray-dried amorphous glassy trehalose inhalable microparticles and nanoparticles exhibited vapor-induced (lyotropic) phase transitions with varying levels of relative humidity as measured by gravimetric vapor sorption at 25°C and 37°C.

  5. Improvement of dry matter digestibility of water hyacinth by solid state fermentation using white rot fungi.

    PubMed

    Mukherjee, R; Ghosh, M; Nandi, B

    2004-08-01

    Feeding value of water hyacinth biomass colonized by three species of white rot fungi during solid-state fermentation was investigated. All three organisms proved to be efficient degraders and enhanced dry matter digestibility. Loss of organic matter was maximum (23.6+/-0.1% dry wt) after 48 days by P. ostreatus. C. indica showed maximum cellulose degradation (18.5+/-0.1% dry wt) than other two fungi after 48 days of incubation. In all cases, an extensive removal of hemicellulose at the initial growth period and a delayed degradation of lignin were observed. Hemicellulolysis was maximum (46.3+/-0.1% dry wt) by C. indica, but delignification (14.2+/-0.2% dry wt) by P. sajor-caju after 48 days. The amount of reducing sugar in the degraded biomass decreased at early stages, but increased as degradation progressed in all three cases (maximum 1.1+/-0.05% dry wt after 48 days by C. indica). Soluble nitrogen content increased only during 16-32 days of incubation (highest 1.1+/-0.1% dry wt after 32 days by P. sajor-caju). Crude protein of the bioconverted biomass increased gradually up to 32 days but decreased thereafter (maximum 10.3+/-0.1% dry wt after 32 days by P. sajor - caju). Per cent change in in vitro dry matter digestibility of degraded substrates enhanced gradually after 8 days and reached maximum after 32 days but thereafter decreased (highest + 20.4+/-0.3% dry wt by P. sajor-caju). The results demonstrated the efficient degrading capacity of the test fungi and their potential use in conversion of water hyacinth biomass into mycoprotein-rich ruminant feed, more so by P. sajor-caju.

  6. Dry entrapment of enzymes by epoxy or polyester resins hardened on different solid supports.

    PubMed

    Barig, Susann; Funke, Andreas; Merseburg, Andrea; Schnitzlein, Klaus; Stahmann, K-Peter

    2014-06-10

    Embedding of enzymes was performed with epoxy or polyester resin by mixing in a dried enzyme preparation before polymerization was started. This fast and low-cost immobilization method produced enzymatically active layers on different solid supports. As model enzymes the well-characterized Thermomyces lanuginosus lipase and a new threonine aldolase from Ashbya gossypii were used. It was shown that T. lanuginosus lipase recombinantly expressed in Aspergillus oryzae is a monomeric enzyme with a molecular mass of 34kDa, while A. gossypii threonine aldolase expressed in Escherichia coli is a pyridoxal-5'-phosphate binding homotetramer with a mass of 180kDa. The enzymes were used freeze dried, in four different preparations: freely diffusing, adsorbed on octyl sepharose, as well as cross-linked enzyme aggregates or as suspensions in organic solvent. They were mixed with standard two-component resins and prepared as layers on solid supports made of different materials e.g. metal, glass, polyester. Polymerization led to encapsulated enzyme preparations showing activities comparable to literature values. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Low VOC Barrier Coating for Industrial Maintenance

    DTIC Science & Technology

    2012-09-01

    VOC Total Solids (wt) Total Solids (volume) Percent Pigment Stormer Viscosity Brookfield Viscosity Pot Life Sag Resistance Theoretical...Percent Pigment – Stormer Viscosity – Brookfield Viscosity – Pot Life – Sag Resistance – Theoretical Coverage – Drying Times – Mixing Ratio

  8. 40 CFR 721.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... providing saleable goods or a service to consumers (e.g., a commercial dry cleaning establishment or..., hoods, chemical goggles, face splash shields, or equivalent eye protection, and various types of respirators. Barrier creams are not included in this definition. Powder or dry solid form means a state where...

  9. FLY ASH RECYCLE IN DRY SCRUBBING

    EPA Science Inventory

    The paper describes the effects of fly ash recycle in dry scrubbing. (Previous workers have shown that the recycle of product solids improves the utilization of slaked lime--Ca(OH)2--for sulfur dioxide (SO2) removal by spray dryers with bag filters.) In laboratory-scale experimen...

  10. [Solid-state fermentation with Penicillium sp. PT95 for carotenoid production].

    PubMed

    Han, J; Xu, J

    1999-04-01

    A preliminary study on solid-state fermentation (SSF) with Penicillium sp PT95 for carotenoid production was performed. The results showed that the production of carotenoid in sclerotia of PT95 was more efficient in corn meal medium than in either wheat bran medium or cottonseed hull medium. Addition of nitrogen and carbon sources as well as vegetable oil to media was required for increasing the dry weight of sclerotia and carotenoid yield. Among several tested compounds for nitrogen and carbon sources, sodium nitrate and maltose were the best. Through orthogonal experiments, the optimum culture medium was obtained by supplement of NaNO3 3g, maltose 10 g, soybean oil 2.5 g to per liter of salt solution. Under the optimum culture conditions, the sclerotia dry weight increased from 5.36 g to 9.70 g per 100 g dry substrate, the carotenoid yield from 2149 micrograms to 5260 micrograms per 100 g dry substrate, the proportion of beta-carotene in carotenoids from 61.4% to 71.3%.

  11. Key variables analysis of a novel continuous biodrying process for drying mixed sludge.

    PubMed

    Navaee-Ardeh, Shahram; Bertrand, François; Stuart, Paul R

    2010-05-01

    A novel continuous biodrying process has been developed whose goal is to increase the dry solids content of the sludge to economic levels rendering it suitable for a safe and economic combustion operation in a biomass boiler. The sludge drying rates are enhanced by the metabolic bioheat produced in the matrix of mixed sludge. The goal of this study was to systematically analyze the continuous biodrying reactor. By performing a variable analysis, it was found that the outlet relative humidity profile was the key variable in the biodrying reactor. The influence of different outlet relative humidity profiles was then evaluated using biodrying efficiency index. It was found that by maintaining the air outlet relative humidity profile at 85/85/96/96% in the four compartments of the reactor, the highest biodrying efficiency index can be achieved, while economic dry solids level (>45%w/w) are guaranteed. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  12. 7 CFR 989.257 - Final free and reserve percentages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (sun-dried) Seedless 70 30 2005-06 Natural (sun-dried) Seedless 82.50 17.50 2006-07 Natural (sun-dried) Seedless 90 10 2007-08 Natural (sun-dried) Seedless 85 15 2008-09 Natural (sun-dried) Seedless 87 13 (b...

  13. The effects of stopper drying on moisture levels of Haemophilus influenzae conjugate vaccine.

    PubMed

    Earle, J P; Bennett, P S; Larson, K A; Shaw, R

    1992-01-01

    The discovery and development of increasingly potent biological and pharmaceutical products have resulted in very small amounts of the active ingredient in final product formulations. Pediatric vaccines with sub-milliliter dose sizes pose unique problems for final formulation and lyophilization, especially when stabilizers used are present in small amounts or are hygroscopic. Lyophilized Haemophilus b Conjugate Vaccine (Meningococcal Protein Conjugate) (PedvaxHIB) has a plug weight of about 3 mg in its final formulation. Microgram amounts of water absorbed by the lyophilized plug can cause drastic changes in the moisture content of the product. In a small percentage of the final containers absorption of moisture by the vaccine may cause aesthetic defects (plug collapse) over time, or at elevated temperatures. This paper describes drying methods developed to control residual moisture levels in stoppers used as final container closures. Results on the moisture stability of the product capped with dried and non-dried stoppers are presented.

  14. Human life support during interplanetary travel and domicile. V - Mars expedition technology trade study for solid waste management

    NASA Technical Reports Server (NTRS)

    Ferrall, Joe; Rohatgi, Naresh K.; Seshan, P. K.

    1992-01-01

    A model has been developed for NASA to quantitatively compare and select life support systems and technology options. The model consists of a modular, top-down hierarchical breakdown of the life support system into subsystems, and further breakdown of subsystems into functional elements representing individual processing technologies. This paper includes the technology trades for a Mars mission, using solid waste treatment technologies to recover water from selected liquid and solid waste streams. Technologies include freeze drying, thermal drying, wet oxidation, combustion, and supercritical-water oxidation. The use of these technologies does not have any significant advantages with respect to weight; however, significant power penalties are incurred. A benefit is the ability to convert hazardous waste into a useful resource, namely water.

  15. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Hoon; Oh, Sae-Eun, E-mail: saeun@hanbat.ac.kr

    2011-09-15

    Highlights: > High-solids (dry) anaerobic digestion is attracting a lot of attention these days. > One reactor was fed with food waste (FW) and paper waste. > Maximum biogas production rate of 5.0 m{sup 3}/m{sup 3}/d was achieved at HRT 40 d and 40% TS. > The other reactor was fed with FW and livestock waste (LW). > Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO{sub 2} emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) ismore » attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH{sub 4} production yield (MPY) and VS reduction achieved in this condition were 5.0 m{sup 3}/m{sup 3}/d, 0.25 m{sup 3} CH{sub 4}/g COD{sub added}, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m{sup 3}/m{sup 3}/d, MPY of 0.26 m{sup 3} CH{sub 4}/g COD{sub added}, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia inhibition. The performances in these two reactors were comparable to the ones achieved in the conventional wet digestion and thermophilic dry digestion processes.« less

  16. Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor.

    PubMed

    Oliveira, Felisbela; Salgado, José Manuel; Abrunhosa, Luís; Pérez-Rodríguez, Noelia; Domínguez, José M; Venâncio, Armando; Belo, Isabel

    2017-07-01

    Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this work was to maximize the production of Aspergillus ibericus lipase under SSF of olive pomace (OP) and wheat bran (WB), evaluating the effect on lipase production of C/N ratio, lipids, phenols, content of sugars of substrates and nitrogen source addition. Moreover, the implementation of the SSF process in a packed-bed bioreactor and the improvement of lipase extraction conditions were assessed. Low C/N ratios and high content of lipids led to maximum lipase production. Optimum SSF conditions were achieved with a C/N mass ratio of 25.2 and 10.2% (w/w) lipids in substrate, by the mixture of OP:WB (1:1) and supplemented with 1.33% (w/w) (NH 4 ) 2 SO 4 . Studies in a packed-bed bioreactor showed that the lower aeration rates tested prevented substrate dehydration, improving lipase production. In this work, the important role of Triton X-100 on lipase extraction from the fermented solid substrate has been shown. A final lipase activity of 223 ± 5 U g -1 (dry basis) was obtained after 7 days of fermentation.

  17. Streptomyces sp. TEM 33 possesses high lipolytic activity in solid-state fermentation in comparison with submerged fermentation.

    PubMed

    Cadirci, Bilge Hilal; Yasa, Ihsan; Kocyigit, Ali

    2016-01-01

    Solid-state fermentation (SSF) is a bioprocess that doesn't need an excess of free water, and it offers potential benefits for microbial cultivation for bioprocesses and product development. In comparing the antibiotic production, few detailed reports could be found with lipolytic enzyme production by Streptomycetes in SSF. Taking this knowledge into consideration, we prefer to purify Actinomycetes species as a new source for lipase production. The lipase-producing strain Streptomyces sp. TEM 33 was isolated from soil and lipase production was managed by solid-state fermentation (SSF) in comparison with submerged fermentation (SmF). Bioprocess-affecting factors like initial moisture content, incubation time, and various carbon and nitrogen additives and the other enzymes secreted into the media were optimized. Lipase activity was measured as 1.74 ± 0.0005 U/g dry substrate (gds) by the p-nitrophenylpalmitate (pNPP) method on day 6 of fermentation with 71.43% final substrate moisture content. In order to understand the metabolic priority in SSF, cellulase and xylanase activity of Streptomyces sp. TEM33 was also measured. The microorganism degrades the wheat bran to its usable form by excreting cellulases and xylanases; then it secretes the lipase that is necessary for degrading the oil in the medium.

  18. Optimization of the Büchi B-90 spray drying process using central composite design for preparation of solid dispersions.

    PubMed

    Gu, Bing; Linehan, Brian; Tseng, Yin-Chao

    2015-08-01

    A central composite design approach was applied to study the effect of polymer concentration, inlet temperature and air flow rate on the spray drying process of the Büchi B-90 nano spray dryer (B-90). Hypromellose acetate succinate-LF was used for the Design of Experiment (DoE) study. Statistically significant models to predict the yield, spray rate, and drying efficiency were generated from the study. The spray drying conditions were optimized according to the models to maximize the yield and efficiency of the process. The models were further validated using a poorly water-soluble investigational compound (BI064) from Boehringer Ingelheim Pharmaceuticals. The polymer/drug ratio ranged from 1/1 to 3/1w/w. The spray dried formulations were amorphous determined by differential scanning calorimetry and X-ray powder diffraction. The particle size of the spray dried formulations was 2-10 μm under polarized light microscopy. All the formulations were physically stable for at least 3h when suspended in an aqueous vehicle composed of 1% methyl cellulose. This study demonstrates that DoE is a useful tool to optimize the spray drying process, and the B-90 can be used to efficiently produce amorphous solid dispersions with a limited quantity of drug substance available during drug discovery stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Extending lactation in pasture-based dairy cows: I. Genotype and diet effect on milk and reproduction.

    PubMed

    Kolver, E S; Roche, J R; Burke, C R; Kay, J K; Aspin, P W

    2007-12-01

    The aim of this study was to test the feasibility of extended lactations in pastoral systems by using divergent dairy cow genotypes [New Zealand (NZ) or North American (NA) Holstein-Friesian (HF)] and levels of nutrition (0, 3, or 6 kg/d of concentrate dry matter). Mean calving date was July 28, 2003, and all cows were dried off by May 6, 2005. Of the 56 cows studied, 52 (93%) were milking at 500 d in milk (DIM) and 10 (18%) were milking at 650 DIM. Dietary treatments did not affect DIM (605 +/- 8.3; mean +/- SEM). Genotype by diet interactions were found for total yield of milk, protein, and milk solids (fat + protein), expressed per cow and as a percentage of body weight. Differences between genotypes were greatest at the highest level of supplementation. Compared with NZ HF, NA HF produced 35% more milk, 24% more milk fat, 25% more milk protein, and at drying off had 1.9 units less body condition score (1 to 10 scale). Annualized milk solids production, defined as production achieved during the 24-mo calving interval divided by 2 yr, was 79% of that produced in a normal 12-mo calving interval by NZ HF, compared with 94% for NA HF. Compared with NZ HF, NA HF had a similar 21-d submission rate (85%) to artificial insemination, a lower 42-d pregnancy rate (56 vs. 79%), and a higher final nonpregnancy rate (30 vs. 3%) when mated at 451 d after calving. These results show that productive lactations of up to 650 d are possible on a range of pasture-based diets, with the highest milk yields produced by NA HF supplemented with concentrates. Based on the genetics represented, milking cows for 2 yr consecutively, with calving and mating occurring every second year, may exploit the superior lactation persistency of high-yielding cows while improving reproductive performance.

  20. Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions.

    PubMed

    Sóti, Péter Lajos; Bocz, Katalin; Pataki, Hajnalka; Eke, Zsuzsanna; Farkas, Attila; Verreck, Geert; Kiss, Éva; Fekete, Pál; Vigh, Tamás; Wagner, István; Nagy, Zsombor K; Marosi, György

    2015-10-15

    Three solvent based methods: spray drying (SD), electrospinning (ES) and air-assisted electrospinning (electroblowing; EB) were used to prepare solid dispersions of itraconazole and Eudragit E. Samples with the same API/polymer ratios were prepared in order to make the three technologies comparable. The structure and morphology of solid dispersions were identified by scanning electron microscopy and solid phase analytical methods such as, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Raman chemical mapping. Moreover, the residual organic solvents of the solid products were determined by static headspace-gas chromatography/mass spectroscopy measurements and the wettability of samples was characterized by contact angle measurement. The pharmaceutical performance of the three dispersion type, evaluated by dissolution tests, proved to be very similar. According to XRPD and DSC analyses, made after the production, all the solid dispersions were free of any API crystal clusters but about 10 wt% drug crystallinity was observed after three months of storage in the case of the SD samples in contrast to the samples produced by ES and EB in which the polymer matrix preserved the API in amorphous state. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Influence of an aerobic fungus grown on solid culture on ruminal degradability and on a mixture culture of anaerobic cellulolytic bacteria.

    PubMed

    Hernández-Díaz, R; Pimentel-González, D J; Figueira, A C; Viniegra-González, G; Campos-Montiel, R G

    2010-06-01

    In this work, the effect of a solid fungal culture of Aspergillus niger (An) grown on coffee pulp on the in situ ruminal degradability (RD) of corn stover was evaluated. In addition, the effect of its extracts on the in vitro dry matter disappearance (IVDMD) and on a mixed culture of anaerobic cellulolytic bacteria (MCACB) was also investigated. The solid ferment was a crude culture of An, grown on coffee pulp. Regarding in situ RD, a significant difference (p < 0.05) was found between treatment with 200 g/day of the solid culture and control (no solid culture added) on dry matter, crude protein and neutral detergent fibre on RD. All the water extracts (pH 4, 7 and 10) enhanced IVDMD and stimulated the cellulolytic activity on a MCACB. Ultrafiltration results showed that active compounds with a molecular weight lower than 30 kDa were responsible for the effect on MCACB. Such results suggest that the effects of the solid An culture in RD are related to the presence of water soluble compounds having a molecular weight lower than 30 kDa.

  2. Enhanced viability of Lactobacillus reuteri for probiotics production in mixed solid-state fermentation in the presence of Bacillus subtilis.

    PubMed

    Zhang, Yi-Ran; Xiong, Hai-Rong; Guo, Xiao-Hua

    2014-01-01

    In order to develop a multi-microbe probiotic preparation of Lactobacillus reuteri G8-5 and Bacillus subtilis MA139 in solid-state fermentation, a series of parameters were optimized sequentially in shake flask culture. The effect of supplementation of B. subtilis MA139 as starters on the viability of L. reuteri G8-5 was also explored. The results showed that the optimized process was as follows: water content, 50 %; initial pH of diluted molasses, 6.5; inocula volume, 2 %; flask dry contents, 30∼35 g/250 g without sterilization; and fermentation time, 2 days. The multi-microbial preparations finally provided the maximum concentration of Lactobacillus of about 9.01 ± 0.15 log CFU/g and spores of Bacillus of about 10.30 ± 0.08 log CFU/g. Compared with pure fermentation of L. reuteri G8-5, significantly high viable cells, low value of pH, and reducing sugar in solid substrates were achieved in mixed fermentation in the presence of B. subtilis MA139 (P < 0.05). Meanwhile, the mixed fermentation showed the significantly higher antimicrobial activity against E. coli K88 (P < 0.05). Based on the overall results, the optimized process enhanced the production of multi-microbe probiotics in solid-state fermentation with low cost. Moreover, the viability of L. reuteri G8-5 could be significantly enhanced in the presence of B. subtilis MA139 in solid-state fermentation, which favored the production of probiotics for animal use.

  3. Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading.

    PubMed

    Qiu, Jingwen; Ma, Lunjie; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Hu, Yaodong

    2017-08-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Drying process optimization for an API solvate using heat transfer model of an agitated filter dryer.

    PubMed

    Nere, Nandkishor K; Allen, Kimberley C; Marek, James C; Bordawekar, Shailendra V

    2012-10-01

    Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time. Copyright © 2012 Wiley-Liss, Inc.

  5. Transient effects of drying creep in nanoporous solids: understanding the effects of nanoscale energy barriers

    NASA Astrophysics Data System (ADS)

    Sinko, Robert; Vandamme, Matthieu; Bažant, Zdeněk P.; Keten, Sinan

    2016-07-01

    The Pickett effect is the phenomenon of creep enhancement during transient drying. It has been observed for many nanoporous solids, including concrete, wood and Kevlar. While the existing micromechanical models can partially explain this effect, they have yet to consider nanoscale dynamic effects of water in nanopores, which are believed to be of paramount importance. Here, we examine how creep deformations in a slit pore are accelerated by the motion of water due to drying forces using coarse-grained molecular dynamics simulations. We find that the drying that drives water flow in the nanopores lowers both the activation energy of pore walls sliding past one another and the apparent viscosity of confined water molecules. This lowering can be captured with an analytical Arrhenius relationship accounting for the role of water flow in overcoming the energy barriers. Notably, we use this model and simulation results to demonstrate that the drying creep strain is not linearly dependent on the applied creep stress at the nanopore level. Our findings establish the scaling relationships that explain how the creep driving force, drying force and fluid properties are related. Thus, we establish the nanoscale origins of the Pickett effect and provide strategies for minimizing the additional displacements arising from this effect.

  6. Transient effects of drying creep in nanoporous solids: understanding the effects of nanoscale energy barriers

    PubMed Central

    Sinko, Robert; Vandamme, Matthieu; Keten, Sinan

    2016-01-01

    The Pickett effect is the phenomenon of creep enhancement during transient drying. It has been observed for many nanoporous solids, including concrete, wood and Kevlar. While the existing micromechanical models can partially explain this effect, they have yet to consider nanoscale dynamic effects of water in nanopores, which are believed to be of paramount importance. Here, we examine how creep deformations in a slit pore are accelerated by the motion of water due to drying forces using coarse-grained molecular dynamics simulations. We find that the drying that drives water flow in the nanopores lowers both the activation energy of pore walls sliding past one another and the apparent viscosity of confined water molecules. This lowering can be captured with an analytical Arrhenius relationship accounting for the role of water flow in overcoming the energy barriers. Notably, we use this model and simulation results to demonstrate that the drying creep strain is not linearly dependent on the applied creep stress at the nanopore level. Our findings establish the scaling relationships that explain how the creep driving force, drying force and fluid properties are related. Thus, we establish the nanoscale origins of the Pickett effect and provide strategies for minimizing the additional displacements arising from this effect. PMID:27493584

  7. Transient effects of drying creep in nanoporous solids: understanding the effects of nanoscale energy barriers.

    PubMed

    Sinko, Robert; Vandamme, Matthieu; Bažant, Zdeněk P; Keten, Sinan

    2016-07-01

    The Pickett effect is the phenomenon of creep enhancement during transient drying. It has been observed for many nanoporous solids, including concrete, wood and Kevlar. While the existing micromechanical models can partially explain this effect, they have yet to consider nanoscale dynamic effects of water in nanopores, which are believed to be of paramount importance. Here, we examine how creep deformations in a slit pore are accelerated by the motion of water due to drying forces using coarse-grained molecular dynamics simulations. We find that the drying that drives water flow in the nanopores lowers both the activation energy of pore walls sliding past one another and the apparent viscosity of confined water molecules. This lowering can be captured with an analytical Arrhenius relationship accounting for the role of water flow in overcoming the energy barriers. Notably, we use this model and simulation results to demonstrate that the drying creep strain is not linearly dependent on the applied creep stress at the nanopore level. Our findings establish the scaling relationships that explain how the creep driving force, drying force and fluid properties are related. Thus, we establish the nanoscale origins of the Pickett effect and provide strategies for minimizing the additional displacements arising from this effect.

  8. SEWER SEDIMENT AND CONTROL: A MANAGEMENT PRACTICES REFERENCES GUIDE

    EPA Science Inventory

    Sewer-solids sediment is one of major sources of pollutants in urban wet-weather flow (WWF) discharges that include combined-sewer overflow (CSO), separate sanitary-sewer overflow (SSO), and stormwater runoff. During low-flow, dry-weather periods, sanitary wastewater solids depo...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirrito, A.J.

    Combustion jet pumps ingest waste heat gases from power plant engines and boilers to boost their pressure for the ultimate low temperature utilization of the captured heat for heating homes, full-year hot houses, sterilization purposes, recreational hot water, absorption refrigeration and the like. Jet pump energy is sustained from the incineration of solids, liquids and gases and vapors or simply from burning fuels. This is the energy needed to transport the reaction products to the point of heat utilization and to optimize the heat transfer to that point. Sequent jet pumps raise and preserve energy levels. Crypto-steady and special jetmore » pumps increase pumping efficiency. The distribution conduit accepts fluidized solids, liquids, gases and vapors in multiphase flow. Temperature modulation and flow augmentation takes place by water injection. Macro solids such as dried sewage waste are removed by cyclone separation. Micro particles remain entrained and pass out with waste condensate just beyond each point of final heat utilization to recharge the water table. The non-condensible gases separated at this point are treated for pollution control. Further, jet pump reactions are controlled to yield fuel gas as necessary to power jet pumps or other use. In all these effects introduced sequentially, the available energy necessary to provide the flow energy, for the continuously distributed heating medium, is first extracted from fuel and fuel-like additions to the stream. As all energy, any way, finally converts to heat, which in this case is retained or recaptured in the flow, the captured heat is practically 90% available at the point of low temperature utilization. The jet pump for coal gasification is also disclosed as are examples of coal gasification and hydrogen production.« less

  10. Remediation of textile dye waste water using a white-rot fungus Bjerkandera adusta through solid-state fermentation (SSF).

    PubMed

    Robinson, Tim; Nigam, Poonam Singh

    2008-12-01

    A strict screening strategy for microorganism selection was followed employing a number of white-rot fungi for the bioremediation of textile effluent, which was generated from one Ireland-based American textile industry. Finally, one fungus Bjerkandera adusta has been investigated in depth for its ability to simultaneously degrade and enrich the nutritional quality of highly coloured textile effluent-adsorbed barley husks through solid-state fermentation (SSF). Certain important parameters such as media requirements, moisture content, protein/biomass production and enzyme activities were examined in detail. A previously optimised method of dye desorption was employed to measure the extent of dye remediation through effluent decolorisation achieved as a result of fungal activity in SSF. B. adusta was capable of decolourising a considerable concentration of the synthetic dye effluent (up to 53%) with a moisture content of 80-85%. Protein enrichment of the fermented mass was achieved to the extent of 229 g/kg dry weight initial substrate used. Lignin peroxidase and laccase were found to be the two main enzymes produced during SSF of the dye-adsorbed lignocellulosic waste residue.

  11. Effect of distributor on performance of a continuous fluidized bed dryer

    NASA Astrophysics Data System (ADS)

    Yogendrasasidhar, D.; Srinivas, G.; Pydi Setty, Y.

    2018-03-01

    Proper gas distribution is very important in fluidized bed drying in industrial practice. Improper distribution of gas may lead to non-idealities like channeling, short circuiting and accumulation which gives rise to non-uniform quality of dried product. Gas distribution depends on the distributor plate used. Gas distribution mainly depends on orifice diameter, number of orifices and opening area of the distributor plate. Small orifice diameter leads to clogging, and a large orifice diameter gives uneven distribution of gas. The present work involves experimental studies using different distributor plates and simulation studies using ASPEN PLUS steady state simulator. The effect of various parameters such as orifice diameter, number of orifices and the opening area of the distributor plate on the performance of fluidized bed dryer have been studied through simulation and experimentation. Simulations were carried out (i) with increasing air inlet temperature to study the characteristics of solid temperature and moisture in outlet (ii) with increasing orifice diameter and (iii) with increase in number orifices to study the solid outlet temperature profiles. It can be observed from the simulation that, an increase in orifice diameter and number orifices increases solid outlet temperature upto certain condition and then after there is no effect with further increase. Experiments were carried out with increasing opening area (3.4 to 42%) in the form of increasing orifice diameter keeping the number of orifices constant and increasing number of orifices of the distributor plate keeping the orifice diameter constant. It can be seen that the drying rate and solid outlet temperature increase upto certain condition and then after with further increase in the orifice diameter and number of orifices, the change in the drying rate and solid outlet temperature observed is little. The optimum values of orifice diameter and number of orifices from experimentation are found to be 5 mm and 60 (22% opening area).

  12. Enzymatic saccharification of brown seaweed for production of fermentable sugars.

    PubMed

    Sharma, Sandeep; Horn, Svein Jarle

    2016-08-01

    This study shows that high drying temperatures negatively affect the enzymatic saccharification yield of the brown seaweed Saccharina latissima. The optimal drying temperature of the seaweed in terms of enzymatic sugar release was found to be 30°C. The enzymatic saccharification process was optimized by investigating factors such as kinetics of sugar release, enzyme dose, solid loading and different blend ratios of cellulases and an alginate lyase. It was found that the seaweed biomass could be efficiently hydrolysed to fermentable sugars using a commercial cellulase cocktail. The inclusion of a mono-component alginate lyase was shown to improve the performance of the enzyme blend, in particular at high solid loadings. At 25% dry matter loading a combined glucose and mannitol concentration of 74g/L was achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Passive bloodstains: from an impact energy to a final dried pattern

    NASA Astrophysics Data System (ADS)

    Smith, Fiona; Brutin, David

    2016-11-01

    Tracking down the origin of a blood droplet present on a crime scene has become of major importance in bloodstain pattern analysis. Passive bloodstains are not yet well understood. Accordingly the purpose of this research is to provide new tools to forensic investigators in the analysis of bloodstains arising from blood droplets dripping naturally. The study aims to understand the link between the final dried pattern of a passive bloodstain and its impact energy. Currently no such tool exists, and no correlation has yet been proven. This research was therefore focusing on a new parameter, the thicker outer rim observed on the dried final pattern. To do so, we created several passive bloodstains with different impact energies. A correlation was highlighted between the inner diameter, the maximum spreading diameter, the initial diameter of a blood droplet and its impact energy. This correlation shows how the drying mechanism of a blood droplet is influenced by its impact energy as it alters the red blood cells dispersion inside the droplet. The biological deposit and the final dried pattern are subsequently modified. ANR funded project: D-Blood Project.

  14. Identification and Comparison of the Polar Phospholipids in Normal and Dry Eye Rabbit Tears by MALDI-TOF Mass Spectrometry

    PubMed Central

    Ham, Bryan M.; Cole, Richard B.; Jacob, Jean T.

    2008-01-01

    Purpose To identify and compare the phosphorylated lipids in normal and dry eye rabbit tears using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Methods MALDI-TOF MS studies were performed on tear samples from normal and dry eyes of female New Zealand White rabbits. Experimental dry eye was induced by complete removal of the main and accessory lacrimal glands and nictitating membranes. A solid ionic crystal MALDI matrix of paranitroaniline and butyric acid was used to enhance the mass spectral responses of the phospholipids. In addition, a novel lipid isolation, preconcentration, and clean-up method using pipettes containing immobilized metal ion affinity chromatography (IMAC) medium was used. Results The polar phospholipids present in the normal and dry eye rabbit tears showed both similarities and differences. Species related to platelet-activating factor (PAF) and/or lysophosphatidylcholine (lyso-PC), phosphatidylcholine (PC), and sphingomyelin (SM) were found in both the normal and dry eye rabbit tears. However, the number of types and the concentrations of SM molecules were markedly greater in the dry eye tears than in the normal tears. In addition, phosphatidylserine (PS) species that were readily detectable in dry eye tears were not found in normal tears. Conclusions The combination of immobilized metal ion affinity chromatography and the solid ionic crystal matrix for MALDI enabled the detection and study of phosphorylated lipids in the tears. Specific differences between phospholipid levels in normal and dry eye tears were observable with this methodology. The appearance of various SM species only in the dry eye tears may provide markers for this disease state in the future. PMID:16877399

  15. Solid-state amorphization of rebamipide and investigation on solubility and stability of the amorphous form.

    PubMed

    Xiong, Xinnuo; Xu, Kailin; Li, Shanshan; Tang, Peixiao; Xiao, Ying; Li, Hui

    2017-02-01

    Solid-state amorphization of crystalline rebamipide (RBM) was realized by ball milling and spray drying. The amorphous content of samples milled for various time was quantified using X-ray powder diffraction. Crystalline RBM and three amorphous RBM obtained by milling and spray drying were characterized by morphological analysis, X-ray diffraction, thermal analysis and vibrational spectroscopy. The crystal structure of RBM was first determined by single-crystal X-ray diffraction. In addition, the solubility and dissolution rate of the RBM samples were investigated in different media. Results indicated that the solubility and the dissolution rates of spray-dried RBM-PVP in different media were highly improved compared with crystalline RBM. The physical stabilities of the three amorphous RBM were systematically investigated, and the stability orders under different storage temperatures and levels of relative humidity (RH) were both as follows: spray dried RBM < milled RBM < spray dried RBM-PVP. A direct glass-to-crystal transformation was induced under high RH, and the transformation rate rose with increasing RH. However, amorphous RBM could stay stable at RH levels lower than 57.6% (25 °C).

  16. Dry piston coal feeder

    DOEpatents

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  17. Evaluation of biogas production by dry anaerobic digestion of switchgrass-animal manure mixtures

    USDA-ARS?s Scientific Manuscript database

    Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application without adverse environmental effects. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion (> 15% TS; total solid) has an advantage ov...

  18. 40 CFR 60.281a - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... which are independently and objectively evaluated in a judicial or administrative proceeding. Black liquor solids (BLS) means the dry weight of the solids which enter the recovery furnace in the black... vapor from an emission point to a control device. Condensable particulate matter, for purposes of this...

  19. Characterisation of protein stability in rod-insert vaginal rings.

    PubMed

    Pattani, Aditya; Lowry, Deborah; Curran, Rhonda M; McGrath, Stephanie; Kett, Vicky L; Andrews, Gavin P; Malcolm, R Karl

    2012-07-01

    A major goal in vaccine development is elimination of the 'cold chain', the transport and storage system for maintenance and distribution of the vaccine product. This is particularly pertinent to liquid formulation of vaccines. We have previously described the rod-insert vaginal ring (RiR) device, comprising an elastomeric body into which are inserted lyophilised, rod-shaped, solid drug dosage forms, and having potential for sustained mucosal delivery of biomacromolecules, such as HIV envelope protein-based vaccine candidates. Given the solid, lyophilised nature of these insert dosage forms, we hypothesised that antigen stability may be significantly increased compared with more conventional solubilised vaginal gel format. In this study, we prepared and tested vaginal ring devices fitted with lyophilised rod inserts containing the model antigen bovine serum albumin (BSA). Both the RiRs and the gels that were freeze-dried to prepare the inserts were evaluated for BSA stability using PAGE, turbidimetry, microbial load, MALDI-TOF and qualitative precipitate solubility measurements. When stored at 4 °C, but not when stored at 40 °C/75% RH, the RiR formulation offered protection against structural and conformational changes to BSA. The insert also retained matrix integrity and release characteristics. The results demonstrate that lypophilised gels can provide relative protection against degradation at lower temperatures compared to semi-solid gels. The major mechanism of degradation at 40 °C/75% RH was shown to be protein aggregation. Finally, in a preliminary study, we found that addition of trehalose to the formulation significantly reduces the rate of BSA degradation compared to the original formulation when stored at 40 °C/75% RH. Establishing the mechanism of degradation, and finding that degradation is decelerated in the presence of trehalose, will help inform further development of RiRs specifically and polymer based freeze-dried systems in general. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Advances in Spacecraft Brine Water Recovery: Development of a Radial Vaned Capillary Drying Tray

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargusingh, Miriam J.; Pickering, Karen D.; Weislogel, Mark M.

    2014-01-01

    Technology improvements in the recovery of water from brine are critical to establishing closed-loop water recovery systems, enabling long-duration missions, and achieving a sustained human presence in space. A genre of 'in-place drying' brine water recovery concepts, collectively referred to herein as Brine Residual In-Containment, are under development. These brine water recovery concepts aim to increase the overall robustness and reliability of the brine recovery process by performing drying inside the container used for final disposal of the solid residual waste. Implementation of in-place drying techniques have been demonstrated for applications where gravity is present and phase separation occurs naturally by buoyancy-induced effects. In this work, a microgravity-compatible analogue of the gravity-driven phase separation process is considered by exploiting capillarity in the form of surface wetting, surface tension, and container geometry. The proposed design consists of a series of planar radial vanes aligned about a central slotted core. Preliminary testing of the fundamental geometry in a reduced gravity environment has shown the device to spontaneously fill and saturate rapidly, thereby creating a free surface from which evaporation and phase separation can occur similar to a terrestrial-like 'cylindrical pool' of fluid. Mathematical modeling and analysis of the design suggest predictable rates of filling and stability of fluid containment as a function of relevant system dimensions; e.g., number of vanes, vane length, width, and thickness. A description of the proposed capillary design solution is presented along with preliminary results from testing, modeling, and analysis of the system.

  1. Advancements in Spacecraft Brine Water Recovery: Development of a Radial Vaned Capillary Drying Tray

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargusingh, Miriam J.; Pickerin, Karen D.; Weislogel, Mark M.

    2013-01-01

    Technology improvements in the recovery of water from brine are critical to establishing closedloop water recovery systems, enabling long duration missions, and achieving a sustained human presence in space. A genre of 'in-place drying' brine water recovery concepts, collectively referred to herein as Brine Residual In-Containment (BRIC), are under development which aim to increase the overall robustness and reliability of the brine recovery process by performing drying inside the container used for final disposal of the solid residual waste. Implementation of in-place drying techniques have been demonstrated for applications where gravity is present and phase separation occurs naturally by buoyancy induced effects. In this work, a microgravity compatible analogue of the gravity-driven phase separation process is considered by exploiting capillarity in the form of surface wetting, surface tension, and container geometry. The proposed design consists of a series of planar radial vanes aligned about a central slotted core. Preliminary testing of the fundamental geometry in a reduced gravity environment has shown the device to spontaneously fill and saturate rapidly creating a free surface from which evaporation and phase separation can occur similar to a 1-g like 'cylindrical pool' of fluid. Mathematical modeling and analysis of the design suggest predictable rates of filling and stability of fluid containment as a function of relevant system dimensions, e.g., number of vanes, vane length, width, and thickness. A description of the proposed capillary design solution is presented along with preliminary results from testing, modeling and analysis of the system.

  2. Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry.

    PubMed

    Olsen, Søren N; Lumby, Erik; McFarland, Kc; Borch, Kim; Westh, Peter

    2011-03-01

    Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s(-1). Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose-response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (<10% conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.

  3. A Remote Absorption Process for Disposal of Evaporate and Reverse Osmosis Concentrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunsell, D.A.

    2008-07-01

    Many commercial nuclear plants and DOE facilities generate secondary waste streams consisting of evaporator bottoms and reverse osmosis (RO) concentrate. Since liquids are not permitted in disposal facilities, these waste streams must be converted to dry solids, either by evaporation to dried solids or by solidification to liquid-free solids. Evaporation of the liquid wastes reduces their volume, but requires costly energy and capital equipment. In some cases, concentration of the contaminants during drying can cause the waste to exceed Class A waste for nuclear utilities or exceed DOE transuranic limits. This means that disposal costs will be increased, or that,more » when the Barnwell, SC disposal site closes to waste outside of the Atlantic Compact in July 2008, the waste will be precluded from disposal for the foreseeable future). Solidification with cement agents requires less energy and equipment than drying, but results in a volume increase of 50-100%. The doubling or tripling of waste weight, along with the increased volume, sharply increases shipping and disposal costs. Confronted with these unattractive alternatives, Diversified Technologies Services (DTS), in conjunction with selected nuclear utilities and D and D operations at Rocky Flats, undertook an exploratory effort to convert this liquid wastewater to a solid without using cement. This would avoid the bulking effect of cement, and permit the waste to be disposed of the Energy Solutions facility in Utah as well as some DOE facilities. To address the need for an attractive alternative to drying and cement solidification, a test program was developed using a polymer absorbent media to convert the concentrate streams to a liquid-free waste form that meets the waste acceptance criteria of the pertinent burial sites. Two approaches for mixing the polymer with the liquid were tested: mechanical mixing and in-situ incorporation. As part of this test program, a process control program (PCP) was developed that is 100% scalable from a concentrate test sample as small as 50 grams to full-scale processing of 100 cubic foot containers or larger. In summary: The absorption process offers utilities a viable and less costly alternative to on-site drying or solidification of concentrates. The absorption process can be completed by site personnel or by a vendor as a turnkey service. The process is suitable for multiple types of waste, including RO and evaporator concentrates, sludges, and other difficult to process waters and wet solids. (author)« less

  4. Particle design using a 4-fluid-nozzle spray-drying technique for sustained release of acetaminophen.

    PubMed

    Chen, Richer; Okamoto, Hirokazu; Danjo, Kazumi

    2006-07-01

    We prepared matrix particles of acetaminophen (Act) with chitosan (Cht) as a carrier using a newly developed 4-fluid-nozzle spray dryer. Cht dissolves in acid solutions and forms a gel, but it does not dissolve in alkaline solutions. Therefore, we tested the preparation of controlled release matrix particles using the characteristics of this carrier. Act and Cht mixtures in prescribed ratios were dissolved in an acid solution. We evaluated the matrix particles by preparing a solid dispersion using a 4-fluid-nozzle spray dryer. Observation of the particle morphology by scanning electron microscopy (SEM) revealed that the particles from the spray drying process had atomized to several microns, and that they had become spherical. We investigated the physicochemical properties of the matrix particles by powder X-ray diffraction, differential scanning calorimetry, and dissolution rate analyses with a view to clarifying the effects of crystallinity on the dissolution rate. The powder X-ray diffraction peaks and the heat of the Act fusion in the spray-dried samples decreased with the increase of the carrier content, indicating that the drug was amorphous. These results indicate that the system formed a solid dispersion. Furthermore, we investigated the interaction between the drug and carrier using FT-IR analysis. The FT-IR spectroscopy for the Act solid dispersions suggested that the Act carboxyl group and the Cht amino group formed a hydrogen bond. In addition, the measurement results of the 13C CP/MAS solid-state NMR, indicated that a hydrogen bond had been formed between the Act carbonyl group and the Cht amino group. In the Act-Cht system, the 4-fluid-nozzle spray-dried preparation with a mixing ratio of 1 : 5 obtained a sustained release preparation in all pH test solutions.

  5. Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion.

    PubMed

    Jensen, Paul D; Mehta, Chirag M; Carney, Chris; Batstone, D J

    2016-05-01

    Cattle paunch is comprised of partially digested cattle feed, containing mainly grass and grain and is a major waste produced at cattle slaughterhouses contributing 20-30% of organic matter and 40-50% of P waste produced on-site. In this work, Temperature Phased Anaerobic Digestion (TPAD) and struvite crystallization processes were developed at pilot-scale to recover methane energy and nutrients from paunch solid waste. The TPAD plant achieved a maximum sustainable organic loading rate of 1-1.5kgCODm(-3)day(-1) using a feed solids concentration of approximately 3%; this loading rate was limited by plant engineering and not the biology of the process. Organic solids destruction (60%) and methane production (230LCH4kg(-1) VSfed) achieved in the plant were similar to levels predicted from laboratory biochemical methane potential (BMP) testing. Model based analysis identified no significant difference in batch laboratory parameters vs pilot-scale continuous parameters, and no change in speed or extent of degradation. However the TPAD process did result in a degree of process intensification with a high level of solids destruction at an average treatment time of 21days. Results from the pilot plant show that an integrated process enabled resource recovery at 7.8GJ/dry tonne paunch, 1.8kgP/dry tonne paunch and 1.0kgN/dry tonne paunch. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Growth of Chaetomium cellulolyticum on Alkali-Pretreated Hardwood Sawdust Solids and Pretreatment Liquor

    PubMed Central

    Pamment, N.; Moo-Young, M.; Hsieh, F.-H.; Robinson, C. W.

    1978-01-01

    The treatment of a hardwood sawdust with 1% NaOH solution at 121°C dissolved 19.7% of the dry matter, mainly hemicellulose and lignin. Fermentation of the treated solids by Chaetomium cellulolyticum for 48 h gave a product containing 12.5% crude protein (total N × 6.25) on a dry weight basis. The in vitro rumen digestibility of the 48-h fermentation product was 30%, compared to 24% for the alkali-treated but unfermented sawdust. Growth was independent of sawdust particle size in the range 40 to 100 mesh. Fermentation of the pretreatment liquor gave a product containing up to 50% crude protein (dry weight basis) with an in vitro rumen digestibility of 65 to 76%. Approximately 6.7 g of crude protein was obtained from the treated solids and 2.2 g from the pretreatment liquor per 100 g of sawdust treated. The product from the pretreatment liquor fermentation has potential as a high-protein animal feed supplement but could not be produced economically without an outlet for the relatively indigestible product from the solids fermentation. Growth on the pretreatment liquor was strongly pH dependent; there was a considerable increase in the lag phase when the pH was lowered from 7.5 to 5.2. This effect appears to be due to an inhibitor whose toxicity is reduced at high pH. PMID:16345308

  7. Application of residual polysaccharide-degrading enzymes in dried shiitake mushrooms as an enzyme preparation in food processing.

    PubMed

    Tatsumi, E; Konishi, Y; Tsujiyama, S

    2016-11-01

    To examine the activities of residual enzymes in dried shiitake mushrooms, which are a traditional foodstuff in Japanese cuisine, for possible applications in food processing. Polysaccharide-degrading enzymes remained intact in dried shiitake mushrooms and the activities of amylase, β-glucosidase and pectinase were high. A potato digestion was tested using dried shiitake powder. The enzymes reacted with potato tuber specimens to solubilize sugars even under a heterogeneous solid-state condition and that their reaction modes were different at 38 and 50 °C. Dried shiitake mushrooms have a potential use in food processing as an enzyme preparation.

  8. The effect of variety and maturity on the quality of freeze-dried carrots. The effect of microwave blanching on the nutritional and textural quality of freeze-dried spinach

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Using carrots, the quality of freeze-dried products was studied to determine the optimum varieties and maturation stages for quality attributes such as appearance, flavor, texture, and nutritive value. The quality of freeze-dried carrots is discussed in terms of Gardner color, alcohol insoluble solids, viscosity, and core/cortex ratio. Also, microwave blanching of freeze-dried spinach was studied to determine vitamin interrelationships, anatomical changes, and oxidative deteriorations in terms of preprocessing microwave treatments. Statistical methods were employed in the gathering of data and interpretation of results in both studies.

  9. 7 CFR 989.257 - Final free and reserve percentages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (sun-dried) Seedless 70 30 2005-06 Natural (sun-dried) Seedless 82.50 17.50 2006-07 Natural (sun-dried) Seedless 90 10 2007-08 Natural (sun-dried) Seedless 85 15 2008-09 Natural (sun-dried) Seedless 87 13 2009-10 Natural (sun-dried) Seedless 85 15 (b) The volume regulation percentages apply to acquisitions of...

  10. 7 CFR 989.257 - Final free and reserve percentages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (sun-dried) Seedless 70 30 2005-06 Natural (sun-dried) Seedless 82.50 17.50 2006-07 Natural (sun-dried) Seedless 90 10 2007-08 Natural (sun-dried) Seedless 85 15 2008-09 Natural (sun-dried) Seedless 87 13 2009-10 Natural (sun-dried) Seedless 85 15 (b) The volume regulation percentages apply to acquisitions of...

  11. 7 CFR 989.257 - Final free and reserve percentages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (sun-dried) Seedless 70 30 2005-06 Natural (sun-dried) Seedless 82.50 17.50 2006-07 Natural (sun-dried) Seedless 90 10 2007-08 Natural (sun-dried) Seedless 85 15 2008-09 Natural (sun-dried) Seedless 87 13 2009-10 Natural (sun-dried) Seedless 85 15 (b) The volume regulation percentages apply to acquisitions of...

  12. 7 CFR 989.257 - Final free and reserve percentages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (sun-dried) Seedless 70 30 2005-06 Natural (sun-dried) Seedless 82.50 17.50 2006-07 Natural (sun-dried) Seedless 90 10 2007-08 Natural (sun-dried) Seedless 85 15 2008-09 Natural (sun-dried) Seedless 87 13 2009-10 Natural (sun-dried) Seedless 85 15 (b) The volume regulation percentages apply to acquisitions of...

  13. Oral bioavailability and intestinal absorption of candesartan cilexetil: role of naringin as P-glycoprotein inhibitor.

    PubMed

    Gurunath, Surampalli; Nanjwade, Basavaraj K; Patil, P A

    2015-01-01

    The aim of the study is to explore the pharmacokinetic behavior of candesartan solid dispersions prepared by different pharmaceutical interventions using P-gp inhibitor in rabbits to validate the effectiveness of naringin as a pharmaceutical excipient in enhancing the oral delivery of lipophilic candesartan cilexetil. Male albino rabbits (1-1.5 kg) were orally administered pure CAN suspensions and various candesartan solid dispersions (10 mg/kg) with and without naringin (15 mg/kg) and blood samples were collected at specified time points. CAN plasma samples were measured using HPLC. After oral dosing of pure CAN suspension, the mean AUC0-8 h was found to be 0.14 ± 0.09 μgh/ml which was increased significantly, i.e. 0.52 ± 0.13 μgh/ml with freeze-dried solid dispersions in the presence of naringin (p < 0.01). Similarly, the mean Cmax of pure CAN suspension increased from 35.81 ± 0.13 μg/ml (without naringin) to 112.23 ± 0.13 μg/ml (freeze-dried solid dispersions with naringin) (p < 0.01). A 3.7-folds increase in apparent bioavailability was noticed with freeze-dried solid dispersions with naringin as compared to free CAN suspension administered alone. These results are quite stimulating for further development of a clinically useful oral formulation of candesartan cilexetil based on P-gp inhibition using naringin, a natural flavonoid as a pharmaceutical excipient.

  14. Environmental control and waste management system design concept

    NASA Technical Reports Server (NTRS)

    Gandy, A. R.

    1974-01-01

    Passive device contains both solid and liquid animal waste matter for extended period without being cleaned and without contaminating animal. Constant airflow dries solid waste and evaporates liquid matter. Technique will maintain controlled atmospheric conditions and cage cleanliness during periods of 6 months to 1 year.

  15. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery.

    PubMed

    Shao, Li-Ming; Ma, Zhong-He; Zhang, Hua; Zhang, Dong-Qing; He, Pin-Jing

    2010-07-01

    Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size <45 mm increased by around 2x after bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen.

    PubMed

    Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana

    2015-01-01

    Comparative evaluation of liquid and solid self-microemulsifying drug delivery systems (SMEDDS) as promising approaches for solubility enhancement. The aim of this work was to develop, characterize, and evaluate a solid SMEDDS prepared via spray-drying of a liquid SMEDDS based on Gelucire® 44/14 to improve the solubility and dissolution rate of naproxen. Various oils and co-surfactants in combination with Gelucire® 44/14 were evaluated during excipient selection study, solubility testing, and construction of (pseudo)ternary diagrams. The selected system was further evaluated for naproxen solubility, self-microemulsification ability, and in vitro dissolution of naproxen. In addition, its transformation into a solid SMEDDS by spray-drying using maltodextrin as a solid carrier was performed. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to evaluate the physical characteristics of the solid SMEDDS obtained. The selected formulation of SMEDDS was comprised of Miglyol 812®, Peceol™, Gelucire® 44/14, and Solutol® HS 15. The liquid and solid SMEDDS formed a microemulsion after dilution with comparable average droplet size and exhibited uniform droplet size distribution. In the solid SMEDDS, liquid SMEDDS was adsorbed onto the surface of maltodextrin and formed smooth granular particles with the encapsulated drug predominantly in a dissolved state and partially in an amorphous state. Overall, incorporation of naproxen in SMEDDS, either liquid or solid, resulted in improved solubility and dissolution rate compared to pure naproxen. This study indicates that a liquid and solid SMEDDS is a strategy for solubility enhancement in the future development of orally delivered dosage forms.

  17. Helically agitated mixing in dry dilute acid pretreatment enhances the bioconversion of corn stover into ethanol

    PubMed Central

    2014-01-01

    Background Dry dilute acid pretreatment at extremely high solids loading of lignocellulose materials demonstrated promising advantages of no waste water generation, less sugar loss, and low steam consumption while maintaining high hydrolysis yield. However, the routine pretreatment reactor without mixing apparatus was found not suitable for dry pretreatment operation because of poor mixing and mass transfer. In this study, helically agitated mixing was introduced into the dry dilute acid pretreatment of corn stover and its effect on pretreatment efficiency, inhibitor generation, sugar production, and bioconversion efficiency through simultaneous saccharification and ethanol fermentation (SSF) were evaluated. Results The overall cellulose conversion taking account of cellulose loss in pretreatment was used to evaluate the efficiency of pretreatment. The two-phase computational fluid dynamics (CFD) model on dry pretreatment was established and applied to analyze the mixing mechanism. The results showed that the pretreatment efficiency was significantly improved and the inhibitor generation was reduced by the helically agitated mixing, compared to the dry pretreatment without mixing: the ethanol titer and yield from cellulose in the SSF reached 56.20 g/L and 69.43% at the 30% solids loading and 15 FPU/DM cellulase dosage, respectively, corresponding to a 26.5% increase in ethanol titer and 17.2% increase in ethanol yield at the same fermentation conditions. Conclusions The advantage of helically agitated mixing may provide a prototype of dry dilute acid pretreatment processing for future commercial-scale production of cellulosic ethanol. PMID:24387051

  18. Solid waste characterization in Ketao, a rural town in Togo, West Africa.

    PubMed

    Edjabou, Maklawe Essonanawe; Møller, Jacob; Christensen, Thomas H

    2012-07-01

    In Africa the majority of solid waste data is for big cities. Small and rural towns are generally neglected and waste data from these areas are often unavailable, which makes planning a proper solid waste management difficult. This paper presents the results from two waste characterization projects conducted in Kétao, a rural town in Togo during the rainy season and the dry season in 2010. The seasonal variation has a significant impact on the waste stream. The household waste generation rate was estimated at 0.22 kg person(-1) day(-1) in the dry season and 0.42 in the rainy season. Likewise, the waste moisture content was 4% in the dry season while it was 33-63% in the rainy season. The waste consisted mainly of soil and dirt characterized as 'other' (41%), vegetables and putrescibles (38%) and plastic (11%). In addition to these fractions, considerable amounts of material are either recycled or reused locally and do not enter the waste stream. The study suggests that additional recycling is not feasible, but further examination of the degradability of the organic fraction is needed in order to assess whether the residual waste should be composed or landfilled.

  19. Microstructure of bentonite in iron ore green pellets.

    PubMed

    Bhuiyan, Iftekhar U; Mouzon, Johanne; Schröppel, Birgit; Kaech, Andres; Dobryden, Illia; Forsmo, Seija P E; Hedlund, Jonas

    2014-02-01

    Sodium-activated calcium bentonite is used as a binder in iron ore pellets and is known to increase strength of both wet and dry iron ore green pellets. In this article, the microstructure of bentonite in magnetite pellets is revealed for the first time using scanning electron microscopy. The microstructure of bentonite in wet and dry iron ore pellets, as well as in distilled water, was imaged by various imaging techniques (e.g., imaging at low voltage with monochromatic and decelerated beam or low loss backscattered electrons) and cryogenic methods (i.e., high pressure freezing and plunge freezing in liquid ethane). In wet iron ore green pellets, clay tactoids (stacks of parallel primary clay platelets) were very well dispersed and formed a voluminous network occupying the space available between mineral particles. When the pellet was dried, bentonite was drawn to the contact points between the particles and formed solid bridges, which impart strength to the solid compact.

  20. Pretreatment of lubricated surfaces with sputtered cadmium oxide

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L. (Inventor)

    1991-01-01

    Cadmium oxide is used with a dry solid lubricant on a surface to improve wear resistance. The surface topography is first altered by photochemical etching to a predetermined pattern. The cadmium oxide is then sputtered onto the altered surface to form an intermediate layer to more tightly hold the dry lubricant, such as graphite.

  1. Optimization and modeling of flow characteristics of low-oil DDGS using regression techniques

    USDA-ARS?s Scientific Manuscript database

    Storage conditions such as temperature, relative humidity (RH), consolidation pressure (CP), and time affect flow behavior of bulk solids like distillers dried grains with solubles (DDGS), which is widely used as animal feed by the U.S. cattle and swine industries. The typical dry grind DDGS product...

  2. Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates.

    PubMed

    Patel, Ashok R; Rajarethinem, Pravin S; Cludts, Nick; Lewille, Benny; De Vos, Winnok H; Lesaffer, Ans; Dewettinck, Koen

    2015-02-24

    Physical trapping of a hydrophobic liquid oil in a matrix of water-soluble biopolymers was achieved using a facile two-step process by first formulating a surfactant-free oil-in-water emulsion stabilized by biopolymers (a protein and a polysaccharide) followed by complete removal of the water phase (by either high- or low-temperature drying of the emulsion) resulting in structured solid systems containing a high concentration of liquid oil (above 97 wt %). The microstructure of these systems was revealed by confocal and cryo-scanning electron microscopy, and the effect of biopolymer concentrations on the consistency of emulsions as well as the dried product was evaluated using a combination of small-amplitude oscillatory shear rheometry and large deformation fracture studies. The oleogel prepared by shearing the dried product showed a high gel strength as well as a certain degree of thixotropic recovery even at high temperatures. Moreover, the reversibility of the process was demonstrated by shearing the dried product in the presence of water to obtain reconstituted emulsions with rheological properties comparable to those of the fresh emulsion.

  3. Countercurrent extraction of soluble sugars from almond hulls and assessment of the bioenergy potential

    USDA-ARS?s Scientific Manuscript database

    Almond hulls contain considerable proportions (37 % by dry weight) of water soluble, fermentable sugars (sucrose, glucose, fructose) which can be extracted for industrial purposes. Optimization found that 20 % solids content was the maximum practical solids/liquor ratio for sugar extraction and tha...

  4. gamma. -irradiated sewage solids in diets for sheep: nutritive evaluations and long-term assessments of possible toxicants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanson, D.W.

    1983-01-01

    Air-dried solids from primary (undigested) sewage sludge were collected at Las Cruces, New Mexico (a non-industrial town with population about 50,000). Bagged sewage solids were ..gamma..-irradiated (1 megarad dosage) to kill parasites and pathogenic organisms and evaluated as prospective feedstuffs for sheep. Pelleted, complete diets for gestating-lactating fine-wool ewes and for their growing-finishing lambs were formulated to be isonitrogenous with either 3.5% cottonseed meal (conventional diet) or 7% sewage solids (experimental diet). Digestibility of organic matter and crude protein, and biological value of nitrogen, did not differ (P > .05) between diets, as determined with wethers. Wether lambs fed tomore » slaughter with conventional or experimental diets did not differ (P > .05) in rate of gain, carcass characteristics, element concentrations in blood and serum chemistry profiles, although liver Cu and kidney Pb levels were increased (P < .05) about 1.6-fold by sewage solids. Element contents of spleen and muscles did not differ (P > .05) due to diets. These studies confirm previous research at New Mexico State University which indicates that dried solids from municipal (primary) sludge provide nutritive benefits to sheep with risks of toxicity and heavy metal accumulation that appear tolerable where managed properly.« less

  5. Ultrafiltration of thin stillage from conventional and e-mill dry grind processes.

    PubMed

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2011-05-01

    We used ultrafiltration (UF) to evaluate membrane filtration characteristics of thin stillage and determine solids and nutrient compositions of filtered streams. To obtain thin stillage, corn was fermented using laboratory methods. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Two regenerated cellulose membranes (10 and 100 kDa molecular weight cutoffs) were evaluated with the objective of retaining solids as well as maximizing permeate flux. Optimum pressures for 10 and 100 kDa membranes were 207 and 69 kPa, respectively. Total solids, ash, and neutral detergent fiber contents of input TS streams of dry grind and E-Mill processes were similar; however, fat and protein contents were different (p < 0.05). Retentate obtained from conventional thin stillage fractionation had higher mean total solids contents (27.6% to 27.8%) compared to E-Mill (22.2% to 23.4%). Total solids in retentate streams were found similar to those from commercial evaporators used in industry (25% to 35% total solids). Fat contents of retentate streams ranged from 16.3% to 17.5% for the conventional process. A 2% increment in fat concentration was observed in the E-Mill retentate stream. Thin stillage ash content was reduced 60% in retentate streams.

  6. Potential of Near-Infrared Chemical Imaging as Process Analytical Technology Tool for Continuous Freeze-Drying.

    PubMed

    Brouckaert, Davinia; De Meyer, Laurens; Vanbillemont, Brecht; Van Bockstal, Pieter-Jan; Lammens, Joris; Mortier, Séverine; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas

    2018-04-03

    Near-infrared chemical imaging (NIR-CI) is an emerging tool for process monitoring because it combines the chemical selectivity of vibrational spectroscopy with spatial information. Whereas traditional near-infrared spectroscopy is an attractive technique for water content determination and solid-state investigation of lyophilized products, chemical imaging opens up possibilities for assessing the homogeneity of these critical quality attributes (CQAs) throughout the entire product. In this contribution, we aim to evaluate NIR-CI as a process analytical technology (PAT) tool for at-line inspection of continuously freeze-dried pharmaceutical unit doses based on spin freezing. The chemical images of freeze-dried mannitol samples were resolved via multivariate curve resolution, allowing us to visualize the distribution of mannitol solid forms throughout the entire cake. Second, a mannitol-sucrose formulation was lyophilized with variable drying times for inducing changes in water content. Analyzing the corresponding chemical images via principal component analysis, vial-to-vial variations as well as within-vial inhomogeneity in water content could be detected. Furthermore, a partial least-squares regression model was constructed for quantifying the water content in each pixel of the chemical images. It was hence concluded that NIR-CI is inherently a most promising PAT tool for continuously monitoring freeze-dried samples. Although some practicalities are still to be solved, this analytical technique could be applied in-line for CQA evaluation and for detecting the drying end point.

  7. Thermophilic Dry Methane Fermentation of Distillation Residue Eluted from Ethanol Fermentation of Kitchen Waste and Dynamics of Microbial Communities.

    PubMed

    Huang, Yu-Lian; Tan, Li; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-01-01

    Thermophilic dry methane fermentation is advantageous for feedstock with high solid content. Distillation residue with 65.1 % moisture content was eluted from ethanol fermentation of kitchen waste and subjected to thermophilic dry methane fermentation, after adjusting the moisture content to 75 %. The effect of carbon to nitrogen (C/N) ratio on thermophilic dry methane fermentation was investigated. Results showed that thermophilic dry methane fermentation could not be stably performed for >10 weeks at a C/N ratio of 12.6 and a volatile total solid (VTS) loading rate of 1 g/kg sludge/d; however, it was stably performed at a C/N ratio of 19.8 and a VTS loading rate of 3 g/kg sludge/d with 83.4 % energy recovery efficiency. Quantitative PCR analysis revealed that the number of bacteria and archaea decreased by two orders of magnitude at a C/N ratio of 12.6, whereas they were not influenced at a C/N ratio of 19.8. Microbial community analysis revealed that the relative abundance of protein-degrading bacteria increased and that of organic acid-oxidizing bacteria and acetic acid-oxidizing bacteria decreased at a C/N ratio of 12.6. Therefore, there was accumulation of NH 4 + and acetic acid, which inhibited thermophilic dry methane fermentation.

  8. 2-D hydro-viscoelastic model for convective drying of deformable and unsaturated porous material

    NASA Astrophysics Data System (ADS)

    Hassini, Lamine; Raja, Lamloumi; Lecompte-Nana, Gisèle Laure; Elcafsi, Mohamed Afif

    2017-04-01

    The aim of this work was to simulate in two dimensions the spatio-temporal evolution of the moisture content, the temperature, the solid (dry matter) concentration, the dry product total porosity, the gas porosity, and the mechanical stress within a deformable and unsaturated product during convective drying. The material under study was an elongated cellulose-clay composite sample with a square section placed in hot air flow. Currently, this innovative composite is used in the processing of boxes devoted to the preservation of heritage and precious objects against fire damage and other degradation (moisture, insects, etc.). A comprehensive and rigorous hydrothermal model had been merged with a dynamic linear viscoelasticity model based on Bishop's effective stress theory, assuming that the stress tensor is the sum of solid, liquid, and gas stresses. The material viscoelastic properties were measured by means of stress relaxation tests for different water contents. The viscoelastic behaviour was described by a generalized Maxwell model whose parameters were correlated to the water content. The equations of our model were solved by means of the 'COMSOL Multiphysics' software. The hydrothermal part of the model was validated by comparison with experimental drying curves obtained in a laboratory hot-air dryer. The simulations of the spatio-temporal distributions of mechanical stress were performed and interpreted in terms of material potential damage. The sample shape was also predicted all over the drying process.

  9. Studying the effect of material initial conditions on drying induced stresses

    NASA Astrophysics Data System (ADS)

    Heydari, M.; Khalili, K.; Ahmadi-Brooghani, S. Y.

    2018-02-01

    Cracking as a result of non-uniform deformation during drying is one of defects that may occur during drying and has to be dealt with by proper drying treatment. In the current study the effect of initial condition has been investigated on stress-strain induced by drying. The convective drying of a porous clay-like material has been simulated by using a mathematical model. Mass and heat transfer along with the mechanical behavior of the object being dried make the phenomenon a highly coupled problem. The coupling variables are the solid displacement, moisture content and temperature of the porous medium. A numerical solution is sought and employed to predict the influence of initial conditions of material on the drying induced stresses, the moisture content, and the temperature variations. Simulation results showed that increasing the initial temperature is an effective way to reduce the stresses induced by drying and to obtain products with good quality without significant change in drying curve and in comparison this is more effective than intermittent drying.

  10. Biofuel production utilizing a dual-phase cultivation system with filamentous cyanobacteria.

    PubMed

    Aoki, Jinichi; Kawamata, Toru; Kodaka, Asuka; Minakawa, Masayuki; Imamura, Nobukazu; Tsuzuki, Mikio; Asayama, Munehiko

    2018-04-17

    Biomass yields and biofuel production were examined in a dual (solid and liquid)-phase cultivation system (DuPHA) with the unique filamentous cyanobacteria, Pseudanabaena sp. ABRG 5-3 and Limnothrix sp. SK1-2-1. Continuous circular cultivation was driven under the indoor closed (IC) or indoor opened (IO) conditions and provided biomass yields of approximately 8 to 27 g dry cell weight (DCW) floor m -2 d -1 . Alkanes of heptadecane (C 17 H 36 ) or pentadecane (C 15 H 32 ) as liquid biofuels were also recovered from the lower liquid-phase, in which cyanobacteria were dropped from the upper solid-phase and continuously cultivated with a small amount of medium. After the main cultivation in DuPHA, the upper solid-phase of a cotton cloth on which cyanobacteria grew was dried and directly subjected to a combustion test. This resulted in the thermal power (kJ s -1 ) of the cloth with microalgae increasing approximately 20 to 50% higher than that of the cloth only, suggesting a possibility of using the solid phase with microalgae as solid biofuel. Copyright © 2018. Published by Elsevier B.V.

  11. Dry-Surface Simulation Method for the Determination of the Work of Adhesion of Solid-Liquid Interfaces.

    PubMed

    Leroy, Frédéric; Müller-Plathe, Florian

    2015-08-04

    We introduce a methodology, referred to as the dry-surface method, to calculate the work of adhesion of heterogeneous solid-liquid interfaces by molecular simulation. This method employs a straightforward thermodynamic integration approach to calculate the work of adhesion as the reversible work to turn off the attractive part of the actual solid-liquid interaction potential. It is formulated in such a way that it may be used either to evaluate the ability of force fields to reproduce reference values of the work of adhesion or to optimize force-field parameters with reference values of the work of adhesion as target quantities. The methodology is tested in the case of water on a generic model of nonpolar substrates with the structure of gold. It is validated through a quantitative comparison to phantom-wall calculations and against a previous characterization of the thermodynamics of the gold-water interface. It is found that the work of adhesion of water on nonpolar substrates is a nonlinear function of the microscopic solid-liquid interaction energy parameter. We also comment on the ability of mean-field approaches to predict the work of adhesion of water on nonpolar substrates. In addition, we discuss in detail the information on the solid-liquid interfacial thermodynamics delivered by the phantom-wall approach. We show that phantom-wall calculations yield the solid-liquid interfacial tension relative to the solid surface tension rather than the absolute solid-liquid interfacial tension as previously believed.

  12. National Emission Standards for Hazardous Air Pollutants (NESHAP) for Source Categories: Perchloroethylene Dry Cleaning Facilities - 1993 Final Rule (58 FR 49354)

    EPA Pesticide Factsheets

    This document is a copy of the Federal Register publication of the September 22, 1993 Final Rule for the National Emission Standards for Hazardous Air Pollutants for Source Categories: Perchloroethylene Dry Cleaning Facilities.

  13. Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials.

    PubMed

    Dang, Yan; Sun, Dezhi; Woodard, Trevor L; Wang, Li-Ying; Nevin, Kelly P; Holmes, Dawn E

    2017-08-01

    Growth of bacterial and archaeal species capable of interspecies electron exchange was stimulated by addition of conductive materials (carbon cloth or granular activated carbon (GAC)) to anaerobic digesters treating dog food (a substitute for the dry-organic fraction of municipal solid waste (OFMSW)). Methane production (772-1428mmol vs <80mmol), volatile solids removal (78%-81% vs 54%-64%) and COD removal efficiencies (∼80% vs 20%-30%) were all significantly higher in reactors amended with GAC or carbon cloth than controls. OFMSW degradation was also significantly accelerated and VFA concentrations were substantially lower in reactors amended with conductive materials. These results suggest that both conductive materials (carbon cloth and GAC) can promote conversion of OFMSW to methane even in the presence of extremely high VFA concentrations (∼500mM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Solid Lubrication by Multiwalled Carbon Nanotubes in Air and in Vacuum for Space and Aeronautics Applications

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Street, Kenneth W., Jr.; Andraws, Rodney; Jacques, David; VanderWal, Randy L.; Sayir, Ali

    2005-01-01

    To evaluate recently developed aligned multiwalled carbon nanotubes (MWNTs) and dispersed MWNTs for solid lubrication applications, unidirectional sliding friction experiments were conducted with 440 C stainless steel balls and hemispherical alumina-yttria stabilized zirconia pins in sliding contact with the MWNTs deposited on quartz disks in air and in vacuum. The results indicate that MWNTs have superior solid lubrication friction properties and endurance lives in air and vacuum under dry conditions. The coefficient of friction of the dispersed MWNTs is close to 0.05 and 0.009 in air and in vacuum, respectively, showing good dry lubricating ability. The wear life of MWNTs exceeds 1 million passes in both air and vacuum showing good durability. In general, the low coefficient of friction can be attributed to the combination of the transferred, agglomerated patches of MWNTs on the counterpart ball or pin surfaces and the presence of tubular MWNTs at interfaces.

  15. Potential SRF generation from a closed landfill in northern Italy.

    PubMed

    Passamani, Giorgia; Ragazzi, Marco; Torretta, Vincenzo

    2016-01-01

    The aim of this work is to assess the possibility of producing solid recovered fuel (SRF) and "combustible SRF" from a landfill located in the north of Italy, where the waste is placed in cylindrical wrapped bales. Since the use of landfills for the disposal of municipal solid waste has many technical limitations and is subject to strict regulations and given that landfill post-closure care is very expensive, an interesting solution is to recover the bales that are stored in the landfill. The contents of the bales can then be used for energy recovery after specific treatments. Currently the landfill is closed and the local municipal council together with an environmental agency are considering constructing a mechanical biological treatment (MBT) plant for SRF production. The municipal solid waste that is stored in the landfill, the bio-dried material produced by the hypothetically treated waste in a plant for bio-drying, and the SRF obtained after the post-extraction of inert materials, metals and glass from the bio-dried material were characterized according to the quality and classification criteria of regulations in Italy. The analysis highlighted the need to treat the excavated waste in a bio-drying plant and later to remove the inert waste, metals and glass. Thus in compliance with Italian law, the material has a high enough LHV to be considered as "combustible SRF", (i.e. an SRF with enhanced characteristics). Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Water-hyacinth production primary and advanced treatment of wastewater. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwegler, B.R. Jr.

    1983-01-01

    A prototype water hyacinth wastewater treatment system has been in operation for two years at Walt Disney World, near Orlando, Florida. Typically, the hyacinth system removes 80-90% total suspended solids and B.O.D. from the influent stream. Major impacts on water quality exiting the system are: seasonal variations in solar radiation, air and water temperature; operational problems, particularly harvesting equipment breakdown, and retention time in the ponds. Phosphorus and nitrogen removal show a strong seasonal dependence, with removal rates varying from 0.08 to 1.11 g/m/sup 2//day for N and from 0.05 to 0.29 g/m/sup 2//day for P. Nitrogen removal rates showmore » a strong dependence on retention times, with a retention time of 5 days appearing to be a critical limit for the establishment of an active population of denitrifying bacteria. Hyacinth biomass productivity of the system was approximately 66.7 dry metric tons per hectare year (30 dry tons/acre year) during the second year of operation. An Experimental Test Unit (ETU) for anaerobic digestion of hyacinths to methane will be installed by late 1983.« less

  17. Effects of thermo-chemical pretreatment plus microbial fermentation and enzymatic hydrolysis on saccharification and lignocellulose degradation of corn straw.

    PubMed

    Wang, Ping; Chang, Juan; Yin, Qingqiang; Wang, Erzhu; Zhu, Qun; Song, Andong; Lu, Fushan

    2015-10-01

    In order to increase corn straw degradation, the straw was kept in the combined solution of 15% (w/w) lime supernatant and 2% (w/w) sodium hydroxide with liquid-to-solid ratio of 13:1 (mL/g) at 83.92°C for 6h; and then added with 3% (v/v) H2O2 for reaction at 50°C for 2h; finally cellulase (32.3 FPU/g dry matter) and xylanase (550 U/g dry matter) was added to keep at 50°C for 48 h. The maximal reducing sugars yield (348.77 mg/g) was increased by 126.42% (P<0.05), and the degradation rates of cellulose, hemicellulose and lignin in pretreated corn straw with enzymatic hydrolysis were increased by 40.08%, 45.71% and 52.01%, compared with the native corn straw with enzymatic hydrolysis (P<0.05). The following study indicated that the combined microbial fermentation and enzymatic hydrolysis could further increase straw degradation and reducing sugar yield (442.85 mg/g, P<0.05). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Spread of pathogens through rain drop impact

    NASA Astrophysics Data System (ADS)

    Kim, Seungho; Gruszewski, Hope; Gidley, Todd; Schmale, David G., III; Jung, Sunghwan

    2017-11-01

    Rain drop impact can disperse micron-sized pathogenic particles over long distances. In this study, we aim to elucidate mechanisms for disease dispersal when a rain drop impacts a particle-laden solid surface. Three different dispersal types were observed depending on whether the dispersed glass particles were dry or wet. For a dry particle dispersal, the movement of contact line made the particles initially jump off the surface with relatively high velocity. Then, air vortex was formed due to the air current entrained along with the falling drop, and advected the particles with relatively low velocity. For a wet particle dispersal, the contact line of a spreading liquid became unstable due to the presence of the particles on the substrate. This caused splashing at the contact line and ejected liquid droplets carrying the particles. Finally, we released a drop onto wheat plants infected with the rust fungus, Puccinia triticina, and found that nearly all of the satellite droplets from a single drop contained at least one rust spore. Also, we visualized such novel dispersal dynamics with a high-speed camera and characterized their features by scaling models. This research was partially supported by National Science Foundation Grant CBET-1604424.

  19. The influence of metakaolin substitution by slag in alkali-activated inorganic binders for civil engineering

    NASA Astrophysics Data System (ADS)

    Kadlec, J.; Rieger, D.; Kovářík, T.; Novotný, P.; Franče, P.; Pola, M.

    2017-02-01

    In this study the effect of metakaolin replacement by milled blast furnace slag in alkali-activated geopolymeric binder was investigated in accordance to their rheological and mechanical properties. It was demonstrated that slag addition into the metakaolin binder can improve mechanical properties of final products. Our investigation was focused on broad interval of metakaolin substitution in the range from 100 to 40 volume per cents of metakaolin so that the volume content of solids in final binder was maintained constant. Prepared binders were activated by alkaline solution of potassium silicate with silicate module of 1.61. The particle size analyses were performed for determination of particle size distribution. The rheological properties were determined in accordance to flow properties by measurements on Ford viscosity cup and by oscillatory measurements of hardening process. For the investigation of hardening process, the strain controlled small amplitude oscillatory rheometry was used in plane-plate geometry. For determination of applied mechanical properties were binders filled by ceramic grog in the granularity range 0-1 mm. The filling was maintained constant at 275 volume per cents in accordance to ratio of solids in dry binder. The mechanical properties were investigated after 1, 7 and 28 days and microstructure was documented by scanning electron microscopy. The results indicate that slag addition have beneficial effect not only on mechanical properties of hardened binder but also on flow properties of fresh geopolymer paste and subsequent hardening kinetics of alkali-activated binders.

  20. Growth and Chemical Responses to CO2 Enrichment Virginia Pine (Pinus Virginiana Mill.) (NDP-009)

    DOE Data Explorer

    Luxmoore, R. J. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Norby, R. J. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); O'Neill, E. G. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Weller, D. G. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Ells, J. M. [Agricultural Research Service, USDA; North Carolina State University, Raleigh, NC (USA); Rogers, H. H. [Agricultural Research Service, USDA; North Carolina State University, Raleigh, NC (USA)

    1985-01-01

    From June 28 to October 29 in 1982, Virginia pine seedlings were exposed to elevated CO2 levels in open-top growth chambers at one of four concentrations (75, 150, 300, and 600 ppm above ambient). Plant dry weight; height; stem diameter; and chemical contents of leaf, stem, and root tissues were measured before and after exposure. Soil variables were also characterized. These data illustrate the short-term physical and chemical response of Virginia pine seedlings to elevated levels of CO2. The data are in seven files: initial dry weights before exposure (844 kB), dry weights after exposure (4 kB), major nutrient concentrations after final harvest (12 kB), minor nutrient concentrations after final harvest (17 kB), soil nutrient concentrations after final harvest (4 kB), soil leachate elements after final harvest (5 kB), and soil leachate solutes after final harvest (4 kB).

  1. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate.

    PubMed

    Huang, Weiwei; Huang, Wenli; Yuan, Tian; Zhao, Ziwen; Cai, Wei; Zhang, Zhenya; Lei, Zhongfang; Feng, Chuanping

    2016-03-01

    The sustainability of an agricultural system depends highly upon the recycling of all useful substances from agricultural wastes. This study explored the feasibility of comprehensive utilization of C, N and P resources in swine manure (SM) through short-term dry anaerobic digestion (AD) followed by dry ammonia stripping, aiming at achieving (1) effective total volatile fatty acids (VFAs) production and separation; (2) ammonia recovery from the digestate; and (3) preservation of high P bioavailability in the solid residue for further applications. Specifically, two ammonia stripping strategies were applied and compared in this work: (I) ammonia stripping was directly performed with the digestate from dry AD of SM (i.e. dry ammonia stripping); and (II) wet ammonia stripping was conducted by using the resultant filtrate from solid-liquid separation of the mixture of digestate and added water. Results showed that dry AD of the tested SM at 55 °C, 20% TS and unadjusted initial pH (8.6) for 8 days produced relatively high concentrations of total VFAs (94.4 mg-COD/g-VS) and ammonia-N (20.0 mg/g-VS) with high potentially bioavailable P (10.6 mg/g-TS) remained in the digestate, which was considered optimal in this study. In addition, high ammonia removal efficiencies of 96.2% and 99.7% were achieved through 3 h' dry and wet stripping (at 55 °C and initial pH 11.0), respectively, while the total VFAs concentration in the digestate/filtrate remained favorably unchanged. All experimental data from the two stripping processes well fitted to the pseudo first-order kinetic model (R(2) = 0.9916-0.9997) with comparable theoretical maximum ammonia removal efficiencies (Aeq, >90%) being obtained under the tested dry and wet stripping conditions, implying that the former was more advantageous due to its much higher volumetric total ammonia-N removal rate thus much smaller reactor volume, less energy/chemicals consumption and no foaming problems. After 8 days' dry AD and 3 h' dry ammonia stripping, the separated liquid containing VFAs and the recovered ammonia were both marketable products, and the solid residues with averagely higher C/N ratios of 25.7 than those of raw SM (18.0) meanwhile maintaining a relatively high bioavailable P content of 8.1 mg/g-TS can serve as better feedstock for methane fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A feasibility study of hydrothermal treatment of rice straw for multi-production of solid fuel and liquid fertilizer

    NASA Astrophysics Data System (ADS)

    Samnang, S.; Prawisudha, P.; Pasek, A. D.

    2017-05-01

    Energy use has increased steadily over the last century due to population and industry increase. With the growing of GHG, biomass becomes an essential contributor to the world energy need. Indonesia is the third rice producer in the world. Rice straw has been converted to solid fuel by Hydrothermal Treatment (HT) for electricity generation. HT is a boiling solid organic or inorganic substance in water at high pressure and temperature within a holding time. HT converts high moisture content biomass into dried, uniform, pulverized, and higher energy density solid fuels. HT can effectively transport nutrient components in biomass into a liquid product known as fertilizer. This paper deals with an evaluation of hydrothermal treatment of rice straw for solid fuel and liquid fertilizer. An investigation of rice straw characteristics were completed for Bandung rice straw with various condition of temperature, biomass-water ratio, and holding time in the purpose to find the changes of calorific value for solid product and (N, P, K, and pH) for liquid product. The results showed that solid product at 225 °C and 90 min consists in a heating value 13.8 MJ/kg equal to lignite B. Liquid product at 225 °C and 90 min had the NPK content similar to that of micronutrients compound liquid fertilizer. The dried solid product should be useful for Coal Fire Power Plant, and the liquid product is suitable for plants. This research proves that hydrothermal process can be applied to rice straw to produce solid fuel and liquid fertilizer with adequate quality.

  3. Stepwise drying of medicinal plants as alternative to reduce time and energy processing

    NASA Astrophysics Data System (ADS)

    Cuervo-Andrade, S. P.; Hensel, O.

    2016-07-01

    The objective of drying medicinal plants is to extend the shelf life and conserving the fresh characteristics. This is achieved by reducing the water activity (aw) of the product to a value which will inhibit the growth and development of pathogenic and spoilage microorganisms, significantly reducing enzyme activity and the rate at which undesirable chemical reactions occur. The technical drying process requires an enormous amount of thermal and electrical energy. An improvement in the quality of the product to be dried and at the same time a decrease in the drying cost and time are achieved through the utilization of a controlled conventional drying method, which is based on a good utilization of the renewable energy or looking for other alternatives which achieve lower processing times without sacrificing the final product quality. In this work the method of stepwise drying of medicinal plants is presented as an alternative to the conventional drying that uses a constant temperature during the whole process. The objective of stepwise drying is the decrease of drying time and reduction in energy consumption. In this process, apart from observing the effects on decreases the effective drying process time and energy, the influence of the different combinations of drying phases on several characteristics of the product are considered. The tests were carried out with Melissa officinalis L. variety citronella, sowed in greenhouse. For the stepwise drying process different combinations of initial and final temperature, 40/50°C, are evaluated, with different transition points associated to different moisture contents (20, 30, 40% and 50%) of the product during the process. Final quality of dried foods is another important issue in food drying. Drying process has effect in quality attributes drying products. This study was determining the color changes and essential oil loses by reference the measurement of the color and essential oil content of the fresh product was used. Drying curves were obtained to observe the dynamics of the process for different combinations of temperature and points of change, corresponding to different conditions of moisture content of the product.

  4. Towards an aerogel-based coating for aerospace applications: reconstituting aerogel particles via spray drying

    NASA Astrophysics Data System (ADS)

    Bheekhun, N.; Abu Talib, A. R.; Mustapha, S.; Ibrahim, R.; Hassan, M. R.

    2016-10-01

    Silica aerogel is an ultralight and highly porous nano-structured ceramic with its thermal conductivity being the lowest than any solids. Although aerogels possess fascinating physical properties, innovative solutions to tackle today's problems were limited due to their relative high manufacturing cost in comparison to conventional materials. Recently, some producers have brought forward quality aerogels at competitive costs, and thereby opening a panoply of applied research in this field. In this paper, the feasibility of spray-drying silica aerogel to tailor its granulometric property is studied for thermal spraying, a novel application of aerogels that is never tried before in the academic arena. Aerogel-based slurries with yttria stabilised zirconia as a secondary ceramic were prepared and spray-dried according to modified T aguchi experimental design in order to appreciate the effect of both the slurry formulation and drying conditions such as the solid content, the ratio of yttria stabilised zirconia:aerogel added, the amount of dispersant and binder, inlet temperature, atomisation pressure and feeding rate on the median particle size of the resulting spray-dried powder. The latter was found to be affected by all the aforementioned independent variables at different degree of significance and inclination. Based on the derived relationships, an optimised condition to achieve maximum median particle size was then predicted.

  5. The chemical and oxidation characteristics of semi-dry flue gas desulfurization ash from a steel factory.

    PubMed

    Liu, Ren-ping; Guo, Bin; Ren, Ailing; Bian, Jing-feng

    2010-10-01

    Some samples of semi-dry flue gas desulfurization (FGD) ash were taken from sinter gas of a steel factory. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were employed to identify the samples in order to investigate their physical and chemical characteristics. The results show that semi-dry FGD ash from a steel factory is stable under atmospheric conditions. It has irregular shape, a smooth surface and loose construction. The size of FGD ash particles is around 0.5-25 µm, the average size is about 5 µm and the median diameter is 4.18 µm. Semi-dry FGD ash from a steel factory consists of CaSO₃, CaSO₄, CaCO₃, some amorphous vitreous material and unburned carbon. An experimental method was found to study the oxidation characteristics of ash. A prediction model of the oxidation efficiency was obtained based on response surface methodology. The results show that not only the temperature, but also gas:solid ratio, play an important role in influencing the oxidation efficiency. The interactions of the gas:solid ratio with temperature play an essential role. An improved response surface model was obtained which can be helpful to describe the degree of oxidation efficiency of semi-dry FGD ash.

  6. Dynamic Deformation and Collapse of Granular Columns

    NASA Astrophysics Data System (ADS)

    Uenishi, K.; Tsuji, K.; Doi, S.

    2009-12-01

    Large dynamic deformation of granular materials may be found in nature not only in the failure of slopes and cliffs — due to earthquakes, rock avalanches, debris flows and landslides — but also in earthquake faulting itself. Granular surface flows often consist of solid grains and intergranular fluid, but the effect of the fluid may be usually negligible because the volumetric concentration of grains is in many cases high enough for interparticle forces to dominate momentum transport. Therefore, the investigation of dry granular flow of a mass might assist in further understanding of the above mentioned geophysical events. Here, utilizing a high-speed digital video camera system, we perform a simple yet fully-controlled series of laboratory experiments related to the collapse of granular columns. We record, at an interval of some microseconds, the dynamic transient granular mass flow initiated by abrupt release of a tube that contains dry granular materials. The acrylic tube is partially filled with glass beads and has a cross-section of either a fully- or semi-cylindrical shape. Upon sudden removal of the tube, the granular solid may fragment under the action of its own weight and the particles spread on a rigid horizontal plane. This study is essentially the extension of the previous ones by Lajeunesse et al. (Phys. Fluids 2004) and Uenishi and Tsuji (JPGU 2008), but the striped layers of particles in a semi-cylindrical tube, newly introduced in this contribution, allow us to observe the precise particle movement inside the granular column: The development of slip lines inside the column and the movement of particles against each other can be clearly identified. The major controlling parameters of the spreading dynamics are the initial aspect ratio of the granular (semi-)cylindrical column, the frictional properties of the horizontal plane (substrate) and the size of beads. We show the influence of each parameter on the average flow velocity and final radius and height of the deposit, i.e., the fraction of granular mass mobilized by the flow, and the final shape of the deposit.

  7. Ultra-trace determination of Strontium-90 in environmental soil samples from Qatar by collision/reaction cell-inductively coupled plasma mass spectrometry (CRC-ICP-MS/MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Meer, S. H.; Amr, M. A.; Helal, A.I.

    Because of the very low level of {sup 90}Sr in the environmental soil samples and its determination by beta counting may take several weeks, we developed a procedure for ultra-trace determination of {sup 90}Sr using collision reaction cell-inductively coupled plasma tandem mass spectrometry (CRC-ICP-MS/MS, Agilent 8800). Soil samples were dried at 105 deg. C and then heated in a furnace at 550 deg. C to remove any organics present. 500 g of each soil samples were aliquoted into 2000 ml glass beakers. Each Soils samples were soaked in 2 ppm Sr solution carrier to allow determination of chemical yield. Themore » solid to liquid ratio was 1:1. Finally the soil samples were dried at 105 deg. C. Five hundred milliliters concentrated nitric acid and 250 ml hydrochloric acid volumes were added on 500 g soil samples. The samples were digested on hot plate at 80 deg. C to prevent spraying with continuous manual mixing. The leachate solution was separated. The solids were rinsed with 500 ml deionized water, warmed on a hot plate and the leachate plus previous leachate were filtered and the total volume was reduced to 500 ml by evaporation. Final leachate volume was transferred to a centrifuge tubes. The centrifuge tubes were centrifuged at 3,500 rpm for 10 min. The leachate was transferred to a 1 L beaker and heated on a hot plate to evaporate the leachate to dryness. The reside was re-dissolved in 100 ml of 2% HNO{sub 3} and reduced by evaporation to 10 mL. The solution was measured directly by CRC-ICP-MS/MS by setting the first quadruple analyzer to m/z 90 and introducing oxygen gas into the reaction cell for elimination isobar interference from zirconium-90. The method was validated by measurements of standard reference materials and applied on environmental soil samples. The overall time requirement for the measurement of strontium-90 by CRC-ICP-MS/MS is 2 days, significantly shorter than any radioanalytical protocol currently available. (authors)« less

  8. Innovative dual-step management of semi-aerobic landfill in a tropical climate.

    PubMed

    Lavagnolo, Maria Cristina; Grossule, Valentina; Raga, Roberto

    2018-04-01

    Despite concerted efforts to innovate the solid waste management (SWM) system, land disposal continues to represent the most widely used technology in the treatment of urban solid waste worldwide. On the other hand, landfilling is an unavoidable step in closing the material cycle, since final residues, although minimized, need to be safely disposed of and confined. In recent years, the implementation of more sustainable landfilling aims to achieve the Final Storage Quality conditions as fast as possible. In particular, semi-aerobic landfill appears to represent an effective solution for use in the poorest economies due to lower management costs and shorter aftercare resulting from aerobic stabilisation of the waste. Nevertheless, the implementation of a semi-aerobic landfill in a tropical climate may affect the correct functioning of the plant: a lack of moisture during the dry season and heavy rainfalls during the wet season could negatively affect performance of both the degradation process, and of leachate and biogas management. This paper illustrates the results obtained through the experimentation of a potential dual-step management of semi-aerobic landfilling in a tropical climate in which composting process was reproduced during the dry season and subsequently flushing (high rainfall rate) during the wet period. Eight bioreactors specifically designed: four operated under anaerobic conditions and four under semi-aerobic conditions; half of the reactors were filled with high organic content waste, half with residual waste obtained following enhanced source segregation. The synergic effect of the subsequent phases (composting and flushing) in the semi-aerobic landfill was evaluated on the basis of both types of waste. Biogas production, leachate composition and waste stabilization were analysed during the trial and at the end of each step, and compared in view of the performance of anaerobic reactors. The results obtained underlined the effectiveness of the dual-step management evidencing how wastes reached a higher degree of stabilization and reference FSQ values for leachate were achieved over a one-year simulation period. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Volatile composition and sensory characteristics of onion powders prepared by convective drying.

    PubMed

    Choi, So Mang; Lee, Dong-Jin; Kim, Jong-Yea; Lim, Seung-Taik

    2017-09-15

    Volatile composition and sensory characteristics of onion powders prepared by convective drying at different temperatures (50, 70, and 90°C) were investigated. Dipropyl disulfide was the major volatile compound in fresh onion (77.70% of total volatile compounds). However it was considerably lost during drying, reaching 6.93-32.25µg/g solids. Dipropyl disulfide showed a positive correlation with green sensory attribute perceived by descriptive sensory analysis. Thiophenes, which were responsible for caramel and sweet attributes, were produced by drying especially when the drying temperature was high. Aldehydes, another type of volatile compound found in fresh onion, showed a positive correlation with humidity. The aldehyde content in dried onion was the highest at the lowest drying temperature, possibly because the aldehydes were produced by the residual enzymes in fresh onion. Using a low temperature for drying was ideal to retain the aroma of fresh onion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Automated catalyst processing for cloud electrode fabrication for fuel cells

    DOEpatents

    Goller, Glen J.; Breault, Richard D.

    1980-01-01

    A process for making dry carbon/polytetrafluoroethylene floc material, particularly useful in the manufacture of fuel cell electrodes, comprises of the steps of floccing a co-suspension of carbon particles and polytetrafluoroethylene particles, filtering excess liquids from the co-suspension, molding pellet shapes from the remaining wet floc solids without using significant pressure during the molding, drying the wet floc pellet shapes within the mold at temperatures no greater than about 150.degree. F., and removing the dry pellets from the mold.

  11. 40 CFR Table 2 to Subpart Ddddd of... - Emission Limits for Existing Boilers and Process Heaters

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... collect a minimum of 3 dscm. 2. Units design to burn coal/solid fossil fuel a. Filterable PM (or TSM) 4.0E... minimum of 2 dscm per run. 3. Pulverized coal boilers designed to burn coal/solid fossil fuel a. CO (or.../solid fossil fuel a. CO (or CEMS) 160 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run...

  12. Formulation and optimization of spray-dried amlodipine solid dispersion for enhanced oral absorption.

    PubMed

    Jang, Dong-Jin; Sim, Taeyong; Oh, Euichaul

    2013-07-01

    To enhance the oral absorption of photosensitive amlodipine free base, which exhibits a slow dissolution rate and low permeability characteristics, an amorphous solid dispersion system was formulated and characterized. The solid dispersion was prepared by dispersing the amlodipine free base in excess dextrin (1:10 by weight) using a spray-drying technique in the presence of a minimum amount (0.9% w/w) of SLS as an absorption enhancer. The dextrin-based solid dispersion of amlodipine (Amlo-SD) was evaluated in term of formulation, characterization and in vivo absorption study, as well as the spray-drying process was also optimized. The Amlo-SD particles were spherical with a smooth surface and an average particle size of 12.9 μm. Amlodipine was dispersed in an amorphous state and its content remained uniform in the Amlo-SD. The physicochemical stability of the Amlo-SD was maintained at room temperature for 6 months and the photostability was considerably improved. The dissolution of the Amlo-SD was much faster than that of amlodipine at pH 1.2 and 6.8. Amlo-SD produced significantly higher plasma concentrations of amlodipine in rats than amlodipine alone. Amlo-SD with and without SLS provided 2.8- and 2.0-fold increase in AUC, respectively: the difference seems to be attributed to a permeability enhancement effect by SLS. The Amlo-SD with SLS system is a potential formulation option for amlodipine.

  13. 16 CFR 1500.43a - Method of test for flashpoint of volatile flammable materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) below the target temperature, remove the cooling block and quickly dry the cup with a paper tissue to... (cooling) fluid is solid carbon dioxide (dry ice) and acetone. If the refrigerant charged cooling module is... pouring acetone. Use only in a well-ventilated area. Avoid inhalation and contact with the eyes or skin...

  14. Biomass Compositional Analysis Laboratory Procedures | Bioenergy | NREL

    Science.gov Websites

    Compositional Analysis This procedure describes methods for sample drying and size reduction, obtaining samples methods used to determine the amount of solids or moisture present in a solid or slurry biomass sample as values? We have found that neutral detergent fiber (NDF) and acid detergent fiber (ADF) methods report

  15. 40 CFR 63.5460 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... use include: toggling, hanging, pasting, and vacuum drying. Finish add-on means the amount of solid material deposited on the leather substrate due to finishing operations. Typically, the solid deposition is a dye or other chemical used to enhance the color and performance of the leather. Finish add-on is...

  16. 40 CFR 63.5460 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... use include: toggling, hanging, pasting, and vacuum drying. Finish add-on means the amount of solid material deposited on the leather substrate due to finishing operations. Typically, the solid deposition is a dye or other chemical used to enhance the color and performance of the leather. Finish add-on is...

  17. Harnessing Solid-State Ionic Transport for Nanomanufacturing and Nanodevices

    ERIC Educational Resources Information Center

    Hsu, Keng Hao

    2009-01-01

    Through this work a new all-solid, ambient processing condition direct metal patterning technique has been developed and characterized. This ionic-transport-based patterning technique is capable of sub-50nm feature resolution under ambient conditions. It generates features with a rate that is comparable to conventional dry-etching techniques. A…

  18. Arsenic Accumulation and Release Studies Using a Cast Iron Pipe Section from a Drinking Water Distribution System

    EPA Science Inventory

    The tendency of iron solid surfaces to adsorb arsenic and other ions is well known and has become the basis for several drinking water treatment approaches that remove these contaminants. It is reasonable to assume that iron-based solids, such as corrosion deposits present in dri...

  19. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  20. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  1. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  2. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  3. 40 CFR 60.105 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...

  4. Ultra-thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix.

    PubMed

    Whiteley, Justin M; Taynton, Philip; Zhang, Wei; Lee, Se-Hee

    2015-11-18

    Thin solid membranes are formed by a new strategy, whereby an in situ derived self-healing polymer matrix that penetrates the void space of an inorganic solid is created. The concept is applied as a separator in an all-solid-state battery with an FeS2 -based cathode and achieves tremendous performance for over 200 cycles. Processing in dry conditions represents a paradigm shift for incorporating high active-material mass loadings into mixed-matrix membranes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Production of phytase by Mucor racemosus in solid-state fermentation.

    PubMed

    Bogar, Barbara; Szakacs, George; Pandey, Ashok; Abdulhameed, Sabu; Linden, James C; Tengerdy, Robert P

    2003-01-01

    Phytase production was studied by three Mucor and eight Rhizopus strains by solid-state fermentation (SSF) on three commonly used natural feed ingredients (canola meal, coconut oil cake, wheat bran). Mucor racemosus NRRL 1994 (ATCC 46129) gave the highest yield (14.5 IU/g dry matter phytase activity) on coconut oil cake. Optimizing the supplementation of coconut oil cake with glucose, casein and (NH(4))(2)SO(4), phytase production in solid-state fermentation was increased to 26 IU/g dry matter (DM). Optimization was carried out by Plackett-Burman and central composite experimental designs. Using the optimized medium phytase, alpha-amylase and lipase production of Mucor racemosus NRRL 1994 was compared in solid-state fermentation and in shake flask (SF) fermentation. SSF yielded higher phytase activity than did SF based on mass of initial substrate. Because this particular isolate is a food-grade fungus that has been used for sufu fermentation in China, the whole SSF material (crude enzyme, in situ enzyme) may be used directly in animal feed rations with enhanced cost efficiency.

  6. Physicochemical characterization of commercial freeze-dried snake antivenoms.

    PubMed

    Herrera, María; Solano, Daniela; Gómez, Aarón; Villalta, Mauren; Vargas, Mariángela; Sánchez, Andrés; Gutiérrez, José María; León, Guillermo

    2017-02-01

    Freeze-drying is a process used to improve the stability of pharmaceutical proteins, including snake antivenoms. This additional step confers these with a higher stability in comparison to liquid formulations, especially in tropical regions where high temperatures could affect the activity of immunoglobulins. Currently, the knowledge about freeze-drying process conditions for snake antivenoms is very limited. Some of the scarce scientific works on this subject reported reconstitution times up to 90 min for these preparations, which could imply a delay in the beginning of the antivenom therapy at the clinical setting. Therefore there is a reasonable concern about whether freeze-dried antivenoms exhibit the desired attributes for solid pharmaceutical proteins. In this work, a physicochemical characterization of seven commercial freeze-dried snake antivenoms was performed based on tests recommended by the World Health Organization (WHO). No significant differences were observed between the products regarding macroscopic appearance of the solid cakes, reconstitution times, residual humidity and monomers content. On the other hand, total protein concentration, turbidity and electrophoretic profile were different among samples. Microscopic analysis by scanning electron microscopy showed no collapsed structure and, instead, most of the samples showed a characteristic protein morphology composed of smooth plates and channels. All the parameters tested in this study were according to literature recommendations and evidenced that, in spite of slight variations found for some products, formulation and freeze-drying conditions chosen by manufacturers are adequate to prevent aggregation and generate, in physicochemical terms, freeze-dried antivenoms of acceptable quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Development of a sample preparation method for the analysis of current-use pesticides in sediment using gas chromatography.

    PubMed

    Wang, Dongli; Weston, Donald P; Ding, Yuping; Lydy, Michael J

    2010-02-01

    Pyrethroid insecticides have been implicated as the cause of sediment toxicity to Hyalella azteca in both agricultural and urban areas of California; however, for a subset of these toxic sediments (approximately 30%), the cause of toxicity remains unidentified. This article describes the analytical method development for seven additional pesticides that are being examined to determine if they might play a role in the unexplained toxicity. A pressurized liquid extraction method was optimized to simultaneously extract diazinon, methyl parathion, oxyfluorfen, dicofol, fenpropathrin, pyraclostrobin, and indoxacarb from sediment, and the extracts were cleaned using a two-step solid-phase extraction procedure. The final extract was analyzed for the target pesticides by gas chromatography/nitrogen-phosphorus detector (GC/NPD), and gas chromatography/electron capture detector (GC/ECD), after sulfur was removed by shaking with copper and cold crystallization. Three sediments were used as reference matrices to assess method accuracy and precision. Method detection limits were 0.23-1.8 ng/g dry sediment using seven replicates of sediment spiked at 1.0 ng/g dry sediment. Recoveries ranged from 61.6 to 118% with relative standard deviations of 2.1-17% when spiked at 5.0 and 50 ng/g dry sediment. The three reference sediments, spiked with 50 ng/g dry weight of the pesticide mixture, were aged for 0.25, 1, 4, 7, and 14 days. Recoveries of the pesticides in the sediments generally decreased with increased aging time, but the magnitude of the decline was pesticide and sediment dependent. The developed method was applied to field-collected sediments from the Central Valley of California.

  8. Spray Drying of Spinach Juice: Characterization, Chemical Composition, and Storage.

    PubMed

    Çalışkan Koç, Gülşah; Nur Dirim, Safiye

    2017-12-01

    The 1st aim of this study is to determine the influence of inlet and outlet air temperatures on the physical and chemical properties of obtained powders from spinach juice (SJ) with 3.2 ± 0.2 °Brix (°Bx). Second, the effect of 3 different drying agents (maltodextrin, whey powder, and gum Arabic) on the same properties was investigated for the selected inlet/outlet temperatures (160/100 °C) which gives the minimum moisture content and water activity values. For this purpose, the total soluble solid content of SJ was adjusted to 5.0 ± 0.2 °Bx with different drying agents. Finally, the effects of different storage conditions (4, 20, and 30 °C) on the physical and chemical properties of spinach powders (SPs) produced at selected conditions were examined. A pilot scale spray dryer was used at 3 different inlet/outlet air temperatures (160 to 200 °C/80 to 100 °C) where the outlet air temperature was controlled by regulating the feed flow rate. Results showed that the moisture content, water activity, browning index, total chlorophyll, and total phenolic contents of the SP significantly decreased and pH and total color change of the SP significantly increased by the addition of different drying agents (P < 0.05). In addition, the changes in the above-mentioned properties were determined during the storage period, at 3 different temperatures. It was also observed that the vitamin C, β-carotene, chlorophyll, and phenolic compounds retention showed first-order degradation kinetic with activation energy of 32.6840, 10.2736, 27.7031, and 28.2634 kJ/K.mol, respectively. © 2017 Institute of Food Technologists®.

  9. Method and composition in which metal hydride particles are embedded in a silica network

    DOEpatents

    Heung, Leung K.

    1999-01-01

    A silica embedded metal hydride composition and a method for making such a composition. The composition is made via the following process: A quantity of fumed silica is blended with water to make a paste. After adding metal hydride particles, the paste is dried to form a solid. According to one embodiment of the invention, the solid is ground into granules for use of the product in hydrogen storage. Alternatively, the paste can be molded into plates or cylinders and then dried for use of the product as a hydrogen filter. Where mechanical strength is required, the paste can be impregnated in a porous substrate or wire network.

  10. Relationship between turbidity and total suspended solids concentration within a combined sewer system.

    PubMed

    Hannouche, A; Chebbo, G; Ruban, G; Tassin, B; Lemaire, B J; Joannis, C

    2011-01-01

    This article confirms the existence of a strong linear relationship between turbidity and total suspended solids (TSS) concentration. However, the slope of this relation varies between dry and wet weather conditions, as well as between sites. The effect of this variability on estimating the instantaneous wet weather TSS concentration is assessed on the basis of the size of the calibration dataset used to establish the turbidity - TSS relationship. Results obtained indicate limited variability both between sites and during dry weather, along with a significant inter-event variability. Moreover, turbidity allows an evaluation of TSS concentrations with an acceptable level of accuracy for a reasonable rainfall event sampling campaign effort.

  11. Mechanisms of deterioration of nutrients. [retention of flavor during freeze drying

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1975-01-01

    The retention of flavor during freeze drying was studied with model systems. Mechanisms by which flavor retention phenomena is explained were developed and process conditions specified so that flavor retention is optimized. The literature is reviewed and results of studies of the flavor retention behavior of a number of real food products, including both liquid and solid foods are evaluated. Process parameters predicted by the mechanisms to be of greatest significance are freezing rate, initial solids content, and conditions which result in maintenance of sample structure. Flavor quality for the real food showed the same behavior relative to process conditions as predicted by the mechanisms based on model system studies.

  12. Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring.

    PubMed

    De Beer, T R M; Allesø, M; Goethals, F; Coppens, A; Heyden, Y Vander; De Diego, H Lopez; Rantanen, J; Verpoort, F; Vervaet, C; Remon, J P; Baeyens, W R G

    2007-11-01

    The aim of the present study was to propose a strategy for the implementation of a Process Analytical Technology system in freeze-drying processes. Mannitol solutions, some of them supplied with NaCl, were used as models to freeze-dry. Noninvasive and in-line Raman measurements were continuously performed during lyophilization of the solutions to monitor real time the mannitol solid state, the end points of the different process steps (freezing, primary drying, secondary drying), and physical phenomena occurring during the process. At-line near-infrared (NIR) and X-ray powder diffractometry (XRPD) measurements were done to confirm the Raman conclusions and to find out additional information. The collected spectra during the processes were analyzed using principal component analysis and multivariate curve resolution. A two-level full factorial design was used to study the significant influence of process (freezing rate) and formulation variables (concentration of mannitol, concentration of NaCl, volume of freeze-dried sample) upon freeze-drying. Raman spectroscopy was able to monitor (i) the mannitol solid state (amorphous, alpha, beta, delta, and hemihydrate), (ii) several process step end points (end of mannitol crystallization during freezing, primary drying), and (iii) physical phenomena occurring during freeze-drying (onset of ice nucleation, onset of mannitol crystallization during the freezing step, onset of ice sublimation). NIR proved to be a more sensitive tool to monitor sublimation than Raman spectroscopy, while XRPD helped to unravel the mannitol hemihydrate in the samples. The experimental design results showed that several process and formulation variables significantly influence different aspects of lyophilization and that both are interrelated. Raman spectroscopy (in-line) and NIR spectroscopy and XRPD (at-line) not only allowed the real-time monitoring of mannitol freeze-drying processes but also helped (in combination with experimental design) us to understand the process.

  13. Quality Controlled Radiosonde Profile from MC3E

    DOE Data Explorer

    Toto, Tami; Jensen, Michael

    2014-11-13

    The sonde-adjust VAP produces data that corrects documented biases in radiosonde humidity measurements. Unique fields contained within this datastream include smoothed original relative humidity, dry bias corrected relative humidity, and final corrected relative humidity. The smoothed RH field refines the relative humidity from integers - the resolution of the instrument - to fractions of a percent. This profile is then used to calculate the dry bias corrected field. The final correction fixes a time-lag problem and uses the dry-bias field as input into the algorithm. In addition to dry bias, solar heating is another correction that is encompassed in the final corrected relative humidity field. Additional corrections were made to soundings at the extended facility sites (S0*) as necessary: Corrected erroneous surface elevation (and up through rest of height of sounding), for S03, S04 and S05. Corrected erroneous surface pressure at Chanute (S02).

  14. 21 CFR 184.1979a - Reduced lactose whey.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Action” under the heading “Fat,” or in section 16.199 (dry sample), entitled “Fat in Dried Milk (45...,” or in section 16.196 (dry sample), entitled “Ash—Official Final Action” under the heading “Dried Milk, Nonfat Dry Milk, and Malted Milk.” (iv) Lactose content, not more than 60 percent—as determined by the...

  15. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Bannochie, C.

    2014-05-12

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysismore » of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD, XRD and SEM) in support of the Salt IPT chemistry team. The overall conclusions from analyses performed in this study are that the PRFT slurry consists of 0.61 Wt.% insoluble MST solids suspended in a 0.77 M [Na+] caustic solution containing various anions such as nitrate, nitrite, sulfate, carbonate and oxalate. The corresponding measured sulfur level in the PRFT slurry, a critical element for determining how much of the PRFT slurry gets blended into the SRAT, is 0.437 Wt.% TS. The PRFT slurry does not contain insoluble oxalates nor significant quantities of high activity sludge solids. The lack of sludge solids has been alluded to by the Salt IPT chemistry team in citing that the mixing pump has been removed from Tank 49H, the feed tank to ARP-MCU, thus allowing the sludge solids to settle out. The PRFT aqueous slurry from DWPF was found to contain 5.96 Wt.% total dried solids. Of these total dried solids, relatively low levels of insoluble solids (0.61 Wt.%) were measured. The densities of both the filtrate and slurry were 1.05 g/mL. Particle size distribution of the PRFT solids in filtered caustic simulant and XRD analysis of washed/dried PRFT solids indicate that the PRFT slurry contains a bimodal distribution of particles in the range of 1 and 6 μm and that the particles contain sodium titanium oxide hydroxide Na2Ti2O4(OH)2 crystalline material as determined by XRD. These data are in excellent agreement with similar data obtained from laboratory sampling of vendor supplied MST. Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-ray Spectroscopy (EDS) analysis of washed/dried PRFT solids shows the particles to be like previous MST analyses consisting of irregular shaped micron-sized solids consisting primarily of Na and Ti. Thermogravimetric analysis of the washed and unwashed PRFT solids shows that the washed solids are very similar to MST solids. The TGA mass loss signal for the unwashed solids shows similar features to TGA performed on cellulose nitrate filter paper indicating significant presence of the deteriorated filter in this unwashed sample. Neither the washed nor unwashed PRFT solids TGA traces showed any features that would indicate presence of sodium oxalate solids. The PRFT Filtrate elemental analysis shows that Na, S and Al are major soluble species with trace levels of B, Cr, Cu, K, Li, Si, Tc, Th and U present. Nitrate, nitrite, sulfate, oxalate, carbonate and hydroxide are major soluble anion species. There is good agreement between the analyzed TOC and the total carbon calculated from the sum of oxalate and minor species formate. Comparison of the amount and speciation of the carbon species between filtrate and slurry indicates no significant carbon-containing species, e.g., sodium oxalate, are present in the slurry solids. Dissolution of the PRFT slurry and subsequent analysis shows that Na, Ti, Si and U are the major elements present on a Wt.% total dried solids basis with 30, 5.8 and 0.47 and 0.11 Wt.% total dried solids, respectively. The amount of Al in the dissolved PRFT slurry is less than that calculated from the PRFT filtrate alone which suggests that the mixed acid digestion used in this work is not optimized for Al recovery. The concentrations of Ca, Fe, Hg and U are all low (at or below 0.11 wt%) and there is no detectable Mn or Ni present which indicates no significant HLW sludge solids are present in the PRFT slurry sample.« less

  16. FINAL REPORT: Transformational electrode drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus Daniel, C.; Wixom, M.

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheatingmore » and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.« less

  17. Comparison of a Lyophilized Drug Product to Other Solid and Liquid Media for the Extraction of Elastomeric Oligomers from a Butyl Rubber Stopper.

    PubMed

    Zdravkovic, Steven A

    2017-01-01

    Lyophilization is commonly used to extend the shelf life of pharmaceutical products that are otherwise unstable when stored as a liquid formulation. However, the ability of a lyophilized drug, or other solid medium, to leach or extract substances from a pharmaceutical packaging material is not well characterized. To provide insight into this area of uncertainty, the extraction properties of a lyophilized drug product, the lyophilized drug product reconstituted in water, and several other solid and liquid media of varying polarity were determined using a glass vial with a butyl rubber stopper as a representative pharmaceutical packaging system. The results obtained in this study show that the extracting power of a medium, whether solid or liquid, was primarily a function of polarity. Thus, the amount of each extractable observed for the lyophilized and reconstituted drug product were in trend with the other solid and liquid media, respectively. Nevertheless, it was notable that the lyophilized drug product was able to leach substances from the stopper in quantifiable amounts, whereas the reconstituted drug product contained no detectable leachables. Using a mathematical relationship, it was determined that the extraction power of the lyophilized drug product was equivalent to a 50/50 isopropanol/water solution. LAY ABSTRACT: Freeze drying is commonly used to extend the shelf life of pharmaceutical products that are otherwise unstable when stored as a liquid formulation. However, the propensity for substances to migrate from a pharmaceutical packaging material and into a solid drug formulation is not well characterized. To provide insight into this area of uncertainty, the migration of substances from a glass vial with a butyl rubber stopper and into a lyophilized drug product, the drug product reconstituted with water, as well as several solid and liquid media of varying polarity were assessed. The results obtained in this study show that the extracting power of a medium, whether solid or liquid, was primarily a function of polarity and thus could be related to one another. Furthermore, the results for the freeze-dried and reconstituted drug products were in trend with the other solid and liquid media tested, respectively, and showed that the freeze-dried drug was able to leach substances from the stopper in measureable amounts, whereas the reconstituted drug product contained no substances that had originated from the stopper. © PDA, Inc. 2017.

  18. Short communication: Environmental mastitis pathogen counts in freestalls bedded with composted and fresh recycled manure solids.

    PubMed

    Cole, K J; Hogan, J S

    2016-02-01

    An experiment was conducted to compare bacterial counts of environmental mastitis pathogens in composted recycled manure solids bedding with those in fresh recycled manure solids. Eighteen Holstein cows were housed in 1 pen with 18 stalls. One row of 9 freestalls included mattresses and was bedded weekly with composted recycled manure solids. The second row of 9 freestalls included mattresses and was bedded weekly with fresh recycled manure solids. The back one-third of stalls toward the alleyway was covered in 25 to 50 mm of bedding. Samples were taken from the back one-third of 4 stalls for both treatments on d 0, 1, 2, and 6 of each week. After 3 wk, bedding treatments were switched between rows, making the total duration 6 wk. Mean total gram-negative bacterial counts were approximately 0.5 log10 cfu/g of dry matter lower in the composted recycled manure solids on d 0 compared with fresh recycled manure solids. Klebsiella species, coliform, and Streptococcus species counts were at least 1.0 log10 cfu/g of dry matter lower in composted compared with fresh recycled manure solids on d 0. Only gram-negative bacterial counts on d 1 were reduced in composted recycled manure solids compared with fresh recycled manure solids. Differences were not observed between treatments in gram-negative bacterial, coliform, Klebsiella species, or Streptococcus species counts on d 2 and 6. Ash content was higher in composted recycled manure solids compared with fresh recycled manure solids on d 0, 1, 2, and 6. Despite the increase in ash after composting, bacterial counts of mastitis pathogens in composted recycled manure solids were comparable with those in fresh recycled manure when used as freestall bedding. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Influence of type of muscle on volatile compounds throughout the manufacture of Celta dry-cured ham.

    PubMed

    Bermúdez, Roberto; Franco, Daniel; Carballo, Javier; Lorenzo, José M

    2015-12-01

    The effect of muscle type on volatile compounds throughout the manufacture of Celta dry-cured ham was studied. Thirty Celta ham were taken from the fresh pieces, after the end of the salting stage, after 120 days of post-salting, after the end of drying-ripening stage, and after 165 and 330 days of "bodega" step. The volatile compounds from semimembranosus (SM) and biceps femoris (BF) muscles were extracted by using headspace-solid phase microextraction (SPME) and analysed by gas chromatographic/mass spectrometry (GC/MS). Fifty-five volatile compounds were identified and quantified. The number of volatile compounds increased during the different steps of the process, reaching at 550 days of process 39 and 40 volatile compounds in SM and BF muscles, respectively. Results indicated that the most abundant chemical family in flavour at the end of the manufacturing process were esters in the two muscles studied, followed by aliphatic hydrocarbons and aldehydes. During the manufacturing process, an increase in the total amount of volatile compounds was observed, being this increase more marked in samples from BF muscle (from 550.7 to 1118.9 × 10(6) area units) than in samples from SM muscle (from 459.3 to 760.4 × 10(6) area units). Finally, muscle type displayed significant (P < 0.05) differences for four esters, two alcohols, one aldehyde, one ketone and four aliphatic hydrocarbons. © The Author(s) 2014.

  20. Periphyton and abiotic factors influencing arsenic speciation in aquatic environments: Periphyton alters arsenic speciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Adeline R.; Silva, Silmara Costa; Webb, Samuel M.

    Benthic periphytic biofilms are important food sources at the base of aquatic ecosystems. These biofilms also sit at the interface of oxic waters and hypoxic sediments, and can be influenced by or influence trace element speciation. In the present study, we compared arsenic (As) enrichment in periphyton exposed to arsenate (As[V]) or arsenite (As[III]) (20 μg/L, static renewal, 7 d), and we found similar accumulation patterns of total As (101 ± 27 and 88 ± 22mgkg -1 dry wt, respectively). Periphyton As was 6281- and 6684-fold higher than their aqueous exposures and occurred primarily as As(V). When these biofilms weremore » fed to larval mayflies, similar total As tissue concentrations (13.9 and 14.6mgkg -1 dry wt, respectively) were observed, revealing significant biodilution (~10% of their dietary concentrations). Finally, we investigated the influence of aeration and periphyton presence on As speciation in solutions and solid phases treated with As(III). Predominantly As(III) solutions were slowly oxidized over a 7-d time period, in the absence of periphyton, and aeration did not strongly affect oxidation rates. However, in the presence of periphyton, solution and solid-phase analyses (by microscale x-ray absorption spectroscopy) showed rapid As(III) oxidation to As(V) and an increasing proportion of organo-As forming over time. Thus periphyton plays several roles in As environmental behavior: 1) decreasing total dissolved As concentrations via abiotic and biotic accumulation, 2) rapidly oxidizing As(III) to As(V), 3) effluxing organo-As forms into solution, and 4) limiting trophic transfer to aquatic grazers.« less

  1. Periphyton and abiotic factors influencing arsenic speciation in aquatic environments: Periphyton alters arsenic speciation

    DOE PAGES

    Lopez, Adeline R.; Silva, Silmara Costa; Webb, Samuel M.; ...

    2017-11-02

    Benthic periphytic biofilms are important food sources at the base of aquatic ecosystems. These biofilms also sit at the interface of oxic waters and hypoxic sediments, and can be influenced by or influence trace element speciation. In the present study, we compared arsenic (As) enrichment in periphyton exposed to arsenate (As[V]) or arsenite (As[III]) (20 μg/L, static renewal, 7 d), and we found similar accumulation patterns of total As (101 ± 27 and 88 ± 22mgkg -1 dry wt, respectively). Periphyton As was 6281- and 6684-fold higher than their aqueous exposures and occurred primarily as As(V). When these biofilms weremore » fed to larval mayflies, similar total As tissue concentrations (13.9 and 14.6mgkg -1 dry wt, respectively) were observed, revealing significant biodilution (~10% of their dietary concentrations). Finally, we investigated the influence of aeration and periphyton presence on As speciation in solutions and solid phases treated with As(III). Predominantly As(III) solutions were slowly oxidized over a 7-d time period, in the absence of periphyton, and aeration did not strongly affect oxidation rates. However, in the presence of periphyton, solution and solid-phase analyses (by microscale x-ray absorption spectroscopy) showed rapid As(III) oxidation to As(V) and an increasing proportion of organo-As forming over time. Thus periphyton plays several roles in As environmental behavior: 1) decreasing total dissolved As concentrations via abiotic and biotic accumulation, 2) rapidly oxidizing As(III) to As(V), 3) effluxing organo-As forms into solution, and 4) limiting trophic transfer to aquatic grazers.« less

  2. New cost-effective bioconversion process of palm kernel cake into bioinsecticides based on Beauveria bassiana and Isaria javanica.

    PubMed

    do Nascimento Silva, Jaqueline; Mascarin, Gabriel Moura; Dos Santos Gomes, Isabel Cristina; Tinôco, Ricardo Salles; Quintela, Eliane Dias; Dos Reis Castilho, Leda; Freire, Denise Maria Guimarães

    2018-03-01

    The present study aimed to add value to palm oil by-products as substrates to efficiently produce conidia of Beauveria bassiana and Isaria javanica (Hypocreales: Cordycipitaceae) for biological control of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), through a solid-state fermentation process using palm kernel cake and palm fiber as nutrient source and solid matrix, respectively. The optimum culture conditions yielded high concentrations of viable conidia after air-drying, when the fungi were grown on palm kernel cake (B. bassiana 7.65 × 10 9 and I. javanica 2.91 × 10 9  conidia g -1 dry substrate) after 6 days under optimal growth conditions set to 60% substrate moisture and 32 °C. Both fungal strains exhibited high efficacy against third-instar whitefly nymphs, inducing mortality up to 62.9 and 56.6% by B. bassiana and I. javanica, respectively, assessed after 9 days post-application in a screenhouse. Furthermore, we noted that insect mortality was strongly correlated with high atmospheric moisture, while B. bassiana appeared to require shorter accumulative hours under high moisture to kill whitefly nymphs compared to I. javanica. Our results underpin a feasible and cost-effective mass production method for aerial conidia, using palm kernel as the main substrate in order to produce efficacious fungal bioinsecticides against an invasive whitefly species in Brazil. Finally, our fermentation process may offer a sustainable and cost-effective means to produce eco-friendly mycoinsecticides, using an abundant agro-industrial by-product from Brazil that will ultimately assist in the integrated management of agricultural insect pests.

  3. Mannitol/l-Arginine-Based Formulation Systems for Freeze Drying of Protein Pharmaceuticals: Effect of the l-Arginine Counter Ion and Formulation Composition on the Formulation Properties and the Physical State of Mannitol.

    PubMed

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2016-10-01

    Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Standards of Performance for New Stationary Sources; Petroleum Dry Cleaners: 1985 Response to Petition for Reconsideration & Final Amendments to the Rule (50 FR 49022)

    EPA Pesticide Factsheets

    This document is a copy of the Federal Register publication of the November 27, 1985 Response to Petition for Reconsideration and Final Amendments to the Rule for the Standards of Performance for New Stationary Sources; Petroleum Dry Cleaners.

  5. A new method for microwave assisted ethanolic extraction of Mentha rotundifolia bioactive terpenoids.

    PubMed

    García-Sarrió, María Jesús; Sanz, María Luz; Sanz, Jesús; González-Coloma, Azucena; Cristina Soria, Ana

    2018-04-14

    A new microwave-assisted extraction (MAE) method using ethanol as solvent has been optimized by means of a Box-Behnken experimental design for the enhanced extraction of bioactive terpenoids from Mentha rotundifolia leaves; 100°C, 5 min, 1.125 g dry sample: 10 mL solvent and a single extraction cycle were selected as optimal conditions. Improved performance of MAE method in terms of extraction yield and/or reproducibility over conventional solid-liquid extraction and ultrasound assisted extraction was also previously assessed. A comprehensive characterization of MAE extracts was carried out by GC-MS. A total of 46 compounds, mostly terpenoids, were identified; piperitenone oxide and piperitenone were the major compounds determined. Several neophytadiene isomers were also detected for the first time in MAE extracts. Different procedures (solid-phase extraction and activated charcoal (AC) treatment) were also evaluated for clean-up of MAE extracts, with AC providing the highest enrichment in bioactive terpenoids. Finally, the MAE method here developed is shown as a green, fast, efficient and reproducible liquid extraction methodology to obtain M. rotundifolia bioactive extracts for further application, among others, as food preservatives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Consecutive anaerobic-aerobic treatment of the organic fraction of municipal solid waste and lignocellulosic materials in laboratory-scale landfill-bioreactors.

    PubMed

    Pellera, Frantseska-Maria; Pasparakis, Emmanouil; Gidarakos, Evangelos

    2016-10-01

    The scope of this study is to evaluate the use of laboratory-scale landfill-bioreactors, operated consecutively under anaerobic and aerobic conditions, for the combined treatment of the organic fraction of municipal solid waste (OFMSW) with two different co-substrates of lignocellulosic nature, namely green waste (GW) and dried olive pomace (DOP). According to the results such a system would represent a promising option for eventual larger scale applications. Similar variation patterns among bioreactors indicate a relatively defined sequence of processes. Initially operating the systems under anaerobic conditions would allow energetic exploitation of the substrates, while the implementation of a leachate treatment system ultimately aiming at nutrient recovery, especially during the anaerobic phase, could be a profitable option for the whole system, due to the high organic load that characterizes this effluent. In order to improve the overall effectiveness of such a system, measures towards enhancing methane contents of produced biogas, such as substrate pretreatment, should be investigated. Moreover, the subsequent aerobic phase should have the goal of stabilizing the residual materials and finally obtain an end material eventually suitable for other purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Calcite phase determination of CaCO3 nanoparticles synthesized by one step drying method

    NASA Astrophysics Data System (ADS)

    Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.

    2018-05-01

    Calcium Carbonate (CaCO3) is a type of carbonic salt. It exist naturally as white odourless solid and may also be synthesized by chemical reactions. This work studies one-step precipitation of CaCO3 that was prepared by novel method of one-step precipitation method. The method was then proceeded by different types of drying. The first type is by normal drying in oven whereas the second type is with the presence of hydrothermal influence. From the results, precipitated CaCO3 dried by normal drying method produces CaCO3 with two polymorphs present; calcite and vaterite. Normal drying at 500°C has no vaterite phase left. Drying by hydrothermal precipitated CaCO3 has Nitrogen (N) left on the surfaces of the precipitated CaCO3. This work successfully identified calcite phase in the precipitated CaCO3.

  8. USERS GUIDE FOR THE CONVERSION OF NAVY PAINT SPRAY BOOTH PARTICULATE EMISSION CONTROL SYSTEMS FROM WET TO DRY OPERATION

    EPA Science Inventory

    The report is a guide or convrting U.S. Navy paint spray booth particulate emission control systems from wet to dry operation. The use of water curtains for air pollution control of paint spray booths is considered a major source of water and solid waste pol-lution from industria...

  9. A Molecular Explanation of How the Fog Is Produced When Dry Ice Is Placed in Water

    ERIC Educational Resources Information Center

    Kuntzleman, Thomas S.; Ford, Nathan; No, Jin-Hwan; Ott, Mark E.

    2015-01-01

    Everyone enjoys seeing the cloudy white fog generated when solid carbon dioxide (dry ice) is placed in water. Have you ever wondered what physical and chemical processes occur to produce this fog? When asked this question, many chemical educators suggest that the fog is produced when atmospheric water vapor condenses on cold carbon dioxide gas…

  10. Retention of antioxidant capacity of vacuum microwave dried cranberry.

    PubMed

    Leusink, Gwen J; Kitts, David D; Yaghmaee, Parastoo; Durance, Tim

    2010-04-01

    In this study, cranberries were dried by vacuum-microwave drying (VMD), freeze-drying (FD), or hot air-drying (AD), to compare the effects of different drying processes on both physical changes as well as the retention of bioactive components in dried samples. Total porosity (%) and average pore radius of dehydrated cranberries were greater using VMD compared to FD and AD (P < 0.05). Crude methanol cranberry powdered extracts were fractionated by solid phase extraction (SPE) into organic acid-, total phenolics-, anthocyanin-, or proanthocyanidin-enriched extracts, respectively. The chemical composition of the 60% acidified methanol fractions contained cyanidin-3-galactoside, cyanidin-3-arabinoside, peonidin-3-galactoside, and peonidin-3-arabinoside, as assessed by HPLC. Antioxidant activities of cranberry fractions were measured using chemical ORAC and ABTS methods. The 60% acidified methanol fraction had a significantly higher (P < 0.05) antioxidant potential than the other chemical fractions, which was largely attributed to the relatively higher anthocyanin content. In general, vacuum-microwave drying and freeze-drying resulted in similar retention of anthocyanins and antioxidant activity, which were both relatively higher (P < 0.05) than that recovered from cranberries dried by hot air drying.

  11. Enhanced oral bioavailability and controlled release of dutasteride by a novel dry elixir.

    PubMed

    Jang, Dong-Jin; Kim, Sung Tae; Oh, Euichaul; Ban, Eunmi

    2014-01-01

    To develop a solid dosage form of dutasteride for improving its oral bioavailability, a novel dry elixir (DE) system was fabricated. DEs incorporating dextrin and/or xanthan gum were prepared using spray-drying and evaluated by morphology, ethanol content, crystallinity, dissolution and oral bioavailability. DEs were spherical with a smooth surface and had an average particle size of 20-25 μm. The ethanol content could be easily varied by controlling the spray-drying temperature. The dissolution profiles of dutasteride from each DE proved to be much faster than that of dutasteride powder due to the amorphous state and a high amount of incorporated ethanol. In particular, the pharmacokinetic profiles of dutasteride were significantly altered depending on the proportions of dextrin and xanthan gum. Blood concentrations of dutasteride from DE formulations were similar to those of market products and much greater than those of native dutasteride. Interestingly, the dissolution and pharmacokinetic profiles were easily controlled by changing the ratio of dextrin to xanthan gum. The data suggests that a DE using dextrin and/or xanthan gum could provide an applicable solid dosage form to improve the dissolution and bio-availability of dutasteride as well as to modulate its pharmacokinetics.

  12. Modular Coils with Low Hydrogen Content Especially for MRI of Dry Solids.

    PubMed

    Eichhorn, Timon; Ludwig, Ute; Fischer, Elmar; Gröbner, Jens; Göpper, Michael; Eisenbeiss, Anne-Katrin; Flügge, Tabea; Hennig, Jürgen; von Elverfeldt, Dominik; Hövener, Jan-Bernd

    2015-01-01

    Recent advances have enabled fast magnetic resonance imaging (MRI) of solid materials. This development has opened up new applications for MRI, but, at the same time, uncovered new challenges. Previously, MRI-invisible materials like the housing of MRI detection coils are now readily depicted and either cause artifacts or lead to a decreased image resolution. In this contribution, we present versatile, multi-nuclear single and dual-tune MRI coils that stand out by (1) a low hydrogen content for high-resolution MRI of dry solids without artifacts; (2) a modular approach with exchangeable inductors of variable volumes to optimally enclose the given object; (3) low cost and low manufacturing effort that is associated with the modular approach; (4) accurate sample placement in the coil outside of the bore, and (5) a wide, single- or dual-tune frequency range that covers several nuclei and enables multinuclear MRI without moving the sample. The inductors of the coils were constructed from self-supporting copper sheets to avoid all plastic materials within or around the resonator. The components that were mounted at a distance from the inductor, including the circuit board, coaxial cable and holder were manufactured from polytetrafluoroethylene. Residual hydrogen signal was sufficiently well suppressed to allow 1H-MRI of dry solids with a minimum field of view that was smaller than the sensitive volume of the coil. The SNR was found to be comparable but somewhat lower with respect to commercial, proton-rich quadrature coils, and higher with respect to a linearly-polarized commercial coil. The potential of the setup presented was exemplified by 1H/23Na high-resolution zero echo time (ZTE) MRI of a model solution and a dried human molar at 9.4 T. A full 3D image dataset of the tooth was obtained, rich in contrast and similar to the resolution of standard cone-beam computed tomography.

  13. Modular Coils with Low Hydrogen Content Especially for MRI of Dry Solids

    PubMed Central

    Fischer, Elmar; Gröbner, Jens; Göpper, Michael; Eisenbeiss, Anne-Katrin; Flügge, Tabea; Hennig, Jürgen; von Elverfeldt, Dominik; Hövener, Jan-Bernd

    2015-01-01

    Introduction Recent advances have enabled fast magnetic resonance imaging (MRI) of solid materials. This development has opened up new applications for MRI, but, at the same time, uncovered new challenges. Previously, MRI-invisible materials like the housing of MRI detection coils are now readily depicted and either cause artifacts or lead to a decreased image resolution. In this contribution, we present versatile, multi-nuclear single and dual-tune MRI coils that stand out by (1) a low hydrogen content for high-resolution MRI of dry solids without artifacts; (2) a modular approach with exchangeable inductors of variable volumes to optimally enclose the given object; (3) low cost and low manufacturing effort that is associated with the modular approach; (4) accurate sample placement in the coil outside of the bore, and (5) a wide, single- or dual-tune frequency range that covers several nuclei and enables multinuclear MRI without moving the sample. Materials and Methods The inductors of the coils were constructed from self-supporting copper sheets to avoid all plastic materials within or around the resonator. The components that were mounted at a distance from the inductor, including the circuit board, coaxial cable and holder were manufactured from polytetrafluoroethylene. Results and Conclusion Residual hydrogen signal was sufficiently well suppressed to allow 1H-MRI of dry solids with a minimum field of view that was smaller than the sensitive volume of the coil. The SNR was found to be comparable but somewhat lower with respect to commercial, proton-rich quadrature coils, and higher with respect to a linearly-polarized commercial coil. The potential of the setup presented was exemplified by 1H / 23Na high-resolution zero echo time (ZTE) MRI of a model solution and a dried human molar at 9.4 T. A full 3D image dataset of the tooth was obtained, rich in contrast and similar to the resolution of standard cone-beam computed tomography. PMID:26496192

  14. Effect of temperature on continuous dry fermentation of swine manure.

    PubMed

    Deng, Liangwei; Chen, Chuang; Zheng, Dan; Yang, Hongnan; Liu, Yi; Chen, Ziai

    2016-07-15

    Laboratory-scale experiments were performed on the dry digestion of solid swine manure in a semi-continuous mode using 4.5 L down plug-flow anaerobic reactors with an organic loading rate of 3.46 kg volatile solids (VS) m(-3) d(-1) to evaluate the effects of temperature (15, 25 and 35 °C). At 15 °C, biogas production was the poorest due to organic overload and acidification, with a methane yield of 0.036 L CH4 g(-1) VS added and a volumetric methane production rate of 0.125 L CH4 L(-1) d(-1). The methane yield and volumetric methane production rate at 25 °C (0.226 L CH4 g(-1) VS added and 0.783 L CH4 L(-1) d(-1), respectively) were 6.24 times higher than those at 15 °C. However, the methane yield (0.237 L CH4 g(-1) VS added) and the volumetric methane production rate (0.821 L CH4 L(-1) d(-1)) at 35 °C were only 4.86% higher than those at 25 °C, which indicated similar results were obtained at 25 °C and 35 °C. The lower biogas production at 35 °C in dry digestion compared with that in wet digestion could be attributed to ammonia inhibition. For a single pig farm, digestion of solid manure is accomplished in small-scale domestic or small-farm bioreactors, for which operating temperatures of 35 °C are sometimes difficult to achieve. Considering biogas production, ammonia inhibition and net energy recovery, an optimum temperature for dry digestion of solid swine manure is 25 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 40 CFR 405.122 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Whey Subcategory § 405.122 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) For whey drying plants with an input equivalent to more than 57,000 lb/day of 40 percent solids whey (22,800 lb/day of solids...

  16. Analysis of Solar Chimneys in Different Climate Zones - Case of Social Housing in Ecuador

    NASA Astrophysics Data System (ADS)

    Godoy-Vaca, Luis; Almaguer, Manuel; Martínez-Gómez, Javier; Lobato, Andrea; Palme, Massimo

    2017-10-01

    The aim of this research is to simulate the performance of a solar chimney located in different macro-zones in Ecuador. The proposed solar chimney model was simulated using a python script in order to predict the temperature distribution and the mass flow over time. The results obtained were firstly compared with experimental data for dry-warm climate. Then, the model was evaluated and tested in real weather conditions: dry-warm, moist-warm and rainy-cold. In addition, the assumed chimney dimensions were chosen according to the literature for the studied conditions. In spite of evaluating the best nightly ventilation, different chimney wall materials were tested: solid brick, common brick and reinforced concrete. The results showed that concrete in a dry-warm climate, a metallic layer on the gap with solid brick in a moist-warm climate and reinforced concrete in a rainy cold climate used for the absorbent wall improve the thermal inertia of the social housing.

  17. Co-producing iturin A and poly-γ-glutamic acid from rapeseed meal under solid state fermentation by the newly isolated Bacillus subtilis strain 3-10.

    PubMed

    Yao, Dehui; Ji, Zhixia; Wang, Changjun; Qi, Gaofu; Zhang, Lili; Ma, Xin; Chen, Shouwen

    2012-03-01

    The strain 3-10 was isolated from soil and identified as B. subtilis according to morphological and physiological characteristics and nucleotide sequence of 16S rRNA. It co-produced anti-fungal iturin A and fertilizer synergist of poly-γ-glutamic acid (γ-PGA) under solid state fermentation (SSF) with rapeseed meal. The co-production of iturin A and γ-PGA reached 5.3 and 51.3 g/kg-dry weight culture, respectively, and the number of viable cells reached 1.9 × 10(10) CFU/g-dry weight culture. In pot tests, the shoot length and dry weight of watermelon seedlings treated by the SSF culture improved by 48.0 and 30.8%, respectively compared to the control; and its biocontrol effect on watermelon fusarium wilt achieved 89.6%. These results highlight a novel strategy to exploit the low-cost and widely available rapeseed meal as dual-functional bio-organic fertilizer under SSF by B. subtilis.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y.V.; Baghy, M.O.

    Sweet potato can yield 1000 gallons of ethanol/acre compared with 250-300 gal/acre for corn. Sweet potatoes of normal, relatively high, and very high dry-matter contents were fermented to ethanol. Pectinase was necessary to decrease viscosity before fermentation for economic processing, especially for varieties of normal and relatively high dry-matter contents. Attained yield of ethanol was 90% of theoretical value. After ethanol was distilled, residual stillage was separated by screening and centrifugation into filter cake, centrifuged solids, and stillage solubles. Filter cake and centrifuged solids had crude protein contents (nitrogen x 6.25, dry basis) of 22-32% and 42-57%, respectively, and accountedmore » for 44-85% and 0-17% of total sweet potato nitrogen. Sweet potatoes and their fermented products had 4.3-7.6 g of lysine/16 g of N and are expected to have good nutritional value. This practical method to ferment sweet potato for ethanol and to recover valuable protein-rich byproducts may have commercial potential. (Refs. 19).« less

  19. Foam-mat drying technology: A review.

    PubMed

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  20. Locomotion and claw disorders in Norwegian dairy cows housed in freestalls with slatted concrete, solid concrete, or solid rubber flooring in the alleys.

    PubMed

    Fjeldaas, T; Sogstad, A M; Osterås, O

    2011-03-01

    This study was part of a cross-sectional project on freestall housing, and the aim was to compare locomotion and claw disorders in freestall dairy cattle herds with slatted concrete, solid concrete, or solid rubber flooring in the alleys. The final population for studying claw disorders consisted of 66 dairy herds with 2,709 dry or lactating cows, whereas the population for studying locomotion consisted of 54 herds with 2,216 cows. All herds used Norwegian Red as the main breed. The herds were visited by 15 trained claw trimmers one time during the period from the beginning of February to summer let-out onto pasture in 2008. The trimmers assessed locomotion scores (LocS) of all cows before trimming. At trimming, claw disorders were diagnosed and recorded in the Norwegian Claw Health Card. Estimates describing locomotion and claw disorders in the hind feet were identified by use of multivariable models fit with LocS and each claw disorder as dependent variables, respectively. Herd nested within claw trimmer was included in the model as random effects. The odds ratio (OR) of having LocS >2 and LocS >3 was 1.9 and 2.1, respectively, on slatted concrete compared with solid concrete. Fewer cases of dermatitis were found on slatted than solid concrete (OR=0.70) and a tendency was observed for fewer heel horn erosions on slatted concrete than solid rubber (OR=0.47). Hemorrhages of the white line and sole were more prevalent in herds housed on slatted and solid concrete than in those housed on solid rubber (OR=2.6 and OR=2.1, respectively). White line fissures were also more prevalent in herds housed on slatted and solid concrete than in those housed on solid rubber (OR=2.1 and OR=2.0, respectively). Double soles were more prevalent on solid concrete than solid rubber (OR=4.4). However, sole ulcers were less prevalent in herds with slatted and solid concrete than solid rubber (OR=0.39 and OR=0.53, respectively). Fewer corkscrewed claws were found on slatted concrete than both solid rubber and solid concrete (OR=0.60 and OR=0.44, respectively). More white line crossing fissures were recorded on slatted and solid concrete than solid rubber (OR=3.6 and OR=3.1, respectively). This shows that solid rubber flooring was favorable when most laminitis-related lesions were considered, whereas slatted concrete was favorable for infectious claw lesions and corkscrewed claws but not for locomotion. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Enhancement of ethanol production from green liquor-ethanol-pretreated sugarcane bagasse by glucose-xylose cofermentation at high solid loadings with mixed Saccharomyces cerevisiae strains.

    PubMed

    You, Yanzhi; Li, Pengfei; Lei, Fuhou; Xing, Yang; Jiang, Jianxin

    2017-01-01

    Efficient cofermentation of glucose and xylose is necessary for economically feasible bioethanol production from lignocellulosic biomass. Here, we demonstrate pretreatment of sugarcane bagasse (SCB) with green liquor (GL) combined with ethanol (GL-Ethanol) by adding different GL amounts. The common Saccharomyces cerevisiae (CSC) and thermophilic S. cerevisiae (TSC) strains were used and different yeast cell mass ratios (CSC to TSC) were compared. The simultaneous saccharification and cofermentation (SSF/SSCF) process was performed by 5-20% (w/v) dry substrate (DS) solid loadings to determine optimal conditions for the co-consumption of glucose and xylose. Compared to previous studies that tested fermentation of glucose using only the CSC, we obtained higher ethanol yield and concentration (92.80% and 23.22 g/L) with 1.5 mL GL/g-DS GL-Ethanol-pretreated SCB at 5% (w/v) solid loading and a CSC-to-TSC yeast cell mass ratio of 1:2 (w/w). Using 10% (w/v) solid loading under the same conditions, the ethanol concentration increased to 42.53 g/L but the ethanol yield decreased to 84.99%. In addition, an increase in the solid loading up to a certain point led to an increase in the ethanol concentration from 1.5 mL GL/g-DS-pretreated SCB. The highest ethanol concentration (68.24 g/L) was obtained with 15% (w/v) solid loading, using a CSC-to-TSC yeast cell mass ratio of 1:3 (w/w). GL-Ethanol pretreatment is a promising pretreatment method for improving both glucan and xylan conversion efficiencies of SCB. There was a competitive relationship between the two yeast strains, and the glucose and xylose utilization ability of the TSC was better than that of the CSC. Ethanol concentration was obviously increased at high solid loading, but the yield decreased as a result of an increase in the viscosity and inhibitor levels in the fermentation system. Finally, the SSCF of GL-Ethanol-pretreated SCB with mixed S. cerevisiae strains increased ethanol concentration and was an effective conversion process for ethanol production at high solid loading.

  2. Experimental evaluation of drying characteristics of sewage sludge and hazelnut shell mixtures

    NASA Astrophysics Data System (ADS)

    Pehlivan, Hüseyin; Ateş, Asude; Özdemir, Mustafa

    2016-11-01

    In this study the drying behavior of organic and agricultural waste mixtures has been experimentally investigated. The usability of sewage sludge as an organic waste and hazelnut shell as an agricultural waste was assessed in different mixture range. The paper discusses the applicability of these mixtures as a recovery energy source. Moisture content of mixtures has been calculated in laboratory and plant conditions. Indoor and outdoor solar sludge drying plants were constructed in pilot scale for experimental purposes. Dry solids and climatic conditions were constantly measured. A total more than 140 samples including for drying has been carried out to build up results. Indoor and outdoor weather conditions are taken into consideration in winter and summer. The most effective drying capacity is obtained in mixture of 20 % hazelnut shell and 80 % sewage sludge.

  3. Simple technologies for on-farm composting of cattle slurry solid fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brito, L.M., E-mail: miguelbrito@esa.ipvc.pt; Mourao, I.; Coutinho, J., E-mail: j_coutin@utad.pt

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Simple management techniques were examined for composting slurry solid fraction. Black-Right-Pointing-Pointer Composting slurry solids was effective without bulking agents, turning or rewetting. Black-Right-Pointing-Pointer Maximum rates of organic matter destruction were observed in short piles. Black-Right-Pointing-Pointer Thermophilic temperatures in tall piles maximised sanitation and moisture reduction. Black-Right-Pointing-Pointer The simple compost management approach maximised N retention and agronomic value. - Abstract: Composting technologies and control systems have reached an advanced stage of development, but these are too complex and expensive for most agricultural practitioners for treating livestock slurries. The development of simple, but robust and cost-effective techniques for composting animalmore » slurries is therefore required to realise the potential benefits of waste sanitation and soil improvement associated with composted livestock manures. Cattle slurry solid fraction (SF) was collected at the rates of 4 m{sup 3} h{sup -1} and 1 m{sup 3} h{sup -1} and composted in tall (1.7 m) and short (1.2 m) static piles, to evaluate the physicochemical characteristics and nutrient dynamics of SF during composting without addition of bulking agent materials, and without turning or water addition. Highest maximum temperatures (62-64 Degree-Sign C) were measured in tall piles compared to short piles (52 Degree-Sign C). However, maximum rates of organic matter (OM) destruction were observed at mesophilic temperature ranges in short piles, compared to tall piles, whereas thermophilic temperatures in tall piles maximised sanitation and enhanced moisture reduction. Final OM losses were within the range of 520-660 g kg{sup -1} dry solids and the net loss of OM significantly (P < 0.001) increased nutrient concentrations during the composting period. An advanced degree of stabilization of the SF was indicated by low final pile temperatures and C/N ratio, low concentrations of NH{sub 4}{sup +} and increased concentrations of NO{sub 3}{sup -} in SF composts. The results indicated that minimum intervention composting of SF in static piles over 168 days can produce agronomically effective organic soil amendments containing significant amounts of OM (772-856 g kg{sup -1}) and plant nutrients. The implications of a minimal intervention management approach to composting SF on compost pathogen reduction are discussed and possible measures to improve sanitation are suggested.« less

  4. Cleaning By Blasting With Pellets Of Dry Ice

    NASA Technical Reports Server (NTRS)

    Fody, Jody

    1993-01-01

    Dry process strips protective surface coats from parts to be cleaned, without manual scrubbing. Does not involve use of flammable or toxic solvents. Used to remove coats from variety of materials, including plastics, ceramics, ferrous and nonferrous metals, and composites. Adds no chemical-pollution problem to problem of disposal of residue of coating material. Process consists of blasting solid carbon dioxide (dry ice) pellets at surface to be cleaned. Pellets sublime on impact and pass into atmosphere as carbon dioxide gas. Size, harness, velocity, and quantity of pellets adjusted to suit coating material and substrate.

  5. Rapid Recovery of Clofazimine-Loaded Nanoparticles with Long-Term Storage Stability as Anti-Cryptosporidium Therapy.

    PubMed

    Feng, Jie; Zhang, Yingyue; McManus, Simon A; Ristroph, Kurt D; Lu, Hoang D; Gong, Kai; White, Claire E; Prud'homme, Robert K

    2018-05-25

    While the formulation of nanoparticle (NP) suspensions has been widely applied in materials and life science, the recovery of NPs from such a suspension into a solid state is practically important to confer long-term storage stability. However, solidification, while preserving the original nanoscale properties, remains a formidable challenge in the pharmaceutical and biomedical applications of NPs. Herein we combined flash nanoprecipitation (FNP) and spray-drying as a nanofabrication platform for NP formulation and recovery without compromising the dissolution kinetics of the active ingredient. Clofazimine was chosen to be the representative drug, which has been recently repurposed as a potential treatment for cryptosporidiosis. Clofazimine was encapsulated in NPs with low-cost surface coatings, hypromellose acetate succinate (HPMCAS) and lecithin, which were required by the ultimate application to global health. Spray-drying and lyophilization were utilized to produce dried powders with good long-term storage stability for application in hot and humid climatic zones. The particle morphology, yield efficiency, drug loading, and clofazimine crystallinity in the spray-dried powders were characterized. The in vitro release kinetics of spray-dried NP powders were compared to analogous dissolution profiles from standard lyophilized NP samples, crystalline clofazimine powder, and the commercially available formulation Lamprene. The spray-dried powders showed a supersaturation level of up to 60 times the equilibrium solubility and remarkably improved dissolution rates. In addition, the spray-dried powders with both surface coatings showed excellent stability during aging studies with elevated temperature and humidity, in view of the dissolution and release in vitro. Considering oral delivery for pediatric administration, the spray-dried powders show less staining effects with simulated skin than crystalline clofazimine and may be made into minitablets without additional excipients. These results highlight the potential of combining FNP and spray-drying as a feasible and versatile platform to design and rapidly recover amorphous NPs in a solid dosage form, with the advantages of satisfactory long-term storage stability, low cost, and easy scalability.

  6. Potential Regrowth and Recolonization of Salmonellae and Indicators in Biosolids and Biosolid-Amended Soil

    PubMed Central

    Zaleski, Kathleen J.; Josephson, Karen L.; Gerba, Charles P.; Pepper, Ian L.

    2005-01-01

    This study evaluated the potential for conversion of Class B to Class A biosolids with respect to salmonellae and fecal coliforms during solar drying in concrete lined drying beds. Anaerobically (8% solids) and aerobically (2% solids) digested Class B biosolids were pumped into field-scale drying beds, and microbial populations and environmental conditions were monitored. Numbers of fecal coliforms and salmonellae decreased as temperature and rate of desiccation increased. After 3 to 4 weeks, Class A requirements were achieved in both biosolids for the pathogens and the indicators. However, following rainfall events, significant increase in numbers was observed for both fecal coliforms and salmonellae. In laboratory studies, regrowth of fecal coliforms was observed in both biosolids and biosolid-amended soil, but the regrowth of salmonellae observed in the concrete-lined drying beds did not occur. These laboratory studies demonstrated that pathogens decreased in numbers when soil was amended with biosolids. Based on serotyping, the increased numbers of salmonellae seen in the concrete lined drying beds following rainfall events was most likely due to recolonization due to contamination from fecal matter introduced by animals and not from regrowth of salmonellae indigenous to biosolids. Overall, we conclude that the use of concrete-lined beds created a situation in which moisture added as rainfall accumulated in the beds, promoting the growth of fecal coliforms and salmonellae added from external sources. PMID:16000779

  7. A study on the dewatering of industrial waste sludge by fry-drying technology.

    PubMed

    Ohm, Tae-In; Chae, Jong-Seong; Kim, Jeong-Eun; Kim, Hee-Kyum; Moon, Seung-Hyun

    2009-08-30

    In sludge treatment, drying sludge using typical technology with high water content to a water content of approximately 10% is always difficult because of adhesive characteristics of sludge. Many methods have been applied, including direct and indirect heat drying, but these approaches of reducing water content to below 40% after drying is very inefficient in energy utilization of drying sludge. In this study, fry-drying technology with a high heat transfer coefficient of approximately 500 W/m(2) degrees C was used to dry industrial wastewater sludge. Also waste oil was used in the fry-drying process, and because the oil's boiling point is between 240 and 340 degrees C and the specific heat is approximately 60% of that of water. In the fry-drying system, the sludge is input by molding it into a designated form after heating the waste oil at temperatures between 120 and 170 degrees C. At these temperatures, the heated oil rapidly evaporates the water contained in the sludge, leaving the oil itself. After approximately 10 min, the water content of the sludge was less than 10%, and its heating value surpassed 5300 kcal/kg. Indeed, this makes the organic sludge appropriate for use as a solid fuel. The wastewater sludge used in this study was the designated waste discharged from chemical, leather and plating plants. These samples varied in characteristics, especially with regard to heavy metal concentration. After drying the three kinds of wastewater sludge at oil temperatures 160 degrees C for 10 min, it was found that the water content in the sludge from the chemical, leather, and plating plants reduced from 80.0 to 5.5%, 81.6 to 1.0%, and 65.4 to 0.8%, respectively. Furthermore, the heat values of the sludge from the chemical, leather, and plating plants prior to fry-drying were 217, 264, and 428 kcal/kg, respectively. After drying, these values of sludge increased to 5317, 5983 and 6031 kcal/kg, respectively. The heavy metals detected in the sludge after drying were aluminum, lead, zinc, mercury, and cadmium. Most importantly, if the dried sludge is used as a solid fuel, these heavy metals can be collected from the dust collector after combustion.

  8. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Swan, Lesley J.; Zhu, Yunhua; Jones, Susanne B.

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from MetroVancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from thismore » effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the smaller scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by the resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received valuable feedback from the wastewater treatment industry as part of the WERF collaboration that helped form the basis for the selected HTL and upgrading plant scales and feedstock credit (current cost of disposal). It is assumed that the sludge is currently disposed of at $16.20/wet ton ($46/dry ton at 35% solids; $50/ton dry, ash-free basis) and this is included as a feedstock credit in the operating costs. The base case assumptions result in a minimum biocrude selling price of $3.8/gge and a minimum final upgraded fuel selling price of $4.9/gge. Several areas of process improvement and refinements to the analysis have the potential to significantly improve economics relative to the base case: • Optimization of HTL sludge feed solids content • Optimization of HTL biocrude yield • Optimization of HTL reactor liquid hourly space velocity (LHSV) • Optimization of fuel yield from hydrotreating • Combined large and small HTL scales specific to regions (e.g., metropolitan and suburban plants) Combined improvements believed to be achievable in these areas can potentially reduce the minimum selling price of biocrude and final upgraded fuel by about 50%. Further improvements may be possible through recovery of higher value components from the HTL aqueous phase, as being investigated under separate PNNL projects. Upgrading the biocrude at an existing petroleum refinery could also reduce the MFSP, although this option requires further testing to ensure compatibility and mitigate risks to a refinery. And finally, recycling the HTL aqueous phase product stream back to the headworks of the WWTP (with no catalytic hydrothermal gasification treatment) can significantly reduce cost. This option is uniquely appropriate for application at a water treatment facility but also requires further investigation to determine any technical and economic challenges related to the extra chemical oxygen demand (COD) associated with the recycled water.« less

  9. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis, Rev.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Swan, Lesley J.; Zhu, Yunhua; Jones, Susanne B.

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from Metro Vancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data frommore » this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. In addition, the testing was conducted with the goal of successful operation, and therefore does not represent an optimized process. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the relatively small scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by PNNL’s resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received valuable feedback from the wastewater treatment industry as part of the WERF collaboration that helped form the basis for the selected HTL and upgrading plant scales and feedstock credit (current cost of disposal). It is assumed that the sludge is currently disposed of at $16.20/wet ton ($46/dry ton at 35% solids; $50/ton dry, ash-free basis) and this is included as a feedstock credit in the operating costs. The base case assumptions result in a minimum biocrude selling price of $3.8/gge and a minimum final upgraded fuel selling price of $4.9/gge. Several areas of process improvement and refinements to the analysis have the potential to significantly improve economics relative to the base case: •Optimization of HTL sludge feed solids content •Optimization of HTL biocrude yield •Optimization of HTL reactor liquid hourly space velocity (LHSV) •Optimization of fuel yield from hydrotreating •Combined large and small HTL scales specific to regions (e.g., metropolitan and suburban plants) Combined improvements believed to be achievable in these areas can potentially reduce the minimum selling price of biocrude and final upgraded fuel by about 50%. Further improvements may be possible through recovery of higher value components from the HTL aqueous phase, as being investigated under separate PNNL projects. Upgrading the biocrude at an existing petroleum refinery could also reduce the MFSP, although this option requires further testing to ensure compatibility and mitigation of risks to a refinery. And finally, recycling the HTL aqueous phase product stream back to the headworks of the WWTP (with no catalytic hydrothermal gasification treatment) can significantly reduce cost. This option is uniquely appropriate for application at a water treatment facility but also requires further investigation to determine any technical and economic challenges related to the extra chemical oxygen demand (COD) associated with the recycled water.« less

  10. How Does a Liquid Wet a Solid? Hydrodynamics of Dynamic Contact Angles

    NASA Technical Reports Server (NTRS)

    Rame, Enrique

    2001-01-01

    A contact line is defined at the intersection of a solid surface with the interface between two immiscible fluids. When one fluid displaces another immiscible fluid along a solid surface, the process is called dynamic wetting and a "moving" contact line (one whose position relative to the solid changes in time) often appears. The physics of dynamic wetting controls such natural and industrial processes as spraying of paints and insecticides, dishwashing, film formation and rupture in the eye and in the alveoli, application of coatings, printing, drying and imbibition of fibrous materials, oil recovery from porous rocks, and microfluidics.

  11. Development of spray-dried co-precipitate of amorphous celecoxib containing storage and compression stabilizers.

    PubMed

    Dhumal, Ravindra S; Shimpi, Shamkant L; Paradkar, Anant R

    2007-09-01

    The purpose of this study was to obtain an amorphous system with minimum unit operations that will prevent recrystallization of amorphous drugs since preparation, during processing (compression) and further storage. Amorphous celecoxib, solid dispersion (SD) of celecoxib with polyvinyl pyrrollidone (PVP) and co-precipitate with PVP and carrageenan (CAR) in different ratios were prepared by the spray drying technique and compressed into tablets. Saturation solubility and dissolution studies were performed to differentiate performance after processing. Differential scanning calorimetry and X-ray powder difraction revealed the amorphous form of celecoxib, whereas infrared spectroscopy revealed hydrogen bonding between celecoxib and PVP. The dissolution profile of the solid dispersion and co-precipitate improved compared to celecoxib and amorphous celecoxib. Amorphous celecoxib was not stable on storage whereas the solid dispersion and co-precipitate powders were stable for 3 months. Tablets of the solid dispersion of celecoxib with PVP and physical mixture with PVP and carrageenan showed better resistance to recrystallization than amorphous celecoxib during compression but recrystallized on storage. However, tablets of co-precipitate with PVP and carageenan showed no evidence of crystallinity during stability studies with comparable dissolution profiles. This extraordinary stability of spray-dried co-precipitate tablets may be attributed to the cushioning action provided by the viscoelastic polymer CAR and hydrogen bonding interaction between celecoxib and PVP. The present study demonstrates the synergistic effect of combining two types of stabilizers, PVP and CAR, on the stability of amorphous drug during compression and storage as compared to their effect when used alone.

  12. Evaluation and comparison of alternative designs for water/solid-waste processing systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Spurlock, J. M.

    1975-01-01

    Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.

  13. Pharmaceutical patent applications in freeze-drying.

    PubMed

    Ekenlebie, Edmond; Einfalt, Tomaž; Karytinos, Arianna Irò; Ingham, Andrew

    2016-09-01

    Injectable products are often the formulation of choice for new therapeutics; however, formulation in liquids often enhances degradation through hydrolysis. Thus, freeze-drying (lyophilization) is regularly used in pharmaceutical manufacture to reduce water activity. Here we examine its contribution to 'state of the art' and look at its future potential uses. A comprehensive search of patent databases was conducted to characterize the international patent landscape and trends in the use of freeze-drying. A total of 914 disclosures related to freeze-drying, lyophilization or drying of solid systems in pressures and temperatures equivalent to those of freeze-drying were considered over the period of 1992-2014. Current applications of sublimation technology were contrasted across two periods those with patents due to expire (1992-1993) and those currently filed. The number of freeze-drying technology patents has stabilized after initial activity across the biotechnology sector in 2011 and 2012. Alongside an increasing trend for patent submissions, freeze-drying submissions have slowed since 2002 and is indicative of a level of maturity.

  14. Continuing Measurements of CO2 Crystals with a Hand-Held 35 GHz Radiometer

    NASA Technical Reports Server (NTRS)

    Foster, J.; Chang, A.; Hall, D.; Tait, A.; Wergin, W.; Erbe, E.

    2000-01-01

    In order to increase our knowledge of the Martian polar caps, an improved understanding of the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum is needed. The thermal microwave part of the spectrum has received relatively little attention compared to the visible and infrared wavelengths. A simple experiment to measure the brightness temperature of frozen CO2 was first performed in the winter of 1998 using a 35 GHz radiometer. in experiments performed during the winter of 1999 and 2000, passive microwave radiation emanating from within layers of manufactured CO2 (dry ice) crystals was again measured with a 35 GHz handheld radiometer. Both large (0.8 cm) and small (0.3 cm) cylindrical-shaped dry ice pellets, at a temperature of 197 K (-76 C), were measured. A 1 sq m plate of aluminum sheet metal was positioned beneath the dry ice so that microwave emissions from the underlying soil layers would be minimized. Non-absorbing foam was positioned around the sides of the plate in order to keep the dry ice in place and to assure that the incremental deposits were level. Thirty-five GHz measurements of this plate were made through the dry ice deposits in the following way. Layers of dry ice were built up and measurements were repeated for the increasing CO2 pack. First, 7 cm of large CO2 pellets were poured onto the sheet metal plate, then an additional 7 cm were added, and finally, 12 cm were added on top of the 14 cm base. Hand-held 35 GHz measurements were made each time the thickness of the deposit was increased. The same process was repeated for the smaller grain pellets. Furthermore, during the past winter, 35 GHz measurements were taken of a 25 kg (27 cm x 27 cm x 27 cm) solid cube Of CO2, which was cut in half and then re-measured. Additional information is contained in the original extended abstract.

  15. The elasticity and failure of fluid-filled cellular solids: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Warner, M.; Thiel, B. L.; Donald, A. M.

    2000-02-01

    We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.

  16. Cocoa residues as viable biomass for renewable energy production through anaerobic digestion.

    PubMed

    Acosta, Nayaret; De Vrieze, Jo; Sandoval, Verónica; Sinche, Danny; Wierinck, Isabella; Rabaey, Korneel

    2018-05-31

    The aim of this work was to evaluate the bioenergy potential of cocoa residue via anaerobic digestion. Batch and fed-batch lab-scale reactors were operated under low and high solids conditions. In the batch tests, 59 ± 4% of Chemical Oxygen Demand (COD) was recovered as methane. This corresponded with an average methane yield of 174 (wet) and 193 (dry) L kg -1 volatile solids fed, whereas a series of fed-batch reactors produced 70 ± 24 (wet) and 107 ± 39 (dry) L CH 4  kg -1 volatile solids fed during stable conditions. A case study was developed for canton Balao (Ecuador) based on our experimental data, operational estimates and available cocoa waste in the area. Annually, 8341 MWh could be produced, meeting 88% of the current electricity demand in Balao. This case study proves the potential for cocoa waste as a source of renewable energy in rural areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Characterization of Protein-Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy.

    PubMed

    Koshari, Stijn H S; Ross, Jean L; Nayak, Purnendu K; Zarraga, Isidro E; Rajagopal, Karthikan; Wagner, Norman J; Lenhoff, Abraham M

    2017-02-06

    Protein-stabilizer microheterogeneity is believed to influence long-term protein stability in solid-state biopharmaceutical formulations and its characterization is therefore essential for the rational design of stable formulations. However, the spatial distribution of the protein and the stabilizer in a solid-state formulation is, in general, difficult to characterize because of the lack of a functional, simple, and reliable characterization technique. We demonstrate the use of confocal fluorescence microscopy with fluorescently labeled monoclonal antibodies (mAbs) and antibody fragments (Fabs) to directly visualize three-dimensional particle morphologies and protein distributions in dried biopharmaceutical formulations, without restrictions on processing conditions or the need for extensive data analysis. While industrially relevant lyophilization procedures of a model IgG1 mAb generally lead to uniform protein-excipient distribution, the method shows that specific spray-drying conditions lead to distinct protein-excipient segregation. Therefore, this method can enable more definitive optimization of formulation conditions than has previously been possible.

  18. The elasticity and failure of fluid-filled cellular solids: theory and experiment.

    PubMed

    Warner, M; Thiel, B L; Donald, A M

    2000-02-15

    We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials.

  19. The elasticity and failure of fluid-filled cellular solids: Theory and experiment

    PubMed Central

    Warner, M.; Thiel, B. L.; Donald, A. M.

    2000-01-01

    We extend and apply theories of filled foam elasticity and failure to recently available data on foods. The predictions of elastic modulus and failure mode dependence on internal pressure and on wall integrity are borne out by photographic evidence of distortion and failure under compressive loading and under the localized stress applied by a knife blade, and by mechanical data on vegetables differing only in their turgor pressure. We calculate the dry modulus of plate-like cellular solids and the cross over between dry-like and fully fluid-filled elastic response. The bulk elastic properties of limp and aging cellular solids are calculated for model systems and compared with our mechanical data, which also show two regimes of response. The mechanics of an aged, limp beam is calculated, thus offering a practical procedure for comparing experiment and theory. This investigation also thereby offers explanations of the connection between turgor pressure and crispness and limpness of cellular materials. PMID:10660680

  20. Comparison of polycyclic aromatic hydrocarbons level between suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia

    NASA Astrophysics Data System (ADS)

    Muslim, Noor Zuhartini Md; Babaheidari, Seyedreza Hashemi; Zakaria, Mohamad Pauzi

    2015-09-01

    Sixteen type of common Polycyclic Aromatic Hydrocarbons (PAHs) which consist of naphthalene, acenaphthene, acenaphthylene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]-perylene, indeno[1,2,3-cd]-pyrene and dibenz[a,h]-anthracene in suspended solid and sediment samples of Pengkalan Chepa River, Kelantan state, Malaysia were investigated. The analysis samples were taken from six different sites of Pengkalan Chepa River during sunny day. The samples were subjected to a series of pre-treatment before the level of PAHs can be determined. A Gas Chromatography-Mass Spectrometry (GC-MS) was the prime method for the analysis of PAHs level. A total of 16 PAHs concentration in suspended solid of the whole Pengkalan Chepa River was found to be 2144.6 ng/g dry weights. This concentration was about eight times more than 16 PAHs concentration in sediment which found to be 266.5 ng/g dry weights.

  1. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Hayden T.; Harrison, Katharine Lee

    2016-10-01

    The synthesis and characterization of the first polyelectrolyte of intrinsic microporosity (PEIM) is described. The novel material was synthesized via reaction between the nitrile group in the polymer backbone and n-butyl lithium, effectively anchoring an imine anion to the porous framework while introducing a mobile lithium counterion. The PEIM was characterized by 13C, 1H, and 7Li NMR experiments, revealing quantitative conversion of the nitrile functionality to the anionic imine. Variable temperature 7Li NMR analysis of the dry PEIM and the electrolyteswollen PEIM revealed that lithium ion transport within the dry PEIM was largely due to interchain hopping of the Limore » + ions, and that the mobility of polymer associated Li + was reduced after swelling in electrolyte solution. Meanwhile, the swollen PEIM supported efficient transport of dissolved Li + within the expanded pores. These results are discussed in the context of developing novel solid or solid-like lithium ion electrolytes using the new PEIM material.« less

  2. 77 FR 69765 - Colorado: Final Authorization of State Hazardous Waste Management Program Revisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... Protection Agency (EPA). ACTION: Final rule. SUMMARY: The Solid Waste Disposal Act, as amended, commonly... revised program application, subject to the limitations of the Hazardous and Solid Waste Amendments of... under the authority of sections 2002(a), 3006, and 7004(b) of the Solid Waste Disposal Act as amended 42...

  3. 77 FR 59377 - Solid Agricultural Grade Ammonium Nitrate from Ukraine: Final Results of the Expedited Second...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... Ammonium Nitrate from Ukraine: Final Results of the Expedited Second Sunset Review of the Antidumping Duty... duty order on solid agricultural grade ammonium nitrate from Ukraine. The Department has conducted an... on solid agricultural grade ammonium nitrate from Ukraine, pursuant to section 751(c) of the Tariff...

  4. Small-Scale Production of High-Density Dry Ice: A Variant Combination of Two Classic Demonstrations

    ERIC Educational Resources Information Center

    Flowers, Paul A.

    2009-01-01

    Easily recoverable, thumb-sized pieces of high-density dry ice are conveniently produced by deposition of carbon dioxide within a test tube submerged in liquid nitrogen. A carbon dioxide-filled balloon sealed over the mouth of the test tube serves as a gas reservoir, and further permits a dramatic demonstration of both the gas-to-solid phase…

  5. Methods for the preparation and analysis of solids and suspended solids for methylmercury

    USGS Publications Warehouse

    DeWild, John F.; Olund, Shane D.; Olson, Mark L.; Tate, Michael T.

    2004-01-01

    This report presents the methods and method performance data for the determination of methylmercury concentrations in solids and suspended solids. Using the methods outlined here, the U.S. Geological Survey's Wisconsin District Mercury Laboratory can consistently detect methylmercury in solids and suspended solids at environmentally relevant concentrations. Solids can be analyzed wet or freeze dried with a minimum detection limit of 0.08 ng/g (as-processed). Suspended solids must first be isolated from aqueous matrices by filtration. The minimum detection limit for suspended solids is 0.01 ng per filter resulting in a minimum reporting limit ranging from 0.2 ng/L for a 0.05 L filtered volume to 0.01 ng/L for a 1.0 L filtered volume. Maximum concentrations for both matrices can be extended to cover nearly any amount of methylmercury by limiting sample size.

  6. Hydrodynamics study on drying of pepper in swirling fluidized bed dryer (SFBD)

    NASA Astrophysics Data System (ADS)

    Syaif Haron, Nazrul; Hazri Zakaria, Jamal; Faizal Mohideen Batcha, Mohd

    2017-08-01

    Malaysia is one of the pepper producer with exports quantity reaching more than 90000 tonnes between 2010 until 2016. Drying of pepper is mandatory before their export and at present, pepper was dried by sun drying to reduce cost. This conventional drying method was time consuming and may take four days during rainy season, which retards the production of pepper. This paper proposes the swirling fluidized bed drying (SFBD) method, which was known to have high mixing ability and improved solid-gas contact to shorten the drying time of products. A lab scale SFBD system was constructed to carry out this study. Hydrodynamic study was conducted for three beds loadings of 1.0 kg, 1.4 kg at a drying temperature of 90°C. The SFBD has shown excellent potential to dry the pepper with a relatively short drying time compared to the conventional method. Batch drying for the bed loads studied only took 3 hours of drying time only. It was found that bed higher bed loading of wet pepper requires longer drying time due to higher amount of moisture content in the bed. Four distinct regimes of operation were found during drying in the SFBD and these regimes offer flexibility of operation. The total bed pressure drop was relatively low during drying.

  7. Simple technologies for on-farm composting of cattle slurry solid fraction.

    PubMed

    Brito, L M; Mourão, I; Coutinho, J; Smith, S R

    2012-07-01

    Composting technologies and control systems have reached an advanced stage of development, but these are too complex and expensive for most agricultural practitioners for treating livestock slurries. The development of simple, but robust and cost-effective techniques for composting animal slurries is therefore required to realise the potential benefits of waste sanitation and soil improvement associated with composted livestock manures. Cattle slurry solid fraction (SF) was collected at the rates of 4m(3)h(-1) and 1m(3)h(-1) and composted in tall (1.7 m) and short (1.2m) static piles, to evaluate the physicochemical characteristics and nutrient dynamics of SF during composting without addition of bulking agent materials, and without turning or water addition. Highest maximum temperatures (62-64 °C) were measured in tall piles compared to short piles (52 °C). However, maximum rates of organic matter (OM) destruction were observed at mesophilic temperature ranges in short piles, compared to tall piles, whereas thermophilic temperatures in tall piles maximised sanitation and enhanced moisture reduction. Final OM losses were within the range of 520-660 g kg(-1) dry solids and the net loss of OM significantly (P<0.001) increased nutrient concentrations during the composting period. An advanced degree of stabilization of the SF was indicated by low final pile temperatures and C/N ratio, low concentrations of NH(4)(+) and increased concentrations of NO(3)(-) in SF composts. The results indicated that minimum intervention composting of SF in static piles over 168 days can produce agronomically effective organic soil amendments containing significant amounts of OM (772-856 g kg(-1)) and plant nutrients. The implications of a minimal intervention management approach to composting SF on compost pathogen reduction are discussed and possible measures to improve sanitation are suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. THE CHARACTERIZATION OF A SOLID SORBENT WITH CRYSTALLITE SIZE AND STRAIN DATA FROM X-RAY DIFFRACTION LINE BROADENING

    EPA Science Inventory

    The paper gives results of the characterization of a solid sorbent with crystallite size and strain data from x-ray diffraction line broadening, as part of an EPA investigation of the injection of dry Ca(OH)2 into coal-fired electric power plant burners for the control of SO2 emi...

  9. Rheological modification of corn stover biomass at high solids concentrations

    Treesearch

    Joseph R. Samaniuk; C. Tim Scott; Thatcher W. Root; Daniel J. Klingenberg

    2012-01-01

    Additives were tested for their ability to modify the rheology of lignocellulosic biomass. Additive types included water-soluble polymers (WSPs), surfactants, and fine particles. WSPs were the most effective rheological modifiers, reducing yield stresses of concentrated biomass by 60–80% for additive concentrations of 1–2 wt. % (based on mass of dry biomass solids)....

  10. Formulation and process design for a solid dosage form containing a spray-dried amorphous dispersion of ibipinabant.

    PubMed

    Leane, Michael M; Sinclair, Wayne; Qian, Feng; Haddadin, Raja; Brown, Alan; Tobyn, Mike; Dennis, Andrew B

    2013-01-01

    Amorphous forms of poorly soluble drugs are more frequently being incorporated into solid dispersions for administration and extensive research has led to a reasonable understanding of how these dispersions, although still kinetically unstable, improve stability relative to the pure amorphous form. There remains however a paucity of literature describing the effects on such solid dispersions of subsequent processing into solid dosage forms such as tablets. This paper addresses this area by looking at the effects of the addition of common excipients and different manufacturing routes on the stability of a spray-dried dispersion (SDD) of the cannabinoid CB-1 antagonist, ibipinabant. A marked difference in physical stability of tablets was seen with the different fillers with microcrystalline cellulose (MCC) giving the best stability profile. It was found that minimising the number of compression steps led to improved formulation stability with a direct compression process giving the best results. Increased levels of crystallinity were seen in coated tablets most likely due to the exposure of the amorphous matrix to moisture and heat during the coating process. DSIMS analysis of the SDD particles indicated increased levels of polymer on the surface.

  11. Thermal separation of soil particles from thermal conductivity measurement under various air pressures.

    PubMed

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-05

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  12. Conversion of agroindustrial residues for high poly(γ-glutamic acid) production by Bacillus subtilis NX-2 via solid-state fermentation.

    PubMed

    Tang, Bao; Xu, Hong; Xu, Zongqi; Xu, Cen; Xu, Zheng; Lei, Peng; Qiu, Yibin; Liang, Jinfeng; Feng, Xiaohai

    2015-04-01

    Poly(γ-glutamic acid) (γ-PGA) production by Bacillus subtilis NX-2 was carried out through solid-state fermentation with dry mushroom residues (DMR) and monosodium glutamate production residues (MGPR; a substitute of glutamate) for the first time. Dry shiitake mushroom residue (DSMR) was found to be the most suitable solid substrate among these DMRs; the optimal DSMR-to-MGPR ratio was optimized as 12:8. To increase γ-PGA production, industrial waste glycerol was added as a carbon source supplement to the solid-state medium. As a result, γ-PGA production increased by 34.8%. The batch fermentation obtained an outcome of 115.6 g kg(-1) γ-PGA and 39.5×10(8) colony forming units g(-1) cells. Furthermore, a satisfactory yield of 107.7 g kg(-1) γ-PGA was achieved by compost experiment on a scale of 50 kg in open air, indicating that economically large-scale γ-PGA production was feasible. Therefore, this study provided a novel method to produce γ-PGA from abundant and low-cost agroindustrial residues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Cefuroxime axetil solid dispersion with polyglycolized glycerides for improved stability and bioavailability.

    PubMed

    Dhumal, Ravindra S; Biradar, Shailesh V; Aher, Suyog; Paradkar, Anant R

    2009-06-01

    Cefuroxime axetil (CA), a poorly soluble, broad spectrum cephalosporin ester prodrug, is hydrolysed by intestinal esterase prior to absorption, leading to poor and variable bioavailability. The objective was therefore to formulate a stable amorphous solid dispersion of the drug with enhanced solubility and stability against enzymatic degradation. Spray drying was used to obtain a solid dispersion of CA with Gelucire 50/13 and Aerosil 200 (SDCAGA), and a solid dispersion of CA with polyvinyl pyrrolidone (SDCAP); amorphous CA (ACA) was obtained by spray drying CA alone. The formulations were characterized by differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy studies, and compared for solubility, dissolution and bioavailability in rats. SDCAP and SDCAGA showed improved solubility and dissolution profiles owing to amorphization and formation of solid dispersions with hydrophilic carriers. The improved stability of amorphous CA in solid dispersions compared to ACA alone was attributed to hydrogen bonding interactions involving the amide of CA with the carbonyl of polyvinyl pyrrolidone in SDCAP, whereas in SDCAGA the interactions were at multiple sites involving the amide and carbonyl of CA with the carbonyl and hydroxyl of Gelucire 50/13. However, SDCAGA showed superior bioavailability compared to SDCAP, ACA and CA. Improvement in physical stability of solid dispersions was attributed to hydrogen bonding, while improvement in bioavailability of SDCAGA compared to SDCAP, in spite of comparable solubility and dissolution profile, may be attributed to Gelucire, which utilizes intestinal esterase for lipolysis, protecting the prodrug from enzymatic degradation to its non-absorbable base form.

  14. Low-nitrogen oxides combustion of dried sludge using a pilot-scale cyclone combustor with recirculation.

    PubMed

    Shim, Sung Hoon; Jeong, Sang Hyun; Lee, Sang-Sup

    2015-04-01

    Recently, numerical and experimental studies have been conducted to develop a moderate or intense low-oxygen dilution (MILD) combustion technology for solid fuels. The study results demonstrated that intense recirculation inside the furnace by high-momentum air is a key parameter to achieve the MILD combustion of solid fuels. However, the high-velocity air requires a significant amount of electricity consumption. A cyclone-type MILD combustor was therefore designed and constructed in the authors' laboratory to improve the recirculation inside the combustor. The laboratory-scale tests yielded promising results for the MILD combustion of dried sewage sludge. To achieve pilot-scale MILD combustion of dried sludge in this study, the effects of geometric parameters such as the venturi tube configuration, the air injection location, and the air nozzle diameter were investigated. With the optimized geometric and operational conditions, the pilot-scale cyclone combustor demonstrated successful MILD combustion of dried sludge at a rate of 75 kg/hr with an excess air ratio of 1.05. A horizontal cyclone combustor with recirculation demonstrated moderate or intense low-oxygen dilution (MILD) combustion of dried sewage sludge at a rate of 75 kg/hr. Optimizing only geometric and operational conditions of the combustor reduced nitrogen oxide (NOx) emissions to less than 75 ppm. Because the operating cost of the MILD combustor is much lower than that of the selective catalytic reduction (SCR) applied to the conventional combustor, MILD combustion technology with the cyclone type furnace is an eligible option for reducing NOx emissions from the combustion of dried sewage sludge.

  15. Occurrence of tributyltin (TBT)-resistant bacteria is not related to TBT pollution in Mekong River and coastal sediment: with a hypothesis of selective pressure from suspended solid.

    PubMed

    Suehiro, Fujiyo; Mochizuki, Hiroko; Nakamura, Shinji; Iwata, Hisato; Kobayashi, Takeshi; Tanabe, Shinsuke; Fujimori, Yoshifumi; Nishimura, Fumitake; Tuyen, Bui Cach; Tana, Touch Seang; Suzuki, Satoru

    2007-07-01

    Tributyltin (TBT) is organotin compound that is toxic to aquatic life ranging from bacteria to mammals. This study examined the concentration of TBT in sediment from and near the Mekong River and the distribution of TBT-resistant bacteria. TBT concentrations ranged from <2.4 to 2.4 ng/g (dry wt) in river sediment and <2.4-15 ng g(-1) (dry wt) in harbor sediment. Viable count of total bacteria ranged from 2.0 x 10(4) to 1.4 x 10(7)cfu/g, and counts of TBT-resistant bacteria ranged <1.0 x 10(2) to 2.5 x 10(4)cfu/g. The estimated occurrence rate of TBT-resistant bacteria ranged from <0.01 to 34% and was highest in upstream sites in Cambodia. The occurrences of TBT in the sediment and of TBT-resistant bacteria were unrelated, and chemicals other than TBT might induce TBT resistance. TBT-resistant bacteria were more abundant in the dry season than in the rainy season. Differences in the selection process of TBT-resistant bacteria between dry and rainy seasons were examined using an advection-diffusion model of a suspended solid (SS) that conveys chemicals. The estimated dilution-diffusion time over a distance of 120 km downstream from a release site was 20 days during dry season and 5 days during rainy season, suggesting that bacteria at the sediment surface could be exposed to SS for longer periods during dry season.

  16. 78 FR 24334 - Milk in the Northeast and Other Marketing Areas; Order Amending the Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ...) allowances for cheese, butter, nonfat dry milk (NFDM) and dry whey contained in the Class III and Class IV....1715 per pound); NFDM ($0.1678 per pound); and dry whey ($0.1991 per pound). In addition, the butterfat... dry whey continues to be $0.1991 per pound (initially increased from $0.1956 per pound). Finally, the...

  17. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes

    NASA Astrophysics Data System (ADS)

    Nam, Young Jin; Oh, Dae Yang; Jung, Sung Hoo; Jung, Yoon Seok

    2018-01-01

    Owing to their potential for greater safety, higher energy density, and scalable fabrication, bulk-type all-solid-state lithium-ion batteries (ASLBs) employing deformable sulfide superionic conductors are considered highly promising for applications in battery electric vehicles. While fabrication of sheet-type electrodes is imperative from the practical point of view, reports on relevant research are scarce. This might be attributable to issues that complicate the slurry-based fabrication process and/or issues with ionic contacts and percolation. In this work, we systematically investigate the electrochemical performance of conventional dry-mixed electrodes and wet-slurry fabricated electrodes for ASLBs, by varying the different fractions of solid electrolytes and the mass loading. This information calls for a need to develop well-designed electrodes with better ionic contacts and to improve the ionic conductivity of solid electrolytes. As a scalable proof-of-concept to achieve better ionic contacts, a premixing process for active materials and solid electrolytes is demonstrated to significantly improve electrochemical performance. Pouch-type 80 × 60 mm2 all-solid-state LiNi0·6Co0·2Mn0·2O2/graphite full-cells fabricated by the slurry process show high cell-based energy density (184 W h kg-1 and 432 W h L-1). For the first time, their excellent safety is also demonstrated by simple tests (cutting with scissors and heating at 110 °C).

  18. Fabrication and characterization of solid oxide cells for energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Yang, Chenghao

    2011-12-01

    There has been an increasing interest in clean and renewable energy generation for highlighted energy and environmental concerns. Solid oxide cells (SOCs) have been considered as one of the promising technologies, since they can be operated efficiently both in electrolysis mode by generating hydrogen through steam electrolysis and fuel cell mode by electrochemically combining fuel with oxidant. The present work is devoted to performing a fundamental study of SOC in both fuel cell mode for power generation and electrolysis mode for fuel production. The research work on SOCs that can be operated reversibly for power generation and fuel production has been conducted in the following six projects: (1) High performance solid oxide electrolysis cell (SOEC) Fabrication of novel structured SOEC oxygen electrode with the conventional and commercial solid oxide fuel cell materials by screen-printing and infiltration fabrication methods. The microstructure, electrochemical properties and durability of SOECs has been investigated. It was found that the LSM infiltrated cell has an area specific resistance (ASR) of 0.20 Ω cm2 at 900°C at open circuit voltage with 50% absolute humidity (AH), which is relatively lower than that of the cell with LSM-YSZ oxygen electrode made by a conventional mixing method. Electrolysis cell with LSM infiltrated oxygen electrode has demonstrated stable performance under electrolysis operation with 0.33 A/cm2 and 50 vol.% AH at 800°C. (2) Advanced performance high temperature micro-tubular solid oxide fuel cell (MT-SOFC) Phase-inversion, dip-coating, high temperature co-sintering process and impregnation method were used to fabricate micro-tubular solid oxide fuel cell. The micro-structure of the micro-tubular fuel cell will be investigated and the power output and thermal robustness has been evaluated. High performance and rapid start-up behavior have been achieved, indicates that the MT-SOFC developed in this work can be a promising technology for portable applications. (3) Promising intermediate temperature micro-tubular solid oxide fuel cells for portable power supply applications Maximum power densities of 0.5, 0.38 and 0.27 W/cm2 have been obtained using H2-15% H2O as fuel at 550, 600 and 650°C, respectively. Quick thermal cycles performed on the intermediate temperature MT-SOFC stability demonstrate that the cell has robust performance stability for portable applications. (4) Micro-tubular solid oxide cell (MT-SOC) for steam electrolysis The electrochemical properties of MT-SOC will be investigated in detail in electrolysis mode. The mechanism of the novel hydrogen electrode structure benefiting the cell performance will be demonstrated systematically. The high electrochemical performance of the MT-SOC in electrolysis mode indicates that MT-SOC can provide an efficient hydrogen generation process. (5) Micro-tubular solid oxide cell (MT-SOC) for steam and CO2 co-electrolysis The MT-SOC will be operated in co-electrolysis mode for steam and CO 2, which will provide an efficient approach to generate syngas (H2+CO) without consuming fossil fuels. This can potentially provide an alternative superior approach for carbon sequestration which has been a critical issue facing the sustainability of our society. (6) Steam and CO2 co-electrolysis using solid oxide cells fabricated by freeze-drying tape-casting Tri-layer scaffolds have been prepared by freeze-drying tape casting process and the electrode catalysts are obtained by infiltrating the porous electrode substrates. Button cells will be tested for co-electrolysis of steam and CO2. The mechanism and efficiency of steam and CO2 co-electrolysis will be systemically investigated. In conclusion, SOCs have been fabricated with conventional materials and evaluated, but their performance has been found to be limited in either SOFC or SOEC mode. The cell performance has been significantly improved by employing an infiltrated LSM-YSZ electrode, due to dramatically decreased polarization resistance. However, mass transport limitation has been observed, particularly in electrolysis mode. By utilizing micro-tubular SOCs with novel hydrogen electrode produced via a phase inversion method, mass transport limitation has been mitigated. Finally, mass transport has been further improved by using cells with electrodes fabricated through a freeze-drying tape-casting method. (Abstract shortened by UMI.)

  19. Revealing the fine details of functionalized silica surfaces by solid-state NMR and adsorption isotherm measurements: the case of fluorinated stationary phases for liquid chromatography.

    PubMed

    Ciogli, Alessia; Simone, Patrizia; Villani, Claudio; Gasparrini, Francesco; Laganà, Aldo; Capitani, Donatella; Marchetti, Nicola; Pasti, Luisa; Massi, Alessandro; Cavazzini, Alberto

    2014-06-23

    The structural and chromatographic characterization of two novel fluorinated mesoporous materials prepared by covalent reaction of 3-(pentafluorophenyl)propyldimethylchlorosilane and perfluorohexylethyltrichlorosilane with 2.5 μm fully porous silica particles is reported. The adsorbents were characterized by solid state (29)Si, (13)C, and (19)F NMR spectroscopy, low-temperature nitrogen adsorption, elemental analysis (C and F), and various chromatographic measurements, including the determination of adsorption isotherms. The structure and abundance of the different organic surface species, as well as the different silanol types, were determined. In particular, the degree of so-called horizontal polymerization, that is, Si-O-Si bridging parallel to the silica surface due to the reaction, under "quasi-dry" conditions, of trifunctional silanizing agents with the silica surface was quantified. Significant agreement was found between the information provided by solid-state NMR, elemental analysis, and excess isotherms regarding the amount of surface residual silanol groups, on the one hand, and the degree of surface functionalization, on the other. Finally, the kinetic performance of the fluorinated materials as separation media for applications in near-ultrahigh-performance liquid chromatography was evaluated. At reduced velocities of about 5.5 (ca. 600 bar backpressure at room temperature) with 3 mm diameter columns and toluene as test compound, reduced plate heights on the order of 2 were obtained on columns of both adsorbents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CEC-atmospheric pressure ionization MS of pesticides using a surfactant-bound monolithic column.

    PubMed

    Gu, Congying; Shamsi, Shahab A

    2010-04-01

    A surfactant bound poly (11-acrylaminoundecanoic acid-ethylene dimethacrylate) monolithic column was simply prepared by in situ co-polymerization of 11-acrylaminoundecanoic acid and ethylene dimethacrylate with 1-propanol, 1,4-butanediol and water as porogens in 100 microm id fused-silica capillary in one step. This column was used in CEC-atmospheric pressure photoionization (APPI)-MS system for separation and detection of N-methylcarbamates pesticides. Numerous parameters are optimized for CEC-APPI-MS. After evaluation of the mobile phase composition, sheath liquid composition and the monolithic capillary outlet position, a fractional factorial design was selected as a screening procedure to identify factors of ionization source parameters, such as sheath liquid flow rate, drying gas flow rate, drying gas temperature, nebulizing gas pressure, vaporizer temperature and capillary voltage, which significantly influence APPI-MS sensitivity. A face-centered central composite design was further utilized to optimize the most significant parameters and predict the best sensitivity. Under optimized conditions, S/Ns around 78 were achieved for an injection of 100 ng/mL of each pesticide. Finally, this CEC-APPI-MS method was successfully applied to the analysis of nine N-methylcarbamates in spiked apple juice sample after solid phase extraction with recoveries in the range of 65-109%.

  1. Physicochemical Characterization of a Heat Treated Calcium Alginate Dry Film Prepared with Chicken Stock.

    PubMed

    Báez, Germán D; Piccirilli, Gisela N; Ballerini, Griselda A; Frattini, Agustín; Busti, Pablo A; Verdini, Roxana A; Delorenzi, Néstor J

    2017-04-01

    Solid sodium alginate was dissolved into chicken stock in order to give a final alginate concentration of 0.9 percent (w/v). Calcium ions present in chicken stock were enough to induce ionic gelation. After drying, Fourier transform infrared spectroscopy, thickness and mechanical properties of films obtained were determined. Calcium alginate-chicken stock films were heated at 130 °C for different times between 0 and 15 min. Mechanical and optical studies, differential scanning calorimetry, visual aspect and scanning electron microscopy were carried out to describe physicochemical properties of heat treated films. Heating developed a maroon ochre color and increased the brittleness (crispness) of the films related to the intensity of the treatment. Differential scanning thermometry and study on appearance of the films suggested that Maillard reactions may be responsible for the observed changes. Maillard reactions mainly occurred between reducing sugar monomers and free amino groups of gelatin peptides present in the chicken stock, and between alginate and gelatin peptides to a lesser extent. In addition, the plasticizing effect of fat added with chicken stock was also studied. These studies suggest a potential use of heat treated chicken stock films as a substitute of roasted chicken skin. © 2017 Institute of Food Technologists®.

  2. Comparison of laser ablation and dried solution aerosol as sampling systems in inductively coupled plasma mass spectrometry.

    PubMed

    Coedo, A G; Padilla, I; Dorado, M T

    2004-12-01

    This paper describes a study designed to determine the possibility of using a dried aerosol solution for calibration in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The relative sensitivities of tested materials mobilized by laser ablation and by aqueous nebulization were established, and the experimentally determined relative sensitivity factors (RSFs) were used in conjunction with aqueous calibration for the analysis of solid steel samples. To such a purpose a set of CRM carbon steel samples (SS-451/1 to SS-460/1) were sampled into an ICP-MS instrument by solution nebulization using a microconcentric nebulizer with membrane desolvating (D-MCN) and by laser ablation (LA). Both systems were applied with the same ICP-MS operating parameters and the analyte signals were compared. The RSF (desolvated aerosol response/ablated solid response) values were close to 1 for the analytes Cr, Ni, Co, V, and W, about 1.3 for Mo, and 1.7 for As, P, and Mn. Complementary tests were carried out using CRM SS-455/1 as a solid standard for one-point calibration, applying LAMTRACE software for data reduction and quantification. The analytical results are in good agreement with the certified values in all cases, showing that the applicability of dried aerosol solutions is a good alternative calibration system for laser ablation sampling.

  3. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques.

    PubMed

    van Drooge, D J; Hinrichs, W L J; Visser, M R; Frijlink, H W

    2006-03-09

    The molecular distribution in fully amorphous solid dispersions consisting of poly(vinylpyrrolidone) (PVP)-diazepam and inulin-diazepam was studied. One glass transition temperature (T(g)), as determined by temperature modulated differential scanning calorimetry (TMDSC), was observed in PVP-diazepam solid dispersions prepared by fusion for all drug loads tested (10-80 wt.%). The T(g) of these solid dispersions gradually changed with composition and decreased from 177 degrees C for pure PVP to 46 degrees C for diazepam. These observations indicate that diazepam was dispersed in PVP on a molecular level. However, in PVP-diazepam solid dispersions prepared by freeze drying, two T(g)'s were observed for drug loads above 35 wt.% indicating phase separation. One T(g) indicated the presence of amorphous diazepam clusters, the other T(g) was attributed to a PVP-rich phase in which diazepam was dispersed on a molecular level. With both the value of the latter T(g) and the DeltaC(p) of the diazepam glass transition the concentrations of molecular dispersed diazepam could be calculated (27-35 wt.%). Both methods gave similar results. Water vapour sorption (DVS) experiments revealed that the PVP-matrix was hydrophobised by the incorporated diazepam. TMDSC and DVS results were used to estimate the size of diazepam clusters in freeze dried PVP-diazepam solid dispersions, which appeared to be in the nano-meter range. The inulin-diazepam solid dispersions prepared by spray freeze drying showed one T(g) for drug loads up to 35 wt.% indicating homogeneous distribution on a molecular level. However, this T(g) was independent of the drug load, which is unexpected because diazepam has a lower T(g) than inulin (46 and 155 degrees C, respectively). For higher drug loads, a T(g) of diazepam as well as a T(g) of the inulin-rich phase was observed, indicating the formation of amorphous diazepam clusters. From the DeltaC(p) of the diazepam glass transition the amount of molecularly dispersed diazepam was calculated (12-27 wt.%). In contrast to the PVP-diazepam solid dispersions, DVS-experiments revealed that inulin was not hydrophobised by diazepam. Consequently, the size of diazepam clusters could not be estimated. It was concluded that TMDSC enables characterization and quantification of the molecular distribution in amorphous solid dispersions. When the hygroscopicity of the carrier is reduced by the drug, DVS in combination with TMDSC can be used to estimate the size of amorphous drug clusters.

  4. Freeze-drying of tert-butyl alcohol/water cosolvent systems: effects of formulation and process variables on residual solvents.

    PubMed

    Wittaya-Areekul, S; Nail, S L

    1998-04-01

    The objective of this study was to identify significant formulation and processing variables affecting levels of tert-butyl alcohol (TBA) and isopropyl alcohol (IPA) in freeze-dried solids prepared from TBA/water cosolvent systems. The variables examined were the physical state of the solute (crystalline vs amorphous), initial TBA concentration, freezing rate, cake thickness, and the temperature and duration of secondary drying. Sucrose and glycine were used as models for noncrystallizing and crystallizing solutes, respectively. The TBA concentration above which eutectic crystallization takes place was determined by differential scanning calorimetry. Model formulations were subjected to extremes of freezing rate by either dipping in liquid nitrogen or by slowly freezing on the shelf of a freeze-dryer. Dynamics of solvent loss during secondary drying was determined by withdrawing samples as a function of time at different shelf temperatures using a thief system. On the basis of these studies, the most important determinant of residual TBA level is the physical state of the solute. Freeze-dried glycine contained very low levels of residual TBA (0.01-0.03%) regardless of freezing rate or initial TBA concentration. For freeze-dried sucrose, residual TBA levels were approximately 2 orders of magnitude higher and were significantly affected by initial TBA concentration and freezing rate. For the sucrose/TBA/water system, relatively low residual TBA levels were obtained when the initial TBA level was above the threshold concentration for eutectic crystallization of TBA, whereas samples freeze-dried from solutions containing TBA concentrations below this threshold contained significantly higher levels of TBA. Residual IPA levels increased continuously with initial concentration of TBA in the sucrose/TBA/water system. Formulations of sucrose/TBA/water which were frozen rapidly contained residual TBA levels which were approximately twice those measured in the same formulation after slow freezing and drying under the same conditions. For the sucrose/TBA/water system, the temperature and time of secondary drying had only minimal influence on residual TBA in the freeze-dried solid. At low initial TBA concentrations (2%), residual TBA increases with increased cake thickness, perhaps because of the influence of depth of fill on effective freezing rate.

  5. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity.

    PubMed

    Ishak, Rania A H; Osman, Rihab

    2015-05-15

    The aim of the present work was to develop a new solid self-microemulsifying drug delivery system (SMEDDS) for the pulmonary delivery of the poorly water-soluble anti-cancer drug atorvastatin (AVT). Microemulsion (ME) was first developed using isopropyl myristate (IPM), a combination of 2 biocompatible surfactants: lecithin/d-α-tocopheryl polyethylene glycol succinate (TPGS) and ethanol as co-surfactant. Two types of lecithin with different phosphatidylcholine (PC) contents were compared. Phase diagram, physico-chemical characterization and stability studies were used to investigate ME region. Solid SMEDDS were then prepared by spray-drying the selected ME using a combination of carriers composed of sugars, leucine as dispersibility enhancer with or without polyethylene glycol (PEG) 6000. Yield, flow properties, particle size and in vitro pulmonary deposition were used to characterize the spray-dried powders. Reconstituted MEs were characterized in terms of morphology, particle size and size distribution. In vitro cytotoxicity study was undertaken on lung cancer cell line for the selected MEs and SD-SMEDDS formulae. Results showed that the most satisfactory MEs properties were obtained with 1:3 lecithin/TPGS, 1:1 lecithin/oil and 1:1 surfactant/co-surfactant ratios. A larger ME area was obtained with lecithin containing 100% PC compared to the less expensive lecithin containing 20% PC. By manipulating spray drying parameters, carrier composition and ratio of ME lipids to carrier, microparticles with more than 70% of respirable fraction could be prepared. The ME was efficiently recovered in simulated lung fluid even after removal of alcohol. The concurrent delivery of AVT with TPGS in solid SMEDDS greatly enhanced the cytotoxic activity on lung cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of nano-LaF3 on the friction and wear behaviors of PTFE-based bonded solid lubricating coatings under different lubrication conditions

    NASA Astrophysics Data System (ADS)

    Jia, Yulong; Wan, Hongqi; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2016-09-01

    Influence of nanometer lanthanum fluoride (nano-LaF3) on the tribological behaviors of polytetrafluoroethylene (PTFE) bonded solid lubricating coatings were investigated using a ring-on-block friction-wear tester under dry friction and RP-3 jet fuel lubrication conditions. The worn surfaces and transfer films formed on the counterpart steel rings were observed by scanning electron microscope (SEM) and optical microscope (OM), respectively. The microstructures of the nano-LaF3 modified coatings and the distribution states of nano-LaF3 were studied by field-emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM), respectively. The results show that incorporation of nano-LaF3 improves the microhardness and the friction-reduced and anti-wear abilities of PTFE bonded solid lubricating coatings. The wear life of the modified coating is about 6 times longer than that of the coating without nano-LaF3 filler at a relatively low applied load (200 N) and rotary speed (1000 rev/min) under dry friction condition. The friction coefficient and wear life of the modified coating decrease with increase of applied load under dry friction, but the friction coefficient has hardly any variation and wear life decreases under RP-3 jet fuel lubrication condition. In addition, the friction coefficient of the modified coating reduces with the rotary speed increasing under dry sliding but has little change under RP-3 lubrication, the wear life increases firstly and then decreases. The results indicated that the wear failure mechanism is dominated by applied load, which plays an important role in guidance of application of nano-LaF3 modified PTFE bonded coating under different working environment.

  7. Assessment of degree of disorder (amorphicity) of lyophilized formulations of growth hormone using isothermal microcalorimetry.

    PubMed

    Mosharraf, Mitra

    2004-05-01

    When determining the degree of disorder of a lyophilized cake of a protein, it is important to use an appropriate analytical technique. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) are the most commonly used thermoanalytical techniques for characterizing freeze-dried protein formulations. Unfortunately, these methods are unable to detect solid-state disorder at levels < 10%. Also, interpretation of DSC results for freeze-dried protein formulations can be difficult, as a result of the more complex thermal events occurring with this technique. For example, proteins can inhibit the thermally induced recrystallization of the lyophilized cake, resulting in potential misinterpretation of DSC degree of disorder results. The aim of this investigation was to study the use of isothermal microcalorimetry (IMC) in the assessment of degree of solid-state disorder (amorphicity) of lyophilized formulations of proteins. For this purpose, two formulations of growth hormone were prepared by lyophilization. These formulations consisted of the same amounts of protein, mannitol, glycine, and phosphate buffer, but differed in the freeze-drying procedure. After lyophilization, the recrystallization of the samples was studied using IMC at 25 degrees C under different relative humidities (58-75%). The effect of available surface area was studied by determining the heat of recrystallization (Q) of the samples before and after disintegration of the cakes. The results showed that, in contrast to DSC, IMC allowed detection of the recrystallization event in the formulations. Although both formulations were completely disordered and indistinguishable according to XRPD method, IMC revealed that formulation B had a different solid-sate structure than formulation A. This difference was the result of differences in the freeze-drying parameters, demonstrating the importance of choosing appropriate analytical methodology.

  8. An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano-CaCO3 and poloxamer 188.

    PubMed

    Yan, Hong-Mei; Zhang, Zhen-Hai; Jiang, Yan-Rong; Ding, Dong-Mei; Sun, E; Jia, Xiao-Bin

    2014-04-01

    Tanshinone IIA (TSIIA) on solid dispersions (SDs) has thermodynamical instability of amorphous drug. Ternary solid dispersions (tSDs) can extend the stability of the amorphous form of drug. Poloxamer 188 was used as a SD carrier. Nano-CaCO3 played an important role in adsorption of biomolecules and is being developed for a host of biotechnological applications. The aim of the present study was to investigate the dissolution behavior and accelerated stability of TSIIA on solid dispersions (SDs) by the use of ternary systems with nano-CaCO3 and poloxamer 188. The TSIIA tSDs were prepared by a spray-drying method. First, the effect of combination of poloxamer 188 and nano-CaCO3 on TSIIA dissolution was studied. Subsequently, a set of complementary techniques (DSC, XRPD, SEM and FTIR) was used to monitor the physical changes of TSIIA in the SDs. Finally, stability test was carried out under the conditions 40°C/75% RH for 6 months. The characterization of tSDs by differential scanning calorimetry analysis (DSC) and X-ray powder diffraction (XRPD) showed that TSIIA was present in its amorphous form. Fourier transforms infrared spectroscopy (FTIR) suggested the presence of interactions between TSIIA and carriers in tSDs. Improvement in the dissolution rate was observed for all SDs. The stability study conducted on SDs with nano-CaCO3 showed stable drug content and dissolution behavior, over the period of 6 months as compared with freshly prepared SDs. SDs preparation with nano-CaCO3 and poloxamer 188 may be a promising approach to enhance the dissolution and stability of TSIIA.

  9. Predicting moisture and economic value of solid forest fuel piles for improving the profitability of bioenergy use

    NASA Astrophysics Data System (ADS)

    Lauren, Ari; Kinnunen, Jyrki-Pekko; Sikanen, Lauri

    2016-04-01

    Bioenergy contributes 26 % of the total energy use in Finland, and 60 % of this is provided by solid forest fuel consisting of small stems and logging residues such as tops, branches, roots and stumps. Typically the logging residues are stored as piles on site before transporting to regional combined heat and power plants for combustion. Profitability of forest fuel use depends on smart control of the feedstock. Fuel moisture, dry matter loss, and the rate of interest during the storing are the key variables affecting the economic value of the fuel. The value increases with drying, but decreases with wetting, dry matter loss and positive rate of interest. We compiled a simple simulation model computing the moisture change, dry matter loss, transportation costs and present value of feedstock piles. The model was used to predict the time of the maximum value of the stock, and to compose feedstock allocation strategies under the question: how should we choose the piles and the combustion time so that total energy yield and the economic value of the energy production is maximized? The question was assessed concerning the demand of the energy plant. The model parameterization was based on field scale studies. The initial moisture, and the rates of daily moisture change and dry matter loss in the feedstock piles depended on the day of the year according to empirical field measurements. Time step of the computation was one day. Effects of pile use timing on the total energy yield and profitability was studied using combinatorial optimization. Results show that the storing increases the pile maximum value if the natural drying onsets soon after the harvesting; otherwise dry matter loss and the capital cost of the storing overcome the benefits gained by drying. Optimized timing of the pile use can improve slightly the profitability, based on the increased total energy yield and because the energy unit based transportation costs decrease when water content in the biomass is decreased.

  10. Surface Morphology of Vapor-Deposited Chitosan: Evidence of Solid-State Dewetting during the Formation of Biopolymer Films.

    PubMed

    Retamal, Maria Jose; Corrales, Tomas P; Cisternas, Marcelo A; Moraga, Nicolas H; Diaz, Diego I; Catalan, Rodrigo E; Seifert, Birger; Huber, Patrick; Volkmann, Ulrich G

    2016-03-14

    Chitosan is a useful and versatile biopolymer with several industrial and biological applications. Whereas its physical and physicochemical bulk properties have been explored quite intensively in the past, there is a lack of studies regarding the morphology and growth mechanisms of thin films of this biopolymer. Of particular interest for applications in bionanotechnology are ultrathin films with thicknesses under 500 Å. Here, we present a study of thin chitosan films prepared in a dry process using physical vapor deposition and in situ ellipsometric monitoring. The prepared films were analyzed with atomic force microscopy in order to correlate surface morphology with evaporation parameters. We find that the surface morphology of our final thin films depends on both the optical thickness, i.e., measured with ellipsometry, and the deposition rate. Our work shows that ultrathin biopolymer films can undergo dewetting during film formation, even in the absence of solvents and thermal annealing.

  11. Vine Trimming Shoots as Substrate for Ferulic Acid Esterases Production.

    PubMed

    Pérez-Rodríguez, N; Outeiriño, D; Torrado Agrasar, A; Domínguez, J M

    2017-02-01

    Ferulic acid esterases (FAE) possess a large variety of biotechnological applications mainly based on their ability to release ferulic acid from lignocellulosic matrixes. The use of vine trimming shoots (VTS), an agricultural waste, as substrate for the generation of this kind of esterases represents an attractive alternative to change the consideration of VTS from residue to resource. Furthermore, xylanase, cellobiase, and cellulase activities were quantified. Six microorganisms were screened for FAE production by solid-state fermentation, and the effects of the additional supplementation and substrate size were also tested. Finally, the process was scaled-up to a horizontal bioreactor where the influence of aeration in enzymatic activities was evaluated. Thus, the optimal FAE activity (0.44 U/g dry VTS) was attained by Aspergillus terreus CECT 2808, in non-additional supplementation media, using the larger particles size of substrate (≤ 5 mm) and at a flow rate of 0.7 L/min.

  12. Mechanical, Thermal and Acoustic Properties of Open-pore Phenolic Multi-structured Cryogel

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Yao, Zhengjun; Zhou, Jintang; Liu, Peijiang; Lei, Yiming

    2017-09-01

    Open-pore phenolic cryogel acoustic multi-structured plates (OCMPs) were prepared via modified sol gel polymerization and freeze-dried methods. The pore morphology, mechanical, thermal and acoustic properties of the cryogels were investigated. From the experimental results, the cryogels exhibited a porous sandwich microstructure: A nano-micron double-pore structure was observed in the core layer of the plates, and nanosized pores were observed in the inner part of the micron pores. In addtion, compared with cryogel plates with uniform-pore (OCPs), the OCMPs had lower thermal conductivities. What’s more, the compressive and tensile strength of the OCMPs were much higher than those of OCPs. Finally, the OCMPs exhibited superior acoustic performances (20% solid content OCMPs performed the best) as compared with those of OCPs. Moreover, the sound insulation value and sound absorption bandwidth of OCMPs exhibited an improvement of approximately 3 and 2 times as compared with those of OCPs, respectively.

  13. Experimental and numerical studies on the treatment of wet astronaut trash by forced-convection drying

    NASA Astrophysics Data System (ADS)

    Arquiza, J. M. R. Apollo; Morrow, Robert; Remiker, Ross; Hunter, Jean B.

    2017-09-01

    During long-term space missions, astronauts generate wet trash, including food containers with uneaten portions, moist hygiene wipes and wet paper towels. This waste produces two problems: the loss of water and the generation of odors and health hazards by microbial growth. These problems are solved by a closed-loop, forced-convection, heat-pump drying system which stops microbial activity by both pasteurization and desiccation, and recovers water in a gravity-independent porous media condensing heat exchanger. A transient, pseudo-homogeneous continuum model for the drying of wet ersatz trash was formulated for this system. The model is based on the conservation equations for energy and moisture applied to the air and solid phases and includes the unique trash characteristic of having both dry and wet solids. Experimentally determined heat and mass transfer coefficients, together with the moisture sorption equilibrium relationship for the wet material are used in the model. The resulting system of differential equations is solved by the finite-volume method as implemented by the commercial software COMSOL. Model simulations agreed well with experimental data under certain conditions. The validated model will be used in the optimization of the entire closed-loop system consisting of fan, air heater, dryer vessel, heat-pump condenser, and heat-recovery modules.

  14. Mixed cryogen cooling systems for HTS power applications: A status report of progress in Korea University

    NASA Astrophysics Data System (ADS)

    Song, Jung-Bin; Lee, Haigun

    2012-12-01

    A cooling system employing a solid cryogen (SC), such as solid nitrogen (SN2), was recently reported for high-temperature superconducting (HTS) applications. However, thermal contact between the SC and the HTS can be degraded by repeated overcurrent runs, resulting in 'thermal dry-out'. Novel cryogens, SC with small amounts of liquid cryogen, have been suggested to overcome this problem. Such cooling systems rely on the small amount of liquid cryogen to facilitate heat exchange so as to fully exploit the heat capacity of the solid cryogen. This paper presents a description and summary of recent activities at Korea University related to cooling systems employing mixed cryogens of solid-liquid nitrogen, solid argon-liquid nitrogen, and solid nitrogen-liquid neon.

  15. Microstructural and bulk property changes in hardened cement paste during the first drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Ippei, E-mail: ippei@dali.nuac.nagoya-u.ac.jp; Nishioka, Yukiko; Igarashi, Go

    2014-04-01

    This paper reports the microstructural changes and resultant bulk physical property changes in hardened cement paste (hcp) during the first desorption process. The microstructural changes and solid-phase changes were evaluated by water vapor sorption, nitrogen sorption, ultrasonic velocity, and {sup 29}Si and {sup 27}Al nuclear magnetic resonance. Strength, Young's modulus, and drying shrinkage were also examined. The first drying process increased the volume of macropores and decreased the volume of mesopores and interlayer spaces. Furthermore, in the first drying process globule clusters were interconnected. During the first desorption, the strength increased for samples cured at 100% to 90% RH, decreasedmore » for 90% to 40% RH, and increased again for 40% to 11% RH. This behavior is explained by both microstructural changes in hcp and C–S–H globule densification. The drying shrinkage strains during rapid drying and slow drying were compared and the effects of the microstructural changes and evaporation were separated.« less

  16. Resource recovery of organic sludge as refuse derived fuel by fry-drying process.

    PubMed

    Chang, Fang-Chih; Ko, Chun-Han; Wu, Jun-Yi; Wang, H Paul; Chen, Wei-Sheng

    2013-08-01

    The organic sludge and waste oil were collected from the industries of thin film transistor liquid crystal display and the recycled cooking oil. The mixing ratio of waste cooking oil and organic sludge, fry-drying temperatures, fry-drying time, and the characteristics of the organic sludge pellet grain were investigated. After the fry-drying process, the moisture content of the organic sludge pellet grain was lower than 5% within 25 min and waste cooking oil was absorbed on the dry solid. The fry-drying organic sludge pellet grain was easy to handle and odor free. Additionally, it had a higher calorific value than the derived fuel standards and could be processed into organic sludge derived fuels. Thus, the granulation and fry-drying processes of organic sludge with waste cooking oil not only improves the calorific value of organic sludge and becomes more valuable for energy recovery, but also achieves waste material disposal and cost reduction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Study on the correlation between volatile fatty acids and gas production in dry fermentation of kitchen waste

    NASA Astrophysics Data System (ADS)

    Li, Qiangqiang; Ma, Yunfeng; Du, Boying; Wang, Qi; Hu, Qiongqiong; Bian, Yushan

    2018-02-01

    In this study, continuous kitchen waste fermentation and anaerobic digestion experiments were conducted to analyze the gas production potential, and to study the correlation between gas production rate and volatile fatty acid (VFAs) and its component concentration. During the experiment, the total solid(TS) concentration of the reaction system was increased by adding the kitchen waste, analysis of kitchen waste dry fermentation process to start, run, imbalance and imbalance after recovery and the parameters in the process of realizing the change trend and influencing factors of dry fermentation process, pH and ammonia concentration.

  18. Michelle L. Reed | NREL

    Science.gov Websites

    liquid chromatography analysis Bench-scale methods Education B.S., Chemistry (Mathematics Minor), Adams ;Improved methods for the determination of drying conditions and fraction insoluble solids (FIS) in biomass

  19. Novel Anaerobic Wastewater Treatment System for Energy Generation at Forward Operating Bases

    DTIC Science & Technology

    2016-08-01

    AnMBR) technology with clinoptilolite ion exchange and GreenBox™ ammonia electrolysis. The system generates both methane and hydrogen fuels...experimental setup. ................................................ 21 Figure 10. Methane phase semi batch experimental setup, a total of three reactors were...set up for PS + solid, Bioc and ADS methane phase reactors. .................... 21 Figure 11. Dried PS solid for the control, Bioc blend for the

  20. Influence of drying restraint on physical and mechanical properties of nanofibrillated cellulose films

    Treesearch

    Carlos Baez; John Considine; Robert Rowlands

    2014-01-01

    Nanofibrillated cellulose (NFC) is a renewable and biodegradable fibril that possesses high strength and stiffness resulting from high level hydrogen bonding. Films made from NFC shrink and distort as they transition from a wet state (20 wt% solids) to a state of moisture equilibrium (90 wt% solids at 50 % RH, 23 °C). Material distortions are driven by development of...

  1. PCDD/F enviromental impact from municipal solid waste bio-drying plant.

    PubMed

    Rada, E C; Ragazzi, M; Zardi, D; Laiti, L; Ferrari, A

    2011-06-01

    The present work indentifies some environmental and health impacts of a municipal solid waste bio-drying plant taking into account the PCDD/F release into the atmosphere, its concentration at ground level and its deposition. Four scenarios are presented for the process air treatment and management: biofilter or regenerative thermal oxidation treatment, at two different heights. A Gaussian dispersion model, AERMOD, was used in order to model the dispersion and deposition of the PCDD/F emissions into the atmosphere. Considerations on health risk, from different exposure pathways are presented using an original approach. The case of biofilter at ground level resulted the most critical, depending on the low dispersion of the pollutants. Suggestions on technical solutions for the optimization of the impact are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. The measurement of dry deposition and surface runoff to quantify urban road pollution in Taipei, Taiwan.

    PubMed

    Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang

    2013-10-16

    Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01-5.14 g/m(2) · day and 78-87% of these solids are in the 75-300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads.

  3. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution.

    PubMed

    Davis, Mark T; Potter, Catherine B; Walker, Gavin M

    2018-06-10

    Downstream processing aspects of a stable form of amorphous itraconazole exhibiting enhanced dissolution properties were studied. Preparation of this ternary amorphous solid dispersion by either spray drying or hot melt extrusion led to significantly different powder processing properties. Particle size and morphology was analysed using scanning electron microscopy. Flow, compression, blending and dissolution were studied using rheometry, compaction simulation and a dissolution kit. The spray dried material exhibited poorer flow and reduced sensitivity to aeration relative to the milled extrudate. Good agreement was observed between differing forms of flow measurement, such as Flow Function, Relative flow function, Flow rate index, Aeration rate, the Hausner ratio and the Carr index. The stability index indicated that both powders were stable with respect to agglomeration, de-agglomeration and attrition. Tablet ability and compressibility studies showed that spray dried material could be compressed into stronger compacts than extruded material. Blending of the powders with low moisture, freely-flowing excipients was shown to influence both flow and compression. Porosity studies revealed that blending could influence the mechanism of densification in extrudate and blended extrudate formulations. Following blending, the powders were compressed into four 500 mg tablets, each containing a 100 mg dose of amorphous itraconazole. Dissolution studies revealed that the spray dried material released drug faster and more completely and that blending excipients could further influence the dissolution rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A fully automated method for simultaneous determination of aflatoxins and ochratoxin A in dried fruits by pressurized liquid extraction and online solid-phase extraction cleanup coupled to ultra-high-pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Russo, Mariateresa; Valdés, Alberto; Ibáñez, Clara; Rastrelli, Luca

    2015-04-01

    According to current demands and future perspectives in food safety, this study reports a fast and fully automated analytical method for the simultaneous analysis of the mycotoxins with high toxicity and wide spread, aflatoxins (AFs) and ochratoxin A (OTA) in dried fruits, a high-risk foodstuff. The method is based on pressurized liquid extraction (PLE), with aqueous methanol (30%) at 110 °C, of the slurried dried fruit and online solid-phase extraction (online SPE) cleanup of the PLE extracts with a C18 cartridge. The purified sample was directly analysed by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for sensitive and selective determination of AFs and OTA. The proposed analytical procedure was validated for different dried fruits (vine fruit, fig and apricot), providing method detection and quantification limits much lower than the AFs and OTA maximum levels imposed by EU regulation in dried fruit for direct human consumption. Also, recoveries (83-103%) and repeatability (RSD < 8, n = 3) meet the performance criteria required by EU regulation for the determination of the levels of mycotoxins in foodstuffs. The main advantage of the proposed method is full automation of the whole analytical procedure that reduces the time and cost of the analysis, sample manipulation and solvent consumption, enabling high-throughput analysis and highly accurate and precise results.

  5. High Energy Materials. New Preparation Approaches to Nitro and Nitroso Derivatives.

    DTIC Science & Technology

    1981-06-01

    hexane as the pyridazinofuroxan 2, a yellow solid, 67% mp 118-1190C (dec); satisfactory analysis for C, H and N; ir(KBr): 3460 (m), 3370 (m) and 1600 cm-l...la (tlc) left a clear yellow solution. The re- action mixture was concentrated at a temperature below 45°C until a crystalline solid 2 appeared...Dilution with ice-water brought further separation of the per- oxide 2a as a light yellow solid which was filtered and dried at room temperature, 7.2g(75

  6. 78 FR 9111 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Final Amendments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... established standards in this final rule for the following four subcategories of CISWI units: Incinerators (i... incinerators; ERUs (i.e., units that would be boilers or process heaters if they did not combust solid waste); and waste burning kilns (i.e., units that would be cement kilns if they did not combust solid waste...

  7. Effect of roll compaction on granule size distribution of microcrystalline cellulose–mannitol mixtures: computational intelligence modeling and parametric analysis

    PubMed Central

    Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander

    2017-01-01

    Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination (R2) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R2=0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD. PMID:28176905

  8. Effect of roll compaction on granule size distribution of microcrystalline cellulose-mannitol mixtures: computational intelligence modeling and parametric analysis.

    PubMed

    Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander

    2017-01-01

    Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination ( R 2 ) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R 2 =0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD.

  9. Development Of Sustainable Biobased Products And Bioenergy In Cooperation With The Midwest Consortium For Sustainable Biobased Products And Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Ladisch; Randy Woodson

    2009-03-18

    Collaborative efforts of Midwest Consortium have been put forth to add value to distiller's grains by further processing them into fermentable sugars, ethanol, and a protein rich co-product consistent with a pathway to a biorenewables industry (Schell et al, 2008). These studies were recently published in the enclosed special edition (Volume 99, Issue 12) of Bioresource Technology journal. Part of them have demonstrated the utilization of distillers grains as additional feedstock for increased ethanol production in the current dry grind process (Kim et al., 2008a, b; Dien et al.,2008, Ladisch et al., 2008a, b). Results showed that both liquid hotmore » water (LHW) pretreatment and ammonia fiber expansion (AFEX) were effective for enhancing digestibility of distiller's grains. Enzymatic digestion of distiller's grains resulted in more than 90% glucose yield under standard assay conditions, although the yield tends to drop as the concentration of dry solids increases. Simulated process mass balances estimated that hydrolysis and fermentation of distillers grains can increase the ethanol yield by 14% in the current dry milling process (Kim et al., 2008c). Resulting co-products from the modified process are richer in protein and oil contents than conventional distiller's grains, as determined both experimentally and computationally. Other research topics in the special edition include water solubilization of DDGS by transesterification reaction with phosphite esters (Oshel el al., 2008) to improve reactivity of the DDGS to enzymes, hydrolysis of soluble oligomers derived from DDGS using functionalized mesoporous solid catalysts (Bootsma et al., 2008), and ABE (acetone, butanol, ethanol) production from DDGS by solventogenic Clostridia (Ezeji and Blaschek, 2008). Economic analysis of a modified dry milling process, where the fiber and residual starch is extracted and fermented to produce more ethanol from the distillers grains while producing highly concentrated protein co-product, has shown that the process is economically viable resulting in an increase in net present value (Perkis et al., 2008). According to the study, the revenue is expected to increase further with improved amino acid profile of the protein rich co-products and lower cost of cellulase enzyme mixture. Also, Kim and Dale (2008) discuss using life cycle analysis to enhance the environmental performance of the corn based ethanol. On the second phase of the research, concerted efforts were directed on assessing compositional variability of dry milling co-products collected from 4 different dry grind ethanol plants has been measured and its effect on enzymatic digestibility and fermentability. Fermentation utilized a recombinant glucose/xylose co-fermenting yeast (Saccharomyces cerevisiae 424A (LNH-ST)). No significant compositional variability among the samples was found. Simultaneous saccharification and glucose/xylose co-fermentation of the pretreated distillers grains at solids and cellulase loadings of 150 g dry solids per liter and 6.4 mg protein per g dry substrate, respectively, yielded 74-801% of theoretical maximum ethanol concentration using recombinant Saccharomyces cerevisiae 424A (LNH-ST). The paper summarizing the results from the second phase of the Midwest Consortium is currently submitted to Bioresource Technology journal. The copy of the paper submitted is enclosed.« less

  10. Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions.

    PubMed

    Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2017-06-01

    The increasing food waste production calls for developing efficient technologies for its treatment. Anaerobic processes provide an effective waste valorization. The influence of the initial substrate load on the performance of batch dry anaerobic co-digestion reactors treating food waste and cardboard was investigated. The load was varied by modifying the substrate to inoculum ratio (S/X), the total solids content and the co-digestion proportions. The results showed that the S/X was a crucial parameter. Within the tested values (0.25, 1 and 4gVS·gVS -1 ), only the reactors working at 0.25 produced methane. Methanosarcina was the main archaea, indicating its importance for efficient methanogenesis. Acidogenic fermentation was predominant at higher S/X, producing hydrogen and other metabolites. Higher substrate conversions (≤48%) and hydrogen yields (≤62mL·gVS -1 ) were achieved at low loads. This study suggests that different value-added compounds can be produced in dry conditions, with the initial substrate load as easy-to-control operational parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Capability of Thai Mission grass (Pennisetum polystachyon) as a new weedy lignocellulosic feedstock for production of monomeric sugar.

    PubMed

    Tatijarern, Patomwat; Prasertwasu, Sirirat; Komalwanich, Tidarat; Chaisuwan, Thanyalak; Luengnaruemitchai, Apanee; Wongkasemjit, Sujitra

    2013-09-01

    Mission grass (Pennisetum polystachyon) grown in Pakchong District, Nakornratchasima Province, Thailand, with high cellulose and hemicellulose contents were harvested to determine the fermentable monomeric sugars for bioethanol production by two-stage microwave/chemical pretreatment process. Microwave-assisted NaOH pretreatment effectively removed approximately 85% lignin content in Mission grass, using 3% (w/v) NaOH, 15:1 liquid-to-solid ratio (LSR) at 120 °C temperatures for 10 min. As a result, in the second stage, microwave-assisted H2SO4 pretreatment of an alkaline-pretreated Mission grass solid releasedan impressively high fermentable sugar content (34.3±1.3 g per 100 g of dried biomass), consisting mainly of 31.1±0.8 g of glucose per 100 g of dried biomass, using 1% (w/v) H2SO4, 15:1 LSR at 200 °C temperature for a very short pretreatment time (5 min). The total monomeric sugar yield obtained via two-stage microwave/chemical process was 40.9 g per 100 g of dried biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. NEUTRALIZATIONS OF HIGH ALUMINUM LOW URANIUM USED NUCLEAR FUEL SOLUTIONS CONTAINING GADOLINIUM AS A NEUTRON POISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, K.

    2011-06-08

    H-Canyon will begin dissolving High Aluminum - Low Uranium (High Al/Low U) Used Nuclear Fuel (UNF) following approval by DOE which is anticipated in CY2011. High Al/Low U is an aluminum/enriched uranium UNF with small quantities of uranium relative to aluminum. The maximum enrichment level expected is 93% {sup 235}U. The High Al/Low U UNF will be dissolved in H-Canyon in a nitric acid/mercury/gadolinium solution. The resulting solution will be neutralized and transferred to Tank 39H in the Tank Farm. To confirm that the solution generated could be poisoned with Gd, neutralized, and discarded to the Savannah River Site (SRS)more » high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of simulant solutions was examined. Experiments were performed with three simulant solutions representative of the H-Canyon estimated concentrations in the final solutions after dissolution. The maximum U, Gd, and Al concentration were selected for testing from the range of solution compositions provided. Simulants were prepared in three different nitric acid concentrations, ranging from 0.5 to 1.5 M. The simulant solutions were neutralized to four different endpoints: (1) just before a solid phase was formed (pH 3.5-4), (2) the point where a solid phase was obtained, (3) 0.8 M free hydroxide, and (4) 1.2 M free hydroxide, using 50 wt % sodium hydroxide (NaOH). The settling behavior of the neutralized solutions was found to be slower compared to previous studies, with settling continuing over a one week period. Due to the high concentration of Al in these solutions, precipitation of solids was observed immediately upon addition of NaOH. Precipitation continued as additional NaOH was added, reaching a point where the mixture becomes almost completely solid due to the large amount of precipitate. As additional NaOH was added, some of the precipitate began to redissolve, and the solutions neutralized to the final two endpoints mixed easily and had expected densities of typical neutralized waste. Based on particle size and scanning electron microscopy analyses, the neutralized solids were found to be homogeneous and less than 20 microns in size. The majority of solids were less than 4 microns in size. Compared to previous studies, a larger percentage of the Gd was found to precipitate in the partially neutralized solutions (at pH 3.5-4). In addition the Gd:U mass ratio was found to be at least 1.0 in all of the solids obtained after partial or full neutralization. The hydrogen to U (H:U) molar ratios for two accident scenarios were also determined. The first was for transient neutralization and agitator failure. Experimentally this scenario was determined by measuring the H:U ratio of the settled solids. The minimum H:U molar ratio for solids from fully neutralized solutions was 388:1. The second accident scenario is for the solids drying out in an unagitiated pump box. Experimentally, this scenario was determined by measuring the H:U molar ratio in centrifuged solids. The minimum H:U atom ratios for centrifuged precipitated solids was 250:1. It was determined previously that a 30:1 H:Pu atom ratio was sufficient for a 1:1 Gd:Pu mass ratio. Assuming a 1:1 equivalence with {sup 239}Pu, the results of these experiments show Gd is a viable poison for neutralizing U/Gd solutions with the tested compositions.« less

  13. Modeling Evaporation and Particle Assembly in Colloidal Droplets.

    PubMed

    Zhao, Mingfei; Yong, Xin

    2017-06-13

    Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.

  14. Why Isn't the Earth Completely Covered in Water?

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Rietmeijer, Frans J. M.; Marnocha, Cassandra L.

    2012-01-01

    If protoplanets formed from 10 to 20 kilometer diameter planetesimals in a runaway accretion process prior to their oligarchic growth into the terrestrial planets, it is only logical to ask where these planetesimals may have formed in order to assess the initial composition of the Earth. We have used Weidenschilling's model for the formation of comets (1997) to calculate an efficiency factor for the formation of planetesimals from the solar nebula, then used this factor to calculate the feeding zones that contribute to material contained within 10, 15 and 20 kilometer diameter planetesimals at 1 A.U. as a function of nebular mass. We find that for all reasonable nebular masses, these planetesimals contain a minimum of 3% water as ice by mass. The fraction of ice increases as the planetesimals increase in size and as the nebular mass decreases, since both factors increase the feeding zones from which solids in the final planetesimals are drawn. Is there really a problem with the current accretion scenario that makes the Earth too dry, or is it possible that the nascent Earth lost significant quantities of water in the final stages of accretion?

  15. Analysis of Antarctic Ice-Sheet Mass Balance from ICESat Measurements

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui

    2011-01-01

    If protoplanets formed from 10 to 20 kilometer diameter planetesimals in a runaway accretion process prior to their oligarchic growth into the terrestrial planets, it is only logical to ask where these planetesimals may have formed in order to assess the initial composition of the Earth. We have used Weidenschilling's model for the formation of comets (1997) to calculate an efficiency factor for the formation of planetesimals from the solar nebula, then used this factor to calculate the feeding zones that contribute to material contained within 10, 15 and 20 kilometer diameter planetesimals at 1 A.V. as a function of nebular mass. We find that for all reasonable nebular masses, these planetesimals contain a minimum of 3% water as ice by mass. The fraction of ice increases as the planetesimals increase in size and as the nebular mass decreases, since both factors increase the feeding zones from which solids in the final planetesimals are drawn. Is there really a problem with the current accretion scenario that makes the Earth too dry, or is it possible that the nascent Earth lost significant quantities of water in the final stages of accretion?

  16. [Preparation, quality control and thyroid molecule imaging of solid-target based radionuclide ioine-124].

    PubMed

    Zhu, H; Wang, F; Guo, X Y; Li, L Q; Duan, D B; Liu, Z B; Yang, Z

    2018-04-18

    To provide useful information for the further production and application of this novel radio-nuclide for potential clinical application. 124 Te (p,n) 124 I nuclide reaction was used for the 124 I production. Firstly, the target material, 124 TeO 2 (200 mg) and Al2O3 (30 mg) mixture, were compressed into the round platinum based solid target by tablet device. HM-20 medical cyclotron was applied to irradiate the solid target slice for 6-10 h with helium and water cooling. Then, the radiated solid target was placed for 12 h (overnight) to decay the radioactive impurity; finally, 124 I was be purified by dry distillation using 1 mL/min nitrogen for about 6 hours and radiochemical separation methods. Micro-PET imaging studies were performed to investigate the metabolism properties and thyroid imaging ability of 124 I.After 740 kBq 124 I was injected intravenously into the tail vein of the normal mice, the animals were imaged with micro-PET and infused with CT. The micro-PET/CT infusion imaging revealed actual state 124 I's metabolism in the mice. It was been successfully applied for 200 mg 124 TeO 2 plating by the tablet device on the surface of platinum. It showed smooth, dense surface and without obviously pits and cracks. The enriched 124 Te target was irradiated for 6 to 10 hours at about 12.0 MeV with 20 μA current on HM-20 cyclotron. Then 370-1 110 MBq 124 I could be produced on the solid target after irradiation and 370-740 MBq high specific activity could be collected afterdry distillation separation and radio-chemical purification. 124 I product was finally dissolved in 0.01 mol/L NaOH for the future distribution. The gamma spectrum of the produced 124 I-solution showed that radionuclide purity was over 80.0%. The micro-PET imaging of 124 I in the normal mice exhibited the thyroid and stomach accumulations and kidney metabolism, the bladder could also be clearly visible, which was in accordance with what was previously reported. To the best of our knowledge, it was the first production of 124 I report in China. In this study, the preparation of 124 TeO 2 solid target was successfully carried out by using the tablet device. After irradiation of the 124 TeO 2 solid target and radio-chemical purification, we successfully produced 370-740 MBq high specific activity 124 I by a cyclotron for biomedical application, and micro-PET imaging of 124 I in normal mice exhibited the thyroid accumulations. Also, slight uptake in stomach were also monitored with almost nonuptake in other organs in the micro-PET imaging. The production of 124 I is expected to provide a new solid target radionuclide for the scientific research and potential clinical application of our country.

  17. Citric Acid Production from Orange Peel Wastes by Solid-State Fermentation

    PubMed Central

    Torrado, Ana María; Cortés, Sandra; Manuel Salgado, José; Max, Belén; Rodríguez, Noelia; Bibbins, Belinda P.; Converti, Attilio; Manuel Domínguez, José

    2011-01-01

    Valencia orange (Citrus sinensis) peel was employed in this work as raw material for the production of citric acid (CA) by solid-state fermentation (SSF) of Aspergillus niger CECT-2090 (ATCC 9142, NRRL 599) in Erlenmeyer flasks. To investigate the effects of the main operating variables, the inoculum concentration was varied in the range 0.5·103 to 0.7·108 spores/g dry orange peel, the bed loading from 1.0 to 4.8 g of dry orange peel (corresponding to 35-80 % of the total volume), and the moisture content between 50 and 100 % of the maximum water retention capacity (MWRC) of the material. Moreover, additional experiments were done adding methanol or water in different proportions and ways. The optimal conditions for CA production revealed to be an inoculum of 0.5·106 spores/g dry orange peel, a bed loading of 1.0 g of dry orange peel, and a humidification pattern of 70 % MWRC at the beginning of the incubation with posterior addition of 0.12 mL H2O/g dry orange peel (corresponding to 3.3 % of the MWRC) every 12 h starting from 62 h. The addition of methanol was detrimental for the CA production. Under these conditions, the SSF ensured an effective specific production of CA (193 mg CA/g dry orange peel), corresponding to yields of product on total initial and consumed sugars (glucose, fructose and sucrose) of 376 and 383 mg CA/g, respectively. These results, which demonstrate the viability of the CA production by SSF from orange peel without addition of other nutrients, could be of interest to possible, future industrial applications. PMID:24031646

  18. Drying process of fermented inulin fiber concentrate by Bifidobacterium bifidum as a dietary fiber source for cholesterol binder

    NASA Astrophysics Data System (ADS)

    Susilowati, Agustine; Aspiyanto, Ghozali, Muhammad

    2017-11-01

    Fermentation on inulin hydrolysate as fructooligosaccharides (FOS) by Bifidobacterium bifidum as a result of hydrolysis by inulase enzyme of Scopulariopsis sp.-CBS1 fungi has been performed to bind cholesterol. Their applications on preparation of fermented pour beverages was conducted via a series of concentration process using dead-end Stirred Ultrafiltration Cell (SUFC) mode at stirrer rotation of 400 rpm, room temperature and pressure of 40 psia for 0 minute (pre-concentration process) as concentrate (A) and 45 minutes as concentrate (B), and drying process using vacuum dryer at 30 °C and 22 cm Hg for 0, 8, 16, 24, 32, 40 and 48 hours. Based on optimization of Total Dietary Fiber (TDF), the best time of drying process was achieved for 40 hours. Long time of drying process would increase TDF and total solids, decreased total acids, and fluctuated dissolved protein and Cholesterol Binding Capacity (CBC). At the optimum condition of drying process was get fermented inulin fiber powder from concentration processes using both UF as pre process (0 minute) as concentrate (A) and UF for 45 minutes as concentrate (B) with compositions of total solids of 92.31 % and 93.67 %, TDF of 59.07 % (dry weight) and 69.28 %, total acids of 7.03 % and 7.5 %, dissolved protein of 3.95 mg/mL and 3.05 mg/mL, and CBC pH 2 15.71 mg/g and 16.8 mg/g, respectively. Concentration process through dead-end SUFC mode gave distribution of particles with better smoothness level than without through dead-end SUFC mode.

  19. Development of a Soluplus budesonide freeze-dried powder for nasal drug delivery.

    PubMed

    Pozzoli, Michele; Traini, Daniela; Young, Paul M; Sukkar, Maria B; Sonvico, Fabio

    2017-09-01

    The aim of this work was to develop an amorphous solid dispersions/solutions (ASD) of a poorly soluble drug, budesonide (BUD) with a novel polymer Soluplus ® (BASF, Germany) using a freeze-drying technique, in order to improve dissolution and absorption through the nasal route. The small volume of fluid present in the nasal cavity limits the absorption of a poorly soluble drug. Budesonide is a corticosteroid, practically insoluble and normally administered as a suspension-based nasal spray. The formulation was prepared through freeze-drying of polymer-drug solution. The formulation was assessed for its physicochemical (specific surface area, calorimetric analysis and X-ray powder diffraction), release properties and aerodynamic properties as well as transport in vitro using RPMI 2650 nasal cells, in order to elucidate the efficacy of the Soluplus-BUD formulation. The freeze-dried Soluplus-BUD formulation (LYO) showed a porous structure with a specific surface area of 1.4334 ± 0.0178 m 2 /g. The calorimetric analysis confirmed an interaction between BUD and Soluplus and X-ray powder diffraction the amorphous status of the drug. The freeze-dried formulation (LYO) showed faster release compared to both water-based suspension and dry powder commercial products. Furthermore, a LYO formulation, bulked with calcium carbonate (LYO-Ca), showed suitable aerodynamic characteristics for nasal drug delivery. The permeation across RPMI 2650 nasal cell model was higher compared to a commercial water-based BUD suspension. Soluplus has been shown to be a promising polymer for the formulation of BUD amorphous solid suspension/solution. This opens up opportunities to develop new formulations of poorly soluble drug for nasal delivery.

  20. Community Geothermal Technology Program: Fruit drying with geothermal energy. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-03-14

    Largest problem was lack of proper recording and controlling instrumentation. Agricultural products tested were green papaya powder, banana slices, and pineapple slices. Results show that a temperature of 120 F is a good drying temperature. Papaya should be mature green and not overly ripe; banana ripeness is also important; and pineapple slice thickness should be very uniform for even drying. Geothermal drying is feasible. Figs, tabs.

Top