78 FR 27 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-02
...-2012-0003] Final Flood Elevation Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final rule. SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs) and modified BFEs are made... effect in order to qualify or remain qualified for participation in the National Flood Insurance Program...
75 FR 78926 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
...-2010-0003] Final Flood Elevation Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final rule. SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs) and modified BFEs are made... effect in order to qualify or remain qualified for participation in the National Flood Insurance Program...
77 FR 74610 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-17
...-2012-0003] Final Flood Elevation Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final rule. SUMMARY: Base (1% annual-chance) Flood Elevations (BFEs) and modified BFEs are made... effect in order to qualify or remain qualified for participation in the National Flood Insurance Program...
44 CFR 67.11 - Notice of final determination.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.11 Notice of final determination. The Federal Insurance Administrator's notice of the final flood elevation determination for a community shall be in written form and...
44 CFR 67.11 - Notice of final determination.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.11 Notice of final determination. The Federal Insurance Administrator's notice of the final flood elevation determination for a community shall be in written form and...
78 FR 45938 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
...] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or zone designations, or...
75 FR 81887 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
...Modified Base (1% annual-chance) Flood Elevations (BFEs) are finalized for the communities listed below. These modified BFEs will be used to calculate flood insurance premium rates for new buildings and their contents.
76 FR 50918 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-17
...Base (1% annual-chance) Flood Elevations (BFEs) and modified BFEs are made final for the communities listed below. The BFEs and modified BFEs are the basis for the floodplain management measures that each community is required either to adopt or to show evidence of being already in effect in order to qualify or remain qualified for participation in the National Flood Insurance Program (NFIP).
76 FR 61279 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-04
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 67 [Docket ID FEMA-2011-0002] Final Flood Elevation Determinations Correction In rule document 2011-15507, beginning on page 36373, in the issue of Wednesday June 22, 2011, make the following corrections: Sec. 67.11...
76 FR 43968 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... qualify or remain qualified for participation in the National Flood Insurance Program (NFIP). In addition, these elevations, once finalized, will be used by insurance agents and others to calculate appropriate flood insurance premium rates for new buildings and the contents in those buildings. DATES: Comments are...
44 CFR 67.10 - Rates during pendency of final determination.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.10 Rates during pendency of final determination. (a) Until... community shall be denied the right to purchase flood insurance at the subsidized rate. (b) After the final...
76 FR 23528 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
... flood insurance premium rates for new buildings and the contents in those buildings. DATES: Comments are... premium rates for new buildings built after these elevations are made final, and for the contents in those buildings. Comments on any aspect of the Flood Insurance Study and FIRM, other than the proposed BFEs, will...
75 FR 77762 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... Flooding source(s) elevation in feet above Communities affected ground [caret] Elevation in meters (MSL... South Monroe Village. Lane. Just upstream of High +5,491 Line Canal. Box Elder Creek Approximately 1,400...,773 downstream of East Arapahoe Road. Goldsmith Gulch West Tributary......... Approximately 400 feet...
44 CFR 67.10 - Rates during pendency of final determination.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.10 Rates during pendency of final... a participating community shall be denied the right to purchase flood insurance at the subsidized...
77 FR 20999 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... set forth below: * Elevation in feet (NGVD) + Elevation in feet (NAVD) Depth in feet Flooding source(s..., and Incorporated Areas Docket No.: FEMA-B-1100 Mississippi River Approximately 11.2 miles +585 City of.... Approximately 12.8 miles +594 upstream of State Highway 136. * National Geodetic Vertical Datum. + North...
78 FR 43899 - Changes in Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
..., ``Flood Insurance.'') Dated: July 2, 2013. Roy E. Wright, Deputy Associate Administrator for Mitigation...] Changes in Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: New or modified Base (1% annual-chance) Flood Elevations (BFEs), base flood depths...
44 CFR 67.9 - Final determination in the absence of an appeal by the community.
Code of Federal Regulations, 2012 CFR
2012-10-01
... EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.9 Final determination in the...
44 CFR 67.9 - Final determination in the absence of an appeal by the community.
Code of Federal Regulations, 2014 CFR
2014-10-01
... EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.9 Final determination in the...
78 FR 6743 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-31
... in feet (NGVD) + Elevation in feet (NAVD) Flooding source(s) Location of referenced Depth in feet... downstream of Greely Allen County. Chapel Road. Approximately 750 feet + 965 upstream of Faulkner Road. Dug.... Approximately 100 feet + 827 downstream of North Cable Road. Dug Run Tributary At the Dug Run confluence + 813...
78 FR 5738 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... in feet (NGVD) + Elevation in feet (NAVD) Depth in feet State City/town/county Source of flooding... feet upstream of I-15 +3433 Areas of (westbound). Cascade County. Approximately 1.2 miles upstream of I... feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES Unincorporated...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Administrator for review and approval. The Administrator shall make the final base flood elevation determination...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Administrator for review and approval. The Administrator shall make the final base flood elevation determination...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Administrator for review and approval. The Administrator shall make the final base flood elevation determination...
75 FR 68710 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... downstream of Ager Road. California Unincorporated Panther Creek Shallow flooding 1, 3 County. flooding). Squaw Valley Creek and McCloud River Railroad. California Unincorporated Panther Creek Approximately 2... Unincorporated Panther Creek Immediately south 2 Areas of Siskiyou Overflow (shallow of and adjacent County...
76 FR 72627 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-25
.... confluence with Black Fox Run. Approximately 480 feet +868 upstream of State Route 368. Allegheny River... Assistance No. 97.022, ``Flood Insurance.'' Dated: November 14, 2011. Sandra K. Knight, Deputy Associate...
77 FR 46980 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... Executive Order 12988. List of Subjects in 44 CFR Part 67 Administrative practice and procedure, Flood... upstream of Northeast 152nd Avenue. Whipple Creek Just downstream of +28 Unincorporated Areas of Northwest...
75 FR 18091 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... rule is issued in accordance with section 110 of the Flood Disaster Protection Act of 1973, 42 U.S.C... within the scope of the Regulatory Flexibility Act, 5 U.S.C. 601- 612, a regulatory flexibility analysis.... This final rule meets the applicable standards of Executive Order 12988. List of Subjects in 44 CFR...
77 FR 30220 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... proof Flood Insurance Study and FIRM available at the address cited below for each community. The BFEs... Areas of 175. Kaufman County. Approximately 1 mile +342 downstream of State Highway 274. Duck Creek...
76 FR 3531 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... proof Flood Insurance Study and FIRM available at the address cited below for each community. The BFEs... (All Jurisdictions) Docket No.: FEMA-B-1085 Duck Lake Entire shoreline within +930 Township of Clarence...
77 FR 6980 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... feet above ground [caret] Elevation in meters (MSL) Modified Unincorporated Areas of Nowata County... Sea Level, rounded to the nearest 0.1 meter. ADDRESSES Unincorporated Areas of Nowata County Maps are... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified St. Lucie County...
77 FR 3625 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-25
... feet above ground [caret] Elevation in meters (MSL) Modified City of Baltimore, Maryland Docket No... Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Baltimore Maps are available for... Depth in feet Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified...
76 FR 1093 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Stephenson County.../Wisconsin +782 State boundary. Yellow Creek Approximately 400 feet +814 Unincorporated Areas of downstream... Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Freeport Maps are available for...
76 FR 58411 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... rates for new buildings and their contents. DATES: The effective dates for these modified BFEs are... buildings built after these elevations are made final, and for the contents in those buildings. The changes...
76 FR 50920 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-17
... Depth in feet Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified... above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES Unincorporated Areas... Unincorporated Areas of downstream of Main Butler County. Street. Approximately 400 feet + 958 upstream of Main...
76 FR 39305 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Franklin County... Level, rounded to the nearest 0.1 meter. ADDRESSES Unincorporated Areas of Franklin County Maps are....1 meter. ADDRESSES City of Spring Valley Maps are available for inspection at City Hall, 215 North...
75 FR 59989 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
... referenced Depth in feet Communities affected elevation above ground [caret] Elevation in meters (MSL... meter. ADDRESSES City of Lufkin Maps are available for inspection at 300 East Shepherd Avenue, Lufkin... Creek Approximately 400 feet +592 City of San Antonio. downstream of Probandt Street. Approximately 400...
78 FR 36099 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... Communities affected elevation above ground [caret]Elevation in meters (MSL) Modified Maricopa County, Arizona... Unincorporated Areas of upstream of the Camp Maricopa County. Creek Tributary A confluence. Approximately 400... miles +2857 upstream of the Camp Creek Tributary C confluence. Camp Creek Tributary C2 Approximately 400...
76 FR 9668 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Logan County, Arkansas... Level, rounded to the nearest 0.1 meter. ADDRESSES City of Booneville Maps are available for inspection..., rounded to the nearest 0.1 meter. ADDRESSES Pinoleville Indian Reservation Maps are available for...
76 FR 68107 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-03
... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Lee County, Alabama... Areas of Saugahatchee Creek. Lee County. Approximately 1.9 miles +537 upstream of the confluence with..., Saugahatchee Creek. Unincorporated Areas of Lee County. Approximately 640 feet +693 upstream of Gatewood Drive...
77 FR 19112 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
... Communities affected [caret] Elevation in meters (MSL) Modified Sumter County, Alabama, and Incorporated Areas... feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES Town of Epes... Avenue. [[Page 19114
76 FR 10253 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-24
... Depth in feet Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified... north of Talkeetna. Approximately 400 feet +394 downstream of the confluence of Whiskey Slough. Twister.... Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES Borough...
44 CFR 67.8 - Appeal procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... technical or scientific data submitted by the community that tend to negate or contradict the information... FLOOD ELEVATION DETERMINATIONS § 67.8 Appeal procedure. (a) If a community appeals the proposed flood... to an independent scientific body or appropriate Federal agency for advice. (c) The final...
44 CFR 67.8 - Appeal procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... technical or scientific data submitted by the community that tend to negate or contradict the information... FLOOD ELEVATION DETERMINATIONS § 67.8 Appeal procedure. (a) If a community appeals the proposed flood... to an independent scientific body or appropriate Federal agency for advice. (c) The final...
75 FR 55480 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-13
... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Pickens County, Alabama... Level, rounded to the nearest 0.1 meter. ADDRESSES City of Memphis Maps are available for inspection at.... Approximately 2,400 feet +415 west of the intersection of Bonnie Road and Cooley Lane. West Tributary...
77 FR 21476 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Randolph County... Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter.... [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Beebe Maps are available for...
76 FR 39011 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-05
... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Rio Grande County... Unincorporated Areas of the Rio Grande, Rio Grande County. approximately 400 feet north of U.S. Route 160... Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter...
77 FR 7540 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Sebastian County... Level, rounded to the nearest 0.1 meter. ADDRESSES City of Fort Smith Maps are available for inspection.... [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Rolling Fork Maps are...
75 FR 44155 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-28
... Communities affected elevation feet above ground [caret] Elevation in meters (MSL) Modified Coffee County... meter. ADDRESSES City of Elba Maps are available for inspection at 200 Buford Street, Elba, AL 36323.... Approximately 1,400 feet +7776 upstream of West Grimes Creek Road. Junction Creek At Pleasant Drive in Durango...
78 FR 14697 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
... Communities affected elevation above ground [caret] Elevation in meters (MSL) Modified Cecil County, Maryland... 1 to Stone Run At the Stone Run +271 Town of Rising Sun, confluence. Unincorporated Areas of Cecil County. Approximately 460 feet +359 downstream of Pierce Road. Tributary 2 to Stone Run At the Stone Run...
76 FR 79098 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-21
... County. Approximately 0.9 mile +3089 downstream of Black Angus Lane. Redwater River Approximately 1,200... Crosse County, Wisconsin, and Incorporated Areas Docket No. FEMA-B-1155 Black River Approximately 0.5... Federal Domestic Assistance No. 97.022, ``Flood Insurance.'') Dated: December 5, 2011. Sandra K. Knight...
76 FR 39009 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-05
... buildings. The changes in BFEs are in accordance with 44 CFR 65.4. National Environmental Policy Act. This final rule is categorically excluded from the requirements of 44 CFR part 10, Environmental Consideration. An environmental impact assessment has not been prepared. Regulatory Flexibility Act. As flood...
76 FR 3524 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... proof Flood Insurance Study and FIRM available at the address cited below for each community. The BFEs...-Long Run Road. Duck Run (backwater effects from Scioto Approximately 547 feet +535 Unincorporated Areas of River). upstream of Duck Run- Scioto County. Otway Road. Just downstream of +535 McDermott Pond...
76 FR 272 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... review the proof Flood Insurance Study and FIRM available at the address cited below for each community... feet +738 upstream of State Route 564. West Fork Duck Creek Approximately 0.41 mile +734 Unincorporated....: FEMA-B-1025 Duck Creek Approximately 3,950 feet +622 Town of Liberty, downstream of South Yale...
78 FR 21272 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... below for the modified BFEs for each community listed. These modified elevations have been published in... [Amended] 0 2. The tables published under the authority of Sec. 67.11 are amended as follows: * Elevation... Austin. upstream of 29th Avenue Southwest (County Highway 28). At the downstream side of +1205 I and M...
78 FR 45877 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... proof Flood Insurance Study and FIRM available at the address cited below for each community. The BFEs... Highway. At the Auke Bay ferry [caret] 29 terminal. Duck Creek At the downstream side of [caret] 23 City.... East Fork Duck Creek Approximately 150 feet [caret] 34 City and Borough of downstream of Nancy Juneau...
76 FR 1535 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-11
... meter. ADDRESSES Unincorporated Areas of Dawson County Maps are available for inspection at 400 South... feet above ground [caret] Elevation in meters (MSL) Modified Unincorporated Areas of Poinsett County... Leatherwood +216 Lane. Approximately 1.02 miles downstream of State +220 Highway 140. Approximately 1,400 feet...
75 FR 34381 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-17
... ground [caret] Elevation in meters (MSL) Modified Mississippi County, Arkansas, and Incorporated Areas... the nearest 0.1 meter. ADDRESSES City of Luxora Maps are available for inspection at 204 North Main... meter. ADDRESSES Unincorporated Areas of Yolo County Maps are available for inspection at the Yolo...
75 FR 5894 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... ground [caret] Elevation in meters (MSL) Modified Colbert County, Alabama, and Incorporated Areas Docket... nearest 0.1 meter. ADDRESSES City of Muscle Shoals Maps are available for inspection at 2010 East Avalon... Areas of downstream of Judy Creek. Powell County. Approximately 5,400 feet +651 upstream of Hatcher...
75 FR 23595 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
...] Elevation in meters (MSL) Modified Crittenden County, Arkansas, and Incorporated Areas Docket No.: FEMA-B... Sea Level, rounded to the nearest 0.1 meter. ADDRESSES Unincorporated Areas of Crittenden County... feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Grand...
77 FR 66737 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
... +45 upstream of Cedar Swamp Road. Clapps Swamp Approximately 0.4 mile +51 Unincorporated Areas of.... 4104, and 44 CFR part 67. FEMA has developed criteria for floodplain management in floodprone areas in... Location Depth in feet above ground [caret] Elevation in meters (MSL)Modified Unincorporated Areas of...
76 FR 76055 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-06
... Communities affected [caret] Elevation in Meters (MSL) Modified Boone County, Indiana, and Incorporated Areas.... Unincorporated Areas of Boone County. Approximately 0.61 mile +949 upstream of County Road 400 East. Green Ditch... the nearest 0.1 meter. ADDRESSES City of Lebanon Maps are available for inspection at the Municipal...
77 FR 76916 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... Southeast. Sweat Mountain Creek At the Willeo Creek +941 Unincorporated Areas of confluence. Cobb County... upstream of the Sweat Mountain Creek confluence. * National Geodetic Vertical Datum. + North American...
Stream channel cross sections for a reach of the Boise River in Ada County, Idaho
Hortness, Jon E.; Werner, Douglas C.
1999-01-01
The Federal Emergency Management Agency produces maps of areas that are likely to be inundated during major floods, usually the 100-year, or 1-percent probability, flood. The maps, called Flood Insurance Rate Maps, are used to determine flood insurance rates for homes, businesses, or other structures located in flood-prone areas. State and local governments also use these maps for help with, among other things, development planning and disaster mitigation. During the period October 1997 through December 1998, the initial phase of a hydraulic analysis project of the Boise River from Barber Dam to the Ada/Canyon County boundary, the U.S. Geological Survey collected stream channel cross-section data at 238 locations along the river and documented 108 elevation reference marks established for horizontal and vertical control. In the final phase of the project, the Survey will use these data to determine water-surface elevations for the 10-, 50-, 100-, and 500-year floods and to define floodway limits. The Federal Emergency Management Agency will use the results of this hydraulic analysis to update the 100- and 500-year flood boundaries and the floodway limits on their Flood Insurance Rate Maps.
77 FR 49379 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
... meter. ADDRESSES Ho-Chunk Nation Maps are available for inspection at W9814 Airport Road, Black River..., 2012. Sandra K. Knight, Deputy Associate Administrator for Mitigation, Department of Homeland Security...
75 FR 11468 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
...] Elevation in meters (MSL) Modified Mobile County, Alabama, and Incorporated Areas Docket No.: FEMA-B-7732..., rounded to the nearest 0.1 meter. ADDRESSES City of Mobile Maps are available for inspection at 205... Incorporated Areas Docket No.: FEMA-B-1022 Bear Creek 9,400 feet upstream of +266 Unincorporated Areas of Weiss...
75 FR 69892 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-16
.... Yellow Medicine River Approximately 3,295 feet +1094 Unincorporated Areas of downstream of the county..., Unincorporated Areas of Cass County. Approximately 0.53 mile +1094 downstream of State Highway 50. Approximately...
77 FR 49367 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
... County. Verde Creek confluence. Approximately 500 feet +2593 downstream of the Agua Caliente Wash... Pima County. Tanque Verde Road. Approximately 0.4 mile +2624 upstream of East Tanque Verde Road. Agua...
76 FR 35111 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... final for the communities listed below. The BFEs and modified BFEs are the basis for the floodplain management measures that each community is required either to adopt or to show evidence of being already in... BFEs for each community. This date may be obtained by contacting the office where the maps are...
78 FR 10066 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... Approximately 175 feet +70 Unincorporated Areas of downstream of Gay Road Edgecombe County. (State Route 1268... +70 City of Rocky Mount. downstream of Gay Road (Secondary Road 1268). Approximately 190 feet +91...
77 FR 49360 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
...). the Rough River Lake to Grayson County. approximately 1,010 feet downstream of Duff Road. West Cane... available for inspection at 314 West White Oak Street, Leitchfield, KY 42755. Unincorporated Areas of...
77 FR 21000 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... 76058, under the ADDRESSES heading, the following text should read as set forth below: Township of Fox Maps are available for inspection at the Fox Township Municipal Building, 116 Irishtown Road, Kersey...
75 FR 78617 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
...-1085 Blue Hill Creek Approximately 1,546 feet +462 City of Abbeville. downstream of South Main Street... 29620. Edgefield County, South Carolina, and Incorporated Areas Docket No.: FEMA-B-1085 Stevens Creek...
76 FR 54134 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-31
... under the criteria of section 3(f) of Executive Order 12866 of September 30, 1993, Regulatory Planning... Unincorporated Areas of Pacific Railroad. Park County. Approximately 4.14 miles +4953 downstream of Tom Miner...
77 FR 26968 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
.... Unincorporated Areas of Madison Parish Maps are available for inspection at the Madison Parish Police Jury, 100... Jury, 100 North Cedar Street, Tallulah, LA 71282. Village of Richmond Maps are available for inspection...
44 CFR 67.4 - Proposed flood elevation determination.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Proposed flood elevation..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.4 Proposed flood elevation determination. The Federal...
44 CFR 67.4 - Proposed flood elevation determination.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.4 Proposed flood elevation determination. The Federal... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Proposed flood elevation...
44 CFR 67.4 - Proposed flood elevation determination.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.4 Proposed flood elevation determination. The Federal... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Proposed flood elevation...
Code of Federal Regulations, 2010 CFR
2010-10-01
... from flooding.” (6) Data to substantiate the base flood elevation. If we complete a Flood Insurance Study (FIS), we will use those data to substantiate the base flood elevation. Otherwise, the community... technical data prepared and certified by a registered professional engineer. If base flood elevations have...
1983-12-01
therefore, any possible changes in floodplain regulation would be independent of project implementation. The existing regulation affects properties...to 0.4. Based on engineering experience there is a tendency toward independence as tributary drainage area size decreases. Frequency-discharge...stages on the Wisconsin River. Similarly the storage areas are analyzed as independent syste,, o thereby, reduction in flood elevations (routing) and
44 CFR 67.3 - Establishment and maintenance of a flood elevation determination docket (FEDD).
Code of Federal Regulations, 2014 CFR
2014-10-01
... MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.3 Establishment and maintenance of a flood elevation determination docket (FEDD). The Federal Insurance... of a flood elevation determination docket (FEDD). 67.3 Section 67.3 Emergency Management and...
44 CFR 67.3 - Establishment and maintenance of a flood elevation determination docket (FEDD).
Code of Federal Regulations, 2012 CFR
2012-10-01
... MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.3 Establishment and maintenance of a flood elevation determination docket (FEDD). The Federal Insurance... of a flood elevation determination docket (FEDD). 67.3 Section 67.3 Emergency Management and...
NASA Astrophysics Data System (ADS)
Jones, M.; Longenecker, H. E., III
2017-12-01
The 2017 hurricane season brought the unprecedented landfall of three Category 4 hurricanes (Harvey, Irma and Maria). FEMA is responsible for coordinating the federal response and recovery efforts for large disasters such as these. FEMA depends on timely and accurate depth grids to estimate hazard exposure, model damage assessments, plan flight paths for imagery acquisition, and prioritize response efforts. In order to produce riverine or coastal depth grids based on observed flooding, the methodology requires peak crest water levels at stream gauges, tide gauges, high water marks, and best-available elevation data. Because peak crest data isn't available until the apex of a flooding event and high water marks may take up to several weeks for field teams to collect for a large-scale flooding event, final observed depth grids are not available to FEMA until several days after a flood has begun to subside. Within the last decade NOAA's National Weather Service (NWS) has implemented the Advanced Hydrologic Prediction Service (AHPS), a web-based suite of accurate forecast products that provide hydrograph forecasts at over 3,500 stream gauge locations across the United States. These forecasts have been newly implemented into an automated depth grid script tool, using predicted instead of observed water levels, allowing FEMA access to flood hazard information up to 3 days prior to a flooding event. Water depths are calculated from the AHPS predicted flood stages and are interpolated at 100m spacing along NHD hydrolines within the basin of interest. A water surface elevation raster is generated from these water depths using an Inverse Distance Weighted interpolation. Then, elevation (USGS NED 30m) is subtracted from the water surface elevation raster so that the remaining values represent the depth of predicted flooding above the ground surface. This automated process requires minimal user input and produced forecasted depth grids that were comparable to post-event observed depth grids and remote sensing-derived flood extents for the 2017 hurricane season. These newly available forecasted models were used for pre-event response planning and early estimated hazard exposure counts, allowing FEMA to plan for and stand up operations several days sooner than previously possible.
76 FR 73534 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
...-2011-0002; Internal Agency Docket No. FEMA-B-1230] Proposed Flood Elevation Determinations AGENCY... proposed Base (1% annual-chance) Flood Elevations (BFEs) and proposed BFE modifications for the communities... regarding the proposed regulatory flood elevations for the reach described by the downstream and upstream...
76 FR 69665 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
.... Alpena County, Michigan (All Jurisdictions) Docket No.: FEMA-B-1151 Lake Huron From approximately 1.3 + 583 City of Alpena, Township miles northwest of the of Alpena. intersection of Rockport Road and Old... Road and Brousseau Road. [[Page 69669
77 FR 74142 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
...-2011-0002; Internal Agency Docket No. FEMA-B-1100 and FEMA-B-1222] Proposed Flood Elevation... Base (1% annual-chance) Flood Elevations (BFEs) and modified BFEs for communities participating in the National Flood Insurance Program (NFIP), in accordance with section 110 of the Flood Disaster Protection...
Swiss Re Global Flood Hazard Zones: Know your flood risk
NASA Astrophysics Data System (ADS)
Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.
2012-12-01
Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.
Quality control of the RMS US flood model
NASA Astrophysics Data System (ADS)
Jankowfsky, Sonja; Hilberts, Arno; Mortgat, Chris; Li, Shuangcai; Rafique, Farhat; Rajesh, Edida; Xu, Na; Mei, Yi; Tillmanns, Stephan; Yang, Yang; Tian, Ye; Mathur, Prince; Kulkarni, Anand; Kumaresh, Bharadwaj Anna; Chaudhuri, Chiranjib; Saini, Vishal
2016-04-01
The RMS US flood model predicts the flood risk in the US with a 30 m resolution for different return periods. The model is designed for the insurance industry to estimate the cost of flood risk for a given location. Different statistical, hydrological and hydraulic models are combined to develop the flood maps for different return periods. A rainfall-runoff and routing model, calibrated with observed discharge data, is run with 10 000 years of stochastic simulated precipitation to create time series of discharge and surface runoff. The 100, 250 and 500 year events are extracted from these time series as forcing for a two-dimensional pluvial and fluvial inundation model. The coupling of all the different models which are run on the large area of the US implies a certain amount of uncertainty. Therefore, special attention is paid to the final quality control of the flood maps. First of all, a thorough quality analysis of the Digital Terrain model and the river network was done, as the final quality of the flood maps depends heavily on the DTM quality. Secondly, the simulated 100 year discharge in the major river network (600 000 km) is compared to the 100 year discharge derived using extreme value distribution of all USGS gauges with more than 20 years of peak values (around 11 000 gauges). Thirdly, for each gauge the modelled flood depth is compared to the depth derived from the USGS rating curves. Fourthly, the modelled flood depth is compared to the base flood elevation given in the FEMA flood maps. Fifthly, the flood extent is compared to the FEMA flood extent. Then, for historic events we compare flood extents and flood depths at given locations. Finally, all the data and spatial layers are uploaded on geoserver to facilitate the manual investigation of outliers. The feedback from the quality control is used to improve the model and estimate its uncertainty.
76 FR 49676 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-11
... shoreline......... *26 City of Deltona. * National Geodetic Vertical Datum. + North American Vertical Datum... Boulevard. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground... feet +1000 upstream of Southeast 45th Street. * National Geodetic Vertical Datum. + North American...
Base (100-year) flood elevations for selected sites in Livingston County, Missouri
Southard, Rodney E.; Richards, Joseph M.
2002-01-01
The primary criteria for community participation in the National Flood Insurance Program is the adoption and enforcement of floodplain management requirements that minimize the potential for flood damages to existing and proposed development in flood-hazard areas. This report provides base flood elevations (BFE) for a 100-year recurrence-interval flood for use in the management and regulation of 18 flood-hazard areas designated by the Federal Emergency Management Agency as approximate Zone A areas in Livingston County, Missouri. The one-dimensional surface-water flow models HEC-RAS and Water-Surface PROfile (WSPRO) were used to compute base (100-year) flood elevations for 18 Zone A sites. The HEC-RAS model was used at BFE sites 1 to 6, 9, 10, and 15 to 18. The WSPRO model was used at BFE sites 7, 8, and 11 to 14. The 18 sites are all located in Livingston County, Missouri, at U.S., State, or County road crossings, and the base flood elevation was determined at the upstream side of each crossing. The base (100-year) flood elevations for BFE 1, 2, and 3 on Shoal Creek at Dawn and Shoal Creek Drainage Ditch near Dawn are 701.0, 701.0, and 696.5 feet, respectively. The base (100-year) flood elevations for BFE 4 and 5 on Indian Branch near Sampsel and a tributary to Indian Branch near Sampsel are 711.7 and 755.4 feet, respectively. Site BFE 6 is located on Honey Creek near Farmersville and the base (100-year) flood elevation for this site is 730.8 feet. One site (BFE 7) is located on No Creek near Farmersville. The base (100-year) flood elevation for this site is 731.3 feet. Site BFE 8 is located on Crooked Creek near Chillicothe and the base (100-year) elevation is 716.4 feet. One site (BFE 9) is located on a tributary to Coon Creek at Chillicothe. The base (100-year) flood elevation for this site is 734.9 feet. Two sites (BFE 10 and 11) are located on Blackwell Branch at Chillicothe. The base (100-year) flood elevation for BFE 10 is 738.9 feet and for BFE 11 is 701.7 feet. The base (100-year) flood elevation for BFE 12 on Medicine Creek near Chula is 721.7 feet. Sites BFE 13 and 15 are on Muddy Creek and for BFE 14 is on Little Muddy Creek near Chula. The base (100-year) flood elevations for BFE 13 and 15 are 733.0 and 717.9 feet, respectively and for BFE 14 is 734.6 feet. Downstream from BFE 12 is site BFE 16 on Medicine Creek near Wheeling. The base (100-year) flood elevation for site BFE 16 is 686.1 feet. One site (BFE 17) is located on Campbell Creek near Bedford. The base (100-year) flood elevation at this site is 691.8 feet. Site BFE 18 is located on Towstring Creek near Hale. The base (100-year) flood elevation for site BFE 18 is 667.4 feet.
77 FR 15664 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-16
... table provided here represents the flooding sources, location of referenced elevations, and effective and modified elevations for the City of Cadiz, Kentucky. Specifically, it addresses the flooding... Cadiz, Kentucky'' addressed the flooding sources Little River (backwater effects from Lake Barkley) and...
77 FR 26959 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-08
... Creek confluence. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet... County, Indiana, and Incorporated Areas Docket No.: FEMA-B-1171 Big Walnut Creek Approximately 845 feet... feet upstream +692 of Houck Road (North County Road 25 East). * National Geodetic Vertical Datum...
78 FR 43821 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
............ +902 Unincorporated Areas of LaGrange County. Big Long Lake Entire shoreline......... +957 Unincorporated Areas of LaGrange County. Big Turkey Lake Entire shoreline within +932 Unincorporated Areas of... Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level...
77 FR 71702 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
... from the requirements of 44 CFR part 10, Environmental Consideration. An environmental impact... Rock +3405 Creek (Lower) confluence. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES...
76 FR 21664 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
... from the requirements of 44 CFR part 10, Environmental Consideration. An environmental impact... Unincorporated Areas of Walnut Creek. Franklin County. Approximately 800 feet +1038 downstream of Hedge Road... 97502. Unincorporated Areas of Jackson County Maps are available for inspection at City Hall, 10 South...
76 FR 29656 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-23
... with +632 Unincorporated Areas of Kentucky River). Cow Creek to Estill County. approximately 0.7 mile... of Clearcreek Road. Cow Creek (backwater effects from From the confluence with +632 Unincorporated... Cow Creek Road. Crooked Creek (backwater effects from From the confluence with +631 Unincorporated...
Assessing uncertainty in SRTM elevations for global flood modelling
NASA Astrophysics Data System (ADS)
Hawker, L. P.; Rougier, J.; Neal, J. C.; Bates, P. D.
2017-12-01
The SRTM DEM is widely used as the topography input to flood models in data-sparse locations. Understanding spatial error in the SRTM product is crucial in constraining uncertainty about elevations and assessing the impact of these upon flood prediction. Assessment of SRTM error was carried out by Rodriguez et al (2006), but this did not explicitly quantify the spatial structure of vertical errors in the DEM, and nor did it distinguish between errors over different types of landscape. As a result, there is a lack of information about spatial structure of vertical errors of the SRTM in the landscape that matters most to flood models - the floodplain. Therefore, this study attempts this task by comparing SRTM, an error corrected SRTM product (The MERIT DEM of Yamazaki et al., 2017) and near truth LIDAR elevations for 3 deltaic floodplains (Mississippi, Po, Wax Lake) and a large lowland region (the Fens, UK). Using the error covariance function, calculated by comparing SRTM elevations to the near truth LIDAR, perturbations of the 90m SRTM DEM were generated, producing a catalogue of plausible DEMs. This allows modellers to simulate a suite of plausible DEMs at any aggregated block size above native SRTM resolution. Finally, the generated DEM's were input into a hydrodynamic model of the Mekong Delta, built using the LISFLOOD-FP hydrodynamic model, to assess how DEM error affects the hydrodynamics and inundation extent across the domain. The end product of this is an inundation map with the probability of each pixel being flooded based on the catalogue of DEMs. In a world of increasing computer power, but a lack of detailed datasets, this powerful approach can be used throughout natural hazard modelling to understand how errors in the SRTM DEM can impact the hazard assessment.
76 FR 76060 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-06
... Port Georgetown. Sheldon Street. At the confluence with +646 Knight Intercounty Drain. Bliss Creek.... Georgetown. At the downstream side of +616 Kenowa Avenue Southwest. Knight Intercounty Drain At the... River/Black Creek of Zeeland Approximately 0.8 mile +584 Charter Township of Drain. upstream of River...
78 FR 29652 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
..., Louisiana, and Incorporated Areas Docket No.: FEMA-B-1110 Big Creek Just upstream of Burke +78... confluence with +79 Unincorporated Areas of Big Creek. Richland Parish. Just upstream of Smalling +85 Road.... * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [supcaret...
75 FR 59095 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... Mile 673........ +202 * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in...,434 upstream of Northeast 24th Street. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES...
77 FR 21471 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... Street, Ellijay, GA 30540. Chisago County, Minnesota, and Incorporated Areas Docket No.: FEMA-B-1134 Lake Ellen Entire shoreline +895 City of Chisago City. Skogman Lake Entire shoreline within +950... Saint Joe Street. Ice House Creek Approximately 25 feet +3658 City of Spearfish. upstream of Grant...
75 FR 68714 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... mile +683 Village of Mayfield. upstream of Rogers Road. Chagrin River Approximately 40 feet +786 Village of Moreland upstream of Woodland Hills. Road. Approximately 1,200 feet +789 upstream of Woodland... Miles Road. Countrymans Creek Upstream of I-71......... +721 Village of Lindale. Downstream of Bellaire...
75 FR 52868 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-30
... from the requirements of 44 CFR part 10, Environmental Consideration. An environmental impact.... Unnamed Creek 10 Approximately 515 feet +607 City of Center Point, downstream of Main City of Pinson... Incorporated Areas Docket No.: FEMA-B-1038 Bayou Barwick Tributary At the intersection of +44 Unincorporated...
Base (100-year) flood elevations for selected sites in Marion County, Missouri
Southard, Rodney E.; Wilson, Gary L.
1998-01-01
The primary requirement for community participation in the National Flood Insurance Program is the adoption and enforcement of floodplain management requirements that minimize the potential for flood damages to new construction and avoid aggravating existing flooding conditions. This report provides base flood elevations (BFE) for a 100-year recurrence flood for use in the management and regulation of 14 flood-hazard areas designated by the Federal Emergency Management Agency as approximate Zone A areas in Marion County, Missouri. The one-dimensional surface-water flow model, HEC-RAS, was used to compute the base (100-year) flood elevations for the 14 Zone A sites. The 14 sites were located at U.S., State, or County road crossings and the base flood elevation was determined at the upstream side of each crossing. The base (100-year) flood elevations for BFE 1, 2, and 3 on the South Fork North River near Monroe City, Missouri, are 627.7, 579.2, and 545.9 feet above sea level. The base (100-year) flood elevations for BFE 4, 5, 6, and 7 on the main stem of the North River near or at Philadelphia and Palmyra, Missouri, are 560.5, 539.7, 504.2, and 494.4 feet above sea level. BFE 8 is located on Big Branch near Philadelphia, a tributary to the North River, and the base (100-year) flood elevation at this site is 530.5 feet above sea level. One site (BFE 9) is located on the South River near Monroe City, Missouri. The base (100-year) flood elevation at this site is 619.1 feet above sea level. Site BFE 10 is located on Bear Creek near Hannibal, Missouri, and the base (100-year) elevation is 565.5 feet above sea level. The four remaining sites (BFE 11, 12, 13, and 14) are located on the South Fabius River near Philadelphia and Palmyra, Missouri. The base (100-year) flood elevations for BFE 11, 12, 13, and 14 are 591.2, 578.4, 538.7, and 506.9 feet above sea level.
75 FR 23600 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... feet +571 upstream of the confluence with Millers Creek. Dale Hollow Lake (Wolf River) At the confluence with +663 Unincorporated Areas of the Wolf River. Clinton County. Approximately 1,800 feet +663 upstream of the confluence with Spring Creek. Lake Cumberland Just upstream of the Wolf +760 Unincorporated...
75 FR 64165 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... River. Dog Creek (backwater effects from Nolin From the county boundary +560 Unincorporated Areas of Lake). to approximately 0.6 Edmonson County. mile upstream of the confluence with Dog Creek Tributary 1... County. approximately 1.1 miles upstream of the confluence with the Green River. Wolf Creek (backwater...
78 FR 6745 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-31
...,250 feet +635 upstream of Spring Mountain Lane. Cranberry Creek at Paradise At the upstream side of +715 Township of Paradise. Browns Hill Road. Approximately 200 feet +1092 upstream of Snowbird Lane..., Schoonover Municipal Building, 25 Municipal Drive, East Stroudsburg, PA 18301. Township of Paradise Maps are...
77 FR 6976 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-10
... Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to... Unincorporated Areas of approximately 0.5 mile Taney County. upstream of the White River confluence. Big Shoals... confluence. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground...
76 FR 43923 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... downstream of Big Bethel +9 Road. Approximately 20 feet upstream of the confluence +22 with Newmarket Creek... Approximately 30 feet downstream of I-64 +22 *National Geodetic Vertical Datum. +North American Vertical Datum... Center Street. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above...
75 FR 81484 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
..., 1993, Regulatory Planning and Review, 58 FR 51735. Executive Order 13132, Federalism. This final rule...: Lexington-Fayette Urban County Lexington-Fayette February 12, 2010; The Honorable Jim June 21, 2010 210067 Government (FEMA Docket No.: Urban County February 19, 2010; Newberry, Mayor, B-1121). Government (09-04...
78 FR 9831 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-12
... Drive. Wake County. Approximately 850 feet +345 upstream of Keighley Forest Drive. Richland Creek Approximately 850 feet +301 Town of Wake Forest. upstream of the confluence with Richland Creek Tributary 2... Approximately 750 feet +301 Town of Wake Forest. upstream of the confluence with Richland Creek. Approximately 0...
75 FR 43418 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
... the Schuyler County, Village confluence with the La of Browning. Moine River. Approximately 2.55 miles... Highway Department, 121 Henninger Drive, Rushville, IL 62681. Village of Browning Maps are available for inspection at the Village Hall, 501 Main Street, Browning, IL 62624. St. Landry Parish, Louisiana, and...
75 FR 14091 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... CFR part 10, Environmental Consideration. An environmental impact assessment has not been prepared... No.: FEMA-B-1038 Cottonwood Creek Approximately 2,000 feet + 1313 Unincorporated Areas of upstream of... Homeland Security, Federal Emergency Management Agency. [FR Doc. 2010-6421 Filed 3-23-10; 8:45 am] BILLING...
75 FR 81890 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
... in BFEs are in accordance with 44 CFR 65.4. National Environmental Policy Act. This final rule is categorically excluded from the requirements of 44 CFR part 10, Environmental Consideration. An environmental... Ringgold, Catoosa County News. 150 Tennessee Street, Ringgold, GA 30736. Catoosa (FEMA Docket No.: B...
76 FR 59268 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-26
... in BFEs are in accordance with 44 CFR 65.4. National Environmental Policy Act. This final rule is categorically excluded from the requirements of 44 CFR part 10, Environmental Consideration. An environmental..., 2011; The Maddox, Mayor, City of Tuscaloosa News. Tuscaloosa, 2201 University Boulevard, Tuscaloosa, AL...
76 FR 35119 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... (backwater effects from From the confluence with Pot +488 Unincorporated Areas of Kentucky River). Ripple Creek to Henry County. approximately 0.5 mile upstream of the confluence with Pot Ripple Creek. Boiling... Ripple Creek (backwater effects From the confluence with the +488 Unincorporated Areas of from Kentucky...
77 FR 45262 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
... upstream of the upstream Grundy County, Village side of the Dresden of Channahon. Island Lock and Dam.... Just downstream of the +507 Dresden Island Lock and Dam. * National Geodetic Vertical Datum. + North... available for inspection at the North Moreland Township Municipal Building, 15 Municipal Lane, Dallas, PA...
46 CFR 174.080 - Flooding on self-elevating and surface type units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Flooding on self-elevating and surface type units. 174... Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or... superstructure deck where superstructures are fitted must be assumed to be subject to simultaneous flooding. (b...
46 CFR 174.080 - Flooding on self-elevating and surface type units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Flooding on self-elevating and surface type units. 174... Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or... superstructure deck where superstructures are fitted must be assumed to be subject to simultaneous flooding. (b...
46 CFR 174.080 - Flooding on self-elevating and surface type units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Flooding on self-elevating and surface type units. 174... Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or... superstructure deck where superstructures are fitted must be assumed to be subject to simultaneous flooding. (b...
75 FR 3171 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
... Unincorporated Areas of CSX Railroad. Lake County, City of Mentor, City of Painesville. Approximately 800 feet +663 upstream of Jackson Street. Wasson Ditch On the upstream side of +641 City of Mentor, City of CSX... from the +576 City of Eastlake, City of western boundary with Mentor, City of Mentor- Cuyahoga County...
75 FR 59634 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
..., and Incorporated Areas Docket No.: FEMA-B-1072 Napa Creek At the confluence with +18 City of Napa. the..., FL 32459. McDuffie County, Georgia, and Incorporated Areas Docket No.: FEMA-B-1072 Boggy Gut Creek... Railroad Street, Thomson, GA 30824. Murray County, Georgia, and Incorporated Areas Docket No.: FEMA-B-1072...
78 FR 21273 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... Docket No.: FEMA-B-1117 Four Mile Run At the confluence with +10 Arlington County. the Potomac River... from From the confluence with +40 Arlington County. Potomac River). the Potomac River to a point located approximately 112 feet downstream of Chain Bridge Road. Potomac River At the confluence with +10...
76 FR 36373 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
... of Cedar Falls. downstream of Dunkerton Road. Just upstream of Lone +864 Tree Road. Wolf Creek... upstream of Main Street. Wolf Creek Overflow Approximately 0.4 mile +815 City of La Porte City, downstream... Lake. Little Dog Creek (backwater effects From the confluence with +560 Unincorporated Areas of from...
75 FR 19895 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-16
... +1529 Eastern Band of Cherokee Hanging Dog Creek. Indians, Unincorporated Areas of Cherokee County. Approximately 0.8 mile +1633 upstream of the confluence with Hanging Dog Creek. Big Witch Creek At the.... Indians. Approximately 1,050 feet +1904 upstream of Goose Creek Road. Hanging Dog Creek At the confluence...
78 FR 10072 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... feet +8 City of Jacksonville. downstream of Atlantic Boulevard. Approximately 1,500 feet +17 upstream... City of Atlantic Beach, Pablo Creek. City of Neptune Beach. Approximately 1,100 feet +7 upstream of... confluence with +41 City of Jacksonville. Mill Dam Branch at Lantana Lakes Drive. Just upstream of Forest +45...
77 FR 73324 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
.... Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. [[Page 73326.... + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the... Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Walnut Ridge Maps are available for...
77 FR 41323 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
.... Approximately 800 feet +7655 upstream of Virginia Street. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter..., Illinois, and Incorporated Areas Docket No.: FEMA-B-1197 Big Rock Creek Approximately 1.68 miles +648...
77 FR 21485 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... Incorporated Areas Docket No.: FEMA-B-1085 Bee Creek Tributary B Approximately 1,700 feet + 286 City of College... Turkey Creek Tributary D. Unnamed Tributary to Bee Creek At the confluence with + 291 City of College Station. Tributary B. Bee Creek Tributary B. Approximately 613 feet + 293 upstream of the confluence with...
75 FR 61358 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-05
.... 4104, and 44 CFR part 67. FEMA has developed criteria for floodplain management in floodprone areas in..., Illinois, and Incorporated Areas Docket Nos.: FEMA-B-1022 and FEMA-B-1068 Illinois River Approximately 0.57... Highway 14..... +673 Unincorporated Areas of Marshall County. Approximately 140 feet +686 northwest of the...
77 FR 46972 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... Division, 2400 Broadway Southeast, Albuquerque, NM 87102. Le Flore County, Oklahoma, and Incorporated Areas.... Unincorporated Areas of Le Flore County. At the downstream side of +490 U.S. Route 59. Caston Creek Approximately.... Areas of Le Flore County. Approximately 500 feet +470 upstream of the confluence with Mountain Creek...
75 FR 23608 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-04
... Jewett +88 Town of White Springs Street. Approximately 600 feet +109 upstream of 1st Street. Timber Lake... Hamilton Avenue, Jennings, FL 32053 Town of White Springs Maps are available for inspection at the Town Hall, 10363 Bridge Street, White Springs, FL 32096 Unincorporated Areas of Hamilton County Maps are...
75 FR 22699 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-30
... from the requirements of 44 CFR part 10, Environmental Consideration. An environmental impact..., Nebraska, and Incorporated Areas Docket No.: FEMA-B-7759 Hell Creek Approximately 100 feet +1038 City of La... of Homeland Security, Federal Emergency Management Agency. [FR Doc. 2010-10053 Filed 4-29-10; 8:45 am...
76 FR 43603 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-21
... in BFEs are in accordance with 44 CFR 65.4. National Environmental Policy Act. This final rule is categorically excluded from the requirements of 44 CFR part 10, Environmental Consideration. An environmental...). December 30, 2010; Casiano, Mayor, Town of The Douglas County Parker, 20120 East Main News-Press. Street...
77 FR 49373 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
.... Macon Bayou Just upstream of Private +108 City of Eudora. Road. Just upstream of Verser +108 Road... Areas of Road. Logan County. Just downstream of Newton +563 Road. Just upstream of West 9th +621 Street... Road. * National Geodetic Vertical Datum. + North American Vertical Datum. Depth in feet above ground...
76 FR 8906 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-16
... from the requirements of 44 CFR part 10, Environmental Consideration. An environmental impact... downstream of Lock and of Buffalo, City of Dam No. 15. Davenport, City of Le Claire, City of Princeton, City... West 4th Street, Davenport, IA 52801. City of Le Claire Maps are available for inspection at 325...
78 FR 48813 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... Unincorporated Areas of Green River). the Green River to Butler County. approximately 0.6 mile upstream of the... with +428 Unincorporated Areas of Green River). the Green River to Butler County. approximately 0.5... with +433 Unincorporated Areas of Green River). the Green River to Butler County. approximately 1,202...
75 FR 8814 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
... +1014 Town of Marathon, Village downstream of Main of Marathon. Street. Approximately 0.85 mile +1023..., Cortland, NY 13045. Town of Marathon Maps are available for inspection at the Town of Marathon Highway Department, 16 Brink Street, Marathon, NY 13803. Town of Preble Maps are available for inspection at the Town...
77 FR 76929 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... Tributary to Cow At the Unnamed Tributary +1236 City of Oklahoma City. Creek Tributary 2 North Branch to Cow Creek Tributary 2 (backwater effects from Unnamed North Branch confluence. Tributary to Cow Creek Tributary 2 North Branch). Approximately 660 feet +1236 upstream of the Unnamed Tributary to Cow Creek...
NASA Astrophysics Data System (ADS)
Bevington, Azure E.; Twilley, Robert R.; Sasser, Charles E.; Holm, Guerry O.
2017-05-01
Deltas are globally important locations of diverse ecosystems, human settlement, and economic activity that are threatened by reductions in sediment delivery, accelerated sea level rise, and subsidence. Here we investigated the relative contribution of river flooding, hurricanes, and cold fronts on elevation change in the prograding Wax Lake Delta (WLD). Sediment surface elevation was measured across 87 plots, eight times from February 2008 to August 2011. The high peak discharge river floods in 2008 and 2011 resulted in the greatest mean net elevation gain of 5.4 to 4.9 cm over each flood season, respectively. The highest deltaic wetland sediment retention (13.5% of total sediment discharge) occurred during the 2008 river flood despite lower total and peak discharge compared to 2011. Hurricanes Gustav and Ike resulted in a total net elevation gain of 1.2 cm, but the long-term contribution of hurricane derived sediments to deltaic wetlands was estimated to be just 22% of the long-term contribution of large river floods. Winter cold front passage resulted in a net loss in elevation that is equal to the elevation gain from lower discharge river floods and was consistent across years. This amount of annual loss in elevation from cold fronts could effectively negate the long-term land building capacity within the delta without the added elevation gain from both high and low discharge river floods. The current lack of inclusion of cold front elevation loss in most predictive numerical models likely overestimates the land building capacity in areas that experience similar forcings to WLD.
76 FR 46715 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
... table provided here represents the flooding sources, location of referenced elevations, effective and.... Specifically, it addresses the following flooding sources: Cabin Branch, Franklin Branch, Hall Creek, Little... Incorporated Areas'' addressed the following flooding sources: Cabin Branch, Franklin Branch, Little Patuxent...
76 FR 9714 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
..., FEMA published in the Federal Register a proposed rule that included an erroneous Base Flood Elevation... as 355 feet, referenced to the North American Vertical Datum of 1988. DATES: Comments pertaining to... (FEMA) publishes proposed determinations of Base (1% annual-chance) Flood Elevations (BFEs) and modified...
76 FR 3596 - Proposed Flood Elevation Determinations for York County, Maine (All Jurisdictions)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
...-2008-0020; Internal Agency Docket No. FEMA-B-1066] Proposed Flood Elevation Determinations for York... notice of proposed rulemaking concerning proposed flood elevation determinations for York County, Maine...: Luis Rodriguez, Chief, Engineering Management Branch, Federal Insurance and Mitigation Administration...
76 FR 43965 - Proposed Flood Elevation Determinations; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... FR 70944. The table provided here represents the flooding sources, location of referenced elevations... Areas. Specifically, it addresses the flooding sources Cumberland River (Lake Barkley) and Tennessee... County, Kentucky, and Incorporated Areas'' addressed the flooding sources Cumberland River (Lake Barkley...
78 FR 33991 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... of Candle Harris County. Creek Road. Approximately 500 feet +125 upstream of Spring Cypress Road. K131-00-00 (Spring Gully) At the Cypress Creek +106 Unincorporated Areas of confluence. Harris County. Approximately 200 feet +137 downstream of Spring Cypress Road. K131-03-03 (Tributary 2.1 to Spring At the Spring...
77 FR 66555 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
.... [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of Chiefland Maps are available... American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1... feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ADDRESSES City of...
77 FR 76420 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
... Fort Gay, confluence. Unincorporated Areas of Wayne County. At the Tug Fork +575 confluence. Mill Creek (backwater effects from From the Tug Fork +575 Town of Fort Gay. Tug Fork). confluence to approximately 1.1 miles upstream of the Tug Fork confluence. Tug Fork At the Big Sandy River +575 Town of Fort Gay...
44 CFR 67.8 - Appeal procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.8 Appeal procedure. (a) If a community appeals the proposed flood elevation...
76 FR 26981 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... table provided here represents the flooding sources, location of referenced elevations, effective and.... Specifically, it addresses the following flooding sources: Cache Creek, Cache Creek Left Bank Overflow, and... ``Unincorporated Areas of Yolo County, California'' addressed the flooding source Cache Creek Settling Basin. That...
76 FR 13570 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
.... The table provided here represents the flooding sources, location of referenced elevations, effective.... Specifically, it addresses the flooding source South Creek. DATES: Comments are to be submitted on or before... table, entitled ``Sanpete County, Utah, and Incorporated Areas'' addressed the flooding source South...
77 FR 50667 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... table provided here represents the flooding sources, location of referenced elevations, effective and...). Specifically, it addresses the flooding sources Fourmile Creek and Lake Erie. DATES: Comments are to be... Jurisdictions)'' addressed the flooding sources Fourmile Creek and Lake Erie. That table contained inaccurate...
77 FR 55787 - Proposed Flood Elevation Determinations for the City of Carson City, NV
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
...-2011-0002; Internal Agency Docket No. FEMA-B-1233] Proposed Flood Elevation Determinations for the City of Carson City, NV AGENCY: Federal Emergency Management Agency, DHS. ACTION: Proposed rule... concerning proposed flood elevation determinations for the City of Carson City, Nevada. DATES: This...
77 FR 66790 - Proposed Flood Elevation Determinations for Madison County, AL and Incorporated Areas
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
...-2011-0002; Internal Agency Docket No. FEMA-B-1189] Proposed Flood Elevation Determinations for Madison... concerning proposed flood elevation determinations for Madison County, Alabama and Incorporated Areas. DATES... Mitigation Administration, Federal Emergency Management Agency, 500 C Street SW., Washington, DC 20472, (202...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... sources in Pierce County, Washington. On April 16, 2012, FEMA published a proposed rulemaking at 77 FR...-2013-0002; Internal Agency Docket No. FEMA-B-7748] Proposed Flood Elevation Determinations for Pierce... proposed rule concerning proposed flood elevation determinations for Pierce County, Washington, and...
78 FR 22221 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-15
... table provided here represents the flooding sources, location of referenced elevations, effective and.... Specifically, it addresses the following flooding sources: Pea Branch and Reedy Branch. DATES: Comments are to... Areas'' did not address the flooding sources Pea Branch and Reedy Branch. That table omitted information...
77 FR 51745 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
.... Specifically, it addresses the following flooding sources: Back Creek, Big Elk Creek, Bohemia River, Chesapeake... Areas'' addressed the following flooding sources: Back Creek, Big Elk Creek, Bohemia River, Chesapeake... modified elevation in feet, and/or communities affected for the following flooding sources: Big Elk Creek...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Revision of flood insurance rate maps to reflect base flood elevations caused by proposed encroachments. 65.12 Section 65.12... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL...
75 FR 18070 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... communities where modification of the Base (1% annual-chance) Flood Elevations (BFEs) is appropriate because of new scientific or technical data. New flood insurance premium rates will be calculated from the... new scientific or technical data. The modifications are made pursuant to section 201 of the Flood...
75 FR 18073 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... communities where modification of the Base (1% annual-chance) Flood Elevations (BFEs) is appropriate because of new scientific or technical data. New flood insurance premium rates will be calculated from the... new scientific or technical data. The modifications are made pursuant to section 201 of the Flood...
Flood-plain areas of the Mississippi River, mile 866.8 to mile 888.0, Minnesota
Carlson, George H.; Gue, Lowell C.
1980-01-01
Profiles of the regional flood, 500-year flood, and flood-protection elevation have been developed for a 21-mile reach of the Mississippi River. Areas flooded by the regional flood and by the 500-year flood were delineated by photogrammetric mapping techniques and are shown on seven large-scale map sheets. Over 1,300 acres of flood plain are included in the cities of Anoka, Champlin, Coon Rapids, Dayton, Ramsey and Elk River, and in unincorporated areas of Wright County. The flood-outline maps and flood profiles comprise data needed by local units of government to adopt, enforce, and administer flood-plain management regulations along the Mississippi River throughout the study reach. Streamflow data from two gaging stations provided the basis for definition of the regional and 500-year floods. Cross-section data obtained at 83 locations were used to develop a digital computer model of the river. Flood elevation and discharge data from the 1965 flood provided a basis for adjusting the computer model. Information relating the history of floods, formation of ice jams, and duration of flood elevations at Anoka and at Elk River are included.
78 FR 36098 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... of 1978, 3 CFR, 1978 Comp., p. 329; E.O. 12127, 44 FR 19367, 3 CFR, 1979 Comp., p. 376. Sec. 67.11... Areas Docket No.: FEMA-B-1216 Mississippi River Approximately 1.67 miles +38 City of Plaquemine, Town upstream of the White of White Castle. Castle-Carville Ferry. Approximately 2 miles +38 upstream of the...
Code of Federal Regulations, 2013 CFR
2013-10-01
... the SFHA are “reasonably safe from flooding”, and that they have on file, available upon request by... are “reasonably safe from flooding,” we will process a revision to the SFHA using the criteria set... from flooding.” (6) Data to substantiate the base flood elevation. If we complete a Flood Insurance...
Code of Federal Regulations, 2012 CFR
2012-10-01
... the SFHA are “reasonably safe from flooding”, and that they have on file, available upon request by... are “reasonably safe from flooding,” we will process a revision to the SFHA using the criteria set... from flooding.” (6) Data to substantiate the base flood elevation. If we complete a Flood Insurance...
Witt, Emitt C.
2015-01-01
Growing use of two-dimensional (2-D) hydraulic models has created a need for high resolution data to support flood volume estimates, floodplain specific engineering data, and accurate flood inundation scenarios. Elevation data are a critical input to these models that guide the flood-wave across the landscape allowing the computation of valuable engineering specific data that provides a better understanding of flooding impacts on structures, debris movement, bed scour, and direction. High resolution elevation data are becoming publicly available that can benefit the 2-D flood modeling community. Comparison of these newly available data with legacy data suggests that better modeling outcomes are achieved by using 3D Elevation Program (3DEP) lidar point data and the derived 1 m Digital Elevation Model (DEM) product relative to the legacy 3 m, 10 m, or 30 m products currently available in the U.S. Geological Survey (USGS) National Elevation Dataset. Within the low topographic relief of a coastal floodplain, the newer 3DEP data better resolved elevations within the forested and swampy areas achieving simulations that compared well with a historic flooding event. Results show that the 1 m DEM derived from 3DEP lidar source provides a more conservative estimate of specific energy, static pressure, and impact pressure for grid elements at maximum flow relative to the legacy DEM data. Better flood simulations are critically important in coastal floodplains where climate change driven storm frequency and sea level rise will contribute to more frequent flooding events.
Dietsch, Benjamin J.; Wilson, Richard C.; Strauch, Kellan R.
2008-01-01
Repeated flooding of Omaha Creek has caused damage in the Village of Homer. Long-term degradation and bridge scouring have changed substantially the channel characteristics of Omaha Creek. Flood-plain managers, planners, homeowners, and others rely on maps to identify areas at risk of being inundated. To identify areas at risk for inundation by a flood having a 1-percent annual probability, maps were created using topographic data and water-surface elevations resulting from hydrologic and hydraulic analyses. The hydrologic analysis for the Omaha Creek study area was performed using historical peak flows obtained from the U.S. Geological Survey streamflow gage (station number 06601000). Flood frequency and magnitude were estimated using the PEAKFQ Log-Pearson Type III analysis software. The U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System, version 3.1.3, software was used to simulate the water-surface elevation for flood events. The calibrated model was used to compute streamflow-gage stages and inundation elevations for the discharges corresponding to floods of selected probabilities. Results of the hydrologic and hydraulic analyses indicated that flood inundation elevations are substantially lower than from a previous study.
Documentation and hydrologic analysis of Hurricane Sandy in New Jersey, October 29–30, 2012
Suro, Thomas P.; Deetz, Anna; Hearn, Paul
2016-11-17
In 2012, a late season tropical depression developed into a tropical storm and later a hurricane. The hurricane, named “Hurricane Sandy,” gained strength to a Category 3 storm on October 25, 2012, and underwent several transitions on its approach to the mid-Atlantic region of the eastern coast of the United States. By October 28, 2012, Hurricane Sandy had strengthened into the largest hurricane ever recorded in the North Atlantic and was tracking parallel to the east coast of United States, heading toward New Jersey. On October 29, 2012, the storm turned west-northwest and made landfall near Atlantic City, N.J. The high winds and wind-driven storm surge caused massive damage along the entire coastline of New Jersey. Millions of people were left without power or communication networks. Many homes were completely destroyed. Sand dunes were eroded, and the barrier island at Mantoloking was breached, connecting the ocean with Barnegat Bay.Several days before the storm made landfall in New Jersey, the U.S. Geological Survey (USGS) made a decision to deploy a temporary network of storm-tide sensors and barometric pressure sensors from Virginia to Maine to supplement the existing USGS and National Oceanic and Atmospheric Administration (NOAA) networks of permanent tide monitoring stations. After the storm made landfall, the USGS conducted a sensor data recovery and high-water-mark collection campaign in cooperation with the Federal Emergency Management Agency (FEMA).Peak storm-tide elevations documented at USGS tide gages, tidal crest-stage gages, temporary storm sensor locations, and high-water-mark sites indicate the area from southern Monmouth County, N.J., north through Raritan Bay, N.J., had the highest peak storm-tide elevations during this storm. The USGS tide gages at Raritan River at South Amboy and Raritan Bay at Keansburg, part of the New Jersey Tide Telemetry System, each recorded peak storm-tide elevations of greater than 13 feet (ft)—more than 5 ft higher than the previously recorded period-of-record maximum. A comparison of peak storm-tide elevations to preliminary FEMA Coastal Flood Insurance Study flood elevations indicated that these areas experienced the highest recurrence intervals along the coast of New Jersey. Analysis showed peak storm-tide elevations exceeded the 100-year FEMA flood elevations in many parts of Middlesex, Union, Essex, Hudson, and Bergen Counties, and peak storm-tide elevations at many locations in Monmouth County exceeded the 500-year recurrence interval.A level 1 HAZUS (HAZards United States) analysis was done for the counties in New Jersey affected by flooding to estimate total building stock losses. The aggregated total building stock losses estimated by HAZUS for New Jersey, on the basis of the final inundation verified by USGS high-water marks, was almost $19 billion. A comparison of Hurricane Sandy with historic coastal storms showed that peak storm-tide elevations associated with Hurricane Sandy exceeded most of the previously documented elevations associated with the storms of December 1992, March 1962, September 1960, and September 1944 at many coastal communities in New Jersey. This scientific investigation report was prepared in cooperation with FEMA to document flood processes and flood damages resulting from this storm and to assist in future flood mitigation actions in New Jersey.
10. VIEW OF THE SOUTH ELEVATION AND THE FLOOD GATE ...
10. VIEW OF THE SOUTH ELEVATION AND THE FLOOD GATE ON THE PRESSURE CULVERT, LOOKING NORTH. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA
Paleohydrologic techniques used to define the spatial occurrence of floods
Jarrett, R.D.
1990-01-01
Defining the cause and spatial characteristics of floods may be difficult because of limited streamflow and precipitation data. New paleohydrologic techniques that incorporate information from geomorphic, sedimentologic, and botanic studies provide important supplemental information to define homogeneous hydrologic regions. These techniques also help to define the spatial structure of rainstorms and floods and improve regional flood-frequency estimates. The occurrence and the non-occurrence of paleohydrologic evidence of floods, such as flood bars, alluvial fans, and tree scars, provide valuable hydrologic information. The paleohydrologic research to define the spatial characteristics of floods improves the understanding of flood hydrometeorology. This research was used to define the areal extent and contributing drainage area of flash floods in Colorado. Also, paleohydrologic evidence was used to define the spatial boundaries for the Colorado foothills region in terms of the meteorologic cause of flooding and elevation. In general, above 2300 m, peak flows are caused by snowmelt. Below 2300 m, peak flows primarily are caused by rainfall. The foothills region has an upper elevation limit of about 2300 m and a lower elevation limit of about 1500 m. Regional flood-frequency estimates that incorporate the paleohydrologic information indicate that the Big Thompson River flash flood of 1976 had a recurrence interval of approximately 10,000 years. This contrasts markedly with 100 to 300 years determined by using conventional hydrologic analyses. Flood-discharge estimates based on rainfall-runoff methods in the foothills of Colorado result in larger values than those estimated with regional flood-frequency relations, which are based on long-term streamflow data. Preliminary hydrologic and paleohydrologic research indicates that intense rainfall does not occur at higher elevations in other Rocky Mountain states and that the highest elevations for rainfall-producing floods vary by latitude. The study results have implications for floodplain management and design of hydraulic structures in the mountains of Colorado and other Rocky Mountain States. ?? 1990.
Flood of April 2007 in Southern Maine
Lombard, Pamela J.
2009-01-01
Up to 8.5 inches of rain fell from April 15 through 18, 2007, in southern Maine. The rain - in combination with up to an inch of water from snowmelt - resulted in extensive flooding. York County, Maine, was declared a presidential disaster area following the event. The U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency (FEMA), determined peak streamflows and recurrence intervals at 24 locations and peak water-surface elevations at 63 sites following the April 2007 flood. Peak streamflows were determined with data from continuous-record streamflow-gaging stations where available and through hydraulic models where station data were not available. The flood resulted in peak streamflows with recurrence intervals greater than 100 years throughout most of York County, and recurrence intervals up to 50 years in Cumberland County. Peak flows for selected recurrence intervals varied from less than 10 percent to greater than 100 percent different than those in the current FEMA flood-insurance studies due to additional data or newer regression equations. Water-surface elevations observed during the April 2007 flood were bracketed by elevation profiles in FEMA flood-insurance studies with the same recurrence intervals as the recurrence intervals bracketing the observed peak streamflows at seven sites, with higher elevation-profile recurrence intervals than streamflow recurrence intervals at six sites, and with lower elevation-profile recurrence intervals than streamflow recurrence intervals at one site. The April 2007 flood resulted in higher peak flows and water-surface elevations than the flood of May 2006 in coastal locations in York County, and lower peak flows and water-surface elevations than the May 2006 flood further from the coast and in Cumberland County. The Mousam River watershed with over 13 dams and reservoirs was severely impacted by both events. Analyses indicate that the April 2007 peak streamflows in the Mousam River watershed occurred despite the fact that up to 287 million ft3 of runoff was stored by 13 dams and reservoirs.
The 3D Elevation Program—Flood risk management
Carswell, William J.; Lukas, Vicki
2018-01-25
Flood-damage reduction in the United States has been a longstanding but elusive societal goal. The national strategy for reducing flood damage has shifted over recent decades from a focus on construction of flood-control dams and levee systems to a three-pronged strategy to (1) improve the design and operation of such structures, (2) provide more accurate and accessible flood forecasting, and (3) shift the Federal Emergency Management Agency (FEMA) National Flood Insurance Program to a more balanced, less costly flood-insurance paradigm. Expanding the availability and use of high-quality, three-dimensional (3D) elevation information derived from modern light detection and ranging (lidar) technologies to provide essential terrain data poses a singular opportunity to dramatically enhance the effectiveness of all three components of this strategy. Additionally, FEMA, the National Weather Service, and the U.S. Geological Survey (USGS) have developed tools and joint program activities to support the national strategy.The USGS 3D Elevation Program (3DEP) has the programmatic infrastructure to produce and provide essential terrain data. This infrastructure includes (1) data acquisition partnerships that leverage funding and reduce duplicative efforts, (2) contracts with experienced private mapping firms that ensure acquisition of consistent, low-cost 3D elevation data, and (3) the technical expertise, standards, and specifications required for consistent, edge-to-edge utility across multiple collection platforms and public access unfettered by individual database designs and limitations.High-quality elevation data, like that collected through 3DEP, are invaluable for assessing and documenting flood risk and communicating detailed information to both responders and planners alike. Multiple flood-mapping programs make use of USGS streamflow and 3DEP data. Flood insurance rate maps, flood documentation studies, and flood-inundation map libraries are products of these programs.
Harris, D.D.
1970-01-01
The central Rogue River valley, because of its mild climate, fertile soil, scenic attractions, and sport-fishery resource, has great potential for future population growth and industrial development. As the population grows and the area develops, zoning becomes necessary to assure the most beneficial use of the land, especially of the flood plains. To establish land-use zones on the flood plains, the area subject to inundation and elevation of floods must be considered. Areas flooded during the December 1964 flood and the approximate limits of the 1861 flood in Jackson and Josephine Counties are shown in two interim reports (Corps of Engineers, 1965); however, there are no published flood-elevation profiles to use as a basis for establishing meaningful land-use-zone boundaries or for delineating inundated areas of other floods.
Estimating Paleoflood Magnitude From Tree-Ring Anatomy and the Height of Abrasion Scars
NASA Astrophysics Data System (ADS)
Yanosky, T. M.; Jarrett, R. D.
2003-12-01
Evidence of floods preserved in the growth rings of trees can be used to extend the historical record of flooding or to estimate the magnitude of extraordinary floods on ungaged streams. Floods that damage the aerial parts of trees during the growing season sometimes induce striking anatomical changes in subsequent growth of rings in the lower trunk. In ring-porous species, this growth most commonly produces concentric bands of atypically large vessels within the latewood. The number and diameter of anomalous vessels seem positively related to the amount of flood damage, and thus can be used to refine estimates of flood magnitude when also considering the position of the tree relative to the channel and its approximate height during the flood. Floods of long duration on low-gradient streams are less likely to damage trees directly, but prolonged root flooding often results in the formation of narrow rings with atypically small vessels; shorter-duration floods, sometimes inundating roots for as little as several days, are followed by the production of fibers (non-conducting cells) with large lumens and thin walls that appear as light-colored bands compared to earlier-formed tissue. In these instances, a series of trees increasingly distant from the channel can be used to estimate a minimum flood elevation. Abrasion scars from flood-borne debris often are the most easily observed evidence of flood damage and, like anatomical abnormalities, can be precisely dated. The relation between the heights of scars and maximum flood stages depends in part upon channel slope. Previous studies have indicated that scar heights along low-gradient streams are the same or slightly lower than maximum flood elevations. Along the high-gradient (6% maximum slope) Buffalo Creek, Colorado USA, scar heights measured in 102 trees following a flood in 1996 ranged from -0.6 to +1.5 m relative to the actual crest elevation. Scar elevations exceeding flood elevations by 3-4 m, however, were observed following a flood in 2002 along a small Colorado stream with slopes ranging from 6 to 15%.
75 FR 35672 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
...This interim rule lists communities where modification of the Base (1% annual-chance) Flood Elevations (BFEs) is appropriate because of new scientific or technical data. New flood insurance premium rates will be calculated from the modified BFEs for new buildings and their contents.
Establishment and Practical Application of Flood Warning Stage in Taiwan's River
NASA Astrophysics Data System (ADS)
Yang, Sheng-Hsueh; Chia Yeh, Keh-
2017-04-01
In the face of extreme flood events or the possible impact of climate change, non-engineering disaster prevention and early warning work is particularly important. Taiwan is an island topography with more than 3,900 meters of high mountains. The length of the river is less than 100 kilometers. Most of the watershed catchment time is less than 24 hours, which belongs to the river with steep slope and rapid flood. Every year in summer and autumn, several typhoon events invade Taiwan. Typhoons often result in rainfall events in excess of 100 mm/hr or 250 mm/3hr. In the face of Taiwan's terrain and extreme rainfall events, flooding is difficult to avoid. Therefore, most of the river has embankment protection, so that people do not have to face every year flooding caused by economic and life and property losses. However, the river embankment protection is limited. With the increase of the hydrological data, the design criteria for the embankment protection standards in the past was 100 year of flood return period and is now gradually reduced to 25 or 50 year of flood return period. The river authorities are not easy to rise the existing embankment height. The safety of the river embankment in Taiwan is determined by the establishment of the flood warning stage to cope with the possible increase in annual floods and the impact of extreme hydrological events. The flood warning stage is equal to the flood control elevation minus the flood rise rate multiply by the flood early warning time. The control elevation can be the top of the embankment, the design flood level of the river, the embankment gap of the river section, the height of the bridge beam bottom, etc. The flood rise rate is consider the factors such as hydrological stochastic and uncertain rainfall and the effect of flood discharge operation on the flood in the watershed catchment area. The maximum value of the water level difference between the two hours or five hours before the peak value of the analysis result is decided by this rate. The flood early warning time is divided into two levels, the first level is 2 hours, evacuation time for the public, the second level is 5 hours for the implementation of unit preparation time. Finally, The flood warning stages are practical application in 20 water level stations have been incorporated into the flood early warning system of the Danshuei river basin in Taiwan.
NASA Astrophysics Data System (ADS)
'Ainullotfi, A. A.; Ibrahim, A. L.; Masron, T.
2014-02-01
This study is conducted to establish a community based flood management system that is integrated with remote sensing technique. To understand local knowledge, the demographic of the local society is obtained by using the survey approach. The local authorities are approached first to obtain information regarding the society in the study areas such as the population, the gender and the tabulation of settlement. The information about age, religion, ethnic, occupation, years of experience facing flood in the area, are recorded to understand more on how the local knowledge emerges. Then geographic data is obtained such as rainfall data, land use, land elevation, river discharge data. This information is used to establish a hydrological model of flood in the study area. Analysis were made from the survey approach to understand the pattern of society and how they react to floods while the analysis of geographic data is used to analyse the water extent and damage done by the flood. The final result of this research is to produce a flood mitigation method with a community based framework in the state of Kelantan. With the flood mitigation that involves the community's understanding towards flood also the techniques to forecast heavy rainfall and flood occurrence using remote sensing, it is hope that it could reduce the casualties and damage that might cause to the society and infrastructures in the study area.
77 FR 18766 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 67 [Docket ID FEMA-2010-0003; Internal Agency Docket No. FEMA-B-1114] Proposed Flood Elevation Determinations Correction... locations above. Please refer to the revised Flood Insurance Rate Map located at the community map...
44 CFR 67.7 - Collection of appeal data.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.7 Collection of appeal data. (a) Appeals by private persons to... Federal Insurance Administrator's proposed flood elevation determination to the CEO or to such agency as...
44 CFR 67.7 - Collection of appeal data.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.7 Collection of appeal data. (a) Appeals by private persons to... Federal Insurance Administrator's proposed flood elevation determination to the CEO or to such agency as...
Shivers, Molly J.; Smith, S. Jerrod; Grout, Trevor S.; Lewis, Jason M.
2015-01-01
Digital-elevation models, field survey measurements, hydraulic data, and hydrologic data (U.S. Geological Survey streamflow-gaging stations North Canadian River below Lake Overholser near Oklahoma City, Okla. [07241000], and North Canadian River at Britton Road at Oklahoma City, Okla. [07241520]), were used as inputs for the one-dimensional dynamic (unsteady-flow) models using Hydrologic Engineering Centers River Analysis System (HEC–RAS) software. The modeled flood elevations were exported to a geographic information system to produce flood-inundation maps. Water-surface profiles were developed for a 75-percent probable maximum flood dam-breach scenario and a sunny-day dam-breach scenario, as well as for maximum flood-inundation elevations and flood-wave arrival times at selected bridge crossings. Points of interest such as community-services offices, recreational areas, water-treatment plants, and wastewater-treatment plants were identified on the flood-inundation maps.
75 FR 78607 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
... communities where modification of the Base (1% annual-chance) Flood Elevations (BFEs) is appropriate because of new scientific or technical data. New flood insurance premium rates will be calculated from the... knowledge of changed conditions or new scientific or technical data. The modifications are made pursuant to...
77 FR 44497 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... communities where modification of the Base (1% annual-chance) Flood Elevations (BFEs) is appropriate because of new scientific or technical data. New flood insurance premium rates will be calculated from the... conditions or new scientific or technical data. The modifications are made pursuant to section 201 of the...
75 FR 82274 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-30
... communities where modification of the Base (1% annual-chance) Flood Elevations (BFEs) is appropriate because of new scientific or technical data. New flood insurance premium rates will be calculated from the... conditions or new scientific or technical data. The modifications are made pursuant to section 201 of the...
76 FR 77155 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-12
... communities where modification of the Base (1% annual-chance) Flood Elevations (BFEs) is appropriate because of new scientific or technical data. New flood insurance premium rates will be calculated from the... conditions or new scientific or technical data. The modifications are made pursuant to section 201 of the...
77 FR 20992 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... communities where modification of the Base (1% annual-chance) Flood Elevations (BFEs) is appropriate because of new scientific or technical data. New flood insurance premium rates will be calculated from the... conditions or new scientific or technical data. The modifications are made pursuant to section 201 of the...
77 FR 30219 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... communities where modification of the Base (1% annual-chance) Flood Elevations (BFEs) is appropriate because of new scientific or technical data. New flood insurance premium rates will be calculated from the... conditions or new scientific or technical data. The modifications are made pursuant to section 201 of the...
75 FR 82272 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-30
... communities where modification of the Base (1% annual-chance) Flood Elevations (BFEs) is appropriate because of new scientific or technical data. New flood insurance premium rates will be calculated from the... conditions or new scientific or technical data. The modifications are made pursuant to section 201 of the...
75 FR 82275 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-30
... communities where modification of the Base (1% annual-chance) Flood Elevations (BFEs) is appropriate because of new scientific or technical data. New flood insurance premium rates will be calculated from the... conditions or new scientific or technical data. The modifications are made pursuant to section 201 of the...
75 FR 18090 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... communities where modification of the Base (1% annual-chance) Flood Elevations (BFEs) is appropriate because of new scientific or technical data. New flood insurance premium rates will be calculated from the... conditions or new scientific or technical data. The modifications are made pursuant to section 201 of the...
44 CFR 66.3 - Establishment of community case file and flood elevation study docket.
Code of Federal Regulations, 2013 CFR
2013-10-01
... case file and flood elevation study docket. 66.3 Section 66.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CONSULTATION WITH LOCAL OFFICIALS § 66.3 Establishment of community case...
44 CFR 66.3 - Establishment of community case file and flood elevation study docket.
Code of Federal Regulations, 2010 CFR
2010-10-01
... case file and flood elevation study docket. 66.3 Section 66.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CONSULTATION WITH LOCAL OFFICIALS § 66.3 Establishment of community case...
44 CFR 66.3 - Establishment of community case file and flood elevation study docket.
Code of Federal Regulations, 2011 CFR
2011-10-01
... case file and flood elevation study docket. 66.3 Section 66.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CONSULTATION WITH LOCAL OFFICIALS § 66.3 Establishment of community case...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
Reed, Timothy J.; Protz, Amy R.
2007-01-01
Several conditions, including saturated soils, snowmelt, and heavy rains, caused flooding on the Delaware River on April 2-4, 2005. The event occurred 50 years after the historic 1955 Delaware River flood, and only six months after a smaller but equally notable flood on September 18-19, 2004. The Delaware River flooded for a third time in 22 months in June, 2006. The peak flows and elevations of the 2005 flood were similar to those on June 28-29, 2006. The following report describes the April 2-4, 2005, Delaware River flood, and includes the associated precipitation amounts, peak flows and elevations, and flood frequencies. A comparison of historic Delaware River floods also is presented. The appendix of the report contains detailed information for 156 high-water mark elevations obtained on the main stem of the Delaware River from Port Jervis, New York, to Cinnaminson, New Jersey, for the April 2-4, 2005 flood. The April 2005 event originated with frequent precipitation from December 2004 to March 2005 which saturated the soils in the upper Delaware River Basin. The cold winter froze some of the soils and left a snowpack at higher elevations equivalent to as much as 10 inches of water in some areas. Temperatures rose above freezing, and heavy rains averaging 1 to 3 inches on March 27, 2005, melted some of the snow, causing the Delaware River to rise; however, peak elevations were still 2 to 7 feet below flood stage. Another round of rainfall averaging 2-5 inches in the basin on April 2, 2005, melted the remaining snowpack. The combination of snowmelt and runoff from the two storms produced flood conditions along the main stem of the Delaware River. Flood frequencies of flows at selected tributaries to the Delaware River did not exceed the 35-year recurrence intervals. The Delaware River main stem peak-flow recurrence intervals ranged from 40 to 80 years; flows were approximately 20 percent less than those from the peak of record in 1955. Peak elevations exceeded National Weather Service flood stages defined at continuous-record streamflow-gaging stations by 5 to 7 feet, but were on average 3 to 5 feet lower than the peak of record in August 1955. Peak elevations determined at 48 sites along the main stem of the Delaware River defined the flood profile between the gaging stations. The peak elevation in the tide-effected portion of the Delaware (downstream of Trenton, New Jersey), occurred on April 2, 2 days before the riverine peak, as a result of water pushed into the bay by a low-pressure system situated just off the coast. Every county located along the main stem of the Delaware River was declared a Federal disaster area. Property damage estimates in Pennsylvania, New York, and New Jersey exceeded $200 million.
Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth
NASA Astrophysics Data System (ADS)
Cox, Grant M.; Halverson, Galen P.; Stevenson, Ross K.; Vokaty, Michelle; Poirier, André; Kunzmann, Marcus; Li, Zheng-Xiang; Denyszyn, Steven W.; Strauss, Justin V.; Macdonald, Francis A.
2016-07-01
Atmospheric CO2 levels and global climate are regulated on geological timescales by the silicate weathering feedback. However, this thermostat has failed multiple times in Earth's history, most spectacularly during the Cryogenian (c. 720-635 Ma) Snowball Earth episodes. The unique middle Neoproterozoic paleogeography of a rifting, low-latitude, supercontinent likely favored a globally cool climate due to the influence of the silicate weathering feedback and planetary albedo. Under these primed conditions, the emplacement and weathering of extensive continental flood basalt provinces may have provided the final trigger for runaway global glaciation. Weathering of continental flood basalts may have also contributed to the characteristically high carbon isotope ratios (δ13 C) of Neoproterozoic seawater due to their elevated P contents. In order to test these hypotheses, we have compiled new and previously published Neoproterozoic Nd isotope data from mudstones in northern Rodinia (North America, Australia, Svalbard, and South China) and Sr isotope data from carbonate rocks. The Nd isotope data are used to model the mafic detrital input into sedimentary basins in northern Rodinia. The results reveal a dominant contribution from continental flood basalt weathering during the ca. 130 m.y. preceding the onset of Cryogenian glaciation, followed by a precipitous decline afterwards. These data are mirrored by the Sr isotope record, which reflects the importance of chemical weathering of continental flood basalts on solute fluxes to the early-middle Neoproterozoic ocean, including a pulse of unradiogenic Sr input into the oceans just prior to the onset of Cyrogenian glaciation. Hence, our new data support the hypotheses that elevated rates of flood basalt weathering contributed to both the high average δ13 C of seawater in the Neoproterozoic and to the initiation of the first (Sturtian) Snowball Earth.
77 FR 73394 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... and modified elevations, and communities affected for Mercer County, Pennsylvania (All Jurisdictions... determinations of Base (1% annual-chance) Flood Elevations (BFEs) and modified BFEs for communities participating... not be construed to mean that the community must change any existing ordinances that are more...
78 FR 22222 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-15
... of referenced elevations, effective and modified elevations, and communities affected for Mercer...) and modified BFEs for communities participating in the National Flood Insurance Program (NFIP), in... CFR 60.3, are minimum requirements. They should not be construed to mean that the community must...
Using WorldView-2 Imagery to Track Flooding in Thailand in a Multi-Asset Sensorweb
NASA Technical Reports Server (NTRS)
McLaren, David; Doubleday, Joshua; Chien, Steve
2012-01-01
For the flooding seasons of 2011-2012 multiple space assets were used in a "sensorweb" to track major flooding in Thailand. Worldview-2 multispectral data was used in this effort and provided extremely high spatial resolution (2m / pixel) multispectral (8 bands at 0.45-1.05 micrometer spectra) data from which mostly automated workflows derived surface water extent and volumetric water information for use by a range of NGO and national authorities. We first describe how Worldview-2 and its data was integrated into the overall flood tracking sensorweb. We next describe the use of Support Vector Machine learning techniques that were used to derive surface water extent classifiers. Then we describe the fusion of surface water extent and digital elevation map (DEM) data to derive volumetric water calculations. Finally we discuss key future work such as speeding up the workflows and automating the data registration process (the only portion of the workflow requiring human input).
Optimal house elevation for reducing flood-related losses
NASA Astrophysics Data System (ADS)
Xian, Siyuan; Lin, Ning; Kunreuther, Howard
2017-05-01
FEMA recommends that houses in coastal flood zones be elevated to at least 1 foot above the base flood elevation (BFE). However, this guideline is not specific and ignores characteristics of houses that affect their vulnerability. An economically optimal elevation level (OEL) is proposed that minimizes the combined cost of elevation and cumulative insurance premiums over the lifespan of the house. As an illustration, analysis is performed for various coastal houses in Ortley Beach, NJ. Compared with the strategy of raising houses to 1 foot above BFE, the strategy of raising houses to their OELs is much more economical for the homeowners. Elevating to the OELs also significantly reduces government spending on subsidizing low-income homeowners through, for example, a voucher program, to mitigate flood risk. These results suggest that policy makers should consider vulnerability factors in developing risk-reduction strategies. FEMA may recommend OELs to homeowners based on their flood hazards as well as house characteristics or at least providing more information and tools to homeowners to assist them in making more economical decisions. The OEL strategy can also be coupled with a voucher program to make the program more cost-effective.
Methodology and Implications of Maximum Paleodischarge Estimates for
Channels, M.; Pruess, J.; Wohl, E.E.; Jarrett, R.D.
1998-01-01
Historical and geologic records may be used to enhance magnitude estimates for extreme floods along mountain channels, as demonstrated in this study from the San Juan Mountains of Colorado. Historical photographs and local newspaper accounts from the October 1911 flood indicate the likely extent of flooding and damage. A checklist designed to organize and numerically score evidence of flooding was used in 15 field reconnaissance surveys in the upper Animas River valley of southwestern Colorado. Step-backwater flow modeling estimated the discharges necessary to create longitudinal flood bars observed at 6 additional field sites. According to these analyses, maximum unit discharge peaks at approximately 1.3 m3 s~' km"2 around 2200 m elevation, with decreased unit discharges at both higher and lower elevations. These results (1) are consistent with Jarrett's (1987, 1990, 1993) maximum 2300-m elevation limit for flash-flooding in the Colorado Rocky Mountains, and (2) suggest that current Probable Maximum Flood (PMF) estimates based on a 24-h rainfall of 30 cm at elevations above 2700 m are unrealistically large. The methodology used for this study should be readily applicable to other mountain regions where systematic streamflow records are of short duration or nonexistent. ?? 1998 Regents of the University of Colorado.
DEM-based Approaches for the Identification of Flood Prone Areas
NASA Astrophysics Data System (ADS)
Samela, Caterina; Manfreda, Salvatore; Nardi, Fernando; Grimaldi, Salvatore; Roth, Giorgio; Sole, Aurelia
2013-04-01
The remarkable number of inundations that caused, in the last decades, thousands of deaths and huge economic losses, testifies the extreme vulnerability of many Countries to the flood hazard. As a matter of fact, human activities are often developed in the floodplains, creating conditions of extremely high risk. Terrain morphology plays an important role in understanding, modelling and analyzing the hydraulic behaviour of flood waves. Research during the last 10 years has shown that the delineation of flood prone areas can be carried out using fast methods that relay on basin geomorphologic features. In fact, the availability of new technologies to measure surface elevation (e.g., GPS, SAR, SAR interferometry, RADAR and LASER altimetry) has given a strong impulse to the development of Digital Elevation Models (DEMs) based approaches. The identification of the dominant topographic controls on the flood inundation process is a critical research question that we try to tackle with a comparative analysis of several techniques. We reviewed four different approaches for the morphological characterization of a river basin with the aim to provide a description of their performances and to identify their range of applicability. In particular, we explored the potential of the following tools. 1) The hydrogeomorphic method proposed by Nardi et al. (2006) which defines the flood prone areas according to the water level in the river network through the hydrogeomorphic theory. 2) The linear binary classifier proposed by Degiorgis et al. (2012) which allows distinguishing flood-prone areas using two features related to the location of the site under exam with respect to the nearest hazard source. The two features, proposed in the study, are the length of the path that hydrologically connects the location under exam to the nearest element of the drainage network and the difference in elevation between the cell under exam and the final point of the same path. 3) The method by Manfreda et al. (2011) that suggested a modified Topographic Index (TIm) for the identification of flood prone area. 4) The downslope index proposed by Hjerdt et al. (2004) that quantifies the topographic controls on hydrology by evaluating head differences following the (surface) flow path in the steepest direction. The method does not use the exit point at the stream as reference; instead, the algorithm looks at how far a parcel of water has to travel along its flow path to lose a given head potential, d [m]. This last index was not defined with the aim to describe flood prone areas; in fact it represents an interesting alternative descriptor of morphological features that deserve to be tested. Analyses have been carried out for some Italian catchments. The outcomes of the four methods are presented using, for calibration and validation purposes, flood inundation maps made available by River Basin Authorities. The aim is, therefore, to evaluate the reliability and the relative errors in the detection of the areas subject to the flooding hazard. These techniques should not be considered as an alternative of traditional procedures, but additional tool for the identification of flood-prone areas and hazard graduation over large regions or when a preliminary identification is needed. Reference Degiorgis M., G. Gnecco, S. Gorni, G. Roth, M. Sanguineti, A. C. Taramasso, Classifiers for the detection of flood-prone areas using remote sensed elevation data, J. Hydrol., 470-471, 302-315, 2012. Hjerdt, K. N., J. J. McDonnell, J. Seibert, A. Rodhe, A new topographic index to quantify downslope controls on local drainage, Water Resour. Res., 40, W05602, 2004. Manfreda, S., M. Di Leo, A. Sole, Detection of Flood Prone Areas using Digital Elevation Models, Journal of Hydrologic Engineering, Vol. 16, No. 10, 781-790, 2011. Nardi, F., E. R. Vivoni, S. Grimaldi, Investigating a floodplain scaling relation using a hydrogeomorphic delineation method, Water Resour. Res., 42, W09409, 2006.
DeJager, Nathan R.; Rohweder, Jason J.; Yin, Yao; Hoy, Erin E.
2016-01-01
Questions How is the distribution of different plant communities associated with patterns of flood inundation across a large floodplain landscape? Location Thirty-eight thousand nine hundred and seventy hectare of floodplain, spanning 320 km of the Upper Mississippi River (UMR). Methods High-resolution elevation data (Lidar) and 30 yr of daily river stage data were integrated to produce a ‘floodscape’ map of growing season flood inundation duration. The distributions of 16 different remotely sensed plant communities were quantified along the gradient of flood duration. Results Models fitted to the cumulative frequency of occurrence of different vegetation types as a function of flood duration showed that most types exist along a continuum of flood-related occurrence. The diversity of community types was greatest at high elevations (0–10 d of flooding), where both upland and lowland community types were found, as well as at very low elevations (70–180 d of flooding), where a variety of lowland herbaceous communities were found. Intermediate elevations (20–60 d of flooding) tended to be dominated by floodplain forest and had the lowest diversity of community types. Conclusions Although variation in flood inundation is often considered to be the main driver of spatial patterns in floodplain plant communities, few studies have quantified flood–vegetation relationships at broad scales. Our results can be used to identify targets for restoration of historical hydrological regimes or better anticipate hydro-ecological effects of climate change at broad scales.
Productivity responses of Acer rubrum and Taxodium distichum seedlings to elevated CO2 and flooding
Vann, C.D.; Megonigal, J.P.
2002-01-01
Elevated levels of atmospheric CO2 are expected to increase photosynthetic rates of C3 tree species, but it is uncertain whether this will result in an increase in wetland seedling productivity. Separate short-term experiments (12 and 17 weeks) were performed on two wetland tree species, Taxodium distichum and Acer rubrum, to determine if elevated CO2 would influence the biomass responses of seedlings to flooding. T. distichum were grown in replicate glasshouses (n = 2) at CO2 concentrations of 350 or 700 ppm, and A. rubrum were grown in growth chambers at CO2 concentrations of 422 or 722 ppm. Both species were grown from seed. The elevated CO2 treatment was crossed with two water table treatments, flooded and non-flooded. Elevated CO2 increased leaf-level photosynthesis, whole-plant photosynthesis, and trunk diameter of T. distichum in both flooding treatments, but did not increase biomass of T. distichum or A. rubrum. Flooding severely reduced biomass, height, and leaf area of both T. distichum and A. rubrum. Our results suggest that the absence of a CO2-induced increase in growth may have been due to an O2 limitation on root production even though there was a relatively deep (??? 10 cm) aerobic soil surface in the non-flooded treatment. ?? 2001 Elsevier Science Ltd. All rights reserved.
Teton Dam flood of June 1976, Firth quadrangle, Idaho
Hubbard, Larry L.; Bartells, John H.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Firth quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Rose quadrangle, Idaho
Bartells, John H.; Hubbard, Larry L.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rose quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Rexburg quadrangle, Idaho
Harenberg, W.A.; Bigelow, B.B.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification on these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rexburg quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Deer Parks quadrangle, Idaho
Ray, Herman A.; Bennett, C. Michael; Records, Andrew W.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Deer Parks quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Parker quadrangle, Idaho
Thomas, Cecil Albert; Ray, Herman A.
1976-01-01
The failure of Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls, Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Parker quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, St. Anthony quadrangle, Idaho
Thomas, Cecil A.; Ray, Herman A.; Matthai, Howard F.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the St. Anthony quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Woodville quadrangle, Idaho
Matthai, Howard F.; Ray, Herman A.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Woodville quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Menan Buttes quadrangle, Idaho
Thomas, Cecil A.; Ray, Herman A.; Harenberg, William A.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Menan Buttes quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Idaho Falls South quadrangle, Idaho
Ray, Herman A.; Matthai, Howard F.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Idaho Falls South quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Lewisville quadrangle, Idaho
Ray, Herman A.; Bigelow, Bruce B.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Lewisville quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Idaho Falls North quadrangle, Idaho
Ray, Herman A.; Matthai, Howard F.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Idaho Falls North quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Pingree quadrangle, Idaho
Hubbard, Larry L.; Bartells, John H.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Pingree quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Blackfoot quadrangle, Idaho
Bartells, J.H.; Hubbard, Larry L.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Blackfoot quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Moreland quadrangle, Idaho
Hubbard, Larry L.; Bartells, John H.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The aea covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Moreland quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Rigby quadrangle, Idaho
Ray, Herman A.; Bigelow, Bruce B.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Rigby quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Newdale quadrangle, Idaho
Ray, Herman A.; Matthai, Howard F.; Thomas, Cecil A.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Newdale quadrangle. (Woodard-USGS)
Teton Dam flood of June 1976, Moody quadrangle, Idaho
Harenberg, William A.; Bigelow, Bruce B.
1976-01-01
The failure of the Teton Dam caused extreme flooding along the Teton River, Henrys Fork, and Snake River in southeastern Idaho on June 5-8, 1976. No flooding occurred downstream from American Falls Reservoir. The inundated areas and maximum water-surface elevations are shown in a series of 17 hydrologic atlases. The area covered by the atlases extends from Teton Dam downstream to American Falls Reservoir, a distance of 100 miles. The extent of flooding shown on the maps was obtained by field inspections and aerial photographs made during and immediately after the flood. There may be small isolated areas within the boundaries shown that were not flooded, but the identification of these sites was beyond the scope of the study. The elevation data shown are mean-sea-level elevations of high-water marks identified in the field. This particular map (in the 17-map series) shows conditions in the Moody quadrangle. (Woodard-USGS)
Juracek, Kyle E.
2014-01-01
An analysis of recent and historical U.S. Geological Survey streamgage information was used to assess geomorphic changes caused by the 2011 flood, in comparison to selected historical floods, at three streamgage sites along the lower Missouri River—Sioux City, Iowa; Omaha, Nebraska; and Kansas City, Missouri. Channel-width change was not evident at the three streamgage sites following the 2011 flood and likely was inhibited by bank stabilization. Pronounced changes in channel-bed elevation were indicated. At Sioux City and Omaha, the geomorphic effects of the 2011 flood were similar in terms of the magnitude of channelbed scour and recovery. At both sites, the 2011 flood caused pronounced scour (about 3 feet) of the channel bed; however, at Omaha, most of the channel-bed scour occurred after the flood had receded. More than 1 year after the flood, the channel bed had only partially recovered (about 1 foot) at both sites. Pronounced scour (about 3 feet at Sioux City and about 1.5 feet at Omaha) also was caused by the 1952 flood, which had a substantially larger peak discharge but was much shorter in duration at both sites. Again, at Omaha, most of the channel- bed scour occurred after the flood had receded. At Sioux City, substantial recovery of the channel bed (about 2.5 feet) was documented 1 year after the 1952 flood. Recovery to the pre-flood elevation was complete by April 1954. The greater recovery following the 1952 flood, compared to the 2011 flood, likely was related to a more abundant sediment supply because the flood predated the completion of most of the main-stem dam, channelization, and bank stabilization projects. At Omaha, following the 1952 flood, the channel bed never fully recovered to its pre-flood elevation. The geomorphic effect of the 2011 flood at Kansas City was fill (about 1 foot) on the channel bed followed by relative stability. The 1952 flood, which had a substantially larger peak discharge but was much shorter in duration, caused modest fill (about 0.5 foot) on the channel bed. The 1993 flood, which also had a substantially larger peak discharge but was much shorter in duration, caused pronounced scour of the channel bed (possibly as much as 4 feet). Similar to the floods at Omaha, much of the channel-bed scour at Kansas City occurred after the 1993 flood had receded. More than 1 year after the 1993 flood, following partial recovery (about 1 foot), the channel bed had stabilized, at least temporarily. Following the 1993 flood, the channel bed never fully recovered to its pre-flood elevation. For each flood in the post-dam era that resulted in substantial channel-bed scour (Sioux City in 2011, Omaha in 2011, Kansas City in 1993), recovery of the channel bed to its pre-flood elevation had not occurred more than 1 year after the flood (20 years after the 1993 flood at Kansas City). Thus, the possibility exists that channel-bed scour caused by large floods may have a cumulative effect along the lower Missouri River. The persistence of the flood-related decreases in channel-bed elevation may be indicative of the constrained ability of the channel to recover given a limited sediment supply caused by one or more of the following factors: upstream storage of sediment in reservoirs, bank stabilization, commercial sand dredging, depletion of readily available sediment by the flood, and a lack of post-flood sediment contributions from tributaries.
Lamontagne, Jonathan R.; Stedinger, Jery R.; Berenbrock, Charles; Veilleux, Andrea G.; Ferris, Justin C.; Knifong, Donna L.
2012-01-01
Flood-frequency information is important in the Central Valley region of California because of the high risk of catastrophic flooding. Most traditional flood-frequency studies focus on peak flows, but for the assessment of the adequacy of reservoirs, levees, other flood control structures, sustained flood flow (flood duration) frequency data are needed. This study focuses on rainfall or rain-on-snow floods, rather than the annual maximum, because rain events produce the largest floods in the region. A key to estimating flood-duration frequency is determining the regional skew for such data. Of the 50 sites used in this study to determine regional skew, 28 sites were considered to have little to no significant regulated flows, and for the 22 sites considered significantly regulated, unregulated daily flow data were synthesized by using reservoir storage changes and diversion records. The unregulated, annual maximum rainfall flood flows for selected durations (1-day, 3-day, 7-day, 15-day, and 30-day) for all 50 sites were furnished by the U.S. Army Corps of Engineers. Station skew was determined by using the expected moments algorithm program for fitting the Pearson Type 3 flood-frequency distribution to the logarithms of annual flood-duration data. Bayesian generalized least squares regression procedures used in earlier studies were modified to address problems caused by large cross correlations among concurrent rainfall floods in California and to address the extensive censoring of low outliers at some sites, by using the new expected moments algorithm for fitting the LP3 distribution to rainfall flood-duration data. To properly account for these problems and to develop suitable regional-skew regression models and regression diagnostics, a combination of ordinary least squares, weighted least squares, and Bayesian generalized least squares regressions were adopted. This new methodology determined that a nonlinear model relating regional skew to mean basin elevation was the best model for each flood duration. The regional-skew values ranged from -0.74 for a flood duration of 1-day and a mean basin elevation less than 2,500 feet to values near 0 for a flood duration of 7-days and a mean basin elevation greater than 4,500 feet. This relation between skew and elevation reflects the interaction of snow and rain, which increases with increased elevation. The regional skews are more accurate, and the mean squared errors are less than in the Interagency Advisory Committee on Water Data's National skew map of Bulletin 17B.
Flood of April 2-3, 2005, Neversink River Basin, New York
Suro, Thomas P.; Firda, Gary D.
2006-01-01
Heavy rain on April 2-3, 2005 produced rainfall amounts of 3 inches to almost 6 inches within a 36-hour period throughout the Delaware River basin. Major flooding occurred in the East and West Branches of the Delaware River and their tributaries, the main stem of the Delaware River and the Neversink River, a major tributary to the Delaware River. The resultant flooding damaged hundreds of homes, caused millions of dollars in damage to infrastructure in Orange and Sullivan Counties, and forced more than 1,000 residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Some of the most extensive flooding occurred along the Neversink and Delaware Rivers in Orange and Sullivan Counties, New York. Disaster recovery assistance from the April 2005 flooding in New York stood at almost $35 million in 2005, at which time more than 3,400 New Yorkers had registered for Federal aid. All U.S. Geological Survey stream-gaging stations on the Neversink River below the Neversink Reservoir recorded peak water-surface elevations higher than those recorded during the September 2004 flooding. Peak water-surface elevations at some study sites on the Neversink River exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey stream-gaging stations were the highest ever recorded. Several U.S. Geological Survey stream-gaging stations on the Delaware River also recorded peak water-surface elevations that exceeded those recorded during the September 2004 flooding.
Pruess, J.; Wohl, E.E.; Jarrett, R.D.
1998-01-01
Historical and geologic records may be used to enhance magnitude estimates for extreme floods along mountain channels, as demonstrated in this study from the San Juan Mountains of Colorado. Historical photographs and local newspaper accounts from the October 1911 flood indicate the likely extent of flooding and damage. A checklist designed to organize and numerically score evidence of flooding was used in 15 field reconnaissance surveys in the upper Animas River valley of southwestern Colorado. Step-backwater flow modeling estimated the discharges necessary to create longitudinal flood bars observed at 6 additional field sites. According to these analyses, maximum unit discharge peaks at approximately 1.3 m3 s-1 km-2 around 2200 m elevation, with decreased unit discharges at both higher and lower elevations. These results (1) are consistent with Jarrett's (1987, 1990, 1993) maximum 2300-m elevation limit for flash-flooding in the Colorado Rocky Mountains, and (2) suggest that current Probable Maximum Flood (PMF) estimates based on a 24-h rainfall of 30 cm at elevations above 2700 m are unrealistically large. The methodology used for this study should be readily applicable to other mountain regions where systematic streamflow records are of short duration or nonexistent.
44 CFR 65.3 - Requirement to submit new technical data.
Code of Federal Regulations, 2012 CFR
2012-10-01
... base flood elevations may increase or decrease resulting from physical changes affecting flooding... physical changes affecting flooding conditions, risk premium rates and flood plain management requirements...
44 CFR 65.3 - Requirement to submit new technical data.
Code of Federal Regulations, 2013 CFR
2013-10-01
... base flood elevations may increase or decrease resulting from physical changes affecting flooding... physical changes affecting flooding conditions, risk premium rates and flood plain management requirements...
44 CFR 65.3 - Requirement to submit new technical data.
Code of Federal Regulations, 2014 CFR
2014-10-01
... base flood elevations may increase or decrease resulting from physical changes affecting flooding... physical changes affecting flooding conditions, risk premium rates and flood plain management requirements...
Flood of April and May 2008 in Northern Maine
Lombard, Pamela J.
2010-01-01
Severe flooding occurred in Aroostook and Penobscot Counties in northern Maine between April 28 and May 1, 2008, and was most extreme in the town of Fort Kent. Peak streamflows in northern Aroostook County were the result of a persistent heavy snowpack that caused high streamflows when it quickly melted during the third week of April 2008. Snowmelt was followed by from two to four inches of rainfall over a 2-day period in northern Maine. Peak water-surface elevations resulting from the flood were obtained from 13 continuous-record streamgages and 63 surveyed high-water marks in Aroostook and Penobscot Counties. Peak streamflows were obtained from 20 sites on 15 streams through stage/discharge rating curves or hydraulic flow models. Peak water-surface elevations and streamflows were the highest ever recorded at seven continuous-record streamgages, which had between 25 and 84 years of record in northern Aroostook County. The annual exceedance probability (the percent chance of exceeding the streamflow recorded during the April/May 2008 flood during any given year) at six streamgages in northern Maine was equal to or less than 1 percent. Data from flood-insurance studies published by the Federal Emergency Management Agency were available for five of the locations analyzed for the April/May 2008 flood and were compared to streamflows and observed peak water-surface elevations from the 2008 flood. Water-surface elevations that would be expected given the observed flow as applied to the effective flood insurance studies ranged from between 1 and 4 feet from the water-surface elevations observed during the 2008 flood. Differences were likely the result of up to 30 years of additional data for the calculation of recurrence intervals and the fact that hydraulic models used for the models had not previously been calibrated to a flood of this magnitude.
NASA Astrophysics Data System (ADS)
Griesbaum, Luisa; Marx, Sabrina; Höfle, Bernhard
2017-07-01
In recent years, the number of people affected by flooding caused by extreme weather events has increased considerably. In order to provide support in disaster recovery or to develop mitigation plans, accurate flood information is necessary. Particularly pluvial urban floods, characterized by high temporal and spatial variations, are not well documented. This study proposes a new, low-cost approach to determining local flood elevation and inundation depth of buildings based on user-generated flood images. It first applies close-range digital photogrammetry to generate a geo-referenced 3-D point cloud. Second, based on estimated camera orientation parameters, the flood level captured in a single flood image is mapped to the previously derived point cloud. The local flood elevation and the building inundation depth can then be derived automatically from the point cloud. The proposed method is carried out once for each of 66 different flood images showing the same building façade. An overall accuracy of 0.05 m with an uncertainty of ±0.13 m for the derived flood elevation within the area of interest as well as an accuracy of 0.13 m ± 0.10 m for the determined building inundation depth is achieved. Our results demonstrate that the proposed method can provide reliable flood information on a local scale using user-generated flood images as input. The approach can thus allow inundation depth maps to be derived even in complex urban environments with relatively high accuracies.
Rendon, Samuel H.; Ashworth, Chad E.; Smith, S. Jerrod
2012-01-01
Dams provide beneficial functions such as flood control, recreation, and reliable water supplies, but they also entail risk: dam breaches and resultant floods can cause substantial property damage and loss of life. The State of Oklahoma requires each owner of a high-hazard dam, which the Federal Emergency Management Agency defines as dams for which failure or misoperation probably will cause loss of human life, to develop an emergency action plan specific to that dam. Components of an emergency action plan are to simulate a flood resulting from a possible dam breach and map the resulting downstream flood-inundation areas. The resulting flood-inundation maps can provide valuable information to city officials, emergency managers, and local residents for planning the emergency response if a dam breach occurs. Accurate topographic data are vital for developing flood-inundation maps. This report presents results of a cooperative study by the city of Lawton, Oklahoma, and the U.S. Geological Survey (USGS) to model dam-breach scenarios at Lakes Ellsworth and Lawtonka near Lawton and to map the potential flood-inundation areas of such dam breaches. To assist the city of Lawton with completion of the emergency action plans for Lakes Ellsworth and Lawtonka Dams, the USGS collected light detection and ranging (lidar) data that were used to develop a high-resolution digital elevation model and a 1-foot contour elevation map for the flood plains downstream from Lakes Ellsworth and Lawtonka. This digital elevation model and field measurements, streamflow-gaging station data (USGS streamflow-gaging station 07311000, East Cache Creek near Walters, Okla.), and hydraulic values were used as inputs for the dynamic (unsteady-flow) model, Hydrologic Engineering Center's River Analysis System (HEC-RAS). The modeled flood elevations were exported to a geographic information system to produce flood-inundation maps. Water-surface profiles were developed for a 75-percent probable maximum flood scenario and a sunny-day dam-breach scenario, as well as for maximum flood-inundation elevations and flood-wave arrival times for selected bridge crossings. Some areas of concern near the city of Lawton, if a dam breach occurs at Lakes Ellsworth or Lawtonka, include water treatment plants, wastewater treatment plants, recreational areas, and community-services offices.
Elevated view of city from incline Johnstown Local Flood ...
Elevated view of city from incline - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA
Kelly, Brian P.; Huizinga, Richard J.
2008-01-01
In the interest of improved public safety during flooding, the U.S. Geological Survey, in cooperation with the city of Kansas City, Missouri, completed a flood-inundation study of the Blue River in Kansas City, Missouri, from the U.S. Geological Survey streamflow gage at Kenneth Road to 63rd Street, of Indian Creek from the Kansas-Missouri border to its mouth, and of Dyke Branch from the Kansas-Missouri border to its mouth, to determine the estimated extent of flood inundation at selected flood stages on the Blue River, Indian Creek, and Dyke Branch. The results of this study spatially interpolate information provided by U.S. Geological Survey gages, Kansas City Automated Local Evaluation in Real Time gages, and the National Weather Service flood-peak prediction service that comprise the Blue River flood-alert system and are a valuable tool for public officials and residents to minimize flood deaths and damage in Kansas City. To provide public access to the information presented in this report, a World Wide Web site (http://mo.water.usgs.gov/indep/kelly/blueriver) was created that displays the results of two-dimensional modeling between Hickman Mills Drive and 63rd Street, estimated flood-inundation maps for 13 flood stages, the latest gage heights, and National Weather Service stage forecasts for each forecast location within the study area. The results of a previous study of flood inundation on the Blue River from 63rd Street to the mouth also are available. In addition the full text of this report, all tables and maps are available for download (http://pubs.usgs.gov/sir/2008/5068). Thirteen flood-inundation maps were produced at 2-foot intervals for water-surface elevations from 763.8 to 787.8 feet referenced to the Blue River at the 63rd Street Automated Local Evaluation in Real Time stream gage operated by the city of Kansas City, Missouri. Each map is associated with gages at Kenneth Road, Blue Ridge Boulevard, Kansas City (at Bannister Road), U.S. Highway 71, and 63rd Street on the Blue River, and at 103rd Street on Indian Creek. The National Weather Service issues peak stage forecasts for Blue Ridge Boulevard, Kansas City (at Bannister Road), U.S. Highway 71, and 63rd Street during floods. A two-dimensional depth-averaged flow model simulated flooding within a hydraulically complex, 5.6-mile study reach of the Blue River between Hickman Mills Drive and 63rd Street. Hydraulic simulation of the study reach provided information for the estimated flood-inundation maps and water-velocity magnitude and direction maps. Flood profiles of the upper Blue River between the U.S. Geological Survey streamflow gage at Kenneth Road and Hickman Mills Drive were developed from water-surface elevations calculated using Federal Emergency Management Agency flood-frequency discharges and 2006 stage-discharge ratings at U.S. Geological Survey streamflow gages. Flood profiles between Hickman Mills Drive and 63rd Street were developed from two-dimensional hydraulic modeling conducted for this study. Flood profiles of Indian Creek between the Kansas-Missouri border and the mouth were developed from water-surface elevations calculated using current stage-discharge ratings at the U.S. Geological Survey streamflow gage at 103rd Street, and water-surface slopes derived from Federal Emergency Management Agency flood-frequency stage-discharge relations. Mapped flood water-surface elevations at the mouth of Dyke Branch were set equal to the flood water-surface elevations of Indian Creek at the Dyke Branch mouth for all Indian Creek water-surface elevations; water-surface elevation slopes were derived from Federal Emergency Management Agency flood-frequency stage-discharge relations.
Effect of bank protection measures, Stehekin River, Chelan County, Washington
Nelson, L.M.
1986-01-01
An investigation of the lower Stehekin River was conducted to study the effects on flood elevations and velocities from four bank protection and flood prevention measures that are being contemplated as a means of reducing erosional losses of river bank property. These measures are: bank armoring, armored revetment levees, spur dikes, and redevelopment of old cutoff channels. The banks at seven study sites could be armored without adverse effect on the flood velocities and elevations. The largest increases due to armoring--up to 1.6 ft/sec in velocity and 1 ft in elevation--occurred in the vicinity of sites 5, 6, and 7 where the gradient of the river channel is about 50 ft/mi and the velocities are high to begin with (about 6 to 13 ft/sec). The use of a levee in conjunction with armoring on the northeast bank from sites 5 to 7 would increase the velocities as much as 2.8 ft/sec and increase the elevation as much as 1 ft, but it would also provide some flood protection to the east bank, which is frequently inundated. Spur dikes were considered a practical alternative only at site 3, where reduced bank erosion may occur without aggravating flood inundation or erosion elsewhere. The rerouting of flood flow through an old cutoff channel near site 1 increased the velocity by 3.2 ft/sec and the elevation by 1 ft for the 100-year flood; however, it would move floodwater away from residential property where bank erosion is a problem. The few other old channels that shortcut river bends where much erosion occurs are apparently already part of the channel during floods. (Author 's abstract)
Analysis of water-surface profiles in Leon County and the city of Tallahassee, Florida
Franklin, M.A.; Orr, R.A.
1987-01-01
Water surface profiles for the 10-, 25-, 50-, and 100-yr recurrence interval floods for most of the streams that drain developing areas of Leon County and the city of Tallahassee are presented. The principal streams studied are in the Lake Munson, Lake Lafayette, and Lake Jackson basins Peak discharges were computed from regression equations based on information gained from 15 streamflow stations in the area. Standard step-backwater procedures were used to determine the water-surface elevations for the streams. The flood elevations were generally higher than those in the Flood Insurance Studies for Tallahassee (1976) and Leon County (1982). The primary reason for the higher profiles is that peak discharges used in this report are larger than those used previously, largely due to changes in land use. The flood profiles for Bradford Brook, North Branch Gum Creek, and West Branch Gum Creek generally match those in the Leon County Flood Insurance Studies. Channel improvements in some areas would lower the flood elevation in that area, but would probably increase flooding downstream. (Lantz-PTT)
Harris, David Dell; Alexander, Clyde W.
1970-01-01
In land-use planning for the Applegate River and its flood plain, consideration should be given to (1) preservation of the recreational attributes of the area, (2) allowance for optimum development of the flood plain's natural resources, and (3) protection of the rights of private landowners. Major factors that influence evaluation of the above considerations are the elevations and characteristics of floods. Heretofore, such flood data for the Applegate River have been inadequate to evaluate the flood potential or to use as a basis for delineating reasonable land-use zones. Therefore, at the request of Jackson County, this study was made to provide flood elevations, water-surface profiles, and channel characteristics (geometry and slope) for a reach of the Applegate River from the Jackson-Josephine County line upstream to the Applegate damsite (fig. 1). A similar study was previously made for reaches of adjacent Rogue River and Elk Creek (Harris, 1970).
Whitehead, Matthew T.; Ostheimer, Chad J.
2014-01-01
Flood profiles for selected reaches were prepared by calibrating steady-state step-backwater models to selected streamgage rating curves. The step-backwater models were used to determine water-surface-elevation profiles for up to 12 flood stages at a streamgage with corresponding stream-flows ranging from approximately the 10- to 0.2-percent chance annual-exceedance probabilities for each of the 3 streamgages that correspond to the flood-inundation maps. Additional hydraulic modeling was used to account for the effects of backwater from the Ohio River on water levels in the Muskingum River. The computed longitudinal profiles of flood levels were used with a Geographic Information System digital elevation model (derived from light detection and ranging) to delineate flood-inundation areas. Digital maps showing flood-inundation areas overlain on digital orthophotographs were prepared for the selected floods.
NASA Astrophysics Data System (ADS)
Lovette, J. P.; Lenhardt, W. C.; Blanton, B.; Duncan, J. M.; Stillwell, L.
2017-12-01
The National Water Model (NWM) has provided a novel framework for near real time flood inundation mapping across CONUS at a 10m resolution. In many regions, this spatial scale is quickly being surpassed through the collection of high resolution lidar (1 - 3m). As one of the leading states in data collection for flood inundation mapping, North Carolina is currently improving their previously available 20 ft statewide elevation product to a Quality Level 2 (QL2) product with a nominal point spacing of 0.7 meters. This QL2 elevation product increases the ground points by roughly ten times over the previous statewide lidar product, and by over 250 times when compared to the 10m NED elevation grid. When combining these new lidar data with the discharge estimates from the NWM, we can further improve statewide flood inundation maps and predictions of at-risk areas. In the context of flood risk management, these improved predictions with higher resolution elevation models consistently represent an improvement on coarser products. Additionally, the QL2 lidar also includes coarse land cover classification data for each point return, opening the possibility for expanding analysis beyond the use of only digital elevation models (e.g. improving estimates of surface roughness, identifying anthropogenic features in floodplains, characterizing riparian zones, etc.). Using the NWM Height Above Nearest Drainage approach, we compare flood inundation extents derived from multiple lidar-derived grid resolutions to assess the tradeoff between precision and computational load in North Carolina's coastal river basins. The elevation data distributed through the state's new lidar collection program provide spatial resolutions ranging from 5-50 feet, with most inland areas also including a 3 ft product. Data storage increases by almost two orders of magnitude across this range, as does processing load. In order to further assess the validity of the higher resolution elevation products on flood inundation, we examine the NWM outputs from Hurricane Matthew, which devastated southeastern North Carolina in October 2016. When compared with numerous surveyed high water marks across the coastal plain, this assessment provides insight on the impacts of grid resolution on flood inundation extent.
78 FR 29760 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... accordance with section 110 of the Flood Disaster Protection Act of 1973, 42 U.S.C. 4104, and 44 CFR part 67...] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood...
77 FR 55784 - Proposed Flood Elevation Determinations; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... the flooding sources for Franklin County, North Carolina and Incorporated Areas. The flooding source... ``Franklin County, North Carolina, and Incorporated Areas'' addressed several flooding sources, including Taylors Creek. The proposed rule incorrectly listed the flooding source name as Taylors Branch instead of...
77 FR 18844 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
...: Internal Agency Docket No. FEMA-B-1236] Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth...
78 FR 49277 - Proposed Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-13
...: Internal Agency Docket No. FEMA-B-1345] Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth...
NASA Astrophysics Data System (ADS)
Samela, Caterina; Nardi, Fernando; Grimaldi, Salvatore; De Paola, Francesco; Sole, Aurelia; Manfreda, Salvatore
2014-05-01
Floods represent the most critical natural hazard for many countries and their frequency appears to be increasing in recent times. The legal constraints of public administrators and the growing interest of private companies (e.g., insurance companies) in identifying the areas exposed to the flood risk, is determining the necessity of developing new tools for the risk classification over large areas. Nowadays, among the numerous hydrologic and hydraulic methods regularly used for practical applications, 2-D hydraulic modeling represents the most accurate approach for deriving detailed inundation maps. Nevertheless, data requirement for these modeling approaches is certainly onerous, limiting their applicability over large areas. On this issue, the terrain morphology may provide an extraordinary amount of information useful to detect areas that are particularly prone to serious flooding. In the present work, we compare the reliability of different DEM-derived quantitative morphologic descriptors in characterizing the relationships between geomorphic attributes and flood exposure. The tests are carried out using techniques of pattern classification, such as linear binary classifiers (Degiorgis et al., 2012), whose ability is evaluated through performance measures. Simple and composed morphologic features are taken into account. The morphological features are: the upslope contributing area (A), the local slope (S), the length of the path that hydrologically connects the location under exam to the nearest element of the drainage network (D), the difference in elevation between the cell under exam and the final point of the same path (H), the curvature (downtriangle2H). In addition to the mentioned features, the study takes into consideration a number of composed indices, such as: the modified topographic index (Manfreda et al., 2011), the downslope index (DI) proposed by Hjerdt et al. (2004), the ratio between the elevation difference H and the distance to the network D, and other indices. Each binary classifier is applied in several catchments in order to verify the reproducibility of the procedures in different geomorphologic, climatic and hydrologic conditions. The study explores the use of these procedures in gauged river basins located in Italy and in an ungauged basin located in Africa. References Degiorgis, M., G. Gnecco, S. Gorni, G. Roth, M. Sanguineti, A.C. Taramasso, 2012. Classifiers for the detection of flood-prone areas using remote sensed elevation data, J. Hydrol., 470-471, 302-315. Hjerdt, K. N., J.J. McDonnell, J. Seibert, A. Rodhe, A new topographic index to quantify downslope controls on local drainage, Water Resour. Res., 40, W05602, 2004. Manfreda, S., M. Di Leo, A. Sole, Detection of Flood Prone Areas using Digital Elevation Models, J. Hydrol. Eng., 16(10), 781-790, 2011.
Jones, Joseph L.; Haluska, Tana L.; Kresch, David L.
2001-01-01
A method of updating flood inundation maps at a fraction of the expense of using traditional methods was piloted in Washington State as part of the U.S. Geological Survey Urban Geologic and Hydrologic Hazards Initiative. Large savings in expense may be achieved by building upon previous Flood Insurance Studies and automating the process of flood delineation with a Geographic Information System (GIS); increases in accuracy and detail result from the use of very-high-accuracy elevation data and automated delineation; and the resulting digital data sets contain valuable ancillary information such as flood depth, as well as greatly facilitating map storage and utility. The method consists of creating stage-discharge relations from the archived output of the existing hydraulic model, using these relations to create updated flood stages for recalculated flood discharges, and using a GIS to automate the map generation process. Many of the effective flood maps were created in the late 1970?s and early 1980?s, and suffer from a number of well recognized deficiencies such as out-of-date or inaccurate estimates of discharges for selected recurrence intervals, changes in basin characteristics, and relatively low quality elevation data used for flood delineation. FEMA estimates that 45 percent of effective maps are over 10 years old (FEMA, 1997). Consequently, Congress has mandated the updating and periodic review of existing maps, which have cost the Nation almost 3 billion (1997) dollars. The need to update maps and the cost of doing so were the primary motivations for piloting a more cost-effective and efficient updating method. New technologies such as Geographic Information Systems and LIDAR (Light Detection and Ranging) elevation mapping are key to improving the efficiency of flood map updating, but they also improve the accuracy, detail, and usefulness of the resulting digital flood maps. GISs produce digital maps without manual estimation of inundated areas between cross sections, and can generate working maps across a broad range of scales, for any selected area, and overlayed with easily updated cultural features. Local governments are aggressively collecting very-high-accuracy elevation data for numerous reasons; this not only lowers the cost and increases accuracy of flood maps, but also inherently boosts the level of community involvement in the mapping process. These elevation data are also ideal for hydraulic modeling, should an existing model be judged inadequate.
Sea-Level Rise and Flood Potential along the California Coast
NASA Astrophysics Data System (ADS)
Delepine, Q.; Leung, C.
2013-12-01
Sea-level rise is becoming an ever-increasing problem in California. Sea-level is expected to rise significantly in the next 100 years, which will raise flood elevations in coastal communities. This will be an issue for private homeowners, businesses, and the state. One study suggests that Venice Beach could lose a total of at least $440 million in tourism spending and tax dollars from flooding and beach erosion if sea level rises 1.4 m by 2100. In addition, several airports, such as San Francisco International Airport, are located in coastal regions that have flooded in the past and will likely be flooded again in the next 30 years, but sea-level rise is expected to worsen the effects of flooding in the coming decades It is vital for coastal communities to understand the risks associated with sea-level rise so that they can plan to adapt to it. By obtaining accurate LiDAR elevation data from the NOAA Digital Coast Website (http://csc.noaa.gov/dataviewer/?keyword=lidar#), we can create flood maps to simulate sea level rise and flooding. The data are uploaded to ArcGIS and contour lines are added for different elevations that represent future coastlines during 100-year flooding. The following variables are used to create the maps: 1. High-resolution land surface elevation data - obtained from NOAA 2. Local mean high water level - from USGS 3. Local 100-year flood water level - from the Pacific Institute 4. Sea-level rise projections for different future dates (2030, 2050, and 2100) - from the National Research Council The values from the last three categories are added to represent sea-level rise plus 100-year flooding. These values are used to make the contour lines that represent the projected flood elevations, which are then exported as KML files, which can be opened in Google Earth. Once these KML files are made available to the public, coastal communities will gain an improved understanding of how flooding and sea-level rise might affect them in the future. This would allow them to plan ahead to reduce the level of risk to homes, industry, and infrastructure San Francisco International Airport will be most likely be flooded in the next 30 years. Blue lines indicate current Mean High Water Levels. Yellow lines indicate the Mean High Water level combined with flood levels for 2030. Green, 2050, and Red lines, 2100
46 CFR 174.080 - Flooding on self-elevating and surface type units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or...
46 CFR 174.080 - Flooding on self-elevating and surface type units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... STABILITY SPECIAL RULES PERTAINING TO SPECIFIC VESSEL TYPES Special Rules Pertaining to Mobile Offshore Drilling Units § 174.080 Flooding on self-elevating and surface type units. (a) On a surface type unit or...
Floods of 1971 and 1972 on Glover Creek and Little River in southeastern Oklahoma
Thomas, Wilbert O.; Corley, Robert K.
1973-01-01
Heavy rains of December 9-10, 1971, and Oct. 30-31, 1972, caused outstanding floods on Glover Creek and Little River in McCurtain County in southeastern Oklahoma. This report presents hydrologic data that document the extent of flooding, flood profiles, and frequency of flooding on reaches of both streams. The data presented provide a technical basis for formulating effective flood-plain zoning that will minimize existing and future flood problems. The report also can be useful for locating waste-disposal and water-treatment facilities, and for the development of recreational areas. The area studied includes the reach of Little River on the Garvin and Idabel 7 1/2-minute quadrangles (sheet 1) and the reach of Glover Creek on the southwest quarter of the Golden 15-minute quadrangle (sheet 2). The flood boundaries delineated on the maps are the limits of flooding during the December 1971 and October 1972 floods. Any attempt to delineate the flood boundaries on streams in the study area other than Glover Creek and Little River was considered to be beyond the scope of this report. The general procedure used in defining the flood boundaries was to construct the flood profiles from high-water marks obtained by field surveys and by records at three stream-gaging stations (two on Little River and one on Glover Creek.). The extent of flooding was delineated on the topographic maps by using the flood profiles to define the flood elevations at various points along the channel and locating the elevations on the map by interpolating between contours (lines of equal ground elevation). In addition, flood boundaries were defined in places by field survey, aerial photographs, and information from local residents. The accuracy of the flood boundaries is consistent with the scale and contour interval of the maps (1 inch = 2,000 feet; contour interval 10 and 20 feet), which means the flood boundaries are drawn as accurately as possible on maps having 10- and 20-foot contour intervals.
Flood elevations for the Soleduck River at Sol Duc Hot Springs, Clallam County, Washington
Nelson, L.M.
1983-01-01
Elevations and inundation areas of a 100-year flood of the Soleduck River, Washington, were determined by the U.S. Geological Survey for the area in the vicinity of the Sol Duc Hot Springs resort, a public facility in the Olympic National Park that under Federal law must be located beyond or protected from damage by a 100-year flood. Results show that most flooding could be eliminated by raising parts of an existing dike. In general, little flood damage is expected, except at the southern end of an undeveloped airstrip that could become inundated and hazardous due to flow from a tributary. The airstrip is above the 100-year flood of the Soleduck River.
77 FR 20997 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 65 [Docket ID FEMA-2011-0002] Changes in Flood Elevation Determinations AGENCY: Federal Emergency Management Agency, DHS... in the table below. FOR FURTHER INFORMATION CONTACT: Luis Rodriguez, Chief, Engineering Management...
75 FR 18072 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 65 [Docket ID FEMA-2010-0003] Changes in Flood Elevation Determinations AGENCY: Federal Emergency Management Agency, DHS... Management Branch, Mitigation Directorate, Federal Emergency Management Agency, 500 C Street, SW., Washington...
76 FR 26941 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 65 [Docket ID FEMA-2011-0002] Changes in Flood Elevation Determinations AGENCY: Federal Emergency Management Agency, DHS... in the table below. FOR FURTHER INFORMATION CONTACT: Luis Rodriguez, Chief, Engineering Management...
D.A. Marion
2012-01-01
The hydraulic characteristics are determined for the June 11, 2010, flood on the Little Missouri River at the Albert Pike Recreation Area in Arkansas. These characteristics are then used to predict the high-water elevations for the 10-, 25-, 50-, and 100-year flood events in the Loop B, C, and D Campgrounds of the recreation area. The peak discharge and related...
Effects of Climate Change on Flood Frequency in the Pacific Northwest
NASA Astrophysics Data System (ADS)
Gergel, D. R.; Stumbaugh, M. R.; Lee, S. Y.; Nijssen, B.; Lettenmaier, D. P.
2014-12-01
A key concern about climate change as related to water resources is the potential for changes in hydrologic extremes, including flooding. We explore changes in flood frequency in the Pacific Northwest using downscaled output from ten Global Climate Models (GCMs) from the Coupled Model Inter-Comparison Project 5 (CMIP5) for historical forcings (1950-2005) and future Representative Concentration Pathways (RCPs) 4.5 and 8.5 (2006-2100). We use archived output from the Integrated Scenarios Project (ISP) (http://maca.northwestknowledge.net/), which uses the Multivariate Adaptive Constructed Analogs (MACA) method for statistical downscaling. The MACA-downscaled GCM output was then used to force the Variable Infiltration Capacity (VIC) hydrology model with a 1/16th degree spatial resolution and a daily time step. For each of the 238 HUC-08 areas within the Pacific Northwest (USGS Hydrologic Region 15), we computed, from the ISP archive, the series of maximum daily runoff values (surrogate for the annual maximum flood), and then the mean annual flood. Finally, we computed the ratios of the RCP4.5 and RCP8.5 mean annual floods to their corresponding values for the historical period. We evaluate spatial patterns in the results. For snow-dominated watersheds, the changes are dominated by reductions in flood frequency in basins that currently have spring-dominant floods, and increases in snow affected basins with fall-dominant floods. In low elevation basins west of the Cascades, changes in flooding are more directly related to changes in precipitation extremes. We further explore the nature of these effects by evaluating the mean Julian day of the annual maximum flood for each HUC-08 and how this changes between the historical and RCP4.5 and RCP8.5 scenarios.
Ohio River backwater flood-inundation maps for the Saline and Wabash Rivers in southern Illinois
Murphy, Elizabeth A.; Sharpe, Jennifer B.; Soong, David T.
2012-01-01
Digital flood-inundation maps for the Saline and Wabash Rivers referenced to elevations on the Ohio River in southern Illinois were created by the U.S. Geological Survey (USGS). The inundation maps, accessible through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage at Ohio River at Old Shawneetown, Illinois-Kentucky (station number 03381700). Current gage height and flow conditions at this USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?03381700. In addition, this streamgage is incorporated into the Advanced Hydrologic Prediction Service (AHPS) flood warning system (http://water.weather.gov/ahps/) by the National Weather Service (NWS). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. That NWS forecasted peak-stage information, also shown on the Ohio River at Old Shawneetown inundation Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, eight water-surface elevations were mapped at 5-foot (ft) intervals referenced to the streamgage datum ranging from just above the NWS Action Stage (31 ft) to above the maximum historical gage height (66 ft). The elevations of the water surfaces were compared to a Digital Elevation Model (DEM) by using a Geographic Information System (GIS) in order to delineate the area flooded at each water level. These maps, along with information on the Internet regarding current gage heights from USGS streamgages and forecasted stream stages from the NWS, provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
77 FR 51743 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... modified elevations, and communities affected for the City of Newport News, Virginia. Specifically, it.... The table, entitled ``City of Newport News, Virgina'' addressed the flooding sources Newmarket Creek... Modified City of Newport News, Virginia Virginia City of Newport News.... Newmarket Creek Approximately 0...
75 FR 7956 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 65 [Docket ID FEMA-2010-0003; Internal Agency Docket No. FEMA-B-1073] Changes in Flood Elevation Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Interim rule. SUMMARY: This interim rule lists...
77 FR 73398 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 67 [Docket ID FEMA-2010-0003; Internal Agency Docket No. FEMA-B-1085] Proposed Flood Elevation Determinations AGENCY..., identified by Docket No. FEMA-B- 1085, to Luis Rodriguez, Chief, Engineering Management Branch, Federal...
77 FR 73393 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 67 [Docket ID FEMA-2010-0003; Internal Agency Docket No. FEMA-B-1085] Proposed Flood Elevation Determinations AGENCY..., identified by Docket No. FEMA-B- 1085, to Luis Rodriguez, Chief, Engineering Management Branch, Federal...
Dietsch, Benjamin J.; Densmore, Brenda K.; Strauch, Kellan R.
2014-01-01
In 2011, unprecedented flooding in the Missouri River prompted transportation agencies to increase the frequency of monitoring riverbed elevations near bridges that cross the Missouri River. Hydrographic surveys were completed in cooperation with the Nebraska Department of Roads, using a multibeam echosounder at 15 highway bridges spanning the Missouri River from Niobrara to Rulo, Nebraska during and after the extreme 2011 flood. Evidence of bed elevation change near bridge piers was documented. The greatest amount of bed elevation change during the 2011 flood documented for this study occurred at the Burt County Missouri River Bridge at Decatur, Nebraska, where scour of about 45 feet, from before flooding, occurred between a bridge abutment and pier. Of the remaining sites, highway bridges where bed elevation change near piers appeared to have exceeded 10 feet include the Abraham Lincoln Memorial Bridge at Blair, Nebr., Bellevue Bridge at Bellevue, Nebr., and Nebraska City Bridge at Nebraska City, Nebr. Hydrographic surveys at 14 of the 15 sites were completed in mid-July and again in early October or late-November 2011. Near three of the bridges, the bed elevation of locations surveyed in July increased by more than 10 feet, on average, by late October or early November 2011. Bed elevations increased between 1 and 10 feet, on average, near six bridges. Near the remaining four bridges, bed elevations decreased between 1 and 4 feet, on average, from July to late October or early November.
44 CFR 64.3 - Flood Insurance Maps.
Code of Federal Regulations, 2012 CFR
2012-10-01
... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface elevations determined and with velocity, that is inundated by tidal floods (coastal high hazard area) V0 Area..., but possible, mudslide hazards E Area of special flood-related erosion hazards. Areas identified as...
44 CFR 64.3 - Flood Insurance Maps.
Code of Federal Regulations, 2013 CFR
2013-10-01
... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface elevations determined and with velocity, that is inundated by tidal floods (coastal high hazard area) V0 Area..., but possible, mudslide hazards E Area of special flood-related erosion hazards. Areas identified as...
44 CFR 64.3 - Flood Insurance Maps.
Code of Federal Regulations, 2014 CFR
2014-10-01
... tidal floods (coastal high hazard area) V1-30, VE Area of special flood hazards, with water surface elevations determined and with velocity, that is inundated by tidal floods (coastal high hazard area) V0 Area..., but possible, mudslide hazards E Area of special flood-related erosion hazards. Areas identified as...
Floods in the Wapsipinicon River Basin, Iowa
Schwob, Harlan H.
1971-01-01
Flood-profile sheets show profiles of actual flood occurrences and computed profiles of the 25- and 50-year floods at most locations. These sheets also contain tabulations of the flood discharges profiled. A low-water profile and tabulated discharge indicate the range in elevation and discharge along the streams.
Climate simulation and flood risk analysis for 2008-40 for Devils Lake, North Dakota
Vecchia, Aldo V.
2008-01-01
Devils Lake and Stump Lake in northeastern North Dakota receive surface runoff from a 3,810-square-mile drainage basin, and evaporation provides the only major water loss unless the lakes are above their natural spill elevation to the Sheyenne River. In September 2007, flow from Devils Lake to Stump Lake had filled Stump Lake and the two lakes consisted of essentially one water body with an elevation of 1,447.1 feet, about 3 feet below the existing base flood elevation (1,450 feet) and about 12 feet below the natural outlet elevation to the Sheyenne River (1,459 feet).Devils Lake could continue to rise, causing extensive additional flood damages in the basin and, in the event of an uncontrolled natural spill, downstream in the Red River of the North Basin. This report describes the results of a study conducted by the U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, to evaluate future flood risk for Devils Lake and provide information for developing updated flood-insurance rate maps and planning flood-mitigation activities such as raising levees or roads.In about 1980, a large, abrupt, and highly significant increase in precipitation occurred in the Devils Lake Basin and elsewhere in the Northern Great Plains, and wetter-than-normal conditions have persisted through the present (2007). Although future precipitation is impossible to predict, paleoclimatic evidence and recent research on climate dynamics indicate the current wet conditions are not likely to end anytime soon. For example, there is about a 72-percent chance wet conditions will last at least 10 more years and about a 37-percent chance wet conditions will last at least 30 more years.A stochastic simulation model for Devils Lake and Stump Lake developed in a previous study was updated and used to generate 10,000 potential future realizations, or traces, of precipitation, evaporation, inflow, and lake levels given existing conditions on September 30, 2007, and randomly generated future duration of the current wet period. On the basis of the simulations, and assuming ice-free conditions and calm wind, the Devils Lake flood elevation for an annualized flood risk of 1 percent (analogous to a “100-year” riverine flood) was estimated to be 1,454.6 feet for a 10-year time horizon (2008–17). Therefore, without adjusting for wind or ice, a residence near Devils Lake at elevation 1,454.6 feet has the same chance of being flooded sometime during the next 10 years as a residence at the edge of the 100-year flood plain along a river. Adjusting for the effects of wind or ice, which will increase the flood elevations for many locations near the lakes, was not within the scope of this study.
44 CFR 67.8 - Appeal procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.8 Appeal procedure. (a) If a community appeals the proposed flood...
Effects of flooding regime and seedling treatment on early survival and growth of nuttall oak
Burkett, V.R.; Draugelis-Dale, R.O.; Williams, H.M.; Schoenholtz, S.H.
2005-01-01
Effects of flooding on survival and growth of three different types of Nuttall oak (Quercus texana Buckl.) seedlings were observed at the end of third and fifth growing seasons at Yazoo National Wildlife Refuge, Mississippi, U.S.A. Three types of seedlings were planted in January 1995 in a split-plot design, with four replications at each of two elevations on floodprone, former cropland in Sharkey clay soil. The lower of the two planting elevations was inundated for 21 days during the first growing season, whereas the higher elevation did not flood during the 5-year period of this study. The three types of 1-0 seedlings were bareroot seedlings, seedlings grown in containers (3.8 ?? 21a??cm plastic seedling cones), and container-grown seedlings inoculated with vegetative mycelia of Pisolithus tinctorius (Pers.) Coker. Survival of all the three seedling types was greatest at the lower, intermittently flooded elevation, indicating that drought and related effects on plant competition were more limiting to seedling survival than flooding. At the lower elevation, survival of mycorrhizal-inoculated container seedlings was greater than that of noninoculated container seedlings. Survival among bareroot seedlings and inoculated container seedlings was not significantly different at either elevation. At the higher, nonflooded elevation, however, bareroot seedling survival was greater than the survival of container seedlings without inoculation. Differences were significant among the inoculated and the noninoculated container seedlings, with higher survival of inoculated seedlings at both elevations, though differences were only significant in year 3. At the end of the fifth year, height of bareroot seedlings was significantly greater than the heights of both types of container-grown seedlings at both planting elevations. Because seedlings grown in the plastic seedlings cones did not survive better than the bareroot seedlings at either planting elevation, the bareroot stock appear to be the economically superior choice for regeneration in Sharkey soil.
Flood Change Assessment and Attribution in Austrian alpine Basins
NASA Astrophysics Data System (ADS)
Claps, Pierluigi; Allamano, Paola; Como, Anastasia; Viglione, Alberto
2016-04-01
The present paper aims to investigate the sensitivity of flood peaks to global warming in the Austrian alpine basins. A group of 97 Austrian watersheds, with areas ranging from 14 to 6000 km2 and with average elevation ranging from 1000 to 2900 m a.s.l. have been considered. Annual maximum floods are available for the basins from 1890 to 2007 with two densities of observation. In a first period, until 1950, an average of 42 records of flood peaks are available. From 1951 to 2007 the density of observation increases to an average amount of contemporary peaks of 85. This information is very important with reference to the statistical tools used for the empirical assessment of change over time, that is linear quantile regressions. Application of this tool to the data set unveils trends in extreme events, confirmed by statistical testing, for the 0.75 and 0.95 empirical quantiles. All applications are made with specific (discharges/area) values . Similarly of what done in a previous approach, multiple quantile regressions have also been applied, confirming the presence of trends even when the possible interference of the specific discharge and morphoclimatic parameters (i.e. mean elevation and catchment area). Application of a geomorphoclimatic model by Allamano et al (2009) can allow to mimic to which extent the empirically available increase in air temperature and annual rainfall can justify the attribution of change derived by the empirical statistical tools. An comparison with data from Swiss alpine basins treated in a previous paper is finally undertaken.
76 FR 13571 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 67 [Docket ID FEMA-2008-0020; Internal Agency Docket No. FEMA-B-1072] Proposed Flood Elevation Determinations AGENCY... June 13, 2011. ADDRESSES: You may submit comments, identified by Docket No. FEMA-B- 1072, to Luis...
76 FR 50443 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-15
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 67 [Docket ID FEMA-2011-0002; Internal Agency Docket No. FEMA-B-1196] Proposed Flood Elevation Determinations Correction In proposed rule document 2011-16640 appearing on pages 39063 through 39067 in the issue of Tuesday...
76 FR 12308 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-07
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 67 [Docket ID FEMA-2011-0002; Internal Agency Docket No. FEMA-B-1174] Proposed Flood Elevation Determinations Correction In proposed rule document 2011-2281 beginning on page 5769 in the issue of Wednesday, February 2...
76 FR 58409 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
... changes in BFEs are in accordance with 44 CFR 65.4. National Environmental Policy Act. This interim rule is categorically excluded from the requirements of 44 CFR part 10, Environmental Consideration. An environmental impact assessment has not been prepared. Regulatory Flexibility Act. As flood elevation...
76 FR 20554 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... management requirements. The community may at any time enact stricter requirements of its own or pursuant to... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 65 [Docket ID FEMA-2011-0002] Changes in Flood Elevation Determinations AGENCY: Federal Emergency Management Agency, DHS...
76 FR 8900 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-16
... management requirements. The community may at any time enact stricter requirements of its own or pursuant to... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 65 [Docket ID FEMA-2011-0002] Changes in Flood Elevation Determinations AGENCY: Federal Emergency Management Agency, DHS...
77 FR 73396 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 67 [Docket ID FEMA-2010-0003; Internal Agency Docket No. FEMA-B-1089] Proposed Flood Elevation Determinations AGENCY.... ADDRESSES: You may submit comments, identified by Docket No. FEMA-B- 1089, to Luis Rodriguez, Chief...
Olson, Scott A.
2015-01-01
Eighteen high-water marks from Tropical Storm Irene were available along the studied reaches. The discharges in the Tropical Storm Irene HEC–RAS model were adjusted so that the resulting water-surface elevations matched the high-water mark elevations along the study reaches. This allowed for an estimation of the water-surface profile throughout the study area resulting from Tropical Storm Irene. From a comparison of the estimated water-surface profile of Tropical Storm Irene to the water-surface profiles of the 1- and 0.2-percent AEP floods, it was determined that the high-water elevations resulting from Tropical Storm Irene exceeded the estimated 1-percent AEP flood throughout the White River and Tweed River study reaches and exceeded the estimated 0.2-percent AEP flood in 16.7 of the 28.6 study reach miles. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived from light detection and ranging (lidar) data having a 18.2-centimeter vertical accuracy at the 95-percent confidence level and 1-meter horizontal resolution to delineate the area flooded for each water-surface profile.
Boldt, Justin A.
2018-01-16
A two-dimensional hydraulic model and digital flood‑inundation maps were developed for a 30-mile reach of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois. The flood-inundation maps, which can be accessed through the U.S. Geological Survey (USGS) Flood Inundation Mapping Science web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Wabash River at Mount Carmel, Ill (USGS station number 03377500). Near-real-time stages at this streamgage may be obtained on the internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS AHPS site MCRI2). The NWS AHPS forecasts peak stage information that may be used with the maps developed in this study to show predicted areas of flood inundation.Flood elevations were computed for the Wabash River reach by means of a two-dimensional, finite-volume numerical modeling application for river hydraulics. The hydraulic model was calibrated by using global positioning system measurements of water-surface elevation and the current stage-discharge relation at both USGS streamgage 03377500, Wabash River at Mount Carmel, Ill., and USGS streamgage 03378500, Wabash River at New Harmony, Indiana. The calibrated hydraulic model was then used to compute 27 water-surface elevations for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from less than the action stage (9 ft) to the highest stage (35 ft) of the current stage-discharge rating curve. The simulated water‑surface elevations were then combined with a geographic information system digital elevation model, derived from light detection and ranging data, to delineate the area flooded at each water level.The availability of these maps, along with information on the internet regarding current stage from the USGS streamgage at Mount Carmel, Ill., and forecasted stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood-response activities such as evacuations and road closures, as well as for postflood recovery efforts.
Chryse Basin channels: low-gradients and ponded flows.
Lucchitta, B.K.; Ferguson, H.M.
1983-01-01
Gradients on the floors of the Martian outflow channels that are derived from radar-elevation profiles across Lunae Planum and Chryse Basin have much lower values than those obtained from the U.S. Geological Survey's topographic map. Whereas the gradients of Maja and Ares Valles are similar to those of the catastrophic flood channels in the Scablands of Washington State, the gradients of Simud and Tiu Valles are essentially level, and the movement of fluids to the N poses problems. It is proposed that ponding may have formed lakes in depressions associated with the Valles Marineris grabens, ancient craters in the chaotic terrain area, and possibly even the regional low where most chaotic terrains occur. It is envisaged that lakes eventually overflowed, forming the present channels. When dams broke, floods were released catastrophically, with a final gigantic flood from the Valles Marineris system of troughs, which would have had sufficient head to move fluids across nearly level gradients through the Simud and Tiu channels. -P.Br.
76 FR 56724 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
.../town/county Source of flooding Location ** ground [caret] Elevation in meters (MSL) Existing Modified... Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to... upstream of Cradduck Road None +876 Oklahoma Unincorporated Areas of Town Branch Approximately 400 feet...
Flood-hazard mapping in Honduras in response to Hurricane Mitch
Mastin, M.C.
2002-01-01
The devastation in Honduras due to flooding from Hurricane Mitch in 1998 prompted the U.S. Agency for International Development, through the U.S. Geological Survey, to develop a country-wide systematic approach of flood-hazard mapping and a demonstration of the method at selected sites as part of a reconstruction effort. The design discharge chosen for flood-hazard mapping was the flood with an average return interval of 50 years, and this selection was based on discussions with the U.S. Agency for International Development and the Honduran Public Works and Transportation Ministry. A regression equation for estimating the 50-year flood discharge using drainage area and annual precipitation as the explanatory variables was developed, based on data from 34 long-term gaging sites. This equation, which has a standard error of prediction of 71.3 percent, was used in a geographic information system to estimate the 50-year flood discharge at any location for any river in the country. The flood-hazard mapping method was demonstrated at 15 selected municipalities. High-resolution digital-elevation models of the floodplain were obtained using an airborne laser-terrain mapping system. Field verification of the digital elevation models showed that the digital-elevation models had mean absolute errors ranging from -0.57 to 0.14 meter in the vertical dimension. From these models, water-surface elevation cross sections were obtained and used in a numerical, one-dimensional, steady-flow stepbackwater model to estimate water-surface profiles corresponding to the 50-year flood discharge. From these water-surface profiles, maps of area and depth of inundation were created at the 13 of the 15 selected municipalities. At La Lima only, the area and depth of inundation of the channel capacity in the city was mapped. At Santa Rose de Aguan, no numerical model was created. The 50-year flood and the maps of area and depth of inundation are based on the estimated 50-year storm tide.
Flood of April 2-3, 2005, Esopus Creek Basin, New York
Suro, Thomas P.; Firda, Gary D.
2007-01-01
On April 2-3, 2005, heavy rain moved into southern New York and delivered rainfall amounts that ranged from about 2 in. to almost 6 in. within a 36-hour period. Significant flooding occurred on many small streams and tributaries in the area, and extensive flooding occurred on the Esopus and Roundout Creeks in Ulster and Greene Counties, New York. The flooding damaged many homes, caused millions of dollars worth of damage, and forced hundreds of residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Disaster recovery assistance for those people affected stands at almost $35 million, according to the Federal Emergency Management Agency, as more than 3,400 New Yorkers registered for Federal aid. U.S. Geological Survey stream-gaging stations on the Esopus Creek above the Ashokan Reservoir at Allaben, N.Y., and below the Ashokan Reservoir at Mount Marion, N.Y., each recorded a new record maximum water-surface elevation and discharge for the respective periods of record as a result of this storm. The peak water-surface elevation and discharge recorded during the April 2-3, 2005, storm at the U.S. Geological Survey stream-gaging station on the Esopus Creek at Cold Brook, N.Y. were the third highest elevation and discharge since the station was put into operation in 1914. Most of the study sites along the Esopus Creek indicated water-surface elevations near the 50-year flood elevations, as documented in flood-insurance studies by the Federal Emergency Management Agency.
Flood of May 2006 in York County, Maine
Stewart, Gregory J.; Kempf, Joshua P.
2008-01-01
A stalled low-pressure system over coastal New England on Mother's Day weekend, May 13-15, 2006, released rainfall in excess of 15 inches. This flood (sometimes referred to as the 'Mother's Day flood') caused widespread damage to homes, businesses, roads, and structures in southern Maine. The damage to public property in York County was estimated to be $7.5 million. As a result of these damages, a presidential disaster declaration was enacted on May 25, 2006, for York County, Maine. Peak-flow recurrence intervals for eight of the nine streams studied were calculated to be greater than 500 years. The peak-flow recurrence interval of the remaining stream was calculated to be between a 100-year and a 500-year interval. This report provides a detailed description of the May 2006 flood in York County, Maine. Information is presented on peak streamflows and peak-flow recurrence intervals on nine streams, peak water-surface elevations for 80 high-water marks at 25 sites, hydrologic conditions before and after the flood, comparisons with published Flood Insurance Studies, and places the May 2006 flood in context with historical floods in York County. At sites on several streams, differences were observed between peak flows published in the Flood Insurance Studies and those calculated for this study. The differences in the peak flows from the published Flood Insurance Studies and the flows calculated for this report are within an acceptable range for flows calculated at ungaged locations, with the exception of those for the Great Works River and Merriland River. For sites on the Mousam River, Blacksmith Brook, Ogunquit River, and Cape Neddick River, water-surface elevations from Flood Insurance Studies differed with documented water-surface elevations from the 2006 flood.
NASA Astrophysics Data System (ADS)
Vu, M. T.; Liong, S. Y.; Raghavan, V. S.; Liew, S. C.
2011-07-01
Climate change is expected to cause increases in extreme climatic events such as heavy rainstorms and rising tidal level. Heavy rainstorms are known to be serious causes of flooding problems in big cities. Thus, high density residential and commercial areas along the rivers are facing risks of being flooded. For that reason, inundated area determination is now being considered as one of the most important areas of research focus in flood forecasting. In such a context, this paper presents the development of a floodmap in determining flood-prone areas and its volumes. The areas and volumes of flood are computed by the inundated level using the existing digital elevation model (DEM) of a hypothetical catchment chosen for study. The study focuses on the application of Flood Early Warning System (Delft — FEWS, Deltares), which is designated to work with the SOBEK (Delft) to simulate the extent of stormwater on the ground surface. The results from FEWS consist of time-series of inundation maps in Image file format (PNG) and ASCII format, which are subsequently imported to ArcGIS for further calculations. In addition, FEWS results provide options to export the video clip of water spreading out over the catchment. Consequently, inundated area and volume will be determined by the water level on the ground. Final floodmap is displayed in colors created by ArcGIS. Various flood map results corresponding to climate change scenarios will be displayed in the main part of the paper.
Linking fluvial and aeolian morphodynamics in the Grand Canyon, USA
Kasprak, Alan; Bangen, Sara G.; Buscombe, Daniel; Caster, Joshua; East, Amy; Grams, Paul E.; Sankey, Joel B.
2017-01-01
In river valleys, fluvial and upland landscapes are intrinsically linked through sediment exchange between the active channel, near-channel fluvial deposits, and higher elevation upland deposits. During floods, sediment is transferred from channels to low-elevation nearchannel deposits [Schmidt and Rubin, 1995]. Particularly in dryland river valleys, subsequent aeolian reworking of these flood deposits redistributes sediment to higher elevation upland sites, thus maintaining naturallyoccurring aeolian landscapes [Draut, 2012].
Flood-inundation maps for the Yellow River at Plymouth, Indiana
Menke, Chad D.; Bunch, Aubrey R.; Kim, Moon H.
2016-11-16
Digital flood-inundation maps for a 4.9-mile reach of the Yellow River at Plymouth, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 05516500, Yellow River at Plymouth, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=05516500. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many sites that are often collocated with USGS streamgages, including the Yellow River at Plymouth, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood and forecasts of flood hydrographs at this site.For this study, flood profiles were computed for the Yellow River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the current stage-discharge relations at the Yellow River streamgage, in combination with the flood-insurance study for Marshall County (issued in 2011). The calibrated hydraulic model was then used to determine eight water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability flood profile elevation (flood elevation with recurrence intervals within 100 years) is within the calibrated water-surface elevations for comparison. The simulated water-surface profiles were then used with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar]) in order to delineate the area flooded at each water level.The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 05516500, Yellow River at Plymouth, Ind., and forecast stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for postflood recovery efforts.
Flynn, Robert H.
2014-01-01
In addition to the two digital flood inundation maps, flood profiles were created that depict the study reach flood elevation of tropical storm Irene of August 2011 and the 10-, 2-, 1-, and 0.2-percent AEP floods, also known as the 10-, 50-, 100-, and 500-year floods, respectively. The 10-, 2-, 1-, and 0.2-percent AEP flood discharges were determined using annual peak flow data from the USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). Flood profiles were computed for the Ottauquechee River and Reservoir Brook by means of a one-dimensional step-backwater model. The model was calibrated using documented high-water marks of the peak of the tropical storm Irene flood of August 2011 as well as stage discharge data as determined for USGS Ottauquechee River near West Bridgewater, Vt. streamgage (station 01150900). The simulated water-surface profiles were combined with a digital elevation model within a geographic information system to delineate the areas flooded during tropical storm Irene and for the 1-percent AEP water-surface profile. The digital elevation model data were derived from light detection and ranging (lidar) data obtained for a 3,281-foot (1,000-meter) corridor along the Ottauquechee River study reach and were augmented with 33-foot (10- meter) contour interval data in the modeled flood-inundation areas outside the lidar corridor. The 33-foot (10-meter) contour interval USGS 15-minute quadrangle topographic digital raster graphics map used to augment lidar data was produced at a scale of 1:24,000. The digital flood inundation maps and flood profiles along with information regarding current stage from USGS streamgages on the Internet provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.
NASA Astrophysics Data System (ADS)
Burns, R. G.; Meyer, R. W.; Cornwell, K.
2003-12-01
In-basin statistical relations allow for development of regional flood frequency and magnitude equations in the Cosumnes River and Mokelumne River drainage basins. Current equations were derived from data collected through 1975, and do not reflect newer data with some significant flooding. Physical basin characteristics (area, mean basin elevation, slope of longest reach, and mean annual precipitation) were correlated against predicted flood discharges for each of the 5, 10, 25, 50, 100, 200, and 500-year recurrence intervals in a multivariate analysis. Predicted maximum instantaneous flood discharges were determined using the PEAKFQ program with default settings, for 24 stream gages within the study area presumed not affected by flow management practices. For numerical comparisons, GIS-based methods using Spatial Analyst and the Arc Hydro Tools extension were applied to derive physical basin characteristics as predictor variables from a 30m digital elevation model (DEM) and a mean annual precipitation raster (PRISM). In a bivariate analysis, examination of Pearson correlation coefficients, F-statistic, and t & p thresholds show good correlation between area and flood discharges. Similar analyses show poor correlation for mean basin elevation, slope and precipitation, with flood discharge. Bivariate analysis suggests slope may not be an appropriate predictor term for use in the multivariate analysis. Precipitation and elevation correlate very well, demonstrating possible orographic effects. From the multivariate analysis, less than 6% of the variability in the correlation is not explained for flood recurrences up to 25 years. Longer term predictions up to 500 years accrue greater uncertainty with as much as 15% of the variability in the correlation left unexplained.
77 FR 51744 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
..., FEMA published in the Federal Register a proposed rule that included an erroneous flooding source name for the Town of Livonia in Pointe Coupee Parish, Louisiana. The flooding source name of Bayou Fordoche... Coupee Parish, Louisiana, and Incorporated Areas'' addressed several flooding sources, including Bayou...
44 CFR 67.5 - Right of appeal.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD... community where a proposed flood elevation determination has been made pursuant to section 1363 of the National Flood Insurance Act of 1968, as amended, who believes his property rights to be adversely affected...
44 CFR 67.5 - Right of appeal.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD... community where a proposed flood elevation determination has been made pursuant to section 1363 of the National Flood Insurance Act of 1968, as amended, who believes his property rights to be adversely affected...
Flood of September 18-19, 2004 in the Upper Delaware River Basin, New York
Brooks, Lloyd T.
2005-01-01
The interaction between the remnants of tropical depression Ivan and a frontal boundary in the upper Delaware River basin on September 18-19, 2004, produced 4 to more than 6 inches of rainfall over a 5-county area within a 24-hour period. Significant flooding occurred on the East Branch Delaware River and its tributaries, and the main stem of the Delaware River. The resultant flooding damaged more than 100 homes and displaced more than 1,000 people. All of the counties within the basin were declared Federal disaster areas, but flood damage in New York was most pronounced in Delaware, Orange, and Sullivan Counties. Flood damage totaled more than $10 million. Peak water-surface elevations at some study sites in the basin exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey (USGS) streamflow-gaging stations were the highest ever recorded.
44 CFR 67.3 - Establishment and maintenance of a flood elevation determination docket (FEDD).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Establishment and maintenance of a flood elevation determination docket (FEDD). 67.3 Section 67.3 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD...
76 FR 13569 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
..., FEMA published in the Federal Register a proposed rule that included erroneous Base Flood Elevation... for the proposed BFE of 1,290 feet, referenced to the North American Vertical Datum of 1988, should... Vertical Datum of 1988, should have located the proposed BFE as being approximately 0.24 mile upstream of...
76 FR 14359 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
..., FEMA published in the Federal Register a proposed rule that included erroneous Base Flood Elevation... description for the proposed BFE of 1,032 feet, referenced to the North American Vertical Datum of 1988... description for the proposed BFE of 1,049 feet, referenced to the North American Vertical Datum of 1988...
76 FR 3595 - Proposed Flood Elevation Determinations for Cumberland County, ME (All Jurisdictions)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 67 [Docket ID FEMA-2008-0020; Internal Agency Docket No. FEMA-B-1060] Proposed Flood Elevation Determinations for Cumberland County, ME (All Jurisdictions) AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice of...
76 FR 26980 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
...-2010-0003; Internal Agency Docket No. FEMA-B-1155] Proposed Flood Elevation Determinations AGENCY... Lake Michigan and White Ditch in La Porte County, Indiana. The City of Michiana Shores should have been listed as the Town of Michiana Shores. DATES: Comments pertaining to the Lake Michigan and White Ditch...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency 44 CFR Part 67 [Docket ID FEMA-2010-0003; Internal Agency Docket No. FEMA-B-1085] Proposed Flood Elevation Determinations for Wicomico..., identified by Docket No. FEMA-B- 1085, to Luis Rodriguez, Chief, Engineering Management Branch, Federal...
Quantitative model of the growth of floodplains by vertical accretion
Moody, J.A.; Troutman, B.M.
2000-01-01
A simple one-dimensional model is developed to quantitatively predict the change in elevation, over a period of decades, for vertically accreting floodplains. This unsteady model approximates the monotonic growth of a floodplain as an incremental but constant increase of net sediment deposition per flood for those floods of a partial duration series that exceed a threshold discharge corresponding to the elevation of the floodplain. Sediment deposition from each flood increases the elevation of the floodplain and consequently the magnitude of the threshold discharge resulting in a decrease in the number of floods and growth rate of the floodplain. Floodplain growth curves predicted by this model are compared to empirical growth curves based on dendrochronology and to direct field measurements at five floodplain sites. The model was used to predict the value of net sediment deposition per flood which best fits (in a least squares sense) the empirical and field measurements; these values fall within the range of independent estimates of the net sediment deposition per flood based on empirical equations. These empirical equations permit the application of the model to estimate of floodplain growth for other floodplains throughout the world which do not have detailed data of sediment deposition during individual floods. Copyright (C) 2000 John Wiley and Sons, Ltd.
Preliminary Cosmogenic Nuclide Chronology of Late Pleistocene Missoula Floods
NASA Astrophysics Data System (ADS)
Balbas, A.; Clark, J.; Clark, P. U.; Caffey, M. W.; Woodruff, T. E.; Baker, V. R.
2014-12-01
The Missoula floods had the largest known peak flood discharges of fresh water known from the geologic record. Multiple floods are believed to have originated from the failure of the Purcell trench ice lobe, which dammed glacial Lake Missoula. The flood waters traveled westward creating the Channeled Scabland region, a spectacular complex of anastomosing channels, coulees, cataracts, loess islands, rock basins, broad gravel deposits, and immense gravel bars in east-central Washington State. Several important questions about the Missoula floods and the formation of the Channeled Scabland remain, primarily due to the few geochronological constraints on their timing. Attempts to date the duration of the multiple floods have produced a wide range of ages (13-19 ka from land deposits and 13-31 ka from marine cores), but few of these directly constrain the age of the major flood landscape elements. Here we present 14 new in situ cosmogenic 10Be ages from quartz-bearing boulders deposited at four sites in eastern Washington. Wallula Gap is a narrow constriction along the Columbia River between Oregon and Washington. Hydraulic damming of floodwater at Wallula Gap created glacial Lake Lewis. Surface exposure ages on large boulders found at over 300 m elevation above the river at this site will date the largest flood events. The Wenatchee region represents the most northwestern area influenced by flooding. Dates from this area will determine when flooding occurred after the retreat of the Okanogan lobe. We sampled boulders from the lower Pangborn Bar, ice-rafted boulders north of Wenatchee, and boulders from a flood bar on the Columbia River north of Wenatchee. A boulder from the Mattawa Fan was sampled to assess the last time a megaflood came through the Sentinel Gap. Finally, in order to constrain the last debris dam failure at the southern end of the Upper Grand Coulee, we sampled flood boulders deposited on the Ephrata Fan.
Jarrett, R.D.; Costa, J.E.
1988-01-01
A multidisciplinary study of precipitation and streamflow data and paleohydrologic studies of channel features was made to analyze the flood hydrology of foothill and mountain streams in the Front Range of Colorado, with emphasis on the Big Thompson River basin, because conventional hydrologic analyses do not adequately characterize the flood hydrology. In the foothills of Colorado, annual floodflows are derived from snowmelt at high elevations in the mountain regions, from rainfall at low elevation in the plains or plateau regions, or from a combination of rain falling on snow or mixed population hydrology. Above approximately 7,500 ft, snowmelt dominates; rain does not contribute to the flood potential. Regional flood-frequency relations were developed and compared with conventional flood-estimating technique results, including an evaluation of the magnitude and frequency of the probable maximum flood. Evaluation of streamflow data and paleoflood investigations provide an alternative for evaluating flood hydrology and the safety of dams. The study indicates the need for additional data collection and research to understand the complexities of the flood hydrology in mountainous regions, especially its effects on flood-plain management and the design of structures in the flood plain. (USGS)
Response of plant productivity to experimental flooding in a stable and a submerging marsh
Kirwan, Matthew L.; Guntenspergen, Glenn R.
2015-01-01
Recent models of tidal marsh evolution rely largely on the premise that plants are most productive at an optimal flooding regime that occurs when soil elevations are somewhere between mean sea level and mean high tide. Here, we use 4 years of manipulative “marsh organ” flooding experiments to test the generality of this conceptual framework and to examine how the optimal flooding frequency may change between years and locations. In our experiments, above and belowground growth of Schoenoplectus americanus was most rapid when flooded about 40% of the time in a rapidly submerging marsh and when flooded about 25% of the time in a historically stable marsh. Optimum flooding durations were nearly identical in each year of the experiment and did not differ for above and belowground growth. In contrast, above and belowground growth of Spartina patensdecreased monotonically with increased flooding in all years and at both sites, indicating no optimal flooding frequency or elevation relative to sea level. Growth patterns in both species suggest a wider tolerance to flooding, and greater biomass for a given flooding duration, in the rapidly deteriorating marsh.
[Migration, climate and health].
Tellier, Siri; Carballo, Manuel; Calballo, Manuel
2009-10-26
Many tentative connections have been postulated between migration and climate. This article points to rural-urban migration, particularly into low elevation urban slums prone to flooding as an issue needing urgent attention by health professionals. It also notes the no-man's land in which environmental refugees find themselves and the consequences this may have. Finally, it points to the urgent need to reform health systems in both developing and developed countries to adapt to rapidly changing disease patterns and to become more responsive to them.
44 CFR 64.3 - Flood Insurance Maps.
Code of Federal Regulations, 2010 CFR
2010-10-01
... with water surface elevations determined A0 Area of special flood hazards having shallow water depths... insurance rating purposes AH Areas of special flood hazards having shallow water depths and/or unpredictable... of special flood hazards having shallow water depths and/or unpredictable flow paths between (1) and...
Topography- and nightlight-based national flood risk assessment in Canada
NASA Astrophysics Data System (ADS)
Elshorbagy, Amin; Bharath, Raja; Lakhanpal, Anchit; Ceola, Serena; Montanari, Alberto; Lindenschmidt, Karl-Erich
2017-04-01
In Canada, flood analysis and water resource management, in general, are tasks conducted at the provincial level; therefore, unified national-scale approaches to water-related problems are uncommon. In this study, a national-scale flood risk assessment approach is proposed and developed. The study focuses on using global and national datasets available with various resolutions to create flood risk maps. First, a flood hazard map of Canada is developed using topography-based parameters derived from digital elevation models, namely, elevation above nearest drainage (EAND) and distance from nearest drainage (DFND). This flood hazard mapping method is tested on a smaller area around the city of Calgary, Alberta, against a flood inundation map produced by the city using hydraulic modelling. Second, a flood exposure map of Canada is developed using a land-use map and the satellite-based nightlight luminosity data as two exposure parameters. Third, an economic flood risk map is produced, and subsequently overlaid with population density information to produce a socioeconomic flood risk map for Canada. All three maps of hazard, exposure, and risk are classified into five classes, ranging from very low to severe. A simple way to include flood protection measures in hazard estimation is also demonstrated using the example of the city of Winnipeg, Manitoba. This could be done for the entire country if information on flood protection across Canada were available. The evaluation of the flood hazard map shows that the topography-based method adopted in this study is both practical and reliable for large-scale analysis. Sensitivity analysis regarding the resolution of the digital elevation model is needed to identify the resolution that is fine enough for reliable hazard mapping, but coarse enough for computational tractability. The nightlight data are found to be useful for exposure and risk mapping in Canada; however, uncertainty analysis should be conducted to investigate the effect of the overglow phenomenon on flood risk mapping.
De Jager, Nathan R.; Thomsen, Meredith; Yin, Yao
2012-01-01
Our results suggest that there is a threshold along the elevation gradient of this floodplain, corresponding with flood durations lasting ~40% of the growing season. At lower elevation sites, flooding exerts primary control over forest soils and vegetation, restricting the former to silt plus clay with higher organic matter and the latter to a few highly flood tolerant species. The existence of such thresholds have implications for management of floodplain soil nutrient dynamics and plant diversity under existing hydrologic regimes, more natural hydrologic regimes and more extreme hydrologic regimes that may result from climate change.
Flood of June 26-29, 2006, Mohawk, Delaware, and Susquehanna River Basins, New York
Suro, Thomas P.; Firda, Gary D.; Szabo, Carolyn O.
2009-01-01
A stalled frontal system caused tropical moisture to be funneled northward into New York, causing severe flooding in the Mohawk, Delaware, and Susquehanna River basins during June 26-29, 2006. Rainfall totals for this multi-day event ranged from 2 to 3 inches to greater than 13 inches in southern New York. The storm and flooding claimed four lives in New York, destroyed or damaged thousands of homes and businesses, and closed hundreds of roads and highways. Thousands of people evacuated their homes as floodwaters reached new record elevations at many locations within the three basins. Twelve New York counties were declared Federal disaster areas, more than 15,500 residents applied for disaster assistance, and millions of dollars in damages resulted from the flooding. Disaster-recovery assistance for individuals and businesses adversely affected by the floods of June 2006 reached more than $227 million. The National Weather Service rainfall station at Slide Mountain recorded storm totals of more than 8 inches of rainfall, and the stations at Walton and Fishs Eddy, NY, recorded storm totals of greater than 13 inches of rainfall. The U.S. Geological Survey (USGS) stream-gaging stations at Mohawk River at Little Falls, West Branch Delaware River at Hale Eddy, and Susquehanna River at Vestal, NY, among others, recorded peak discharges of 35,000 ft3/s, 43,400 ft3/s, and 119,000 ft3/s respectively, with greater than 100-year recurrence intervals. The peak water-surface elevation 21.47 ft and the peak discharge 189,000 ft3/s recorded on June 28, 2006, at the Delaware River at Port Jervis stream-gaging station were the highest recorded since the flood of August 1955. At the Susquehanna River at Conklin, NY, stream-gaging station, which has been in operation since 1912, the peak water-surface elevation 25.02 ft and peak discharge 76,800 ft3/s recorded on June 28, 2006, exceeded the previous period-of-record maximums that were set during the flood of March 1936. Documented peak water-surface elevations during the June 2006 flood at many study sites in the Mohawk, Delaware, and Susquehanna River basins exceeded the 100-year flood-profile elevations determined in the flood-insurance studies prepared by the Federal Emergency Management Agency.
78 FR 8416 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-06
... the communities listed below. These modified BFEs will be used to calculate flood insurance premium... management requirements of the NFIP and also are used to calculate the appropriate flood insurance premium... indicated on the following table and revise the Flood Insurance Rate Maps (FIRMs) in effect for the listed...
77 FR 76915 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... the communities listed below. These modified BFEs will be used to calculate flood insurance premium... requirements of the NFIP and also are used to calculate the appropriate flood insurance premium rates for new... indicated on the following table and revise the Flood Insurance Rate Maps (FIRMs) in effect for the listed...
Geomorphic Flood Area (GFA): a QGIS tool for a cost-effective delineation of the floodplains
NASA Astrophysics Data System (ADS)
Samela, Caterina; Albano, Raffaele; Sole, Aurelia; Manfreda, Salvatore
2017-04-01
The importance of delineating flood hazard and risk areas at a global scale has been highlighted for many years. However, its complete achievement regularly encounters practical difficulties, above all the lack of data and implementation costs. In conditions of scarce data availability (e.g. ungauged basins, large-scale analyses), a fast and cost-effective floodplain delineation can be carried out using geomorphic methods (e.g., Manfreda et al., 2011; 2014). In particular, an automatic DEM-based procedure has been implemented in an open-source QGIS plugin named Geomorphic Flood Area - tool (GFA - tool). This tool performs a linear binary classification based on the recently proposed Geomorphic Flood Index (GFI), which exhibited high classification accuracy and reliability in several test sites located in Europe, United States and Africa (Manfreda et al., 2015; Samela et al., 2016, 2017; Samela, 2016). The GFA - tool is designed to make available to all users the proposed procedure, that includes a number of operations requiring good geomorphic and GIS competences. It allows computing the GFI through terrain analysis, turning it into a binary classifier, and training it on the base of a standard inundation map derived for a portion of the river basin (a minimum of 2% of the river basin's area is suggested) using detailed methods of analysis (e.g. flood hazard maps produced by emergency management agencies or river basin authorities). Finally, GFA - tool allows to extend the classification outside the calibration area to delineate the flood-prone areas across the entire river basin. The full analysis has been implemented in this plugin with a user-friendly interface that should make it easy to all user to apply the approach and produce the desired results. Keywords: flood susceptibility; data scarce environments; geomorphic flood index; linear binary classification; Digital elevation models (DEMs). References Manfreda, S., Di Leo, M., Sole, A., (2011). Detection of Flood Prone Areas using Digital Elevation Models, Journal of Hydrologic Engineering, 16(10), 781-790. Manfreda, S., Nardi, F., Samela, C., Grimaldi, S., Taramasso, A. C., Roth, G., & Sole, A. (2014). Investigation on the Use of Geomorphic Approaches for the Delineation of Flood Prone Areas, Journal of Hydrology, 517, 863-876. Manfreda, S., Samela, C., Gioia, A., Consoli, G., Iacobellis, V., Giuzio, L., & Sole, A. (2015). Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Natural Hazards, Vol. 79 (2), pp 735-754. Samela, C. (2016), 100-year flood susceptibility maps for the continental U.S. derived with a geomorphic method. University of Basilicata. Dataset. Samela, C., Manfreda, S., Paola, F. D., Giugni, M., Sole, A., & Fiorentino, M. (2016). DEM-Based Approaches for the Delineation of Flood-Prone Areas in an Ungauged Basin in Africa. Journal of Hydrologic Engineering, 21(2), 1-10. Samela, C., Troy, T.J., Manfreda, S. (2017). Geomorphic classifiers for flood-prone areas delineation for data-scarce environments, Advances in Water Resources (under review).
Maine coastal storm and flood of February 2, 1976
Morrill, Richard Arthur; Chin, Edwin H.; Richardson, W.S.
1979-01-01
A business section of Bangor, Maine, was flooded with 12 feet (3.7 m) of water on February 2, 1976. The water surface elevation reached 17.46 feet (5.32 m) above national geodetic vertical datum of 1929 (NGVD), approximately 10.5 feet (3.2 m) above the predicted astronomical tide at Bangor. The unusually high water resulted from a tidal storm surge caused by prolonged strong, south-southeasterly winds which occurred near the time of astronomical high tide. Winds exceeded 64 knots off the New England coast. The resulting flood was the third highest since 1846 and is the first documented tidal flood at Bangor. This report documents the meteorological and hydrologic conditions associated with the flooding and also contains a brief description of storm damage from Eastport to Brunswick, Maine. Included are flood elevations in the city of Bangor and along the coast of Maine east of the Kennebec River. (Kosco-USGS)
Real Time Monitoring of Flooding from Microwave Satellite Observations
NASA Technical Reports Server (NTRS)
Galantowicz, John F.; Frey, Herb (Technical Monitor)
2002-01-01
We have developed a new method for making high-resolution flood extent maps (e.g., at the 30-100 m scale of digital elevation models) in real-time from low-resolution (20-70 km) passive microwave observations. The method builds a "flood-potential" database from elevations and historic flood imagery and uses it to create a flood-extent map consistent with the observed open water fraction. Microwave radiometric measurements are useful for flood monitoring because they sense surface water in clear-or-cloudy conditions and can provide more timely data (e.g., compared to radars) from relatively wide swath widths and an increasing number of available platforms (DMSP, ADEOS-II, Terra, NPOESS, GPM). The chief disadvantages for flood mapping are the radiometers' low resolution and the need for local calibration of the relationship between radiances and open-water fraction. We present our method for transforming microwave sensor-scale open water fraction estimates into high-resolution flood extent maps and describe 30-day flood map sequences generated during a retrospective study of the 1993 Great Midwest Flood. We discuss the method's potential improvement through as yet unimplemented algorithm enhancements and expected advancements in microwave radiometry (e.g., improved resolution and atmospheric correction).
Fifty-year flood-inundation maps for La Lima, Honduras
Mastin, Mark C.; Olsen, T.D.
2002-01-01
After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of La Lima that would be inundated by Rio Chamelecon with a discharge of 500 cubic meters per second, the approximate capacity of the river channel through the city of La Lima. The 50-year flood (2,400 cubic meters per second), the original design flow to be mapped, would inundate the entire area surveyed for this municipality. Because water-surface elevations of the 50-year flood could not be mapped properly without substantially expanding the area of the survey, the available data were used instead to estimate the channel capacity of Rio Chamelecon in La Lima by trial-and-error runs of different flows in a numerical model and to estimate the increase in height of levees needed to contain flows of 1,000 and 2,400 cubic meters per second. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of La Lima as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for various discharges on Rio Chamelecon at La Lima were determined using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area and ground surveys at three bridges. Top-of-levee or top-of-channel-bank elevations and locations at the cross sections were critical to estimating the channel capacity of Rio Chamelecon. These elevations and locations are provided along with the water-surface elevations for the 500-cubic-meter-per-second flow of Rio Chamelecon. Also, water-surface elevations of the 1,000 and 2,400 cubic-meter-per-second flows are provided, assuming that the existing levees are raised to contained the flows.
1997 flood tracking chart for the Red River of the North basin
Wiche, G.J.; Martin, C.R.; Albright, L.L.; Wald, Geraldine B.
1997-01-01
The flood tracking chart for the Red River of the North Basin can be used by local citizens and emergency response personnel to determine the latest river stage. By comparing the current stage (water-surface elevation above some datum) and predicted flood crest to the recorded peak stages of previous floods, emergency response personnel and residents can make informed decisions concerning the threat to life and property. The flood tracking chart shows a map of the basin with the location of major real-time streamflow-gaging stations in the basin. Click on a station in the map or in the list below the map. Streamflow and stage information for the last 7 days, current stage relative to recorded peak stages, and streamflow for the previous 18 months are provided in graphic form, along with information such as station location and length of record. The National Weather Service has direct access to all information collected by the USGS for use in their forecasting models and routinely broadcasts the forecast information to the news media and on shortwave radio. The radio frequencies are 162.400 MHz (megahertz) in Petersburg, N. Dak., and Detroit Lakes, Minn.; 162.425 MHz in Webster, N. Dak., and Bemidji, Minn.; 162.450 MHz in Roosevelt, Minn.; 162.475 MHz in Grand Forks and Amenia, N. Dak.; and 162.550 MHz in Thief River Falls, Minn. To use the flood tracking chart for a particular property, determine the approximate elevation of the threatened property and the elevation of the gaging station that is closest to the threatened property. For example, most people in Grand Forks, N. Dak., probably will use the Red River of the North at Grand Forks station. Record the flood elevation for the gaging station. Compare the flood elevation to the elevation of the property to immediately know if the property has an impending threat of flooding. One must be cautioned by the fact that the surface of flowing water is not flat but has a slope. Therefore, the water-surface elevation near a threatened property might not be the same as the river stages at the gaging stations. The network of river-gaging stations in the Red River of the North Basin is operated by the USGS in cooperation with the U.S. Army Corps of Engineers, the North Dakota State Water Commission, the Minnesota Department of Natural Resources, the Southeast Cass Water Resources District, the Cass County Joint Water Resource District, the Red River Joint Water Resource Board, and the Red River Watershed Management Board. For more information about USGS programs in North Dakota, contact the District Chief, U.S. Geological Survey, North Dakota District, at (701) 250-7400.
Sherwood, James M.; Huitger, Carrie A.; Ebner, Andrew D.; Koltun, G.F.
2008-01-01
The USGS, in cooperation with the Ohio Emergency Management Agency, conducted a study in the Wheeling Creek Basin to (1) evaluate and contrast land-cover characteristics from 2001 with characteristics from 1979 and 1992; (2) compare current streambed elevation, slope, and geometry with conditions present in the late 1980s; (3) look for evidence of channel filling and over widening in selected undredged reaches; (4) estimate flood elevations for existing conditions in both undredged and previously dredged reaches; (5) evaluate the height of the levees required to contain floods with selected recurrence intervals in previously dredged reaches; and (6) estimate flood elevations for several hypothetical dredging and streambed aggradation scenarios in undredged reaches. The amount of barren land in the Wheeling Creek watershed has decreased from 20 to 1 percent of the basin area based on land-cover characteristics from 1979 and 2001. Barren lands appear to have been converted primarily to pasture, presumably as a result of surface-mine reclamation. Croplands also decreased from 13 to 8 percent of the basin area. The combined decrease in barren lands and croplands is approximately offset by the increase in pasture. Stream-channel surveys conducted in 1987 and again in 2006 at 21 sites in four previously dredged reaches of Wheeling Creek indicate little change in the elevation, slope, and geometry of the channel at most sites. The mean change in width-averaged bed and thalweg elevations for the 21 cross sections was 0.1 feet. Bankfull widths, mean depths, and cross-sectional areas measured at 12 sites in undredged reaches were compared to estimates determined from regional equations. The mean percentage difference between measured and estimated bankfull widths was -0.2 percent, suggesting that bankfull widths in the Wheeling Creek Basin are generally about the same as regional averages for undisturbed basins of identical drainage area. For bankfull mean depth and cross-sectional area, the mean percentage differences between the measured and estimated values were -16.0 and -11.2, respectively. The predominantly negative bias in differences between the measured and estimated values indicates that bankfull mean depths and cross-sectional areas in studied reaches generally are smaller than the regional trend. This may be an indication of channel filling and over widening or it may reflect insufficient representation in the regional dataset of basins with characteristics like that of Wheeling Creek. Step-backwater models were constructed for four previously dredged reaches to determine the height of levees required to contain floods with recurrence intervals of 2, 10, 50, and 100 years. Existing levees (all of which are uncertified) were found to contain the 100-year flood at only 20 percent of the surveyed cross sections. At the other 80 percent of the surveyed cross sections, levee heights would have to be raised an average of 2.5 feet and as much as 6.3 feet to contain the 100-year flood. Step-backwater models also were constructed for three undredged reaches to assess the impacts of selected dredging and streambed aggradation scenarios on water-surface elevations corresponding to the 2-, 10-, 50-, and 100-year floods. Those models demonstrated that changes in water-surface elevations associated with a given depth of dredging were proportionately smaller for larger floods due to the fact that more of the flood waters are outside of the main channel. For example, 2.0 feet of dredging in the three study reaches would lower the water-surface elevation an average of 1.30 feet for the 2-year flood and 0.64 feet for the 100-year flood.
Development of flood profiles and flood-inundation maps for the Village of Killbuck, Ohio
Ostheimer, Chad J.
2013-01-01
Digital flood-inundation maps for a reach of Killbuck Creek near the Village of Killbuck, Ohio, were created by the U.S. Geological Survey (USGS), in cooperation with Holmes County, Ohio. The inundation maps depict estimates of the areal extent of flooding corresponding to water levels (stages) at the USGS streamgage Killbuck Creek near Killbuck (03139000) and were completed as part of an update to Federal Emergency Management Agency Flood-Insurance Study. The maps were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning system that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. The digital maps also have been submitted for inclusion in the data libraries of the USGS interactive Flood Inundation Mapper. Data from the streamgage can be used by emergency-management personnel, in conjunction with the flood-inundation maps, to help determine a course of action when flooding is imminent. Flood profiles for selected reaches were prepared by calibrating a steady-state step-backwater model to an established streamgage rating curve. The step-backwater model then was used to determine water-surface-elevation profiles for 10 flood stages at the streamgage with corresponding streamflows ranging from approximately the 50- to 0.2-percent annual exceedance probabilities. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas.
Simulated and observed 2010 floodwater elevations in the Pawcatuck and Wood Rivers, Rhode Island
Zarriello, Phillip J.; Straub, David E.; Smith, Thor E.
2014-01-01
Heavy, persistent rains from late February through March 2010 caused severe flooding that set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models of Pawcatuck River (26.9 miles) and Wood River (11.6 miles) were updated from the most recent approved U.S. Department of Homeland Security-Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) for specified flows and boundary conditions. The hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) using steady-state simulations and incorporate new field-survey data at structures, high resolution land-surface elevation data, and updated flood flows from a related study. The models were used to simulate the 0.2-percent annual exceedance probability (AEP) flood, which is the AEP determined for the 2010 flood in the Pawcatuck and Wood Rivers. The simulated WSEs were compared to high-water mark (HWM) elevation data obtained in a related study following the March–April 2010 flood, which included 39 HWMs along the Pawcatuck River and 11 HWMs along the Wood River. The 2010 peak flow generally was larger than the 0.2-percent AEP flow, which, in part, resulted in the FIS and updated model WSEs to be lower than the 2010 HWMs. The 2010 HWMs for the Pawcatuck River averaged about 1.6 feet (ft) higher than the 0.2-percent AEP WSEs simulated in the updated model and 2.5 ft higher than the WSEs in the FIS. The 2010 HWMs for the Wood River averaged about 1.3 ft higher than the WSEs simulated in the updated model and 2.5 ft higher than the WSEs in the FIS. The improved agreement of the updated simulated water elevations to observed 2010 HWMs provides a measure of the hydraulic model performance, which indicates the updated models better represent flooding at other AEPs than the existing FIS models.
Effects of anthropogenic land-subsidence on river flood hazard: a case study in Ravenna, Italy
NASA Astrophysics Data System (ADS)
Carisi, Francesca; Domeneghetti, Alessio; Castellarin, Attilio
2015-04-01
Can differential land-subsidence significantly alter the river flooding dynamics, and thus flood risk in flood prone areas? Many studies show how the lowering of the coastal areas is closely related to an increase in the flood-hazard due to more important tidal flooding and see level rise. On the contrary, the literature on the relationship between differential land-subsidence and possible alterations to riverine flood-hazard of inland areas is still sparse, while several areas characterized by significant land-subsidence rates during the second half of the 20th century experienced an intensification in both inundation magnitude and frequency. This study investigates the possible impact of a significant differential ground lowering on flood hazard in proximity of Ravenna, which is one of the oldest Italian cities, former capital of the Western Roman Empire, located a few kilometers from the Adriatic coast and about 60 km south of the Po River delta. The rate of land-subsidence in the area, naturally in the order of a few mm/year, dramatically increased up to 110 mm/year after World War II, primarily due to groundwater pumping and a number of deep onshore and offshore gas production platforms. The subsidence caused in the last century a cumulative drop larger than 1.5 m in the historical center of the city. Starting from these evidences and taking advantage of a recent digital elevation model of 10m resolution, we reconstructed the ground elevation in 1897 for an area of about 65 km2 around the city of Ravenna. We referred to these two digital elevation models (i.e. current topography and topographic reconstruction) and a 2D finite-element numerical model for the simulation of the inundation dynamics associated with several levee failure scenarios along embankment system of the river Montone. For each scenario and digital elevation model, the flood hazard is quantified in terms of water depth, speed and dynamics of the flooding front. The comparison enabled us to quantify alterations to the flooding hazard due to large and rapid differential land-subsidence, shedding some light on whether to consider anthropogenic land-subsidence among the relevant human-induced drivers of flood-risk change.
Heimann, David C.; Mettler-Cherry, Paige A.
2004-01-01
A study was conducted by the U.S. Geological Survey in cooperation with the Missouri Department of Conservation at the Four Rivers Conservation Area (west-central Missouri), between January 2001 and March 2004, to examine the relations between environmental factors (hydrology, soils, elevation, and landform type) and the spatial distribution of vegetation in remnant and constructed riparian wetlands. Vegetation characterization included species composition of ground, understory, and overstory layers in selected landforms of a remnant bottomland hardwood ecosystem, monitoring survival and growth of reforestation plots in leveed and partially leveed constructed wetlands, and determining gradients in colonization of herbaceous vegetation in a constructed wetland. Similar environmental factors accounted for variation in the distribution of ground, understory, and overstory vegetation in the remnant bottomland forest plots. The primary measured determining factors in the distribution of vegetation in the ground layer were elevation, soil texture (clay and silt content), flooding inundation duration, and ponding duration, while the distribution of vegetation in the understory layer was described by elevation, soil texture (clay, silt, and sand content), total flooding and ponding inundation duration, and distance from the Marmaton or Little Osage River. The primary measured determining factors in the distribution of overstory vegetation in Unit 1 were elevation, soil texture (clay, silt, and sand content), total flooding and ponding inundation duration, ponding duration, and to some extent, flooding inundation duration. Overall, the composition and structure of the remnant bottomland forest is indicative of a healthy, relatively undisturbed flood plain forest. Dominant species have a distribution of individuals that shows regeneration of these species with significant recruitment in the smaller size classes. The bottomland forest is an area whose overall hydrology has not been significantly altered; however, portions of the area have suffered from hydrologic alteration by a drainage ditch that is resulting in the displacement of swamp and marsh species by colonizing shrub and tree species. This area likely will continue to develop into an immature flood plain forest under the current (2004) hydrologic regime. Reforestation plots in constructed wetlands consisted of sampling survival and growth of multiple tree species (Quercus palustris, pin oak; Carya illinoiensis, pecan) established under several production methods and planted at multiple elevations. Comparison of survival between tree species and production types showed no significant differences for all comparisons. Survival was high for both species and all production types, with the highest mortality seen in the mounded root production method (RPM?) Quercus palustris (pin oak, 6.9 percent), while direct seeded Quercus palustris at middle elevation and bare root Quercus palustris seedlings at the low elevation plots had 100 percent survival. Measures of growth (diameter and height) were assessed among species, production types, and elevation by analyzing relative growth. The greatest rate of tree diameter (72.3 percent) and height (65.3 percent) growth was observed for direct seeded Quercus palustris trees planted at a middle elevation site. Natural colonized vegetation data were collected at multiple elevations within an abandoned cropland area of a constructed wetland. The primary measured determining factors in the distribution of herbaceous vegetation in this area were elevation, ponding duration, and soil texture. Richness, evenness, and diversity were all significantly greater in the highest elevation plots as a result of more recent disturbance in this area. While flood frequency and duration define the delivery mechanism for inundation on the flood plain, it is the duration of ponding and amount of 'topographic capture' of these floodwaters in fluvial lan
NASA Astrophysics Data System (ADS)
Lilly, M. R.; Feditova, A.; Levine, K.; Giardino, J. R.
2017-12-01
The Harris County Flood Control District has an impressive amount of information available for the public related to flood management and response. During Hurricane Harvey, this information was used by the authors to help address daily questions from family and friends living in the Houston area. Common near-real-time reporting data included precipitation and water levels. Maps included locations of data stations, stream or bayou conditions (in bank, out of bank) and watershed or drainage boundaries. In general, the data station reporting and online information was updating well throughout the hurricane and post-flooding period. Only a few of the data reporting stations had problems with water level sensor measurements. The overall information was helpful to hydrologists and floodplain managers. The online information could not easily answer all common questions residents may have during a flood event. Some of the more common questions were how to use the water-level information to know the potential extent of flooding and relative location of flooding to the location of residents. To help address the questions raised during the flooding on how to use the available water level data, we used Google Earth to get lot and intersection locations to help show the relative differences between nearby water-level stations and residences of interest. The reported resolution of the Google Earth elevation data is 1-foot. To help confirm the use of this data, we compared Google Earth approximate elevations with reported Harris County Floodplain Reference Mark individual reports. This method helped verify we could use the Google Earth information for approximate comparisons. We also faced questions on what routes to take if evacuation was needed, and where to go to get to higher ground elevations. Google Earth again provided a helpful and easy to use interface to look at road and intersection elevations and develop suggested routes for family and friends to take to avoid low areas that may be subject to flooding. These and other recommendations that helped answer common questions by residents reacting to the hurricane and subsequent flooding conditions are summarized with examples.
Hedgecock, T. Scott
2003-01-01
A two-dimensional finite-element surface-water model was used to study the effects of proposed modifications to the State Highway 203 corridor (proposed Elba Bypass/relocated U.S. Highway 84) on water-surface elevations and flow distributions during flooding in the Pea River and Whitewater Creek Basins at Elba, Coffee County, Alabama. Flooding was first simulated for the March 17, 1990, flood, using the 1990 flood-plain conditions to calibrate the model to match measured data collected by the U.S. Geological Survey and the U.S. Army Corps of Engineers after the flood. After model calibration, the effects of flooding were simulated for four scenarios: (1) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, highway, and levee conditions; (2) floods having the 50- and 100-year recurrence intervals for the existing flood-plain and levee conditions with the State Highway 203 embankment and bridge removed; (3) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, and highway conditions with proposed modifications (elevating) to the levee; and (4) floods having the 50- and 100-year recurrence intervals for the proposed conditions reflecting the Elba Bypass and modified levee. The simulation of floodflow for the Pea River and Whitewater Creek flood of March 17, 1990, in the study reach compared closely to flood profile data obtained after the flood. The flood of March 17, 1990, had an estimated peak discharge of 58,000 cubic feet per second at the gage (just below the confluence) and was estimated to be between a 50-year and 100-year flood event. The estimated peak discharge for Pea River and Whitewater Creek was 40,000 and 42,000 cubic feet per second, respectively. Simulation of floodflows for the 50-year flood (51,400 cubic feet per second) at the gage for existing flood-plain, bridge, highway, and levee conditions indicated that about 31 percent of the peak flow was conveyed by the State Highway 203 bridge over Whitewater Creek, approximately 12 percent overtopped the State Highway 203 embankment, and about 57 percent was conveyed by the Pea River flood plain east of State Highway 125. For this simulation, flow from Pea River (2,380 cubic feet per second) overtopped State Highway 125 and crossed over into the Whitewater Creek flood plain north of State Highway 203, creating one common flood plain. The water-surface elevation estimated at the downstream side of the State Highway 203 bridge crossing Whitewater Creek was 202.82 feet. The girders for both the State Highway 203 and U.S. Highway 84 bridges were partially submerged, but U.S. Highway 84 was not overtopped. For the 100-year flood (63,500 cubic feet per second) at the gage, the simulation indicated that about 25 percent of the peak flow was conveyed by the State Highway 203 bridge over Whitewater Creek, approximately 24 percent overtopped the State Highway 203 embankment, and about 51 percent was conveyed by the Pea River flood plain east of State Highway 125. The existing levee adjacent to Whitewater Creek was overtopped by a flow of 3,200 cubic feet per second during the 100-year flood. For this simulation, flow from Pea River (6,710 cubic feet per second) overtopped State Highway 125 and crossed over into the Whitewater Creek flood plain north of State Highway 203. The water-surface elevation estimated at the downstream side of the State Highway 203 bridge crossing Whitewater Creek was 205.60 feet. The girders for both the State Highway 203 and U.S. Highway 84 bridges were partially submerged, and the west end of the U.S. Highway 84 bridge was overtopped. Simulation of floodflows for the 50-year flood at the gage for existing flood-plain and levee conditions, but with the State Highway 203 embankment and bridge removed, yielded a lower water-surface elevation (202.90 feet) upstream of this bridge than that computed for the existing conditions. For the 100-year flood, the simulation indi
Rankl, James G.; Wallace, Joe C.
1989-01-01
Flood flows on Swift Creek near Afton, Wyoming, were analyzed. Peak discharge with an average recurrence interval of 100 years was computed and used to determine the flood boundaries and water surface profile in the study reach. The study was done in cooperation with Lincoln County and the Town of Afton to determine the extent of flooding in the Town of Afton from a 100-year flood on Swift Creek. The reach of Swift Creek considered in the analysis extends upstream from the culvert at Allred County Road No. 12-135 to the US Geological Survey streamflow-gaging station located in the Bridger National Forest , a distance of 3.2 miles. Boundaries of the 100-year flood are delineated on a map using the computed elevation of the flood at each cross section, survey data, and a 1983 aerial photograph. The computed water surface elevation for the 100-year flood was plotted at each cross section, then the lateral extent of the flood was transferred to the flood map. Boundaries between cross sections were sketched using information taken from the aerial photograph. Areas that are inundated, but not part of the active flow, are designated on the cross sections. (Lantz-PTT)
Real-time flood extent maps based on social media
NASA Astrophysics Data System (ADS)
Eilander, Dirk; van Loenen, Arnejan; Roskam, Ruud; Wagemaker, Jurjen
2015-04-01
During a flood event it is often difficult to get accurate information about the flood extent and the people affected. This information is very important for disaster risk reduction management and crisis relief organizations. In the post flood phase, information about the flood extent is needed for damage estimation and calibrating hydrodynamic models. Currently, flood extent maps are derived from a few sources such as satellite images, areal images and post-flooding flood marks. However, getting accurate real-time or maximum flood extent maps remains difficult. With the rise of social media, we now have a new source of information with large numbers of observations. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at 8 tweets per second during floods in early 2014. A fair amount of these tweets also contains observations of water depth and location. Our hypothesis is that based on the large numbers of tweets it is possible to generate real-time flood extent maps. In this study we use tweets from the city of Jakarta, Indonesia, to generate these flood extent maps. The data-mining procedure looks for tweets with a mention of 'banjir', the Bahasa Indonesia word for flood. It then removes modified and retweeted messages in order to keep unique tweets only. Since tweets are not always sent directly from the location of observation, the geotag in the tweets is unreliable. We therefore extract location information using mentions of names of neighborhoods and points of interest. Finally, where encountered, a mention of a length measure is extracted as water depth. These tweets containing a location reference and a water level are considered to be flood observations. The strength of this method is that it can easily be extended to other regions and languages. Based on the intensity of tweets in Jakarta during a flood event we can provide a rough estimate of the flood extent. To provide more accurate flood extend information, we project the water depth observations in tweets on a digital elevation model using a flood-fill algorithm. Based on statistical methods we combine the large numbers of observations in order to create time series of flood extent maps. Early results indicate this method is very promising.
Code of Federal Regulations, 2011 CFR
2011-10-01
... flood elevation. Scientific and technical information to support a request to gain exclusion from an... hazard. (4) Written assurance by the participating community that they have complied with the appropriate... participating community has determined that the land and any existing or proposed structures to be removed from...
NASA Astrophysics Data System (ADS)
Thomas Steven Savage, James; Pianosi, Francesca; Bates, Paul; Freer, Jim; Wagener, Thorsten
2016-11-01
Where high-resolution topographic data are available, modelers are faced with the decision of whether it is better to spend computational resource on resolving topography at finer resolutions or on running more simulations to account for various uncertain input factors (e.g., model parameters). In this paper we apply global sensitivity analysis to explore how influential the choice of spatial resolution is when compared to uncertainties in the Manning's friction coefficient parameters, the inflow hydrograph, and those stemming from the coarsening of topographic data used to produce Digital Elevation Models (DEMs). We apply the hydraulic model LISFLOOD-FP to produce several temporally and spatially variable model outputs that represent different aspects of flood inundation processes, including flood extent, water depth, and time of inundation. We find that the most influential input factor for flood extent predictions changes during the flood event, starting with the inflow hydrograph during the rising limb before switching to the channel friction parameter during peak flood inundation, and finally to the floodplain friction parameter during the drying phase of the flood event. Spatial resolution and uncertainty introduced by resampling topographic data to coarser resolutions are much more important for water depth predictions, which are also sensitive to different input factors spatially and temporally. Our findings indicate that the sensitivity of LISFLOOD-FP predictions is more complex than previously thought. Consequently, the input factors that modelers should prioritize will differ depending on the model output assessed, and the location and time of when and where this output is most relevant.
An Agent-Based Model of Evolving Community Flood Risk.
Tonn, Gina L; Guikema, Seth D
2018-06-01
Although individual behavior plays a major role in community flood risk, traditional flood risk models generally do not capture information on how community policies and individual decisions impact the evolution of flood risk over time. The purpose of this study is to improve the understanding of the temporal aspects of flood risk through a combined analysis of the behavioral, engineering, and physical hazard aspects of flood risk. Additionally, the study aims to develop a new modeling approach for integrating behavior, policy, flood hazards, and engineering interventions. An agent-based model (ABM) is used to analyze the influence of flood protection measures, individual behavior, and the occurrence of floods and near-miss flood events on community flood risk. The ABM focuses on the following decisions and behaviors: dissemination of flood management information, installation of community flood protection, elevation of household mechanical equipment, and elevation of homes. The approach is place based, with a case study area in Fargo, North Dakota, but is focused on generalizable insights. Generally, community mitigation results in reduced future damage, and individual action, including mitigation and movement into and out of high-risk areas, can have a significant influence on community flood risk. The results of this study provide useful insights into the interplay between individual and community actions and how it affects the evolution of flood risk. This study lends insight into priorities for future work, including the development of more in-depth behavioral and decision rules at the individual and community level. © 2017 Society for Risk Analysis.
11. VIEW OF FLOOD GATE FOR THE PRESSURE CULVERT AND ...
11. VIEW OF FLOOD GATE FOR THE PRESSURE CULVERT AND THE SOUTH AND EAST ELEVATIONS, LOOKING NORTHWEST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA
Lim, Joongbin; Lee, Kyoo-Seock
2017-03-01
Every summer, North Korea (NK) suffers from floods, resulting in decreased agricultural production and huge economic loss. Besides meteorological reasons, several factors can accelerate flood damage. Environmental studies about NK are difficult because NK is inaccessible due to the division of Korea. Remote sensing (RS) can be used to delineate flood inundated areas in inaccessible regions such as NK. The objective of this study was to investigate the spatial characteristics of flood susceptible areas (FSAs) using multi-temporal RS data and digital elevation model data. Such study will provide basic information to restore FSAs after reunification. Defining FSAs at the study site revealed that rice paddies with low elevation and low slope were the most susceptible areas to flood in NK. Numerous sediments from upper streams, especially streams through crop field areas on steeply sloped hills, might have been transported and deposited into stream channels, thus disturbing water flow. In conclusion, NK floods may have occurred not only due to meteorological factors but also due to inappropriate land use for flood management. In order to mitigate NK flood damage, reforestation is needed for terraced crop fields. In addition, drainage capacity for middle stream channel near rice paddies should be improved.
Impact of sea level rise on tide gate function.
Walsh, Sean; Miskewitz, Robert
2013-01-01
Sea level rise resulting from climate change and land subsidence is expected to severely impact the duration and associated damage resulting from flooding events in tidal communities. These communities must continuously invest resources for the maintenance of existing structures and installation of new flood prevention infrastructure. Tide gates are a common flood prevention structure for low-lying communities in the tidal zone. Tide gates close during incoming tides to prevent inundation from downstream water propagating inland and open during outgoing tides to drain upland areas. Higher downstream mean sea level elevations reduce the effectiveness of tide gates by impacting the hydraulics of the system. This project developed a HEC-RAS and HEC-HMS model of an existing tide gate structure and its upland drainage area in the New Jersey Meadowlands to simulate the impact of rising mean sea level elevations on the tide gate's ability to prevent upstream flooding. Model predictions indicate that sea level rise will reduce the tide gate effectiveness resulting in longer lasting and deeper flood events. The results indicate that there is a critical point in the sea level elevation for this local area, beyond which flooding scenarios become dramatically worse and would have a significantly negative impact on the standard of living and ability to do business in one of the most densely populated areas of America.
NASA Astrophysics Data System (ADS)
Cipriano, F. R.; Lagmay, A. M. A.; Horritt, M.; Mendoza, J.; Sabio, G.; Punay, K. N.; Taniza, H. J.; Uichanco, C.
2015-12-01
Widespread flooding is a major problem in the Philippines. The country experiences heavy amount of rainfall throughout the year and several areas are prone to flood hazards because of its unique topography. Human casualties and destruction of infrastructure are just some of the damages caused by flooding and the Philippine government has undertaken various efforts to mitigate these hazards. One of the solutions was to create flood hazard maps of different floodplains and use them to predict the possible catastrophic results of different rain scenarios. To produce these maps with accurate output, different input parameters were needed and one of those is calculating hydrological components from topographical data. This paper presents how a calibrated lag time (TL) equation was obtained using measurable catchment parameters. Lag time is an essential input in flood mapping and is defined as the duration between the peak rainfall and peak discharge of the watershed. The lag time equation involves three measurable parameters, namely, watershed length (L), maximum potential retention (S) derived from the curve number, and watershed slope (Y), all of which were available from RADARSAT Digital Elevation Models (DEM). This approach was based on a similar method developed by CH2M Hill and Horritt for Taiwan, which has a similar set of meteorological and hydrological parameters with the Philippines. Rainfall data from fourteen water level sensors covering 67 storms from all the regions in the country were used to estimate the actual lag time. These sensors were chosen by using a screening process that considers the distance of the sensors from the sea, the availability of recorded data, and the catchment size. The actual lag time values were plotted against the values obtained from the Natural Resource Conservation Management handbook lag time equation. Regression analysis was used to obtain the final calibrated equation that would be used to calculate the lag time specifically for rivers in the Philippine setting. The calculated lag time values could then be used as a parameter for modeling different flood scenarios in the country.
Revision to flood hazard evaluation for the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, R.; Werth, D.
Requirements for the Natural Phenomena Hazard (NPH) mitigation for new and existing Department of Energy (DOE) facilities are outlined in DOE Order 420.1. This report examines the hazards posed by potential flooding and represents an update to two previous reports. The facility-specific probabilistic flood hazard curve is defined as the water elevation for each annual probability of precipitation occurrence (or inversely, the return period in years). New design hyetographs for both 6-hr and 24-hr precipitation distributions were used in conjunction with hydrological models of various basins within the Savannah River Site (SRS). For numerous locations of interest, peak flow dischargemore » and flood water elevation were determined. In all cases, the probability of flooding of these facilities for a 100,000 year precipitation event is negligible.« less
NASA Astrophysics Data System (ADS)
Gibbs, A.; Erikson, L. H.; Richmond, B. M.
2017-12-01
Arctic lagoons and mainland coasts support highly productive ecosystems, where soft substrate and coastal wet sedge fringing the shores act as feeding grounds and nurseries for a variety of marine fish and waterfowl. Much tundra vegetation is intolerant to saltwater flooding, but some vegetation cherished by geese for example, is maintained by flooding one to two times per month. The balance of northern ecosystems such as these may be in jeopardy as the Arctic climate is rapidly changing. In this study, sea level rise and 21st century storms are simulated with a numerical model to evaluate changes in ocean-driven flooding of low-lying tundra and coastal wet sedge that fringe the shores of Arey Lagoon, located in eastern Arctic Alaska. Numerically modeled extreme surge levels are projected to increase from a historical range of 0.5 m - 1.3 m (1976-2010) to 1.0 m - 2.0 m by end-of-century (2011-2100). The maximum storm surge of the projected time-period translates to > 6 km2 of flooded tundra, much of which consists of salt-intolerant vegetation. Monthly flood extents that might be expected to maintain halophytic vegetation were calculated by extracting the maximum monthly water levels of months that had more than 21 days ( 70%) of ice-free conditions. Median monthly water levels are shown to range from 0.46 m in 1981-1990 to 0.91 m by the final decades of the 21st century. The temporal trend is strongly linear (r2 = 0.82). An overlay of these water elevations onto a 10 m resolution elevation model shows that monthly flood extents will increase by 26% by the end of the century compared to the present decade (2011 to 2020) (from 2.86 km2 to 3.60 km2). The rate at which the flood extents are projected to increase will dictate if inland succession of salt-tolerant vegetation will survive. By combining the frequency and magnitude of extreme storm surge events with the progression of modeled monthly inland flood extents, it might be possible to identify areas along this stretch of coast where non-saline vegetation communities will be destroyed and salt tolerant vegetation will keep pace with changing conditions and extend upland. Permafrost thawing, subsidence, erosion and sedimentation are other critical areas of future research that are needed to more accurately predict wetland gains, losses, and habitat conversions.
The 1965 Mississippi River flood in Iowa
Schwob, Harlan H.; Myers, Richard E.
1965-01-01
Flood data compiled for the part of the River along the eastern border include flood discharges, flood elevations, and the frequency of floods of varying magnitudes. They also include the daily or more frequent stage and discharge data for both the Mississippi River and the downstream gaging stations on Iowa tributaries for the period March-May 1965. Sufficient data are presented to permit studied for preparation of plans for protective works and plans for zoning or for flood plain regulation.
Modeling Flood Plain Hydrology and Forest Productivity of Congaree Swamp, South Carolina
Doyle, Thomas W.
2009-01-01
An ecological field and modeling study was conducted to examine the flood relations of backswamp forests and park trails of the flood plain portion of Congaree National Park, S.C. Continuous water level gages were distributed across the length and width of the flood plain portion - referred to as 'Congaree Swamp' - to facilitate understanding of the lag and peak flood coupling with stage of the Congaree River. A severe and prolonged drought at study start in 2001 extended into late 2002 before backswamp zones circulated floodwaters. Water levels were monitored at 10 gaging stations over a 4-year period from 2002 to 2006. Historical water level stage and discharge data from the Congaree River were digitized from published sources and U.S. Geological Survey (USGS) archives to obtain long-term daily averages for an upstream gage at Columbia, S.C., dating back to 1892. Elevation of ground surface was surveyed for all park trails, water level gages, and additional circuits of roads and boundaries. Rectified elevation data were interpolated into a digital elevation model of the park trail system. Regression models were applied to establish time lags and stage relations between gages at Columbia, S.C., and gages in the upper, middle, and lower reaches of the river and backswamp within the park. Flood relations among backswamp gages exhibited different retention and recession behavior between flood plain reaches with greater hydroperiod in the lower reach than those in the upper and middle reaches of the Congaree Swamp. A flood plain inundation model was developed from gage relations to predict critical river stages and potential inundation of hiking trails on a real-time basis and to forecast the 24-hour flood In addition, tree-ring analysis was used to evaluate the effects of flood events and flooding history on forest resources at Congaree National Park. Tree cores were collected from populations of loblolly pine (Pinus taeda), baldcypress (Taxodium distichum), water tupelo (Nyssa aquatica), green ash (Fraxinus pennslyvanica), laurel oak (Quercus laurifolia), swamp chestnut oak (Quercus michauxii), and sycamore (Plantanus occidentalis) within Congaree Swamp in highand low-elevation sites characteristic of shorter and longer flood duration and related to upriver flood controls and dam operation. Ring counts and dating indicated that all loblolly pine trees and nearly all baldcypress collections in this study are postsettlement recruits and old-growth cohorts, dating from 100 to 300 years in age. Most hardwood species and trees cored for age analysis were less than 100 years old, demonstrating robust growth and high site quality. Growth chronologies of loblolly pine and baldcypress exhibited positive and negative inflections over the last century that corresponded with climate history and residual effects of Hurricane Hugo in 1989. Stemwood production on average was less for trees and species on sites with longer flood retention and hydroperiod affected more by groundwater seepage and site elevation than river floods. Water level data provided evidence that stream regulation and operations of the Saluda Dam (post-1934) have actually increased the average daily water stage in the Congaree River. There was no difference in tree growth response by species or hydrogeomorphic setting to predam and postdam flood conditions and river stage. Climate-growth analysis showed that long-term growth variation is controlled more by spring/ summer temperatures in loblolly pine and by spring/summer precipitation in baldcypress than flooding history.
Flood susceptibility analysis through remote sensing, GIS and frequency ratio model
NASA Astrophysics Data System (ADS)
Samanta, Sailesh; Pal, Dilip Kumar; Palsamanta, Babita
2018-05-01
Papua New Guinea (PNG) is saddled with frequent natural disasters like earthquake, volcanic eruption, landslide, drought, flood etc. Flood, as a hydrological disaster to humankind's niche brings about a powerful and often sudden, pernicious change in the surface distribution of water on land, while the benevolence of flood manifests in restoring the health of the thalweg from excessive siltation by redistributing the fertile sediments on the riverine floodplains. In respect to social, economic and environmental perspective, flood is one of the most devastating disasters in PNG. This research was conducted to investigate the usefulness of remote sensing, geographic information system and the frequency ratio (FR) for flood susceptibility mapping. FR model was used to handle different independent variables via weighted-based bivariate probability values to generate a plausible flood susceptibility map. This study was conducted in the Markham riverine precinct under Morobe province in PNG. A historical flood inventory database of PNG resource information system (PNGRIS) was used to generate 143 flood locations based on "create fishnet" analysis. 100 (70%) flood sample locations were selected randomly for model building. Ten independent variables, namely land use/land cover, elevation, slope, topographic wetness index, surface runoff, landform, lithology, distance from the main river, soil texture and soil drainage were used into the FR model for flood vulnerability analysis. Finally, the database was developed for areas vulnerable to flood. The result demonstrated a span of FR values ranging from 2.66 (least flood prone) to 19.02 (most flood prone) for the study area. The developed database was reclassified into five (5) flood vulnerability zones segmenting on the FR values, namely very low (less that 5.0), low (5.0-7.5), moderate (7.5-10.0), high (10.0-12.5) and very high susceptibility (more than 12.5). The result indicated that about 19.4% land area as `very high' and 35.8% as `high' flood vulnerable class. The FR model output was validated with remaining 43 (30%) flood points, where 42 points were marked as correct predictions which evinced an accuracy of 97.7% in prediction. A total of 137292 people are living in those vulnerable zones. The flood susceptibility analysis using this model will be very useful and also an efficient tool to the local government administrators, researchers and planners for devising flood mitigation plans.
77 FR 67324 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-09
...). Specifically, it addresses the flooding sources Big Run, Little Loyalsock Creek, Loyalsock Creek, and Muncy..., Pennsylvania (All Jurisdictions)'' addressed the flooding sources Big Run, Little Loyalsock Creek, Loyalsock... Sullivan County, Pennsylvania (All Jurisdictions) Big Run At the Muncy Creek +968 +965 Township of Davidson...
76 FR 12665 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-08
... Areas. Specifically, it addresses the following flooding sources: Hungry Hollow Gulch, Ice House Creek, Ice House Creek Tributary A, Riggs Gulch, Spearfish Creek, and Unnamed Tributary to Higgins Gulch... Incorporated Areas'' addressed the following flooding sources: Hungry Hollow Gulch, Ice House Creek, Ice House...
78 FR 14577 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
... regulatory floodways on the Flood Insurance Rate Maps (FIRMs) and where applicable, in the supporting Flood Insurance Study (FIS) reports have been made final for the communities listed in the table below. The FIRM... participation in the Federal Emergency Management Agency's (FEMA's) National Flood Insurance Program (NFIP). In...
Magnitude and extent of flooding at selected river reaches in western Washington, January 2009
Mastin, M.C.; Gendaszek, A.S.; Barnas, C.R.
2010-01-01
A narrow plume of warm, moist tropical air produced prolonged precipitation and melted snow in low-to-mid elevations throughout western Washington in January 2009. As a result, peak-of-record discharges occurred at many long-term streamflow-gaging stations in the region. A disaster was declared by the President for eight counties in Washington State and by May 2009, aid payments by the Federal Emergency Management Agency (FEMA) had exceeded $17 million. In an effort to document the flood and to obtain flood information that could be compared with simulated flood extents that are commonly prepared in conjunction with flood insurance studies by FEMA, eight stream reaches totaling 32.6 miles were selected by FEMA for inundation mapping. The U.S. Geological Survey?s Washington Water Science Center used a survey-grade global positioning system (GPS) the following summer to survey high-water marks (HWMs) left by the January 2009 flood at these reaches. A Google Maps (copyright) application was developed to display all HWM data on an interactive mapping tool on the project?s web site soon after the data were collected. Water-surface profiles and maps that display the area and depth of inundation were produced through a geographic information system (GIS) analysis that combined surveyed HWM elevations with Light Detection and Ranging (LiDAR)-derived digital elevation models of the study reaches and surrounding terrain. In several of the reaches, floods were well confined in their flood plains and were relatively straightforward to map. More common, however, were reaches with more complicated hydraulic geometries where widespread flooding resulted in flows that separated from the main channel. These proved to be more difficult to map, required subjective hydrologic judgment, and relied on supplementary information, such as aerial photographs and descriptions of the flooding from local landowners and government officials to obtain the best estimates of the extent of flooding.
44 CFR 68.1 - Purpose of part.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Insurance Administrator's base flood elevation determinations, whether proposed pursuant to section 1363(e...
44 CFR 68.1 - Purpose of part.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Insurance Administrator's base flood elevation determinations, whether proposed pursuant to section 1363(e...
44 CFR 68.1 - Purpose of part.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Insurance Administrator's base flood elevation determinations, whether proposed pursuant to section 1363(e...
The Upper Mississippi River System—Topobathy
Stone, Jayme M.; Hanson, Jenny L.; Sattler, Stephanie R.
2017-03-23
The Upper Mississippi River System (UMRS), the navigable part of the Upper Mississippi and Illinois Rivers, is a diverse ecosystem that contains river channels, tributaries, shallow-water wetlands, backwater lakes, and flood-plain forests. Approximately 10,000 years of geologic and hydrographic history exist within the UMRS. Because it maintains crucial wildlife and fish habitats, the dynamic ecosystems of the Upper Mississippi River Basin and its tributaries are contingent on the adjacent flood plains and water-level fluctuations of the Mississippi River. Separate data for flood-plain elevation (lidar) and riverbed elevation (bathymetry) were collected on the UMRS by the U.S. Army Corps of Engineers’ (USACE) Upper Mississippi River Restoration (UMRR) Program. Using the two elevation datasets, the U.S. Geological Survey (USGS) Upper Midwest Environmental Sciences Center (UMESC) developed a systemic topobathy dataset.
Flood Control Burlington Dam, Souris River, North Dakota. Final Environment Impact Statement.
1978-01-01
runoft would also be held at 500 cfs.) After spring runoff , the Lake Darling pool would be lowered to elevation 1596.0 at which point the USFWS would...highly variable, with annual runoff at Minot ranging from a low of 940 acre-feet in 1931 and 1937 to a high of 801,000 acre-feet in 1976. Flows are usually...greatest In April and May due to runoff from snowmelt and 1;utlrai 6prlni ,i. Flowq are generally very low during fall and winter with periods of no
GIS-based flood risk model evaluated by Fuzzy Analytic Hierarchy Process (FAHP)
NASA Astrophysics Data System (ADS)
Sukcharoen, Tharapong; Weng, Jingnong; Teetat, Charoenkalunyuta
2016-10-01
Over the last 2-3 decades, the economy of many countries around the world has been developed rapidly but it was unbalanced development because of expecting on economic growth only. Meanwhile it lacked of effective planning in the use of natural resources. This can significantly induce climate change which is major cause of natural disaster. Hereby, Thailand has also suffered from natural disaster for ages. Especially, the flood which is most hazardous disaster in Thailand can annually result in the great loss of life and property, environment and economy. Since the flood management of country is inadequate efficiency. It is unable to support the flood analysis comprehensively. This paper applied Geographic Information System and Multi-Criteria Decision Making to create flood risk model at regional scale. Angthong province in Thailand was used as the study area. In practical process, Fuzzy logic technique has been used to improve specialist's assessment by implementing with Fuzzy membership because human decision is flawed under uncertainty then AHP technique was processed orderly. The hierarchy structure in this paper was categorized the spatial flood factors into two levels as following: 6 criteria (Meteorology, Geology, Topography, Hydrology, Human and Flood history) and 8 factors (Average Rainfall, Distance from Stream, Soil drainage capability, Slope, Elevation, Land use, Distance from road and Flooded area in the past). The validity of the pair-wise comparison in AHP was shown as C.R. value which indicated that the specialist judgment was reasonably consistent. FAHP computation result has shown that the first priority of criteria was Meteorology. In addition, the Rainfall was the most influencing factor for flooding. Finally, the output was displayed in thematic map of Angthong province with flood risk level processed by GIS tools. The map was classified into: High Risk, Moderate Risk and Low Risk (13.20%, 75.58%, and 11.22% of total area).
A 30m resolution hydrodynamic model of the entire conterminous United States.
NASA Astrophysics Data System (ADS)
Bates, P. D.; Neal, J. C.; Smith, A.; Sampson, C.; Johnson, K.; Wing, O.
2016-12-01
In this paper we describe the development and validation of a 30m resolution hydrodynamic model covering the entire conterminous United States. The model can be used to simulate inundation and water depths resulting from either return period flows (so equivalent to FEMA Flood Insurance Rate Maps), hindcasts of historic events or forecasts of future river flow from a rainfall-runoff or land surface model. As topographic data the model uses the U.S. Geological Survey National Elevation Dataset or NED, and return period flows are generated using a regional flood frequency analysis methodology (Smith et al., 2015. Worldwide flood frequency estimation. Water Resources Research, 51, 539-553). Flood defences nationwide are represented using data from the US Army Corps of Engineers. Using these data flows are simulated using an explicit and highly efficient finite difference solution of the local inertial form of the Shallow Water equations identical to that implemented in the LISFLOOD-FP model. Even with this efficient numerical solution a simulation at this resolution over a whole continent is a huge undertaking, and a variety of High Performance Computing technologies therefore need to be employed to make these simulations possible. The size of the output datasets is also challenging, and to solve this we use the GIS and graphical display functions of Google Earth Engine to facilitate easy visualisation and interrogation of the results. The model is validated against the return period flood extents contained in FEMA Flood Insurance Rate Maps and real flood event data from the Texas 2015 flood event which was hindcast using the model. Finally, we present an application of the model to the Upper Mississippi river basin where simulations both with and without flood defences are used to determine floodplain areas benefitting from protection in order to quantify the benefits of flood defence spending.
78 FR 8089 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
... flooding sources Big Run, Little Loyalsock Creek, Loyalsock Creek, and Muncy Creek. DATES: Comments are to..., Pennsylvania (All Jurisdictions)'' addressed the flooding sources Big Run, Little Loyalsock Creek, Loyalsock... Sullivan County, Pennsylvania (All Jurisdictions) Big Run At the Muncy Creek +968 +965 Township of Davidson...
76 FR 26982 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-10
.... Specifically, it addresses the flooding source Licking River (Cave Run Lake). DATES: Comments are to be... Incorporated Areas,'' addressed the flooding source Licking River (Cave Run Lake). That table contained... River (Cave Run Lake)....... At the Buck Creek None +765 City of Frenchburg, confluence. Unincorporated...
Schaap, Bryan D.; Harvey, Craig A.
1995-01-01
The hydrologic investigations atlas shows the areas in and around Iowa City, Iowa, that were flooded by the Iowa River in 1993. This map also depicts the Federal Emergency Management Agency (FEMA) 100-year flood boundaries. The drainage basin of the Iowa River at Iowa City received well over 100 percent of normal rainfall in June, July, and August, 1993. At the Cedar Rapids airport, located about 20 miles north-northwest of Iowa City, July rainfall was 414 percent of normal. The discharges at U.S. Geological Survey streamflow-gaging stations on the Iowa River upstream of Coralville Reservoir, just downstream from Coralville Reservoir, and at Iowa City are shown. A profile of the maximum water-surface elevations of the 1993 flood in Iowa City and vicinity is higher than the FEMA 100-year flood profile. The water-surface elevation of Coralville Reservoir is shown from June 29-September 18, 1993.
NASA Astrophysics Data System (ADS)
Leitão, J. P.; de Sousa, L. M.
2018-06-01
Newly available, more detailed and accurate elevation data sets, such as Digital Elevation Models (DEMs) generated on the basis of imagery from terrestrial LiDAR (Light Detection and Ranging) systems or Unmanned Aerial Vehicles (UAVs), can be used to improve flood-model input data and consequently increase the accuracy of the flood modelling results. This paper presents the first application of the MBlend merging method and assesses the impact of combining different DEMs on flood modelling results. It was demonstrated that different raster merging methods can have different and substantial impacts on these results. In addition to the influence associated with the method used to merge the original DEMs, the magnitude of the impact also depends on (i) the systematic horizontal and vertical differences of the DEMs, and (ii) the orientation between the DEM boundary and the terrain slope. The greater water depth and flow velocity differences between the flood modelling results obtained using the reference DEM and the merged DEMs ranged from -9.845 to 0.002 m, and from 0.003 to 0.024 m s-1 respectively; these differences can have a significant impact on flood hazard estimates. In most of the cases investigated in this study, the differences from the reference DEM results were smaller for the MBlend method than for the results of the two conventional methods. This study highlighted the importance of DEM merging when conducting flood modelling and provided hints on the best DEM merging methods to use.
44 CFR 68.9 - Admissible evidence.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING... base flood elevations of any other community, such determination, decision, or finding of fact shall...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Judge who are qualified in the technical field of flood elevation determinations. The Judge shall...
44 CFR 68.9 - Admissible evidence.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING... base flood elevations of any other community, such determination, decision, or finding of fact shall...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Judge who are qualified in the technical field of flood elevation determinations. The Judge shall...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES... Judge who are qualified in the technical field of flood elevation determinations. The Judge shall...
Rounds, R.A.; Erwin, R.M.; Portera, J.H.
2004-01-01
Rising sea levels in the mid-Atlantic region pose a long-term threat to marshes and their avian inhabitants. The Gull-billed Tern (Sterna nilotica), Common Tern (S. hirundo), Black Skimmer (Rynchops niger), and American Oystercatcher (Haematopus palliatus), species of concern in Virginia, nest on low shelly perimeters of salt marsh islands on the Eastern Shore of Virginia. Marsh shellpiles are free of mammalian predators, but subject to frequent floods that reduce reproductive success. In an attempt to examine nest-site selection, enhance habitat, and improve hatching success, small (2 ? 2 m) plots on five island shellpiles were experimentally elevated, and nest-site selection and hatching success were monitored from 1 May to 1 August, 2002. In addition, location, elevation, and nesting performance of all other nests in the colonies were also monitored. No species selected the elevated experimental plots preferentially over adjacent control plots at any of the sites. When all nests were considered, Common Tern nests were located significantly lower than were random point elevations at two sites, as they tended to concentrate on low-lying wrack. At two other sites, however, Common Tern nests were significantly higher than were random points. Gull-billed Terns and American Oystercatchers showed a weak preference for higher elevations on bare shell at most sites. Hatching success was not improved on elevated plots, despite the protection they provided from flooding. Because of a 7 June flood, when 47% of all nests flooded, hatching success for all species was low. Nest elevation had the strongest impact on a nest's probability of hatching, followed by nest-initiation date. Predation rates were high at small colonies, and Ruddy Turnstones (Arenaria interpres) depredated 90% of early Gull-billed Tern nests at one shellpile. The importance of nest elevation and flooding on hatching success demonstrates the potential for management of certain waterbird nesting sites. Facing threats from predators on barrier islands and rising sea levels especially in the mid-Atlantic region, several species of nesting waterbirds may benefit dramatically with modest manipulation of even small habitat patches on isolated marsh islands.
Code of Federal Regulations, 2014 CFR
2014-04-01
... or inoperative during flood and storm events (e.g., data storage centers, generating plants...” (§ 55.2(b)(5)). When FEMA provides interim flood hazard data, such as Advisory Base Flood Elevations... data may be used as “best available information” in accordance with Executive Order 11988. However, a...
44 CFR 65.6 - Revision of base flood elevation determinations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...
44 CFR 65.6 - Revision of base flood elevation determinations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...
44 CFR 65.6 - Revision of base flood elevation determinations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...
44 CFR 65.6 - Revision of base flood elevation determinations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...
44 CFR 68.3 - Right to administrative hearings.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... Insurance Administrator's flood elevation determination established pursuant to § 67.8 of this subchapter...
Scoping of Flood Hazard Mapping Needs for Coos County, New Hampshire
2006-01-01
Technical Partner DEM Digital Elevation Model DFIRM Digital Flood Insurance Rate Map DOQ Digital Orthophoto Quadrangle DOQQ Digital Ortho Quarter Quadrangle...color Digital Orthophoto Quadrangles (DOQs)). Remote sensing, base map information, GIS data (for example, contour data, E911 data, Digital Elevation...the feature types found on USGS topographic maps. More recently developed data were derived from digital orthophotos providing improved base map
Large projected increases in rain-on-snow flood potential over western North America
NASA Astrophysics Data System (ADS)
Musselman, K. N.; Ikeda, K.; Barlage, M. J.; Lehner, F.; Liu, C.; Newman, A. J.; Prein, A. F.; Mizukami, N.; Gutmann, E. D.; Clark, M. P.; Rasmussen, R.
2017-12-01
In the western US and Canada, some of the largest annual flood events occur when warm storm systems drop substantial rainfall on extensive snow-cover. For example, last winter's Oroville dam crisis in California was exacerbated by rapid snowmelt during a rain-on-snow (ROS) event. We present an analysis of ROS events with flood-generating potential over western North America simulated at high-resolution by the Weather Research and Forecasting (WRF) model run for both a 13-year control time period and re-run with a `business-as-usual' future (2071-2100) climate scenario. Daily ROS with flood-generating potential is defined as rainfall of at least 10 mm per day falling on snowpack of at least 10 mm water equivalent, where the sum of rainfall and snowmelt contains at least 20% snowmelt. In a warmer climate, ROS is less frequent in regions where it is historically common, and more frequent elsewhere. This is evidenced by large simulated reductions in snow-cover and ROS frequency at lower elevations, particularly in warmer, coastal regions, and greater ROS frequency at middle elevations and in inland regions. The same trend is reflected in the annual-average ROS runoff volume (rainfall + snowmelt) aggregated to major watersheds; large reductions of 25-75% are projected for much of the U.S. Pacific Northwest, while large increases are simulated for the Colorado River basin, western Canada, and the higher elevations of the Sierra Nevada. In the warmer climate, snowmelt contributes substantially less to ROS runoff per unit rainfall, particularly in inland regions. The reduction in snowmelt contribution is due to a shift in ROS timing from warm spring events to cooler winter conditions and/or from warm, lower elevations to cool, higher elevations. However, the slower snowmelt is offset by an increase in rainfall intensity, maintaining the flood potential of ROS at or above historical levels. In fact, we report large projected increases in the intensity of extreme ROS events. The projected increases in ROS flood potential are highest in historically flood-prone mountain basins and the Canadian Prairies. Increases in extreme ROS event intensity, together with a greater proportion of precipitation falling as rain, have critical implications on the climate resilience of regional flood control systems.
Eash, D.A.; Koppensteiner, B.A.
1996-01-01
Water-surface-elevation profiles and peak discharges for the floods of July 12, 1972, March 19, 1979, and June 15, 1991, in the Turkey River Basin, northeast Iowa, are presented in this report. The profiles illustrate the 1979 and 1991 floods along the Turkey River in Fayette and Clayton Counties and along the Volga River in Clayton County; the 1991 flood along Roberts Creek in Clayton County and along Otter Creek in Fayette County; and the 1972 flood along the Turkey River in Winneshiek and Fayette Counties. Watersurface elevations for the flood of March 19,1979, were collected by the Iowa Natural Resources Council. The June 15, 1991, flood on the Turkey River at Garber (station number 05412500) is the largest known flood-peak discharge at the streamflow-gaging station for the period 1902-95. The peak discharge for June 15, 1991, of 49,900 cubic feet per second was 1.4 times larger than the 100-year recurrence-interval discharge. The report provides information on flood stages and discharges and floodflow frequencies for streamflow-gaging stations in the Turkey River Basin using flood information collected during 1902-95. Information on temporary bench marks and reference points established in the Turkey River Basin during 1981, 1992, and 1996 also is included in the report. A flood history describes rainfall conditions for floods that occurred during 1922, 1947, 1972, 1979, and 1991.
44 CFR 68.5 - Establishment of a docket.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE... docket shall include, for each appeal, copies of all materials contained in the flood elevation...
44 CFR 68.5 - Establishment of a docket.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE... docket shall include, for each appeal, copies of all materials contained in the flood elevation...
44 CFR 68.5 - Establishment of a docket.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE... docket shall include, for each appeal, copies of all materials contained in the flood elevation...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-28
... opportunity for comment and appeal. These other types of flood hazard determinations include new and modified... Appeal Procedures AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Pursuant to... rules. This new procedure will not affect the notice or appeals process for these determinations. FEMA...
77 FR 50665 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... addresses the flooding sources Allegheny River, East Sandy Creek, and Sugar Creek. DATES: Comments are to be... Jurisdictions)'' addressed the flooding sources Allegheny River, East Sandy Creek, and Sugar Creek. That table...,000 None +961 feet upstream of the confluence with the Allegheny River. Sugar Creek Approximately 0.79...
76 FR 16722 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
..., Overflow Creek Tributary, Red Cut Slough, Red Cut Slough Tributary, Red Cut Slough Tributary 2, and Red Cut... flooding sources: Gum Creek Flooding Effects, Little Red River, Overflow Creek Tributary, Red Cut Slough, Red Cut Slough Tributary, Red Cut Slough Tributary 2, and Red Cut Slough Tributary A. In this notice...
44 CFR 66.1 - Purpose of part.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CONSULTATION WITH LOCAL OFFICIALS § 66.1 Purpose of part. (a) The purpose of this part is to comply with section 206 of the Flood Disaster Protection Act of 1973 (42 U.S.C. 4107) by establishing procedures for flood elevation...
44 CFR 66.1 - Purpose of part.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CONSULTATION WITH LOCAL OFFICIALS § 66.1 Purpose of part. (a) The purpose of this part is to comply with section 206 of the Flood Disaster Protection Act of 1973 (42 U.S.C. 4107) by establishing procedures for flood elevation...
44 CFR 66.1 - Purpose of part.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CONSULTATION WITH LOCAL OFFICIALS § 66.1 Purpose of part. (a) The purpose of this part is to comply with section 206 of the Flood Disaster Protection Act of 1973 (42 U.S.C. 4107) by establishing procedures for flood elevation...
44 CFR 66.1 - Purpose of part.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CONSULTATION WITH LOCAL OFFICIALS § 66.1 Purpose of part. (a) The purpose of this part is to comply with section 206 of the Flood Disaster Protection Act of 1973 (42 U.S.C. 4107) by establishing procedures for flood elevation...
NASA Astrophysics Data System (ADS)
Allen, G. H.; David, C. H.; Andreadis, K. M.; Emery, C. M.; Famiglietti, J. S.
2017-12-01
Earth observing satellites provide valuable near real-time (NRT) information about flood occurrence and magnitude worldwide. This NRT information can be used in early flood warning systems and other flood management applications to save lives and mitigate flood damage. However, these NRT products are only useful to early flood warning systems if they are quickly made available, with sufficient time for flood mitigation actions to be implemented. More specifically, NRT data latency, or the time period between the satellite observation and when the user has access to the information, must be less than the time it takes a flood to travel from the flood observation location to a given downstream point of interest. Yet the paradigm that "lower latency is always better" may not necessarily hold true in river systems due to tradeoffs between data latency and data quality. Further, the existence of statistical breaks in the global distribution of flood wave travel time (i.e. a jagged statistical distribution) would represent preferable latencies for river-observation NRT remote sensing products. Here we present a global analysis of flood wave velocity (i.e. flow celerity) and travel time. We apply a simple kinematic wave model to a global hydrography dataset and calculate flow wave celerity and travel time during bankfull flow conditions. Bankfull flow corresponds to the condition of maximum celerity and thus we present the "worst-case scenario" minimum flow wave travel time. We conduct a similar analysis with respect to the time it takes flood waves to reach the next downstream city, as well as the next downstream reservoir. Finally, we conduct these same analyses, but with regards to the technical capabilities of the planned Surface Water and Ocean Topography (SWOT) satellite mission, which is anticipated to provide waterbody elevation and extent measurements at an unprecedented spatial and temporal resolution. We validate these results with discharge records from paired USGS gauge stations located along a diverse collection of river reaches. These results provide a scientific rationale for optimizing the utility of existing and future NRT river-observation products.
Fifty-Year Flood-Inundation Maps for Santa Rosa de Aguan, Honduras
Mastin, Mark C.; Olsen, T.D.
2002-01-01
After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the coastal municipality of Santa Rosa de Aguan that are prone to oceanic storm-surge flooding and wave action. The 50-year flood on the Rio Aguan (4,270 cubic meters per second), would inundate most of the area surveyed for this municipality and beyond. Therefore a detailed numerical hydraulic model was not developed for this municipality as it was for the others. The 50-year storm surge would likely produce higher water levels than the 50-year flood on the river during normal astronomical tides. The elevation of the 50-year storm surge was estimated to be 4.35 meters above normal sea level, based on hurricane probabilities and published storm-surge elevations associated with various hurricane categories. Flood-inundation maps, including areas of wave-action hazard and a color-shaded elevation map, were created from the available data and the estimated 50-year storm tide. Geographic Information System (GIS) coverages of the hazard areas are available on a computer in the municipality of Santa Rosa de Aguan as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Data Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the maps in much more detail than is possible using the maps in this report.
Flood of July 12-13, 2004, Burlington and Camden Counties, South-Central New Jersey
Protz, Amy R.; Reed, Timothy J.
2006-01-01
Intense rainfall inundated south-central New Jersey on July 12-13, 2004, causing major flooding with heavy property, road, and bridge damage in Burlington and Camden Counties. Forty-five dams were topped or damaged, or failed completely. The affected areas were in the Rancocas Creek, Cooper River, and Pennsauken Creek Basins. The U.S. Geological Survey (USGS) documented peak stream elevations and flows at 56 selected sites within the affected area. With rainfall totals averaging more than 6 inches throughout the three basins, peak-of-record flood elevations and streamflows occurred at all but one USGS stream gage, where the previous record was tied. Flood-frequency recurrence-intervals ranged from 30 to greater than 100 years and maximum streamflow per square mile ranged from 13.9 to 263 cubic feet per second per square mile (ft3/s/mi2). Peak streamflow at USGS stream gages surrounding the affected basins are associated with considerably lower recurrence intervals and demonstrate the limited extent of the flood. A high tide of about 1 foot above monthly mean high tide did not contribute to high-water conditions. Low ground-water levels prior to the rainfall helped to mitigate flooding in the affected basins. Compared with historical floods in the Rancocas Creek Basin during 1938-40, the July 2004 flood had greater streamflow, but lower stream elevations. Property damage from the event was estimated at $50 million. Governor James E. McGreevy declared a State of Emergency in Burlington and Camden Counties on July 13, 2004. After assessment of the damage by the Federal Emergency Management Agency (FEMA), President George W. Bush declared Burlington and Camden Counties disaster areas on July 16, 2004.
A Study of Flood Evacuation Center Using GIS and Remote Sensing Technique
NASA Astrophysics Data System (ADS)
Mustaffa, A. A.; Rosli, M. F.; Abustan, M. S.; Adib, R.; Rosli, M. I.; Masiri, K.; Saifullizan, B.
2016-07-01
This research demonstrated the use of Remote Sensing technique and GIS to determine the suitability of an evacuation center. This study was conducted in Batu Pahat areas that always hit by a series of flood. The data of Digital Elevation Model (DEM) was obtained by ASTER database that has been used to delineate extract contour line and elevation. Landsat 8 image was used for classification purposes such as land use map. Remote Sensing incorporate with GIS techniques was used to determined the suitability location of the evacuation center from contour map of flood affected areas in Batu Pahat. GIS will calculate the elevation of the area and information about the country of the area, the road access and percentage of the affected area. The flood affected area map may provide the suitability of the flood evacuation center during the several levels of flood. The suitability of evacuation centers can be determined based on several criteria and the existing data of the evacuation center will be analysed. From the analysis among 16 evacuation center listed, there are only 8 evacuation center suitable for the usage during emergency situation. The suitability analysis was based on the location and the road access of the evacuation center toward the flood affected area. There are 10 new locations with suitable criteria of evacuation center proposed on the study area to facilitate the process of rescue and evacuating flood victims to much safer and suitable locations. The results of this study will help in decision making processes and indirectly will help organization such as fire-fighter and the Department of Social Welfare in their work. Thus, this study can contribute more towards the society.
East, Amy E.; Collins, Brian D.; Sankey, Joel B.; Corbett, Skye C.; Fairley, Helen C.; Caster, Joshua J.
2016-05-17
We conclude that most of the river-corridor archeological sites are at elevated risk of net erosion under present dam operations. In the present flow regime, controlled floods do not simulate the magnitude or frequency of natural floods, and are not large enough to deposit sand at elevations that were flooded at annual to decadal intervals in predam time. For archeological sites that depend upon river-derived sand, we infer elevated erosion risk owing to a combination of reduced sand supply (both fluvial and aeolian) through (1) the lower-than-natural flood magnitude, frequency, and sediment supply of the controlled-flooding protocol; (2) reduction of open, dry sand area available for wind redistribution under current normal (nonflood) dam operations, which do not include flows as low as natural seasonal low flows and do include substantial daily flow fluctuations; and (3) impeded aeolian sand entrainment and transport owing to increased riparian vegetation growth in the absence of larger, more-frequent floods. If dam operations were to increase the supply of sand available for windblown transport—for example, through larger floods, sediment augmentation, or increased fluvial sandbar exposure by low flows—and also decrease riparian vegetation, the prevalence of active aeolian sand could increase over time, and the propensity for unmitigated gully erosion could decrease. Although the evolution of river-corridor landscapes and archeological sites has been altered fundamentally by the lack of large, sediment-rich floods (flows on the order of 5,000 m3/s), some combination of sediment-rich flows above 1,270 m3/s, seasonal flows below 226 m3/s, and riparian-vegetation removal might increase the preservation potential for sand-dependent archeological resources in the Colorado River corridor.
Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.; Zeeb, Hannah L.
2016-11-22
Results of a flood-hazard analysis conducted by the U.S. Geological Survey, in cooperation with the Argonne National Laboratory, for four headwater streams within the Argonne National Laboratory property indicate that the 1-percent and 0.2-percent annual exceedance probability floods would cause multiple roads to be overtopped. Results indicate that most of the effects on the infrastructure would be from flooding of Freund Brook. Flooding on the Northeast and Southeast Drainage Ways would be limited to overtopping of one road crossing for each of those streams. The Northwest Drainage Way would be the least affected with flooding expected to occur in open grass or forested areas.The Argonne Site Sustainability Plan outlined the development of hydrologic and hydraulic models and the creation of flood-plain maps of the existing site conditions as a first step in addressing resiliency to possible climate change impacts as required by Executive Order 13653 “Preparing the United States for the Impacts of Climate Change.” The Hydrological Simulation Program-FORTRAN is the hydrologic model used in the study, and the Hydrologic Engineering Center‒River Analysis System (HEC–RAS) is the hydraulic model. The model results were verified by comparing simulated water-surface elevations to observed water-surface elevations measured at a network of five crest-stage gages on the four study streams. The comparison between crest-stage gage and simulated elevations resulted in an average absolute difference of 0.06 feet and a maximum difference of 0.19 feet.In addition to the flood-hazard model development and mapping, a qualitative stream assessment was conducted to evaluate stream channel and substrate conditions in the study reaches. This information can be used to evaluate erosion potential.
NASA Astrophysics Data System (ADS)
Bhatt, C. M.; Rao, G. S.; Patro, B.
2014-12-01
Conventional method of identifying areas to be inundated for issuing flood alert require inputs like discharge data, fine resolution digital elevation model (DEM), software for modelling and technically trained manpower to interpret the results meaningfully. Due to poor availability of these inputs, including good network of historical hydrological observations and limitation of time, quick flood early warning becomes a difficult task. Presently, based on the daily river water level and forecasted water level for major river systems in India, flood alerts are provided which are non-spatial in nature and does not help in understanding the inundation (spatial dimension) which may be caused at various water levels. In the present paper a concept for developing a series of flood-inundation map libraries two approaches are adopted one by correlating inundation extent derived from historical satellite data analysis with the corresponding water level recorded by the gauge station and the other simulation of inundation using digital elevation model (DEM's) is demonstrated for a part of Godavari Basin. The approach explained can be one of quick and cost-effective method for building a library of flood inundation extents, which can be utilized during flood disaster for alerting population and taking the relief and rescue operations. This layer can be visualized from a spatial dimension together with other spatial information like administrative boundaries, transport network, land use and land cover, digital elevation data and satellite images for better understanding and visualization of areas to be inundated spatially on free web based earth visualization portals like ISRO's Bhuvan portal (http://bhuvan.nrsc.gov.in). This can help decision makers in taking quick appropriate measures for warning, planning relief and rescue operations for the population to get affected under that river stage.
Lumia, Richard; Firda, Gary D.; Smith, Travis L.
2014-01-01
Record rainfall combined with above-average temperatures and substantial spring snowmelt resulted in record flooding throughout New York during 2011. Rainfall totals in eastern New York were the greatest since 1895 and as much as 60 percent above the long-term average within the Catskill Mountains area and the Susquehanna River Basin. This report documents the three largest storms and resultant flooding during the year: (1) spring storm during April and May, (2) Tropical Storm Irene during August, and (3) remnants of Tropical Storm Lee during September. According to the Federal Emergency Management Agency (FEMA), the cost of these three storms exceeded $1 billion in Federal disaster assistance. A warm and wet spring in northern New York resulted in record flooding at 21 U.S. Geological Survey (USGS) active streamgages during late April to early May with the annual exceedance probabilities (AEPs) of 11 peak discharges equaling or exceeding 1 percent. Nearly 5 inches of rain during late April combined with a rapidly melting snowpack caused widespread flooding throughout northern New York, resulting in many road closures, millions of dollars in damages, and 23 counties declared disaster areas and eligible for public assistance. On May 6, Lake Champlain recorded its highest lake level in over 140 years. Hurricane Irene entered New York State on August 28 as a tropical storm and traveled up the eastern corridor of the State, leaving a path of destruction and damage never seen in many parts of New York. Thirty-one counties in New York were declared disaster areas with damages of over $1.3 billion dollars and 10 reported deaths. Storm rainfall exceeded 18 inches in the Catskill Mountains area of southeastern New York with many other areas of eastern New York receiving over 7 inches. Catastrophic flooding resulted from the extreme rainfall in many locations, including Schoharie Creek and its tributaries, the eastern Delaware River Basin, the Ausable and Bouquet River Basins in northeastern New York, and several other stream basins throughout southeastern New York. Downstream reaches of the Mohawk River also had substantial flooding. Sixty-two USGS streamgages throughout eastern New York documented record high stream flows and elevations with AEPs of 25 peak discharges equaling or exceeding 1 percent. The USGS streamgage for the Schoharie Creek at Prattsville recorded its greatest peak discharge in 109 years of record at 120,000 cubic feet per second (greater than the 0.2-percent AEP discharge) on August 28. The peak water-surface elevation at the streamgage in Prattsville was 5 feet higher than its previous record in 1996. USGS personnel surveyed 184 high-water marks (HWMs) at 30 locations along an 84-mile reach of Schoharie Creek and compared the elevations to those published by FEMA for the 10-, 2-, 1-, and 0.2-percent AEP floods. Elevations in the lower reaches of the basin exceeded published elevations for the 0.2-percent AEP flood. Remnants of Tropical Storm Lee brought a third major storm to New York in September 2011. Moisture from Lee began moving into New York on September 7 and intensified over the already saturated Susquehanna River Basin. Most of the rain fell on September 8 with storm totals nearing 13 inches in some areas (12.73 inches at Apalachin in Tioga County). Major disaster declarations were issued for 15 counties in and around central New York, making them eligible for individual or public assistance. Ten USGS streamgages within the Susquehanna River Basin documented record-high stream discharges and elevations on September 8, and all were greater than the 1-percent AEP discharge. USGS personnel surveyed 20 HWMs at 18 locations along a 114- mile reach of the Susquehanna River and compared the elevations to those published by FEMA for the 10-, 2-, 1-, and 0.2-percent AEP floods. Several of the surveyed HWMs exceeded published elevations for the 0.2-percent AEP flood.
75 FR 59192 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-27
... of Perry, downstream of the Township of Toby. confluence with Black Fox Run. Approximately 480 feet... No. 97.022, ``Flood Insurance.'') Dated: September 13, 2010. Sandra K. Knight, Deputy Federal...
Analysis the Accuracy of Digital Elevation Model (DEM) for Flood Modelling on Lowland Area
NASA Astrophysics Data System (ADS)
Zainol Abidin, Ku Hasna Zainurin Ku; Razi, Mohd Adib Mohammad; Bukari, Saifullizan Mohd
2018-04-01
Flood is one type of natural disaster that occurs almost every year in Malaysia. Commonly the lowland areas are the worst affected areas. This kind of disaster is controllable by using an accurate data for proposing any kinds of solutions. Elevation data is one of the data used to produce solutions for flooding. Currently, the research about the application of Digital Elevation Model (DEM) in hydrology was increased where this kind of model will identify the elevation for required areas. University of Tun Hussein Onn Malaysia is one of the lowland areas which facing flood problems on 2006. Therefore, this area was chosen in order to produce DEM which focussed on University Health Centre (PKU) and drainage area around Civil and Environment Faculty (FKAAS). Unmanned Aerial Vehicle used to collect aerial photos data then undergoes a process of generating DEM according to three types of accuracy and quality from Agisoft PhotoScan software. The higher the level of accuracy and quality of DEM produced, the longer time taken to generate a DEM. The reading of the errors created while producing the DEM shows almost 0.01 different. Therefore, it has been identified there are some important parameters which influenced the accuracy of DEM.
NASA Astrophysics Data System (ADS)
Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.
2018-01-01
Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor. Supplementary Fig. 2 Relation between the total site and high-elevation discharge-volume relation slope for all sites where both relations are available (n = 33). Supplementary Fig. 3 Change in sandbar volume since 1990 for Marble versus Grand Canyon sites. Solid vertical gray lines indicate controlled floods, and dashed vertical gray lines indicate other high test flows in 1997 and 2000 as discussed in the text. Photographs by U.S. Geological Survey, 2008-2015.
Developing flood-inundation maps for Johnson Creek, Portland, Oregon
Stonewall, Adam J.; Beal, Benjamin A.
2017-04-14
Digital flood-inundation maps were created for a 12.9‑mile reach of Johnson Creek by the U.S. Geological Survey (USGS). The flood-inundation maps depict estimates of water depth and areal extent of flooding from the mouth of Johnson Creek to just upstream of Southeast 174th Avenue in Portland, Oregon. Each flood-inundation map is based on a specific water level and associated streamflow at the USGS streamgage, Johnson Creek at Sycamore, Oregon (14211500), which is located near the upstream boundary of the maps. The maps produced by the USGS, and the forecasted flood hydrographs produced by National Weather Service River Forecast Center can be accessed through the USGS Flood Inundation Mapper Web site (http://wimcloud.usgs.gov/apps/FIM/FloodInundationMapper.html).Water-surface elevations were computed for Johnson Creek using a combined one-dimensional and two‑dimensional unsteady hydraulic flow model. The model was calibrated using data collected from the flood of December 2015 (including the calculated streamflows at two USGS streamgages on Johnson Creek) and validated with data from the flood of January 2009. Results were typically within 0.6 foot (ft) of recorded or measured water-surface elevations from the December 2015 flood, and within 0.8 ft from the January 2009 flood. Output from the hydraulic model was used to create eight flood inundation maps ranging in stage from 9 to 16 ft. Boundary condition hydrographs were identical in shape to those from the December 2015 flood event, but were scaled up or down to produce the amount of streamflow corresponding to a specific water-surface elevation at the Sycamore streamgage (14211500). Sensitivity analyses using other hydrograph shapes, and a version of the model in which the peak flow is maintained for an extended period of time, showed minimal variation, except for overbank areas near the Foster Floodplain Natural Area.Simulated water-surface profiles were combined with light detection and ranging (lidar) data collected in 2014 to delineate water-surface extents for each of the eight modeled stages. The availability of flood-inundation maps in conjunction with real-time data from the USGS streamgages along Johnson Creek and forecasted hydrographs from the National Weather Service Northwest River Forecast Center will provide residents of the watershed and emergency management personnel with valuable information that may aid in flood response, including potential evacuations, road closures, and mitigation efforts. In addition, these maps may be used for post-flood recovery efforts.
NASA Astrophysics Data System (ADS)
Aktaruzzaman, Md.; Schmitt, Theo G.
2011-11-01
This paper addresses the issue of a detailed representation of an urban catchment in terms of hydraulic and hydrologic attributes. Modelling of urban flooding requires a detailed knowledge of urban surface characteristics. The advancement in spatial data acquisition technology such as airborne LiDAR (Light Detection and Ranging) has greatly facilitated the collection of high-resolution topographic information. While the use of the LiDAR-derived Digital Surface Model (DSM) has gained popularity over the last few years as input data for a flood simulation model, the use of LiDAR intensity data has remained largely unexplored in this regard. LiDAR intensity data are acquired along with elevation data during the data collection mission by an aircraft. The practice of using of just aerial images with RGB (Red, Green and Blue) wavebands is often incapable of identifying types of surface under the shadow. On the other hand, LiDAR intensity data can provide surface information independent of sunlight conditions. The focus of this study is the use of intensity data in combination with aerial images to accurately map pervious and impervious urban areas. This study presents an Object-Based Image Analysis (OBIA) framework for detecting urban land cover types, mainly pervious and impervious surfaces in order to improve the rainfall-runoff modelling. Finally, this study shows the application of highresolution DSM and land cover maps to flood simulation software in order to visualize the depth and extent of urban flooding phenomena.
75 FR 78650 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
..., Mississippi, and Incorporated Areas Big Black River Approximately 21.9 None +149 Unincorporated Areas of miles.... 97.022, ``Flood Insurance.'') Dated: December 3, 2010. Sandra K. Knight, Deputy Federal Insurance and...
18 CFR 415.43 - Mapped and unmapped delineations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... data submitted, soil surveys, historic flood maps, high water marks and other empirical data, the... establish the flood protection elevation for the particular site. (c) Pending the preparation and completion...
18 CFR 415.43 - Mapped and unmapped delineations.
Code of Federal Regulations, 2010 CFR
2010-04-01
... data submitted, soil surveys, historic flood maps, high water marks and other empirical data, the... establish the flood protection elevation for the particular site. (c) Pending the preparation and completion...
44 CFR 67.12 - Appeal to District Court.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.12 Appeal to District Court. (a) An appellant aggrieved by the...
44 CFR 67.12 - Appeal to District Court.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION DETERMINATIONS § 67.12 Appeal to District Court. (a) An appellant aggrieved by the...
Whitehead, Matthew T.
2011-01-01
Digital flood-inundation maps of the Blanchard River in Ottawa, Ohio, were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service and the Village of Ottawa, Ohio. The maps, which correspond to water levels (stages) at the USGS streamgage at Ottawa (USGS streamgage site number 04189260), were provided to the National Weather Service (NWS) for incorporation into a Web-based flood-warning Network that can be used in conjunction with NWS flood-forecast data to show areas of predicted flood inundation associated with forecasted flood-peak stages. Flood profiles were computed by means of a step-backwater model calibrated to recent field measurements of streamflow. The step-backwater model was then used to determine water-surface-elevation profiles for 12 flood stages with corresponding streamflows ranging from less than the 2-year and up to nearly the 500-year recurrence-interval flood. The computed flood profiles were used in combination with digital elevation data to delineate flood-inundation areas. Maps of the Village of Ottawa showing flood-inundation areas overlain on digital orthophotographs are presented for the selected floods. As part of this flood-warning network, the USGS upgraded one streamgage and added two new streamgages, one on the Blanchard River and one on Riley Creek, which is tributary to the Blanchard River. The streamgage sites were equipped with both satellite and telephone telemetry. The telephone telemetry provides dual functionality, allowing village officials and the public to monitor current stage conditions and enabling the streamgage to call village officials with automated warnings regarding flood stage and/or predetermined rates of stage increase. Data from the streamgages serve as a flood warning that emergency management personnel can use in conjunction with the flood-inundation maps by to determine a course of action when flooding is imminent.
Weiss, Lawrence A.; Sears, Michael P.; Cervione, Michael A.
1994-01-01
Effects of urbanization have increased the frequency and size of floods along certain reaches of Harbor Brook and Crow Hollow Brook in Meriden, Conn. A floodprofile-modeling study was conducted to model the effects of selected channel and structural modifications on flood elevations and inundated areas. The study covered the reach of Harbor Brook downstream from Interstate 691 and the reach of Crow Hollow Brook downstream from Johnson Avenue. Proposed modifications, which include changes to bank heights, channel geometry, structural geometry, and streambed armoring on Harbor Brook and changes to bank heights on Crow Hollow Brook, significantly lower flood elevations. Results of the modeling indicate a significant reduction of flood elevations for the 10-year, 25-year, 35-year, 50-year, and 100-year flood frequencies using proposed modifications to (1 ) bank heights between Harbor Brook Towers and Interstate 691 on Harbor Brook, and between Centennial Avenue and Johnson Avenue on Crow Hollow Brook; (2) channel geometry between Coe Avenue and Interstate 69 1 on Harbor Brook; (3) bridge and culvert opening geometry between Harbor Brook Towers and Interstate 691 on Harbor Brook; and (4) channel streambed armoring between Harbor Brook Towers and Interstate 691 on Harbor Brook. The proposed modifications were developed without consideration of cost-benefit ratios.
Floods of May 2006 and April 2007 in Southern Maine
Lombard, Pamela J.
2009-01-01
The U.S. Geological Survey Maine Water Science Center has worked with the Federal Emergency Management Agency for decades to document the magnitude and extent of major floods in Maine. Reports describing the May 2006 and April 2007 floods in southern Maine are examples of this cooperative relationship. The documentation of peak stream elevations and peak streamflow magnitudes and recurrence intervals provides essential information for the delineation of flood plains and for flood-mitigation decisions by local, State, and Federal emergency management officials.
Coastal flood of February 7, 1978, in Maine, Massachusetts, and New Hampshire
Gadoury, Russell A.
1979-01-01
This report contains data which document the flooding along parts of the New England coast. Elevations of 203 floodmarks in Massachusetts, 104 in Maine, and 46 in New Hampshire are given. Also included are some historical coastal flood data and a list of other storm-related studies.
33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.
Code of Federal Regulations, 2011 CFR
2011-07-01
... amounts to 76,600 acre-feet. Whenever the reservoir level is within this elevation range the flood control... flood damage below the reservoir. In order to accomplish this purpose, flood control releases shall be... of bankfull on the Little River downstream of the reservoir. Controlling bankfull stages and...
33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.
Code of Federal Regulations, 2010 CFR
2010-07-01
... amounts to 76,600 acre-feet. Whenever the reservoir level is within this elevation range the flood control... flood damage below the reservoir. In order to accomplish this purpose, flood control releases shall be... of bankfull on the Little River downstream of the reservoir. Controlling bankfull stages and...
Simulation of Flood Profiles for Catoma Creek near Montgomery, Alabama, 2008
Lee, K.G.; Hedgecock, T.S.
2008-01-01
A one-dimensional step-backwater model was used to simulate flooding conditions for Catoma Creek near Montgomery, Alabama. A peak flow of 50,000 cubic feet per second was computed by the U.S. Geological Survey for the March 1990 flood at the Norman Bridge Road gaging station. Using this estimated peak flow, flood-plain surveys with associated roughness coefficients, and surveyed high-water marks for the March 1990 flood, a flow model was calibrated to closely match the known event. The calibrated model then was used to simulate flooding for the 10-, 50-, 100-, and 500-year recurrence-interval floods. The 100-year flood stage for the Alabama River also was computed in the vicinity of the Catoma Creek confluence using observed high-water profiles from the 1979 and 1990 floods and gaging-station data. The results indicate that the 100-year flood profile for Catoma Creek within the 15-mile study reach is about 2.5 feet higher, on average, than the profile published by the Federal Emergency Management Agency. The maximum and minimum differences are 6.0 feet and 0.8 foot, respectively. All water-surface elevations computed for the 100-year flood are higher than those published by the Federal Emergency Management Agency. The 100-year flood stage computed for the Alabama River in the vicinity of the Catoma Creek confluence was about 4.5 feet lower than the elevation published by the Federal Emergency Management Agency. The results of this study provide the community with flood-profile information that can be used for flood-plain mitigation, future development, and safety plans for the city.
44 CFR 68.10 - Burden of proof.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES § 68.10 Burden of proof. The burden shall be on appellant(s) to prove that the flood elevation...
44 CFR 68.10 - Burden of proof.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES § 68.10 Burden of proof. The burden shall be on appellant(s) to prove that the flood elevation...
44 CFR 68.10 - Burden of proof.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program ADMINISTRATIVE HEARING PROCEDURES § 68.10 Burden of proof. The burden shall be on appellant(s) to prove that the flood elevation...
Lant, Jeremiah G.
2016-09-19
Digital flood inundation maps for a 17-mile reach of Licking River and 4-mile reach of South Fork Licking River near Falmouth, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with Pendleton County and the U.S. Army Corps of Engineers–Louisville District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Licking River at Catawba, Ky., (station 03253500) and the USGS streamgage on the South Fork Licking River at Hayes, Ky., (station 03253000). Current conditions (2015) for the USGS streamgages may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis). In addition, the streamgage information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The flood hydrograph forecasts provided by the NWS are usually collocated with USGS streamgages. The forecasted peak-stage information, also available on the NWS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation.In this study, flood profiles were computed for the Licking River reach and South Fork Licking River reach by using a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current (2015) stage-discharge relations for the Licking River at Catawba, Ky., and the South Fork Licking River at Hayes, Ky., USGS streamgages. The calibrated model was then used to calculate 60 water-surface profiles for a sequence of flood stages, at 2-foot intervals, referenced to the streamgage datum and ranging from an elevation near bankfull to the elevation associated with a major flood that occurred in the region in 1997. To delineate the flooded area at each interval flood stage, the simulated water-surface profiles were combined with a digital elevation model of the study area by using geographic information system software.The availability of these flood inundation maps for Falmouth, Ky., along with online information regarding current stages from the USGS streamgages and forecasted stages from the NWS, provides emergency management personnel and local residents with information that is critical for flood response activities such as evacuations, road closures, and post-flood recovery efforts.
Parrett, Charles; Veilleux, Andrea; Stedinger, J.R.; Barth, N.A.; Knifong, Donna L.; Ferris, J.C.
2011-01-01
Improved flood-frequency information is important throughout California in general and in the Sacramento-San Joaquin River Basin in particular, because of an extensive network of flood-control levees and the risk of catastrophic flooding. A key first step in updating flood-frequency information is determining regional skew. A Bayesian generalized least squares (GLS) regression method was used to derive a regional-skew model based on annual peak-discharge data for 158 long-term (30 or more years of record) stations throughout most of California. The desert areas in southeastern California had too few long-term stations to reliably determine regional skew for that hydrologically distinct region; therefore, the desert areas were excluded from the regional skew analysis for California. Of the 158 long-term stations used to determine regional skew, 145 have minimally regulated annual-peak discharges, and 13 stations are dam sites for which unregulated peak discharges were estimated from unregulated daily maximum discharge data furnished by the U.S. Army Corp of Engineers. Station skew was determined by using an expected moments algorithm (EMA) program for fitting the Pearson Type 3 flood-frequency distribution to the logarithms of annual peak-discharge data. The Bayesian GLS regression method previously developed was modified because of the large cross correlations among concurrent recorded peak discharges in California and the use of censored data and historical flood information with the new expected moments algorithm. In particular, to properly account for these cross-correlation problems and develop a suitable regression model and regression diagnostics, a combination of Bayesian weighted least squares and generalized least squares regression was adopted. This new methodology identified a nonlinear function relating regional skew to mean basin elevation. The regional skew values ranged from -0.62 for a mean basin elevation of zero to 0.61 for a mean basin elevation of 11,000 feet. This relation between skew and elevation reflects the interaction of snow with rain, which increases with increased elevation. The equivalent record length for the new regional skew ranges from 52 to 65 years of record, depending upon mean basin elevation. The old regional skew map in Bulletin 17B, published by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data (1982), reported an equivalent record length of only 17 years. The newly developed regional skew relation for California was used to update flood frequency for the 158 sites used in the regional skew analysis as well as 206 selected sites in the Sacramento-San Joaquin River Basin. For these sites, annual-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years were determined on the basis of data through water year 2006. The expected moments algorithm was used for determining the magnitude and frequency of floods at gaged sites by using regional skew values and using the basic approach outlined in Bulletin
The Importance of Precise Digital Elevation Models (DEM) in Modelling Floods
NASA Astrophysics Data System (ADS)
Demir, Gokben; Akyurek, Zuhal
2016-04-01
Digital elevation Models (DEM) are important inputs for topography for the accurate modelling of floodplain hydrodynamics. Floodplains have a key role as natural retarding pools which attenuate flood waves and suppress flood peaks. GPS, LIDAR and bathymetric surveys are well known surveying methods to acquire topographic data. It is not only time consuming and expensive to obtain topographic data through surveying but also sometimes impossible for remote areas. In this study it is aimed to present the importance of accurate modelling of topography for flood modelling. The flood modelling for Samsun-Terme in Blacksea region of Turkey is done. One of the DEM is obtained from the point observations retrieved from 1/5000 scaled orthophotos and 1/1000 scaled point elevation data from field surveys at x-sections. The river banks are corrected by using the orthophotos and elevation values. This DEM is named as scaled DEM. The other DEM is obtained from bathymetric surveys. 296 538 number of points and the left/right bank slopes were used to construct the DEM having 1 m spatial resolution and this DEM is named as base DEM. Two DEMs were compared by using 27 x-sections. The maximum difference at thalweg of the river bed is 2m and the minimum difference is 20 cm between two DEMs. The channel conveyance capacity in base DEM is larger than the one in scaled DEM and floodplain is modelled in detail in base DEM. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. The model by using two DEMs were calibrated for a flood event (July 9, 2012). The roughness is considered as the calibration parameter. From comparison of input hydrograph at the upstream of the river and output hydrograph at the downstream of the river, the attenuation is obtained as 91% and 84% for the base DEM and scaled DEM, respectively. The time lag in hydrographs does not show any difference for two DEMs and it is obtained as 3 hours. Maximum flood extents differ for the two DEMs, larger flooded area is simulated from scaled DEM. The main difference is observed for the braided and meandering parts of the river. For the meandering part of the river, additional 1.82 106 m3 water (5% of the total volume) is calculated as the flooded volume simulated by using the scaled DEM. For the braided stream part 0.187 106 m3 more water is simulated as the flooded volume by the scaled DEM. The flood extent around the braided part of the river is 27.6 ha larger in the simulated flood map obtained from scaled DEM compared to the one obtained from base DEM. Around the meandering part of the river scaled DEM gave 59.8 ha more flooded area. The importance of correct topography of the braided and meandering part of the river in flood modelling and the uncertainty it brings to modelling are discussed in detail.
75 FR 62057 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... buildings. Comments on any aspect of the Flood Insurance Study and FIRM, other than the proposed BFEs, will... State Highway 274. Duck Creek Approximately 925 feet None +458 Unincorporated Areas of downstream of...
75 FR 67317 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-02
... buildings. Comments on any aspect of the Flood Insurance Study and FIRM, other than the proposed BFEs, will... Approximately 700 feet None +41 City of Brooksville, downstream of Duck Unincorporated Areas Pond Road (at...
75 FR 3885 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
... meters (MSL) Effective Modified Napa County, California, and Incorporated Areas Napa Creek At the... flooding area, +17 2 approximately 1,400 feet northeast of intersection of Imola Avenue and Gasser Drive... meter. [[Page 3886
76 FR 40815 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-12
..., 2010 460046 1172). 08-0269P). November 17, 2010; Krambeck, Mayor, City of The Black Hills Spearfish... Assistance No. 97.022, ``Flood Insurance.'') Dated: June 15, 2011 Sandra K. Knight, Deputy Federal Insurance...
Hong, Ming; Guo, Quan-Shu; Nie, Bi-Hong; Kang, Yi; Pei, Shun-Xiang; Jin, Jiang-Qun; Wang, Xiang-Fu
2011-11-01
This paper studied the population density, morphological characteristics, and biomass and its allocation of Cynodon dactylon at different altitudinal sections of the hydro-fluctuation belt in Three Gorges Reservoir area, based on located observations. At the three altitudinal sections, the population density of C. dactylon was in the order of shallow water section (165-170 m elevation) > non-flooded section (above 172 m elevation) > deep water section (145-150 m elevation), the root diameter and root length were in the order of deep water section > shallow water section > non-flooded section, the total biomass, root biomass, stem biomass, leaf biomass, and stem biomass allocation ratio were in the order of the shallow water section > non-flooded section > deep water section, and the root biomass allocation ratio, leaf biomass allocation ratio, and underground biomass/aboveground biomass were in the order of deep water section > shallow water section > non-flooded section. The unique adaption strategies of C. dactylon to the flooding-drying habitat change in the shallow water section were the accelerated elongation growth and the increased stem biomass allocation, those in the deep water section were the increased node number of primary and secondary branches, increased number of the branches, and increased leaf biomass allocation, whereas the common strategies in the shallow and deep water sections were the accelerated root growth and the increased tillering and underground biomass allocation for preparing nutrition and energy for the rapid growth in terrestrial environment.
Comparison between flood prone areas' geomorphic features in the Abruzzo region
NASA Astrophysics Data System (ADS)
Orlando, D.; Giglioni, M.; Magnaldi, S.
2017-07-01
Flood risk maps are one of the main non-structural measures for risk mitigation, but, as the risk knowledge degree is directly proportional to the community interest and financial capability, many sites are devoid of flood inundation areas studies. Recently many authors have investigated the capability of flood prone areas individuation with geomorphological DIGITAL ELEVATION MODEL(DEM) based approaches. These approaches highlight the role of geomorphic features derived from DEM, in this case slope, curvature, elevation, and topographic wetness index, to preliminary inundated areas' identification, without using hydraulic simulations. The present studies aim to analyze the geomorphic features of different hazard levels that lie under the identified inundated areas that have been carried out by the Abruzzo Region Basin Authority. The Aterno-Pescara and Foro river basins have been investigated. The results show that the characteristics of the flooded areas can be clearly distinguished from those of the entire basin,however, the difficultly of geomorphic features in individuatingthe areas of different hazard classifications is obvious.
Flood characteristics for the New River in the New River Gorge National River, West Virginia
Wiley, J.B.; Cunningham, M.K.
1994-01-01
The frequency and magnitude of flooding of the New River in the New River Gorge National River was studied. A steady-state, one-dimensional flow model was applied to the study reach. Rating curves, cross sections, and Manning's roughness coefficients that were used are presented in this report. Manning's roughness coefficients were evaluated by comparing computed elevations (from application of the steady-state, one-dimensional flow model) to rated elevations at U.S. Geological Survey (USGS) streamflow-gaging stations and miscellaneous-rating sites. Manning's roughness coefficients ranged from 0.030 to 0.075 and varied with hydraulic depth. The 2-, 25-, and 100-year flood discharges were esti- mated on the basis of information from flood- insurance studies of Summers County, Fayette County, and the city of Hinton, and flood-frequency analysis of discharge records for the USGS streamflow-gaging stations at Hinton and Thurmond. The 100-year discharge ranged from 107,000 cubic feet per second at Hinton to 150,000 cubic feet per second at Fayette.
Lei, Shutong; Zeng, Bo; Yuan, Zhi; Su, Xiaolei
2014-01-01
The Three Gorges project has caused many ecosystem problems. Ecological restoration using readily-available plants is an effective way of mitigating environmental impacts. Two perennial submergence-tolerant ecotypes of Calamagrostis arundinacea were planted in an experimental field in the drawdown zone. Responses of the two plant ecotypes to flooding stress in the drawdown zone were unknown. Carbohydrate content and membrane stability, two key factors for survival of plants under flooding stress, of two ecotypes (designated "dwarf" and "green") of C. arundinacea growing at different elevations of the drawdown zone were investigated. Live stems (LS) and dead stems (DS) of the two plant ecotypes at eight elevations (175, 170, 162, 160, 158, 155, 152 m and 149 m) were sampled. Contents of soluble sugar, starch and malondialdehyde (MDA), as well as plasma membrane permeability of live stems were measured. The lowest elevations for survival of dwarf and green C. arundinacea were 160 m and 158 m, respectively. Soluble sugar content of live stems of both ecotypes decreased with elevation, with amounts from an elevation of 170 m being lower than from an elevation of 175 m. MDA content and plasma membrane permeability in live stems of green C. arundinacea did not increase with the decrease in elevation, while these measures in dwarf C. arundinacea from an elevation of 162 m were significantly higher than from an elevation of 175 m. Carbohydrate content, especially soluble sugar content, in both ecotypes was more sensitive to flooding stress than membrane stability. Green C. arundinacea had a higher tolerance to submergence than dwarf C. arundinacea, and thus green C. arundinacea can be planted at lower elevations than dwarf C. arundinacea.
Kresch, D.L.; Laenen, Antonius
1984-01-01
Failure of the debris dam, blocking the outflow of Spirit Lake near Mount St. Helens, could result in a mudflow down the Toutle and Cowlitz Rivers into the Columbia River. Flood elevations at the Trojan Nuclear Power Plant on the Columbia River, 5 mi upstream from the Cowlitz River, were simulated with a hydraulic routing model. The simulations are made for four Columbia River discharges in each of two scenarios, one in which Columbia River floods coincide with a mudflow and the other in which Columbia River floods follow a mudflow sediment deposit upstream from the Cowlitz River. In the first scenario, Manning 's roughness coefficients for clear water and for mudflow in the Columbia River are used; in the second scenario only clear water coefficients are used. The grade elevation at the power plant is 45 ft above sea level. The simulated elevations exceed 44 ft if the mudflow coincides with a Columbia River discharge that has a recurrence interval greater than 10 years (610,000 cu ft/sec); the mudflow is assumed to extend downstream from the Cowlitz River to the mouth of the Columbia River, and Manning 's roughness coefficients for a mudflow are used. The simulated elevation is 32 ft if the mudflow coincides with a 100-yr flood (820,000 cu ft/sec) and clear-water Manning 's coefficients are used throughout the entire reach of the Columbia River. The elevations exceed 45 ft if a flow exceeding the 2-yr peak discharge in the Columbia River (410,000 cu ft/sec) follows the deposit of 0.5 billion cu yd of mudflow sediment upstream of the Cowlitz River before there has been any appreciable scour or dredging of the deposit. In this simulation it is assumed that: (1) the top of the sediment deposited in the Columbia River is at an elevation of 30 ft at the mouth of the Cowlitz River, (2) the surface elevation of the sediment deposit decreases in an upstream direction at a rate of 2.5 ft/mi, and (3) clear water Manning 's coefficients apply to the entire modeled reach of the Columbia River. (Author 's abstract)
Computational Fluid Dynamics simulations of the Late Pleistocene Lake Bonneville Flood
NASA Astrophysics Data System (ADS)
Abril-Hernández, José M.; Periáñez, Raúl; O'Connor, Jim E.; Garcia-Castellanos, Daniel
2018-06-01
At approximately 18.0 ka, pluvial Lake Bonneville reached its maximum level. At its northeastern extent it was impounded by alluvium of the Marsh Creek Fan, which breached at some point north of Red Rock Pass (Idaho), leading to one of the largest floods on Earth. About 5320 km3 of water was discharged into the Snake River drainage and ultimately into the Columbia River. We use a 0D model and a 2D non-linear depth-averaged hydrodynamic model to aid understanding of outflow dynamics, specifically evaluating controls on the amount of water exiting the Lake Bonneville basin exerted by the Red Rock Pass outlet lithology and geometry as well as those imposed by the internal lake geometry of the Bonneville basin. These models are based on field evidence of prominent lake levels, hypsometry and terrain elevations corrected for post-flood isostatic deformation of the lake basin, as well as reconstructions of the topography at the outlet for both the initial and final stages of the flood. Internal flow dynamics in the northern Lake Bonneville basin during the flood were affected by the narrow passages separating the Cache Valley from the main body of Lake Bonneville. This constriction imposed a water-level drop of up to 2.7 m at the time of peak-flow conditions and likely reduced the peak discharge at the lake outlet by about 6%. The modeled peak outlet flow is 0.85·106 m3 s-1. Energy balance calculations give an estimate for the erodibility coefficient for the alluvial Marsh Creek divide of ∼0.005 m y-1 Pa-1.5, at least two orders of magnitude greater than for the underlying bedrock at the outlet. Computing quasi steady-state water flows, water elevations, water currents and shear stresses as a function of the water-level drop in the lake and for the sequential stages of erosion in the outlet gives estimates of the incision rates and an estimate of the outflow hydrograph during the Bonneville Flood: About 18 days would have been required for the outflow to grow from 10% to 100% of its peak value. At the time of peak flow, about 10% of the lake volume would have already exited; eroding about 1 km3 of alluvium from the outlet, and the lake level would have dropped by about 10.6 m.
Assessment of the Flood Problems of the Taunton River Basin Massachusetts.
1978-12-01
essential for fish and provides a habitat for numerous varieties of aquatic oriented wildlife species. Of the com- bined forested wetland and open forest...Detailed flood elevation data essential for operation of regula- tions. Flood velocities, flood duration, wave action, erosion pr,,- blems and other...along with the preservation of as much trees and shrubs are essential . Where possible fast growing annual grass seed should be used, intermixed with
Digital floodplain mapping and an analysis of errors involved
Hamblen, C.S.; Soong, D.T.; Cai, X.
2007-01-01
Mapping floodplain boundaries using geographical information system (GIS) and digital elevation models (DEMs) was completed in a recent study. However convenient this method may appear at first, the resulting maps potentially can have unaccounted errors. Mapping the floodplain using GIS is faster than mapping manually, and digital mapping is expected to be more common in the future. When mapping is done manually, the experience and judgment of the engineer or geographer completing the mapping and the contour resolution of the surface topography are critical in determining the flood-plain and floodway boundaries between cross sections. When mapping is done digitally, discrepancies can result from the use of the computing algorithm and digital topographic datasets. Understanding the possible sources of error and how the error accumulates through these processes is necessary for the validation of automated digital mapping. This study will evaluate the procedure of floodplain mapping using GIS and a 3 m by 3 m resolution DEM with a focus on the accumulated errors involved in the process. Within the GIS environment of this mapping method, the procedural steps of most interest, initially, include: (1) the accurate spatial representation of the stream centerline and cross sections, (2) properly using a triangulated irregular network (TIN) model for the flood elevations of the studied cross sections, the interpolated elevations between them and the extrapolated flood elevations beyond the cross sections, and (3) the comparison of the flood elevation TIN with the ground elevation DEM, from which the appropriate inundation boundaries are delineated. The study area involved is of relatively low topographic relief; thereby, making it representative of common suburban development and a prime setting for the need of accurately mapped floodplains. This paper emphasizes the impacts of integrating supplemental digital terrain data between cross sections on floodplain delineation. ?? 2007 ASCE.
75 FR 78613 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-16
... Flood Disaster Protection Act of 1973, 42 U.S.C. 4105, and are in accordance with the National Flood Insurance Act of 1968, 42 U.S.C. 4001 et seq., and with 44 CFR part 65. For rating purposes, the currently... within the scope of the Regulatory Flexibility Act, 5 U.S.C. 601- 612, a regulatory flexibility analysis...
44 CFR 66.4 - Appointment of consultation coordination officer.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CONSULTATION... establish or to modify flood elevations pursuant to a new study or a restudy. When a CCO is appointed by the...
44 CFR 66.4 - Appointment of consultation coordination officer.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CONSULTATION... establish or to modify flood elevations pursuant to a new study or a restudy. When a CCO is appointed by the...
44 CFR 66.4 - Appointment of consultation coordination officer.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program CONSULTATION... establish or to modify flood elevations pursuant to a new study or a restudy. When a CCO is appointed by the...
Gotvald, Anthony J.; Barth, Nancy A.; Veilleux, Andrea G.; Parrett, Charles
2012-01-01
Methods for estimating the magnitude and frequency of floods in California that are not substantially affected by regulation or diversions have been updated. Annual peak-flow data through water year 2006 were analyzed for 771 streamflow-gaging stations (streamgages) in California having 10 or more years of data. Flood-frequency estimates were computed for the streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Low-outlier and historic information were incorporated into the flood-frequency analysis, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low outliers. Special methods for fitting the distribution were developed for streamgages in the desert region in southeastern California. Additionally, basin characteristics for the streamgages were computed by using a geographical information system. Regional regression analysis, using generalized least squares regression, was used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins in California that are outside of the southeastern desert region. Flood-frequency estimates and basin characteristics for 630 streamgages were combined to form the final database used in the regional regression analysis. Five hydrologic regions were developed for the area of California outside of the desert region. The final regional regression equations are functions of drainage area and mean annual precipitation for four of the five regions. In one region, the Sierra Nevada region, the final equations are functions of drainage area, mean basin elevation, and mean annual precipitation. Average standard errors of prediction for the regression equations in all five regions range from 42.7 to 161.9 percent. For the desert region of California, an analysis of 33 streamgages was used to develop regional estimates of all three parameters (mean, standard deviation, and skew) of the log-Pearson Type III distribution. The regional estimates were then used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins. The final regional regression equations are functions of drainage area. Average standard errors of prediction for these regression equations range from 214.2 to 856.2 percent. Annual peak-flow data through water year 2006 were analyzed for eight streamgages in California having 10 or more years of data considered to be affected by urbanization. Flood-frequency estimates were computed for the urban streamgages by fitting a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Regression analysis could not be used to develop flood-frequency estimation equations for urban streams because of the limited number of sites. Flood-frequency estimates for the eight urban sites were graphically compared to flood-frequency estimates for 630 non-urban sites. The regression equations developed from this study will be incorporated into the U.S. Geological Survey (USGS) StreamStats program. The StreamStats program is a Web-based application that provides streamflow statistics and basin characteristics for USGS streamgages and ungaged sites of interest. StreamStats can also compute basin characteristics and provide estimates of streamflow statistics for ungaged sites when users select the location of a site along any stream in California.
NASA Astrophysics Data System (ADS)
Candela, A.; Brigandì, G.; Aronica, G. T.
2014-07-01
In this paper a procedure to derive synthetic flood design hydrographs (SFDH) using a bivariate representation of rainfall forcing (rainfall duration and intensity) via copulas, which describes and models the correlation between two variables independently of the marginal laws involved, coupled with a distributed rainfall-runoff model, is presented. Rainfall-runoff modelling (R-R modelling) for estimating the hydrological response at the outlet of a catchment was performed by using a conceptual fully distributed procedure based on the Soil Conservation Service - Curve Number method as an excess rainfall model and on a distributed unit hydrograph with climatic dependencies for the flow routing. Travel time computation, based on the distributed unit hydrograph definition, was performed by implementing a procedure based on flow paths, determined from a digital elevation model (DEM) and roughness parameters obtained from distributed geographical information. In order to estimate the primary return period of the SFDH, which provides the probability of occurrence of a hydrograph flood, peaks and flow volumes obtained through R-R modelling were treated statistically using copulas. Finally, the shapes of hydrographs have been generated on the basis of historically significant flood events, via cluster analysis. An application of the procedure described above has been carried out and results presented for the case study of the Imera catchment in Sicily, Italy.
Assimilation of measurement data in hydrodynamic modeling
NASA Astrophysics Data System (ADS)
Karamuz, Emilia; Romanowicz, Renata J.
2016-04-01
This study focuses on developing methods to combine ground-based data from operational monitoring with data from satellite imaging to obtain a more accurate evaluation of flood inundation extents. The distributed flow model MIKE 11 was used to determine the flooding areas for a flood event with available satellite data. Model conditioning was based on the integrated use of data from remote measurement techniques and traditional data from gauging stations. Such conditioning of the model improves the quality of fit of the model results. The use of high resolution satellite images (from IKONOS, QuickBird e.t.c) and LiDAR Digital Elevation Model (DEM) allows information on water levels to be extended to practically any chosen cross-section of the tested section of the river. This approach allows for a better assessment of inundation extent, particularly in areas with a scarce network of gauging stations. We apply approximate Bayesian analysis to integrate the information on flood extent originating from different sources. The approach described above was applied to the Middle River Vistula reach, from the Zawichost to Warsaw gauging stations. For this part of the river the detailed geometry of the river bed and floodplain data were available. Finally, three selected sub-sections were analyzed with the most suitable satellite images of inundation area. ACKNOWLEDGEMENTS This research was supported by the Institute of Geophysics Polish Academy of Sciences through the Young Scientist Grant no. 3b/IGF PAN/2015.
Zarriello, Phillip J.; Olson, Scott A.; Flynn, Robert H.; Strauch, Kellan R.; Murphy, Elizabeth A.
2014-01-01
Heavy, persistent rains from late February through March 2010 caused severe flooding that set, or nearly set, peaks of record for streamflows and water levels at many long-term streamgages in Rhode Island. In response to this event, hydraulic models were updated for selected reaches covering about 56 river miles in the Pawtuxet River Basin to simulate water-surface elevations (WSEs) at specified flows and boundary conditions. Reaches modeled included the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Dry Brook, Meshanticut Brook, Furnace Hill Brook, Flat River, Quidneck Brook, and two unnamed tributaries referred to as South Branch Pawtuxet River Tributary A1 and Tributary A2. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 using steady-state simulations. Updates to the models included incorporation of new field-survey data at structures, high resolution land-surface elevation data, and updated flood flows from a related study. The models were assessed using high-water marks (HWMs) obtained in a related study following the March– April 2010 flood and the simulated water levels at the 0.2-percent annual exceedance probability (AEP), which is the estimated AEP of the 2010 flood in the basin. HWMs were obtained at 110 sites along the main stem of the Pawtuxet River, the North and South Branches of the Pawtuxet River, Pocasset River, Simmons Brook, Furnace Hill Brook, Flat River, and Quidneck Brook. Differences between the 2010 HWM elevations and the simulated 0.2-percent AEP WSEs from flood insurance studies (FISs) and the updated models developed in this study varied with most differences attributed to the magnitude of the 0.2-percent AEP flows. WSEs from the updated models generally are in closer agreement with the observed 2010 HWMs than with the FIS WSEs. The improved agreement of the updated simulated water elevations to observed 2010 HWMs provides a measure of the hydraulic model performance, which indicates the updated models better represent flooding at other AEPs than the existing FIS models.
NASA Astrophysics Data System (ADS)
Couasnon, Anaïs; Sebastian, Antonia; Morales-Nápoles, Oswaldo
2017-04-01
Recent research has highlighted the increased risk of compound flooding in the U.S. In coastal catchments, an elevated downstream water level, resulting from high tide and/or storm surge, impedes drainage creating a backwater effect that may exacerbate flooding in the riverine environment. Catchments exposed to tropical cyclone activity along the Gulf of Mexico and Atlantic coasts are particularly vulnerable. However, conventional flood hazard models focus mainly on precipitation-induced flooding and few studies accurately represent the hazard associated with the interaction between discharge and elevated downstream water levels. This study presents a method to derive stochastic boundary conditions for a coastal watershed. Mean daily discharge and maximum daily residual water levels are used to build a non-parametric Bayesian network (BN) based on copulas. Stochastic boundary conditions for the watershed are extracted from the BN and input into a 1-D process-based hydraulic model to obtain water surface elevations in the main channel of the catchment. The method is applied to a section of the Houston Ship Channel (Buffalo Bayou) in Southeast Texas. Data at six stream gages and two tidal stations are used to build the BN and 100-year joint return period events are modeled. We find that the dependence relationship between the daily residual water level and the mean daily discharge in the catchment can be represented by a Gumbel copula (Spearman's rank correlation coefficient of 0.31) and that they result in higher water levels in the mid- to upstream reaches of the watershed than when modeled independently. This indicates that conventional (deterministic) methods may underestimate the flood hazard associated with compound flooding in the riverine environment and that such interactions should not be neglected in future coastal flood hazard studies.
46 CFR 172.195 - Survival conditions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... assumed damage if it meets the following conditions in the final stage of flooding: (a) Final waterline... of an opening through which progressive flooding may take place, such as an air pipe, or an opening... least 3.94 inches (10 cm). (3) Each submerged opening must be weathertight. (d) Progressive flooding. If...
46 CFR 172.195 - Survival conditions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... assumed damage if it meets the following conditions in the final stage of flooding: (a) Final waterline... of an opening through which progressive flooding may take place, such as an air pipe, or an opening... least 3.94 inches (10 cm). (3) Each submerged opening must be weathertight. (d) Progressive flooding. If...
46 CFR 172.195 - Survival conditions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... assumed damage if it meets the following conditions in the final stage of flooding: (a) Final waterline... of an opening through which progressive flooding may take place, such as an air pipe, or an opening... least 3.94 inches (10 cm). (3) Each submerged opening must be weathertight. (d) Progressive flooding. If...
Flood of June 17, 1990, in the Clear Creek Basin, east-central Iowa
Barnes, K.K.; Eash, D.A.
1994-01-01
A water-surface-elevation profile for the flood of June 17, 1990, in the Clear Creek Basin, east-central Iowa, is given in this report. The maximum flood-peak discharge of 10,200 cubic feet per second for the streamflow-gaging station on Clear Creek near Coralville, Iowa (station number 05454300), occurred on June 17, 1990. This discharge was approximately equal to the 80-year recurrence-interval discharge. A flood history describes rainfall conditions for floods that occurred during 1982, 1990, and 1993.
Flood-inundation maps for an 8.9-mile reach of the South Fork Little River at Hopkinsville, Kentucky
Lant, Jeremiah G.
2013-01-01
Digital flood-inundation maps for an 8.9-mile reach of South Fork Little River at Hopkinsville, Kentucky, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Hopkinsville Community Development Services. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at South Fork Little River at Highway 68 By-Pass at Hopkinsville, Kentucky (station no. 03437495). Current conditions for the USGS streamgage may be obtained online at the USGS National Water Information System site (http://waterdata.usgs.gov/nwis/inventory?agency_code=USGS&site_no=03437495). In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service flood warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that are often co-located at USGS streamgages. The forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the South Fork Little River reach by using HEC-RAS, a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current (2012) stage-discharge relation at the South Fork Little River at Highway 68 By-Pass at Hopkinsville, Kentucky, streamgage and measurements collected during recent flood events. The calibrated model was then used to calculate 13 water-surface profiles for a sequence of flood stages, most at 1-foot intervals, referenced to the streamgage datum and ranging from a stage near bank full to the estimated elevation of the 1.0-percent annual exceedance probability flood at the streamgage. To delineate the flooded area at each interval flood stage, the simulated water-surface profiles were combined with a Digital Elevation Model (DEM) of the study area by using Geographic Information System (GIS) software. The DEM consisted of bare-earth elevations within the study area and was derived from a Light Detection And Ranging (LiDAR) dataset having a 3.28-foot horizontal resolution. These flood-inundation maps, along with online information regarding current stages from USGS streamgage and forecasted stages from the NWS, provide emergency management and local residents with critical information for flood response activities such as evacuations, road closures, and post-flood recovery efforts.
NASA Astrophysics Data System (ADS)
Prasetyo, Y.; Yuwono, B. D.; Ramadhanis, Z.
2018-02-01
The reclamation program carried out in most cities in North Jakarta is directly adjacent to the Jakarta Bay. Beside this program, the density of population and development center in North Jakarta office has increased the need for underground water excessively. As a result of these things, land subsidence in North Jakarta area is relatively high and so intense. The research methodology was developed based on the method of remote sensing and geographic information systems, expected to describe the spatial correlation between the land subsidence and flood phenomenon in North Jakarta. The DInSAR (Differential Interferometric Synthetic Aperture Radar) method with satellite image data Radar (SAR Sentinel 1A) for the years 2015 to 2016 acquisitions was used in this research. It is intended to obtain a pattern of land subsidence in North Jakarta and then combined with flood patterns. For the preparation of flood threat zoning pattern, this research has been modeling in spatial technique based on a weighted parameter of rainfall, elevation, flood zones and land use. In the final result, we have obtained a flood hazard zonation models then do the overlap against DInSAR processing results. As a result of the research, Geo-hazard modelling has a variety results as: 81% of flood threat zones consist of rural area, 12% consists of un-built areas and 7% consists of water areas. Furthermore, the correlation of land subsidence to flood risk zone is divided into three levels of suitability with 74% in high class, 22% in medium class and 4% in low class. For the result of spatial correlation area between land subsidence and flood risk zone are 77% detected in rural area, 17% detected in un-built area and 6% detected in a water area. Whereas the research product is the geo-hazard maps in North Jakarta as the basis of the spatial correlation analysis between the land subsidence and flooding phenomena.double point.
Kinsman, Nicole; Gibbs, Ann E.; Nolan, Matt
2015-01-01
For extensive and remote coastlines, the absence of high-quality elevation models—for example, those produced with lidar—leaves some coastal populations lacking one of the essential elements for mapping shoreline positions or flood extents. Here, we compare seven different elevation products in a lowlying area in western Alaska to establish their appropriateness for coastal mapping applications that require the delineation of elevation-based vectors. We further investigate the effective use of a Structure from Motion (SfM)-derived surface model (vertical RMSE<20 cm) by generating a tidal datum-based shoreline and an inundation extent map for a 2011 flood event. Our results suggest that SfM-derived elevation products can yield elevation-based vector features that have horizontal positional uncertainties comparable to those derived from other techniques. We also provide a rule-of-thumb equation to aid in the selection of minimum elevation model specifications based on terrain slope, vertical uncertainties, and desired horizontal accuracy.
Framework for National Flood Risk Assessment for Canada
NASA Astrophysics Data System (ADS)
Elshorbagy, A. A.; Raja, B.; Lakhanpal, A.; Razavi, S.; Ceola, S.; Montanari, A.
2016-12-01
Worldwide, floods have been identified as a standout amongst the most widely recognized catastrophic events, resulting in the loss of life and property. These natural hazards cannot be avoided, but their consequences can certainly be reduced by having prior knowledge of their occurrence and impact. In the context of floods, the terms occurrence and impact are substituted by flood hazard and flood vulnerability, respectively, which collectively define the flood risk. There is a high need for identifying the flood-prone areas and to quantify the risk associated with them. The present study aims at delivering flood risk maps, which prioritize the potential flood risk areas in Canada. The methodology adopted in this study involves integrating various available spatial datasets such as nightlights satellite imagery, land use, population and the digital elevation model, to build a flexible framework for national flood risk assessment for Canada. The flood risk framework assists in identifying the flood-prone areas and evaluating the associated risk. All these spatial datasets were brought to a common GIS platform for flood risk analysis. The spatial datasets deliver the socioeconomic and topographical information that is required for evaluating the flood vulnerability and flood hazard, respectively. Nightlights have been investigated as a tool to be used as a proxy for the human activities to identify areas with regard to economic investment. However, other datasets, including existing flood protection measures, we added to identify a realistic flood assessment framework. Furthermore, the city of Calgary was used as an example to investigate the effect of using Digital Elevation Models (DEMs) of varying resolutions on risk maps. Along with this, the risk map for the city was further enhanced by including the population data to give a social dimension to the risk map. Flood protection measures play a major role by significantly reducing the flood risk of events with a specific return period. An analysis to update the risk maps when information on protection measures is available was carried out for the city of Winnipeg, Canada. The proposed framework is a promising approach to identify and prioritize flood-prone areas, which are in need of intervention or detailed studies.
76 FR 8965 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-16
... buildings. Comments on any aspect of the Flood Insurance Study and FIRM, other than the proposed BFEs, will.... Approximately 1,320 None +410 feet upstream of Uncle Duck Road. Hall Branch At the Shaws Creek None +426...
76 FR 58436 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-21
.... Approximately 105 feet None [caret]500 upstream of Haihai Street. Shallow Flooding Approximately 2.8 miles None 2 Hawaii County. northeast of the intersection of Ka'Ulu Street and 'Ahinahina Place. Shallow... and Naupaka Kai Place. [[Page 58438
77 FR 59767 - Changes in Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... are in accordance with the National Flood Insurance Act of 1968, 42 U.S.C. 4001 et seq., and with 44.... Commissioners, 7375 Powell Road, Wildwood, FL 34785. New Mexico: Bernalillo (FEMA City of Albuquerque October 4...
Using Levee Setbacks to Increase Floodplain Connectivity and Reduce Flood Risk
NASA Astrophysics Data System (ADS)
Dahl, T. A.; Echevarria-Doyle, W.
2017-12-01
Levees typically constrain flood flows to within the main channel, isolating the river from its natural floodplain. Levees limit the areal and temporal extents of flooding, but can increase flood peaks, alter ecosystems, and cause scour. In order to mitigate these effects, some groups have begun moving portions of levees further away from the main channel, creating setback levees. Here we describe a series of levee setback scenarios for a hypothetical river that were modeled with the unsteady, 2D-hydraulic model AdH. In our scenarios, the water surface elevations were reduced both at the location of the levee setback and for some distance upstream. The models also show that the floodplain roughness can have a greater effect on the reduction in water surface elevation than the size of the levee setback. Groups planning levee setbacks can use these results to help guide their designs.
Tsunami vs Infragravity Surge: Statistics and Physical Character of Extreme Runup
NASA Astrophysics Data System (ADS)
Lynett, P. J.; Montoya, L. H.
2017-12-01
Motivated by recent observations of energetic and impulsive infragravity (IG) flooding events - also known as sneaker waves - we will present recent work on the relative probabilities and dynamics of extreme flooding events from tsunamis and long period wind wave events. The discussion will be founded on videos and records of coastal flooding by both recent tsunamis and IG, such as those in the Philippines during Typhoon Haiyan. From these observations, it is evident that IG surges may approach the coast as breaking bores with periods of minutes; a very tsunami-like character. Numerical simulations will be used to estimate flow elevations and speeds from potential IG surges, and these will be compared with similar values from tsunamis, over a range of different beach profiles. We will examine the relative rareness of each type of flooding event, which for large values of IG runup is a particularly challenging topic. For example, for a given runup elevation or flooding speed, the related tsunami return period may be longer than that associated with IG, implying that deposit information associated with such elevations or speeds are more likely to be caused by IG. Our purpose is to provide a statistical and physical discriminant between tsunami and IG, such that in areas exposed to both, a proper interpretation of overland transport, deposition, and damage is possible.
Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.
2018-01-01
Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor.
Estimation of Damage Costs Associated with Flood Events
NASA Astrophysics Data System (ADS)
Andrews, T. A.; Wauthier, C.; Zipp, K.
2017-12-01
This study investigates the possibility of creating a mathematical function that enables the estimation of flood-damage costs. We begin by examining the costs associated with past flood events in the United States. The data on these tropical storms and hurricanes are provided by the National Oceanic and Atmospheric Administration. With the location, extent of flooding, and damage reparation costs identified, we analyze variables such as: number of inches rained, land elevation, type of landscape, region development in regards to building density and infrastructure, and population concentration. We seek to identify the leading drivers of high flood-damage costs and understand which variables play a large role in the costliness of these weather events. Upon completion of our mathematical analysis, we turn out attention to the 2017 natural disaster of Texas. We divide the region, as we did above, by land elevation, type of landscape, region development in regards to building density and infrastructure, and population concentration. Then, we overlay the number of inches rained in those regions onto the divided landscape and apply our function. We hope to use these findings to estimate the potential flood-damage costs of Hurricane Harvey. This information is then transformed into a hazard map that could provide citizens and businesses of flood-stricken zones additional resources for their insurance selection process.
Floods at Mount Clemens, Michigan
Wiitala, S.W.; Ash, Arlington D.
1962-01-01
The approximate areas inundated during the flood of April 5-6, 1947, by Clinton River, North Branch and Middle Branch of Clinton River, and Harrington Drain, in Clinton Township, Macomb County, Mich., are shown on a topographic map base to record the flood hazard in graphical form. The flood of April 1947 is the highest known since 1934 and probably since 1902. Greater floods are possible, but no attempt was made to define their probable overflow limits.The Clinton River Cut-Off Canal, a flood-relief channel which diverts flow directly into Lake St. Clair from a point about 1500 feet downstream from Gratiot Avenue (about 9 miles upstream from the mouth) has been in operation since October 1951. The approximate limits of overflow that would results from a flood equivalent in discharge to that of April 1947, and occurring with the Cut-Off Canal in operation, are also shown. Although the Cut-Off Canal may reduce the frequency and depth of flooding it will not necessarily eliminate future flooding in the area. Improvements and additions to the drainage systems in the basin, expanding urbanization, new highways, and other cultural changes may influence the inundation pattern of future floods.The preparation of this flood inundation map was financed through a cooperative agreement between Clinton Township, Macomb County, Mich., and the U.S. Geological Survey.Backwater curves used to define the profile for a hypothetical flood on the Clinton River downstream from Moravian Drive, equivalent in discharge to the 1947 flood, but occurring with the present Cut-Off Canal in operation; flood stage established at the gaging station on Clinton River at Mount Clemens; and supplementary floodmark elevations were furnished by the Corps of Engineers.Bench-mark elevations and field survey data, used in the analysis of floods on Harrington Drain, were furnished by the Macomb County Drain Commission.
Roland, Mark A.; Hoffman, Scott A.
2011-01-01
Streamflow data, water-surface-elevation profiles derived from a Hydrologic Engineering Center River Analysis System hydraulic model, and geographical information system digital elevation models were used to develop a set of 18 flood-inundation maps for an approximately 5-mile reach of the West Branch Susquehanna River near the Borough of Jersey Shore, Pa. The inundation maps were created by the U.S. Geological Survey in cooperation with the Susquehanna River Basin Commission and Lycoming County as part of an ongoing effort by the National Oceanic and Atmospheric Administration's National Weather Service to focus on continued improvements to the flood forecasting and warning abilities in the Susquehanna River Basin and to modernize flood-forecasting methodologies. The maps, ranging from 23.0 to 40.0 feet in 1-foot increments, correspond to river stage at the U.S. Geological Survey streamgage 01549760 at Jersey Shore. The electronic files used to develop the maps were provided to the National Weather Service for incorporation into their Advanced Hydrologic Prediction Service website. The maps are displayed on this website, which serves as a web-based floodwarning system, and can be used to identify areas of predicted flood inundation associated with forecasted flood-peak stages. During times of flooding or predicted flooding, these maps can be used by emergency managers and the public to take proactive steps to protect life and reduce property damage caused by floods.
Wang, Qiang; Yuan, Xingzhong; Willison, J H Martin; Zhang, Yuewei; Liu, Hong
2014-01-01
Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in the drawdown area.
Wang, Qiang; Yuan, Xingzhong; Willison, J.H.Martin; Zhang, Yuewei; Liu, Hong
2014-01-01
Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in the drawdown area. PMID:24971514
Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.
2014-01-01
Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the Woonasquatucket and Moshassuck Rivers.
Flooding Frequency Alters Vegetation in Isolated Wetlands
Haag, Kim H.; Lee, Terrie M.
2006-01-01
Many isolated wetlands in central Florida occur as small, shallow depressions scattered throughout the karst topography of the region. In these wetlands, the water table approaches land surface seasonally, and water levels and flooding frequency are largely determined by differences between precipitation and evapotranspiration. Because much of the region is flat with little topographic relief, small changes in wetland water levels can cause large changes in wetland surface area. Persistent changes in wetland flooding frequencies, as a result of changes in rainfall or human activity, can cause a substantial change in the vegetation of thousands of acres of land. Understanding the effect that flooding frequency has on wetland vegetation is important to assessing the overall ecological status of wetlands. Wetland bathymetric mapping, when combined with water-level data and vegetation assessments, can enable scientists to determine the frequency of flooding at different elevations in a wetland and describe the effects of flooding frequency on wetland vegetation at those elevations. Five cypress swamps and five marshes were studied by the U.S. Geological Survey (USGS) during 2000-2004, as part of an interdisciplinary study of isolated wetlands in central Florida (Haag and others, 2005). Partial results from two of these marshes are described in this report.
Spatial patterns of water-dispersed seed deposition along stream riparian gradients
Moinier, Sophie; van Gogh, Iris; Timmers, Robert; van Deelen, Joost J.; Verhoeven, Jos T. A.; Soons, Merel B.
2017-01-01
Riparian ecosystems along streams naturally harbour a high plant diversity with many increasingly endangered species. In our current heavily modified and fragmented catchments, many of these species are sensitive to dispersal limitation. Better understanding of riparian plant dispersal pathways is required to predict species (re-)colonization potential and improve success rates of stream and riparian zone conservation and restoration. Dispersal by water (hydrochory) is an important mechanism for longitudinal and lateral dispersal of riparian species. Crucially for recruitment potential, it also influences the elevation along the riparian hydrological gradient where seeds become deposited. Due to the complex interplay between abiotic and biotic factors, however, it remains unclear how exactly patterns in seed deposition are formed. We compared hydrochorous and non-hydrochorous seed deposition, and quantified patterns of seed deposition along the bare substrate of newly created stream riparian gradients. Water levels were monitored and seed deposition was measured with seed traps along the full range of riparian hydrological conditions (from permanently flooded to never flooded). Average seed numbers and species richness were significantly higher in flooded than in non-flooded seed traps (5.7 and 1.5 times higher, respectively). Community-weighted trait means indicated that typically water-dispersed seeds were more dominant in flooded than in non-flooded seed traps and gradually decreased in concentration from the channel to the upland. Moreover, highly buoyant seeds accumulated at the average water line, and clear elevational sorting of non-buoyant seeds occurred within the floodplain. These results establish a critical role of flooding in shaping patterns of seed deposition along the riparian gradient, delivering many seeds of typical riparian species to riparian zones and depositing them at species-specific elevations as influenced by seed traits, suggesting species-specific dispersal pathways. This shows that hydrochory likely has important consequences for riparian vegetation development and that flooding forms a key process for successful restoration. PMID:28957365
76 FR 20606 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... source(s) Location of referenced ground [caret] Communities affected elevation ** Elevation in meters (MSL) Effective Modified Sevier County, Utah, and Incorporated Areas Albinus Canyon Approximately 400... Creek Split Flow Approximately 400 feet None +5435 Town of Joseph. downstream of State Highway 118. At...
LiDAR and IFSAR-Based Flood Inundation Model Estimates for Flood-Prone Areas of Afghanistan
NASA Astrophysics Data System (ADS)
Johnson, W. C.; Goldade, M. M.; Kastens, J.; Dobbs, K. E.; Macpherson, G. L.
2014-12-01
Extreme flood events are not unusual in semi-arid to hyper-arid regions of the world, and Afghanistan is no exception. Recent flashfloods and flashflood-induced landslides took nearly 100 lives and destroyed or damaged nearly 2000 homes in 12 villages within Guzargah-e-Nur district of Baghlan province in northeastern Afghanistan. With available satellite imagery, flood-water inundation estimation can be accomplished remotely, thereby providing a means to reduce the impact of such flood events by improving shared situational awareness during major flood events. Satellite orbital considerations, weather, cost, data licensing restrictions, and other issues can often complicate the acquisition of appropriately timed imagery. Given the need for tools to supplement imagery where not available, complement imagery when it is available, and bridge the gap between imagery based flood mapping and traditional hydrodynamic modeling approaches, we have developed a topographic floodplain model (FLDPLN), which has been used to identify and map river valley floodplains with elevation data ranging from 90-m SRTM to 1-m LiDAR. Floodplain "depth to flood" (DTF) databases generated by FLDPLN are completely seamless and modular. FLDPLN has been applied in Afghanistan to flood-prone areas along the northern and southern flanks of the Hindu Kush mountain range to generate a continuum of 1-m increment flood-event models up to 10 m in depth. Elevation data used in this application of FLDPLN included high-resolution, drone-acquired LiDAR (~1 m) and IFSAR (5 m; INTERMAP). Validation of the model has been accomplished using the best available satellite-derived flood inundation maps, such as those issued by Unitar's Operational Satellite Applications Programme (UNOSAT). Results provide a quantitative approach to evaluating the potential risk to urban/village infrastructure as well as to irrigation systems, agricultural fields and archaeological sites.
Global coastal flood hazard mapping
NASA Astrophysics Data System (ADS)
Eilander, Dirk; Winsemius, Hessel; Ward, Philip; Diaz Loaiza, Andres; Haag, Arjen; Verlaan, Martin; Luo, Tianyi
2017-04-01
Over 10% of the world's population lives in low-lying coastal areas (up to 10m elevation). Many of these areas are prone to flooding from tropical storm surges or extra-tropical high sea levels in combination with high tides. A 1 in 100 year extreme sea level is estimated to expose 270 million people and 13 trillion USD worth of assets to flooding. Coastal flood risk is expected to increase due to drivers such as ground subsidence, intensification of tropical and extra-tropical storms, sea level rise and socio-economic development. For better understanding of the hazard and drivers to global coastal flood risk, a globally consistent analysis of coastal flooding is required. In this contribution we present a comprehensive global coastal flood hazard mapping study. Coastal flooding is estimated using a modular inundation routine, based on a vegetation corrected SRTM elevation model and forced by extreme sea levels. Per tile, either a simple GIS inundation routine or a hydrodynamic model can be selected. The GIS inundation method projects extreme sea levels to land, taking into account physical obstructions and dampening of the surge level land inwards. For coastlines with steep slopes or where local dynamics play a minor role in flood behavior, this fast GIS method can be applied. Extreme sea levels are derived from the Global Tide and Surge Reanalysis (GTSR) dataset. Future sea level projections are based on probabilistic sea level rise for RCP 4.5 and RCP 8.5 scenarios. The approach is validated against observed flood extents from ground and satellite observations. The results will be made available through the online Aqueduct Global Flood Risk Analyzer of the World Resources Institute.
Tortorelli, R.L.
1996-01-01
The flash flood in southwestern Oklahoma City, Oklahoma, May 8, 1993, was the result of an intense 3-hour rainfall on saturated ground or impervious surfaces. The total precipitation of 5.28 inches was close to the 3-hour, 100-year frequency and produced extensive flooding. The most serious flooding was on Twin, Brock, and Lightning Creeks. Four people died in this flood. Over 1,900 structures were damaged along the 3 creeks. There were about $3 million in damages to Oklahoma City public facilities, the majority of which were in the three basins. A study was conducted to determine the magnitude of the May 8, 1993, flood peak discharge in these three creeks in southwestern Oklahoma City and compare these peaks with published flood estimates. Flood peak-discharge estimates for these creeks were determined at 11 study sites using a step-backwater analysis to match the flood water-surface profiles defined by high-water marks. The unit discharges during peak runoff ranged from 881 cubic feet per second per square mile for Lightning Creek at SW 44th Street to 3,570 cubic feet per second per square mile for Brock Creek at SW 59th Street. The ratios of the 1993 flood peak discharges to the Federal Emergency Management Agency 100-year flood peak discharges ranged from 1.25 to 3.29. The water-surface elevations ranged from 0.2 foot to 5.9 feet above the Federal Emergency Management Agency 500-year flood water-surface elevations. The very large flood peaks in these 3 small urban basins were the result of very intense rainfall in a short period of time, close to 100 percent runoff due to ground surfaces being essentially impervious, and the city streets acting as efficient conveyances to the main channels. The unit discharges compare in magnitude to other extraordinary Oklahoma urban floods.
1980-10-01
a bakery , a gas station, and the Linden Street bridge were flooded during the March 1977 storm. Flooding also occurred on the Southwest Branch...and service station, one bakery , and five other commercial establishments. Most of these structures are not suited to being elevated above the design...of a shopping plaza and a fast-food franchise in the flood plain on West Housatonic Street (Route 20). The following three alternate plans of
Kim, Moon H.; Ritz, Christian T.; Arvin, Donald V.
2012-01-01
Potential wetland extents were estimated for a 14-mile reach of the Wabash River near Terre Haute, Indiana. This pilot study was completed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS). The study showed that potential wetland extents can be estimated by analyzing streamflow statistics with the available streamgage data, calculating the approximate water-surface elevation along the river, and generating maps by use of flood-inundation mapping techniques. Planning successful restorations for Wetland Reserve Program (WRP) easements requires a determination of areas that show evidence of being in a zone prone to sustained or frequent flooding. Zone determinations of this type are used by WRP planners to define the actively inundated area and make decisions on restoration-practice installation. According to WRP planning guidelines, a site needs to show evidence of being in an "inundation zone" that is prone to sustained or frequent flooding for a period of 7 consecutive days at least once every 2 years on average in order to meet the planning criteria for determining a wetland for a restoration in agricultural land. By calculating the annual highest 7-consecutive-day mean discharge with a 2-year recurrence interval (7MQ2) at a streamgage on the basis of available streamflow data, one can determine the water-surface elevation corresponding to the calculated flow that defines the estimated inundation zone along the river. By using the estimated water-surface elevation ("inundation elevation") along the river, an approximate extent of potential wetland for a restoration in agricultural land can be mapped. As part of the pilot study, a set of maps representing the estimated potential wetland extents was generated in a geographic information system (GIS) application by combining (1) a digital water-surface plane representing the surface of inundation elevation that sloped in the downstream direction of flow and (2) land-surface elevation data. These map products from the pilot study will aid the NRCS and its partners with the onsite inundation-zone verification in agricultural land for a potential restoration and will assist in determining at what elevation to plant hardwood trees for increased survivability on ground above frequently flooded terraces.
Simulation of Columbia River Floods in the Hanford Reach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waichler, Scott R.; Serkowski, John A.; Perkins, William A.
Columbia River water elevations and flows in the Hanford Reach affect the environment and facilities along the shoreline, including movement of contaminants in groundwater, fish habitat, and infrastructure subject to flooding. This report describes the hydraulic simulation of hypothetical flood flows using the best available topographic and bathymetric data for the Hanford Reach and the Modular Aquatic Simulation System in 1 Dimension (MASS1) hydrodynamic model. The MASS1 model of the Hanford Reach was previously calibrated to field measurements of water surface elevations. The current model setup can be used for other studies of flow, water levels, and temperature in themore » Reach. The existing MASS1 channel geometry and roughness and other model configuration inputs for the Hanford Reach were used for this study, and previous calibration and validation results for the model are reprinted here for reference. The flood flows for this study were simulated by setting constant flow rates obtained from the U.S. Army Corps of Engineers (USACE) for the Columbia, Snake, and Yakima Rivers, and a constant water level at McNary Dam, and then running the model to steady state. The discharge levels simulated were all low-probability events; for example, a 100-year flood is one that would occur on average every 100 years, or put another way, in any given year there is a 1% chance that a discharge of that level or higher will occur. The simulated floods and their corresponding Columbia River discharges were 100-year (445,000 cfs), 500-year (520,000 cfs), and the USACE-defined Standard Project Flood (960,000 cfs). The resulting water levels from the steady-state floods can be viewed as “worst case” outcomes for the respective discharge levels. The MASS1 output for water surface elevations was converted to the North American Vertical Datum of 1988 and projected across the channel and land surface to enable mapping of the floodplain for each scenario. Floodplain maps show that for the 100-year and 500-year discharge levels, flooding is mainly confined to the topographic trench that is the river channel. The flooded area for the Standard Project Flood extends out of the channel area in some places, particularly in the 100-F Area. All of the output from the simulations have been archived and are available for future investigations in the Hanford Reach.« less
Hydrologic and Hydraulic Analyses of Selected Streams in Lorain County, Ohio, 2003
Jackson, K. Scott; Ostheimer, Chad J.; Whitehead, Matthew T.
2003-01-01
Hydrologic and hydraulic analyses were done for selected reaches of nine streams in Lorain County Ohio. To assess the alternatives for flood-damage mitigation, the Lorain County Engineer and the U.S. Geological Survey (USGS) initiated a cooperative study to investigate aspects of the hydrology and hydraulics of the nine streams. Historical streamflow data and regional regression equations were used to estimate instantaneous peak discharges for floods having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Drainage areas of the nine stream reaches studied ranged from 1.80 to 19.3 square miles. The step-backwater model HEC-RAS was used to determine water-surface-elevation profiles for the 10-year-recurrence-interval (10-year) flood along a selected reach of each stream. The water-surface pro-file information was used then to generate digital mapping of flood-plain boundaries. The analyses indicate that at the 10-year flood elevation, road overflow results at numerous hydraulic structures along the nine streams.
78 FR 52954 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 52953 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 29763 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 45938 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 20337 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 43905 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 48882 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 14576 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 5820 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 32678 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 14318 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 9406 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 43904 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 36216 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 64521 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 36220 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 32679 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 36219 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-17
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 29761 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice... and FIS report are the basis of the floodplain management measures that a community is required either...
78 FR 14316 - Final Flood Hazard Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA-2013-0002] Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice... and FIS report are the basis of the floodplain management measures that a community is required either...
76 FR 54415 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-01
... following flooding sources: Bear Creek (backwater effects from Cumberland River), Big Renox Creek (backwater effects from Cumberland River), Big Whetstone Creek (backwater effects from Cumberland River), Big Willis... River), Big Renox Creek (backwater effects from Cumberland River), Big Whetstone Creek (backwater...
NOAA predicts moderate flood potential in Midwest, elevated risk of ice
individuals to become weather-ready by ensuring you have real-time access to flood warnings via mobile devices and marine resources. Join us on Facebook, Twitter and our other social media channels. NOAA Mobile
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Definitions. 67.2 Section 67.2 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program APPEALS FROM PROPOSED FLOOD ELEVATION...
Flood profiles for lower Brooker Creek, west-central Florida
Murphy, W.R.
1978-01-01
Flood heights are computed for a range of recurrence intervals for a 12.6 mile reach of Brooker Creek, beginning at the mouth at Lake Tarpon. A Geological Survey step-backwater computer program, E431, was used in these analyses using: (1) Stream and valley cross-section geometry and roughness data; (2) Recurrence interval flood-peak discharges; (3) Recurrence interval starting elevations; (4) Gaging station stage-discharge relations. Flood heights may be plotted versus distance above stream mouth and connected to construct flood profiles. They may also be used to indicate areas of inundation on detailed topographic maps.
Upper and Lower Hamburg Bend 2011 Flood Evaluation on the Missouri River near Hamburg, Iowa
2017-01-01
flood event. The evaluation required numerical hydrodynamic modeling of a pre-2011 flood condition of the entire floodplain and main channel with...59 Figure 50. Task 6.3 elevation differences for the degraded main channel and chutes...Table 2. Model computed flow splits between the chutes and the main channel . ............................. 76 ERDC/CHL TR-17-1 vii Preface This
Flood of May 5 and 6, 1981, Mobile, Alabama
Ming, C.O.; Nelson, G.H.
1981-01-01
Heavy and intense rainfall in the late evening and early morning hours, May 5 and 6, 1981, caused widespread flooding along streams and low-lying areas in the port city of Mobile, Ala. More than 12 inches of rain fell between 6 p.m. May 5, and 3 a.m. May 6. Damage caused by flooding was estimated by the Mobile Department of Public Works to be millions of dollars. Maximum water surface elevations on streams in the area were 2 to 3 feet higher than those that occurred during a similar flood in April 1980. The approximate extent of flooding delineated on maps using flood profiles obtained by field surveys will provide a basis for formulating effective flood plain zoning that could minimize existing and future flood problems. (USGS)
76 FR 62329 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
...] Communities affected elevation * * Elevation in meters (MSL) Effective Modified Anne Arundel County, Maryland... + 8 + 10 Unincorporated Areas of Crain Highway. Anne Arundel County. Approximately 400 feet None + 105... American Vertical Datum. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. * * BFEs to be changed...
76 FR 39800 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... referenced ground [caret] Communities affected elevation ** Elevation in meters (MSL) Effective Modified.... Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. [[Page 39802... Unincorporated Areas Logsboro Road. of Edgecombe County. Approximately 400 feet +91 +90 downstream of the...
NASA Astrophysics Data System (ADS)
Lotsari, Eliisa; House, Kyle; Alho, Petteri; Baker, Victor
2017-04-01
Analyses of the evolutionary trajectories of braided ephemeral channels enable identification of trends, magnitudes and periodicity of the processes that affect the channels. In addition to infrequent great floods, relatively frequent, small discharge events have been shown to be important for the evolution of ephemeral channels. However, evolutionary trajectories have rarely been studied in small ephemeral rivers, that predominantly transport gravel, cobles and boulders. Ephemeral tributary channels typify the Colorado River basin (USA), and two examples are Bronco Creek and Eldorado Canyon. These streams experienced extraordinary great floods in 1971 and 1974 respectively, and they are comparable to each other in both basin size, and climatic conditions. Annual precipitation is less than 50 cm, and the average temperature of each month is above 7°C. More importantly, earlier studies have shown similarities in the hydraulics and geomorphic characteristics of the extraordinary floods, which removed the pre-flood bar and braiding structure from the channels. Thus, these two channels are ideal for comparisons of their evolutionary trajecties. Moreover, the availability of high-resolutions aerial photographs for both channels since 1954 allowed for decadal analyses. Our research has analyzed and compared the long-term evolutionary trajectories of the two ephemeral channels within Colorado River Basin based on series of aerial photos and digital elevation models. (1) We detected the development and adjustment of braiding since the extraordinary floods. The detected parameters include the braiding index, bar area and number, channel area and width, confluence number and density, and the proportion of inactive and active areas. (2) We also analyzed the time required for the ephemeral river system to evolve back to its prior state before the high magnitude floods. Finally, (3) we analyzed whether these temporal changes in channel evolution can reveal new insights as to climatic and environmental conditions for these un-gauged basins.
NASA Astrophysics Data System (ADS)
Zamora-Reyes, D.; Hirschboeck, K. K.; Paretti, N. V.
2012-12-01
Bulletin 17B (B17B) has prevailed for 30 years as the standard manual for determining flood frequency in the United States. Recently proposed updates to B17B include revising the issue of flood heterogeneity, and improving flood estimates by using the Expected Moments Algorithm (EMA) which can better address low outliers and accommodate information on historical peaks. Incorporating information on mixed populations, such as flood-causing mechanisms, into flood estimates for regions that have noticeable flood heterogeneity can be statistically challenging when systematic flood records are short. The problem magnifies when the population sample size is reduced by decomposing the record, especially if multiple flood mechanisms are involved. In B17B, the guidelines for dealing with mixed populations focus primarily on how to rule out any need to perform a mixed-population analysis. However, in some regions mixed flood populations are critically important determinants of regional flood frequency variations and should be explored from this perspective. Arizona is an area with a heterogeneous mixture of flood processes due to: warm season convective thunderstorms, cool season synoptic-scale storms, and tropical cyclone-enhanced convective activity occurring in the late summer or early fall. USGS station data throughout Arizona was compiled into a database and each flood peak (annual and partial duration series) was classified according to its meteorological cause. Using these data, we have explored the role of flood heterogeneity in Arizona flood estimates through composite flood frequency analysis based on mixed flood populations using EMA. First, for selected stations, the three flood-causing populations were separated out from the systematic annual flood series record and analyzed individually. Second, to create composite probability curves, the individual curves for each of the three populations were generated and combined using Crippen's (1978) composite probability equations for sites that have two or more independent flood populations. Finally, the individual probability curves generated for each of the three flood-causing populations were compared with both the site's composite probability curve and the standard B17B curve to explore the influence of heterogeneity using the 100-year and 200-year flood estimates as a basis of comparison. Results showed that sites located in southern Arizona and along the abrupt elevation transition zone of the Mogollon Rim exhibit a better fit to the systematic data using their composite probability curves than the curves derived from standard B17B analysis. Synoptic storm floods and tropical cyclone-enhanced floods had the greatest influence on 100-year and 200-year flood estimates. This was especially true in southern Arizona, even though summer convective floods are much more frequent and therefore dominate the composite curve. Using the EMA approach also influenced our results because all possible low outliers were censored by the built-in Multiple Grubbs-Beck Test, providing a better fit to the systematic data in the upper probabilities. In conclusion, flood heterogeneity can play an important role in regional flood frequency variations in Arizona and that understanding its influence is important when making projections about future flood variations.
Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas.
Schenk, P M; McKinnon, W B; Gwynn, D; Moore, J M
2001-03-01
Large regions of the jovian moon Ganymede have been resurfaced, but the means has been unclear. Suggestions have ranged from volcanic eruptions of liquid water or solid ice to tectonic deformation, but definitive high-resolution morphological evidence has been lacking. Here we report digital elevation models of parts of the surface of Ganymede, derived from stereo pairs combining data from the Voyager and Galileo spacecraft, which reveal bright, smooth terrains that lie at roughly constant elevations 100 to 1,000 metres below the surrounding rougher terrains. These topographic data, together with new images that show fine-scale embayment and burial of older features, indicate that the smooth terrains were formed by flooding of shallow structural troughs by low-viscosity water-ice lavas. The oldest and most deformed areas (the 'reticulate' terrains) in general have the highest relative elevations, whereas units of the most common resurfaced type--the grooved terrain--lie at elevations between those of the smooth and reticulate terrains. Bright terrain, which accounts for some two-thirds of the surface, probably results from a continuum of processes, including crustal rifting, shallow flooding and groove formation. Volcanism plays an integral role in these processes, and is consistent with partial melting of Ganymede's interior.
Jorgenson, Torre; Ely, Craig R.
2001-01-01
We measured surface elevations, stage of annual peak flooding, and sedimentation along 10 toposequences across coastal ecosystems on the Yukon-Kuskokwim (Y-K) Delta in western Alaska during 1994-1998 to assess some of the physical processes affecting ecosystem distribution. An ecotype was assigned to each of 566 points, and differences in elevations among 24 ecotypes were analyzed within individual toposequences and across the 40 x 40-km study area. Elevations of vegetated ecotypes along the longest toposequence rose only ~1 m over a distance of 7.5 km, and mean elevations of most ecotype across the study area were within 0.5 m of mean higher-high water (1.47 m). During 1994 to 1998, monitoring of annual peak stage using crest gauges revealed flooding from the highest fall storm surge reached 2.58 m (1.11 m above mean higher-high tide). In each year, only the highest surface was unaffected by flooding. Mean annual sedimentation rates for the various ecotypes were 8.0 ram/y on tidal flats, 1.4 to 3.8 mm/y on the active floodplain, 0.1-0.2 mm/y on the inactive floodplain, and 0 mm/ on the abandoned floodplain. If sea levels in the Bering Sea rise ~0.5 m by 2100, as predicted by some on a global basis, large portions of the coastal margin of the delta could be regularly inundated by water during high tides, and even the highest ecotypes could be affected by storm surges. Predicting the extent of future inundation is difficult, however, because of the changes in the ground-surface elevation through sedimentation, organic matter accumulation, and permafrost development.
22. Top 30/5. Plan of superstructure elevations. Wyoming Valley ...
22. Top 30/5. Plan of superstructure elevations. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA
Minervini, J.M.; O'Connor, J. E.; Wells, R.E.
2003-01-01
Glacial Lake Missoula, impounded by the Purcell Trench lobe of the late Pleistocene Cordilleran Icesheet, repeatedly breached its ice dam, sending floods as large as 2,500 cubic kilometers racing across the Channeled Scabland and down the Columbia River valley to the Pacific Ocean. Peak discharges for some floods exceeded 20 million cubic meters per second. At valley constrictions along the flood route, floodwaters temporarily ponded behind each narrow zone. One such constriction at Kalama Gap-northwest of Portland-backed water 120-150 meters high in the Portland basin, and backflooded 200 km south into Willamette Valley. Dozens of floods backed up into the Willamette Valley, eroding 'scabland' channels, and depositing giant boulder gravel bars in areas of vigorous currents as well as bedded flood sand and silt in backwater areas. Also, large chunks of ice entrained from the breached glacier dam rafted hundreds of 'erratic' rocks, leaving them scattered among the flanking foothills and valley bottom. From several sources and our own mapping, we have compiled information on many of these features and depict them on physiographic maps derived from digital elevation models of the Portland Basin and Willamette Valley. These maps show maximum flood inundation levels, inundation levels associated with stratigraphic evidence of repeated floodings, distribution of flood deposits, and sites of ice-rafted erratics. Accompanying these maps, a database lists locations, elevations, and descriptions of approximately 400 ice-rafted erratics-most compiled from early 20th-century maps and notes of A.M. Piper and I.S. Allison.
Hydrologic and hydraulic analyses at Akin Branch and Cayce Valley Branch, Columbia, Tennessee
Outlaw, George S.
1993-01-01
The U.S. Geological Survey, in cooperation with the City of Columbia, Tennessee, conducted hydrologic and hydraulic analyses at Akin Branch and Cayce Valley Branch in the Little Bigby Creek watershed, Columbia, Tennessee, from 1990 through 1991. Results of the analyses can be used by city planners in the development of plans to replace several deteriorating and inadequate drainage structures. Akin Branch and Cayce Valley Branch drain small watersheds of 1.69 and 1.04 square miles, respectively. Flood discharges for 5-, lo-, and 25-year recurrence-interval storm events were calculated at the stream mouths using flood-frequency relations developed for use at small urban streams in Tennessee. For each stream, flood discharges at locations upstream from the mouth were calculated by subdividing the watershed and assigning a percentage of the discharge at the mouth, based on drainage area, to each subarea. Flood profiles for the selected recurrence-interval flood discharges were simulated for Akin Branch and Cayce Valley Branch for existing conditions and conditions that might exist if drainage improvements such as larger culverts and bridges and channel improvements are constructed. The results of the simulations were used to predict changes in flood elevations that might result from such drainage improvements. Analyses indicate that reductions in existing flood elevations of as much as 2.1 feet for the 5-year flood at some sites on Akin Branch and as much as 3.8 feet for the 5-year flood at some sites on Cayce Valley Branch might be expected with the drainage improvements.
77 FR 66788 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
...). Specifically, it addresses the following flooding sources: Demarest Kill, East Branch Hackensack River, Golf... Hackensack River, Golf Course Brook, Hackensack River, Minisceongo Creek, Nauraushaun Brook, North Branch... Town of Clarkstown. Old Mill Road. Approximately 600 feet +150 +151 downstream of Rockland Lake. Golf...
NASA Astrophysics Data System (ADS)
Coomes, Oliver T.; Lapointe, Michel; Templeton, Michael; List, Geneva
2016-08-01
The annual flood cycle is an important driver of ecosystem structure and function in large tropical rivers such as the Amazon. Riparian peasant communities rely on river fishing and annual floodplain agriculture, closely adapted to the recession phase of the flood pulse. This article reports on a poorly documented but important challenge facing farmers practicing flood recessional agriculture along the Amazon river: frequent, unpredictable stage reversals (repiquetes) which threaten to ruin crops growing on channel bars. We assess the severity of stage reversals for rice production on exposed river mud bars (barreales) near Iquitos, Peru. Crop loss risk is estimated based on a quantitative analysis of 45 years of daily Amazon stage data and field data from floodplain communities nearby in the Muyuy archipelago, upstream of Iquitos. Rice varieties selected, elevations of silt rich bars where rice is sown, as well as planting and harvest dates are analyzed in the light of the timing, frequencies and amplitudes of observed stage reversals that have the potential to destroy growing rice. We find that unpredictable stage reversals can produce substantial crop losses and shorten significantly the length of average growing seasons on lower elevation river bars. The data reveal that local famers extend planting down to lower bar elevations where the mean probabilities of re-submergence before rice maturity (due to reversals) approach 50%, below which they implicitly consider that the risk of crop loss outweighs the potential reward of planting.
75 FR 31361 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
... source(s) elevation ground [caret] Elevation Communities affected in meters (MSL) Effective Modified... meter. ** BFEs to be changed include the listed downstream and upstream BFEs, and include BFEs located... Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the listed downstream and...
75 FR 28511 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... referenced ground [caret] Communities affected elevation Elevation in meters (MSL) Effective Modified... feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed... upstream of the confluence with Williams Creek. Green River At Western Kentucky +400 +401 Town of Rockport...
75 FR 31342 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
... referenced ground [caret] Communities affected elevation Elevation in meters (MSL) Effective Modified... Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the listed downstream and... ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the...
Simulations of cataclysmic outburst floods from Pleistocene Glacial Lake Missoula
Denlinger, Roger P.; O'Connell, D. R. H.
2009-01-01
Using a flow domain that we constructed from 30 m digital-elevation model data of western United States and Canada and a two-dimensional numerical model for shallow-water flow over rugged terrain, we simulated outburst floods from Pleistocene Glacial Lake Missoula. We modeled a large, but not the largest, flood, using initial lake elevation at 1250 m instead of 1285 m. Rupture of the ice dam, centered on modern Lake Pend Oreille, catastrophically floods eastern Washington and rapidly fills the broad Pasco, Yakima, and Umatilla Basins. Maximum flood stage is reached in Pasco and Yakima Basins 38 h after the dam break, whereas maximum flood stage in Umatilla Basin occurs 17 h later. Drainage of these basins through narrow Columbia gorge takes an additional 445 h. For this modeled flood, peak discharges in eastern Washington range from 10 to 20 × 106 m3/s. However, constrictions in Columbia gorge limit peak discharges to 6 m3/s and greatly extend the duration of flooding. We compare these model results with field observations of scabland distribution and high-water indicators. Our model predictions of the locations of maximum scour (product of bed shear stress and average flow velocity) match the distribution of existing scablands. We compare model peak stages to high-water indicators from the Rathdrum-Spokane valley, Walulla Gap, and along Columbia gorge. Though peak stages from this less-than-maximal flood model attain or exceed peak-stage indicators along Rathdrum-Spokane valley and along Columbia gorge, simulated peak stages near Walulla Gap are 10–40 m below observed peak-stage indicators. Despite this discrepancy, our match to field observations in most of the region indicates that additional sources of water other than Glacial Lake Missoula are not required to explain the Missoula floods.
Contrasting Impact of Floodwaters on Coastal Biogeochemistry in the Great Barrier Reef Ecosystem
NASA Astrophysics Data System (ADS)
Crosswell, J.; Carlin, G.; Steven, A. D.; Franklin, H.
2017-12-01
Delivery of terrestrial nutrients and organic material to Great Barrier Reef (GBR) ecosystem is dominated by episodic floods, and the biogeochemical impact of these events is expected to change under future climatic and man-made stressors. Here we compare the biogeochemical response of coastal waters to floods from two of the largest catchment in northeast Australia, the Fitzroy and Normanby River basins. The Fitzroy catchment is dominated by agriculture, principally grazing, whereas the Normanby is regarded as relatively pristine. High-resolution spatial surveys showed that flood plumes in both regions extended 30-100 km seaward and along the coast, reaching interior reefs and islands of the GBR. Floodwaters from both catchments were characterized by elevated nutrients and dissolved organic carbon (DOC), but the fate of flood-borne material in coastal waters showed significant differences between the two systems. In the Normanby, nutrients were rapidly removed near the estuary mouth and chlorophyll a was low throughout the adjacent Princess Charlotte Bay. Elevated DOC levels persisted in the Normanby flood plume, but high dissolved oxygen and low CO2 throughout a stratified water column suggested that the flood-borne organic matter was recalcitrant. By contrast, there was a clear source of DOC and nutrients in the hypoxic bottom waters of the Fitzroy flood plume, suggesting that the flood-borne particulate organic matter was highly labile. Decoupling of autotrophic surface waters from heterotrophic bottom waters in the Fitzroy plume supported a large phytoplankton bloom that extended >100 km and led to low pH and low light availability at nearby reefs. The contrasting impact of major floods in these two coastal systems appeared to be primarily driven by the quality of flood-borne organic matter, as well as differences in coastal morphology.
Terrestrial laser scanning of anthropogenic beach berms for urban flood defense
NASA Astrophysics Data System (ADS)
Sanders, B. F.; Schubert, J.; Gallien, T.; Shakeri Majd, M.
2013-12-01
Globally, over 20 million people reside below present high tide levels and as many as 200 million are vulnerable to flooding during extreme events. In California, coastal flooding is driven by a combination of factors such as high astronomical tides, waves, storm surge, and other fluctuations such as those caused by the El Nino Southern Oscillation (ENSO), and climate change is likely to exacerbate those factors testing the limits of coastal flood defenses. Beaches provide natural flood protection during storms by mitigating the effects of high water levels and wave runup, and a process known as beach berming can be used to temporarily enhance the ability of beaches to withstand overtopping. In cases where beaches serve as primary protection for development, anthropogenic berms may represent an attractive management option for temporarily addressing future flood hazards. Terrestrial laser scanning (TLS) or lidar has emerged as a valuable technology for capturing the three dimensional geometry of complex surfaces and objects, and in the context of coastal flood prediction mobile TLS could prove invaluable by quickly mapping beach topography before an imminent flood threat and reducing associated uncertainties in coastal flood forecasting systems. The research presented here highlights the results of a field campaign to document the initial conditions and dynamic erosion of anthropogenic berms using TLS. On three occasions in February and March of 2012, a prototype berm was constructed on the foreshore of the city of Newport Beach, CA at low tide, and was scanned to document its initial shape, and then scanned in near-continuous fashion with the rising tide to characterize its subsequent erosion. The purpose is two-fold: (1) to measure the performance of the TLS system relative to accuracy and assess strengths and drawbacks that are likely to bear on the suitability of this technology to support flood prediction as described above, and (2) to develop a better understanding of how typical southern California berms respond to hydrodynamic stresses (rising tides and waves). Near continuous scanning leads to a 4D model (3 spatial coordinates plus time) of the berm that documents its gradual erosion, including a characterization of how the berm crest and volume change over time, which offers primary data on how anthropogenic berms can be expected to perform during a flood event. Results reveal that TLS, when referenced to a temporary bench mark leveled to within 1.5 cm by RTK-GPS, achieves an absolute vertical accuracy of less than 3 cm (VRMSE) with a scan resolution of 10 cm or finer. In regards to berm morphodynamics, a near-linear increase in tide elevation over two hours caused a non-linear lowering of the berm crest with time, characterized first by a gradual and then by a rapid change. The overall erosion of the berm correlates best with the swash elevation in relation to the berm toe elevation. Across the three berm experiments, erosion begins when the swash elevation is about 13% below the toe of the berm, relative to the initial berm height, and the berm is overtopped when the swash elevation is 25-30% of the initial berm height and the berm is 70-75% eroded by volume.