Science.gov

Sample records for final focus superconducting

  1. A Superconducting Magnet Upgrade of the ATF2 Final Focus

    SciTech Connect

    Parker B.; Anerella M.; Escallier J.; He P.; Jain A.; Marone A.; Wanderer P.; Wu K.C.; Hauviller C.; Marin E.; Tomas R.; Zimmermann F.; Bolzon B.; Jeremie A.; Kimura N.; Kubo K.; Kume T.; Kuroda S.; Okugi T.; Tauchi T.; Terunuma N.; Tomaru T.; Tsuchiya K.; Urakawa J.; Yamamoto A.; Bambabe P.; Coe P.; Urner D.; Seryi A.; Spencer C.; White G.

    2010-05-23

    The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC QD0 R and D FF prototype under construction at BNL.

  2. A Superconducting Magnet Upgrade of the ATF2 Final Focus

    SciTech Connect

    Parker, Brett; Anerella, Michael; Escallier, John; He, Ping; Jain, Animesh; Marone, Andrew; Wanderer, Peter; Wu, Kuo-Chen; Bambade, Philip; Bolzon, Benoit; Jeremie, Andrea; Coe, Paul; Urner, David Hauviller, Claude; Marin, Eduardo; Tomas, Rogelio; Zimmermann, Frank; Kimura, Nobuhiro; Kubo, Kiyoshi; Kume, Tatsuya Kuroda, Shigeru; /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /KEK, Tsukuba /SLAC /SLAC /SLAC

    2012-07-05

    The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC QD0 R&D FF prototype under construction at BNL.

  3. The cryogenics of the LHC interaction region final focus superconducting magnets

    SciTech Connect

    Byrns, R.; et al., FNAL

    1998-08-01

    The LHC interaction region final focus magnets will include four superconducting quadrupoles cooled with pressurized, static superfluid helium at 1.9 K. The heat absorbed in pressurized He II, which may be more than 10 Watts per meter due to dynamic heating from the particle beam halo, will be transported to saturated He II at 1.8 K and removed by the 16 mbar vapor. This paper discusses the conceptual design for the cryogenics of the interaction region final focus superconducting magnets and the integration of this magnet system into the overall LHC cryogenic system.

  4. RECENT PROGRESS DESIGNING COMPACT SUPERCONDUCTING FINAL FOCUS MAGNETS FOR THE ILC.

    SciTech Connect

    PARKER, B.

    2005-10-17

    QDO, the final focus (FF) magnet closest to the interaction point (P) for the ILC 20 mr crossing angle layout, must provide strong focusing yet be adjustable to accommodate collision energy changes for energy scans and low energy calibration ruling. But it must be compact to allow disrupted beam and Beamstrahlung coming from the IP to pass outside into an independent instrumented beam line to a high-power beam absorber. The QDO design builds upon BNL experience making direct wind superconducting magnets. We present test results for a QDO magnetic test prototype and introduce a new shielded magnet design, to replace the previous side-by-side design concept, that greatly simplifies the field correction scheme and holds promise of working for crossing angles as small as 14 mr.

  5. Final focus nomenclature

    SciTech Connect

    Erickson, R.

    1986-08-08

    The formal names and common names for all devices in the final focus system of the SLC are listed. The formal names consist of a device type designator, microprocessor designator, and a four-digit unit number. (LEW)

  6. Final focus test beam

    SciTech Connect

    Not Available

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  7. Focus on superconducting properties of iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2012-10-01

    Since the discovery of iron-based superconductors, much attention has been given to the exploration of new superconducting compounds. Numerous superconducting iron compounds have been found and categorized into five groups: LnFeAsO (Ln = lanthanide), BaFe2As2, KFeAs, FeSe and FeAs with perovskite blocking layers. Among them, FeSe has the simplest crystal structure. Since the crystal structure is composed of only superconducting Fe layers, the FeSe family must be the best material to investigate the mechanism of iron-based superconductivity. FeSe shows very strong pressure effects. The superconducting transition temperature (Tc) of FeSe is approximately 8 K at ambient pressure. However Tc dramatically increases up to 37 K under applied pressure of 4-6 GPa. This is the third highest Tc value among binary superconductors, surpassed only by CsC60 under pressure (Tc = 38 K) and MgB2 (Tc = 39 K). On the other hand, despite FeTe having a crystal structure analogous to that of FeSe, FeTe shows antiferromagnetic properties without superconductivity. Doping of small ions, either Se or S, however, can induce superconductivity in FeTe1-xSex or FeTe1-xSx . The superconductivity is very weak for small x values, and annealing under certain conditions is required to obtain strong superconductivity, for instance annealing in oxygen or alcoholic beverages such as red wine. The following selection of papers describe many important experimental and theoretical studies on iron chalcogenide superconductors including preparation of single crystals, bulk samples and thin films; NMR measurements; photoemission spectroscopy; high-pressure studies; annealing effects and research on new BiS2-based superconductors. I hope this focus issue will help researchers understand the frontiers of iron chalcogenide superconductors and assist in the discovery of new phenomena related to iron-based superconductivity.

  8. FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2008-12-01

    Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  9. New final focus system for the SLAC linear collider

    SciTech Connect

    Toge, N.; Ash, W.W.; Chao, Y.C.; Erickson, R.; Gray, R.; Mansour, D.; Spencer, C.M.; Ziemann, V. ); Band, H. . Dept. of Physics); Bazarko, A.O. . Dept. of Physics); Hertzbach, S.S.; Kofler, R.R. . Dept. of Physics); Turk, J. (Yale Univ., New

    1991-05-01

    The final focus system of the SLC has been upgraded by replacing the final quadrupole magnets with higher gradient superconducting magnets positioned closer to the interaction point. The parameters of the new system have been chosen to be compatible with the SLD detector with a minimum of changes to other final focus components. Commissioning plans for the new system are also presented. 5 refs., 1 fig.

  10. Final focus system for TLC

    SciTech Connect

    Oide, K.

    1988-11-01

    A limit of the chromaticity correction for the final focus system of a TeV Linear Collider (TLC) is investigated. As the result, it becomes possible to increase the aperture of the final doublet with a small increase of the horizontal US function. The new optics design uses a final doublet of 0.5 mm half-aperture and 1.4 T pole-tip field. The length of the system is reduced from 400 m to 200 m by several optics changes. Tolerances for various machine errors with this optics are also studied. 5 refs., 7 figs., 2 tabs.

  11. A Superconducting Solenoid for Heavy Ion Beam Focusing

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Kubo, Toshiyuki; Kawaguchi, Takeo; Imai, Yoshio; Minato, Tsuneaki; Seo, Kazutaka

    1997-05-01

    A superconducting solenoid has been constructed to use as a final focusing element at the entrance of the projectile fragment separator RIPS (T. Kubo et al, Nucl. Instr. & Meth. B70 (1992) 309) at RIKEN. The design field on axis is 6 tesla, the average current density being 9,600 A/cm^2. The overall coil length is 1.1 meter, and the coil is divided into three sections of equal length to ease winding and possibly to distribute the stored energy. A major feature of the magnet is that cooling is conductive without LHe involved, using a cryocooler directly attached onto the coil. The solenoid is currently being tested, and the test results will be presented. After magnet testing, the solenoid will be installed in the beamline. The results of beam experiment will also be presented, along with calculation results with TRANSPORT.

  12. Neutronic calculations for a final focus system

    NASA Astrophysics Data System (ADS)

    Mainardi, E.; Premuda, F.; Lee, E.

    2001-05-01

    For heavy-ion fusion and for "liquid-protected" reactor designs such as HYLIFE-II (Moir et al., Fusion Technol. 25 (1994); HYLIFE-II-Progress Report, UCID-21816, 4-82-100), a mixture of molten salts made of F 10, Li 6, Li 7, Be 9 called flibe allows highly compact target chambers. Smaller chambers will have lower costs and will allow the final-focus magnets to be closer to the target with decreased size of the focus spot and of the driver, as well as drastically reduced costs of IFE electricity. Consequently the superconducting coils of the magnets closer to the chamber will suffer higher radiation damage though they can stand only a certain amount of energy deposited before quenching. The scope of our calculations is essentially the total energy deposited on the magnetic lens system by fusion neutrons and induced γ-rays. Such a study is important for the design of the final focus system itself from the neutronic point of view and indicates some guidelines for a design with six magnets in the beam line. The entire chamber consists of 192 beam lines to provide access of heavy ions that will implode the pellet. A 3-D transport calculation of the radiation penetrating through ducts that takes into account the complexity of the system, requires Monte Carlo methods. The development of efficient and precise models for geometric representation and nuclear analysis is necessary. The parameters are optimized thanks to an accurate analysis of six geometrical models that are developed starting from the simplest. Different configurations are examined employing TART 98 (D.E. Cullen, Lawrence Livermore National Laboratory, UCRL-ID-126455, Rev. 1, November, 1997) and MCNP 4B (Briesmeister (Ed.), Version 4B, La-12625-m, March 1997, Los Alamos National Laboratory): two Monte Carlo codes for neutrons and photons. The quantities analyzed include: energy deposited by neutrons and gamma photons, values of the total fluence integrated on the whole energy range, neutron fluence spectrum

  13. Superconducting-wire fabrication. Final report

    SciTech Connect

    Glad, W.E.; Chase, G.G.

    1990-05-01

    Experiments were done leading to the fabrication of high-temperature superconducting composite wire. Bulk superconductor was characterized by using optical microscopy, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. The chemical compatibility of superconducting materials with a number of metal sheathing candidates was tested, with silver offering the best compatibility. Wire was fabricated by drawing 0.250-inch-diameter silver tubing packed with superconducting powder. Single core wires were drawn to 0.037-inch diameter. The best critical current performance (660 A/cm2) for leaded bismuth 2-2-2-3 material was achieved by flattening single-core wire before heat treatment.

  14. Superconducting focusing quadrupoles for heavy ion fusion experiments

    SciTech Connect

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  15. Focused-ion-beam-induced deposition of superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Sadki, E. S.; Ooi, S.; Hirata, K.

    2004-12-01

    Superconducting nanowires, with a critical temperature of 5.2K, have been synthesized using an ion-beam-induced deposition, with a gallium focused ion beam and tungsten carboxyl, W(CO)6, as precursor. The films are amorphous, with atomic concentrations of about 40%, 40%, and 20% for W, C, and Ga, respectively, 0K values of the upper critical field and coherence length of 9.5T and 5.9nm, respectively, are deduced from the resistivity data at different applied magnetic fields. The critical current density is Jc=1.5×105A /cm2 at 3K. This technique can be used as a template-free fabrication method for superconducting devices.

  16. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    SciTech Connect

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  17. Certification of Superconducting Solenoid-Based Focusing Lenses

    SciTech Connect

    DiMarco, E.Joseph; Hemmati, Ali M.; Orris, Darryl F.; Page, Thomas M.; Rabehl, Roger H.; Tartaglia, Michael A.; Terechkine, Iouri; Tompkins, John C.

    2010-07-29

    The first production focusing lens for the HINS beam line at Fermilab has been assembled into a cryostat and tested. A total of 5 devices will be tested before they are installed in the low energy section of the HINS beam line, which uses copper Crossbar-H (CH) style RF cavities. One of the tested CH-section lens assemblies includes a pair of weak orthogonal steering dipoles nested within a strong focusing solenoid, and has six vapor cooled power leads. The other device has only the strong focusing solenoid, and utilizes a single pair of HTS power leads. The production test program is designed to measure the thermal performance of the cryostat, minimum cooling requirements for the HTS leads, quench performance of all superconducting components, and precise determination of the magnetic axis and field angles. Results and future plans for the first production device tests are presented.

  18. PREFACE: Focus on superconductivity in Fe-based systems Focus on superconductivity in Fe-based systems

    NASA Astrophysics Data System (ADS)

    Prozorov, Ruslan; Chubukov, Andrey; Meingast, Christoph; Putti, Marina

    2012-08-01

    competes with long-range magnetic order, and magnetic fluctuations are considered by some to be of the utmost importance for the pairing mechanism. Others argue that orbital fluctuations, possibly in combination with phonons, are crucial for the pairing. Fe-based superconductors show extremely large upper critical fields and relatively low electronic anisotropy, which are crucial aspects for power applications. The expectations are high, though it remains unclear what maximal current densities can be supported by a properly designed bulk material with optimal pinning centers. This focus issue of Superconductor Science and Technology is a snapshot of some of the recent progress in materials preparation, experiments and theory. It includes articles on the search for new Fe-based superconductors and on the search for superconductivity at extreme conditions. Particular attention is devoted to: the effects of chemical substitutions; the development of thin films; the introduction of artificial defects to increase critical current density; and a general analysis of vortex physics. The articles on fundamental aspects of superconductivity include: the discussion of various experimental problems; an in-depth analysis of the nodal and nodeless pairing states; the discussion of the pairing mechanism; and the effects of pair-breaking due to disorder. Also discussed are nematic correlations and the coexistence of magnetism and superconductivity. The papers collected in this issue present a detailed review of the accomplishments of the last four years of research into Fe-based superconductors, up to and including last-minute developments. We hope that this combination will make this special section of Superconductor Science and Technology both interesting and useful to a broad spectrum of physicists and materials scientists.

  19. PREFACE: Focus section on superconducting power systems Focus section on superconducting power systems

    NASA Astrophysics Data System (ADS)

    Cardwell, D. A.; Amemiya, N.; Fair, R.

    2012-01-01

    This focus section of Superconductor Science and Technology looks at the properties, technology and applications of (RE)BCO and MgB2 based superconductors for power engineering systems. Both bulk and conductor forms of material are addressed, including elements of materials fabrication and processing, and the measurement of their applied properties for various levels of system application. The areas of research include ac losses in type II materials in power devices, cables and coated conductors, the development of high current dc cables and the application of superconductors in levitation devices, motors and fault current limiters. This focus section presents a broad cross-section of contemporary issues, that represent state-of-the-art for power applications of superconductors, and highlights the areas that require further development if commercial applications of these rapidly emerging materials are to be realised. It contains papers from some of the major groups in the field, including contributions from Europe, the USA and Japan, and describes devices that are relatively close to market.

  20. Final focus system for high intensity beams

    SciTech Connect

    Henestroza, E.; Bieniosek, F.M.; Eylon, S.; Roy, P.K.; Yu, S.S.

    2003-05-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. The NTX final focus system produces a converging beam at the entrance to the neutralized drift section where it focuses to a small spot. The final focus lattice consists of four pulsed quadrupole magnets. The main issues are the control of emittance growth due to high order fields from magnetic multipoles and image fields. We will present experimental results from NTX on beam envelope and phase space distributions, and compare these results with particle simulations using the particle-in-cell code WARP.

  1. Investigation of alternating-phase focusing for superconducting linacs

    SciTech Connect

    Sagalovsky, L.; Delayen, J.R.

    1992-10-01

    The paper describes a new model of alternating-phase focusing (APF) dynamics applicable to ion linacs with short independently controlled superconducting cavities. The equations of motion are derived for a cylindrically symmetric electric field represented by a traveling wave with continuous periodic phase modulation. solutions are obtained and analyzed for both the linear and nonlinear particle motion. Problems of linear stability and overall longitudinal acceptance are solved using standard mathematical techniques for periodic systems; analytical results are obtained. It is shown that the main beam dynamical aspects of APF are adequately described by four parameters: equilibrium synchronous phase, phase modulation amplitude, length of APF period, and incremental energy gain. The model can be applied to study the feasibility of realizing APF in a low-{beta} section of a proton linac.

  2. Investigation of alternating-phase focusing for superconducting linacs

    SciTech Connect

    Sagalovsky, L.; Delayen, J.R.

    1992-01-01

    The paper describes a new model of alternating-phase focusing (APF) dynamics applicable to ion linacs with short independently controlled superconducting cavities. The equations of motion are derived for a cylindrically symmetric electric field represented by a traveling wave with continuous periodic phase modulation. solutions are obtained and analyzed for both the linear and nonlinear particle motion. Problems of linear stability and overall longitudinal acceptance are solved using standard mathematical techniques for periodic systems; analytical results are obtained. It is shown that the main beam dynamical aspects of APF are adequately described by four parameters: equilibrium synchronous phase, phase modulation amplitude, length of APF period, and incremental energy gain. The model can be applied to study the feasibility of realizing APF in a low-{beta} section of a proton linac.

  3. Results from the final focus test beam

    SciTech Connect

    Burke, D.L.; Final Focus Test Beam Collaboration

    1994-07-01

    first experimental results from the Final Focus Test Beam (FFTB) are given in this report. The FFTB has been constructed as a prototype for the final focus system of a future TeV-scale electron-positron linear collider. The vertical dimension of the 47 GeV electron beam form the SLAC linac has been reduced at the focal point of the FFTB by a demagnification of 320 to a beam height of approximately 70 nanometers.

  4. Study of a final focus system for high intensity beams

    SciTech Connect

    Henestroza, Enrique; Eylon, Shmuel; Roy, Prabir K.; Yu, Simon S.; Bieniosek, Frank M.; Shuman, Derek B.; Waldron, William L.

    2004-06-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. The final focus scenario in an HIF driver consists of several large aperture quadrupole magnets followed by a drift section in which the beam space charge is neutralized by a plasma. This beam is required to hit a millimeter-sized target spot at the end of the drift section. The objective of the NTX experiments and associated theory and simulations is to study the various physical mechanisms that determine the final spot size (radius r{sub s}) at a given distance (f) from the end of the last quadrupole. In a fusion driver, f is the standoff distance required to keep the chamber wall and superconducting magnets properly protected. The NTX final quadrupole focusing system produces a converging beam at the entrance to the neutralized drift section where it focuses to a small spot. The final spot is determined by the conditions of the beam entering the quadrupole section, the beam dynamics in the magnetic lattice, and the plasma neutralization dynamics in the drift section. The main issues are the control of emittance growth due to high order fields from magnetic multipoles and image fields. In this paper, we will describe the theoretical and experimental aspects of the beam dynamics in the quadrupole lattice, and how these physical effects influence the final beam size. In particular, we present theoretical and experimental results on the dependence of final spot size on geometric aberrations and perveance.

  5. Diode and Final Focus Simulations for DARHT

    NASA Astrophysics Data System (ADS)

    Hughes, Thomas P.; Welch, Dale R.; Carlson, Randolph L.

    1997-05-01

    We have used the numerical simulation codes uc(ivory,) uc(iprop) and uc(pbguns) to simulate beam dynamics in the diode and final focus of the 4 kA, 20 MV DARHT linear accelerator. A low emittance 4 MV, 4 kA source for a 4-pulse injector was designed using uc(ivory) and uc(pbguns.) Due to the long pulse length (four 70 ns pulses over 1 μsec), we have kept the field stress to < 200 kV/cm over the cathode electrode, and to ≈ 50 kV/cm on the radial insulator stacks. The normalized edge emittance produced by the diode optics is only ≈ 130 mm-mrad. In the final-focus region, we have used uc(iprop) to model the effect of ion emission from the target. The intense electric field of the beam at the 1 mm diameter focal spot produces substantial ion velocities, and, if the space-charge-limited current density can be supplied, significant focal spot degradation may occur due to ion space-charge. Calculations for the ITS test stand, which has a larger focal spot, show that the effect should be observable for H^+ and C^+ ion species. The effect may be lessened if there is insufficient ion density on the target to supply the space-charge-limited current density, or if the ion charge-to-mass ratio is sufficiently large.

  6. ASC 84: applied superconductivity conference. Final program and abstracts

    SciTech Connect

    Not Available

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  7. Linear collider IR and final focus introduction

    SciTech Connect

    Irwin, J.; Burke, D.

    1991-09-01

    The Linear Collider subgroup of the Accelerator Physics working group concerned itself with all aspects of the Next Linear Collider (NLC) design from the end of the accelerating structure to and through the interaction region. Within this region are: (1) a collimation section, (2) muon protection (of the detector from the collimator), (3) final focus system, (4) interaction point physics, and (5) detector masking from synchrotron radiation and beam-beam pair production. These areas of study are indicated schematically in Fig. 1. The parameters for the Next Linear Collider are still in motion, but attention has settled on a handful of parameter sets. Energies under consideration vary from 0.5 to 1.5 TeV in the center of mass, and luminosities vary from 10{sup 33} to 10{sup 34} cm{sup {minus}2}s{sup {minus}1}. To be concrete we chose as a guide for our studies the parameter sets labeled F and G, Table 1 from Palmer. These cover large and small crossing angle cases and 0.4 m to 1.8 m of free length at the interaction point.

  8. Atomic layer epitaxy of superconducting oxides and heterostructures. Final report

    SciTech Connect

    Chang, R.P.; Marks, T.J.

    1998-06-30

    This project focuses on optimizing/understanding the growth and properties of YBCO, TBCCO, and lattice-matched dielectric films as well as YBCO superlattices by MOCVD and POMBE. Emphasis is on bulk film properties as well as film growth, interface evolution, and in situ studies of film growth processes. The objective of this program is to create via novel means and to understand the properties of interfacial growth regions between films of high-temperature superconducting (HTS) materials and insulating metal oxides. Improving the nature of such interfaces is a crucial barrier which must be surmounted before HTS materials can be successfully incorporated on a large scale into a myriad of advanced active and passive electronic device technologies. In addition, low melting-point advanced precursors are to be designed and synthesized for large scale HTS production. Studies of vapor transport properties and stabilities are carried out to assure that these precursors are of HTS manufacturing quality.

  9. Expanded studies of linear collider final focus systems at the Final Focus Test Beam

    SciTech Connect

    Tenenbaum, P.G.

    1995-12-01

    In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research.

  10. Thermal expansion of several materials for superconducting magnets. Final report

    SciTech Connect

    Clark, A.F.; Fujii, G.; Ranney, M.A.

    1981-09-01

    The thermal expansion of several materials used in the construction of high field superconducting magnets has been measured from 4 K to room temperature. The materials were a NbTi and two A15 multifilamentary conductors and several nonmetallic composites made from linen/phenolic, fiberglass/epoxy and superconducting wire/epoxy.

  11. Development of passive superconducting bearings. Phase 3. Final report

    SciTech Connect

    Rao, D.K.

    1993-05-14

    This report documents the work performed by MTI under contract to Strategic Defense Initiative Organization to develop the technology of Superconducting Bearings. This work, had been supported by NASA and DARPA in addition to SDIO. As a result of this work, MTI had developed a passive superconducting bearing that is used to levitate relatively heavy rotors. It used this bearing to levitate a 7 lb rotor and spin at speeds of up to 12,000 rpm. The success of this effort indicates that the superconducting bearings have potential for transition from a mere laboratory curiosity to a functional bearing component in a wider range of practical applications such as cryoturbopumps, miniature cryocoolers and magnetic refrigerators. In addition, MTI had investigated several configurations of using superconductors to support loads along a single axis. The effort was directed to identify a specific configuration that offers a very high stiffness.

  12. Superconducting augmented rail gun (SARG). Final technical report

    SciTech Connect

    Homan, C.G.; Scholz, W.

    1987-02-01

    Both the energy efficiency and projectile velocity of a rail-gun system can be substantially increased by the addition of an adjunct superconducting augmentation coil system. The energy efficiency results from the superconducting coil's ability to recover the rail magnetic field energy normally dissipated at the end of launch in rail guns, by means of a unique application of the flux conservation of property of superconducting coils. The increased velocity results from the augmented Lorentz force due to the augmentation-coil magnetic field. In an idealized system, both the energy efficiency and projectile velocities can be increased by more than 80%, dependent on the magnetic coupling between the rail and augmentation coils. The theoretical evaluation was extended to include dissipative effects which reveal that actual launch efficiencies are increased from 25% (rail gun) to over 50% (SARG). A theoretical analysis of SARG is presented here together with the progress of an experimental demonstrator developer at Benet Weapons Lab.

  13. Sigma matrix reconstruction in the SLC final focus

    SciTech Connect

    Raimaondi, P.; Emma, P.J.; Toge, N.; Walker, N.J.; Ziemann, V.

    1993-05-01

    The knowledge of the Beam Parameters at the entrance of the SLC final focus is important for modeling the final focus optics and predicting spot sizes and angular divergences at the interaction point (IP). It is also an important diagnostic for measuring possible anomalous emittance growth in the SLC Arcs. Reported here is a technique for measuring all the independent beam parameters at the beginning of the final focus. Use is made of the spot size measurements at wire scanners as a function of quadrupole strengths. Results for the SLC 1993 run are presented.

  14. Final Focus Test Team Alighment - A Draft Proposal -

    SciTech Connect

    Fischer, G.E.; /SLAC

    2005-08-12

    In its present form, the Final Focus Test Beam (FFTB) is a transport line designed to transmit 50 GeV electron beams of SLC emittance (3 x 10{sup -10} radian-meters) straight through the central arm of the Beam Switchyard (BSY C line) with a final focus point out in the Research Yard but relatively near the end of the switchyard tunnel. The axis of the incident beam coincides with that of the SLAC linear accelerator; the final focus, some 300 meters downstream of the end of the accelerator, is displaced from this axis by about 2 meters horizontally.

  15. Superconducting augmented rail gun (SARG). Final technical report

    SciTech Connect

    Homan, C.G.; Cummings, C.E.; Fowler, C.M.

    1987-01-01

    Superconducting augmentation consists of a superconducting coil operating in the persistent mode closely coupled magnetically with a normally conducting rail gun. A theoretical investigation of the effect of this system on a rail gun has shown that two benefits occur. Projectile velocities increase by more than 50% and launch efficiencies increase by more than a factor of two depending on the magnetic coupling between the rail and augmentation circuits. Superconducting augmentation will be accomplished using a 4 Tesla dipole magnet. This magnet system, originally designed as an ESCAR bending magnet, has been modified to a warm bore configuration operating in either the persistent of constant current mode powered by 1600-amp DC supplies. These modifications will allow the above rail gun to be inserted and tested in the SARG configuration. Several factors, including magnetic quench protection, reproducibility of results, relatively low magnetic-coupling coefficients, minimization of rail wear, etc, indicated that this experimental evaluation be conducted with an armature device. An advanced armature design is incorporated in the projectiles.

  16. 'Focus on Marshall' Features Final External Tank Rollout

    NASA Video Gallery

    Gumbo, Mardi Gras parades and external tanks. All three share a common bond - they are all New Orleans staples. But for one, it's the final send-off, highlighted on the August episode of "Focus on ...

  17. Collimator wake fields in the SLC final focus

    SciTech Connect

    Zimmermann, F.; Bane, K.L.F.; Ng, C.K.

    1996-06-01

    The SLC final focus system accommodates 29 fixed or adjustable collimators for machine protection and background reduction. By amplifying pulse to pulse orbit variations and by generating emittance growth, collimator wake fields may degrade the beam quality at the interaction point (IP). In the SLC final focus, collimator half apertures are larger than the bunch length, so that the standard collimator wake formula of Bane and Morton does not apply. Numerical wake field calculations for SLC parameters agree quite well with the high frequency impedance of a step out transition. Due to the nature of a final focus system, the wake field kicks from all collimators add coherently, and the overall impact on luminosity can be significant. This paper suggests that collimator wake fields in the final focus provide a possible explanation for the 30% discrepancy between expected and measured luminosity in the 1994/95 SLC run.

  18. High Temperature Superconducting Reciprocating Magnetic Separator Final Report

    SciTech Connect

    James F. Maguire

    2008-06-05

    In 2001, under DOE's Superconductivity Partnership Initiative (SPI), E. I. du Pont de Nemours & Co. (Dupont) was awarded a cost-share contract to build a fully functional full-scale model high temperature superconducting reciprocating magnet unit specifically designed for the koalin clay industry. After competitive bidding, American Superconductor (AMSC) was selected to provide the coil for the magnet. Dupont performed the statement of work until September 2004, when it stopped work, with the concurrence of DOE, due to lack of federal funds. DOE had paid all invoices to that point, and Dupont had provided all cost share. At this same time, Dupont determined that this program did not fit with its corporate strategies and notified DOE that it was not interesting in resuming the program when funding became available. AMSC expressed interest in assuming performance of the Agreement to Dupont and DOE, and in March 2005, this project was transferred to AMSC by DOE amendment to the original contract and Novation Agreement between AMSC and Dupont. Design drawings and some hardware components and subassemblies were transferred to AMSC. However, no funding was obligated by DOE and AMSC never performed work on the project. This report contains a summary of the work performed by Dupont up to the September 04 timeframe.

  19. Theoretical investigation of superconductivity in doped fullerenes. Final report

    SciTech Connect

    Jishi, R.A.

    1995-03-01

    The aim of the research the authors are conducting is to understand the phenomenon of superconductivity in the fullerene system. Towards achieving this goal they have conducted a series of studies and have published several papers quite recently. They have developed a force-constant model for the C60 molecule which accounts for all measured frequencies in C60. The model employs four bond-stretching and four angle-bending force constants that were doped to reproduce the correct values of the frequencies of the Raman-active vibrational modes. The model was successfully applied to higher fullerenes, such as C70 and the effect of doping by alkali metal atoms on the phonon modes in C60 and in C70 was considered. The study of the phonon spectrum in doped C60 and doped C70 is an important step in view of the fact that while doped C60 is superconducting, doped C70 is not. The studies the authors have carried out, combined with studies on the electronic states in doped C70, could elucidate the difference in the electrical properties between these two materials.

  20. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    SciTech Connect

    Sumption, Mike D.; Collings, Edward W.

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  1. Superconducting Focusing Lenses for the SSR1 Cryomodule of PXIE Test Stand at Fermilab

    SciTech Connect

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    2016-01-01

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses in the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. This report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.

  2. Next-Generation Linear Collider Final Focus System Stability Tolerances

    SciTech Connect

    Roy, G.; Irwin, J.; /SLAC

    2007-04-25

    The design of final focus systems for the next generation of linear colliders has evolved largely from the experience gained with the design and operation of the Stanford Linear Collider (SLC) and with the design of the Final Focus Test Beam (FFTB). We will compare the tolerances for two typical designs for a next-generation linear collider final focus system. The chromaticity generated by strong focusing systems, like the final quadrupole doublet before the interaction point of a linear collider, can be canceled by the introduction of sextupoles in a dispersive region. These sextupoles must be inserted in pairs separated by a -I transformation (Chromatic Correction Section) in order to cancel the strong geometric aberrations generated by sextupoles. Designs proposed for both the JLC or NLC final focus systems have two separate chromatic correction sections, one for each transverse plane separated by a ''{beta}-exchanger'' to manipulate the {beta}-function between the two CCS. The introduction of sextupoles and bending magnets gives rise to higher order aberrations (long sextupole and chrome-geometries) and radiation induced aberrations (chromaticity unbalance and ''Oide effect'') and one must optimize the lattice accordingly.

  3. Impact of final-focus ground motion on NLC luminosity

    SciTech Connect

    Irwin, J.; Zimmermann, F.

    1996-06-01

    Vertical displacements of final-focus quadrupoles due to ground motion can cause the two beams of the Next Linear Collider (NLC) to miss each other at the interaction point (IP) and, in addition, will increase the IP spot size, and thus degrade the luminosity, by generating dispersion and skew coupling. The sensitivity of the final-focus optics to plane ground waves is strongly wavelength dependent, which is formally expressed in terms of a lattice-response function. In this paper, the rms beam-beam separation and the rms IP spot-size increase are estimated for the NLC final focus, using the measured ground-motion power spectrum, a realistic orbit-feedback response curve, and the appropriate lattice-response function. The luminosity loss due to ground motion is shown to be insignificant.

  4. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  5. Novel final focus design for future linear colliders.

    PubMed

    Raimondi, P; Seryi, A

    2001-04-23

    The length, complexity, and cost of the present final focus designs for linear colliders grow very quickly with the beam energy. In this Letter, a novel final focus system is presented and compared with the one proposed for the Next Linear Collider (NLC Zeroth-Order Design Report, edited by T. O. Raubenheimer, SLAC Report No. 474, 1996). This new design has fewer optical elements and is much shorter, nonetheless achieving better chromatic properties. Moreover, the new system is more suitable for operation over a larger energy range.

  6. A RECIPE FOR LINEAR COLLIDER FINAL FOCUS SYSTEM DESIGN

    SciTech Connect

    Seryi, Andrei

    2003-05-27

    The design of Final Focus systems for linear colliders is challenging because of the large demagnifications needed to produce nanometer-sized beams at the interaction point. Simple first- and second-order matrix matching have proven insufficient for this task, and minimization of third- and higher-order aberrations is essential. An appropriate strategy is required for the latter to be successful. A recipe for Final Focus design, and a set of computational tools used to implement this approach, are described herein. An example of the use of this procedure is given.

  7. The completed design of the SLC Final Focus System

    SciTech Connect

    Murray, J.J.; Brown, K.L.; Fieguth, T.

    1987-02-01

    The design of the SLC Final Focus System has evolved from its initial conceptual design into its final form. This final design is described including a review of the critical decisions influencing the adoption of particular features. The creation of a feasible design has required that these decisions be tempered by practical considerations such as site constraints, correction of optical errors caused by imperfections, and accommodations requested by engineers and particle detector physicists. As this is the first such system to be built, it is hoped that the experience gained will be useful for the design of future systems.

  8. A Scaled Final Focus Experiment for Heavy Ion Fusion

    SciTech Connect

    MacLaren, Stephan, Alexander

    2000-09-19

    A one-tenth dimensionally scaled version of a final focus sub-system design for a heavy ion fusion driver is built and tested. By properly scaling the physics parameters that relate particle energy and mass, beam current, beam emittance, and focusing field, the transverse dynamics of a driver scale final focus are replicated in a small laboratory beam. The experiment uses a 95 {micro}A beam of 160 keV Cs{sup +} ions to study the dynamics as the beam is brought to a ballistic focus in a lattice of six quadrupole magnets. Diagnostic stations along the experiment track the evolution of the transverse phase space of the beam. The measured focal spot size is consistent with calculations and the report of the design on which the experiment is based. By uniformly varying the strengths of the focusing fields in the lattice, the chromatic effect of a small energy deviation on the spot size can be reproduced. This is done for {+-}1% and {+-}2% shifts and the changes in the focus are measured. Additionally, a 400 {micro}A beam is propagated through the experiment and partially neutralized after the last magnet using electrons released from a hot tungsten filament. The increase in beam current allows for the observation of significant effects on both the size and shape of the focal spot when the electrons are added.

  9. Plasma lens experiments at the Final Focus Test Beam

    SciTech Connect

    Barletta, B. |; Chattopadhyay, S.; Chen, P.

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  10. Plasma lens experiments at the final focus test beam

    SciTech Connect

    Barletta, W.; Chattopadhyay, S.; Chen, P.

    1995-02-01

    The authors intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. They will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam induced tunneling ionization of a working gas--the latter which has never been observed before. The compactness of the device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  11. Performance of the 1994/95 SLC final focus system

    SciTech Connect

    Zimmermann, F.; Barklow, T.; Ecklund, S.

    1995-06-01

    A major upgrade to the SLC final focus was installed in 1994 to eliminate the dominant third-order aberration of the system, and thereby to reduce the vertical beam size at the IP by a factor of two. At low current, the optimal beam size of about 400 nm is now routinely established, and its sensitivity to orbit variations, to changes of emittance and energy spread, and to other beam parameters has been studied. For intensities above 3 {times} 10{sup 10} particles per bunch, tuning is more difficult due to increased fluctuations of energy, orbit, and emittances. Nonetheless, the expected beam size of about 600 nm has been observed. New procedures and diagnostics allow easier tuning and optimization of the final focus, and also a first measurement of the emittance increase in the arcs.

  12. Discussion on Recipe for Design of a Compact Final Focus

    SciTech Connect

    Seryi, Andrei

    2003-02-13

    On the first day of the Nanobeam Workshop [1], several participants commented that they were having difficulties designing a Raimondi-Seryi final focus system with local chromaticity correction [2], and requested a recipe for tuning such a lattice to cancel higher-order aberrations. In response, such a recipe was written and distributed to those interested on the following day. The text of this recipe is reproduced in Sections 1 and 2 with only minor style and language corrections.

  13. First bunch length studies in the SLC South Final Focus

    SciTech Connect

    Zimmerman, F.; Yocky, G.; Whittum, D.H.; Thompson, K.A.; Ng, C.; McCormick, D.; Markiewicz, T.; Bane, K.L.F.

    1998-06-01

    The authors report the first studies of bunch length in collision in an operating linear collider, making use of a new rf bunch length monitor installed in the South Final Focus of the Stanford Linear Collider (SLC) prior to the 1997/98 luminosity run. The theoretical and measured monitor responses to linac injection phase and bunch compressor voltage are described. Correlations with beamstrahlung and luminosity are discussed.

  14. Drift Compression and Final Focus Options for Heavy Ion Fusion

    SciTech Connect

    Hong Qin; Ronald C. Davidson; John J. Barnard; Edward P. Lee

    2005-02-14

    A drift compression and final focus lattice for heavy ion beams should focus the entire beam pulse onto the same focal spot on the target. We show that this requirement implies that the drift compression design needs to satisfy a self-similar symmetry condition. For un-neutralized beams, the Lie symmetry group analysis is applied to the warm-fluid model to systematically derive the self-similar drift compression solutions. For neutralized beams, the 1-D Vlasov equation is solved explicitly, and families of self-similar drift compression solutions are constructed. To compensate for the deviation from the self-similar symmetry condition due to the transverse emittance, four time-dependent magnets are introduced in the upstream of the drift compression such that the entire beam pulse can be focused onto the same focal spot.

  15. Measuring micron size beams in the SLC final focus

    SciTech Connect

    McCormick, D.; Ross, M.; DeBarger, S.

    1994-10-01

    A pair of high resolution wire scanners have been built and installed in the SLC final focus. The final focus optics uses a set of de-magnifying telescopes, and an ideal location for a beam size monitor is at one of the magnified image points of the interaction point. The image point chosen for these scanners is in the middle of a large bend magnet. The design beam spots here are about 2 microns in the vertical and 20 microns in the horizontal plane. The scanners presented a number of design challenges. In this paper we discuss the mechanical design of the scanner, and fabrication techniques of its ceramic wire support card which holds many 4 and 7 um carbon wires. Accurate motion of the wire during a scan is critical. In this paper we describe tests of stepper motors, gear combinations, and radiation hardened encoders needed to produce the required motion with a step resolution of 80 nanometers. Also presented here are the results of scattered radiation detector placement studies carried out to optimize the signal from the 4 micron wires. Finally, we present measurements from the scanner.

  16. Fabrication of superconducting nanowires from ultrathin MgB{sub 2} films via focused ion beam milling

    SciTech Connect

    Zhang, Chen; Wang, Da; Liu, Zheng-Hao; Zhang, Yan; Ma, Ping; Feng, Qing-Rong; Wang, Yue Gan, Zi-Zhao

    2015-02-15

    High quality superconducting nanowires were fabricated from ultrathin MgB{sub 2} films by a focused ion beam milling technique. The precursor MgB{sub 2} films in 10 nm thick were grown on MgO substrates by using a hybrid physical-chemical vapor deposition method. The nanowires, in widths of about 300-600 nm and lengths of 1 or 10 μm, showed high superconducting critical temperatures (T{sub c}’s) above 34 K and narrow superconducting transition widths (ΔT{sub c}’s) of 1-3 K. The superconducting critical current density J{sub c} of the nanowires was above 5 × 10{sup 7} A/cm{sup 2} at 20 K. The high T{sub c}, narrow ΔT{sub c}, and high J{sub c} of the nanowires offered the possibility of making MgB{sub 2}-based nano-devices such as hot-electron bolometers and superconducting nanowire single-photon detectors with high operating temperatures at 15-20 K.

  17. The Final Focus Test Beam laser referene system

    SciTech Connect

    Bressler, V.E.; Ruland, R.E.

    1993-05-01

    The original design for the SLAC linac included an alignment reference system with 270 diffraction gratings situated along the 3000 meter linac. These gratings have provided SLAC with a global reference line repeatable to within 200 micro meters. For the Final Focus Test Beam, this laser system has been extended and 13 new diffraction gratings have been installed. Improvements targets and the availability of new instruments allows us to evaluate the performance of the laser reference system at the 510 micro meter level. An explanation of the system and the results of our evaluation are presented.

  18. Diode and final-focus simulations for DARHT

    SciTech Connect

    Hughes, T.P.; Welch, D.R.; Carlson, R.L.

    1997-10-01

    Beam dynamics calculations for the injector and final-focus region of a 4 kA, 20 MeV linear induction accelerator are presented. The injector is a low-emittance 4 MeV thermionic or photocathode diode designed to produce four 70 ns pulses over 2 {micro}sec. Due to the long total pule length, the authors have kept the field stress to < 200 kV/cm over the cathode electrode, and to {approx} 50 kV/cm on the radial insulator stacks. The normalized edge emittance produced by the diode is only {approx} 0.019 cm-rad. In the final-focus region, the authors have modeled the effect of ion emission from the target. The intense electric field of the beam at the 1-mm-diameter focal spot produces substantial ion velocities, and, if the space-charge-limited current density can be supplied, significant focal spot degradation may occur due to ion space-charge. Calculations for the existing Integrated Test Stand, which has a larger focal spot, show that the effect should be observable for H{sup +} and C{sup +} ion species. The effect is lessened if there is insufficient ion density on the target to supply the space-charge-limited current density, or if the ion charge-to-mass ratio is sufficiently small.

  19. First Generation Final Focusing Solenoid For NDCX-I

    SciTech Connect

    Seidl, P. A.; Waldron, W.

    2011-11-09

    This report describes the prototype final focus solenoid (FFS-1G), or 1st generation FFS. In order to limit eddy currents, the solenoid winding consists of Litz wire wound on a non-conductive G-10 tube. For the same reason, the winding pack was inserted into an electrically insulating, but thermally conducting Polypropylene (Cool- Poly© D1202) housing and potted with highly viscous epoxy (to be able to wick the single strands of the Litz wire). The magnet is forced-air cooled through cooling channels. The magnet was designed for water cooling, but he cooling jacket cracked, and therefore cooling (beyond natural conduction and radiation) was exclusively by forced air. Though the design operating point was 8 Tesla, for the majority of running on NDCX-1 it operated up to about 5 Tesla. This was due mostly from limitations of voltage holding at the leads, where discharges at higher pulsed current damaged the leads. Generation 1 was replaced by the 2nd generation solenoid (FFS-2G) about a year later, which has operated reliably up to 8 Tesla, with a better lead design and utilizes water cooling. At this point, FFS-1G was used for plasma source R&D by LBNL and PPPL. The maximum field for those experiments was reduced to 3 Tesla due to continued difficulty with the leads and because higher field was not essential for those experiments. The pulser for the final focusing solenoid is a SCR-switched capacitor bank which produces a half-sine current waveform. The pulse width is ~800us and a charge voltage of 3kV drives ~20kA through the magnet producing ~8T field.

  20. An RF bunch length monitor for the SLC final focus

    SciTech Connect

    Zimmermann, F.; Yocky, G.; Whittum, D.

    1997-05-01

    In preparation for the 1997 SLC run, a novel RF bunch-length monitor has been installed in the SLC South Final Focus. The monitor consists of a ceramic gap in the beam pipe, a 160-ft long X-band waveguide (WR90), and a set of dividers, tapers and microwave detectors. Electromagnetic fields radiated through the ceramic gap excite modes in the nearby open-ended X-band waveguide, which transmits the beam-induced signal to a radiation-free shack outside of the beamline vault. There, a combination of power dividers, tapers, waveguides, and crystal detectors is used to measure the signal power in 4 separate frequency channels between 7 and 110 GHz. For typical rms bunch lengths of 0.5-2 mm in the SLC, the bunch frequency spectrum can extend up to 100 GHz. In this paper, the authors present the overall monitor layout, describe MAFIA calculations of the signal coupled into the waveguide based on a detailed model of the complex beam-pipe geometry, estimate the final power level at the RF conversion points, and report the measured transmission properties of the installed waveguide system.

  1. Electron beam final focus system for Thomson scattering at ELBE

    NASA Astrophysics Data System (ADS)

    Krämer, J. M.; Budde, M.; Bødker, F.; Irman, A.; Jochmann, A.; Kristensen, J. P.; Lehnert, U.; Michel, P.; Schramm, U.

    2016-09-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  2. Growth and study of superconducting C60 compounds. Final report, October 1992-September 1995

    SciTech Connect

    Liu, J.Z.; Shelton, R.N.; Klavins, P.; Irons, S.H.; Chang, I.C.

    1995-12-01

    A home made semi-automatic feeding plasma arc reactor was used for the mass production fullerenes. Large, high quality single crystals of C60 up to 3mm in length have been grown by both the open-end and sealed vapor transport techniques. Millimeter-sized superconducting single crystals of K3C60 were successfully produced by a sophisticated vacuum doping method. Magnetic and superconducting properties were obtained. Information on the field and temperature dependences of the critical current density J(sub c) and the H(c1) have been reported. New compounds of Yb(x) C60 with x=1-6 were synthesized using a liquid ammonia route at low T and in an inert atmosphere. It turns out that these compounds are amorphous and have a spin glass behavior at a temperature T<15K. Finally, new superconductors with T(sub c) of 134K were found in the system of Tl(1-x)HgBa2Ca2Cu3O(8+y).

  3. FINAL REPORT: NATIONAL CHILDREN'S STUDY FOCUS GROUPS - FOLLOW-UP

    EPA Science Inventory

    The purpose of this work assignment was to add to our knowledge of the issues that will affect

    recruitment and retention of pregnant women into the National Children's Study by conducting 14 focus

    groups comprised of pregnant women, couples, and parents of young chi...

  4. Optimization of the Processing Parameters of High Temperature Superconducting Glass-Ceramics: Center Director's Discretionary Fund Final Report

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Kaukler, W. F.

    1993-01-01

    A number of promising glass forming compositions of high Tc superconducting Ba-Sr-Ca-Cu-O (BSCCO) materials were evaluated for their glass-ceramic crystallization ability. The BSCCO ceramics belonging to the class of superconductors in the Ba-Sr-Ca-Cu-O system were the focus of this study. By first forming the superconducting material as a glass, subsequent devitrification into the crystalline (glass-ceramic) superconductor can be performed by thermal processing of the glass preform body. Glass formability and phase formation were determined by a variety of methods in another related study. This study focused on the nucleation and crystallization of the materials. Thermal analysis during rapid cooling aids in the evaluation of nucleation and crystallization behavior. Melt viscosity is used to predict glass formation ability.

  5. Focusing Electron Beams at SLAC.

    ERIC Educational Resources Information Center

    Taylor, Richard L.

    1993-01-01

    Describes the development of a set of magnets that focus high-energy electron and positron beams causing them to collide, annihilate each other, and generate new particles. Explains how dipoles bend the beam, how quadrupoles focus the beam, how the focal length is calculated, and the superconducting final focus. (MDH)

  6. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    SciTech Connect

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC

    2006-09-28

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  7. An ion-optical design study of a carbon-ion rotating gantry with a superconducting final bending magnet

    NASA Astrophysics Data System (ADS)

    Bokor, J.; Pavlovič, M.

    2016-03-01

    Ion-optical designs of an isocentric ion gantry with a compact curved superconducting final bending magnet are presented. The gantry is designed for transporting carbon-therapy beams with nominal kinetic energy of 400 MeV/u, which corresponds to the penetration range of C6+ beam in water of about 28 cm. In contrast to other existing designs, we present a "hybrid" beam transport system containing a single superconducting element - the last bending magnet. All other elements are based on conventional warm technology. Ion-optical properties of such a hybrid system are investigated in case of transporting non-symmetric (i.e. different emittance patterns in the horizontal and vertical plane) beams. Different conditions for transporting the non-symmetric beams are analyzed aiming at finding the optimal, i.e. the most compact, gantry version. The final gantry layout is presented including a 2D parallel scanning. The ion-optical and scanning properties of the final gantry design are described, discussed and illustrated by computer simulations performed by WinAGILE.

  8. Finite element analysis of time-independent superconductivity. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Schuler, James J.

    1993-01-01

    The development of electromagnetic (EM) finite elements based upon a generalized four-potential variational principle is presented. The use of the four-potential variational principle allows for downstream coupling of EM fields with the thermal, mechanical, and quantum effects exhibited by superconducting materials. The use of variational methods to model an EM system allows for a greater range of applications than just the superconducting problem. The four-potential variational principle can be used to solve a broader range of EM problems than any of the currently available formulations. It also reduces the number of independent variables from six to four while easily dealing with conductor/insulator interfaces. This methodology was applied to a range of EM field problems. Results from all these problems predict EM quantities exceptionally well and are consistent with the expected physical behavior.

  9. Superconductivity and magnetism in rapidly solidified perovskites. Final report, September 1, 1988--August 31, 1991

    SciTech Connect

    O`Handley, R.C.; Kalonji, G.

    1991-12-31

    The report is divided into six parts, reflecting major thrusts of our work since 1987. The six areas are: molecular orbital theory of high {Tc} superconductivity; rapid solidification processing of oxide superconductors; time dependent magnetic and superconducting properties of these inhomogeneous materials; excess Gd in Gd{sub 1+x}Ba{sub 2-x}Cu{sub 3}O{sub 7-{delta}} perovskites; rapid solidification and directional annealing to achieve high Jc; and Mossbauer studies of T = Fe, Co and Ni site selection in YBa{sub 2}(CuT){sub 3}O{sub 7-{delta}} and GdBa{sub 2}(CuT){sub 3}O{sub 7-{delta}}.

  10. 30 MJ superconducting magnetic energy storage stabilizing coil. Final report for construction

    SciTech Connect

    1983-03-01

    This report covers Phase II, Fabrication and Delivery of the 30 MJ Superconducting Magnetic Energy Storage Stabilizing Coil. A history of the manufacturing and assembly phase of the magnet is presented. Major problems and solutions are summarized, and illustrations of the major operations are provided. The Quality Assurance program is described with a listing of all nonconformance reports. Design documentation is provided, including a Design Document Index, monthly progress reports, and a list of papers given on the project. Appendices to the report contain copies of released and revised design calculations, test reports, assembly procedure, and nonconformance reports and engineering dispositions.

  11. Final Report - The Decline and Fall of the Superconducting Super Collider

    SciTech Connect

    RIORDAN, MICHAEL

    2011-11-29

    In October 1993 the US Congress terminated the Superconducting Super Collider — at the time the largest pure-science project ever attempted, with a total cost estimated to exceed $10 billion. It was a stunning loss for the US highenergy physics community, which until that moment had perched for decades at the pinnacle of American science. Ever since 1993, this once-dominant scientific community has been in gradual decline. With the 2010 startup of research on the CERN Large Hadron Collider and the 2011 shutdown of the Fermilab Tevatron, world leadership in elementary-particle physics has crossed the Atlantic and returned to Europe.

  12. Superconducting magnet needs for the ILC

    SciTech Connect

    Tompkins, J.C.; Kashikhin, Vl.; Parker, B.; Palmer, M.A. /; Clarke, J.A.; /Daresbury

    2007-06-01

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the ILC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  13. Superconducting quantum interference devices made with normal metal and insulator barrier Josephson junctions in Y-Ba-Cu-O directly written with a focused helium beam

    NASA Astrophysics Data System (ADS)

    Cho, Ethan; Ma, Meng; Huynh, Chuong; Pratt, Kevin; Paulson, Doug; Glyantsev, Victor; Dynes, Robert; Cybart, Shane

    We will present electrical transport data for Y-Ba-Cu-O superconducting quantum interference devices (SQUIDs) with focused helium ion damage Josephson junctions. The junctions were directly written with a 30 keV focused helium ion beam, which locally creates disorder in Y-Ba-Cu-O that induces a superconducting-insulator transition. SQUIDs with Josephson junctions written with a dose of 4 ×1016 He+/cm2 have metallic barriers and show a current-voltage characteristic (I-V) well-described by the resistively shunted junction model. The spectral density of the flux noise is 10 μΦ0 / √ Hz at 10 Hz and the white noise at higher frequencies is 2 μΦ0 / √ Hz. SQUIDs with junctions written with higher ion doses (~ 9 ×1016 He+/cm2) have insulating Josephson barriers with a critical current of 22 μA and a resistance of 12 Ω at 4 K. The I-V for all of these devices is not hysteretic due to the small capacitance and the resistance. At higher voltage the junction I-V curve shows tunnel-junction behavior and a superconducting energy gap edge at 20 mV. We will discuss how these results are a promising step forward for sensitive magnetic sensors made from high temperature superconductors at various temperatures.

  14. Superconducting matching networks in monopole antennas. Final report, 1 Aug 89-31 Jul 91

    SciTech Connect

    Piatnicia, A.Y.; Talisa, S.H.; Buckley, M.J.; Gavaler, J.R.; Janocko, M.A.

    1991-08-01

    The goals of this program were to demonstrate the performance advantages of UHF Super Directive Array using a monopole antenna matching network made of high temperature superconducting (HTS) material over a monopole antenna matching network made of gold and to demonstrate the feasibility of using HTS material matching networks to feed a two element electrically small superdirective monopole array. In both cases only the matching networks were made of HTS material. The radiators were made of silver, copper, and steel. The electrically small monopole antenna and the electrically small element monopole antenna array were operated in the UHF band because the need exists for a high efficiency electrically small array operating in the UHF range as part of a multispectral seeker of an air-to-air missile. To date no antenna system consisting of electrically small conventional metal monopole radiators and HTS material matching networks has been demonstrated. An electrically small superdirective monopole array with superconducting matching networks is a candidate for use in an air-to-air missile as part of a multispectral seeker. The seeker must have a multispectral capability in order to successfully engage advanced Low Observable aircraft and missiles. The air-to-air missile guidance is initially provided by a surveillance and control aircraft.

  15. R & D on Very-High-Current Superconducting Proton Linac, Final Report

    SciTech Connect

    Ben-Zvi, Ilan

    2013-03-31

    The aim of this R&D project was to develop a superconducting cavity for a very-­ high-current proton accelerator. The particular application motivating the proposal was a LHC upgrade called the Superconducting Proton Linac, or SPL. Under the grant awarded to Stony Brook University the cavity was designed, a prototype copper cavity, followed by the niobium cavity, were built. A new set of HOM dampers was developed. The cavity has outstanding RF performance parameters – low surface fields, low power loss and all HOMs are fully damped. In fact, it is a “universal cavity” in the sense that it is suited for the acceleration of high-­current protons and well as high current electrons. Its damping of HOM modes is so good that it can see service in a multi-pass linac or an Energy Recovery Linac in addition to the easier service in a single-pass linac. Extensive measurements were made on the cavities and couplers, with the exception of the cold test of the niobium cavity. At the time of this report the cavity has been chemically processed and is ready for vertical testing which will be carried out shortly.

  16. Optical tuning in the arcs and final focus sections of the Stanford Linear Collider

    SciTech Connect

    Bambade, P.S.

    1989-03-01

    In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustments of the beam phase-space a the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance. 24 refs., 25 figs., 2 tabs.

  17. Radiation damage and waste management options for the SOMBRERO final focus system and neutron dumps

    SciTech Connect

    Latkowski, J F; Meier, W R; Reyes, S

    1999-08-09

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were not addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three -dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view.

  18. Final Focus Shielding Designs for Modern Heavy-Ion Fusion Power Plant Designs

    SciTech Connect

    Latkowski, J F; Meier, W R

    2000-07-05

    Recent work in heavy-ion fusion accelerators and final focusing systems shows a trend towards less current per beam, and thus, a greater number of beams. Final focusing magnets are susceptible to nuclear heating, radiation damage, and neutron activation. The trend towards more beams, however, means that there can be less shielding for each magnet, Excessive levels of nuclear heating may lead to magnet quench or an intolerable recirculating power for magnet cooling. High levels of radiation damage may result in short magnet lifetimes and low reliability. Finally, neutron activation of the magnet components may lead to difficulties in maintenance, recycling, and waste disposal. The present work expands upon previous, three-dimensional magnet shielding calculations for a modified version of the HYLIFE-I1 IFE power plant design. We present key magnet results as a function of the number of beams.

  19. Evaluation of superconducting wiggler designs and free-electron laser support: Final report

    SciTech Connect

    1990-10-12

    This report consists of copies of previous progress reports, and copies of viewgraphs presented in a talk at Los Alamos. The report describes activities carried out as part of a project to evaluate the design and performance of a superconducting wiggler magnet design. It includes work on evaluating the appropriate materials for the magnet coils and poles, and stress evaluations for the design. It includes work on beam optics through the magnet, and design considerations to optimize extraction: work on the cryocooling system; weight minimization efforts; and design work on the vacuum liner for the magnet. A major concern in all of this design work is heat loads which will be dissipated in different parts of the system during operation, as well as transient events.

  20. Fast superconducting kicker magnet. Final technical report, November 1994--October 1997

    SciTech Connect

    Weinstein, R.; Mahale, N.K.

    1998-05-01

    Fast kicker magnets are needed in accelerators to deflect the beam out of the storage ring and into experimental targets and beam dumps. The work reported here is on a new type of fast kicker magnet. The basic idea is to transport the beam along the axis of a tube made of Type I superconductor. An ordinary magnet is used to create a field, B{sub o} perpendicular to the axis of the tube. If B{sub o}superconducting condition. Due to the Meissner effect, the tube shields the beam (on the axis of the tube) from B{sub o}. Thus the beam is in a zero field region. In order to apply a kicker field to the beam, B{sub o} is increased such that B{sub o}>B{sub c}. The tube of superconductor then goes normal. The field which had been shielded from the beam can now penetrate to the beam. This concept is applicable as a fast magnetic switch. DOE has been granted a patent on this device, which was disclosed to DOE by N.K. Mahale and D. Goren while they were at SSC. A feasibility study of this new form of kicker magnet is reported here.

  1. Final Commissioning of the Superconducting Heavy Ion Linear Accelerator at IUAC, Delhi

    NASA Astrophysics Data System (ADS)

    Datta, Tripti Sekhar; Choudhury, Anup; Chacko, Jacob; Kar, Soumen; Antony, Joby; Babu, Suresh; Kumar, Manoj; Mathuria, D. S.; Sahu, Santosh; Kanjilal, Dinakar

    The superconducting linac as a booster of the 15UD Pelletron accelerator was partly commissioned with one linac module housing eight quarter wave bulk niobium cavities along with the superbuncher and rebuncher cryomodules. Subsequently two more linac cryomodules were added to have in total 24 cavities for acceleration. In addition, a new Linde helium refrigerator of capacity 750 W @ 4.2 K was installed in parallel to the earlier CCI refrigerator. The new refrigerator was integrated with the earlier cryogenics network system through a specially designed liquid helium distribution line without any valve box. The cooling philosophy with this new system is modified to have a faster cool down rate in the critical zone (150 - 70 K) to avoid Q disease. The helium gas pressure fluctuation in the cavities is reduced significantly to have stable RF locking. The full linac is being operated and beams with higher energy are being delivered to the users. The present paper will highlight the performance of the new cryogenic system with respect to cool down rate, and helium pressure fluctuation.

  2. Beam dispersion measurements with wire scanners in the SLC final focus systems

    SciTech Connect

    Emma, P.; McCormick, D.; Ross, M.C.

    1993-05-01

    A method is described to make a direct measurement of the horizontal and vertical momentum dispersion of the electron and positron beams as they pass through the chromatic correction sections (CCS) of the SLC final focus systems. The method is advantageous since it cleanly separates betatron components of the beam size from dispersive components, can be measured during standard colliding beams machine conditions in a minute or two, and directly measures the energy-position correlation within the beam.

  3. Operational experience with optical matching in the SLC Final Focus System

    SciTech Connect

    Bambade, P.; Burchat, P.; Burke, D.; Ford, W.; Hawkes, C.; Koska, W.; Kozanecki, W.; Lohse, T.; Mattison, T.; Phinney, N.

    1989-01-01

    In the SLC Final Focus System, all components of transverse phase-space and the couplings between them must be controlled to minimize the beam size at the interaction point. After summarizing the experimental algorithm and the on-line tuning programs, we present a consistent set of measurements and describe our present understanding of the various contributions to this beam size. 17 refs., 9 figs.

  4. A submicronic beam size monitor for the final focus test beam

    SciTech Connect

    Puzo, P.; Buon, J.; Jeanjean, J.; LeDiberder, F. |; Lepeltier, V.

    1997-01-01

    A gas-ionization beam size monitor has been used to optimize and measure the transverse electron beam dimensions of the Final Focus Test Beam at SLAC. The ultimate values measured with the monitor are 1.5{mu}m{times}70nm. Moreover, the high sensitivity of the monitor has been used to detect and cancel detrimental {open_quote}banana{close_quote} shapes of the beam. {copyright} {ital 1997 American Institute of Physics.}

  5. Nuclear heating, radiation damage, and waste management options for the HYLIFE-II final focus magnets

    SciTech Connect

    Latkowski, J F; Moir, R W; House, P A

    1999-08-09

    Heavy-ion fusion (HIF) designs for inertial fusion energy (XFE) power plants typically require final focusing magnets just outside the reaction chamber and blanket. Due to penetrations within the chamber and blanket, the magnets are exposed to a radiation environment. Although the magnet bores would be sized to avoid line-of-sight irradiation, the magnets still would be susceptible to nuclear heating and radiation damage from neutrons and y-rays. Additionally, the magnets must be included in waste management considerations due to neutron activation. Modified versions of the HYLIFE-II IFE power plant featuring two-sided illumination by arrays of 32 or 96 beams from each side are presented. A simple, point-of-departure quadrupole magnet design is assumed, and a three-dimensional neutronics model is created for the Flibe pocket, first wall, blanket, shield, and final two focusing magnets. This work details state-of-the-art neutronics calculations and shows that the final focus system needs to be included in the economic and environmental considerations for the driver-chamber interface of any HIF IFE power plant design.

  6. Development of a superconducting six-axis accelerometer. Final report, 1 April 1985-31 March 1988

    SciTech Connect

    Paik, H.J.; Parke, J.W.; Canavan, E.R.

    1989-07-01

    This report describes research on the superconducting six-axis accelerometer performed at the University of Maryland from April, 1985, to March,1988, under Air Force Contract F19628-85-K-0042. This report consists of four chapters. After an introduction and summary is given in Chapter 1, Chapter 2 discusses the theory of a superconducting six-axis accelerometer. The construction and test of the conducting six-axis accelerometer are given in Chapters 3 and 4, respectively. The superconducting six-axis accelerometer described in this report was invented to monitor the platform motions of a superconducting gravity gradiometer which is under development at the University of Maryland for space application. The signals from the accelerometer will be used to control the position and the attitude of the gradiometer platform. The superconducting six-axis accelerometer represents by itself a complete inertial navigation system. Integrated with the superconducting gravity gradiometer, it becomes a gradiometer-aided inertial navigation system.

  7. Simulating longitudinal phase space in the SLC, from the damping rings to the final focus

    SciTech Connect

    Bane, K.L.F.

    1990-09-01

    At high currents the longitudinal phase space of the SLC beam is not simply described by gaussian distributions in both position and energy. The distorted ring beam, the curvature of the compressor rf, the limited energy aperture of the RTL, the wakefields in the linac, and the momentum compaction in the arc all contribute to some extent to a distortion of longitudinal phase space. In this paper we present simulation results that describe the phase space of the SLC beam, from the damping rings to the final focus area, and that include all these distorting effects. From bunch length measurements in the SLC it was discovered that the damping ring beam is lengthened and is clearly not gaussian. One author describes a potential well calculation for the ring bunch shape that agrees remarkably well with the measurements. These calculated shapes are the starting point for the simulations described in this paper. These initial distributions are propagated through the RTL, then the linac, and then the arcs. We will address questions of the bunch shape, beam tilt, beam loss, and tail population at the end of the RTL. Following this we discuss the energy spectrum at the end of the linac and the bunch shape when the beam reaches the final focus. Finally, in Appendix A we describe a method of measuring the bunch shape and the induced voltage in the SLC linac. 22 refs., 9 figs.

  8. Analysis of higher order optical aberrations in the SLC final focus using Lie Algebra techniques

    SciTech Connect

    Walker, N.J.; Irwin, J.; Woodley, M.

    1993-04-01

    The SLC final focus system is designed to have an overall demagnification of 30:1, with a {beta} at the interaction point ({beta}*) of 5 mm, and an energy band pass of {approximately}0.4%. Strong sextupole pairs are used to cancel the large chromaticity which accrues primarily from the final triplet. Third-order aberrations limit the performance of the system, the dominating terms being U{sub 1266} and U{sub 3466} terms (in the notation of K. Brown). Using Lie Algebra techniques, it is possible to analytically calculate the soave of these terms in addition to understanding their origin. Analytical calculations (using Lie Algebra packages developed in the Mathematica language) are presented of the bandwidth and minimum spot size as a function of divergence at the interaction point (IP). Comparisons of the analytical results from the Lie Algebra maps and results from particle tracking (TURTLE) are also presented.

  9. The proposed alignment system for the Final Focus Test Beam at SLAC

    SciTech Connect

    Ruland, R.E.; Fischer, G.E.

    1990-09-01

    This report describes the current state of work in progress with respect to the geometry, alignment requirements, scenarios, and hardware for meeting the tolerances of the Final Focus Test Beam (FFTB) at SLAC. The methods and systems proposed acknowledge that component motion at the micron level, from whatever cause (ground motion, thermal effects, etc.) must be measured on-line and compensated for on relatively short time scales. To provide an integrated alignment/positioning package, some unique designs for reference systems, calibration of effect electric and magnetic centers, and component movers are introduced. 24 refs., 28 figs.

  10. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    SciTech Connect

    Wehring, B.W.; Uenlue, K.

    1996-12-19

    The goals of this three-year study were: (1) design a neutron focusing system for use with the Texas Cold Neutron Source (TCNS) to produce an intense beam of cold neutrons appropriate for prompt gamma activation analysis (PGAA); (2) orchestrate the construction of the focusing system, integrate it into the TCNS neutron guide complex, and measure its performance; and (3) design, setup, and test a cold-neutron PGAA system which utilizes the guided focused cold neutron beam. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which the authors wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, the authors obtained gains of 3 to 5 for 4 different converging guide geometries. During the second year of the DOE grant, the subject of this final report, Ovonic Synthetic Materials Company was contracted to build a converging neutron guide focusing system to the specifications. Considerable time and effort were spent working with Ovonics on selecting the materials for the converging neutron guide system. The major portion of the research on the design of a cold-neutron PGAA system was also completed during the second year. At the beginning of the third year of the grant, a converging neutron guide focusing system had been ordered, and a cold-neutron PGAA system had been designed. Since DOE did not fund the third year, there was no money to purchase the required equipment for the cold-neutron PGAA system and no money to perform tests of either the converging neutron guide or the cold-neutron PGAA system. The research already accomplished would have little value without testing the systems which had been designed. Thus the project was continued at a pace that could be sustained with internal funding.

  11. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    SciTech Connect

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  12. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    and by invited authors selected by the editor. We are grateful to IUPAP, ICTP and the European Office of Aerospace Research and Development, Air Force Office of Scientific Research, United States Air Force Laboratory. We would like to acknowledge the authors for their careful work, and finally we thank Dr L Smith the publisher of Journal of Physics: Condensed Matter for her patience and help. Superconducting materials contents Raman spectrum in the pseudogap phase of the underdoped cuprates: effect of phase coherence and the signature of the KT-type superconducting transitionTao Li and Haijun Liao Pressure effects on Dirac fermions in α-(BEDT-TTF)2I3Takahiro Himura, Takao Morinari and Takami Tohyama Effect of Zn doping in hole-type 1111 phase (Pr, Sr)FeAsOXiao Lin, Chenyi Shen, Chen Lv, Jianjian Miao, Hao Tan, Guanghan Cao and Zhu-An Xu Superconductivity and ferromagnetism in EuFe2(As1 - xPx)2*Guanghan Cao, Shenggao Xu, Zhi Ren, Shuai Jiang, Chunmu Feng and Zhu'an Xu OInhomogeneous superconductivity in organic conductors: the role of disorder and magnetic fieldS Haddad, S Charfi-Kaddour and J-P Pouget

  13. Final Report: MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS [Grant Number DE-SC0010312

    SciTech Connect

    Sumption, Mike D.; Collings, Edward W.

    2014-10-29

    Our program consisted of the two components: Strand Research and Cable Research, with a focus on Nb3Sn, Bi2212, and YBCO for accelerator magnet applications. We demonstrated a method to refine the grains in Nb3Sn by a factor of two, reaching 45 nm grain sizes, and layer Jcs of 6 kA/mm2 at 12 T. W also measured conductor magnetization for field quality. This has been done both with Nb3Sn conductor, as well as Bi:2212 strand. Work in support of quench studies of YBCO coils was also performed. Cable loss studies in Nb3Sn focused on connecting and comparing persistent magnetization and coupling magnetization for considering their relative impact on HEP machines. In the area of HTS cables, we have investigated both the quench in multistrand YBCO CORC cables, as well as the magnetization of these cables for use in high field magnets. In addition, we examined the magnetic and thermal properties of large (50 T) solenoids.

  14. The Superconducting Magnets of the ILC Beam Delivery System

    SciTech Connect

    Parker, B.; Anerella, M.; Escallier, J.; He, P.; Jain, A.; Marone, A.; Nosochkov, Y.; Seryi, Andrei; /SLAC

    2007-09-28

    The ILC Beam Delivery System (BDS) uses a variety of superconducting magnets to maximize luminosity and minimize background. Compact final focus quadrupoles with multifunction correction coils focus incoming beams to few nanometer spot sizes while focusing outgoing disrupted beams into a separate extraction beam line. Anti-solenoids mitigate effects from overlapping focusing and the detector solenoid field. Far from the interaction point (IP) strong octupoles help minimize IP backgrounds. A low-field but very large aperture dipole is integrated with the detector solenoid to reduce backgrounds from beamstrahlung pairs generated at the IP. Physics requirements and magnetic design solutions for the BDS superconducting magnets are reviewed in this paper.

  15. Effects of quadrupole fringe fields in final focus systems for linear colliders

    NASA Astrophysics Data System (ADS)

    Patecki, Marcin; Tomás, Rogelio

    2014-10-01

    Quadrupole fringe fields in the final focus system can be a source of aberrations in the interaction point transverse beam sizes. This paper investigates the fringe field impact on the transverse beam size in the ATF2, ILC, and CLIC lattices in the linear and non-linear regimes. The linear effects are studied by replacing the hard-edge quadrupolar field by the more realistic gradient fall-off. To address the nonlinear effects, the fringe fields are represented as high order kicks added to both sides of the hard-edge magnets. It will be shown that the linear fringe fields effects can be easily cured by tuning the quadrupole strengths. On the other hand, mitigation of the nonlinear fringe fields effects is more difficult and requires use of octupole magnets or, alternatively, increasing the value of interaction point horizontal beta function βx*.

  16. Halo Reduction By Means of Non Linear Optical Elements in the NLC Final Focus System

    SciTech Connect

    Seryi, Andrei

    2001-07-23

    In the Beam Delivery Systems (BDS) for linear colliders that have been designed or built, collimators (or scrapers) are used to suppress backgrounds due to the beam halo. Off-energy and off-axis particles are stopped on the collimator jaws, physically limiting the acceptance of the system. This concept does not scale well to higher beam energy, higher intensity or lower emittance. The increased beam density requires longer and more demanding collimator regions. In contrast, this paper studies the possibility of inserting non-linear optical elements into the Final Focus in order to effectively increase the acceptance of the system. This technique could make the traditional collimation scheme obsolete so that only protection collimators would be needed.

  17. Bunch-length and beam-timing monitors in the SLC final focus

    SciTech Connect

    Zimmermann, F.; Yocky, G.; Whittum, D. H.; Seidel, M.; Ng, C. K.; McCormick, D.; Bane, K. L. F.

    1999-07-12

    During the 1997/98 luminosity run of the Stanford Linear Collider (SLC) two novel RF-based detectors were brought into operation, in order to monitor the interaction-point (IP) bunch lengths and fluctuations in the relative arrival time of the two colliding beams. Both bunch length and timing can strongly affect the SLC luminosity and had not been monitored in previous years. The two new detectors utilize a broad-band microwave signal, which is excited by the beam through a ceramic gap in the final-focus beam pipe and transported outside of the beamline vault by a 160-ft long X-Band waveguide. We describe the estimated luminosity reduction due to bunch-length drift and IP timing fluctuation, the monitor layout, the expected responses and signal levels, calibration measurements, and beam observations.

  18. Bunch-length and beam-timing monitors in the SLC final focus

    SciTech Connect

    Zimmermann, F.; Yocky, G.; Whittum, D.H.; Seidel, M.; Ng, C.K.; McCormick, D.; Bane, K.L.

    1999-07-01

    During the 1997/98 luminosity run of the Stanford Linear Collider (SLC) two novel RF-based detectors were brought into operation, in order to monitor the interaction-point (IP) bunch lengths and fluctuations in the relative arrival time of the two colliding beams. Both bunch length and timing can strongly affect the SLC luminosity and had not been monitored in previous years. The two new detectors utilize a broad-band microwave signal, which is excited by the beam through a ceramic gap in the final-focus beam pipe and transported outside of the beamline vault by a 160-ft long X-Band waveguide. We describe the estimated luminosity reduction due to bunch-length drift and IP timing fluctuation, the monitor layout, the expected responses and signal levels, calibration measurements, and beam observations. {copyright} {ital 1999 American Institute of Physics.}

  19. Bunch-length and beam-timing monitors in the SLC final focus

    SciTech Connect

    Zimmermann, F.; Yocky, G.; Whittum, D.H.; Seidel, M.; Ng, C.K.; McCormick, D.; Bane, K.L.F.

    1998-07-01

    During the 1997/98 luminosity run of the Stanford Linear Collider (SLC), two novel RF-based detectors were brought into operation, in order to monitor the interaction-point (IP) bunch lengths and fluctuations in the relative arrival time of the two colliding beams. Both bunch length and timing can strongly affect the SLC luminosity and had not been monitored in previous years. The two new detectors utilize a broad-band microwave signal, which is excited by the beam through a ceramic gap in the final-focus beam pipe and transported outside of the beam line vault by a 160-ft long X-Band waveguide. The authors describe the estimated luminosity reduction due to bunch-length drift and IP timing fluctuation, the monitor layout, the expected responses and signal levels, calibration measurements, and beam observations.

  20. THE SUPERCONDUCTION MAGNETS OF THE ILC BEAM DELIVERY SYSTEM.

    SciTech Connect

    PARKER,B.; ANEREELA, M.; ESCALLIE, J.; HE, P.; JAIN, A.; MARONE, A.; NOSOCHKOV, Y.; SERYI, A.

    2007-06-25

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the ILC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  1. International workshop on final focus and interaction regions of next generation linear colliders: Proceedings

    SciTech Connect

    Not Available

    1992-01-01

    The first day of the workshop was devoted to four plenary issues'' talks, one for each working group: Beam-Beam Interaction, Detector, Hardware, and Optical Design. The last day was devoted to plenary talks summarizing the activities of the working groups. Each of the three remaining days there,was a short morning plenary devoted to a brief summary of the preceding day and an announcement of planned working group discussions for that day. The transparencies for the issues'' and summary'' talks are included in this volume, along with some remarks from the working group chairpersons. Very briefly, the beam-beam group continued to address the quantitative study of QED induced backgrounds, and attempted to better understand the nature and prevalence of QCD millijets. The detector group attempted to identify the impact on masking and detector design of the beam-beam backgrounds, the synchrotron radiation induced backgrounds from beam halos and muon backgrounds produced primarily in collimators. Nanosecond timing elements needed in conjunction with multi-bunch operation were discussed. The hardware group addressed the problem of magnet design and support, especially the final doublet magnets suspended within the detector environment, and instrumentation issues, such as high resolution beam position monitors. The optics group discussed new final focus system ideas, collimator design, and improvement of beamline tolerances. If you were not here to participate, we hope that this volume will help you in your orientation to these problems.

  2. International workshop on final focus and interaction regions of next generation linear colliders: Proceedings

    SciTech Connect

    Not Available

    1992-11-01

    The first day of the workshop was devoted to four plenary ``issues`` talks, one for each working group: Beam-Beam Interaction, Detector, Hardware, and Optical Design. The last day was devoted to plenary talks summarizing the activities of the working groups. Each of the three remaining days there,was a short morning plenary devoted to a brief summary of the preceding day and an announcement of planned working group discussions for that day. The transparencies for the ``issues`` and ``summary`` talks are included in this volume, along with some remarks from the working group chairpersons. Very briefly, the beam-beam group continued to address the quantitative study of QED induced backgrounds, and attempted to better understand the nature and prevalence of QCD millijets. The detector group attempted to identify the impact on masking and detector design of the beam-beam backgrounds, the synchrotron radiation induced backgrounds from beam halos and muon backgrounds produced primarily in collimators. Nanosecond timing elements needed in conjunction with multi-bunch operation were discussed. The hardware group addressed the problem of magnet design and support, especially the final doublet magnets suspended within the detector environment, and instrumentation issues, such as high resolution beam position monitors. The optics group discussed new final focus system ideas, collimator design, and improvement of beamline tolerances. If you were not here to participate, we hope that this volume will help you in your orientation to these problems.

  3. Drift compression and final focus systems for heavy ion inertial fusion

    SciTech Connect

    de Hoon, M.J.L.

    2001-05-01

    Longitudinal compression of space-charge dominated beams can be achieved by imposing a head-to-tail velocity tilt on the beam. This tilt has to be carefully tailored, such that it is removed by the longitudinal space-charge repulsion by the time the beam reaches the end of the drift compression section. The transverse focusing lattice should be designed such that all parts of the beam stay approximately matched, while the beam smoothly expands transversely to the larger beam radius needed in the final focus system following drift compression. In this thesis, several drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression systems were designed within these constraints, based on a given desired pulse shape at the end of drift compression. The occurrence of mismatches due to a rapidly increasing current was analyzed. In addition, the sensitivity of drift compression to errors in the initial velocity tilt and current profile was studied. These calculations were done using a new computer code that accurately calculates the longitudinal electric field in the space-charge dominated regime.

  4. Some Considerations Regarding Pulsed Correction of Chromatic Aberrations in Final Focusing Systems

    SciTech Connect

    Bangerter, Roger

    2010-03-31

    overcome longitudinal space-charge forces; but these forces will remove part of the tilt as the beam compresses. Al Maschke suggested that it is possible to reduce the chromatic aberrations by applying a time-dependent transverse focusing correction to the beam upstream of the final focusing lenses [1]. At this point, because of the energy tilt, there is a correlation between longitudinal position in the beam and particle energy. In other words, the average beam energy at the tail of the beam is larger than the average beam energy at the head of the beam. If the beam is completely neutralized as it drifts toward the final focusing lenses, the kinetic energies of the individual particles will remain nearly unchanged during compression. In this case, it is possible, in principle, to apply some 'pre-focusing' to the higher energy particles (those nearer to the tail of the beam) to compensate for their weaker focusing in the final lenses. Although kinetic energies of individual particles are not conserved if the beam is not neutralized, one still expects a positive correlation between the particle energies at the beginning of compression and at the end of compression so correction is still assumed to be possible. It is important that the pulse duration is larger upstream than it is at the final focusing lenses. Larger pulse duration makes it easier, from an engineering standpoint, to supply the power needed to drive the pulsed correction elements. Nevertheless, it still appears impossible or very costly to provide the needed power for some specific cases that have been studied. In the remainder of this paper we ignore this issue and try to determine if there are other fundamental limitations on how well one might correct. We conclude that there are other important limitations.

  5. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  6. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  7. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  8. Radiation safety considerations for the parasitic Final Focus Test Beam at SLAC

    SciTech Connect

    Rokni, S.H.; Iverson, R.H.; Keller, L.P.

    1996-11-01

    A low intensity electron beam parasitic to the operation of the Stanford Linear Collider (SLC) has been transported through the Final Focus Test Beam (FFTB) facility making secondary test beams available for users. Photons generated in collimation of the SLC electron and positron beams in the linac pass through a splitter magnet that deflects the primary beams away from the linac axis into the SLC beam lines. These photons are converted to electrons and positrons in a secondary production target located down beam on the linac axis. The secondary electrons are then transported through the FFTB beam line onto experimental detectors. The average power of the parasitic beam is very low, thus, it presents no hazards. However, various accident scenarios involving failure of the splitter magnet and the active protection devices could send much more powerful SLC beams (up to 90 kilo-watts) into this zero-degree secondary beam line. For the accident cases, the average power in the transmitted beam was calculated using the Monte Carlo programs EGS4 and TURTLE. Results from analysis of the radiation protection systems that assure safety during the parasitic operation are presented.

  9. Gas Dynamics for Final Focus Modeling of the HYLIFE-II Reactor

    NASA Astrophysics Data System (ADS)

    Jantzen, Caron; Lee, Ed; Peterson, Per F.

    1996-11-01

    Gas dynamics in the heavy-ion-driver concept for inertial fusion energy power plant, HYLIFE-II is modeled using the code TSUNAMI. This is a 2-D computational fluid dynamics code that uses the Godunov method with operator splitting. Simulations are run and results compared using both ideal gas and the partial- ionization equations of state. Developed by Zeldovich and Raizor, the partial- ionization model approximates the Saha equation for multiply ionized species in a gas mixture. Results from a cylindrically symmetric simulation indicate an initial, low density, burst of high energy particles enters the final focus transport beam line within 10 microseconds after the blast, much faster than the proposed 1 millisecond shutter closing time. After approximately 70 microseconds the chamber debris flux levels off to one eighth its peak value and results in 23 mg entering a .07m beam port. Although initial protective jet ablation and secondary radiation effects are considered, condensation is not modeled. Therefore results are conservative.

  10. Development of cryotribological theories & application to cryogenic devices. Final report

    SciTech Connect

    Iwasa, Yukikazu

    2001-03-12

    This is the final report of a research program on low-temperature friction and wear, primarily focused on development of cryotribological theories and application to cryogenic devices, particularly superconducting magnets.

  11. Superconductivity in the system Mo{sub x}C{sub y}Ga{sub z}O{sub δ} prepared by focused ion beam induced deposition

    SciTech Connect

    Weirich, P. M. Schwalb, C. H.; Winhold, M.; Huth, M.

    2014-05-07

    We have prepared the new amorphous superconductor Mo{sub x}C{sub y}Ga{sub z}O{sub δ} with a maximum critical temperature T{sub c} of 3.8 K by the direct-write nano-patterning technique of focused (gallium) ion beam induced deposition (FIBID) using Mo(CO){sub 6} as precursor gas. From a detailed analysis of the temperature-dependent resistivity and the upper critical field, we found clear evidence for proximity of the samples to a disorder-induced metal-insulator transition. We observed a strong dependence of T{sub c} on the deposition parameters and identified clear correlations between T{sub c}, the localization tendency visible in the resistance data and the sample composition. By an in-situ feedback-controlled optimization process in the FIB-induced growth, we were able to identify the beam parameters which lead to samples with the largest T{sub c}-value and sharpest transition into the superconducting state.

  12. Operational Experiences Tuning the ATF2 Final Focus Optics Towards Obtaining a 37nm Electron Beam IP Spot Size

    SciTech Connect

    White, Glen; Seryi, Andrei; Woodley, Mark; Bai, Sha; Bambade, Philip; Renier, Yves; Bolzon, Benoit; Kamiya, Yoshio; Komamiya, Sachio; Oroku, Masahiro; Yamaguchi, Yohei; Yamanaka, Takashi; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Marin, Eduardo; /CERN

    2012-07-06

    The primary aim of the ATF2 research accelerator is to test a scaled version of the final focus optics planned for use in next-generation linear lepton colliders. ATF2 consists of a 1.3 GeV linac, damping ring providing low-emittance electron beams (< 12pm in the vertical plane), extraction line and final focus optics. The design details of the final focus optics and implementation at ATF2 are presented elsewhere. The ATF2 accelerator is currently being commissioned, with a staged approach to achieving the design IP spot size. It is expected that as we implement more demanding optics and reduce the vertical beta function at the IP, the tuning becomes more difficult and takes longer. We present here a description of the implementation of the tuning procedures and describe operational experiences and performances.

  13. Present Status And First Results of the Final Focus Beam Line at the KEK Accelerator Test Facility

    SciTech Connect

    Bambade, P.; Alabau Pons, M.; Amann, J.; Angal-Kalinin, D.; Apsimon, R.; Araki, S.; Aryshev, A.; Bai, S.; Bellomo, P.; Bett, D.; Blair, G.; Bolzon, B.; Boogert, S.; Boorman, G.; Burrows, P.N.; Christian, G.; Coe, P.; Constance, B.; Delahaye, Jean-Pierre; Deacon, L.; Elsen, E.; /DESY /Valencia U., IFIC /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Savoie U. /Fermilab /Ecole Polytechnique /KEK, Tsukuba /Kyungpook Natl. U. /KEK, Tsukuba /Pohang Accelerator Lab. /Kyoto U., Inst. Chem. Res. /Savoie U. /Daresbury /Tokyo U. /Royal Holloway, U. of London /Kyungpook Natl. U. /Pohang Accelerator Lab. /Tokyo U. /KEK, Tsukuba /SLAC /University Coll. London /KEK, Tsukuba /SLAC /Royal Holloway, U. of London /KEK, Tsukuba /Tokyo U. /SLAC /Tohoku U. /KEK, Tsukuba /Tokyo U. /Pohang Accelerator Lab. /Brookhaven /SLAC /Oxford U., JAI /SLAC /Orsay /KEK, Tsukuba /Oxford U., JAI /Orsay /Fermilab /Tohoku U. /Manchester U. /CERN /SLAC /Tokyo U. /KEK, Tsukuba /Oxford U., JAI /Hiroshima U. /KEK, Tsukuba /CERN /KEK, Tsukuba /Oxford U., JAI /Ecole Polytechnique /SLAC /Oxford U., JAI /Fermilab /SLAC /Liverpool U. /SLAC /Tokyo U. /SLAC /Tokyo U. /KEK, Tsukuba /SLAC /CERN

    2011-11-11

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  14. Modification and Measurement of the Adjustable Permanent Magnet Quadrupole for the Final Focus in a Linear Collider

    SciTech Connect

    Kuroda, S.; Okugi, T.; Tauchi, T.; Fujisawa, H.; Ichikawa, M.; Iwashita, Y.; Tajima, Y.; Kumada, M.; Spencer, Cherrill M.; /SLAC

    2008-01-18

    An adjustable permanent magnet quadrupole has been developed for the final focus (FF) in a linear collider. Recent activities include a newly fabricated inner ring to demonstrate the strongest field gradient at a smaller bore diameter of 15mm and a magnetic field measurement system with a new rotating coil. The prospects of the R&D will be discussed.

  15. Design and Simulation Studies of a One-tenth Scale Final Focus System for Heavy Ion Fussion

    NASA Astrophysics Data System (ADS)

    Wu, X.; York, R. C.; Bangerter, R.; Faltens, A.; Fawley, W.; Judd, D.; Lee, E.

    1997-05-01

    A scaled test of a final focus lattice for Heavy Ion Fusion (HIF) is planned at LBNL. The test parameters were set by scaling the length dimensions of the envelope equation by one tenth while maintaining the generalized perveance. The values to be scaled were taken in large part to be those of the HIBALL-II final focus system.(H. Wollnik, KfK-3840, Kernforschungszentrum Karlsruhe, 1985) The planned experimental system will focus a 120 keV Cs^+ beam to a scaled radial spot size of 0.25 mm. Tracking studies of the tenth-scale system have been performed at NSCL using a version of COSY INIFINITY(M. Berz, MSUCL-977, Michigan State University, 1995) modified to include a linear space charge force. A description of the planned experimental system, the beam parameters, and simulation results will be presented.

  16. Central research project report on superconductivity (1988). Part 1. Materials and IR detectors. Final report, March-September 1988

    SciTech Connect

    Hong, W.S.; Hove, J.E.; Taylor, M.S.

    1988-12-01

    This report reviews and summarizes available information on the phases and crystal structures of known and predicted high-temperature superconductors (HTS). Materials involving thallium have already exhibited critical temperatures up to 125 K, and techniques have been suggested to increase this value. Recent theoretical efforts predict that room-temperature superconducting materials, if possible at all, may require different chemical compositions than those oxides presently under investigation. A second part of this report reviews the possible direct use of HTS as infrared sensor elements. This indicates little of no advantage over semiconductors; however, HTS use in the signal-processing circuitry of detector arrays may be highly beneficial. A second (later) report will describe a quantitative analysis on the feasibility of a self-guided probe weapon using superconducting magnetic field gradient sensors. While additional analysis and calculations are still necessary, the tentative conclusion on this Part II report is that an HTS seeker and guidance system may be feasible for the destruction of tanks, ships, submarines, or countermeasures such as flares, camouflage, or smoke screens.

  17. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  18. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  19. Drift Compression and Final Focus for Intense Heavy Ion Beams with Non-periodic, Time-dependent Lattice

    SciTech Connect

    Hong Qin; Ronald C. Davidson; John J. Barnard; Edward P. Lee

    2005-02-14

    In the currently envisioned configurations for heavy ion fusion, it is necessary to longitudinally compress the beam bunches by a large factor after the acceleration phase. Because the space-charge force increases as the beam is compressed, the beam size in the transverse direction will increase in a periodic quadrupole lattice. If an active control of the beam size is desired, a larger focusing force is needed to confine the beam in the transverse direction, and a non-periodic quadrupole lattice along the beam path is necessary. In this paper, we describe the design of such a focusing lattice using the transverse envelope equations. A drift compression and final focus lattice should focus the entire beam pulse onto the same focal spot on the target. This is difficult with a fixed lattice, because different slices of the beam may have different perveance and emittance. Four time-dependent magnets are introduced in the upstream of drift compression to focus the entire pulse onto the sam e focal spot. Drift compression and final focusing schemes are developed for a typical heavy ion fusion driver and for the Integrated Beam Experiment (IBX) being designed by the Heavy Ion Fusion Virtual National Laboratory.

  20. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  1. Analysis of ASSIST Navigability, Usability, and Content Using Student Focus Groups, Spring 2000. Final Report.

    ERIC Educational Resources Information Center

    Taggart, Donna; Valenzuela, Yvonne; Sragovicz, Lisa

    This report details a focus group's efforts to ascertain if the Articulation System Stimulating Interinstitutional Student Transfer (ASSIST) implemented on the World Wide Web was easy for students to navigate and use. Another purpose of the analysis was to discover if the information contained within ASSIST was easily understood by community…

  2. Study of high {Tc} superconducting thin films grown by MOCVD. Final report, July 1, 1986--April 30, 1990

    SciTech Connect

    Erbil, A.

    1990-12-31

    Work is described briefly, which was carried out on development of techniques to grow metal-semiconductor superlattices (artificially layered materials) and on the copper oxide based susperconductors (naturally layered materials). The current growth technique utilized is metalorganic chemical vapor deposition (MOCVD). CdTe, PbTe, La, LaTe, and Bi{sub 2}Te{sub 3} were deposited, mostly on GaAs. Several YBa{sub 2}Cu{sub 3}O{sub 7} compounds were obtained with possible superconductivity at temperatures up to 550 K (1 part in 10{sup 4}). YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} and Tl{sub 2}CaBa{sub 2}Cu{sub 2}O{sub y} thin films were deposited by MOCVD on common substrates such as glass.

  3. Study of neutron focusing at the Texas Cold Neutron Source. Final report

    SciTech Connect

    Wehring, B.W.; Uenlue, K.

    1995-03-06

    Funds were received for the first year of a three year DOE Nuclear Engineering Research Grant, ``Study of Neutron Focusing at the Texas Cold Neutron Source`` (FGO2-92ER75711). The purpose of this three year study was to develop a neutron focusing system to be used with the Texas Cold Neutron Source (TCNS) to produce an intense beam of neutrons. A prompt gamma activation analysis (PGAA) facility was also to be designed, setup, and tested under the three year project. During the first year of the DOE grant, a new procedure was developed and used to design a focusing converging guide consisting of truncated rectangular cone sections. Detailed calculations were performed using a 3-D Monte Carlo code which we wrote to trace neutrons through the curved guide of the TCNS into the proposed converging guide. Using realistic reflectivities for Ni-Ti supermirrors, we obtained gains of 3 to 5 for the neutron flux averaged over an area of 1 {times} 1 cm.

  4. Development of a compact HTS lead unit for the SC correction coils of the SuperKEKB final focusing magnet system

    NASA Astrophysics Data System (ADS)

    Zong, Zhanguo; Ohuchi, Norihito; Tsuchiya, Kiyosumi; Arimoto, Yasushi

    2016-09-01

    Forty-three superconducting (SC) correction coils with maximum currents of about 60 A are installed in the SuperKEKB final focusing magnet system. Current leads to energize the SC correction coils should have an affordable heat load and fit the spatial constraints in the service cryostat where the current leads are installed. To address the requirements, design optimization of individual lead was performed with vapor cooled current lead made of a brass material, and a compact unit was designed to accommodate eight current leads together in order to be installed with one port in the service cryostat. The 2nd generation high temperature SC (HTS) tape was adopted and soldered at the cold end of the brass current lead to form a hybrid HTS lead structure. A prototype of the compact lead unit with HTS tape was constructed and tested with liquid helium (LHe) environment. This paper presents a cryogenic measurement system to simulate the real operation conditions in the service cryostat, and analysis of the experimental results. The measured results showed excellent agreement with the theoretical analysis and numerical simulation. In total, 11 sets of the compact HTS lead units were constructed for the 43 SC correction coils at KEK. One set from the mass production was tested in cryogenic conditions, and exhibited the same performance as the prototype. The compact HTS lead unit can feed currents to four SC correction coils simultaneously with the simple requirement of controlling and monitoring helium vapor flow, and has a heat load of about 0.762 L/h in terms of LHe consumption.

  5. Production of Seamless Superconducting Radio Frequency Cavities from Ultra-fine Grained Niobium, Phase II Final Report

    SciTech Connect

    Roy Crooks, Ph.D., P.E.

    2009-10-31

    The positron and electron linacs of the International Linear Collider (ILC) will require over 14,000, nine-cell, one meter length, superconducting radio frequency (SRF) cavities [ILC Reference Design Report, 2007]. Manufacturing on this scale will benefit from more efficient fabrication methods. The current methods of fabricating SRF cavities involve deep drawing of the halves of each of the elliptical cells and joining them by high-vacuum, electron beam welding, with at least 19 circumferential welds per cavity. The welding is costly and has undesirable effects on the cavity surfaces, including grain-scale surface roughening at the weld seams. Hydroforming of seamless tubes avoids welding, but hydroforming of coarse-grained seamless tubes results in strain-induced surface roughening. Surface roughness limits accelerating fields, because asperities prematurely exceed the critical magnetic field and become normal conducting. This project explored the technical and economic feasibility of an improved processing method for seamless tubes for hydroforming. Severe deformation of bulk material was first used to produce a fine structure, followed by extrusion and flow-forming methods of tube making. Extrusion of the randomly oriented, fine-grained bulk material proceeded under largely steady-state conditions, and resulted in a uniform structure, which was found to be finer and more crystallographically random than standard (high purity) RRR niobium sheet metal. A 165 mm diameter billet of RRR grade niobium was processed into five, 150 mm I.D. tubes, each over 1.8 m in length, to meet the dimensions used by the DESY ILC hydroforming machine. Mechanical properties met specifications. Costs of prototype tube production were approximately twice the price of RRR niobium sheet, and are expected to be comparable with economies of scale. Hydroforming and superconducting testing will be pursued in subsequent collaborations with DESY and Fermilab. SRF Cavities are used to construct

  6. Final Scientific/Technical Report: Electronics for Large Superconducting Tunnel Junction Detector Arrays for Synchrotron Soft X-ray Research

    SciTech Connect

    Warburton, William K

    2009-03-06

    Superconducting tunnel junction (STJ) detectors offer a an approach to detecting soft x-rays with energy resolutions 4-5 times better and at rates 10 faster than traditions semiconductor detectors. To make such detectors feasible, however, then need to be deployed in large arrays of order 1000 detectors, which in turn implies that their processing electronics must be compact, fully computer controlled, and low cost per channel while still delivering ultra-low noise performance so as to not degrade the STJ's performance. We report on our progress in designing a compact, low cost preamplifier intended for this application. In particular, we were able to produce a prototype preamplifier of 2 sq-cm area and a parts cost of less than $30 that matched the energy resolution of the best conventional system to date and demonstrated its ability to acquire an STJ I-V curve under computer control, the critical step for determining and setting the detectors' operating points under software control.

  7. Novel cryogen-free actively shielded superconducting magnets for maglev vehicles. Final report, August 1991-June 1992

    SciTech Connect

    Vermilyea, M.E.

    1992-06-01

    The report presents the results of a research effort into the design of a shielded superconducting magnet system for a maglev vehicle. The magnet design is based on a novel cryogen-free technology which allows operation without the use of any cryogenic fluids. This is accomplished by the use of a two-stage Gifford-McMahon (G-M) cryogenic refrigerator to provide cooling of the coil and a single cryostat thermal radiation shield by conduction. The design operating temperature of the magnet is 7.5 K, and that of the shield is 43 K. The magnet is wound with a tape form of niobium tin superconductor which allows operation at a module current density of 8100 A/sq cm at a flux density of 3.4 T at the 7.5 K temperature with a margin of 4.5 K to critical temperature. The magnet design is coupled with a linear synchronous motor and null-flux sidewall levitation system to provide a workable maglev system design. Costs for several components of the design, including coils and cryostat, shielding, and power conditioning apparatus are estimated.

  8. Active and passive computed tomography mixed waste focus area final report

    SciTech Connect

    Jackson, J A; Becker, G K; Camp, D C; Decman, D J; Martz, H E; Roberson, G P

    1998-11-06

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy's (DOE) mixed-waste, low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are based in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user or customer technology selection. The active and passive computed tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory (LLNL) has developed the active and passive computed tomography (A&XT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of their classification-low level, transuranic or mixed. Mixed waste contains radioactivity and hazardous organic species. The scope of our technology is to develop a non-invasive waste-drum scanner that employs

  9. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  10. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  11. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  12. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  13. Active and passive computed tomography mixed waste focus area final report

    SciTech Connect

    Roberson, G P

    1998-08-19

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy's (DOE) mixed waste low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are based in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non

  14. SSC [Superconducting Super Collider] Project: Technical Training for the Future of Texas. Navarro College/Dallas Community College District. Final Report for Year One.

    ERIC Educational Resources Information Center

    Orsak, Charles; McGlohen, Patti J.

    The Superconducting Super Collider Laboratory (SSCL) is a national lab for research on the fundamental forces and constituents of the universe. A major part of the research will involve an oval ring 54 miles in circumference through which superconducting magnets will steer two beams of protons in opposite directions. In response to the…

  15. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  16. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  17. Superconducting wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abrahamsen, A. B.; Mijatovic, N.; Seiler, E.; Zirngibl, T.; Træholt, C.; Nørgård, P. B.; Pedersen, N. F.; Andersen, N. H.; Østergård, J.

    2010-03-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  18. Bipolaronic superconductivity

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Ranninger, J.

    1981-08-01

    Superconducting properties of narrow-band electrons are examined in the strong-coupling limit. It is shown that bipolarons (localized spatially nonoverlapping Cooper pairs) formed by strong electron-phonon interaction have under certain conditions superconducting properties which are characteristic of superfluid charged Bose systems. They represent an example of the "molecular" superconductivity proposed by Schafroth, Butler, and Blatt

    [Helv. Phys. Acta 30 93 (1957)]
    . The Meissner effect and the penetration depth of bipolaronic superconductors are examined. The relationship between Bardeen-Cooper-Schrieffer superconductors and bipolaronic ones is discussed.

  19. Bipolaronic superconductivity

    SciTech Connect

    Alexandrov, A.; Ranninger, J.

    1981-08-01

    Superconducting properties of narrow-band electrons are examined in the strong-coupling limit. It is shown that bipolarons (localized spatially nonoverlapping Cooper pairs) formed by strong electron-phonon interaction have under certain conditions superconducting properties which are characteristic of superfluid charged Bose system. They represent an example of the ''molecular'' superconductivity proposed by Schafroth, Butler, and Blatt. The Meissner effect and the penetration depth of bipolaronic superconductor are examined. The relationship between Bardeen-Cooper-Schrieffer superconductors and bipolaronic ones is discussed.

  20. Final Report - Development of a Multi-Spoke Superconducting Cavity for Nuclear Physics, Light Sources, and Driven Systems Applications (ODU Contribution)

    SciTech Connect

    Delayen, Jean

    2014-11-14

    This report summarizes the work done by Old Dominion University, in collaboration with the Thomas Jefferson National Accelerator Facility toward the development of high-velocity superconducting spoke cavities.

  1. Superconducting materials

    SciTech Connect

    Ruvalds, J.

    1990-01-01

    This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La{sub 2-x}Sr{sub x}CuO{sub 4}; source of high transition temperatures; and prospects for new superconductors.

  2. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  3. Superconducting magnets

    SciTech Connect

    Not Available

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-{Tc} superconductor at low temperature.

  4. Final report: DOE Grant ''Development of focusing monochromators for neutron scattering instruments'' (DE-FG02-96ER45599)

    SciTech Connect

    Popovici, Mihai P.

    2000-03-21

    Bent crystal monochromators were developed for the neutron scattering community: (1) doubly focusing bulk silicon, for high-resolution neutron diffraction; (2) doubly focusing multi-wafer silicon, for residual stress instruments; (3) silicon-wafer: (a) with pneumatic spherical bending, (b) with mechanical cylindrical bending, (c) with mechanical two-dimensional bending, for high-resolution three-axis spectrometry; (4) doubly focusing multi-wafer silicon, for epithermal (eV range) neutrons; (5) doubly focusing composite pyrolytic graphite (low-cost), for high-flux applications.

  5. High temperature interface superconductivity

    DOE PAGESBeta

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  6. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  7. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  8. SUPERCONDUCTING PHOTOCATHODES.

    SciTech Connect

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  9. An experimental investigation of high temperature superconducting microstrip antennas at K- and Ka-band frequencies. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Richard, Mark A.

    1993-01-01

    The recent discovery of high temperature superconductors (HTS) has generated a substantial amount of interest in microstrip antenna applications. However, the high permittivity of substrates compatible with HTS results in narrow bandwidths and high patch edge impedances of such antennas. To investigate the performance of superconducting microstrip antennas, three antenna architectures at K and Ka-band frequencies are examined. Superconducting microstrip antennas that are directly coupled, gap coupled, and electromagnetically coupled to a microstrip transmission line were designed and fabricated on lanthanum aluminate substrates using YBa2Cu3O7 superconducting thin films. For each architecture, a single patch antenna and a four element array were fabricated. Measurements from these antennas, including input impedance, bandwidth, patterns, efficiency, and gain are presented. The measured results show usable antennas can be constructed using any of the architectures. All architectures show excellent gain characteristics, with less than 2 dB of total loss in the four element arrays. Although the direct and gap coupled antennas are the simplest antennas to design and fabricate, they suffer from narrow bandwidths. The electromagnetically coupled antenna, on the other hand, allows the flexibility of using a low permittivity substrate for the patch radiator, while using HTS for the feed network, thus increasing the bandwidth while effectively utilizing the low loss properties of HTS. Each antenna investigated in this research is the first of its kind reported.

  10. Solenoid-based focusing in a proton linac

    SciTech Connect

    Terechkine, I; DiMarco, J.; Schappert, W.; Sergatskov, d.; Tartaglia, M.; /Fermilab

    2010-09-01

    Development of solenoid-based focusing lenses for the transport channel of an R&D linac front end at FNAL (HINS linac) is in its final stage. Superconducting lenses for the room temperature RF section of the linac are assembled into individual cryostats and certified using a dedicated test stand. During this certification process, the optical axis of each lens relative to the cryogenic vessel is found in the warm and cold state. Lenses for the superconducting RF sections are ready for production, and development of a cryomodule (which contains multiple superconducting lenses and RF cavities) is in progress. Studies have been conducted to measure fringe magnetic field of a lens in the cryomodule, to investigate a laser-based method of alignment, and to evaluate the extent of beam quality degradation due to imperfections in lens construction and alignment. This report presents some results of these studies.

  11. Navy superconductivity efforts

    NASA Technical Reports Server (NTRS)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  12. US Navy superconductivity program

    NASA Technical Reports Server (NTRS)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  13. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    SciTech Connect

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  14. Superconducting quadrupoles

    SciTech Connect

    McInturff, A.D.

    1985-07-01

    The data base for this paper will represent the work from two different groups and two different Laboratories (Brookhaven National Laboratory and Fermi National Accelerator Laboratory). The majority of the data was that obtained by the Fermi National Accelerator Group and is the most recent, and is based on a larger number of coil windings. The coil winding sizes that will be discussed are 12 cm, (Figure 1) 7.6 cm and 5 cm, (Figure 2) for the inner diameter. The maximum gradients measured in the 5 cm sizes were 1.93 T/cm at 3.5 K and 1.79 T/cm at 4.2 K. In the 7.6 cm size were 1.35 T/cm at 2.0 K and 1.1 T/cm at 4.2 K and in the 12.0 cm size was 1.35 T/cm at 4.2 K. The 12 cm size used a cold iron shield, but had an older conductor, so one effect (increase due to Fe) offset the other (lower J/sub c/ (H) of the earlier superconductor). These gradients (especially the 12 cm measurements) can be improved using more modern conductors, (i.e., approx.20% + g/(cm A) and their higher current densities. These gradients represent an increase of 2 to 3+ times the value obtainable using conventional iron and copper magnets at a comparable aperature. The original purposes for these coils were for the 12 cm size, the Isabelle lattice, the 7.6 cm size, the Tevatron lattice and low ..beta.. insertion focus, and the 5 cm size, the final focus of SLC at SLAC and SSC size coils.

  15. Setting Standards for the 1998 NAEP in Civics and Writing: Using Focus Groups To Finalize the Achievement Levels Descriptions.

    ERIC Educational Resources Information Center

    Hanick, Patricia L.; Loomis, Susan Cooper

    The description of achievement levels is important to the process of reporting student performance on the National Assessment of Educational Progress (NAEP). A process was designed to develop achievement level descriptions (ALDs) for writing and civics. To begin, focus groups were conducted in each of the four NAEP regions for both writing and…

  16. University Commission on Human Relations: Focusing on Racism & Other Forms of Discrimination. Final Report. Volume I: Report of the Commission.

    ERIC Educational Resources Information Center

    James, Olive C. R., Ed.; Matson, Hollis N., Ed.

    The University Commission on Human Relations of San Francisco State University was appointed to study how the campus community deals with human relations, focusing on issues of race, ethnicity, gender, sexual orientation, disability, or religion. The study involved: three surveys taken of students, faculty, and staff/administrators; public…

  17. Superconducting Resonators: Protecting Schrodinger's Cat

    NASA Astrophysics Data System (ADS)

    Chavez, Jose; Mauskopf, Philip

    2015-03-01

    Over the past decade, superconducting resonators have played a fundamental role in various novel astronomical detectors and quantum information processors. One example is the microwave kinetic inductance detector that is able to resolve photon energies by measuring shifts in its resonant frequency. Similar resonators have been integrated with superconducting qubits, specifically the transmon, to substantially improve quantum coherence times. The purpose of this investigation is to survey various resonant structures within the requirements of circuit quantum electrodynamics giving special attention to quality factors, TLS noise, and quasi-particle generation. Specifically, planar and three dimensional cavities with varying geometries and materials are characterized - primarily focusing on NbTiN and Nb.

  18. Analysis and potential of once-through steam generators in line focus systems - Final results of the DUKE project

    NASA Astrophysics Data System (ADS)

    Feldhoff, Jan Fabian; Hirsch, Tobias; Pitz-Paal, Robert; Valenzuela, Loreto

    2016-05-01

    The direct steam generation in line focus systems such as parabolic troughs and linear Fresnel collectors is one option for providing `solar steam' or heat. Commercial power plants use the recirculation concept, in which the steam generation is separated from the superheating by a steam drum. This paper analyzes the once-through mode as an advanced solar field concept. It summarizes the results of the DUKE project on loop design, a new temperature control strategy, thermo-mechanical stress analysis, and an overall cost analysis. Experimental results of the temperature control concept at the DISS test facility at Plataforma Solar de Almería are presented.

  19. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  20. Superconducting cable

    SciTech Connect

    Benz, H.

    1983-03-22

    A superconducting cable containing a plurality of individual wires which are stranded or plaited to wire bundles and ropes, wherein in order to avoid relative movement and/or deformation between the wire bundles and/or ropes as, for example, may otherwise be caused by high current loading, the individual wire bundles and the ropes are materially joined together at their points of contact, preferably by soldering, to form a mechanically rigid structure, in which the parts between the soldered areas can as well as possible deform elastically, thereby avoiding all disadvantages associated with freely movable wire bundles. In a preferred embodiment, the ropes are made from wire bundles arranged in a lattice.

  1. Growth of high T{sub c} superconducting fibers using a miniaturized laser-heated float zone process. Final technical report, January 15, 1989--December 31, 1994

    SciTech Connect

    Feigelson, R.S.; Route, R.K.; DeMattei, R.C.

    1995-04-01

    This report summarizes a four year program on the use of the laser-heated pedestral growth (LHPG) process for the preparation of long, flexible fibers of the high T{sub c} copper-oxide ceramic superconductors having wire-like morphology. The major question addressed was whether the LHPG method could produce high T{sub c} fibers of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (2212) in lengths long enough for use as superconducting wires. Cold-pressing and sintering methods were developed to prepare uniform, single phase ceramic feedstock. Phase equilibrium studies revealed the relationship between thermal gradients, interface shape and phases produced by the LHPG process during incongruent solidification. The highest critical current densities over measured in bulk samples of Bi-2212 material, 60,000 A/cm{sup 2} at 68K, were achieved in single crystal and/or highly grain-oriented fibers. The first ever flexible, multi-cm fibers ({le}100 {mu}m in diameter) were prepared. Fibers diameters were ultimately reduced to 25 {mu}m (1 cm in length), and we were able to grow them up to 14 cm in length (100 {mu}m diameter). These fibers could be bent in radii less than 5 cm, but max. growth rates of {approximately}10 mm/hr did not permit them to be grown long enough for prototype motor windings. Superconducting Bi-2212 grain-aligned ribbons were grown for the first time by the LHPG method using platinum guide wires.

  2. Exotic Superconductivity in Correlated Electron Systems

    SciTech Connect

    Mu, Gang; Sandu, Viorel; Li, Wei; Shen, Bing

    2015-05-25

    Over the past decades, the search for high-Tc superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high-c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge, spin, orbital, and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.

  3. Exotic Superconductivity in Correlated Electron Systems

    DOE PAGESBeta

    Mu, Gang; Sandu, Viorel; Li, Wei; Shen, Bing

    2015-05-25

    Over the past decades, the search for high-Tc superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high-c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge, spin, orbital,more » and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.« less

  4. Recent Progress in the Superconductivity Research Field

    NASA Astrophysics Data System (ADS)

    Ichinose, Ataru

    Major developments in the research field of superconductivity have been achieved in 2008. Since the discovery of high-Tc superconductors, their practical application has been studied by many researchers. Coated conductors consisting of an YBa2Cu3Oy superconducting layer deposited on metal tapes buffered oxide layers were developed in the NEDO project between FY2003 and FY2007. These technologies for coated conductors are expected to be applicable to electrical power equipment. A new NEDO project that started in FY2008 is focusing on the development of superconducting electric power equipment such as power cables, superconducting magnetic energy storage devices (SMES) and transformers. Furthermore, a new family of high-Tc superconductors, Fe-As-O-based superconductors, has been discovered. The highest reported critical temperature, Tc, has rapidly increased owing to the considerable effort of many researchers. A new social environment based on superconductivity technology might indeed be realized in the near future.

  5. Superconducting electron and hole lenses

    NASA Astrophysics Data System (ADS)

    Cheraghchi, H.; Esmailzadeh, H.; Moghaddam, A. G.

    2016-06-01

    We show how a superconducting region (S), sandwiched between two normal leads (N), in the presence of barriers, can act as a lens for propagating electron and hole waves by virtue of the so-called crossed Andreev reflection (CAR). The CAR process, which is equivalent to Cooper pair splitting into two N electrodes, provides a unique possibility of constructing entangled electrons in solid state systems. When electrons are locally injected from an N lead, due to the CAR and normal reflection of quasiparticles by the insulating barriers at the interfaces, sequences of electron and hole focuses are established inside another N electrode. This behavior originates from the change of momentum during electron-hole conversion beside the successive normal reflections of electrons and holes due to the barriers. The focusing phenomena studied here are fundamentally different from the electron focusing in other systems, such as graphene p-n junctions. In particular, due to the electron-hole symmetry of the superconducting state, the focusing of electrons and holes is robust against thermal excitations. Furthermore, the effects of the superconducting layer width, the injection point position, and barrier strength are investigated on the focusing behavior of the junction. Very intriguingly, it is shown that by varying the barrier strength, one can separately control the density of electrons or holes at the focuses.

  6. SERPENTINE COIL TOPOLOGY FOR BNL DIRECT WIND SUPERCONDUCTING MAGNETS.

    SciTech Connect

    PARKER, B.; ESCALLIER, J.

    2005-05-16

    Serpentine winding, a recent innovation developed at BNL for direct winding superconducting magnets, allows winding a coil layer of arbitrary multipolarity in one continuous winding process and greatly simplifies magnet design and production compared to the planar patterns used before. Serpentine windings were used for the BEPC-II Upgrade and JPARC magnets and are proposed to make compact final focus magnets for the EC. Serpentine patterns exhibit a direct connection between 2D body harmonics and harmonics derived from the integral fields. Straightforward 2D optimization yields good integral field quality with uniformly spaced (natural) coil ends. This and other surprising features of Serpentine windings are addressed in this paper.

  7. Improved Hydrogen Gas Getters for TRU Waste Transuranic and Mixed Waste Focus Area - Phase 2 Final Report

    SciTech Connect

    Stone, Mark Lee

    2002-04-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission (NRC) limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB. It has the needed binding rate and capacity, but some of the chemical species that might be present in the containers could interfere with its ability to remove hydrogen. This project is focused upon developing a protective polymeric membrane coating for the DEB getter material, which comes in the form of small, irregularly shaped particles. This report summarizes the experimental results of the second phase of the development of the materials.

  8. FY06 LDRD Final Report Next-generation x-ray optics: focusing hard x-rays

    SciTech Connect

    Pivovaroff, M; Soufli, R

    2007-03-01

    The original goal of our research was to open up a new class of scientific experiments by increasing the power of newly available x-ray sources by orders of magnitude. This was accomplished by developing a new generation of x-ray optics, based on hard x-ray (10-200 keV) reflective and diffractive focusing elements. The optical systems we envision begin with a core reflective optic, which has the ability to capture and concentrate x-rays across a wide range of energies and angles band, combined with diffractive optics, based on large-scale multilayer structures, that will further enhance the spatial, spectral and temporal resolving power of the system. Enabling technologies developed at LLNL such as precise mounting of thermally formed substrates, smoothing techniques and multilayer films of ultra-high reflectance and precision were crucial in the development and demonstration of our research objectives. Highlights of this phase of the project include: the design and fabrication of a concentrator optic for the Pleiades Thomson X-ray source located at LLNL, smoothing of glass substrates through application of polyimide films, and the design, fabrication and testing of novel volume multilayers structures. Part of our research into substrate smooth led to the development of a new technique (patent pending) to construct high-quality, inexpensive x-ray optics. This innovation resulted in LLNL constructing a x-ray optic for the CERN Axion Solar Telescope (CAST) and allowed LLNL to join the international experiment.

  9. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  10. Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, William J.; Maple, M. Brian

    1992-01-01

    A method for mechanically aligning oriented superconducting or permanently magnetic materials for further processing into constructs. This pretreatment optimizes the final crystallographic orientation and, thus, properties in these constructs. Such materials as superconducting fibers, needles and platelets are utilized.

  11. VLSI Superconducting Particle Detectors (With 7 Figures)

    NASA Astrophysics Data System (ADS)

    Liengme, O.

    The purpose of this paper is to present the hotspot model and define its validity range. This concept leads to a class of superconducting detectors. Predictions on particle-induced switching of Josephson junctions and superconducting strips or wires are obtained from this hotspot model. These results agree well with experimental data from the literature. Finally, the propagating hotspot is suggested as a method for very high resolution particle position detection and imaging.

  12. Superconductivity close to the Mott state: From condensed-matter systems to superfluidity in optical lattices

    SciTech Connect

    Le Hur, Karyn Maurice Rice, T.

    2009-07-15

    Since the discovery of high-temperature superconductivity in 1986 by Bednorz and Mueller, great efforts have been devoted to finding out how and why it works. From the d-wave symmetry of the order parameter, the importance of antiferromagnetic fluctuations, and the presence of a mysterious pseudogap phase close to the Mott state, one can conclude that high-T{sub c} superconductors are clearly distinguishable from the well-understood BCS superconductors. The d-wave superconducting state can be understood through a Gutzwiller-type projected BCS wavefunction. In this review article, we revisit the Hubbard model at half-filling and focus on the emergence of exotic superconductivity with d-wave symmetry in the vicinity of the Mott state, starting from ladder systems and then studying the dimensional crossovers to higher dimensions. This allows to confirm that short-range antiferromagnetic fluctuations can mediate superconductivity with d-wave symmetry. Ladders are also nice prototype systems allowing to demonstrate the truncation of the Fermi surface and the emergence of a Resonating Valence Bond (RVB) state with preformed pairs in the vicinity of the Mott state. In two dimensions, a similar scenario emerges from renormalization group arguments. We also discuss theoretical predictions for the d-wave superconducting phase as well as the pseudogap phase, and address the crossover to the overdoped regime. Finally, cold atomic systems with tunable parameters also provide a complementary insight into this outstanding problem.

  13. A PROCEDURE TO SET PHASE AND AMPLITUDE OF THE RF IN THE SNS LINAC'S SUPERCONDUCTING CAVITIES

    SciTech Connect

    L.M. YOUNG

    2001-06-01

    This paper describes a procedure to set the phase and amplitude of the RF fields in the Spallation Neutron Source (SNS) linac's superconducting cavities. The linac uses superconducting cavities to accelerate the H{sup -} ion beam from the normal conducting linac at 185 MeV to a final energy of {approx}1 GeV. There are two types of cavities in the linac, 33 cavities with a geometric beta of 0.61 and 48 cavities with a geometric beta of 0.81. The correct phase setting of any single superconducting cavity depends on the RF phase and amplitude of all the preceding superconducting cavities. For the beam to be properly accelerated it must arrive at each cavity with a relative phase ({phi}{sub s}), called the synchronous phase, of about -20 degrees. That is, it must arrive early with respect to the phase at which it would gain the maximum energy by 20 degrees. This timing provides the longitudinal focusing. Beam particles arriving slightly later gain more energy and move faster relative to the synchronous beam particle. The problem is to set the phase and amplitude of each cavity in the linac so that the synchronous particle arrives at each cavity with the correct phase. The amplitude of each superconducting cavity will be adjusted as high as possible constrained only by the available RF power and the breakdown field of the cavity.

  14. Experimental Investigation of Magnetic, Superconducting, and other Phase Transitions in novel F-Electron Materials at Ultra-high Pressures - Final Progress Report

    SciTech Connect

    Maple, Brian; Jeffires, Jason

    2006-07-28

    This grant, entitled “Experimental investigation of magnetic, superconducting and other phase transitions in novel f-electron materials at ultrahigh pressures,” spanned the funding period from May 1st, 2003 until April 30th, 2006. The major goal of this grant was to develop and utilize an ultrahigh pressure facility—capable of achieving very low temperatures, high magnetic fields, and extreme pressures as well as providing electrical resistivity, ac susceptibility, and magnetization measurement capabilities under pressure—for the exploration of magnetic, electronic, and structural phases and any corresponding interactions between these states in novel f-electron materials. Realizing this goal required the acquisition, development, fabrication, and implementation of essential equipment, apparatuses, and techniques. The following sections of this report detail the establishment of an ultrahigh pressure facility (Section 1) and measurements performed during the funding period (Section 2), as well as summarize the research project (Section 3), project participants and their levels of support (Section 4), and publications and presentations (Section 5).

  15. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  16. Superconductivity in Pd, Ir, and Pt chalcogenide

    NASA Astrophysics Data System (ADS)

    Oh, Yoon Seok; Yang, Junjie; Choi, Y. J.; Hogan, A.; Horibe, Y.; Cheong, S.-W.

    2012-02-01

    Large spin-orbit coupling in materials with heavy chalcogens can result in unique quantum states or functional properties such as topological insulator, giant thermoelectric power, and superconductivity. When materials contain heavy cations in addition to heavy chalcogens, spin-orbit coupling can be further enhanced. For these reasons, we have studied the superconductivity of Pd, Ir, and Pt tellurides and selenides. In the exploration of these chalcogenides, we have focused on the competition between superconductivity and charge density wave that is associated with superlattice reflections.

  17. Superconductivity in transuranium elements and compounds

    NASA Astrophysics Data System (ADS)

    Griveau, Jean-Christophe; Colineau, Éric

    2014-08-01

    We present here an overview of the properties of transuranium superconductors, but also of the (non-superconducting) transuranium analogues of uranium superconductors. We briefly review superconductivity in actinide elements and uranium compounds and focus in particular on the PuTX5 (T=Co,Rh; X=Ga,In) series, the largest superconducting system in actinides and NpPd5Al2, the so far unique neptunium superconductor. The effects of chemical substitution, ageing and pressure on the properties of transuranium superconductors are also discussed. xml:lang="fr"

  18. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  19. Superconductivity: Squash and sandwiches

    NASA Astrophysics Data System (ADS)

    Tosatti, Erio

    2008-12-01

    Externally applied pressure induces superconductivity in the layer compound 1T-TaS2. Similarities to, and differences from, other superconducting systems promise exciting future experiments on this old, but suddenly rejuvenated, compound.

  20. Development work for a superconducting linear collider

    NASA Technical Reports Server (NTRS)

    Matheisen, Axel

    1995-01-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in

  1. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  2. Superconductivity fact vs. fancy

    SciTech Connect

    Fitzgerald, K.

    1988-05-01

    The author says great advances have been made in superconductivity. However, the rush to secure recognition combined with public confusion over superconductivity has tainted the field with misconceptions. Some people are saying little progress towards practical use of the ceramics has been made over the last year and many researchers have left what they were doing to study superconductivity. All the hype surrounding the new found ceramic superconductors could give way to a period of disillusionment and frustration. This article discusses recent work in the field of superconductivity. IEEE Spectrum has adopted an attitude of ''just the facts'' in reporting superconductivity news.

  3. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  4. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  5. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. PMID:25666075

  6. PREFACE: 11th European Conference on Applied Superconductivity (EUCAS2013)

    NASA Astrophysics Data System (ADS)

    Farinon, Stefania; Pallecchi, Ilaria; Malagoli, Andrea; Lamura, Gianrico

    2014-05-01

    During the 11th edition of the European Conference on Applied Superconductivity, successfully held in Genoa from 15-19 September 2013, more than one thousand participants from over 40 countries were registered and contributions of 7 plenary lectures, 23 invited talks, 203 oral talks and 550 posters were presented. The present issue of Journal of Physics: Conference Series (JPCS) collects the 218 submitted papers that were peer reviewed and accepted in the Conference Proceedings. Similarly to the Superconductor Science and Technology Special issue: ''EUCAS 11th European Conference on Applied Superconductivity'' which contains some plenary and invited contributions, as well as some selected contributions, in this issue the papers are sorted according to the four traditional topics of interest of EUCAS, namely Materials (56 papers), Wires and Tapes (47 papers), Large Scale Applications (64 papers) and Electronics (51 papers). While the it Superconductors Science and Technology special issue focuses on the scientific and technological highlights of the conference, this collection provides an overall view of the worldwide research activity on applied superconductivity, mirroring the main guidelines and the hottest issues, which range from basic studies on newly discovered superconducting compounds to the state-of-the-art advances in large scale applications, wires and tapes fabrication and electronics. We would like to point out that, among the JPCS contributions, six papers present works financed by ongoing EU-Japan projects, three papers belong to the session on junctions and SQUIDs dedicated to the memory of Antonio Barone and one paper belongs to the session on pinning and flux dynamics dedicated to the memory of John Clem. Finally, we would like to thank all the people whose careful work contributed to the preparation of this JPCS issue, in particular the session chairs as well as the peer reviewers. The Editors Stefania Farinon (Editor in Chief, Large Scale

  7. Superconductivity in the metallic elements at high pressures

    NASA Astrophysics Data System (ADS)

    Hamlin, J. J.

    2015-07-01

    Although the highest superconducting critical temperature, Tc , found in an elemental solid at ambient pressure is 9.2 K (niobium), under the application of ultra-high pressures, several elements exhibit Tc values near or above 20 K. This review includes a survey of the occurrence and understanding of pressure-induced superconductivity in the subset of elements that are metallic at ambient pressure. A particular focus is directed towards those elements that display the highest superconducting critical temperatures or exhibit substantial increases in Tc with pressure. A separate article in this issue by Shimizu will cover pressure-induced superconductivity in elements that are insulating at ambient pressure.

  8. A Course on Applied Superconductivity Shared by Four Departments

    ERIC Educational Resources Information Center

    Jensen, Bogi B.; Abrahamsen, Asger B.; Sorensen, Mads P.; Hansen, Jorn B.

    2013-01-01

    In this paper, a course on applied superconductivity is described. The course structure is outlined and the learning objectives and the learning activities are described. The teaching was multidisciplinary given by four departments each contributing with their expertise. Being applied superconductivity, the focus was on an application, which could…

  9. Superconducting levitating bearing

    NASA Technical Reports Server (NTRS)

    Moon, Francis C. (Inventor)

    1996-01-01

    A superconducting bearing assembly includes a coil field source that may be superconducting and a superconducting structure. The coil field source assembly and superconducting structure are positioned so as to enable relative rotary movement therebetween. The structure and coil field source are brought to a supercooled temperature before a power supply induces a current in the coil field source. A Meissner-like effect is thereby obtained and little or no penetration of the field lines is seen in the superconducting structure. Also, the field that can be obtained from the superconducting coil is 2-8 times higher than that of permanent magnets. Since the magnetic pressure is proportioned to the square of the field, magnetic pressures from 4 to 64 times higher are achieved.

  10. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  11. Superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  12. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  13. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  14. Superconducting imaging surface magnetometer

    SciTech Connect

    Overton, W.C. Jr.; van Hulsteyn, D.B.; Flynn, E.R.

    1991-04-16

    This patent describes an improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. Another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  15. Superconducting switch concept applied to superconducting undulator phase-error correction

    SciTech Connect

    Madur, A.; Trillaud, F.; Dietderich, D.; Marks, S.; Prestemon, S.; Schlueter, R.

    2010-06-23

    Superconducting undulator (SCU) technology has the potential to significantly enhance the performance of synchrotron radiation sources for storage ring and FEL applications. Since 2002, our team at Lawrence Berkeley National Laboratory has been performing R and D on superconducting undulators, including the fabrication of three Nb{sub 3}Sn prototypes. We have demonstrated experimentally the possibility to provide the prototype with trim coils that could be used for phase error correction. The research effort that we report here demonstrates the possibility to add degrees of freedom to the field correction provided by these coils in a cryogenic environment. By means of bridge of superconducting switches, we can modify the current direction through a trim coil. Here we describe the design of the experimental bridge we fabricated, the results we obtained and finally the generalized concept one could plan to apply to correct the phase errors with trim coils connected to a network of superconducting bridges.

  16. Superconductivity in bad metals

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is argued that many synthetic metals, including high temperature superconductors are ``bad metals`` with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described.

  17. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element.

  18. Graphene: Carbon's superconducting footprint

    NASA Astrophysics Data System (ADS)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  19. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element. PMID:17750320

  20. Superconductivity of magnesium diboride

    SciTech Connect

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  1. Superconductivity of magnesium diboride

    DOE PAGESBeta

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  2. Superconducting gyroscope research

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.; Karr, G. R.

    1985-01-01

    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture.

  3. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  4. Superconductivity: Finding a direction

    NASA Astrophysics Data System (ADS)

    Fu, Liang

    2016-09-01

    The experimental observation of superconductivity that breaks spin-rotation symmetry in copper-doped Bi2Se3 provides a qualitatively distinct kind of unconventional superconducting behaviour -- one that brings the importance of the spin-orbit interaction to the fore.

  5. Superconducting circuitry for quantum electromechanical systems

    NASA Astrophysics Data System (ADS)

    LaHaye, Matthew D.; Rouxinol, Francisco; Hao, Yu; Shim, Seung-Bo; Irish, Elinor K.

    2015-05-01

    Superconducting systems have a long history of use in experiments that push the frontiers of mechanical sensing. This includes both applied and fundamental research, which at present day ranges from quantum computing research and e orts to explore Planck-scale physics to fundamental studies on the nature of motion and the quantum limits on our ability to measure it. In this paper, we first provide a short history of the role of superconducting circuitry and devices in mechanical sensing, focusing primarily on efforts in the last decade to push the study of quantum mechanics to include motion on the scale of human-made structures. This background sets the stage for the remainder of the paper, which focuses on the development of quantum electromechanical systems (QEMS) that incorporate superconducting quantum bits (qubits), superconducting transmission line resonators and flexural nanomechanical elements. In addition to providing the motivation and relevant background on the physical behavior of these systems, we discuss our recent efforts to develop a particular type of QEMS that is based upon the Cooper-pair box (CPB) and superconducting coplanar waveguide (CPW) cavities, a system which has the potential to serve as a testbed for studying the quantum properties of motion in engineered systems.

  6. Superconductivity and Magnetism in Organic Materials Studied with μSR

    NASA Astrophysics Data System (ADS)

    Pratt, Francis

    2016-09-01

    A review is given of the current status and recent progress in the use of μSR for the study of superconductivity and magnetism in organic materials. For organic superconductors, important factors are discussed that influence the observed μSR line widths and their field and temperature dependences in the superconducting state. The accumulated μSR results give direct information about the scaling relationship between superfluid stiffness and transition temperature that provides a strong constraint for theories of organic superconductors. For organic magnetism, μSR offers a sensitive probe for detecting various weak magnetic phenomena ranging from spin-density-wave transitions through spin dynamics and 3D ordering of Heisenberg chain systems to field induced magnetism of quantum spin liquids. Finally, experiments are described that focus on two current issues in organic spintronics: direct measurement of the spin coherence length and the identification of the relative importance of different mechanisms of spin decoherence.

  7. Vibration Measurements to Study the Effect of Cryogen Flow in Superconducting Quadrupole.

    SciTech Connect

    He,P.; Anerella, M.; aydin, S.; Ganetis, G. Harrison, M.; Jain, A.; Parker, B.

    2007-06-25

    The conceptual design of compact superconducting magnets for the International Linear Collider final focus is presently under development. A primary concern in using superconducting quadrupoles is the potential for inducing additional vibrations from cryogenic operation. We have employed a Laser Doppler Vibrometer system to measure the vibrations in a spare RHIC quadrupole magnet under cryogenic conditions. Some preliminary results of these studies were limited in resolution due to a rather large motion of the laser head as well as the magnet. As a first step towards improving the measurement quality, a new set up was used that reduces the motion of the laser holder. The improved setup is described, and vibration spectra measured at cryogenic temperatures, both with and without helium flow, are presented.

  8. Superconductivity in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  9. Advantages and Challenges of Superconducting Accelerators

    NASA Astrophysics Data System (ADS)

    Krischel, Detlef

    After a short review of the history toward high-energy superconducting (SC) accelerators for ion beam therapy (IBT), an overview is given on material properties and technical developments enabling to use SC components in a medical accelerator for full body cancer treatment. The design concept and the assembly of a commercially available SC cyclotron for proton therapy (PT) are described and the potential advantages for applying superconductivity are assessed. The discussion includes the first years of operation experience with regard to cryogenic and magnetic performance, automated beam control, and maintenance aspects. An outlook is given on alternative machine concepts for protons-only or for heavier ions. Finally, it is discussed whether the application of superconductivity might be expanded in the future to a broader range of subsystems of clinical IBT accelerators such as SC magnets for transfer beam lines or gantries.

  10. Midwest Superconductivity Consortium: 1994 Progress report

    SciTech Connect

    Not Available

    1995-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high {Tc} superconductivity. During the past year, 27 projects produced over 123 talks and 139 publications. Group activities and interactions involved 2 MISCON group meetings (held in August and January); with the second MISCON Workshop held in August; 13 external speakers; 79 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 48 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temperature superconductors.

  11. Metal optics and superconductivity

    SciTech Connect

    Golovashkin, A.L.

    1989-01-01

    The articles contained in this collection are dedicated to the study of the electron structure of transition metals and superconducting alloys and compounds based on them. The study of the electron structure of materials is one of the central problems of solid-state physics and defines the solution of a number of problems. One of them is the problem of high-temperature superconductivity which has attracted exceptional attention from physicists in connection with the discovery of new classes of ceramic oxides which are superconducting at liquid-nitrogen temperature. The electron structure is one of the three whales on which all of superconductivity rests. It is frequently our ignorance of the electronic properties of a metal, alloy or compound in its normal state which makes it impossible to predict superconductivity in the material, preventing use from calculating the parameters of the superconducting state. There are now a number of effective methods for investigation of the electron structure of the metals and allows. This collection discusses metal optics, tunneling and magnetic measurements in superconductors. These methods are quite informative and allow us to obtain many important electron characteristics and temperature relations. Various characteristics of the superconducting compounds Nb{sub 3}Ge, Nb{sub 3}Al, nb{sub 3}Sn and Nb{sub 3}Ga with A15 structure and NbN with B1 structure, having rather high critical temperatures, are experimentally studied.

  12. Superconductivity in Opal-based superconducting nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, M. K.; Charnaya, E. V.; Chang, L. J.; Kumzerov, Yu. A.; Lin, M. F.

    2015-03-01

    In this study, we investigate superconducting nanocomposites (SCNCs) to elucidate superconductivity in nanostructured type I superconductor. In, Sn and Hg are loaded into opal matrices by high pressure up to 10kbar, in which introducing superconducting metals into templates preserves their own 3D nanostructures. The opal matrices is adopted because it is a well-developed nanoconfinement and widely used in the studies of photonic crystal due to its periodically-superlatticed nanoporous structure. The SCNCs are then measured by Quantum Design MPMS 3 under different external magnetic fields reveal the field dependences of Tc and irreversibility temperature (Tirr). Next, AC susceptibility measurements of SCNCs determine grain coupling, vortex dynamics and field dependence of activation barrier (Ua) as well as Tc. Additionally, the phase diagrams of these SCNCs are analyzed to study superconductivity for a system with similar nanogeometry. Exotic phase diagrams in the opal SCNC studies reveal an enhanced upper critical field (Hc2 (0)) and curvature crossover of upper critical field line. Additionally, according to the field dependence of Ua(H), curvature crossover of the upper critical field line can occur, owing to vortex phase transition.

  13. Ferromagnetic/Superconducting Multilayers

    NASA Astrophysics Data System (ADS)

    Bader, S. D.

    1998-03-01

    Although it is well known that magnetism influences superconductivity, the converse issue has been less well explored. Recent theoretical predictions for ferromagnetic/ superconducting/ ferromagnetic trilayers exhibiting interlayer magnetic coupling in the normal state indicate that the coupling should be suppressed below the superconducting transition temperature.(C.A. R. Sá de Melo, Phys. Rev. Lett. 79), 1933 (1997); O. Sipr, B.L. Györffy, J. Phys. Cond. Matt. 7, 5239 (1995). To realize such a situation, a requirement (when the magnetic layers are thick) is that the superconducting layer thickness must simultaneously be less than the range over which the magnetic interlayer coupling decays, but greater than the superconducting coherence length. This introduces serious materials constraints. The present work describes initial explorations of three sputtered multilayer systems in an attempt to observe coupling of the ferromagnetic layers across a superconducting spacer:((a) J.E. Mattson, R.M. Osgood III, C.D. Potter, C.H. Sowers, and S.D. Bader, J. Vac. Sci. Technol. A 15), 1774 (1997); (b) J.E. Mattson, C.D. Potter, M.J. Conover, C.H. Sowers, and S.D. Bader, Phys. Rev. B 55, 70 (1997), and (c) R.M. Osgood III, J.E. Pearson, C.H. Sowers, and S.D. Bader, submitted (1997). (a) Ni/Nb, (b) Fe_4N/NbN, and (c) GdN/NbN. In these systems we have retained thinner superconducting layers than had been achieved previously, but interlayer magnetic coupling is not observed even in the normal state. For Ni/Nb the interfacial Ni loses its moment, which also reduces the superconducting pair-breaking. GdN is an insulating ferromagnet, so itinerancy is sacrificed, and, probably as a result of this, no coupling is observed. Each system gives rise to interesting and anisotropic superconducting properties. Thus, although the goal remains elusive, our search highlights the challenges and opportunities.

  14. Bulk Superconductivity and Disorder in Single Crystals of LaFePO

    SciTech Connect

    Analytis, James G.; Chu, Jiun-Haw; Erickson, Ann S.; Kucharczyk, Chris; Serafin, Alessandro; Carrington, Antony; Cox, Catherine; Kauzlarich, Susan M.; Hope, Hakon; /UC, Davis. Dept. Chem.

    2010-02-15

    We have studied the intrinsic normal and superconducting properties of the oxypnictide LaFePO. These samples exhibit bulk superconductivity and the evidence suggests that stoichiometric LaFePO is indeed superconducting, in contrast to other reports. We find that superconductivity is independent of the interplane residual resistivity {rho}{sub 0} and discuss the implications of this on the nature of the superconducting order parameter. Finally we find that, unlike T{sub c}, other properties in single-crystal LaFePO including the resistivity and magnetoresistance, can be very sensitive to disorder.

  15. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  16. Superconductivity in doped insulators

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  17. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  18. Tunneling in superconducting structures

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  19. Wind turbine generators using superconducting coils and bulks

    NASA Astrophysics Data System (ADS)

    Ohsaki, H.; Terao, Y.; Sekino, M.

    2010-06-01

    Wind power generation has been expected as a promising clean energy source in the world. Recently, generation capacity produced by wind power generators has been growing with increasing size of windmills. However, huge nacelles result in extreme load for towers supporting them. We have focused on a wind power generator using superconducting wires and superconducting bulks to solve the problem. Large currents may flow through superconducting wires with zero DC resistance. Superconducting bulks are magnetic shielding materials. These enable reduction of size and weight of nacelles. In addition, large generators using these materials can generate an output power of 10 MW with very large power densities. This paper describes calculation of generated magnetic field and power generation characteristics using three-dimensional finite element method (FEM) analysis of the generators using high temperature superconducting coils and bulks.

  20. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  1. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  2. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  3. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  4. Superconductivity and its devices

    NASA Astrophysics Data System (ADS)

    Forbes, D. S.

    Among the more important developments that are discussed are cryotrons, superconducting motors and generators, and high-field magnets. Cryotrons will create faster and more economical computer systems. Superconducting motors and generators will cost much less to build than conventional electric generators and cut fuel consumption. Moreover, high-field magnets are being used to confine plasma in connection with nuclear fusion. Superconductors have a vital role to play in all of these developments. Most importantly, though, are the magnetic properties of superconductivity. Superconducting magnets are an integral part of nuclear fusion. In addition, high-field magnets are necessary in the use of accelerators, which are needed to study the interactions between elementary particles.

  5. Photoinduced superconductivity in semiconductors

    NASA Astrophysics Data System (ADS)

    Goldstein, Garry; Aron, Camille; Chamon, Claudio

    2015-02-01

    We show that optically pumped semiconductors can exhibit superconductivity. We illustrate this phenomenon in the case of a two-band semiconductor tunnel-coupled to broad-band reservoirs and driven by a continuous wave laser. More realistically, we also show that superconductivity can be induced in a two-band semiconductor interacting with a broad-spectrum light source. We furthermore discuss the case of a three-band model in which the middle band replaces the broad-band reservoirs as the source of dissipation. In all three cases, we derive the simple conditions on the band structure, electron-electron interaction, and hybridization to the reservoirs that enable superconductivity. We compute the finite superconducting pairing and argue that the mechanism can be induced through both attractive and repulsive interactions and is robust to high temperatures.

  6. Stacked magnet superconducting bearing

    SciTech Connect

    Rigney, T.K. II; Saville, M.P.

    1993-06-15

    A superconducting bearing is described, comprising: a plurality of permanent magnets magnetized end-to-end and stacked side-by-side in alternating polarity, such that flux lines flow between ends of adjacent magnets; isolating means, disposed between said adjacent magnets, for reducing flux leakage between opposing sides of said adjacent magnets; and a member made of superconducting material having at least one surface in communication with said flux lines.

  7. Photoemission, Correlation and Superconductivity:

    NASA Astrophysics Data System (ADS)

    Abrecht, M.; Ariosa, D.; Cloëtta, D.; Pavuna, D.; Perfetti, L.; Grioni, M.; Margaritondo, G.

    We review some of the problems still affecting photoemission as a probe of high-temperature superconductivity, as well as important recent results concerning their solution. We show, in particular, some of the first important results on thin epitaxial films grown by laser ablation, which break the monopoly of cleaved BCSCO in this type of experiments. Such results, obtained on thin LSCO, may have general implications on the theory of high-temperature superconductivity.

  8. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  9. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  10. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. PMID:25971511

  11. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  12. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  13. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  14. Conceptual study of superconducting urban area power systems

    NASA Astrophysics Data System (ADS)

    Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian

    2010-06-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  15. Superconducting mirror for laser gyroscope

    SciTech Connect

    Wang, X.

    1991-05-14

    This paper describes an apparatus for reflecting a light beam. It comprises: a mirror assembly comprising a substrate and a superconductive mirror formed on such substrate, wherein: the substrate is optically transparent to the light beam and has a thickness of from about 0.5 to about 1.0 millimeter, and the superconductive mirror has a thickness of from about 0.5 to about 1.0 microns; means for cooling the superconductive mirror; means for measuring the temperature of the superconductive mirror; means for determining the reflectivity of the superconductive mirror; and means for varying the reflectivity of the superconductive mirror.

  16. Superconducting nanostructured materials.

    SciTech Connect

    Metlushko, V.

    1998-07-13

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines.

  17. Electrostatic separation of superconducting particles from non-superconducting particles and improvement in fuel atomization by electrorheology

    NASA Astrophysics Data System (ADS)

    Chhabria, Deepika

    particles are smaller than 45mum. One always come across multiphase superconducting materials where most superconducting grains are much smaller than 45mum. On the other hand, since our technology is based on the surface effect, it gets stronger when the particles become smaller. Our technology is thus perfect for small superconducting particles and for fabrication of HTSC materials. The area of superconductivity is expected to be very important for 21 st Century energy industry. The key for this development is the HTSC materials. We, therefore, expect that our technology will have strong impact in the area. (2) Improving engine efficiency and reducing pollutant emissions are extremely important. Here we report our fuel injection technology based on new physics principle that proper application of electrorheology can reduce the viscosity of petroleum fuels. A small device is thus introduced just before the fuel injection for the engine, producing a strong electric field to reduce the fuel viscosity, resulting in much smaller fuel droplets in atomization. As combustion starts at the interface between fuel and air and most harmful emissions are coming from incomplete burning, reducing the size of fuel droplets would increase the total surface area to start burning, leading to a cleaner and more efficient engine. This concept has been widely accepted as the discussions about future engine for efficient and clean combustion are focused on ultra-dilute mixtures at extremely high pressure to produce much finer mist of fuel for combustion. The technology is expected to have broad applications, applicable to current internal combustion engines and future engines as well.

  18. The Hardest Superconducting Metal Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-01

    Transition-metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock-salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10-20 GPa. Here, we report high-pressure synthesis of hexagonal δ-MoN and cubic γ-MoN through an ion-exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 - 80 μm. Based on indentation testing on single crystals, hexagonal δ-MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ-MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo-N network than that in cubic phase. The measured superconducting transition temperatures for δ-MoN and cubic γ-MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  19. The Hardest Superconducting Metal Nitride

    SciTech Connect

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  20. Recent developments in superconducting receivers

    SciTech Connect

    Richards, P.L.

    1990-09-01

    A description is given of recent work at Berkeley on superconducting mixers and detectors for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. The next report describes accurate measurements and also theoretical modeling of an SIS quasiparticle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high {Tc} superconductor YBCO from 750 GHz to 21 THz. Finally, there are reports on the design and experimental performance of two different types of high {Tc} bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer.

  1. The Hardest Superconducting Metal Nitride

    PubMed Central

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-01-01

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements. PMID:26333418

  2. The Hardest Superconducting Metal Nitride

    DOE PAGESBeta

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  3. Surface Induced Anomalous Superconductivity

    NASA Astrophysics Data System (ADS)

    Fink, Herman J.; Haley, Stephen B.

    The Ginzburg Landau (GL) theory is recast using a Hamiltonian involving the complete kinetic energy density which requires that the surface energy must contain a term ∇∣ψ∣2 to support superconducting (SC) states. The GL equations contain two temperature t dependent parameters α(t) and β(t), which are respectively the coefficients of the SC pair density ∝∣ψ∣2, and the pair interaction term ∝∣ψ∣4 in the free energy density. The sign of these parameters, which defines distinct solution classes, and the ratio s(t)=√ {|α |/|β |} are governed by the characteristics of the surface energy density. In addition to the conventional bulk superconducting states with (α < 0, β > 0), anomalous superconducting states exist for all other sign combinations, including cases with β < 0 which may exist only when surface pair interactions are significant. All possible solutions of our generalized nonlinear, one-dimensional GL equations are found analytically and applied to a thin superconducting slab which manifests the possibility of states exhibiting enhanced, diminished, and pre-wetting superconductivity. Critical currents are determined as functions of s(t) and surface parameters. The results are applied to critical current experiments on SNS systems.

  4. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  5. Superconducting active impedance converter

    SciTech Connect

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1992-12-31

    This invention is comprised of a transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10--80 K temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  6. Nonlinear terahertz superconducting plasmonics

    SciTech Connect

    Wu, Jingbo; Liang, Lanju; Jin, Biaobing E-mail: tonouchi@ile.osaka-u.ac.jp Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng E-mail: tonouchi@ile.osaka-u.ac.jp; Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi E-mail: tonouchi@ile.osaka-u.ac.jp; Wang, Huabing

    2014-10-20

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  7. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect

    Struzhkin, Viktor V.

    2015-03-24

    transitions from magnetic to nonmagnetic phases in a broad pressure-temperature range; using X-ray methods including the newly developed RIXS high-pressure technique to explore pressure-tuned electronic excitations in strongly correlated 3d-materials; and advancing transport and magnetic techniques for measurements on small samples at very high pressures in a wide temperature range, with the application of focused ion beam technology and photolithography tailored to the design of microcircuits down to a nanoscale size, thus expanding the horizon in the search for novel physical phenomena at ultrahigh pressures. Apply new optical magnetic sensing techniques with NV- centers in diamond to detect superconductivity and magnetic transitions with unprecedented spatial resolution.

  8. Superconducting materials for the SSC

    SciTech Connect

    Scanlan, R.; Royet, J.; Taylor, C.E.

    1985-08-01

    The proposed Superconducting Supercollider presents several new challenges with regard to materials for dipole magnets. One design requires a NbTi superconductor with J/sub c/ (5T) greater than 2400 A/mm/sup 2/, whereas the Tevatron recently completed at Fermilab required a J/sub c/ (5T) greater than or equal to 1800 A/mm/sup 2/. In addition, the high field design requires a conductor with a filament diameter of about 2.5 ..mu..m, if correction coils are to be eliminated. Finally, the high field design utilizes a 30-strand cable which again is a significant increase from the 23-strand cable used in the Tevatron. This paper describes the results of recent R and D programs aimed at meeting the stringent material requirements for the SSC.

  9. Electronic, dynamical and superconducting properties of MgB2: doping, surface and pressure effects

    NASA Astrophysics Data System (ADS)

    Profeta, G.; Continenza, A.; Bernardini, F.; Monni, M.; Massidda, S.

    2003-02-01

    We report a detailed first-principles local-density-functional investigation of the structural, electronic, dynamical and superconducting properties of MgB2 focusing on different aspects related to this material. In particular, we examine Al doping, as well as reduced dimensionality and pressure effects on the electronic and superconducting properties of this compound. Our ab initio calculations for the case of 50% Al doping are able to correctly reproduce the measured frequencies of the E2g phonon and explain the disappearance of superconductivity in terms of filling effects on both carrier concentration and electron-phonon coupling. The surface study shows that an enhanced density of states at the Fermi level is found in the B-terminated case. However, we find the Mg-terminated surface to be the most stable structure in the whole range admitted by the chemical potentials, in agreement with very recent experimental results. Finally, the study of the E2g phonon frequency under pressure is able to explain the critical temperature lowering under applied pressure.

  10. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  11. Technology of RF superconductivity

    SciTech Connect

    1995-08-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams.

  12. Superconductivity in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Bustarret, E.

    2015-07-01

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  13. Recent progress towards developing a high field, high-T(sub c) superconducting magnet for magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Derochemont, L. Pierre; Oakes, Carlton E.; Squillante, Michael R.; Duan, Hong-Min; Hermann, Allen M.; Andrews, Robert J.; Poeppel, Roger B.; Maroni, Victor A.; Carlberg, Ingrid A.; Kelliher, Warren C.

    1992-01-01

    This paper reviews superconducting magnets and high T(sub c) superconducting oxide ceramic materials technology to identify areas of fundamental impasse to the fabrication of components and devices that tap what are believed to be the true potential of these new materials. High T(sub c) ceramics pose problems in fundamentally different areas which need to be solved unlike low T(sub c) materials. The authors map out an experimental plan designed to research process technologies which, if suitably implemented, should allow these deficiencies to be solved. Finally, assessments are made of where and on what regimes magnetic system designers should focus their attention to advance the practical development of systems based on these new materials.

  14. A Policy Forum on Inclusion and the Role of Special Education in Restructuring: Focus on Language Minority Students (Alexandria, Virginia, September 18-19, 1994). Final Report.

    ERIC Educational Resources Information Center

    National Association of State Directors of Special Education, Alexandria, VA.

    This document reports on the design, purpose, implementation, and outcomes of a policy forum entitled "Inclusion and the Role of Special Education in Restructuring: Focus on Language Minority Students" held in September 1994. Participants included representatives from the research and public school communities as well as from relevant offices of…

  15. Line-focus solar central power system, Phase I. Final report, 29 September 1978 to 30 April 1980. Volume II. Text

    SciTech Connect

    Slemmons, A J

    1980-04-01

    The conceptual design, parametric analysis, cost and performance analysis, and a commercial assessment of a 100-MWe high-temperature line-focus central power system are presented. Parametric analyses and conceptual design of the heliostat subsystem, receiver subsystem, heat transport subsystem, energy storage subsystem, electrical power generating subsystem, and master control subsystem are included. A market analysis and development plan are given. (WHK)

  16. Superconductivity and magnetism in naturally occurring minerals

    NASA Astrophysics Data System (ADS)

    Wang, Renxiong; Saha, S. R.; Wang, Xiangfeng; Greene, R. L.; Paglione, J.; Santelli, C.; Post, J.

    2014-03-01

    In a new and unique venture in collaboration with the Smithsonian Museum of Natural History's Department of Mineral Sciences, we present preliminary results from a project focusing on the search for superconductivity in mineral specimens provided by Geologists/Curators of the Smithsonian Institution. Including magnetization and transport studies of Wittichenite, Pyrrhotite, Nagyagite, Pyrargyrite and other related compounds, we report preliminary findings of the physical properties of mineral specimens at low temperatures, including several unreported magnetic phases and unconvetional behaviors.

  17. Amorphous molybdenum silicon superconducting thin films

    SciTech Connect

    Bosworth, D. Sahonta, S.-L.; Barber, Z. H.; Hadfield, R. H.

    2015-08-15

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using W{sub x}Si{sub 1−x}, though other amorphous superconductors such as molybdenum silicide (Mo{sub x}Si{sub 1−x}) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo{sub 83}Si{sub 17}. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  18. Amorphous molybdenum silicon superconducting thin films

    NASA Astrophysics Data System (ADS)

    Bosworth, D.; Sahonta, S.-L.; Hadfield, R. H.; Barber, Z. H.

    2015-08-01

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using WxSi1-x, though other amorphous superconductors such as molybdenum silicide (MoxSi1-x) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo83Si17. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  19. The Mice Focusing Solenoids and their Cooling System

    SciTech Connect

    Green, M.A.; Barr, G.; Lau, W.; Senanayake, R.S.; Yang, S.Q.

    2004-05-07

    This report describes the focusing solenoid for the proposed Muon Ionization Cooling Experiment (MICE) [1]. The focusing solenoid consists of a pair of superconducting solenoids that are on a common bobbin. The two coils, which have separate leads, may be operated in the same polarity or at opposite polarity. This report discusses the superconducting magnet design and the cryostat design for the MICE focusing module. Also discussed is how this superconducting magnet can be integrated with a pair of small 4.2 K coolers.

  20. Luminescence and squeezing of a superconducting light-emitting diode

    NASA Astrophysics Data System (ADS)

    Hlobil, Patrik; Orth, Peter P.

    2015-05-01

    We investigate a semiconductor p -n junction in contact with superconducting leads that is operated under forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the electroluminescence in a sharp frequency window. We demonstrate that the tunneling of Cooper pairs induces an additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence that results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes of the emitted light. We show that the squeezing angle can be electrically manipulated by changing the relative phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and show that the laser threshold is reduced due to superconductivity. This reveals how the macroscopic coherence of a superconductor can be used to control the properties of light.

  1. Line-focus solar central power system, Phase I. Final report, 29 September 1978 to 30 April 1980. Volume III. Appendices

    SciTech Connect

    Slemmons, A J

    1980-04-01

    The conceptual design, parametric analysis, cost and performance analysis, and commercial assessment of a 100-MWe line-focus solar central receiver power plant are reported. This volume contains the appendices: (a) methods of determination of molten salt heat-transfer coefficients and tube-wall temperatures, (b) inputs for STEAEC programs, (c) description of system analysis computer program, (d) receiver analysis program, and (e) heliostat production plan and design methodology. (WHK)

  2. Resource Letter Scy-3: Superconductivity

    NASA Astrophysics Data System (ADS)

    Butch, N. P.; de Andrade, M. C.; Maple, M. B.

    2008-02-01

    This Resource Letter provides a guide to the literature on superconductivity. Since the last Resource Letter on superconductivity, Scy-2, was published in 1970, there have been dramatic advances in our basic understanding of superconductivity, discovery of new superconducting materials, and improved technological exploitation of superconductors. We review basic phenomenology, followed by concise descriptions of several main classes of superconductors recognized today. Journal articles and books are cited for the following topics: Conventional superconductors, paramagnetic impurities in superconductors, magnetically ordered superconductors, heavy fermion superconductors, high Tc superconductors, organic superconductors, applications of superconductivity, and laboratory demonstrations of superconductivity. Owing to the large volume of available literature on superconductivity, the journal articles and books we discuss constitute good starting points for further exploration of particular topics.

  3. Review of new energy. Superconductivity

    NASA Astrophysics Data System (ADS)

    1989-03-01

    An summary is given of the research and development on high temperature superconductivity. It begins with a description of superconducting state and enumerates chemical elements, in particular oxides, associated with high temperature superconductivity. A brief account is next given on the progress of research and development on the present subject. Some of well known topics associated with superconductivity are described shortly, namely Meissner effect, quenching (transition to normal conducting state from superconducting one), Perovskite structure, positive hole earrier, Josephson effect, SQUID (superconducting quantum interference device) and so on. Various devices or technology are enumerated, to which superconductivity, in particular high temperature one, is proposed to apply, namely electromagnet, MRI (magnetic resonance imaging), particle accelerator, linear motor car, electric power storage and so on. The summary is finished with a future outlook.

  4. Nonequilibrium superconducting detectors

    NASA Astrophysics Data System (ADS)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  5. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  6. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  7. Applications of Superconductivity

    ERIC Educational Resources Information Center

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  8. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  9. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  10. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  11. New research in Superconductivity

    NASA Astrophysics Data System (ADS)

    Khorrami, Mona

    2013-03-01

    Superconductors are materials that have no resistance to electricity's flow; they are one of the last great frontiers of scientific discovery. The theories that explain superconductor behavior seem to be constantly under review. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike Kamerlingh Onnes When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-452F, -269C), its resistance suddenly disappeared. It was necessary for Onnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity. In 1933 German researchers Walther Meissner and Robert Ochsenfeld discovered that a superconducting material will repel a magnetic field. A magnet moving by a conductor induces currents in the conductor, but, in a superconductor the induced currents exactly mirror the field that would have otherwise penetrated the superconducting material - causing the magnet to be repulsed. This phenomenon is known as strong diamagnetism and is today often referred to as the ``Meissner effect'' (an eponym). Later on the theory developed by American physicists John Bardeen, Leon Cooper, and John Schrieffer together with extensions and refinements of the theory, which followed in the years after 1957, succeeded in explaining in considerable detail the properties of superconductors.

  12. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  13. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  14. Superconducting magnets 1992

    SciTech Connect

    Not Available

    1993-06-01

    This report discusses the following topics on Superconducting Magnets; SSC Magnet Industrialization; Collider Quadrupole Development; A Record-Setting Magnet; D20: The Push Beyond 10T; Nonaccelerator Applications; APC Materials Development; High-T{sub c} at Low Temperature; Cable and Cabling-Machine Development; and Analytical Magnet Design.

  15. Superconducting thermometer for cryogenics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1977-01-01

    Digital electronic device uses superconducting filaments as sensors. Simple solid-state circuitry combined with filaments comprise highly-reliable temperature monitor. Device has ability to track very fast thermal transients and "on/off" output is adaptable to remote sensing and telemetry.

  16. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  17. Superconducting nanowires by electron-beam-induced deposition

    SciTech Connect

    Sengupta, Shamashis; Li, Chuan; Guéron, S.; Bouchiat, H.; Baumier, Cedric; Fortuna, F.; Kasumov, Alik

    2015-01-26

    Superconducting nanowires can be fabricated by decomposition of an organometallic gas using a focused beam of Ga ions. However, physical damage and unintentional doping often result from the exposure to the ion beam, motivating the search for a means to achieve similar structures with a beam of electrons instead of ions. This has so far remained an experimental challenge. We report the fabrication of superconducting tungsten nanowires by electron-beam-induced-deposition, with critical temperature of 2.0 K and critical magnetic field of 3.7 T, and compare them with superconducting wires made with ions. This work is an important development for the template-free realization of nanoscale superconducting devices, without the requirement of an ion beam column.

  18. Novel Approach to Linear Accelerator Superconducting Magnet System

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2011-11-28

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  19. Electronic structure and superconductivity of FeSe-related superconductors.

    PubMed

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  20. Electronic structure and superconductivity of FeSe-related superconductors.

    PubMed

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films. PMID:25879999

  1. Superconductivity devices: Commercial use of space

    NASA Technical Reports Server (NTRS)

    Haertling, Gene; Furman, Eugene; Hsi, Chi-Shiung; Li, Guang

    1993-01-01

    The processing and screen printing of the superconducting BSCCO and 123 YBCO materials on substrates is described. The resulting superconducting properties and the use of these materials as possible electrode materials for ferroelectrics at 77 K are evaluated. Also, work performed in the development of solid-state electromechanical actuators is reported. Specific details include the fabrication and processing of high strain PBZT and PLZT electrostrictive materials, the development of PSZT and PMN-based ceramics, and the testing and evaluation of these electrostrictive materials. Finally, the results of studies on a new processing technology for preparing piezoelectric and electrostrictive ceramic materials are summarized. The process involves a high temperature chemical reduction which leads to an internal pre-stressing of the oxide wafer. These reduced and internally biased oxide wafers (RAINBOW) can produce bending-mode actuator devices which possess a factor of ten more displacement and load bearing capacity than present-day benders.

  2. Improved 60 Hz superconducting power transmission cable

    SciTech Connect

    Morgan, G.H.; Schauer, F.; Thomas, R.A.

    1980-01-01

    The third in a series of 10 m, Nb/sub 3/Sn cables for ac power transmission has been installed in a horizontal, refrigerated cryostat. Like the two previous ones, this coaxial cable has its ends rigidly fixed so that it cannot contract axially on cooldown, and has two layers of superconducting helices and two layers of high purity aluminum helices for stabilization in each conductor. It differs from the previous one in having thicker electrical insulation (7.4 mm vs 3.6 mm), in having increased contact resistance between the superconducting layers to reduce ac loss, and in being driven by an external supply through horizontal, coaxial, vapor-cooled current leads. This is the final short cable prior to construction late this year of a 100 m cable which will be tested with high voltage and high current simultaneously. Results of current tests are presented, including ac loss at various temperatures and recovery from thermally induced quenches.

  3. Superconducting magnetic levitation train project in Japan

    SciTech Connect

    Oshima, K.

    1981-09-01

    The superconducting magnetic levitated train of Japanese National Railways at Miyazaki achieved its experimental target speed of 500 km/hr by reaching the world record of 517 km/hr in December 1979. The development project of high speed linear motor propulsion train levitated by superconducting magnet, Maglev, was started in 1970 by constructing a new mass-transportation system in the 1980's. The test track in Miyazaki was constructed in 1977 with an inverted T-shape guideway of about 7 km, and vehicles were tested. Now a part of the guideway was changed to a U shape in 1980 and experiments of a new vehicle of a 2 or 3 car make-up with on-board refrigerators and capacity of carrying 2 persons were undertaken. It is expected that these tests will be finalized with a demonstration track of 40 km in the near future. 3 refs.

  4. Establishment of a Bioenergy-Focused Microalgae Strain Collection Using Rapid, High-Throughput Methodologies: Cooperative Research and Development Final Report

    SciTech Connect

    Pienkos, Philip T.

    2013-11-01

    This project is part of the overall effort by and among NREL, Colorado State University, University of Colorado, and Colorado School of Mines known as the Colorado Center for Biorefining and Biofuels. This is part of a larger statewide effort provided for in House Bill 06-1322, establishing a Colorado Collaboratory that envisions these four institutions working together as part of the state'senergy plan. This individual project with Colorado School of Mines is the first of many envisioned in this overall effort. The project focuses on development of high throughput procedures aimed at rapidly isolating and purifying novel microalgal strains (specifically green alga and diatoms) from water samples obtained from unique aquatic environments.

  5. Nuclear electromagnetic pulse (EMP) vulnerability/lethality (V/L) taxonomy with focus on component assessment. Final report, October 1993-May 1994

    SciTech Connect

    Ruth, B.G.

    1994-11-01

    An assessment of how military systems behave when exposed to a nuclear electromagnetic pulse (EMP) is among the suite of survivability/vulnerability/lethality assessment normally performed on systems that must operate in a battlefield environment. In the past, a large effort was devoted to the assessment of system-specific components in an EMP environment; this work needs to be unified in a generic methodology that can be applied to all military systems. The proposed methodology is based on the application to the EMP assessment problems of the vulnerability/lethality (V/L) taxonomy (developed by the Army Research Laboratory ARL), which provides a mathematical framework for V/L analyses. In this report, the nuclear EMP V/L taxonomy is presented, with particular focus on the assessment of system components exposed to an EMP-induced transient signal.

  6. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991

    SciTech Connect

    Saifee, T.; Konnerth, A. III

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  7. Various forms of coexistence of superconductivity and magnetism in iron-pnictide superconductors: a NMR study

    NASA Astrophysics Data System (ADS)

    Bobroff, Julien

    2013-03-01

    Our NMR studies of iron pnictides allowed us to discover various forms of coexistence between superconductivity and magnetism. In Co-doped BaFe2As2, superconductivity and incommensurate antiferromagnetism coexist at the atomic level in an homogeneous state. In contrast, Ru isovalent doping leads to a disorderd situation where superconducting clusters appear in an antiferromagnetic background. Finally, in the 245 iron-selenide RbFeSe, antiferromagnetism and superconductivity separate in alternate layers of nanometer thickness. But in all these componds, the superconducting state remains similar in terms of local susceptibility and carrier doping. It looks as if, for superconductivity to appear, frozen Fe magnetic moments need to be small enough or far enough in distance, whatever the cause. Y. Texier et al., PRL 108, 237002 (2012); Y. Laplace et al., PRB Rapid Com 86, 020510(R) (2012); Y. Laplace, PRB Rapid Com 80, 140501 (2009) This work benefited from the support of the ANR PNICTIDES.

  8. Superconductivity and the environment: a Roadmap

    NASA Astrophysics Data System (ADS)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    disasters will be helped by future supercomputer technologies that support huge amounts of data and sophisticated modeling, and with the aid of superconductivity these systems might not require the energy of a large city. We present different sections on applications that could address (or are addressing) a range of environmental issues. The Roadmap covers water purification, power distribution and storage, low-environmental impact transport, environmental sensing (particularly for the removal of unexploded munitions), monitoring the Earth’s magnetic fields for earthquakes and major solar activity, and, finally, developing a petaflop supercomputer that only requires 3% of the current supercomputer power provision while being 50 times faster. Access to fresh water. With only 2.5% of the water on Earth being fresh and climate change modeling forecasting that many areas will become drier, the ability to recycle water and achieve compact water recycling systems for sewage or ground water treatment is critical. The first section (by Nishijima) points to the potential of superconducting magnetic separation to enable water recycling and reuse. Energy. The Equinox Summit held in Waterloo Canada 2011 (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources) identified electricity use as humanity’s largest contributor to greenhouse gas emissions. Our appetite for electricity is growing faster than for any other form of energy. The communiqué from the summit said ‘Transforming the ways we generate, distribute and store electricity is among the most pressing challenges facing society today…. If we want to stabilize CO2 levels in our atmosphere at 550 parts per million, all of that growth needs to be met by non-carbon forms of energy’ (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). Superconducting technologies can provide the energy efficiencies to achieve, in the European Union alone, 33-65% of the required reduction in greenhouse

  9. Preparing Teachers to Discuss Superconductivity at High School Level: A Didactical Approach

    ERIC Educational Resources Information Center

    Ostermann, Fernanda; Ferreira, Leticie Mendonca

    2006-01-01

    We present an introduction to superconductivity that is intended to support the teaching and learning of this subject at a high school level. As a first step we propose to focus on the main properties of superconducting materials, i.e. zero electrical resistivity and the Meissner effect. Physics teachers and students will thereby be enabled to…

  10. A design concept for a planar superconducting undulator for the APS.

    SciTech Connect

    Ivanyushenkov, Y.; Abliz, M.; Boerste, K.; Buffington, T.; Capatina, D.; Dejus, R. J.; Doose, C.; Fuerst, J.; Hasse, Q.; Jaski, M.; Kasa, M.; Kim, S .H.; Kustom, R .L.; Mezentsev, N. A.; Moog, E. R.; Skiadopoulos, D.; Syrovatin, V. M.; Trakhtenberg, E. M.; Vasserman, I. B.; Xu, J.

    2011-06-01

    A superconducting planar undulator is under development at the Advanced Photon Source. The R&D phase culminated in the successful testing of several short magnetic structure prototypes. Work is now focused on a complete design for the first undulator. The conceptual designs for its superconducting magnet, the cooling system, and the cryostat are described in this paper.

  11. Midwest Superconductivity Consortium. Progress report, 1992

    SciTech Connect

    Bement, A.L. Jr.

    1993-01-01

    Mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high Tc superconductivity. Programmatic research focuses upon key materials-related problems; principally, synthesis and processing and properties limiting transport phenomena. During the past year, 26 projects produced over 133 talks and 113 publications. publications. Two Master`s Degrees and one Ph.D. were granted to students working on MISCON projects. Group activities and interactions involved two MISCON group meetings (held in July and January), twenty external speakers, 36 collaborations, 10 exchanges of samples and/or measurements, and one (1) gift of equipment from industry. Research achievements this past year expanded our understanding of processing phenomena on structure property interrelationships and the fundamental nature of transport properties in high-temperature superconductors.

  12. Midwest Superconductivity Consortium: 1995 Progress report

    SciTech Connect

    1996-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high Tc superconductivity. During the past year, 26 projects produced over 133 talks and 127 publications. Three Master`s Degrees and 9 Doctor`s of Philosophy Degrees were granted to students working on MISCON projects. Group activities and interactions involved 2 MISCON group meetings (held in January and July); the third MISCON Summer School held in July; 12 external speakers; 81 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 54 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temp superconductors.

  13. The superconducting solenoid magnets for MICE

    SciTech Connect

    Green, Michael A.

    2002-12-22

    The Muon Ionization Cooling Experiment (MICE) is a channel of superconducting solenoid magnets. The magnets in MICE are around the RF cavities, absorbers (liquid or solid) and the primary particle detectors [1], [2]. The MICE superconducting solenoid system consists of eighteen coils that are grouped in three types of magnet assemblies. The cooling channel consists of two complete cell of an SFOFO cooling channel. Each cell consists of a focusing coil pair around an absorber and a coupling coil around a RF cavity that re-accelerates the muons to their original momentum. At the ends of the experiment are uniform field solenoids for the particle detectors and a set of matching coils used to match the muon beam to the cooling cells. Three absorbers are used instead of two in order to shield the detectors from dark currents generated by the RF cavities at high operating acceleration gradients.

  14. Superconductivity observed in platinum-silicon interface

    SciTech Connect

    Kuo, Pai-Chia; Chen, Chun-Wei; Lee, Ku-Pin; Shiue, Jessie

    2014-05-26

    We report the discovery of superconductivity with an onset temperature of ∼0.6 K in a platinum-silicon interface. The interface was formed by using a unique focused ion beam sputtering micro-deposition method in which the energies of most sputtered Pt atoms are ∼2.5 eV. Structural and elemental analysis by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy reveal a ∼ 7 nm interface layer with abundant Pt, which is the layer likely responsible for the superconducting transport behavior. Similar transport behavior was also observed in a gold-silicon interface prepared by the same technique, indicating the possible generality of this phenomenon.

  15. Novel superconducting proximized heterostructures for ultrafast photodetection

    NASA Astrophysics Data System (ADS)

    Pepe, G. P.; Parlato, L.; Marrocco, N.; Pagliarulo, V.; Peluso, G.; Barone, A.; Tafuri, F.; Uccio, U. Scotti di; Miletto, F.; Radovic, M.; Pan, D.; Sobolewski, Roman

    2009-11-01

    Weak ferromagnet/superconductor (F/S) proximity bilayers have been fabricated and characterized for basic physics studies concerning the ultrafast carrier dynamics in layered materials. The normalized reflectivity change (Δ R/ R) as a function of the time delay between the pump and the probe laser beams has been measured in F/S heterostructures formed by a low critical temperature superconductor (Nb) with a NiCu overlayer, and a high Tc superconductor (YBCO) covered by Au/NiCu and manganite (LSMO) overlayers. The attention is mainly focused to the investigation of nonequilibrium excitation dynamics inside different bilayers in the low temperature region. The presence of the weak ferromagnetic overlayer produces faster optical relaxation times with respect to sole superconducting films. The results are promising in view of potential applications as ultrafast kinetic inductance superconducting photodetectors as confirmed by preliminary time-resolved photoimpedance experiments on both Nb and NiCu(21 nm)/Nb(70 nm) samples.

  16. Superconducting multipole corrector magnet

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2004-10-01

    A novel concept of superconducting multipole corrector magnet is discussed. This magnet assembled from 12 identical racetrack type coils and can generate any combination of dipole, quadrupole and sextupole magnetic fields. The coil groups are powered from separate power supplies. In the case of normal dipole, quadrupole and sextupole fields the total field is symmetrical relatively the magnet median plane and there are only five powered separately coil groups. This type multipole corrector magnet was proposed for BTeV, Fermilab project and has following advantages: universal configuration, simple manufacturing and high mechanical stability. The results of magnetic design including the field quality and magnetic forces in comparison with known shell type superconducting correctors are presented.

  17. Superconductivity in graphite intercalation compounds

    DOE PAGESBeta

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  18. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  19. Superconducting magnet wire

    DOEpatents

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  20. Helical superconducting black holes.

    PubMed

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  1. Superconducting terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J

    2010-01-01

    During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.

  2. Superconducting Magnetic Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Lawson, Daniel D.

    1991-01-01

    Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.

  3. Topological confinement and superconductivity

    SciTech Connect

    Al-hassanieh, Dhaled A; Batista, Cristian D

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  4. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  5. Silicon superconducting quantum interference device

    SciTech Connect

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F.; Chiodi, F.; Débarre, D.; Hasselbach, K.; Kirtley, J. R.

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  6. Superconducting tape characterization under flexion

    NASA Astrophysics Data System (ADS)

    Álvarez, A.; Suárez, P.; Cáceres, D.; Pérez, B.; Cordero, E.; Castaño, A.

    2002-08-01

    Electrotechnical applications of high temperature superconducting materials are limited by the difficulty of constructing classical windings with ceramic materials. While Bi-2223 tape may be a solution, it cannot be bent to radii less than a certain value since its superconducting capacity disappears. We describe an automated measurement system of the characteristics of this tape under flexion. It consists of a device that coils the tape over cylinders with different radii. At the same time, the parameters of its superconducting behaviour (e.g. resistance) are taken and processed. This system was developed at the “Benito Mahedero Laboratory of Superconducting Electrical Applications” in the University of Extremadura.

  7. Topological Superconductivity in Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Sato, Masatoshi; Kobayashi, Shingo

    Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We suggest the possible application of our theory to recently discovered superconducting states in Cd3As2.

  8. Superconducting magnet development in Japan

    SciTech Connect

    Yasukochi, K.

    1983-05-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb/sub 3/Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting ..mu.. meson channel and ..pi.. meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration.

  9. Cosmic sparks from superconducting strings.

    PubMed

    Vachaspati, Tanmay

    2008-10-01

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents approximately 10{5} GeV. The superconducting string model predicts an event rate that falls off only as S{-1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model. PMID:18851517

  10. Cosmic Sparks from Superconducting Strings

    SciTech Connect

    Vachaspati, Tanmay

    2008-10-03

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents {approx}10{sup 5} GeV. The superconducting string model predicts an event rate that falls off only as S{sup -1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model.

  11. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  12. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    The recent technological developments in the synthesis and characterization of high-quality nanostructures and developments in the theoretical techniques needed to model these materials, have motivated this focus section of Superconductor Science and Technology. Another motivation is the compelling evidence that all new superconducting materials, such as iron pnictides and chalcogenides, diborides (doped MgB2) and fullerides (alkali-doped C60 compounds), are heterostrucures at the atomic limit, such as the cuprates made of stacks of nanoscale superconducting layers intercalated by different atomic layers with nanoscale periodicity. Recently a great amount of interest has been shown in the role of lattice nano-architecture in controlling the fine details of Fermi surface topology. The experimental and theoretical study of superconductivity in the nanoscale started in the early 1960s, shortly after the discovery of the BCS theory. Thereafter there has been rapid progress both in experiments and the theoretical understanding of nanoscale superconductors. Experimentally, thin films, granular films, nanowires, nanotubes and single nanoparticles have all been explored. New quantum effects appear in the nanoscale related to multi-component condensates. Advances in the understanding of shape resonances or Fano resonances close to 2.5 Lifshitz transitions near a band edge in nanowires, 2D films and superlattices [1, 2] of these nanosized modules, provide the possibility of manipulating new quantum electronic states. Parity effects and shell effects in single, isolated nanoparticles have been reported by several groups. Theoretically, newer techniques based on solving Richardson's equation (an exact theory incorporating finite size effects to the BCS theory) numerically by path integral methods or solving the entire Bogoliubov-de Gennes equation in these limits have been attempted, which has improved our understanding of the mechanism of superconductivity in these confined

  13. PREFACE: 7th European Conference on Applied Superconductivity (EUCAS '05)

    NASA Astrophysics Data System (ADS)

    Weber, Harald W.; Sauerzopf, Franz M.

    2006-07-01

    This issue of Journal of Physics: Conference Series contains those contributed papers that were submitted to the Conference Proceedings of the 7th European Conference on Applied Superconductivity (EUCAS '05) on 11 - 15 September 2005. The plenary and invited papers were published in the journal Superconductor Science and Technology 19 2006 (March issue). The scientific aims of EUCAS '05 followed the tradition established at the preceding conferences in Göttingen, Edinburgh, Eindhoven, Sitges (Barcelona), Lyngby (Copenhagen) and finally Sorrento (Napoli). The focus was placed on the interplay between the most recent developments in superconductor research and the positioning of applications of superconductivity in the marketplace. Although initially founded as an exchange forum mainly for European scientists, it has gradually developed into a truly international meeting with significant attendance from the Far East and the United States. The Vienna conference attracted 813 participants in the scientific programme and 90 guests: of the particpants 59% were from Europe, 31% from the Far East, 6% from the United States and Canada and 4% from other nations worldwide. There were 32 plenary and invited lectures highlighting the state-of-the-art in the areas of materials, large-scale and small-scale applications, and 625 papers were contributed (556 of these were posters) demonstrating the broad range of exciting activities in all research areas of our field. A total of 27 companies presented their most recent developments in the field. This volume contains 349 papers, among them 173 on materials (49.6%), 90 on large scale applications (25.8%) and 86 on small scale applications (24.6%). EUCAS '05 generated a feeling of optimism and enthusiasm for this fascinating field of research and for its well established technological potential, especially among the numerous young researchers attending this Conference. We are grateful to all those who participated in the meeting and

  14. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    The recent technological developments in the synthesis and characterization of high-quality nanostructures and developments in the theoretical techniques needed to model these materials, have motivated this focus section of Superconductor Science and Technology. Another motivation is the compelling evidence that all new superconducting materials, such as iron pnictides and chalcogenides, diborides (doped MgB2) and fullerides (alkali-doped C60 compounds), are heterostrucures at the atomic limit, such as the cuprates made of stacks of nanoscale superconducting layers intercalated by different atomic layers with nanoscale periodicity. Recently a great amount of interest has been shown in the role of lattice nano-architecture in controlling the fine details of Fermi surface topology. The experimental and theoretical study of superconductivity in the nanoscale started in the early 1960s, shortly after the discovery of the BCS theory. Thereafter there has been rapid progress both in experiments and the theoretical understanding of nanoscale superconductors. Experimentally, thin films, granular films, nanowires, nanotubes and single nanoparticles have all been explored. New quantum effects appear in the nanoscale related to multi-component condensates. Advances in the understanding of shape resonances or Fano resonances close to 2.5 Lifshitz transitions near a band edge in nanowires, 2D films and superlattices [1, 2] of these nanosized modules, provide the possibility of manipulating new quantum electronic states. Parity effects and shell effects in single, isolated nanoparticles have been reported by several groups. Theoretically, newer techniques based on solving Richardson's equation (an exact theory incorporating finite size effects to the BCS theory) numerically by path integral methods or solving the entire Bogoliubov-de Gennes equation in these limits have been attempted, which has improved our understanding of the mechanism of superconductivity in these confined

  15. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, J.R.

    1996-09-17

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.

  16. Concerning superconducting inertial guidance gyroscopes inside superconducting magnetic shields

    SciTech Connect

    Satterthwaite, J.C.; Gawlinski, E.T.

    1997-12-01

    Superconductors can in theory be used to detect rotation by Josephson interference or by detection of the London field, a magnetic induction that fills the interior of any rotating bulk superconductor. One might hope to use these properties of superconductors to build a practical inertial guidance gyroscope. A problem arises from the necessity of surrounding the device with superconducting magnetic shielding: the London field generated by a co-rotating shield eliminates the response of the superconducting device within the shield. The present article demonstrates this point more rigorously than has been done before, discussing solutions of Ampere`s law for rotating and nonrotating superconductors and paying careful attention to boundary conditions. Beginning with a supercurrent density derivable from either the Ginzburg-Landau or the London theory of superconductivity, the article shows: (1) that a superconducting device cannot distinguish between rotation and an applied magnetic field; (2) that a superconducting device surrounded by a co-rotating superconducting shield cannot detect rotation. The term `superconducting gyroscope` in this article refers only to a device whose working principle is the response of the superconductor itself to rotation, not to any device in which superconducting electronic components are used to detect some other effect. {copyright} {ital 1997 American Institute of Physics.}

  17. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  18. High Tc superconducting materials and devices

    NASA Technical Reports Server (NTRS)

    Haertling, Gene H.

    1990-01-01

    The high Tc Y1Ba2Cu3O(7-x) ceramic materials, initially developed in 1987, are now being extensively investigated for a variety of engineering applications. The superconductor applications which are presently identified as of most interest to NASA-LaRC are low-noise, low thermal conductivity grounding links; large-area linear Meissner-effect bearings; and sensitive, low-noise sensors and leads. Devices designed for these applications require the development of a number of processing and fabrication technologies. Included among the technologies most specific to the present needs are tapecasting, melt texturing, magnetic field grain alignment, superconductor/polymer composite fabrication, thin film MOD (metal-organic decomposition) processing, screen printing of thick films, and photolithography of thin films. The overall objective of the program was to establish a high Tc superconductivity laboratory capability at NASA-LaRC and demonstrate this capability by fabricating superconducting 123 material via bulk and thin film processes. Specific objectives include: order equipment and set up laboratory; prepare 1 kg batches of 123 material via oxide raw material; construct tapecaster and tapecaster 123 material; fabricate 123 grounding link; fabricate 123 composite for Meissner linear bearing; develop 123 thin film processes (nitrates, acetates); establish Tc and Jc measurement capability; and set up a commercial use of space program in superconductivity at LaRC. In general, most of the objectives of the program were met. Finally, efforts to implement a commercial use of space program in superconductivity at LaRC were completed and at least two industrial companies have indicated their interest in participating.

  19. Review of superconducting booster linacs

    NASA Astrophysics Data System (ADS)

    Storm, D. W.

    1993-04-01

    Several superconducting boosters have been built and more are planned or under construction. These all use a number of independently phased resonators to permit acceleration of a wide variety of ion masses. For heavy ions, vhf frequencies are involved, and operation of the superconductors at 4.3 K, the normal boiling point of He, is practical. (Because fundamental losses in superconductors depend on frequency, some electron accelerators using much higher frequencies require colder resonators.) For boosters the resonator technology has evolved toward the use of quarter wave resonators with straight loading arms. The superconducting material is either niobium or lead. The latter is deposited as a film on copper, while the former may be sheet metal, may be bonded to copper, or may be (in principle) applied as a film on copper. The trade-offs involved and the successes of the various techniques are discussed. The rf must be controlled accurately both with regard to amplitude and phase. Because of the high unloaded Q of the resonators, additional loading is provided at some temperature well above that of the superconductor, in order to increase the bandwidth to a manageable point. Most boosters provide active control of phase by shifting the driving phase, although at least one system uses a frequency switching technique. Cross talk between independent resonator control systems must be avoided. The cryogenic systems have evolved toward a system based on a large helium refrigerator using turbine expansion and providing gas cooling to heat shields. Conservative design provides excess capacity beyond the expected requirements of the accelerator. Cryogenic distribution must be done carefully to avoid losses, and the system should be designed with capacity to match that of anticipated upgrades of the refrigerator. Most boosters use an approximately periodic focusing system with radial phase advance near 90° per unit cell. At Legnaro, however, waist to waist focusing is

  20. Magnetic profiles in ferromagnetic/superconducting superlattices.

    SciTech Connect

    te Velthuis, S. G. E.; Hoffmann, A.; Santamaria, J.; Materials Science Division; Univ. Complutense de Madrid

    2007-02-28

    The interplay between ferromagnetism and superconductivity has been of longstanding fundamental research interest to scientists, as the competition between these generally mutually exclusive types of long-range order gives rise to a rich variety of physical phenomena. A method of studying these exciting effects is by investigating artificially layered systems, i.e. alternating deposition of superconducting and ferromagnetic thin films on a substrate, which enables a straight-forward combination of the two types of long-range order and allows the study of how they compete at the interface over nanometer length scales. While originally studies focused on low temperature superconductors interchanged with metallic ferromagnets, in recent years the scope has broadened to include superlattices of high T{sub c} superconductors and colossal magnetoresistance oxides. Creating films where both the superconducting as well as the ferromagnetic layers are complex oxide materials with similar crystal structures (Figure 1), allows the creation of epitaxial superlattices, with potentially atomically flat and ordered interfaces.

  1. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi; Foltyn, Stephen R.

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  2. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  3. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  4. A superconducting magnetic gear

    NASA Astrophysics Data System (ADS)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  5. Hyperkahler metrics on focus-focus fibrations

    NASA Astrophysics Data System (ADS)

    Zhao, Jie

    In this thesis, we focus on the study of hyperkahler metric in four dimensional cases, and practice GMN's construction of hyperkahler metric on focus-focus fibrations. We explicitly compute the action-angle coordinates on the local model of focus-focus fibration, and show its semi-global invariant should be harmonic to admit a compatible holomorphic 2-form. Then we study the canonical semi-flat metric on it. After the instanton correction inspired by physics, we get a family of the generalized Ooguri-Vafa metric on focus-focus fibrations, which becomes more local examples of explicit hyperkahler metric in four dimensional cases. In addition, we also make some exploration of the Ooguri-Vafa metric in the thesis. We study the potential function of the Ooguri-Vafa metric, and prove that its nodal set is a cylinder of bounded radius 1 < R < 1. As a result, we get that only on a finite neighborhood of the singular fibre the Ooguri-Vafa metric is a hyperkahler metric. Finally, we give some estimates for the diameter of the fibration under the Oogui-Vafa metric, which confirms that the Oogui-Vafa metric is not complete. The new family of metric constructed in the thesis, we think, will provide more examples to further study of Lagrangian fibrations and mirror symmetry in future.

  6. Superconducting Magnets for RIA

    NASA Astrophysics Data System (ADS)

    Zeller, A. F.

    2004-06-01

    The highest priority for new construction for the nuclear physics community is the Rare Isotope Accelerator. This project's goal is to produce up to 400 kW of beams from protons to uranium. Beam transport at the high-energy end has to deal with high radiation fields and high beam rigidities. Superconducting magnets are being designed to fulfill both these requirements. The quadrupoles in the fragment separator will use superferric design with pole tip fields of up to 2.5 T to produce the required gradients in the large apertures. Several techniques are presented that deal with making the magnets radiation resistant.

  7. Superconducting magnet cooling system

    DOEpatents

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  8. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  9. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  10. Calculation of mechanical vibration frequencies of stiffened superconducting cavities

    SciTech Connect

    Black, S.J.; Spalek, G.

    1992-09-01

    We calculated the frequencies of transverse and longitudinal mechanical-vibration modes of the HEPL- modified, CERN/DESY four-cell superconducting cavity, using finite-element techniques. We compared the results of these calculations, including the stiffening of the cavity with rods, with mode frequencies measured at HEPL. The correlation between data was significant. The same techniques were also used to design and optimize the stiffening scheme for the seven-cell 805-MHz superconducting cavity being developed at Los Alamos. In this report, we describe the final stiffening scheme and the results of our calculations.

  11. Calculation of mechanical vibration frequencies of stiffened superconducting cavities

    SciTech Connect

    Black, S.J.; Spalek, G.

    1992-01-01

    We calculated the frequencies of transverse and longitudinal mechanical-vibration modes of the HEPL- modified, CERN/DESY four-cell superconducting cavity, using finite-element techniques. We compared the results of these calculations, including the stiffening of the cavity with rods, with mode frequencies measured at HEPL. The correlation between data was significant. The same techniques were also used to design and optimize the stiffening scheme for the seven-cell 805-MHz superconducting cavity being developed at Los Alamos. In this report, we describe the final stiffening scheme and the results of our calculations.

  12. BNL Direct Wind Superconducting Magnets

    SciTech Connect

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  13. FINAL REPORT: NATIONAL CHILDREN'S STUDY FOCUS GROUPS

    EPA Science Inventory

    The primary objective of this work assignment was to develop a better understanding of

    the issues affecting the recruitment and retention of expectant parents and other selected

    stakeholders (parents, healthcare providers and community organizations) for the Nationa...

  14. Chamber, Target and Final Focus Integrated Design

    SciTech Connect

    Moir, R.W

    2000-03-22

    Liquid wall protection, which challenges chamber clearing, has such advantages it's Heavy Ion Fusion's (HIF) main line chamber design. Thin liquid protection from x rays is necessary to avoid erosion of structural surfaces and thick liquid makes structures behind 0.5 m of Flibe (7 mean free paths for 14 MeV neutrons), last the life of the plant. Liquid wall protection holds the promise of greatly increased economic competitiveness. Driver designers require {approx}200 beams to illuminate recent target designs from two sides. The illumination must be compatible with liquid wall protection. The ''best'' values for driver energy, gain, yield and pulse rate comes out of well-known trade-off studies. An integrated chamber design, yet to be made, depends on several key assumptions, which are to be proven before HIF can be shown to be feasible. The chamber R&D needed to reduce the unknowns and risks depend on resolving a few technical issues such as jet surface smoothness and rapid chamber clearing.

  15. Chamber, Target and Final Focus Integrated Design

    SciTech Connect

    Moir, R.W.

    2000-03-03

    Liquid wall protection, which challenges chamber clearing, has such advantages it's Heavy Ion Fusion's (HIF) main line chamber design. Thin liquid protection from x rays is necessary to avoid erosion of structural surfaces and thick liquid makes structures behind 0.5 m of Flibe (7 mean free paths for 14 MeV neutrons), last the life of the plant. Liquid wall protection holds the promise of greatly increased economic competitiveness. Driver designers require {approx}200 beams to illuminate recent target designs from two sides. The illumination must be compatible with liquid wall protection. The ''best'' values for driver energy, gain, yield and pulse rate comes out of well-known trade-off studies. The chamber design is based on several key assumptions, which are to be proven before HIF can be shown to be feasible. The chamber R&D needed to reduce the unknowns and risks depend on resolving a few technical issues such as jet surface smoothness and rapid chamber clearing.

  16. Superconducting magnets for MRI

    SciTech Connect

    Williams, J.E.

    1984-08-01

    Three types of magnets are currently used to provide the background field required for magnet resonance imaging (MRI). (i) Permanent magnets produce fields of up to 0.3 T in volumes sufficient for imaging the head or up to 0.15 T for whole body imaging. Cost and simplicity of operation are advantages, but relatively low field, weight (up to 100 tonnes) and, to a small extent, instability are limitations. (ii) Water-cooled magnets provide fields of up to 0.25 T in volumes suitable for whole body imaging, but at the expense of power (up to 150 kW for 0.25 T) and water-cooling. Thermal stability of the field requires the maintenance of constant temperature through periods both of use and of quiescence. (iii) Because of the limitations imposed by permanent and resistive magnets, particularly on field strength, the superconducting magnet is now most widely used to provide background fields of up to 2 T for whole body MRI. It requires very low operating power and that only for refrigeration. Because of the constant low temperature, 4.2 K, at which its stressed structure operates, its field is stable. The following review deals principally with superconducting magnets for MRI. However, the sections on field analysis apply to all types of magnet and the description of the source terms of circular coils and of the principals of design of solenoids apply equally to resistive solenoidal magnets.

  17. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  18. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  19. Development of superconducting magnet systems for HIFExperiments

    SciTech Connect

    Sabbi, Gian Luca; Faltens, A.; Leitzke, A.; Seidl, P.; Lund, S.; Martovets ky, N.; Chiesa, L.; Gung, C.; Minervini, J.; Schultz, J.; Goodzeit, C.; Hwang, P.; Hinson, W.; Meinke, R.

    2004-07-27

    The U.S. Heavy Ion Fusion program is developing superconducting focusing quadrupoles for near-term experiments and future driver accelerators. Following the fabrication and testing of several models, a baseline quadrupole design was selected and further optimized. The first prototype of the optimized design achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, with measured field harmonics within 10 parts in 10{sup 4}. In parallel, a compact focusing doublet was fabricated and tested using two of the first-generation quadrupoles. After assembly in the cryostat, both magnets reached their conductor-limited quench current. Further optimization steps are currently underway to improve the performance of the magnet system and reduce its cost. They include the fabrication and testing of a new prototype quadrupole with reduced field errors as well as improvements of the cryostat design for the focusing doublet. The prototype units will be installed in the HCX beamline at LBNL, to perform accelerator physics experiments and gain operational experience. Successful results in the present phase will make superconducting magnets a viable option for the next generation of integrated beam experiments.

  20. Role of superconductivity in superconducting transmission line resonator

    NASA Astrophysics Data System (ADS)

    Qin, Xiao-Ke

    2016-06-01

    In order to understand the role of superconductivity in superconducting transmission line resonator, we derive the mode equations using the macroscopic wavefunction of the Cooper pairs. We make an appropriate scaling to obtain the dimensionless form of equations and establish the validity of good conductor approximation under most circumstances. Quantization of superconducting transmission line resonator is realized by the black-box principle. We also briefly discuss that the deviation from good conductor behavior would result in the observable effects, such as the considerable decrease of phase velocity and the soliton.

  1. Magnet design for superconducting open gradient magnetic separator

    NASA Astrophysics Data System (ADS)

    Ahoranta, Maria; Lehtonen, Jorma; Mikkonen, Risto

    2003-04-01

    The use of superconductivity opens new applications for magnetic separation because very high magnetic fields become available. In this paper the magnet design for a laboratory scale superconducting open gradient magnetic separator is presented. The separator will be used to optimize the separation parameters for different kinds of applications, such as the foundry sand purification. Therefore, the goal of the magnet design is to obtain a constant magnetic force density distribution inside the working volume. The high magnitude of magnetic force density is required because the materials to be separated have low magnetic susceptibilities. The maximum achievable force density is determined by the critical current in superconducting magnets. The advantages and drawbacks of solenoid, racetrack and saddle coil geometries are compared. Ways for improving the performance of the system is discussed. Finally, the influence of the stray field on the slurry flow outside the working volume is studied.

  2. Superconducting properties of MgB2 from first principles.

    PubMed

    Floris, A; Profeta, G; Lathiotakis, N N; Lüders, M; Marques, M A L; Franchini, C; Gross, E K U; Continenza, A; Massidda, S

    2005-01-28

    Solid MgB(2) has rather interesting and technologically important properties, such as a very high superconducting transition temperature. Focusing on this compound, we report the first nontrivial application of a novel density-functional-type theory for superconductors, recently proposed by the authors. Without invoking any adjustable parameters, we obtain the transition temperature, the gaps, and the specific heat of MgB(2) in very good agreement with experiment. Moreover, our calculations show how the Coulomb interaction acts differently on sigma and pi states, thereby stabilizing the observed superconducting phase.

  3. Spin-orbit-coupled superconductivity.

    PubMed

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T

    2014-06-25

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < T(c), the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.

  4. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  5. Superconducting dome in doped quasi-two-dimensional organic Mott insulators: A paradigm for strongly correlated superconductivity

    NASA Astrophysics Data System (ADS)

    Hébert, Charles-David; Sémon, Patrick; Tremblay, A.-M. S.

    2015-11-01

    first-order transition between metal and pseudogap. Finally, we predict that electron doping should also lead to an increased range of U /t for superconductivity but with a reduced maximum Tc. This work also clearly shows that the superconducting dome in organic superconductors is tied to the Mott transition and its continuation as a transition separating pseudogap phase from correlated metal in doped compounds, as in the cuprates. Contrary to heavy fermions for example, the maximum Tc is definitely not attached to an antiferromagnetic quantum critical point. That can also be verified experimentally.

  6. Operational Merits of Maritime Superconductivity

    NASA Astrophysics Data System (ADS)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  7. Superconducting properties in tantalum decorated three-dimensional graphene and carbon structures

    SciTech Connect

    Cobaleda, Cayetano S. F. E-mail: wpan@sandia.gov; Xiao, Xiaoyin; Burckel, D. Bruce; Polsky, Ronen; Pan, W. E-mail: wpan@sandia.gov; Huang, Duanni; Diez, Enrique

    2014-08-04

    We present here the results on superconducting properties in tantalum thin films (100 nm thick) deposited on three-dimensional graphene (3DG) and carbon structures. A superconducting transition is observed in both composite thin films with a superconducting transition temperature of 1.2 K and 1.0 K, respectively. We have further measured the magnetoresistance at various temperatures and differential resistance dV/dI at different magnetic fields in these two composite thin films. In both samples, a much large critical magnetic field (∼2 T) is observed and this critical magnetic field shows linear temperature dependence. Finally, an anomalously large cooling effect was observed in the differential resistance measurements in our 3DG-tantalum device when the sample turns superconducting. Our results may have important implications in flexible superconducting electronic device applications.

  8. Strain-induced time-reversal odd superconductivity in graphene

    NASA Astrophysics Data System (ADS)

    Juricic, Vladimir; Roy, Bitan

    2014-03-01

    I will discuss the possibility of realizing a time-reversal-symmetry breaking superconducting state that exhibits an f + is pairing symmetry in strained graphene. Although the underlying attractive interactions need to be sufficiently strong and comparable in pristine graphene to support such pairing state, I will argue that strain can be conducive for its formation even for weak interactions. I will show that quantum-critical behavior near the transition is controlled by a fermionic multicritical point, characterized by various critical exponents computed in the framework of an ɛ-expansion near four spacetime dimensions. I will then discuss the scaling of the superconducting gap with the strain-induced axial pseudo-magnetic field. Furthermore, a vortex in this mixed superconducting state hosts a pair of Majorana fermions supporting a quartet of insulating and superconducting orders, among which quantum spin Hall topological insulator. Finally, I will mention some experimental signatures of this f + is time-reversal odd superconductor. These findings suggest that strained graphene could provide a platform for the realization of exotic superconducting states of Dirac fermions. VJ is supported by the Netherlands Organization for Scientific Research (NWO).

  9. A parasitic magnetic refrigerator for cooling superconducting magnet

    SciTech Connect

    Nakagome, H.; Takahashi, M.; Ogiwara, H.

    1988-03-01

    The application of magnetic refrigeration principle at a liquid helium temperature (4.2K) is very useful for cooling a superconducting magnet for its potential of high efficiency. The magnetic refrigerator equipped with 14 pieces of GGG (gadolinium-gallium-garnet) single crystal unit (30mm in diameter 10mm in length) in the rotating disk operates along the gradient of the magnetic field produced by a racetrack superconducting magnet, whose maximum magnetic field is 4.5 Tesla and the minimum field is 1.1 Tesla. The final goal of their program is to liquefy gaseous helium evaporated from a liquid helium vessel of the racetrack superconducting magnet by the rotating magnetic refrigerator which operates by using the magnetic field of the superconducting magnet. A 0.12W refrigeration power in the 0.72rpm operation has been achieved under condition of 4.2K to 11.5K operation. The helium evaporation rate of this magnet system is estimated as the order of 10mW, and the achieved refrigeration power of 0.12W at 4.2K is sufficient for cooling the superconducting magnet.

  10. Focusing solenoids for the HINS Linac front end

    SciTech Connect

    Terechkine, I.; Appollinari, G.; Di-Marco, J.; Huang, Y.; Orris, D.; Page, T.; Rabehl, R.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2008-10-01

    The low energy part of a linac for the High Intensity Neutrino Source (HINS) project at Fermilab will use superconducting solenoids as beam focusing elements (lenses). While the lenses for the conventional DTL-type accelerating section of the front end require individual cryostats, in the superconducting accelerating sections solenoids will be installed inside RF cryomodules. Some of the lenses in the conventional and in the superconducting sections are equipped with horizontal and vertical steering dipoles. Lenses for the DTL section are in the stage of production with certification activities ongoing at Fermilab. For the superconducting sections of the linac, a prototype lens has been built and tested. Each lens will be installed in the transport channel of the accelerator so that its magnetic axis is on the beamline. Corresponding technique has been developed at Fermilab and is used during the certification process. This report summarizes design features, parameters, and test results of the focusing lenses.

  11. Protection circuits for superconducting magnets

    SciTech Connect

    Parsons, W.M.; Wood, R.J.

    1980-01-01

    As the technology of controlled nuclear fusion progresses, plans for new experimental reactors include much longer duty cycles than those of earlier experiments. Many of the magnet systems for these reactors must be superconducting due to the prolonged or continuous high current levels required. The large initial investment of a superconducting magnet system justifies a protective dump circuit. This circuit must operate if the magnet goes normal or in the event of failure of some of the critical auxiliary equipment. This paper examines two applications of superconducting magnet protection for fusion experiments. A novel dc interrupter being developed especially for this purpose is also discussed.

  12. Nozzle for superconducting fiber production

    DOEpatents

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  13. High intensity neutrino source superconducting solenoid cyrostat design

    SciTech Connect

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  14. Superconductivity of metal-induced surface reconstructions on silicon

    NASA Astrophysics Data System (ADS)

    Uchihashi, Takashi

    2016-11-01

    Recent progress in superconducting metal-induced surface reconstructions on silicon is reviewed, mainly focusing on the results of the author’s group. After a brief introduction of an ultrahigh-vacuum (UHV)-low-temperature (LT)-compatible electron transport measurement system, direct observation of the zero resistance state for the Si(111)-(\\sqrt{7} × \\sqrt{3} )-In surface is described, which demonstrates the existence of a superconducting transition in this class of two-dimensional (2D) materials. The measurement and analysis of the temperature dependence of the critical current density indicate that a surface atomic step works as a Josephson junction. This identification is further confirmed by LT-scanning tunneling microscopy (STM) observation of Josephson vortices trapped at atomic steps on the Si(111)-(\\sqrt{7} × \\sqrt{3} )-In surface. These experiments reveal unique features of metal-induced surface reconstructions on silicon that may be utilized to explore novel superconductivity.

  15. High Intensity Neutrino Source Superconducting Solenoid Cryostat Design

    NASA Astrophysics Data System (ADS)

    Page, T. M.; Nicol, T. H.; Feher, S.; Terechkine, I.; Tompkins, J.

    2008-03-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5 K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  16. Novel superconducting phenomena in quasi-one-dimensional Bechgaard salts

    NASA Astrophysics Data System (ADS)

    Jerome, Denis; Yonezawa, Shingo

    2016-03-01

    It is the saturation of the transition temperature Tc in the range of 24 K for known materials in the late sixties that triggered the search for additional materials offering new coupling mechanisms leading in turn to higher Tc's. As a result of this stimulation, superconductivity in organic matter was discovered in tetramethyl-tetraselenafulvalene-hexafluorophosphate, (TMTSF)2PF6, in 1979, in the laboratory founded at Orsay by Professor Friedel and his colleagues in 1962. Although this conductor is a prototype example for low-dimensional physics, we mostly focus in this article on the superconducting phase of the ambient-pressure superconductor (TMTSF)2ClO4, which has been studied most intensively among the TMTSF salts. We shall present a series of experimental results supporting nodal d-wave symmetry for the superconducting gap in these prototypical quasi-one-dimensional conductors. xml:lang="fr"

  17. Superconducting Pathways Through Kilopixel Backshort-Under-Grid Arrays

    NASA Astrophysics Data System (ADS)

    Jhabvala, C. A.; Benford, D. J.; Brekosky, R. P.; Costen, N. P.; Datesman, A. M.; Hilton, G. C.; Irwin, K. D.; Maher, S. F.; Manos, G.; Miller, T. M.; Moseley, S. H.; Sharp, E. H.; Staguhn, J. G.; Wang, F.; Wollack, E. J.

    2016-08-01

    We have demonstrated in the laboratory multiple, fully functional, kilopixel, bolometer arrays for the upgraded instrument, the High-resolution airborne wideband camera plus (HAWC+), for the stratospheric observatory for infrared astronomy (SOFIA). Each kilopixel array consists of three individual components assembled into a single working unit: (1) a filled, Transition Edge Sensor (TES) bolometer array, (2) an infrared, back-termination, and (3) an integrated, two-dimensional superconducting quantum interference device (SQUID) multiplexer readout. Kilopixel TES arrays are directly indium-bump-bonded to a 32 × 40 SQUID multiplexer (MUX) circuit. In order to provide a fully superconducting pathway from the TES to the SQUID readout, numerous superconductor-to-superconductor interfaces must be made. This paper focuses on the fabrication techniques needed to create the superconducting path from the TES, out of the detector membrane, through the wafer, and to the SQUID readout.

  18. Superconductivity of very thin films: The superconductor-insulator transition

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Hsiang; Nelson, J.; Goldman, A. M.

    2015-07-01

    The study of thin superconducting films has been an important component of the science of superconductivity for more than six decades. It played a major role in the development of currently accepted views of the macroscopic and microscopic nature of the superconducting state. In recent years the focus of research in the field has shifted to the study of ultrathin films and surface and interface layers. This has permitted the exploration of one of the important topics of condensed matter physics, the superconductor-insulator transition. This review will discuss this phenomenon as realized in the study of metallic films, cuprates, and metallic interfaces. These are in effect model systems for behaviors that may be found in more complex systems of contemporary interest.

  19. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering.

    PubMed

    Troyan, Ivan; Gavriliuk, Alexander; Rüffer, Rudolf; Chumakov, Alexander; Mironovich, Anna; Lyubutin, Igor; Perekalin, Dmitry; Drozdov, Alexander P; Eremets, Mikhail I

    2016-03-18

    High-temperature superconductivity remains a focus of experimental and theoretical research. Hydrogen sulfide (H2S) has been reported to be superconducting at high pressures and with a high transition temperature. We report on the direct observation of the expulsion of the magnetic field in H2S compressed to 153 gigapascals. A thin (119)Sn film placed inside the H2S sample was used as a sensor of the magnetic field. The magnetic field on the (119)Sn sensor was monitored by nuclear resonance scattering of synchrotron radiation. Our results demonstrate that an external static magnetic field of about 0.7 tesla is expelled from the volume of (119)Sn foil as a result of the shielding by the H2S sample at temperatures between 4.7 K and approximately 140 K, revealing a superconducting state of H2S. PMID:26989248

  20. Spinning superconducting electrovacuum soliton

    NASA Astrophysics Data System (ADS)

    Dymnikova, Irina

    2006-08-01

    In nonlinear electrodynamics coupled to general relativity and satisfying the weak energy condition, a spherically symmetric electrically charged electrovacuum soliton has obligatory de Sitter center in which the electric field vanishes while the energy density of electromagnetic vacuum achieves its maximal value. De Sitter vacuum supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry from the de Sitter group in the origin. By the Gürses-Gürsey algorithm based on the Newman-Trautman technique it is transformed into a spinning electrovacuum soliton asymptotically Kerr-Newman for a distant observer. De Sitter center becomes de Sitter equatorial disk which has both perfect conductor and ideal diamagnetic properties. The interior de Sitter vacuum disk displays superconducting behavior within a single spinning soliton. All this concerns both black hole and particle-like structures.

  1. Superconducting energy storage

    SciTech Connect

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  2. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  3. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  4. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  5. Negative refraction and superconductivity

    NASA Astrophysics Data System (ADS)

    Amariti, Antonio; Forcella, Davide; Mariotti, Alberto; Siani, Massimo

    2011-10-01

    We discuss exotic properties of charged hydrodynamical systems, in the broken superconducting phase, probed by electromagnetic waves. Motivated by general arguments from hydrodynamics, we observe that negative refraction, namely the propagation in opposite directions of the phase velocities and of the energy flux, is expected for low enough frequencies. We corroborate this general idea by analyzing a holographic superconductor in the AdS/CFT correspondence, where the response functions can be explicitly computed. We study the dual gravitational theory both in the probe and in the backreacted case. We find that, while in the first case the refractive index is positive at every frequency, in the second case there is negative refraction at low enough frequencies. This is in agreement with hydrodynamic considerations.

  6. Optical nanofiber fabrication and analysis towards coupling atoms to superconducting qubits

    NASA Astrophysics Data System (ADS)

    Hoffman, Jonathan

    We describe advancements towards coupling superconducting qubits to neutral atoms. To produce a measurably large coupling, the atoms will need to be on the order of a few micrometers away from the qubit. A consequence of combining superconducting qubits and atoms is addressing their operational constraints, such as the deleterious light effects on superconducting systems and the magnetic field sensitivity of superconducting qubits. Our group proposes the use of optical-nanofiber-based optical dipole traps to confine atoms near the superconductor. Optical nanofibers (ONFs) have high-intensity evanescent waves that require less power than equivalent standard dipole traps. This thesis focuses on the fabrication and analysis of the behavior of ONFs. First we present the construction of the pulling apparatus. We outline the necessary steps for a typical pull, detailing the cleaning and alignment process. Then we examine the quality of the fibers by measuring their transmission and comparing our results to other reported measurements, demonstrating a two-order of magnitude decrease in loss. Next we present the modal evolution in ONFs using simulations and spectrogram analysis. We identify crucial elements to improve the transmission and demonstrate understanding of the modal dynamics during the pull. Then we study higher-order modes (HOMs) with ONFs using the first excited TE01, TM01, and HE21 modes. We demonstrate transmissions greater than 97% for 780 nm light when we launch the first excited LP11 family of modes through fibers with a 350 nm waist. This setup enables us to launch these three modes with high purity at the output, where less than 1% of the light is coupled to the fundamental mode. We then focus on the identification of modes on the ONF waist. First we use Rayleigh scattering to identify the modal content of an ONF. Bulk optics can convert the modes in the ONF, and we observe the controllable conversion of superpositions of modes. Finally, we use an

  7. Mixed-mu superconducting bearings

    SciTech Connect

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  8. Mixed-mu superconducting bearings

    SciTech Connect

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  9. Superconductivity from Emerging Magnetic Moments.

    PubMed

    Hoshino, Shintaro; Werner, Philipp

    2015-12-11

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds. PMID:26705649

  10. Superconductivity from Emerging Magnetic Moments

    NASA Astrophysics Data System (ADS)

    Hoshino, Shintaro; Werner, Philipp

    2015-12-01

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds.

  11. Search for Superconductivity in Micrometeorites

    PubMed Central

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-01-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10−12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures. PMID:25476841

  12. Superconductivity: A celebration of pairs

    NASA Astrophysics Data System (ADS)

    Norman, Michael R.

    2007-12-01

    It is fifty years since John Bardeen, Leon Cooper and Bob Schrieffer presented the microscopic theory of superconductivity. At a wonderful conference in Urbana the 'good old days' were remembered, and the challenges ahead surveyed.

  13. Midwest superconductivity consortium. 1993 Progress report

    SciTech Connect

    Not Available

    1994-01-01

    The Midwest Superconductivity Consortium, MISCON, in the fourth year of operations further strengthened its mission to advance the science and understanding of high T{sub c} superconductivity. The goals of the organization and the individual projects continue to reflect the current needs for new knowledge in the field and the unique capabilities of the institutions involved. Group efforts and cooperative laboratory interactions to achieve the greatest possible synergy under the Consortium continue to be emphasized. Industrial affiliations coupled with technology transfer initiatives were expanded. Activities of the participants during the past year achieved an interactive and high level of performance. The number of notable achievements in the field contributed by Consortium investigators increased. The programmatic research continues to focus upon key materials-related problems in two areas. The first area has a focus upon {open_quotes}Synthesis and Processing{close_quotes} while the second is centered around {open_quotes}Limiting Features in Transport Properties of High T{sub c} Materials{close_quotes}.

  14. Entanglement witnessing in superconducting beamsplitters

    NASA Astrophysics Data System (ADS)

    Soller, H.; Hofstetter, L.; Reeb, D.

    2013-06-01

    We analyse a large class of superconducting beamsplitters for which the Bell parameter (CHSH violation) is a simple function of the spin detector efficiency. For these superconducting beamsplitters all necessary information to compute the Bell parameter can be obtained in Y-junction setups for the beamsplitter. Using the Bell parameter as an entanglement witness, we propose an experiment which allows to verify the presence of entanglement in Cooper pair splitters.

  15. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  16. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  17. Electrophoretic Focusing

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S.

    2001-01-01

    Electrophoretic focusing is a new method of continuous flow electrophoresis that introduces precision flow control to achieve high resolution separations. The electric field is applied perpendicular to an incoming sample lamina and buffer but also perpendicular to the broad faces of the thin rectangular chamber. A uniform fluid cross-flow then enters and exits the separation chamber through the same broad faces which are porous. A balance is achieved by adjusting either the electric field or the cross-flow so the desired sample fraction with its specific migration velocity encounters an opposing flow of the same velocity. Applying an electric field transverse to the incoming sample lamina and opposing this field with a carefully configured buffer flow, a sample constituent can be selected and focused into a narrow stream for subsequent analysis. Monotonically changing either electric field or buffer cross-flow will yield a scan of all constituents of the sample. Stopping the scan increases the collection time for minor constituents to improve their analysis. Using the high voltage gradients and/or cross-flow to rapidly deflect extraneous sample through the porous screens and into either of the side (purge) chambers, the selected sample is focused in the center plane of the separation chamber and collected without contact or interaction with the separation chamber walls. Results will be presented on the separation of a range of materials including dyes, proteins, and monodisperse polystyrene latexes. Sources of sample dispersion inherent in other electrokinetic techniques will be shown to be negligible for a variety of sample concentrations, buffer properties and operating conditions.

  18. Electrodynamics of superconducting pnictide superlattices

    SciTech Connect

    Perucchi, A.; Pietro, P. Di; Capitani, F.; Lupi, S.; Lee, S.; Kang, J. H.; Eom, C. B.; Jiang, J.; Weiss, J. D.; Hellstrom, E. E.; Dore, P.

    2014-06-02

    It was recently shown that superlattices where layers of the 8% Co-doped BaFe{sub 2}As{sub 2} superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO{sub 3} or of oxygen-rich BaFe{sub 2}As{sub 2}, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here, we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multigap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.

  19. A strong-focusing 800 MeV cyclotron for high-current applications

    NASA Astrophysics Data System (ADS)

    Pogue, N.; Assadi, S.; Badgley, K.; Comeaux, J.; Kellams, J.; McInturff, A.; McIntyre, P.; Sattarov, A.

    2013-04-01

    A superconducting strong-focusing cyclotron (SFC) is being developed for high-current applications. It incorporates four innovations. Superconducting quarter-wave cavities are used to provide >20 MV/turn acceleration. The orbit separation is thereby opened so that bunch-bunch interactions between successive orbits are eliminated. Quadrapole focusing channels are incorporated within the sectors so that alternating-gradient strong-focusing transport is maintained throughout. Dipole windings on the inner and outer orbits provide enhanced control for injection and extraction of bunches. Finally each sector magnet is configured as a flux-coupled stack of independent apertures, so that any desired number of independent cyclotrons can be integrated within a common footprint. Preliminary simulations indicate that each SFC should be capable of accelerating 10 mA CW to 800 MeV with very low loss and >50% energy efficiency. A primary motivation for SFC is as a proton driver for accelerator-driven subcritical fission in a molten salt core. The cores are fueled solely with the transuranics from spent nuclear fuel from a conventional nuclear power plant. The beams from one SFC stack would destroy all of the transuranics and long-lived fission products that are produced by a GWe reactor [1]. This capability offers the opportunity to close the nuclear fuel cycle and provide a path to green nuclear energy.

  20. Pantechnik new superconducting ion source: PantechniK Indian Superconducting Ion Source

    SciTech Connect

    Gaubert, G.; Bieth, C.; Bougy, W.; Brionne, N.; Donzel, X.; Leroy, R.; Sineau, A.; Vallerand, C.; Villari, A. C. C.; Thuillier, T.

    2012-02-15

    The new ECR ion source PantechniK Indian Superconducting Ion Source (PKISIS) was recently commissioned at Pantechnik. Three superconducting coils generate the axial magnetic field configuration, while the radial magnetic field is done with the multi-layer permanent magnets. Special care was devoted to the design of the hexapolar structure, allowing a maximum magnetic field of 1.32 T at the wall of the 82 mm diameter plasma chamber. The three superconducting coils using low temperature superconducting wires are cooled by a single double stage cryo-cooler (4.2 K). Cryogen-free technology is used, providing reliability and easy maintenance at low cost. The maximum installed RF power (18.0 GHz) is of 2 kW. Metallic beams can be produced with an oven (T{sub max}= 1400 deg. C) installed with an angle of 5 deg. with respect to the source axis or a sputtering system, mounted on the axis of the source. The beam extraction system is constituted of three electrodes in accel-decel configuration. The new source of Pantechnik is conceived for reaching optimum performances at 18 GHz RF frequencies. PKISIS magnetic fields are 2.1 T axial B{sub inj} and 1.32 T radial field in the wall, variable B{sub min} with an independent coil and a large and opened extraction region. Moreover, PKISIS integrates modern design concepts, like RF direct injection (2 kW availability), dc-bias moving disk, out-of-axis oven and axial sputtering facility for metal beams. Finally, PKISIS is also conceived in order to operate in a high-voltage platform with minor power consumption.

  1. Fractal superconductivity near localization threshold

    SciTech Connect

    Feigel'man, M.V.; Ioffe, L.B.; Kravtsov, V.E.; Cuevas, E.

    2010-07-15

    We develop a semi-quantitative theory of electron pairing and resulting superconductivity in bulk 'poor conductors' in which Fermi energy E{sub F} is located in the region of localized states not so far from the Anderson mobility edge E{sub c}. We assume attractive interaction between electrons near the Fermi surface. We review the existing theories and experimental data and argue that a large class of disordered films is described by this model. Our theoretical analysis is based on analytical treatment of pairing correlations, described in the basis of the exact single-particle eigenstates of the 3D Anderson model, which we combine with numerical data on eigenfunction correlations. Fractal nature of critical wavefunction's correlations is shown to be crucial for the physics of these systems. We identify three distinct phases: 'critical' superconductive state formed at E{sub F} = E{sub c}, superconducting state with a strong pseudo-gap, realized due to pairing of weakly localized electrons and insulating state realized at E{sub F} still deeper inside a localized band. The 'critical' superconducting phase is characterized by the enhancement of the transition temperature with respect to BCS result, by the inhomogeneous spatial distribution of superconductive order parameter and local density of states. The major new feature of the pseudo-gapped state is the presence of two independent energy scales: superconducting gap {Delta}, that is due to many-body correlations and a new 'pseudo-gap' energy scale {Delta}{sub P} which characterizes typical binding energy of localized electron pairs and leads to the insulating behavior of the resistivity as a function of temperature above superconductive T{sub c}. Two gap nature of the pseudo-gapped superconductor is shown to lead to specific features seen in scanning tunneling spectroscopy and point-contact Andreev spectroscopy. We predict that pseudo-gapped superconducting state demonstrates anomalous behavior of the optical

  2. Inertial Focusing in Microfluidics

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2015-01-01

    When Segré and Silberberg in 1961 witnessed particles in a laminar pipe flow congregating at an annulus in the pipe, scientists were perplexed and spent decades learning why such behavior occurred, finally understanding that it was caused by previously unknown forces on particles in an inertial flow. The advent of microfluidics opened a new realm of possibilities for inertial focusing in the processing of biological fluids and cellular suspensions and created a field that is now rapidly expanding. Over the past five years, inertial focusing has enabled high-throughput, simple, and precise manipulation of bodily fluids for a myriad of applications in point-of-care and clinical diagnostics. This review describes the theoretical developments that have made the field of inertial focusing what it is today and presents the key applications that will make inertial focusing a mainstream technology in the future. PMID:24905880

  3. An integrated mechanical design concept for the final focusingregion for the HIF point design

    SciTech Connect

    Brown, T.; Sabbi, G.-L.; Barnard, J.J.; Heitzenroeder, P.; Chun,J.; Schmidt, J.; Yu, S.S.; Peterson, P.F.; Abbott, R.P.; Callahan, D.A.; Latkowski, J.F.; Logan, B.G.; Meier, W.R.; Pemberton, S.J.; Rose, D.V.; Sharp, W.M.; Welch, D.R.

    2002-11-21

    A design study was undertaken to develop a ''first cut'' integrated mechanical design concept of the final focusing region for a conceptual IFE power plant that considers the major issues which must be addressed in an integrated driver and chamber system. The conceptual design in this study requires a total of 120 beamlines located in two conical arrays attached on the sides of the target chamber 180 degrees apart. Each beamline consists of four large-aperture superconducting quadrupole magnets and a dipole magnet. The major interface issues include radiation shielding and thermal insulation of the superconducting magnets; reaction of electromagnetic loads between the quadrupoles; alignment of the magnets; isolation of the vacuum regions in the target chamber from the beamline, and assembly and maintenance.

  4. Beam Dynamics in the Cebaf Superconducting Cavities.

    NASA Astrophysics Data System (ADS)

    Li, Zenghai

    1995-01-01

    This work is a study of beam dynamics in the CEBAF superconducting cavities under the influence of the fields generated by externally applied RF and beam particles. A full 3-D modeling of the CEBAF 5-cell superconducting cavity is carried out. Details of the modeling with MAFIA are discussed. Multipole fields due to the asymmetric couplers are studied by means of 3-D Fourier transforms. The cavity steering and focusing of the multipole fields are studied. Experimental measurements of these effects are performed to validate the modeling. Evaluation of the cavity misalignment is discussed. The emittance degradation effects in the CEBAF superconducting linacs and an FEL driver linac due to the head-tail effects of the cavity steering and the x - y coupling effects of the multipole fields are studied. The beam-cavity interactions for cases of v _{s}, v_{t} not= c are studied. The Lindman boundary condition is implemented to accommodate simulation of infinite long beam pipes of the beam line. A fourth-order finite-difference algorithm is derived in cylindrical coordinates to reduce the frequency dependent truncation errors, which were discovered in the process of calculating wake fields of very short bunches, of the second-order Yee algorithm. The effects of the slippage between the source particle and the test particle are considered in the wake function calculations. Radial scaling relations are obtained for calculating the wake functions on the axis from the integrated value at the beam pipe radius. The scaling found not only depends on the beam energy but also depends on the bunch length of the beam and the opening of the cavity. The conditions for the validity of the ultrarelativistic treatment of the wakefield are discussed. The emittance growth and the energy spread due to the combined effects of the cavity multipole fields and the wakefields in a 40 MeV IR FEL driver linac are studied.

  5. The road to superconducting spintronics

    NASA Astrophysics Data System (ADS)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  6. Superconductivity in doped fullerenes

    SciTech Connect

    Hebard, A.F. )

    1992-11-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C[sub 60], further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I[sub h], its high symmetry alone invites special attention. The publication in September 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C[sub 60] (and the higher fullerenes, such as C[sub 70] and C[sub 84]) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. 23 refs., 6 figs.

  7. Improved superconducting magnet wire

    DOEpatents

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  8. Demons and superconductivity

    SciTech Connect

    Ihm, J.; Cohen, M.L.; Tuan, S.F.

    1981-04-01

    Model calculations are used to explore the role of demons (acoustic plasmons involving light and heavy mass carriers) in superconductivity. Heavy d electrons and light s and p electrons in a transition metal are used for discussion, but the calculation presented is more general, and the results can be applied to other systems. The analysis is based on the dielectric-function approach and the Bardeen-Cooper-Schrieffer theory. The dielectric function includes intraband and interband s-d scattering, and a tight-binding model is used to examine the role of s-d hybridization. The demon contribution generally reduces the Coulomb interaction between the electrons. Under suitable conditions, the model calculations indicate that the electron-electron interaction via demons can be attractive, but the results also suggest that this mechanism is probably not dominant in transition metals and transition-metal compounds. An attractive interband contribution is found, and it is proposed that this effect may lead to pairing in suitable systems.

  9. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  10. Superconducting energy storage magnet

    NASA Technical Reports Server (NTRS)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  11. Designing Quantum Matter with Superconducting Nanowires

    NASA Astrophysics Data System (ADS)

    Markovic, Nina

    Superconducting nanowires are an experimental realization of a model quantum system that features collective degrees of freedom and exhibits a host of non-equilibrium and non-local phenomena. The nature of the quantum states in nanowires is particularly sensitive to size and shape quantization, coupling with the environment and proximity effects. I will demonstrate how we can utilize these features to tailor the quantum states in nanowires in desirable ways. Specifically for this purpose, we have developed a unique nanoprinting method for fabrication of ultranarrow nanowires with unprecedented control over their physical texture and their transport properties. I will show how short nanowires exhibit a tunable vortex-in-a-box blockade phenomenon, and how tunable interfaces with graphene and topological insulators lead to unusual properties. Finally, I will discuss the bigger picture for how the texture of the superconducting wavefunction can be precisely controlled by the size, shape, magnetic field and tunable interfaces with materials that exhibit unconventional order, spin texture or topological properties. This work is supported by NSF DMR-1507782.

  12. Solitonic ground states in (color) superconductivity

    NASA Astrophysics Data System (ADS)

    Nickel, Dominik; Buballa, Michael

    2009-03-01

    We present a general framework for analyzing inhomogeneous (color-)superconducting phases in the mean-field approximation without restriction to the Ginzburg-Landau approach. As a first application, we calculate real gap functions with general one-dimensional periodic structures for a 3+1-dimensional toy model having two fermion species. The resulting solutions are energetically favored against homogeneous superconducting (BCS) and normal conducting phases in a window for the chemical potential difference δμ which is about twice as wide as that for the most simple plane-wave ansatz (“Fulde-Ferrell phase”). At the lower end of this window, we observe the formation of a soliton lattice and a continuous phase transition to the BCS phase. At the higher end of the window the gap functions are sinusoidal, and the transition to the normal conducting phase is of first order. We also discuss the quasiparticle excitation spectrum in the inhomogeneous phase. Finally, we compare the gap functions with the known analytical solutions of the 1+1-dimensional theory.

  13. Solitonic ground states in (color) superconductivity

    SciTech Connect

    Nickel, Dominik; Buballa, Michael

    2009-03-01

    We present a general framework for analyzing inhomogeneous (color-)superconducting phases in the mean-field approximation without restriction to the Ginzburg-Landau approach. As a first application, we calculate real gap functions with general one-dimensional periodic structures for a 3+1-dimensional toy model having two fermion species. The resulting solutions are energetically favored against homogeneous superconducting (BCS) and normal conducting phases in a window for the chemical potential difference {delta}{mu} which is about twice as wide as that for the most simple plane-wave ansatz ('Fulde-Ferrell phase'). At the lower end of this window, we observe the formation of a soliton lattice and a continuous phase transition to the BCS phase. At the higher end of the window the gap functions are sinusoidal, and the transition to the normal conducting phase is of first order. We also discuss the quasiparticle excitation spectrum in the inhomogeneous phase. Finally, we compare the gap functions with the known analytical solutions of the 1+1-dimensional theory.

  14. Superconducting materials for large scale applications

    SciTech Connect

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  15. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  16. Focused ion beam system

    DOEpatents

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  17. Superconductivity and the environment: a Roadmap

    NASA Astrophysics Data System (ADS)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    disasters will be helped by future supercomputer technologies that support huge amounts of data and sophisticated modeling, and with the aid of superconductivity these systems might not require the energy of a large city. We present different sections on applications that could address (or are addressing) a range of environmental issues. The Roadmap covers water purification, power distribution and storage, low-environmental impact transport, environmental sensing (particularly for the removal of unexploded munitions), monitoring the Earth’s magnetic fields for earthquakes and major solar activity, and, finally, developing a petaflop supercomputer that only requires 3% of the current supercomputer power provision while being 50 times faster. Access to fresh water. With only 2.5% of the water on Earth being fresh and climate change modeling forecasting that many areas will become drier, the ability to recycle water and achieve compact water recycling systems for sewage or ground water treatment is critical. The first section (by Nishijima) points to the potential of superconducting magnetic separation to enable water recycling and reuse. Energy. The Equinox Summit held in Waterloo Canada 2011 (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources) identified electricity use as humanity’s largest contributor to greenhouse gas emissions. Our appetite for electricity is growing faster than for any other form of energy. The communiqué from the summit said ‘Transforming the ways we generate, distribute and store electricity is among the most pressing challenges facing society today…. If we want to stabilize CO2 levels in our atmosphere at 550 parts per million, all of that growth needs to be met by non-carbon forms of energy’ (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). Superconducting technologies can provide the energy efficiencies to achieve, in the European Union alone, 33-65% of the required reduction in greenhouse

  18. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  19. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  20. Fast superconducting magnetic field switch

    SciTech Connect

    Goren, Y.; Mahale, N.K.

    1995-12-31

    The superconducting magnetic switch or fast kicker magnet is employed with an electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater than the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. Magnetic switches and particularly fast kicker magnets are used in the accelerator industry to quickly deflect particle beams into and out of various transport lines, storage rings, dumps, and specifically to differentially route individual bunches of particles from a train of bunches which are injected or ejected from a given ring.

  1. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  2. The Superconducting Bird: A Didactical Toy.

    ERIC Educational Resources Information Center

    Guarner, E.; Sanchez, A. M.

    1992-01-01

    Describes the design of the superconducting bird, a device to demonstrate the phenomenon of superconductivity. Discusses the utilization of the device as an example of a motor and compares it to the toy called the drinking bird. (MDH)

  3. Superconducting PM undiffused machines with stationary superconducting coils

    DOEpatents

    Hsu, John S.; Schwenterly, S. William

    2004-03-02

    A superconducting PM machine has a stator, a rotor and a stationary excitation source without the need of a ferromagnetic frame which is cryogenically cooled for operation in the superconducting state. PM material is placed between poles on the rotor to prevent leakage or diffusion of secondary flux before reaching the main air gap, or to divert PM flux where it is desired to weaken flux in the main air gap. The PM material provides hop-along capability for the machine in the event of a fault condition.

  4. Digital quantum Rabi and Dicke models in superconducting circuits.

    PubMed

    Mezzacapo, A; Las Heras, U; Pedernales, J S; DiCarlo, L; Solano, E; Lamata, L

    2014-12-15

    We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios.

  5. Digital Quantum Rabi and Dicke Models in Superconducting Circuits

    PubMed Central

    Mezzacapo, A.; Las Heras, U.; Pedernales, J. S.; DiCarlo, L.; Solano, E.; Lamata, L.

    2014-01-01

    We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios. PMID:25500735

  6. Superconductivity in CaBi2.

    PubMed

    Winiarski, M J; Wiendlocha, B; Gołąb, S; Kushwaha, S K; Wiśniewski, P; Kaczorowski, D; Thompson, J D; Cava, R J; Klimczuk, T

    2016-08-01

    Superconductivity is observed with critical temperature Tc = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at Tc is ΔC/γTc = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient γ = 4.1 mJ mol(-1) K(-2) and the Debye temperature ΘD = 157 K. The electron-phonon coupling strength is λel-ph = 0.59, and the thermodynamic critical field Hc is low, between 111 and 124 Oe CaBi2 is a moderate coupling type-I superconductor. Results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin-orbit coupling and electronic property anisotropy. We find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material. PMID:27435423

  7. Superconductivity in CaBi2.

    PubMed

    Winiarski, M J; Wiendlocha, B; Gołąb, S; Kushwaha, S K; Wiśniewski, P; Kaczorowski, D; Thompson, J D; Cava, R J; Klimczuk, T

    2016-08-01

    Superconductivity is observed with critical temperature Tc = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at Tc is ΔC/γTc = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient γ = 4.1 mJ mol(-1) K(-2) and the Debye temperature ΘD = 157 K. The electron-phonon coupling strength is λel-ph = 0.59, and the thermodynamic critical field Hc is low, between 111 and 124 Oe CaBi2 is a moderate coupling type-I superconductor. Results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin-orbit coupling and electronic property anisotropy. We find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material.

  8. Magnetism and Superconductivity in Iron Pnictides

    SciTech Connect

    Singh, David J

    2012-01-01

    The discovery of high temperature superconductivity in iron pnictides and chalcogenides has resulted in surprising new insights into high temperature superconductivity and its relationship with magnetism. Here we provide an overview of some of what is known about these materials and in particular about the interplay of magnetism and superconductivity in them. Similarities and contrasts with cuprate superconductors are emphasized and the superconducting pairing is discussed within the framework of spin fluctuation induced pairing.

  9. Space applications of superconductivity - Digital electronics

    NASA Technical Reports Server (NTRS)

    Harris, R. E.

    1980-01-01

    Superconducting electronics offers a variety of remarkable properties including high speed and low dissipation. The paper discusses fundamental considerations which appear to suggest that superconducting (cryogenic) technology will offer significant advantages for future digital devices. It shows how the active element in superconducting electronics, the Josephson junction, works and discusses the technology for fabricating the devices. The characteristics of published circuits are briefly reviewed, and the capabilities of future superconducting computers and instruments are projected.

  10. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  11. Strain tolerant microfilamentary superconducting wire

    DOEpatents

    Finnemore, Douglas K.; Miller, Theodore A.; Ostenson, Jerome E.; Schwartzkopf, Louis A.; Sanders, Steven C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  12. Sensing with Superconducting Point Contacts

    PubMed Central

    Nurbawono, Argo; Zhang, Chun

    2012-01-01

    Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630

  13. Superconductivity in magnetic multipole states

    NASA Astrophysics Data System (ADS)

    Sumita, Shuntaro; Yanase, Youichi

    2016-06-01

    Stimulated by recent studies of superconductivity and magnetism with local and global broken inversion symmetry, we investigate the superconductivity in magnetic multipole states in locally noncentrosymmetric metals. We consider a one-dimensional zigzag chain with sublattice-dependent antisymmetric spin-orbit coupling and suppose three magnetic multipole orders: monopole order, dipole order, and quadrupole order. It is demonstrated that the Bardeen-Cooper-Schrieffer state, the pair-density wave (PDW) state, and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state are stabilized by these multipole orders, respectively. We show that the PDW state is a topological superconducting state specified by the nontrivial Z2 number and winding number. The origin of the FFLO state without macroscopic magnetic moment is attributed to the asymmetric band structure induced by the magnetic quadrupole order and spin-orbit coupling.

  14. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  15. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improves the strain characteristics of the wire.

  16. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  17. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, T.; Klamut, C.J.; Suenaga, M.; Welch, D.

    1979-12-19

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  18. Superconducting accelerators for megawatt-class free-electron lasers

    NASA Astrophysics Data System (ADS)

    Berryman, Kenneth W.; Smith, Todd I.

    1995-04-01

    Power beaming and industrial materials processing are two applications which require high average power lasers operating in the visible or near infrared. Although a handful of gas lasers in the hundred kilowatt range exist, free electron lasers (FELs) should be capable of producing even greater powers, and provide continuous tunability and higher beam quality. While these benefits were realized early in the development of FELs, the highest average power FEL to date has produced just over ten watts. Progress in achieving more average power has been hindered largely by a lack of appropriate accelerators. We believe that superconducting accelerators, which offer continuous operation at high gradients and high efficiency with excellent beam quality are ideal candidates as drivers for such a device. We discuss the challenges of operating both superconducting and room temperature accelerators at high powers and described solutions to these problems. We propose general guidelines along which a superconducting FEL capable of 100 kW to 1 MW could be built and discuss recent experimental demonstrations of these design principles. Finally, we compare the superconducting approach with other possibilities and outline areas requiring future research.

  19. Searching for Superconductivity in Micrometeorites

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.; Guenon, S.; Ramirez, J. G.; Basaran, A. C.; Taylor, S.; Schuller, I.

    2014-12-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening natural materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10-12 cm3of a superconductor embedded in a non-superconducting matrix. We applied our technique to search for superconductivity in micrometeorites, small extraterrestrial (ET) particles that add most of the ET mass to the present day Earth. We measured approximately 65 micrometeorites and compared their spectra with those of eight reference materials.Micrometeorites (MMs) are ideal samples with which to test our highly sensitive superconductivity probe, as individual MMs weigh 10-5 g and the large number of micrometeorites arriving on Earth, suggests some contain minerals formed under conditions that cannot be replicated in the laboratory. Minerals in meteorites formed during planetary processes associated with accretion/condensation, planetary differentiation, and segregation. Other components such as pre-solar grains, SiC, diamonds, graphite, Si3N4, and deuterium enriched organics formed under some of the most intense physical-chemical environments in the Universe, including supernovae and stellar outflows. It is during such severe processes that exotic superconducting species may have been created.The research presented here established the methodology and proved the ultrahigh sensitivity of the technique by detecting the presence of the Verwey-transition of the magnetite present in these micrometeorites. The investigated micrometeorites contained no superconducting phases. This work was supported by an AFOSR MURI grant no. F49550-09-1-0577.

  20. Superconductivity in CVD Diamond Films

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2005-03-01

    The recent news of superconductivity 2.3K in heavily boron-doped diamond synthesized by high pressure sintering was received with considerable surprise (1). Opening up new possibilities for diamond-based electrical devices, a systematic investigation of these phenomena clearly needs to be achieved. Application of diamond to actual devices requires it to be made into the form of wafers or thin films. We show unambiguous evidence for superconductivity in a heavily boron-doped diamond thin film deposited by the microwave plasma assisted chemical vapor deposition (MPCVD) method (2). An advantage of the MPCVD deposited diamond is that it can control boron concentration in its wider range, particularly in (111) oriented films. The temperature dependence of resistivity for (111) and (100) homoepitaxial thin films were measured under several magnetic fields. Superconducting transition temperatures of (111) homoepitaxial film are determined to be 11.4K for Tc onset and 7.2K for zero resistivity. And the upper critical field is estimated to be about 8T. These values are 2-3 times higher than these ever reported (1,3). On other hand, for (100) homoepitaxial film, Tc onset and Tc zero resistivity were estimated to be 6.3 and 3.2K respectively. The superconductivity in (100) film was strongly suppressed even at the same boron concentration. These differences of superconductivity in film orientation will be discussed. These findings established the superconductivity as a universal property of boron-doped diamond, demonstrating that device application is indeed a feasible challenge. 1. E. A. Ekimov et al. Nature, 428, 542 (2004). 2. Y. Takano et al., Appl. Phys. Lett. 85, 2851 (2004). 3. E. Bustarret et al., ond-mat 0408517.

  1. Industrial Superconducting Quantum Computer Development in Canada

    NASA Astrophysics Data System (ADS)

    Rose, Geordie

    2002-05-01

    Quantum computation is one of the most active areas of research in academia. Nearly every university in the world that has a science department has researchers who are working on either trying to build hardware or develop algorithms for these machines. In this talk I will describe D-Wave's goals and achievements in assembling a global research network, centered in Canada, whose purpose is the development of superconducting quantum computer hardware. In addition I will describe the technical approach that we are concentrating on, involving cuprate-based flux qubits and niobium RSFQ control circuitry. Finally I will introduce a very important application of these machines, namely their use as simulators of other quantum systems, in the context of human pharmaceutical drug and vaccine design.

  2. High temperature superconductivity space experiment (HTSSE)

    NASA Technical Reports Server (NTRS)

    Ritter, J. C.; Nisenoff, M.; Price, G.; Wolf, S. A.

    1991-01-01

    An experiment dealing with high-temperature superconducting devices and components in space is discussed. A variety of devices (primarily passive microwave and millimeter-wave components) has been procured and will be integrated with a cryogenic refrigerating and data acquisition system to form the space package, which will be launched in late 1992. This space experiment is expected to demonstrate that this technology is sufficiently robust to survive the space environment and that the technology has the potential to improve the operation of space systems significantly. The devices for the initial launch have been evaluated electrically, thermally, and mechanically, and will be integrated into the final space package early in 1991. The performance of the devices is summarized, and some potential applications of this technology in space systems are outlined.

  3. Freely oriented portable superconducting magnet

    SciTech Connect

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  4. Four-junction superconducting circuit

    PubMed Central

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  5. Four-junction superconducting circuit.

    PubMed

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J Q

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  6. Four-junction superconducting circuit.

    PubMed

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J Q

    2016-06-30

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit.

  7. Superconducting augmented rail gun (SARG)

    SciTech Connect

    Homan, C.G.; Cummings, C.E.; Fowler, C.M.

    1986-11-01

    Superconducting augmentation consists of a superconducting coil operating in the persistent mode closely coupled magnetically with a normally conducting rail gun. A theoretical investigation of the effect of this system on a rail gun has shown that two benefits occur. Projectile velocities and launch efficiencies increase significantly depending on the magnetic coupling between the rail and augmentation circuits. Previous work evaluated an idealized system by neglecting energy dissipation effects. In this paper, the authors extend the analysis to include the neglected terms and show improved actual launch efficiencies for the SARG configuration. In this paper, the authors discuss details of projectile design in depth and present preliminary results of rail gun performance.

  8. Superconducting magnets for 110-150 GHz gyrotrons

    NASA Astrophysics Data System (ADS)

    Baze, J.-M.; Lesmond, C.; Lottin, J.-C.; Capitain, J.-J.; Lafon, D.; Magne, R.; Bonnet, P.; Bourquard, A.; Bresson, D.; Lacaze, A.

    1994-07-01

    Seven superconducting focusing magnets have been constructed for vertical gyrotrons devoted to the plasma heating of the tokomak Tore Supra. The performances in magnetic field strength, profile and homogeneity are spread over a large range so as to suit gyrotrons of microwave frequencies extending from 110 GHz to 150 GHz. The cryostats have a low consumption in cryogenic fluids which insure a one week autonomy.

  9. Superconductivity in Weyl semimetal candidate MoTe2.

    PubMed

    Qi, Yanpeng; Naumov, Pavel G; Ali, Mazhar N; Rajamathi, Catherine R; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R J; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A

    2016-03-14

    Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics.

  10. Superconductivity in Weyl semimetal candidate MoTe2.

    PubMed

    Qi, Yanpeng; Naumov, Pavel G; Ali, Mazhar N; Rajamathi, Catherine R; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R J; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A

    2016-01-01

    Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics. PMID:26972450

  11. Superconductivity in Weyl semimetal candidate MoTe2

    NASA Astrophysics Data System (ADS)

    Qi, Yanpeng; Naumov, Pavel G.; Ali, Mazhar N.; Rajamathi, Catherine R.; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R. J.; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A.

    2016-03-01

    Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics.

  12. Superconductivity and wire fabrication of FeSe family

    NASA Astrophysics Data System (ADS)

    Ozaki, Toshinori; Deguchi, Keita; Mizuguchi, Yoshikazu; Kumakura, Hiroaki; Takano, Yoshihiko; National InstituteMaterials Science Team

    2011-03-01

    The 11 family is an fascinating iron-based superconducting system for not only elucidation of superconducting mechanism but also technological applications because of the simplest crystal structures, the less toxic and high critical field. Recently, we found that the superconductivity appears in the specimen immersed in alcoholic beverages. Focused on the pressure dependence of Se height from Fe layer in FeSe, we found that the Tc is correlated to Se height. Moreover, the anion height dependence of Tc for all FeAs-based superconductor obeyed a universal curve with a peak around 1.38 AA}. We succeeded in observing the transport Jc in the single- and 7-core wires of FeTe x Se 1-x superconductor using an in-situ powder-in-tube (PIT) method. The Jc values in single- and 7-core wire are as high as 159 A/cm2 and 100 A/cm2 at 4.2 K, respectively. It is considered that the optimization of the composition, together with the improvement of the grain boundary in FeTe x Se 1-x superconducting wires, will lead to higher Jc .

  13. Superconductivity in Weyl semimetal candidate MoTe2

    PubMed Central

    Qi, Yanpeng; Naumov, Pavel G.; Ali, Mazhar N.; Rajamathi, Catherine R.; Schnelle, Walter; Barkalov, Oleg; Hanfland, Michael; Wu, Shu-Chun; Shekhar, Chandra; Sun, Yan; Süß, Vicky; Schmidt, Marcus; Schwarz, Ulrich; Pippel, Eckhard; Werner, Peter; Hillebrand, Reinald; Förster, Tobias; Kampert, Erik; Parkin, Stuart; Cava, R. J.; Felser, Claudia; Yan, Binghai; Medvedev, Sergey A.

    2016-01-01

    Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics. PMID:26972450

  14. Free-standing oxide superconducting articles

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-12-14

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.

  15. Status of superconducting power transformer development

    SciTech Connect

    Johnson, R.C.; McConnell, B.W.; Mehta, S.P.

    1996-03-01

    Development of the superconducting transformer is arguably the most difficult of the ac power applications of superconductivity - this is because of the need for very low ac losses, adequate fault and surge performance, and the rigors of the application environment. This paper briefly summarizes the history of superconducting transformer projects, reviews the key issues for superconducting transformers, and examines the status of HTS transformer development. Both 630-kVA, three-phase and 1-MVA single phase demonstration units are expected to operate in late 1996. Both efforts will further progress toward the development of economical and performance competitive superconducting transformers.

  16. Cosmic String Global Superconducting Dirac Born Infeld

    NASA Astrophysics Data System (ADS)

    Ikrima, Ika; Ramadhan, Handhika S.; Mart, Terry

    2016-08-01

    Superconducting cosmic string possibly plays an important role in the formation of the universe structure. The physics of this phenomenon has been explored by studying the field theory in the string interior. Numerical solutions of superconducting strings with all relevant fields are presented in this paper. The field is constructed from a generalization of the usual field theory of superconducting global string, but the kinetic term consists of the Dirac Born Infeld (DBI). Some changes in the characteristic of the superconducting string DBI from the usual superconducting string case have been observed. The observation includes physical mechanism of all related fields.

  17. Experimental Quantum Randomness Processing Using Superconducting Qubits.

    PubMed

    Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R; Sun, Luyan; Ma, Xiongfeng

    2016-07-01

    Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present. PMID:27419550

  18. Superconducting Digital Multiplexers for Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Kadin, Alan M.; Brock, Darren K.; Gupta, Deepnarayan

    2004-01-01

    Arrays of cryogenic microbolometers and other cryogenic detectors are being developed for infrared imaging. If the signal from each sensor is amplified, multiplexed, and digitized using superconducting electronics, then this data can be efficiently read out to ambient temperature with a minimum of noise and thermal load. HYPRES is developing an integrated system based on SQUID amplifiers, a high-resolution analog-to-digital converter (ADC) based on RSFQ (rapid single flux quantum) logic, and a clocked RSFQ multiplexer. The ADC and SQUIDs have already been demonstrated for other projects, so this paper will focus on new results of a digital multiplexer. Several test circuits have been fabricated using Nb Josephson technology and are about to be tested at T = 4.2 K, with a more complete prototype in preparation.

  19. Superconductive silicon nanowires using gallium beam lithography.

    SciTech Connect

    Henry, Michael David; Jarecki, Robert Leo,

    2014-01-01

    This work was an early career LDRD investigating the idea of using a focused ion beam (FIB) to implant Ga into silicon to create embedded nanowires and/or fully suspended nanowires. The embedded Ga nanowires demonstrated electrical resistivity of 5 m-cm, conductivity down to 4 K, and acts as an Ohmic silicon contact. The suspended nanowires achieved dimensions down to 20 nm x 30 nm x 10 m with large sensitivity to pressure. These structures then performed well as Pirani gauges. Sputtered niobium was also developed in this research for use as a superconductive coating on the nanowire. Oxidation characteristics of Nb were detailed and a technique to place the Nb under tensile stress resulted in the Nb resisting bulk atmospheric oxidation for up to years.

  20. Experimental Quantum Randomness Processing Using Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R.; Sun, Luyan; Ma, Xiongfeng

    2016-07-01

    Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.

  1. Experimental Quantum Randomness Processing Using Superconducting Qubits.

    PubMed

    Yuan, Xiao; Liu, Ke; Xu, Yuan; Wang, Weiting; Ma, Yuwei; Zhang, Fang; Yan, Zhaopeng; Vijay, R; Sun, Luyan; Ma, Xiongfeng

    2016-07-01

    Coherently manipulating multipartite quantum correlations leads to remarkable advantages in quantum information processing. A fundamental question is whether such quantum advantages persist only by exploiting multipartite correlations, such as entanglement. Recently, Dale, Jennings, and Rudolph negated the question by showing that a randomness processing, quantum Bernoulli factory, using quantum coherence, is strictly more powerful than the one with classical mechanics. In this Letter, focusing on the same scenario, we propose a theoretical protocol that is classically impossible but can be implemented solely using quantum coherence without entanglement. We demonstrate the protocol by exploiting the high-fidelity quantum state preparation and measurement with a superconducting qubit in the circuit quantum electrodynamics architecture and a nearly quantum-limited parametric amplifier. Our experiment shows the advantage of using quantum coherence of a single qubit for information processing even when multipartite correlation is not present.

  2. High-T/sub c/ superconductor and its use in superconducting magnets

    SciTech Connect

    Green, M.A.

    1988-02-01

    Many of the proposed uses for the high-T/sub c/ superconductor involve the creation of a magnetic field using superconducting coils. This report will assess what is known about the high-T/sub c/ superconductors and take a realistic look at their potential use in various kinds of superconducting magnets. Based on what is known about the high-T/sub c/ superconductors, one can make a ''wish list'' of things that will make such materials useful for magnets. Then, the following question is asked. If one had a high-T/sub c/ superconductor with the same properties as modern niobium-titanium superconductor, how would the superconductor work in a magnet environment. Finally, this report will show the potential impact of the ideal high-T/sub c/ superconductor on: 1) accelerator dipole and quadrupole magnets, 2) superconducting magnets for use in space, and 3) superconducting solenoids for magnetic resonance imaging. 78 refs., 11 tabs.

  3. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    SciTech Connect

    Rainer Meinke Carl Goodzeit Penny Ball Roger Bangerter

    2003-10-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  4. Superconductivity in highly disordered dense carbon disulfide.

    PubMed

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  5. Unconventional superconductivity in heavy-fermion compounds

    SciTech Connect

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  6. Unconventional superconductivity in heavy-fermion compounds

    DOE PAGESBeta

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less

  7. Nonlinear diffusion and superconducting hysteresis

    SciTech Connect

    Mayergoyz, I.D.

    1996-12-31

    Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.

  8. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  9. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  10. Hitachi develops ceramic superconducting device

    NASA Astrophysics Data System (ADS)

    1987-09-01

    A ceramic superconducting quantum interference device (squid) made into the form of a fine film by applying its semiconductor fine process technology was tested. The squid, which reached its superconducting temperature through cooling with a cheap liquid nitrogen at minus 196 C, can detect faint magnetic fields with a strength only a millionth that of the Earth's magnetic field. This means that the squid can be incorporated into medical diagnostic equipment intended for diagnosing brain and heart disorders by catching changes in the extremely weak magnetic fields these organs generate. Hitachi's squid is made using a high frequency sputtering process to form a thin film of yttrium-barium-copper oxide onto a substrate of magnesium oxide, which is then heat treated in an oxygen environment. The resulting superconducting film is one to two microns thick and superconducts at minus 187 C, at which temperature it has a maximum current density in excess of 6,000 amperes per square centimeter. Optical exposure and chemical etching process are then used to make a hole in the middle of the film, after which two Josephson junctions are connected to both of the holes to form a squid.

  11. Demonstration of superconducting micromachined cavities

    SciTech Connect

    Brecht, T. Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  12. Demonstration of superconducting micromachined cavities

    NASA Astrophysics Data System (ADS)

    Brecht, T.; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-01

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  13. Superconductivity: The persistence of pairs

    SciTech Connect

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  14. Superconducting nanowire single-photon detectors: physics and applications

    NASA Astrophysics Data System (ADS)

    Natarajan, Chandra M.; Tanner, Michael G.; Hadfield, Robert H.

    2012-06-01

    Single-photon detectors based on superconducting nanowires (SSPDs or SNSPDs) have rapidly emerged as a highly promising photon-counting technology for infrared wavelengths. These devices offer high efficiency, low dark counts and excellent timing resolution. In this review, we consider the basic SNSPD operating principle and models of device behaviour. We give an overview of the evolution of SNSPD device design and the improvements in performance which have been achieved. We also evaluate device limitations and noise mechanisms. We survey practical refrigeration technologies and optical coupling schemes for SNSPDs. Finally we summarize promising application areas, ranging from quantum cryptography to remote sensing. Our goal is to capture a detailed snapshot of an emerging superconducting detector technology on the threshold of maturity.

  15. Quantum and wave dynamical chaos in superconducting microwave billiards

    SciTech Connect

    Dietz, B. Richter, A.

    2015-09-15

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.

  16. CARE activities on superconducting RF cavities at INFN Milano

    NASA Astrophysics Data System (ADS)

    Bosotti, A.; Pierini, P.; Michelato, P.; Pagani, C.; Paparella, R.; Panzeri, N.; Monaco, L.; Paulon, R.; Novati, M.

    2005-09-01

    The SC RF group at INFN Milano-LASA is involved both in the TESLA/TTF collaboration and in the research and design activity on superconducting cavities for proton accelerators. Among these activities, some are supported by the European community within the CARE project. In the framework of the JRASRF collaboration we are developing a coaxial blade tuner for ILC (International Linear Collider) cavities, integrated with piezoelectric actuators for the compensation of the Lorenz force detuning and microphonics perturbation. Another activity, regarding the improved component design on SC technology, based on the information retrieving about the status of art on ancillaries and experience of various laboratories involved in SCRF, has started in our laboratory. Finally, in the framework of the HIPPI collaboration, we are testing two low beta superconducting cavities, built for the Italian TRASCO project, to verify the possibility to use them for pulsed operation. All these activities will be described here, together with the main results and the future perspectives.

  17. Superconducting analogue of the parafermion fractional quantum Hall states

    NASA Astrophysics Data System (ADS)

    Vaezi, Abolhassan

    2014-03-01

    Read and Rezayi Zk parafermion wavefunctions describe ν = 2 + k /(kM + 2) fractional quantum Hall (FQH) states. These states support non-Abelian excitations from which protected quantum gates can be designed. However, there is no experimental evidence for these non-Abelian anyons to date. In this talk, we discuss the ν = 2 / k FQH-superconductor heterostructure and through analytical and numerical calculations we argue that it can yield the superconducting analogue of the Zk parafermion FQH state. The resulting topological state has a gapless chiral edge state with Zk parafermion conformal field theory description. For instance, we find that a ν = 2 / 3 FQH in proximity to a superconductor produces a Z3 parafermion superconducting state. This state can host Fibonacci anyons capable of performing universal quantum computation through braiding operations. We finally discuss our experimental proposal for realizing parafermion superconductors. Reference: arXiv:1307.8069

  18. Case study on the US superconducting power transmission program

    SciTech Connect

    Hammel, E.F.

    1996-02-01

    After the 1911 discovery of superconductivity (the abrupt loss of electrical resistance in certain materials at very low temperatures), attempts were made to make practical use of this phenomenon. Initially these attempts failed, but in the early 1960s (after 50 years of research) they succeeded. By then, the projected growth in the production and consumption of electrical energy required much higher capacity power transmission capabilities than were available or likely to become available from incremental improvements in existing transmission technology. Since superconductors were capable in principle of transmitting huge amounts of power, research programs to develop and demonstrate superconducting transmission lines were initiated in the US and abroad. The history of the US program, including the participants, their objectives, funding and progress made, is outlined. Since the R&D program was terminated before the technology was completely demonstrated, the reasons for and consequences of this action are discussed in a final section.

  19. Chemical Substitution and High Pressure Effects on Superconductivity in the LnOBiS2 (Ln = La-Nd) System

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Wolowiec, C. T.; Yazici, D.; Maple, M. B.

    2015-12-01

    A large number of compounds which contain BiS2 layers exhibit enhanced superconductivity upon electron doping. Much interest and research effort has been focused on BiS2-based compounds which provide new opportunities for exploring the nature of superconductivity. Important to the study of BiS2-based superconductors is the relation between structure and superconductivity. By modifying either the superconducting BiS2 layers or the blocking layers in these layered compounds, one can effectively tune the lattice parameters, local atomic environment, electronic structure, and other physical properties of these materials. In this article, we will review some of the recent progress on research of the effects of chemical substitution in BiS2-based compounds, with special attention given to the compounds in the LnOBiS2 (Ln = La-Nd) system. Strategieswhich are reported to be essential in optimizing superconductivity of these materials will also be discussed.

  20. Space applications of superconductivity - Low frequency superconducting sensors

    NASA Technical Reports Server (NTRS)

    Zimmerman, J. E.

    1980-01-01

    Although this paper deals with several low-frequency instruments and devices, most of the discussion relates to SQUID (Superconducting QUantum Interference Device) magnetometers and gradiometers, since these are perceived as the instruments with the greatest potential for space applications. The discussion covers SQUID for magnetic field measurements; present state of the art of SQUID technology; ultimate potential performance; applications to magnetic measurements in space; SQUID galvanometers, voltage and current sensors, and wide-band amplifiers; magnetic shielding, and superconducting dc transformer. SQUIDS are superior to all other magnetic sensors in sensitivity, frequency response, range, and linearity. It is suggested that SQUID instruments, both magnetometers and gradiometers, would be valuable in studies of the dynamics of interplanetary and planetary fields. SQUID gradiometers are useful for detection and mapping of magnetic anomalies at short to moderate ranges.

  1. Doping-driven evolution of the superconducting state from a doped Mott insulator: Cluster dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Civelli, M.

    2009-05-01

    In this paper we investigate the zero-temperature doping-driven evolution of a superconductor toward the Mott insulator in a two-dimensional electron model, relevant for high-temperature superconductivity. To this purpose we use a cluster extension of dynamical mean-field theory. Our results show that a standard d -wave superconductor, realized at high doping, is driven into the Mott insulator via an intermediate superconducting state displaying unconventional physical properties. By restoring the translational invariance of the lattice, we give an interpretation of these findings in momentum space. In particular, we show that at a finite doping a strong momentum-space differentiation takes place: non-Fermi liquid and insulatinglike (pseudogap) characters rise in some regions (antinodes), while Fermi liquid quasiparticles survive in other regions (nodes) of momentum space. We describe the consequence of these happenings on the spectral properties, stressing in particular the behavior of the superconducting gap, which reveals two distinct nodal and antinodal energy scales as a function of doping, detected in photoemission and Raman spectroscopy experiments. We study and compare with experimental results the doping-dependent behavior of other physical quantities, such as for instance, the nodal quasiparticle velocity (extracted in angle-resolved photoemission) and the low-energy slopes of the local density of states and of the Raman scattering response. We then propose a description of the evolution of the electronic structure while approaching the Mott transition. We show that, within our formalism, a strong asymmetry naturally arises in the local density of states, measured in scanning tunneling spectroscopy. We investigate in detail the doping evolution of the electronic bands, focusing on the kinklike quasiparticle dispersion observed with angle-resolved photoemission in specific cuts of the momentum-energy space. We finally show the consequences of the

  2. Thermal depinning of a single superconducting vortex

    SciTech Connect

    Sok, J.

    1995-10-01

    Thermal depinning has been studied for a single vortex trapped in a superconducting thin film in order to determine the value of the superconducting order parameter and the superfluid density when the vortex depins and starts to move around the film. For the Pb film in Pb/Al/Al{sub 2}O{sub 3}/PbBi junction having a gold line, the vortex depins from the artificial pinning site (Au line) and reproducibly moves through the same sequence of other pinning sites before it leaves the junction area of the Pb film. Values of the normalized order parameter {triangle}/{triangle}{sub o} vary from {triangle}/{triangle}{sub o}=0.20 at the first motion of the vortex to {triangle}/{triangle}{sub o}=0.16 where the vortex finally leaves the junction. Equivalently, the value of the normalized superfluid density changes from 4% to 2.5% for this sample in this same temperature interval. For the Nb film in Nb/Al/Al{sub 2}O{sub 3}/Nb junction, thermal depinning occurs when the value of {triangle}/{triangle}{sub o} is approximately 0.22 and the value of {rho}{sub s}/{rho}{sub so} is approximately 5%. These values are about 20% larger than those of a Pb sample having a gold line, but the values are really very close. For the Nb sample, grain boundaries are important pinning sites whereas, for the Pb sample with a gold line, pinning may have been dominated by an array Pb{sub 3}AU precipitates. Because roughly the same answer was obtained for these rather different kinds of pinning site, there is a reasonable chance that this is a general value within factors of 2 for a wide range of materials.

  3. Surface superconductivity and twinning-plane superconductivity in aluminum

    SciTech Connect

    Khlyustikov, I. N.

    2006-02-15

    The critical supercooling field H{sub sc} is measured in aluminum single crystals and twinned bicrystals in a temperature range slightly below T{sub c0} (T{sub c0} - 0.055 K < T < T{sub c0}), where T{sub c0} is the critical superconducting transition temperature. It is found that, even in this small temperature range, the H{sub sc}(H{sub c}) dependence, which is considered to be identical to the H{sub c3}(H{sub c}) dependence for single crystals, is substantially nonlinear. The H{sub sc}(H{sub c}) dependences of the twinned bicrystals and single crystals are shown to be significantly different. The qualitative features of the phase diagram of the twinned aluminum bicrystals coincide with those of the phase diagram of twinning-plane superconductivity obtained earlier. These findings allow the conclusion that the phenomenon of twinning-plane superconductivity also exists in face-centered cubic crystal lattices.

  4. EDITORIAL: Focus on Iron-Based Superconductors FOCUS ON IRON-BASED SUPERCONDUCTORS

    NASA Astrophysics Data System (ADS)

    Hosono, Hideo; Ren, Zhi-An

    2009-02-01

    pace of research within the last year, iron-based superconductors have revealed several unique properties such as a high upper critical field and a robustness to impurities. Participation of five 3d-orbitals in the Fermi levels also means that the electronic structure is complex compared with the cuprates. So, we now have a new family of superconductors and it is worth stressing that we have only just begun looking at the many varieties of candidate materials containing an iron square lattice. At this time we do not know whether a material with a critical temperature greater than 100 K exists, or if completely new properties are to be found. However, as a research community we should go ahead with hope and 'strike while the iron is hot'—this saying is always true! This focus issue of New Journal of Physics was put together to provide a broad-based, free-to-read snapshot of the current state of research in this rapidly emerging field. The papers included cover many aspects related to material exploration, physical analysis, and the theory of these materials, and, as editors, we thank the authors for their fine contributions, and the many referees for their considerable efforts that have ensured fast publication. As an aside, the first special issue on this SUBject was published in November 2008 in the Journal of the Physical Society of Japan (vol 77, supplement c) as the proceedings of the International Symposium on Iron-Pnictide Superconductors held in Tokyo on 29-30 June 2008. We would like to encourage the community to read both issues. On a final note we would like to acknowledge the staff of New Journal of Physics for all of their efficient work in bringing this collection to fruition. Focus on Iron-Based Superconductors Contents Microwave response of superconducting pnictides: extended s+/- scenario O V Dolgov, A A Golubov and D Parker Orbital and spin effects for the upper critical field in As-deficient disordered Fe pnictide superconductors G Fuchs, S

  5. Superconducting heavy ion injector linac

    SciTech Connect

    Shepard, K.W.

    1985-01-01

    A conceptual design for a very low velocity (.007 < v/c < .07) superconducting heavy-ion linac is reviewed. This type of linac may have significant cost and performance advantages over room-temperature linacs, at least for applications requiring modest beam currents. Some general features of the design of very-low velocity superconducting accelerating structures are discussed and a design for a 48.5 MHz, v/c = .009 structure, together with the status of a niobium prototype, is discussed in detail. Preliminary results of a beam dynamics study indicate that the low velocity linac may be able to produce heavy-ion beams with time-energy spreads of a few keV-nsec. 11 refs, 4 figs.

  6. Characterizing Ensembles of Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Sears, Adam; Birenbaum, Jeff; Hover, David; Rosenberg, Danna; Weber, Steven; Yoder, Jonilyn L.; Kerman, Jamie; Gustavsson, Simon; Kamal, Archana; Yan, Fei; Oliver, William

    We investigate ensembles of up to 48 superconducting qubits embedded within a superconducting cavity. Such arrays of qubits have been proposed for the experimental study of Ising Hamiltonians, and efficient methods to characterize and calibrate these types of systems are still under development. Here we leverage high qubit coherence (> 70 μs) to characterize individual devices as well as qubit-qubit interactions, utilizing the common resonator mode for a joint readout. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  7. Superconducting magnet technology for accelerators

    SciTech Connect

    Palmer, R.; Tollestrup, A.V.

    1984-03-01

    A review article on superconducting magnets for accelerators should first answer the question, why superconductivity. The answer revolves around two pivotal facts: (1) fields in the range of 2 T to 10 T can be achieved; and (2) the operating cost can be less than conventional magnets. The relative importance of these two factors depends on the accelerator. In the case where an upgrade of an accelerator at an existing facility is planned, the ability to obtain fields higher than conventional magnets leads directly to an increase in machine energy for the given tunnel. In the case of a new facility, both factors must be balanced for the most economical machine. Ways to achieve this are discussed.

  8. Perturbative nature of color superconductivity

    SciTech Connect

    Brown, William E.; Liu, James T.; Ren, Hai-cang

    2000-06-01

    Color superconductivity is a possible phase of high density QCD. We present a systematic derivation of the transition temperature T{sub C} from the QCD Lagrangian through study of the di-quark proper vertex. With this approach, we confirm the dependence of T{sub C} on the coupling g, namely T{sub C}{approx}{mu}g{sup -5}e{sup -{kappa}}{sup /g}, previously obtained from the one-gluon exchange approximation in the superconducting phase. The diagrammatic approach we employ allows us to examine the perturbative expansion of the vertex and the propagators. We find an additional O(1) contribution to the prefactor of the exponential from the one-loop quark self energy and that the other one-loop radiative contributions and the two gluon exchange vertex contribution are subleading. (c) 2000 The American Physical Society.

  9. Superconductivity in the Tungsten Bronzes

    NASA Astrophysics Data System (ADS)

    Wu, Phillip; Ishii, Satoshi; Tanabe, Kenji; Munakata, Ko; Hammond, Robert H.; Tokiwa, Kazuyasu; Geballe, Theodore H.; Beasley, Malcolm R.

    2015-03-01

    Via pulsed laser deposition and post-annealing, high quality K-doped WO3-y films with reproducible transport properties are obtained. A home built two-coil mutual inductance setup is used to probe the behavior of the films in the superconducting and normal state. The inverse penetration depths and dissipation peaks are measured as a function of temperature and field. Separately, via thin film deposition techniques, we report for the first time stable crystalline hexagonal WO3 on substrates. In order to tune the physical properties of the undoped material, we utilized an ionic liquid gating technique. We observe an insulator-to-metal transition, showing the ionic liquid gate to be a viable technique to alter the electrical transport properties of this material. By comparing the alkali and ionic liquid gated WO3, we conclude with some remarks regarding how superconductivity arises in this system.

  10. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    SciTech Connect

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  11. Surface superconductivity in thin cylindrical Bi nanowire.

    PubMed

    Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W

    2015-03-11

    The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress.

  12. Tunable high-q superconducting notch filter

    DOEpatents

    Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.

    1979-11-29

    A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.

  13. Superconducting Cable Having A Felexible Former

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-15

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  14. Superconducting Cable Having A Flexible Former

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-08-30

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  15. Surface superconductivity in thin cylindrical Bi nanowire.

    PubMed

    Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W

    2015-03-11

    The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress. PMID:25658139

  16. New fully superconducting bearing concept using the difference in irreversibility field of two superconducting components

    NASA Astrophysics Data System (ADS)

    Patel, A.; Palka, R.; Glowacki, B. A.

    2011-01-01

    One of the major factors limiting levitation force for existing superconducting magnetic bearings is the maximum possible remanence of 1.4 T known to exist for rare-earth permanent magnets. This paper introduces the novel concept of a magnetic bearing which uses the difference in irreversibility field of two superconducting components to allow one component to be field cooled in the field originating from the other component which is first magnetized at a higher temperature. Magnetized (RE)BCO bulks with high trapped fields can be used as one of the components instead of permanent magnets, giving a significant increase in the levitation force density that can be achieved between the two components. This paper focuses on using an MgB2 hollow cylinder for the component which is field cooled. Modelling of the levitation forces that would exist between magnetized YBCO bulks inside a hollow MgB2 cylinder is reported as well as modelling of pulsed field magnetization of the pellets to create high field gradients using MPSC (multi-pulse technique with step-wise cooling). The new design has the potential to achieve levitation force densities over 100 N cm - 2.

  17. The Signature of Inhomogeneous Superconductivity

    NASA Astrophysics Data System (ADS)

    Agosta, Charles C.; Bishop-Van Horn, Logan; Newman, Max

    2016-11-01

    Superconductivity can be inhomogeneous, having a periodically modulated order parameter, in materials that have long electronic mean free paths and where the effects of vortices are suppressed. One class of materials that has these properties is crystalline organic superconductors. They are stoichiometric compounds and highly anisotropic crystals such that the vortices that form can hide in the least conducting layers. We analyze recent data to look for complexity in the inhomogeneous states, such as changes in the order parameter nodal structure.

  18. The Signature of Inhomogeneous Superconductivity

    NASA Astrophysics Data System (ADS)

    Agosta, Charles C.; Bishop-Van Horn, Logan; Newman, Max

    2016-09-01

    Superconductivity can be inhomogeneous, having a periodically modulated order parameter, in materials that have long electronic mean free paths and where the effects of vortices are suppressed. One class of materials that has these properties is crystalline organic superconductors. They are stoichiometric compounds and highly anisotropic crystals such that the vortices that form can hide in the least conducting layers. We analyze recent data to look for complexity in the inhomogeneous states, such as changes in the order parameter nodal structure.

  19. Medium Beta Superconducting Accelerating Structures

    SciTech Connect

    Jean Delayen

    2001-09-01

    While, originally, the development of superconducting structures was cleanly divided between low-beta resonators for heavy ions and beta=1 resonators for electrons, recent interest in protons accelerators (high and low current, pulsed and cw) has necessitated the development of structures that bridge the gap between the two. These activities have resulted both in new geometries and in the adaptation of well-known geometries optimized to this intermediate velocity range. Their characteristics and properties are reviewed.

  20. Stimulated Superconductivity at Strong Coupling

    SciTech Connect

    Bao, Ning; Dong, Xi; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.

  1. Processing method for superconducting ceramics

    DOEpatents

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-02-02

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  2. Processing method for superconducting ceramics

    DOEpatents

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-01-01

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  3. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  4. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  5. Coupled Array of Superconducting Nanowires

    NASA Astrophysics Data System (ADS)

    Ursache, Andrei

    2005-03-01

    We present experiments that investigate the collective behavior of arrays of superconducting lead nanowires with diameters smaller than the coherence length. The ultrathin (˜15nm) nanowires are grown by pulse electrodeposition into porous self-assembled P(S-b-MMA) diblock copolymer templates. The closely packed (˜24 nm spacing) 1-D superconducting nanowires stand vertically upon a thin normal (Au or Pt) film in a brush-like geometry. Thereby, they are coupled to each other by Andreev reflection at the S-N (Pb-Au) point contact interfaces. Magnetization measurements reveal that the ZFC/FC magnetic response of the coupled array system can be irreversible or reversible, depending on the orientation, perpendicular or parallel, of the applied magnetic field with respect to the coupling plane. As found by electric transport measurements, the coupled array system undergoes an in plane superconducting resistive transition at a temperature smaller than the Tc of an individual nanowire. Current-voltage characteristics throughout the transition region are also discussed. This work was supported by NSF grant DMI-0103024 and DMR-0213695.

  6. Superconducting thin films on potassium tantalate substrates

    DOEpatents

    Feenstra, Roeland; Boatner, Lynn A.

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  7. Superconducting magnet for the Maglev transport system

    NASA Astrophysics Data System (ADS)

    Nakashima, Hiroshi

    1994-07-01

    Magnetically levitated vehicles (Maglev) using superconducting magnets have been under development in Japan for the past 23 years. The superconducting magnets for the Maglev system are used in a special environment compared to other applications. They have to work stably subject to both mechanical and electromagnetic disturbances. The brief history of the Maglev development in Japan, the planning of new test line, the superconducting magnet's stability and the on-board refrigeration system will be presented.

  8. Superconductivity in the palladium-hydrogen system

    NASA Technical Reports Server (NTRS)

    Papaconstantopoulos, D. A.; Klein, B. M.

    1975-01-01

    Band theory and phonon measurements are used to calculate the electron-phonon coupling constant wavelength for Pd and PdD. The results indicate that superconductivity is absent in Pd metal because of the large value of the Coulomb pseudopotential, and that superconductivity occurs in PdD primarily because of coupling with the optic phonons. These results are consistent with superconducting transition-temperature measurements for these systems.

  9. Quantum fluctuations of the superconducting cosmic string

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng

    1987-01-01

    Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.

  10. Superconducting fault current limiter for railway transport

    NASA Astrophysics Data System (ADS)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  11. Superconducting fault current limiter for railway transport

    SciTech Connect

    Fisher, L. M. Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  12. New Advance in SuperConducting Materials

    SciTech Connect

    2009-03-02

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laborator...  

  13. Superconductivity and ferromagnetism in topological insulators

    NASA Astrophysics Data System (ADS)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to

  14. Magnesium diboride superconducting devices and circuits

    NASA Astrophysics Data System (ADS)

    Galan, Elias

    While magnesium diboride (MgB2) was first synthesized in the 1950s, MgB2's superconductive properties were not discovered until 2001. It has the highest superconducting transition temperature of all the metallic superconductors at ~39 K at atmospheric pressure. MgB2 is also unique in that it has a two superconductive gaps, a pi gap at 2 meV and a sigma gap at 7.1 meV. There are a theoretical models discussing the inter- and intra- gap scattering of the superconductivity of MgB2 and the Josephson transport of MgB2 Josephson Junctions. The focus of this work is to further the study of all-MgB2 Josephson junctions and quantum interference device technology. This work discusses the transport in all-MgB2 Josephson junctions and designing, fabricating, and measuring multi-junction devices. The junctions studied include all-MgB2 sandwich-type Josephson junctions (one with TiB2 normal conducting barrier and another with an MgO insulating barrier). The junction MgB2 films were deposited by hyprid physical-vapor deposition and the junction barrier were deposited by sputtering. The junctions were patterned and etched with UV photolithography and argon ion milling. With the TiB2 barrier we studied Josephson transport by the proximity effect. With these junctions, we also observed complete suppression of the critical current by an applied magnetic field showing for the first time a leakage free barrier in an all-MgB2 Josephson junction with a single ultrathin barrier. We also studied junctions utilizing MgO barrier deposited by reactive sputtering which gave a larger characteristic voltage of 1-3 mV compared to TiB2 barriers. By connecting several SQUIDs with varying loop areas we developed of two types of superconducting quantum interference filters (SQIFs). The first SQIF designed with 21 SQUIDs connected in parallel and the SQUID loops are sensitive to magnetic fields applied parallel to the substrate. The SQUID loop areas were designed to vary in such a way that the voltage

  15. Discovery of superconductivity in KTaO₃ by electrostatic carrier doping.

    PubMed

    Ueno, K; Nakamura, S; Shimotani, H; Yuan, H T; Kimura, N; Nojima, T; Aoki, H; Iwasa, Y; Kawasaki, M

    2011-05-22

    Superconductivity at interfaces has been investigated since the first demonstration of electric-field-tunable superconductivity in ultrathin films in 1960(1). So far, research on interface superconductivity has focused on materials that are known to be superconductors in bulk. Here, we show that electrostatic carrier doping can induce superconductivity in KTaO(3), a material in which superconductivity has not been observed before. Taking advantage of the large capacitance of the self-organized electric double layer that forms at the interface between an ionic liquid and KTaO(3) (ref. 12), we achieve a charge carrier density that is an order of magnitude larger than the density that can be achieved with conventional chemical doping. Superconductivity emerges in KTaO(3) at 50 mK for two-dimensional carrier densities in the range 2.3 × 10(14) to 3.7 × 10(14) cm(-2). The present result clearly shows that electrostatic carrier doping can lead to new states of matter at nanoscale interfaces.

  16. Detailed study of the superconducting properties in compressed germane

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, Radosław; Durajski, Artur P.

    2015-12-01

    Hydrogen-rich compounds under extreme pressure are the most promising systems for searching a high-temperature superconductivity. In presented paper, we report analysis of the thermodynamic properties of hydrogenated germanium (germane, GeH4) at 220 GPa obtained within the framework of the Migdal-Eliashberg theory. We observe that together with the increase of Coulomb pseudopotential from 0.1 to 0.3 the critical temperature decreases from 92.36 K to 52.80 K. A similar trend is also well-visible in the case of other thermodynamic properties. Moreover, we study the influence of external pressure on the superconducting state of GeH4. On this basis we conclude that increase of pressure from 20 to 220 GPa has a pronounced effect on the thermodynamic stability of germane. Finally, it is proved that the properties of the superconducting state of GeH4 differ markedly from predictions of the Bardeen-Cooper-Schrieffer (BCS) theory.

  17. Fabrication and test results of a high field, Nb3Sn superconducting racetrack dipole magnet

    SciTech Connect

    Benjegerdes, R.; Bish, P.; Byford, D.; Caspi, S.; Dietderich, D.R.; Gourlay, S.A.; Hafalia, R.; Hannaford, R.; Higley, H.; Jackson, A.; Lietzke, A.; Liggins, N.; McInturff, A.D.; O'Neill, J.; Palmerston, E.; Sabbi, G.; Scanlan, R.M.; Swanson, J.

    2001-06-15

    The LBNL Superconducting Magnet Program is extending accelerator magnet technology to the highest possible fields. A 1 meter long, racetrack dipole magnet, utilizing state-of-the-art Nb{sub 3}Sn superconductor, has been built and tested. A record dipole filed of 14.7 Tesla has been achieved. Relevant features of the final assembly and tested results are discussed.

  18. Final Report

    SciTech Connect

    Agosta, Charles C.

    2013-06-14

    This grant resulted in three distinct scientific advances, the most important being the discovery of a inhomogeneous superconducting state first predicted over 40 years ago. Two graduate students received PhDs as a result of this grant, and a major US high magnetic field facility was rebuilt.

  19. Progress on the superconducting magnets for the MICE cooling channel

    NASA Astrophysics Data System (ADS)

    Green, M. A.; Virostek, S. P.; Li, D.; Zisman, M. S.; Wang, L.; Pan, H.; Wu, H.; Guo, X. L.; Xu, F. Y.; Liu, X. K.; Zheng, S. X.; Bradshaw, T.; Baynham, D. E.; Cobb, J.; Lau, W.; Lau, P.; Yang, S. Q.

    2010-06-01

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in the United States, China, and the UK respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that are used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  20. Progress on Superconducting Magnets for the MICE Cooling Channel

    SciTech Connect

    Green, Michael A; Virostek, Steve P.; Li, Derun; Zisman, Michael S.; Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Xu, FengYu; Liu, X. K.; Zheng, S. X.; Bradshaw, Thomas; Baynham, Elwyn; Cobb, John; Lau, Wing; Lau, Peter; Yang, Stephanie Q.

    2009-09-09

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in he United States, China, and the United Kingdom respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that re used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.