Science.gov

Sample records for final quarterly technical

  1. Energy efficient louver and blind. Final technical progress report, third quarter 1996

    SciTech Connect

    Khajavi, S.

    1996-10-14

    In the month of July, we completed the energy testing at Lawrence Berkeley Labs. The final testing was done with blinds in 15 degree position. This is a comfortable blind angle that allows for view of the outside while allowing for natural light to enter the room. It was found that the energy savings are much higher at this angle. At zero degree blind angle the savings were 150W/sq. meter, in the 15 degree the heat gain is cut by 225W/sq. meter. During the same period the heat gain in control chamber was 500W. (See graph plotting {open_quotes}Sample Heat Flows{close_quotes} From July 21 to 29 on next 3 pages). The heat gain reduction achieved in tests if used in commercial blinds, would result in an energy pay back period or one year and nine months.

  2. Toms Creek Integrated Gasification Combined Cycle Demonstration Project. Final quarterly technical progress report for the period ending March 31, 1993

    SciTech Connect

    Feher, G.

    1993-05-24

    This Quarterly Technical Progress Report for the period ending March 31, 1993 summarizes the work done to data by Tampella Power Corporation and Enviropower, Inc. on the integrated combined-cycle power plant project. Efforts were concentrated on the Toms Creek PDS (Preliminary Design and Studies). Tampella Power Corporation`s efforts were concentrated on the Toms Creek Preliminary Process Flow Diagram (PFD) and Piping and Instrument Diagrams (P&IDs). Tampella Power Corporation also prepared Heat and Material Balances (H&MBs) for different site-specific cases.

  3. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A quarterly listing of RTO technical publications is presented. The topics include: Handbook on the Analysis of Smaller-Scale Contingency Operations in Long Term Defence Planning; 2) Radar Polarimetry and Interferometry; 3) Combat Casualty Care in Ground-Based Tactical Situations: Trauma Technology and Emergency Medical Procedures; and 4) RTO Technical Publications: A Quarterly Listing

  4. AGEX II: Technical quarterly, Volume 2

    SciTech Connect

    Ekdahl, C.

    1995-03-01

    The AGEX II Technical Quarterly publishes short technical contributions on above ground experiments that use pulsed power and laser drivers. The Quarterly is intended to provide rapid exposure of timely technical ideas and results as well as a means for documenting AGEX II progress and scientific quality for the AGEX II community. Suitable topics include experimental results, diagnostic apparatus, theoretical design, and scaling, among others.

  5. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information. Contents include the following: RTO Technical Publications: A Quarterly Listing. Implications of Multilingual Interoperability of Speech Technology for Military Use. Non-Lethal Weapons and Future Peace Enforcement Operations.

  6. Bioconversion of coal derived synthesis gas to liquid fuels. Final quarterly technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Jain, M.K.; Worden, R.M.; Grethlein, H.

    1993-10-25

    The overall objective of the project is to develop an integrated two stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: (1) development/isolation of superior strains for fermentation of syngas, (2) optimization of process conditions for fermentation of syngas, (3) evaluation of bioreactor configuration for improved mass transfer of syngas, (4) development of a membrane-based pervaporation system, (5) optimization of process conditions for reducing carbon and electron loss by H{sub 2}-CO{sub 2} fermentation, and (6) synthesis gas fermentation in single-stage by co-culture. Progress is reported in isolation of CO utilizing anaerobic strains; investigating the product profile for the fermentation of syngas by B. methylotrophicum; and determining the effect of carbon monoxide on growth of C. acetobutylicum.

  7. Engineering Development of Slurry Bubble Column Reactor (SBCR) Technology: Final quarterly technical progress no. 2, 1 July - 30 September 1995

    SciTech Connect

    Toseland, B.A.; Tischer, R.E.

    1997-12-31

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large diameter reactors.

  8. Pelletizing/reslurrying as a means of distributing and firing clean coal. Final quarterly technical progress report No. 7, January 1, 1992-- March 31, 1992

    SciTech Connect

    Conkle, H.N.

    1992-06-09

    Work in this quarter focused on completing (1) the final batch of pilot-scale disk pellets, (2) storage, handling, and transportation evaluation, (3) pellet reslurrying and atomization studies, and (4) cost estimation for pellet and slurry production. Disk pelletization of Elkhorn coal was completed this quarter. Pellets were approximately 1/2- to 3/4-in. in diameter. Pellets, after thermal curing were strong and durable and exceeded the pellet acceptance criteria. Storage and handling tests indicate a strong, durable pellet can be prepared from all coals, and these pellets (with the appropriate binder) can withstand outdoor, exposed storage for at least 4 weeks. Pellets in unexposed storage show no deterioration in pellet properties. Real and simulated transportation tests indicate truck transportation should generate less than 5 percent fines during transport. Continuous reslurrying testing and subsequent atomization evaluation were performed this quarter in association with University of Alabama and Jim Walter Resources. Four different slurries of approximately 55-percent-solids with viscosities below 500 cP (at 100 sec{sup {minus}1}) were prepared. Both continuous pellet-to-slurry production and atomization testing was successfully demonstrated. Finally, an in depth evaluation of the cost to prepare pellets, transport, handle, store, and convert the pellet into Coal Water Fuel (CWF) slurries was completed. Cost of the pellet-CWF option are compared with the cost to directly convert clean coal filter cake into slurry and transport, handle and store it at the user site. Findings indicate that in many circumstances, the pellet-CWF option would be the preferred choice. The decision depends on the plant size and transportation distance, and to a lesser degree on the pelletization technique and the coal selected.

  9. Federal Assistance Program Quarterly Project Progress Report. Geothermal Energy Program: Information Dissemination, Public Outreach, and Technical Analysis Activities. Reporting Period: January 1 - March 31, 2001 [Final report

    SciTech Connect

    Lund, John W.

    2002-03-22

    The final report of the accomplishments of the geothermal energy program: information dissemination, public outreach and technical analysis activities by the project team consisting of the Geo-Heat Center, Geothermal Resources Council, Geothermal Education Office, Geothermal Energy Association and the Washington State University Energy Program.

  10. Final Technical Report

    SciTech Connect

    Maxwell, Mike, J., P.E.

    2012-08-30

    The STI product is the Final Technical Report from ReliOn, Inc. for contract award DE-EE0000487: Recovery Act PEM Fuel Cell Systems Providing Emergency Reserve and Backup Power. The program covered the turnkey deployment of 431 ReliOn fuel cell systems at 189 individual sites for AT&T and PG&E with ReliOn functioning as the primary equipment supplier and the project manager. The Final Technical Report provides an executive level summary, a comparison of the actual accomplishments vs. the goals and objectives of the project, as well as a summary of the project activity from the contract award date of August 1, 2009 through the contract expiration date of December 31, 2011. Two photos are included in the body of the report which show hydrogen storage and bulk hydrogen refueling technologies developed as a result of this program.

  11. Final Technical Report

    SciTech Connect

    Sobecky, Patricia A; Taillefert, Martial

    2013-03-29

    This final technical report describes results and findings from a research project to examine the role of microbial phosphohydrolase enzymes in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of the radionuclide uranium through the production of insoluble uranium phosphate minerals. The research project investigated the microbial mechanisms and the physical and chemical processes promoting uranium biomineralization and sequestration in oxygenated subsurface soils. Uranium biomineralization under aerobic conditions can provide a secondary biobarrier strategy to immobilize radionuclides should the metal precipitates formed by microbial dissimilatory mechanisms remobilize due to a change in redox state.

  12. Final Technical Report

    SciTech Connect

    Juan Camilo Serrano

    2011-12-16

    New and novel material and process technologies applied in wind blade designs and production are critical to increasing the competitiveness of wind power generation against traditional sources of energy. In this project, through collaboration between PPG Industries and MAG Industrial Automation Systems, the potential of using automated manufacturing for the production of fiber glass composite wind blades was evaluated from both technical and economic points of view. Further, it was demonstrated that by modifying the standard blade raw material forms through the use of cost effective pre-impregnated rovings coupled with using an automated fiber placement machine to lay up the parts, it is possible to produce state of the art composite laminates with significantly improved mechanical performance and with higher processing rates than standard blade production technology allows for today, thereby lowering the cost of energy over turbine blades made using traditional processes and materials. In conformity with the scope of work of the submitted proposal, the project team completed each task and documented and reported its findings on the appropriate quarterly report submitted to the DOE project team. The activities and this report are divided into 5 subtasks: (1) Material Investigation - Reviews traditional materials and key specifications and testing methods; (2) Manufacturing and Automation - Identifies new candidate material forms and automated layup processes; (3) Process Development - Performs trials of candidate materials and processes; (4) Predictive Analysis - Assesses impact of new material forms and automated processes on a model blade design; and (5) Feasibility Assessment - Compares traditional manufacturing processes and materials to new candidate material forms and automated processes.

  13. Final Technical Report

    SciTech Connect

    John Tanis

    2005-11-25

    This document comprises the final technical report for atomic collisions research supported by DOE grant No. DE-FG02-87ER13778 from September 1, 2001 through August 31, 2004. The research involved the experimental investigation of excitation and charge-changing processes occurring in ion-atom and ion-molecule collisions. Major emphases of the study were: (1) interference effects resulting from coherent electron emission in H2, (2) production of doubly vacant K-shell (hollow ion) states due to electron correlation, and (3) formation of long-lived metastable states in electron transfer processes. During the period of the grant, this research resulted in 23 publications, 12 invited presentations, and 39 contributed presentations at national and international meetings and other institutions. Brief summaries of the completed research are presented below.

  14. FINAL/ SCIENTIFIC TECHNICAL REPORT

    SciTech Connect

    McDonald, Henry; Singh, Suminderpal

    2006-08-28

    The overall objective of the Chattanooga fuel cell demonstrations project was to develop and demonstrate a prototype 5-kW grid-parallel, solid oxide fuel cell (SOFC) system that co-produces hydrogen, based on Ion America’s technology. The commercial viability of the 5kW SOFC system was tested by transporting, installing and commissioning the SOFC system at the Alternative Energy Laboratory at the University of Tennessee – Chattanooga. The system also demonstrated the efficiency and the reliability of the system running on natural gas. This project successfully contributed to the achievement of DOE technology validation milestones from the Technology Validation section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. Results of the project can be found in the final technical report.

  15. Final Technical Report

    SciTech Connect

    Klein, Stephen A.

    2003-06-23

    In this final technical report, a summary of work is provided. Concepts were developed for a new statistical cloud parameterization suitable for inclusion into global climate models. These concepts were evaluated by comparison to ARM data and data from cloud resolving models driven by ARM data. The purpose of this grant was to develop a new cloud parameterization for the global climate model of the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration (NOAA). Note that uncertainties in cloud parameterizations are a key reason why prediction of climate change from climate models remain unacceptably uncertain. To develop the parameterizations, the observations and models provided by the Department of Energy's Atmospheric Radiation Measurement (ARM) program were analyzed and used.

  16. Final Technical Report

    SciTech Connect

    Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes

    2003-08-04

    OAK B202 Final Technical Report. The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.

  17. Final Technical Report

    SciTech Connect

    Aristos Aristidou Natureworks); Robert Kean; Tom Schechinger; Stuart Birrell; Jill Euken

    2007-10-01

    The two main objectives of this project were: 1) to develop and test technologies to harvest, transport, store, and separate corn stover to supply a clean raw material to the bioproducts industry, and 2) engineer fermentation systems to meet performance targets for lactic acid and ethanol manufacturers. Significant progress was made in testing methods to harvest corn stover in a “single pass” harvest mode (collect corn grain and stover at the same time). This is technically feasible on small scale, but additional equipment refinements will be needed to facilitate cost effective harvest on a larger scale. Transportation models were developed, which indicate that at a corn stover yield of 2.8 tons/acre and purchase price of $35/ton stover, it would be unprofitable to transport stover more than about 25 miles; thus suggesting the development of many regional collection centers. Therefore, collection centers should be located within about 30 miles of the farm, to keep transportation costs to an acceptable level. These collection centers could then potentially do some preprocessing (to fractionate or increase bulk density) and/or ship the biomass by rail or barge to the final customers. Wet storage of stover via ensilage was tested, but no clear economic advantages were evident. Wet storage eliminates fire risk, but increases the complexity of component separation and may result in a small loss of carbohydrate content (fermentation potential). A study of possible supplier-producer relationships, concluded that a “quasi-vertical” integration model would be best suited for new bioproducts industries based on stover. In this model, the relationship would involve a multiyear supply contract (processor with purchase guarantees, producer group with supply guarantees). Price will likely be fixed or calculated based on some formula (possibly a cost plus). Initial quality requirements will be specified (but subject to refinement).Producers would invest in harvest

  18. Final Technical Report

    SciTech Connect

    Bohdan W. Oppenheim; Rudolf Marloth

    2007-10-26

    Executive Summary The document contains Final Technical Report on the Industrial Assessment Center Program at Loyola Marymount University in Los Angeles, covering the contract period of 9/1/2002 to 11/30/2006, under the contract DE-FC36-02GO 12073. The Report describes six required program tasks, as follows: TASK 1 is a summary of the assessments performed over the life of the award: 77 assessments were performed, 595 AR were recommended, covering a very broad range of manufacturing plants. TASK 2 is a description of the efforts to promote and increase the adoption of assessment recommendations and employ innovative methods to assist in accomplishing these goals. The LMU IAC has been very successful in accomplishing the program goals, including implemented savings of $5,141,895 in energy, $10,045,411 in productivity and $30,719 in waste, for a total of $15,218,025. This represents 44% of the recommended savings of $34,896,392. TASK 3 is a description of the efforts promoting the IAC Program and enhancing recruitment efforts for new clients and expanded geographic coverage. LMU IAC has been very successful recruiting new clients covering Southern California. Every year, the intended number of clients was recruited. TASK 4 describes the educational opportunities, training, and other related activities for IAC students. A total of 38 students graduated from the program, including 2-3 graduate students every semester, and the remainder undergraduate students, mostly from the Mechanical Engineering Department. The students received formal weekly training in energy (75%) and productivity (25). All students underwent extensive safety training. All students praised the IAC experience very highly. TASK 5 describes the coordination and integration of the Center activities with other Center and IAC Program activities, and DOE programs. LMU IAC worked closely with MIT, and SDSU IAC and SFSU IAC, and enthusiastically supported the SEN activities. TASK 6 describes other tasks

  19. Final Technical Report

    SciTech Connect

    Brizard, Alain J

    2009-12-31

    Final Technical Report for U.S. Department of Energy Grant No. DE-FG02-09ER55005 Nonlinear FLR Effects in Reduced Fluid Models Alain J. Brizard, Saint Michael's College The above-mentioned DoE grant was used to support research activities by the PI during a sabbatical leave from Saint Michael's College in 2009. The major focus of the work was the role played by guiding-center and gyrocenter (linear and nonlinear) polarization and magnetization effects in understanding transport processes in turbulent magnetized plasmas. The theoretical tools used for this work include Lie-transform perturbation methods and Lagrangian (variational) methods developed by the PI in previous work. The present final technical report lists (I) the peer-reviewed publications that were written based on work funded by the Grant; (II) invited and contributed conference presentations during the period funded by the Grant; and (III) seminars presented during the period funded by the Grant. I. Peer-reviewed Publications A.J. Brizard and N. Tronko, 2011, Exact momentum conservation for the gyrokinetic Vlasov- Poisson equations, Physics of Plasmas 18 , 082307:1-14 [http://dx.doi.org/10.1063/1.3625554 ]. J. Decker, Y. Peysson, A.J. Brizard, and F.-X. Duthoit, 2010, Orbit-averaged guiding-center Fokker-Planck operator for numerical applications, Physics of Plasmas 17, 112513:1-12 [http://dx.doi.org/10.1063/1.3519514]. A.J. Brizard, 2010, Noether derivation of exact conservation laws for dissipationless reduced fluid models, Physics of Plasmas 17, 112503:1-8 [http://dx.doi.org/10.1063/1.3515303]. F.-X. Duthoit, A.J. Brizard, Y. Peysson, and J. Decker, 2010, Perturbation analysis of trapped particle dynamics in axisymmetric dipole geometry, Physics of Plasmas 17, 102903:1-9 [http://dx.doi.org/10.1063/1.3486554]. A.J. Brizard, 2010, Exact energy conservation laws for full and truncated nonlinear gyrokinetic equations, Physics of Plasmas 17, 042303:1-11 [http://dx.doi.org/10.1063/1.3374428]. A

  20. Final Technical Report

    SciTech Connect

    Schuur, Edward; Luo, Yiqi

    2016-12-01

    This final grant report is a continuation of the final grant report submitted for DE-SC0006982 as the Principle Investigator (Schuur) relocated from the University of Florida to Northern Arizona University. This report summarizes the original project goals, as well as includes new project activities that were completed in the final period of the project.

  1. Yucca Mountain Site Characterization Project Technical Data Catalog (quarterly supplement)

    SciTech Connect

    1993-06-30

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated December 31, 1992, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1993.

  2. Yucca Mountain Site Characterization Project technical data catalog: Quarterly supplement

    SciTech Connect

    1994-12-31

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed-in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  3. Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement

    SciTech Connect

    1994-03-31

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  4. Yucca Mountain Site Characterization Project Technical Data Catalog (Quarterly supplement)

    SciTech Connect

    1993-12-31

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  5. Final Technical Report

    SciTech Connect

    Eckerlin, H, M, PhD PE; Leach, J, W, PhD PE; Terry, S, D, PhD PE

    2007-02-28

    The Industrial Assessment Center program at North Carolina State University has conducted one hundred industrial assessments of small and medium sized manufacturers in North Carolina, South Carolina, and Virginia. Reports were submitted to each facility that included a brief description of the plant, historical energy use, and a technical analysis of potential energy efficiency savings, waste reduction, and productivity savings. Seven hundred thirty eight conservation measures were recommended with total annual cost savings in excess of $18 million. The NCSU IAC has worked with other government and private entities to deliver energy efficiency and conservation services. We have worked closely with the NCSU Industrial Extension Service, the Manufacturer’s Extension Partnership (MEP), and the North Carolina State Energy Office to provide follow-up technical help and financial assistance in implementing conservation recommendations. In addition to these organizations, the NCSU IAC has also worked with the NC Department of Pollution Prevention and Environmental Assistance, the NC Solar Center, Advanced Energy Corporation, Duke Power, Progress Energy, Dominion Power, and the City of Danville, Virginia. Eighteen undergraduate and twenty graduate students were exposed to a variety of manufacturing processes, trained on plant safety, and taught the use of various types of data collection equipment. The students performed technical analyses of each recommendation, computed the potential savings from engineering relations and collected data, estimated the cost from vendor information, and communicated the findings in a compact, well written report to the client. The students have also been exposed to a variety of business personnel, including corporate presidents, engineering managers, plant managers, plant engineers, facility maintenance staff, and production workers – each with a unique perspective on the challenges faced in a modern manufacturing facility. The program

  6. Final Technical Report

    SciTech Connect

    Gilbert, Chris

    2014-11-13

    The project, Capital Investment to Fund Equipment Purchases and Facility Modifications to Create a Sustainable Future for EnergyXchange served to replace landfill gas energy with alternative energy resources, primarily solar and wood waste. This is the final project closeout report.

  7. Final Technical Report

    SciTech Connect

    Eggeman, Tim; O'Neill, Brian

    2016-08-17

    ZeaChem Inc. and US DOE successfully demonstrated the ZeaChem process for producing sugars and ethanol from high-impact biomass feedstocks. The project was executed over a 5-year period under a $31.25 million cooperative agreement (80:20 Federal:ZeaChem cost share). The project was managed by dividing it into three budget periods. Activities during Budget Period 1 were limited to planning, permitting, and other pre-construction planning. Budget Period 2 activities included engineering, procurement, construction, commissioning, start-up and initial operations through the Independent Engineer Test Runs. The scope of construction was limited to the Chem Frac and Hydrogenolysis units, as the Core Facility was already in place. Construction was complete in December 2012, and the first cellulosic ethanol was produced in February 2013. Additional operational test runs were conducted during Budget Period 3 (completed June 2015) using hybrid poplar, corn stover, and wheat straw feedstocks, resulting in the production of cellulosic ethanol and various other biorefinery intermediates. The research adds to the understanding of the Chem Frac and Hydrogenolysis technologies in that the technical performance of each unit was measured, and the resulting data and operational experience can be used as the basis for engineering designs, thus mitigating risks for deployment in future commercial facilities. The Chem Frac unit was initially designed to be operated as two-stage dilute acid hydrolysis, with first stage conditions selected to remove the hemicellulose fraction of the feedstock, and the second stage conditions selected to remove the cellulose fraction. While the Chem Frac unit met or exceeded the design capacity of 10 ton(dry)/day, the technical effectiveness of the Chem Frac unit was below expectations in its initial two-stage dilute acid configuration. The sugars yields were low, the sugars were dilute, and the sugars had poor fermentability caused by excessive inhibitors

  8. Technical Report - FINAL

    SciTech Connect

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory

    2007-04-25

    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current building standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities

  9. FINAL TECHNICAL REPORT

    SciTech Connect

    STEFAN VASILE; ZHENG LI

    2010-06-17

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  10. Final Technical Report

    SciTech Connect

    Stoessel, Chris

    2013-11-13

    This project developed a new high-performance R-10/high SHGC window design, reviewed market positioning and evaluated manufacturing solutions required for broad market adoption. The project objectives were accomplished by: identifying viable technical solutions based on modeling of modern and potential coating stacks and IGU designs; development of new coating material sets for HM thin film stacks, as well as improved HM IGU designs to accept multiple layers of HM films; matching promising new coating designs with new HM IGU designs to demonstrate performance gains; and, in cooperation with a window manufacturer, assess the potential for high-volume manufacturing and cost efficiency of a HM-based R-10 window with improved solar heat gain characteristics. A broad view of available materials and design options was applied to achieve the desired improvements. Gated engineering methodologies were employed to guide the development process from concept generation to a window demonstration. The project determined that a slightly de-rated window performance allows formulation of a path to achieve the desired cost reductions to support end consumer adoption.

  11. Final Technical Report

    SciTech Connect

    Frederick J. Carranti, P.E.

    2008-02-27

    During the contract period noted above, the Syracuse University Industrial Assessment Center conducted 97.5 assessment days for 98 different industrial clients. These assessments developed 818 assessment recommendations with an overall implementation rate of 51 % (AR’s). Total recommended dollar savings for the period was $17,386,758.00, with $8,893,212.00 actually implemented, for a dollar implementation rate of 57%. The Center employed a total of sixteen undergraduate interns throughout the contract period. Nine of these students stayed on at Syracuse University for graduate study with Center support; five students pursued graduate study at other universities. Ten of these students have, or will, accept professional positions in the energy consulting field. The Center has successfully engaged with a wide variety of professional and development organizations, including the Manufacturers Association of Central New York, The Central New York Technical Development Organization, (the local MEP), the New York State Energy Research and Development Authority, The New York Power Authority, the Onondaga County Citizens Energy Committee, and the New York State Center of Excellence on Indoor Environmental Systems.

  12. Final Technical Report

    SciTech Connect

    Joseph Junker; Greg Wheeler

    2007-02-26

    Since 1986 the Oregon State University Industrial Assessment Center (OSU IAC) has worked to increase the energy efficiency, productivity, sustainability, and competitiveness of US manufacturers; provide engineering students an education not available in the classroom; keep engineering faculty in contact with technology and challenges in Northwest industry; and reduce dependence on nonrenewable energy resources, both imported and domestic. Project Objective: Over the duration of this project (2002-2006), the OSU IAC worked to directly support and influence industrial decisions primarily regarding energy but also regarding sustainability and profitability through: Assessments & Follow-up: The OSU IAC performed 111 Industrial Assessments in Oregon, Washington, Idaho and Nevada to help industry identify and implement opportunities to increase energy efficiency, productivity, sustainability, and competitiveness Workshops Seminars Forums Etc: OSU IAC staff worked with regional peers to offer appropriate workshops and trainings as opportunities availed themselves. Graduating Excellent Energy Aware Professional Alumni: As technically capable, skilled written and verbal communicators, our alumni contributed to OSU IAC influence from their positions within industry, consulting organizations, utilities, and governmental and non governmental agencies. Tool Development: Analysis tools and guides originated at the OSU IAC extended our reach. The center continually worked to develop computer based analysis tools, evaluation checklists, analysis guide sheets for internal use and general sharing with industry, energy, and other professionals to assist them in efforts to improve US Industry. Impact: Over 20 years of activity the OSU IAC has typically performed 25 Industrial Assessments a year. On average, each year of 25 assessments has resulted in implemented projects that saved industry a total of: 25.3 TBTU in annual energy and $4.5 Million annually, with an average investment

  13. SERI biofuels program. Quarterly technical report, second and third quarters, FY 1985

    SciTech Connect

    Bull, S.R.; Lowenstein, M.Z.; McIntosh, R.P.

    1985-07-01

    Highlights of progress accomplished during the second and third quarters of FY 1985 in the areas of aquatic species, anaerobic digestion and photobiological hydrogen production research are summarized. The following accomplishments were attained in aquatic species research: evaluation of the growth of marine species in desert saline waters; preliminary evaluation of potential gains in productivity from utilization of light modulation; determined the relationship between the initial carbohydrate accumulation and subsequent lipid synthesis in Ankistrodesmus; completed designs and analysis of three outdoor systems; completed evaluations on the use of immobilized systems for the production of fuels; completed economic and technical evaluation of two harvesting schemes for microalgae; and completed evaluation of macroalgal production concepts and submit research plan. In the area of anaerobic digestion research, the following tasks were accomplished: received final report on autohydrolysis; received final report on genetic engineering of methanogens; completed computerized data based on commercial anaerobic digesters; completed analysis of anaerobic digestion for energy and submitted draft white paper to DOE program managers; and made presentations on ''Anaerobic Digestion for Energy'' and ''Potential for Improvement of Anaerobic Digestion Technology'' to DOE program managers. In photobiological hydrogen production, program wrap-up was completed and a final draft of the program report was submitted.

  14. Final Technical Report

    SciTech Connect

    Alexander Fridman

    2005-06-01

    This DOE project DE-FC36-04GO14052 ''Plasma Pilot Plant Test for Treating VOC Emissions from Wood Products Plants'' was conducted by Drexel University in cooperation with Georgia-Pacific (G-P) and Kurchatov Institute (KI). The objective of this project was to test the Plasma Pilot Plant capabilities in wood industry. The final goal of the project was to replace the current state-of-the-art, regenerative thermal oxidation (RTO) technology by Low-Temperature Plasma Technology (LTPT) in paper and wood industry for Volatile Organic Components (VOC) destruction in High Volume Low Concentration (HVLC) vent emissions. MetPro Corporation joined the team as an industrial partner from the environmental control business and a potential leader for commercialization. Concurrent Technology Corporation (CTC) has a separate contract with DOE for this technology evaluation. They prepared questionnaires for comparison of this technology and RTO, and made this comparison. These data are presented in this report along with the description of the technology itself. Experiments with the pilot plant were performed with average plasma power up to 3.6 kW. Different design of the laboratory and pilot plant pulsed coronas, as well as different analytical methods revealed many new peculiarities of the VOC abatement process. The work reported herein describes the experimental results for the VOCs removal efficiency with respect to energy consumption, residence time, water effect and initial concentration.

  15. Final Technical Report

    SciTech Connect

    Held, Isaac; V. Balaji; Fueglistaler, Stephan

    2016-09-19

    We have constructed and analyzed a series of idealized models of tropical convection interacting with large-scale circulations, with 25-50km resolution and with 1-2km cloud resolving resolution to set the stage for rigorous tests of convection closure schemes in high resolution global climate models. Much of the focus has been on the climatology of tropical cyclogenesis in rotating systems and the related problem of the spontaneous aggregation of convection in non-rotating systems. The PI (Held) will be delivering the honorary Bjerknes lecture at the Fall 2016 AGU meeting in December on this work. We have also provided new analyses of long-standing issues related to the interaction between convection and the large-scale circulation: Kelvin waves in the upper troposphere and lower stratosphere, water vapor transport into the stratosphere, and upper tropospheric temperature trends. The results of these analyses help to improve our understanding of processes, and provide tests for future high resolution global modeling. Our final goal of testing new convections schemes in next-generation global atmospheric models at GFDL has been left for future work due to the complexity of the idealized model results meant as tests for these models uncovered in this work and to computational resource limitations. 11 papers have been published with support from this grant, 2 are in review, and another major summary paper is in preparation.

  16. Final Technical Report

    SciTech Connect

    Alexander Pigarov

    2012-06-05

    This is the final report for the Research Grant DE-FG02-08ER54989 'Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts'. The UCSD group including: A.Yu. Pigarov (PI), S.I. Krasheninnikov and R.D. Smirnov, was working on modeling of the impact of lithium coatings on edge plasma parameters in NSTX with the multi-species multi-fluid code UEDGE. The work was conducted in the following main areas: (i) improvements of UEDGE model for plasma-lithium interactions, (ii) understanding the physics of low-recycling divertor regime in NSTX caused by lithium pumping, (iii) study of synergistic effects with lithium coatings and non-diffusive ballooning-like cross-field transport, (iv) simulation of experimental multi-diagnostic data on edge plasma with lithium pumping in NSTX via self-consistent modeling of D-Li-C plasma with UEDGE, and (v) working-gas balance analysis. The accomplishments in these areas are given in the corresponding subsections in Section 2. Publications and presentations made under the Grant are listed in Section 3.

  17. Final Technical Report

    SciTech Connect

    Velasco, Mayda

    2013-11-01

    This work is focused on the design and construction of novel beam diagnostic and instrumentation for charged particle accelerators required for the next generation of linear colliders. Our main interest is in non-invasive techniques. The Northwestern group of Velasco has been a member of the CLIC Test Facility 3 (CTF3) collaboration since 2003, and the beam instrumentation work is developed mostly at this facility1. This 4 kW electron beam facility has a 25-170 MeV electron LINAC. CTF3 performed a set of dedicated measurements to finalize the development of our RF-Pickup bunch length detectors. The RF-pickup based on mixers was fully commissioned in 2009 and the RF-pickup based on diodes was finished in time for the 2010-11 data taking. The analysis of all the data taken in by the summer of 2010 was finish in time and presented at the main conference of the year, LINAC 2010 in Japan.

  18. CEEM Final Technical Report

    SciTech Connect

    Bowers, John

    2014-11-26

    concentrating photovoltaic applications thathave substantially higher efficiency than single substrate cells made of elemental semiconductors such as silicon. This task required the development of new cell bonding methods with excellent coupling of both photons and electrons between the sub-cells. To accomplish this, we developed (1) GaInN solar cells with enhanced performance by using quantum-well absorbers and front-surface optical texturing, (2) a hybrid "pillar-array" bond which uses an array of metal pillars for electrical coupling, and (3) a "hybrid moth-eye" optical coating which combines the benefits of nano-imprinted moth-eye coatings and traditional multilayer coatings. The technical effectiveness was assessed by measurement of the photovoltaic efficiency of solar cells made using these techniques; the ultrahigh efficiencies targeted by this work are of compelling economic value for concentrating photovoltaics.

  19. Final Technical Report

    SciTech Connect

    Stenzel, Reiner; Urrutia, J. Manuel

    2009-09-08

    emissions are only observed in whistler spheromaks and FRCs but not in mirrors or asymmetric configurations lacking magnetic null lines. The collisionless electron energization in a toroidal null line usually produces non-Maxwellian distributions. Off the null axis electrons gain more perpendicular than parallel energy. Distributions with T{sub {perpendicular}} > T{sub {parallel}} lead to whistler instabilities which have been observed. A whistler spheromak is a source of high-frequency whistler emissions. These are usually small amplitude whistlers propagating in a complicated background magnetic field. The waves are emitted from a moving source. High frequency whistlers propagate faster than the spheromak, thus partly move ahead of it and partly in the reverse direction. In test wave experiments wave growth opposite to the direction of the hot electron flow has been observed, confirming that Doppler-shifted cyclotron resonance instabilities account for the emission process. Propagating whistler mirrors produce no significant instabilities except when they interact with other fields which exhibit null lines. For example, a whistler mirror has been launched against a stationary FRC, resulting in strong FRC heating and whistler instabilities. In the whistler mirror configuration the antenna near-zone field produces a toroidal null line outside the coil which can also become a source for whistler emissions. Finally, nonlinear EMHD research has been extended to initially unmagnetized plasmas where a new nonlinear skin depth has been discovered. When a small-amplitude oscillating magnetic field is applied to a plasma the field penetration is governed by the skin depth, collisional or collisionless depending on frequency, collision frequency and plasma frequency. However, when the magnetic field increases the electrons become magnetized and the field penetration occurs in the whistler mode if the cyclotron frequency exceeds the oscillating frequency. This phenomenon has been

  20. Quarterly Technical Progress Report June 2015

    SciTech Connect

    Buchholz, Bruce A.

    2015-06-08

    The project has two main goals: 1) Identify the types of adducts naphthalene (NA) forms with DNA and 2) determine whether adduct formation correlates with site selective tumor formation in defined subcompartments of the respiratory tract (respiratory and olfactory nasal epithelium and airways of mice, rats and rhesus monkeys). Five tasks are associated with the completion of the goals. Task 1: Contracting and Animal Use Approvals. IACUC and ACURO approvals are complete, The subcontract with UC Davis (UCD) was executed in December 2014. Task 2: Perform In Vitro Study for Goal 1. Rat samples exposed and in freezer while adduct standards are being made. Mouse samples need to be exposed in next quarter. Task 3: Perform In Vitro Study for Goal 2. Mouse ex vivo samples completed. Rat and monkey samples need to be completed in the next quarter. Task 4: Sample Preparation and Analysis. Mouse Goal 2 samples completed. Other samples remain to be done. Task 5: Data Interpretation and Reporting. Need rat data to write paper on adduct formation.

  1. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information from Oct 1, 2001 through Dec 31, 2001. This listing includes one citataion titled 'Logistics Test and Evaluation in Flight'.

  2. Department of Energy quarterly technical report

    SciTech Connect

    Anderson, R.N.

    1995-04-15

    The objective is to test the concept that the growth faults in Eugene Island Block 330 (EI-330 field) are conduits through which producing reservoirs are charged and that enhanced production can be developed by producing directly from the fault zone. The site, operated by Penzoil, is located in 250 feet of water and the productive depth intervals include 4000 to 9000 feet. The field demonstration will be accomplished by drilling and production testing of growth fault systems associated with the EI-330 field. The project utilizes advanced 3-D seismic analysis, geochemical studies, structural and stratigraphic reservoir characterization, reservoir simulation, compact visualization systems. In this quarterly report, progress reports are presented for the following tasks: database management; reservoir characterization; modeling; geochemistry; and data integration.

  3. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information from Jan 1, 2002 through Mar 31, 2002. Topics covered included information management, ice accretion, digital flight control systems, supercavitation flows, and tactical decision aids.

  4. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information. Reports may be downloaded for free from the RTO website at http://www.rta.nato.int or they may be purchased from the NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, MD 21076-1320 USA, phone 301-621-0390, fax 301-621-0134. Prices and order forms are available from the NASA STI website at http://www.sti.nasa.gov. An automatic distribution of unclassified RTO technical publications in CD-ROM is also available within the US through the NASA Standing Order Service from the NASA Center for AeroSpace Information.

  5. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information. Reports may be downloaded for free from the RTO website at http:/www.rta.nato.int or they may be purchased from the NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, MID 21076-1320 USA, phone 301-621-0390, fax 301-621-0134. Prices and order forms are available from the NASA STI website at http://www.sti.nasa.gov. An automatic distribution of unclassified RTO technical publications in CD-ROM is also available within the U.S. through the NASA Standing Order Service from the NASA Center for AeroSpace Information.

  6. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a listing of recent unclassified RTO technical publications for April 1, 2004 through June 30, 2004, processed by the NASA Center for AeroSpace Information. Topics covered include: heat transfer and cooling in propulsion and power systems; assessment of operator functional state; microwaves; aerodynamics in solid rocket propulsion; command, control, communications and intelligence modeling; personal protective equipment against anti-personnel mine blast; and data fusion and visualization.

  7. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information covering the period from July 1, 2005 to September 30, 2005; and available in the NASA Aeronautics and Space Database. Contents include: Aeroelastic Deformation: Adaptation of Wind Tunnel Measurement Concepts to Full-Scale Vehicle Flight Testing; Actively Controlling Buffet-Induced Excitations; Modelling and Simulation to Address NATO's New and Existing Military Requirements; Latency in Visionic Systems: Test Methods and Requirements; Personal Hearing Protection including Active Noise Reduction; Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies; A Method to Analyze Tail Buffet Loads of Aircraft; Particle Image Velocimetry Measurements to Evaluate the Effectiveness of Deck-Edge Columnar Vortex Generators on Aircraft Carriers; Introduction to Flight Test Engineering, Volume 14; Pathological Aspects and Associated Biodynamics in Aircraft Accident Investigation;

  8. PFBC HGCU Test Facility. Technical progress report No. 24, Third quarter, CY 1995

    SciTech Connect

    1995-10-01

    This is the twenty-fourth and final Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the work completed during the Third Quarter of CY 1995. All activity this quarter was directed toward the completion of the program final report. A draft copy of the final report was forwarded to DOE during this quarter, and DOE submitted their comments on the report to AEPSC. DOE requested that Westinghouse write an appendix to the report covering the performance of the fail-safe regenerator devices during Tad operation, and Westinghouse subsequently prepared the appendix. Additional DOE comments were incorporated into the report, and it will be issued in camera-ready form by the end of October, 1995, which is the program end date. Appendix 1 presents the results of filter candle posttest examination by Westinghouse performed on selected filter candles following final shutdown of the system.

  9. Final Scientific/Technical Report

    SciTech Connect

    Brown, R. C.; McCarley, T. M.

    2006-05-04

    The overall goal of this project was to establish an education and training program in biobased products at Iowa State University (ISU). In particular, a graduate program in Biorenewable Resources and Technology (BRT) was to be established as a way of offering students advanced study in the use of plant- and crop-based resources in the production of biobased products. The program was to include three fundamental elements: an academic program, a research program, and industrial interactions. The academic program set out to introduce a new graduate major in Biorenewable Resources and Technology. Unlike other schools, which only offer certificates or areas of emphasis in biobased products, Iowa State University offers both M.S. and Ph.D degrees through its graduate program. Core required courses in Biorenewable Resources and Technology include a foundation course entitled Fundamentals of Biorenewable Resources (BRT 501); a seminar course entitled Biobased Products Seminar (BRT 506); a laboratory course, and a special topics laboratory course. The foundation course is a three-credit course introducing students to basic concepts in biorenewable resources and technology. The seminar course provides students with an opportunity to hear from nationally and internationally recognized leaders in the field. The laboratory requirement is a 1-credit laboratory course or a special topics laboratory/research experience (BRT 591L). As part of student recruitment, quarter-time assistantships from DOE funds were offered to supplement assistantships provided by faculty to students. Research was built around platform teams in an effort to encourage interdisciplinary research and collaborative student learning in biorenewable resources. A platform is defined as the convergence of enabling technologies into a highly integrated system for transforming a specific feedstock into desired products. The platform teams parallel the way industry conducts research and product development

  10. MHD Integrated Topping Cycle Project. Eighteenth quarterly technical progress report, November 1, 1991--January 31, 1992

    SciTech Connect

    Not Available

    1992-07-01

    This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

  11. Technical Data Catalog: Yucca Mountain Site Characterization Project. Quarterly supplement

    SciTech Connect

    1995-06-30

    This report presents reference information contained in the Yucca Mountain Project Automated Technical Data Tracking System. The Department of Energy is seeking to design and maintain a geologic repository for the disposal of high-level radioactive wastes. However, before this repository can be built, the DOE must first do a comprehensive site evaluation. This evaluation is subject to many regulations. This report fulfills the reporting requirements of the Site-Specific Procedural Agreement for Geologic Repository to develop and maintain a catalog of data which will be updated and provided to the Nuclear Regulatory Commission on a quarterly basis. This catalog contains: description of data; time, place, and method of acquisition; and where data may be examined.

  12. Technical planning activity: Final report

    SciTech Connect

    Not Available

    1987-01-01

    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements.

  13. High Energy Density Physics technical quarterly, October--December 1994. Volume 3

    SciTech Connect

    1995-09-01

    The High Energy Density Physics Technical Quarterly (formerly the AGEX 2 Technical Quarterly) publishes short technical contributions on above ground experiments that use pulsed power and laser drivers. The Quarterly is intended to provide rapid exposure of timely technical ideas and results as well as a means for documenting High Energy Density Physics progress and scientific quality for the High Energy Density Physics community. Two articles are included in this volume. They are ``Simulation and Analysis of PEGII-25`` and ``Resistor Developments for Atlas Marx Modules``.

  14. DOE FINAL TECHNICAL REPORT RP

    SciTech Connect

    RUSS PETERMAN

    2012-01-01

    The City of Georgetown Utility Systems (GUS) patnered with the private sector, the American Public Power Association (APPA) and Southwestern University to design, construct, test and monitor a solar co-generation system directly connected to the GUS electric distribution system. This report consists of the Primary Technical Report and 3 attachments.

  15. Regulatory and technical reports (abstract index journal). Compilation for third quarter 1997, July--September

    SciTech Connect

    Stevenson, L.L.

    1998-01-01

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the US Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC`s intention to publish this compilation quarterly and to cumulate it annually. This report contains the third quarter 1997 abstracts.

  16. Site Operator technical report. Final report (1992--1996)

    SciTech Connect

    1996-12-01

    The Southern California Edison Company (SCE) and the US Department of Energy (DOE) entered into cooperative agreement No. DE-FC07-91ID13077 on August 23, 1991, which expired on August 3, 1996. This cooperative agreement provided SCE with DOE cofunding for participation in the DOE`s Electric and Hybrid Vehicle Site Operator Program. In return, SCE provided the DOE with quarterly progress reports which include operating and maintenance data for the electric (EVs) vehicles in SCE`s fleet. Herein is SCE`s final report for the 1992 to 1996 agreement period. As of September 1, 1996 the SCE fleet had 65 electric vehicles in service. A total of 578,200 miles had been logged. During the agreement period, SCE sent the DOE a total of 19 technical reports (Appendix B). This report summarizes the technical achievements which took place during a long, productive and rewarding, relationship with the DOE.

  17. Final Scientific/Technical Report

    SciTech Connect

    Chang, Yale; Thomas, Michael E.; Siegrist, Karen M.; Lennon, Andrew M.; Hunter, Lawrence W.; Oguz, Hasan O.

    2014-06-30

    JHU/APL conducted solid propellant fire characterization tests in warm, humid, ambient conditions near sea level. Yttria and ceria surrogate materials were placed in the fires. The substrates simulating ground surfaces were concrete from a Kennedy Space Center launch pad, and steel covered with a protective ablative material representing a launch platform. In-situ instrumentation consisted of witness materials, thermocouples, air handlers, filters, and cascade impactors; remote instrumentation consisted of optical cameras and spectrometers. Test and analysis team members included the Naval Air Warfare Center Aircraft Division, Sandia National Laboratories (SNL), Alliant Techsystems, and the Johns Hopkins University. Test data were analyzed, reported, and delivered, including plume rise and transport captured on video. Derivation of the alumina particle size distributions formed the basis for condensing vapor and agglomeration estimates. Assessment of alumina mass in the plume, along with the surrogate fraction from filter forensics, provided an estimate of airborne surrogate mass. Technical interchange meetings were held with SNL and the Jet Propulsion Laboratory. Specifications for the fire environment were developed and delivered. A thermochemistry model that simultaneously provides the maximum temperature and heat flux was developed and delivered. An SPIE paper on 3D pyrometry of the fire was written and presented.

  18. IRIS Final Technical Progress Report

    SciTech Connect

    M. D. Carelli

    2003-11-03

    OAK-B135 This NERI project, originally started as the Secure Transportable Autonomous Light Water Reactor (STAR-LW) and currently known as the International Reactor Innovative and Secure (IRIS) project, had the objective of investigating a novel type of water-cooled reactor to satisfy the Generation IV goals: fuel cycle sustainability, enhanced reliability and safety, and improved economics. The research objectives over the three-year (1999-2002) program were as follows: First year: Assess various design alternatives and establish main characteristics of a point design; Second year: Perform feasibility and engineering assessment of the selected design solutions; Third year: Complete reactor design and performance evaluation, including cost assessment These objectives were fully attained and actually they served to launch IRIS as a full fledged project for eventual commercial deployment. The program did not terminate in 2002 at the end of the NERI program, and has just entered in its fifth year. This has been made possible by the IRIS project participants which have grown from the original four member, two-countries team to the current twenty members, nine countries consortium. All the consortium members work under their own funding and it is estimated that the value of their in-kind contributions over the life of the project has been of the order of $30M. Currently, approximately 100 people worldwide are involved in the project. A very important constituency of the IRIS project is the academia: 7 universities from four countries are members of the consortium and five more US universities are associated via parallel NERI programs. To date, 97 students have worked or are working on IRIS; 59 IRIS-related graduate theses have been prepared or are in preparation, and 41 of these students have already graduated with M.S. (33) or Ph.D. (8) degrees. This ''final'' report (final only as far as the NERI program is concerned) summarizes the work performed in the first four

  19. FINAL SCIENTIFIC/TECHNICAL REPORT

    SciTech Connect

    Satish Mohapatra

    2011-12-21

    Dynalene Inc has developed and patented a fuel cell coolant with the help of DOE SBIR Phase I and Phase II funding (Project DE-FG02-04ER83884). However, this coolant could only be produced in lab scale (500 ml to 2 L) due to problems in the optimization and scale-up of a nanoparticle ingredient. This project optimized the nanoparticle production process in 10 L and 100 L reactors (which translates to about 5000 gallons of coolant), optimized the filtration process for the nanoparticles, and develop a high throughput production as well as quality control method for the final coolant formulation. Scale-up of nanoparticle synthesis (using emulsion polymerization) is an extremely challenging task. Dynalene researchers, in collaboration with a university partner, identified all the parameters affecting the size, charge density and coagulation characteristics of the nanoparticles and then optimized these parameters to achieve the goals and the objectives of this project. Nanoparticle synthesis was demonstrated to be reproducible in the 10 L and 100 L scales.

  20. Santa Barbara Final Technical Report

    SciTech Connect

    Hacker, Angela; Hansen, Sherman; Watkins, Ashley

    2013-11-30

    This report serves as the Final Report for Santa Barbara County’s Energy Efficiency and Conservation Block Grant (EECBG) BetterBuildings Neighborhood Program (BBNP) award from the U.S. Department of Energy (DOE). This report explains how DOE BBNP funding was invested to develop robust program infrastructure designed to help property owners complete energy improvements, thereby generating substantial outcomes for the local environment and economy. It provides an overview of program development and design within the grant period, program accomplishments and challenges to date, and a plan for the future sustainability of emPower, the County’s innovative clean energy and building efficiency program. During the grant period, Santa Barbara County’s emPower program primarily targeted 32,000 owner occupied, single family, detached residential homes over 25 years old within the County. In order to help these homeowners and their contractors overcome market barriers to completing residential energy improvements, the program developed and promoted six voluntary, market-based service areas: 1) low cost residential financing (loan loss reserve with two local credit unions), 2) residential rebates, 3) local customer service, 4) expert energy advising, 5) workforce development and training, and 6) marketing, education and outreach. The main goals of the program were to lower building energy use, create jobs and develop a lasting regional building performance market. These services have generated important early outcomes and lessons after the program’s first two years in service. The DOE BBNP funding was extended through October 2014 to enable Santa Barbara County to generate continued outcomes. In fact, funding related to residential financing remains wholly available for the foreseeable future to continue offering Home Upgrade Loans to approximately 1,300 homeowners. The County’s investment of DOE BBNP funding was used to build a lasting, effective, and innovative

  1. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, July 1--September 30, 1992

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the twelfth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: Summaries of the final reports produced by Lehigh University, West Virginia University, and Vander Sande Associates under the Participants Program are presented. Analytical data produced by CONSOL are provided in Appendix I for all samples employed in the Participants Program and issued with the samples to research groups in the Participants Program. A paper was presented at the 1992 US Department of Energy Pittsburgh Energy Technology Center Liquefaction Contractors` Review Conference, held in Pittsburgh September 23--24, 1992, entitled ``The Chemical Nature of Coal Liquid Resids and the Implications for Process Development``. It appears as Appendix 2 in this report.

  2. OTEC support services. Quarterly technical progress report No. 7, 15 November 1979-14 February 1980

    SciTech Connect

    1980-02-01

    The technical engineering and management support services provided by VSE corporation for the Ocean Thermal Energy Conversion Program of the Ocean Systems Branch, Division of Central Solar Technology during this quarter are described. The seven tasks include (1) survey, analysis evaluation, and recommendation concerning program performance, (2) program technical monitoring, (3) development and implementation of methodology to identify and evaluate program alternatives, (4) technical assessments, (5) OTEC system integration, (6) environment and siting considerations; and (7) transmission subsystem considerations. (WHK)

  3. Sulfate specifications as a constraint to gypsum addition to cement and possible replacement of gypsum as an additive. Phase I. Final quarterly technical progress report, December 1979-January-February 1980

    SciTech Connect

    Kantro, D.L.

    1980-04-01

    The results obtained during this quarter indicate that, based on x ray diffraction observations, rapid uptake of sulfate can be effected in low C/sub 3/A systems. This uptake is of sulfate accompanying akali and is by the aluminoferrite phase. Expansion studies indicate low expansions by low C/sub 3/A systems. Further reductions in expansion occur with the use of admixtures. The lowest expansions occur in high alkai sulfate containing systems. This result is consistent with the observation of rapid sulfate uptake in such systems. Carbonate addition results indicate that increasing carbonate content decreases rate and extent of outside sulfate attack. With respect to compressive strength, there appears to be an optimum value for carbonate addition to a high akali-high C/sub 3/A clinker. Addition of ground dolomite gives results similar to those for limestone. Use of a high-fineness limestone has a strength-enhancing effect and no adverse effect on flow.

  4. Final Technical Report for ARRA Funding

    SciTech Connect

    Rusack, Roger; Mans, Jeremiah; Poling, Ronald; Cushman, Priscilla

    2016-12-06

    Final technical report of the University of Minnesota experimental high energy physics group for ARRA support. The Cryogenic Dark Matter Experiment (CDMS) used the funds received to construct a new passive shield to protect a high purity germanium detector located in the Soudan mine in Northern Minnesota from from cosmic rays. The BESIII and the CMS groups purchased computing hardware to assemble computer farms for data analysis and to generate large volumes of simulated data for comparison with the data collected.

  5. PFBC HGCU Test Facility. Technical progress report: Third Quarter, CY 1993

    SciTech Connect

    Not Available

    1993-10-01

    This is the sixteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC (pressurized fluidized-bed combustion) Hot Gas Clean Up Test Facility (HGCU). This report covers the period of work completed during the Third Quarter of CY 1993. During this quarter, the Advanced Particle Filter (APF) was operated for a total of 1295 hours. This represents 58% availability during July, August, September, and including June 30 of the previous quarter. The operating dates and times since initial operation are summarized. The APF operating temperatures and differential pressures are provided. Details of the APF runs during this quarter are included in this report.

  6. High temperature packing test program. First quarterly technical progress report, October 1-December 26, 1981

    SciTech Connect

    Not Available

    1982-02-12

    The program was undertaken to improve the technical understanding of the performance of plunger packings in coal liquefaction pilot plant feed pumps. During the first quarter of FY 1982, visits were made to the H-Coal, EDS and SRC-I pilot plants, where technical discussions were held with maintenance and engineering personnel, and the maintenance records and work orders for the plunger pumps were reviewed. Technical discussions were held with engineering personnel at the manufacturing facilities of three plunger pump manufacturers' companies. Contracts and technical discussions with packing vendors were initiated. Design of the laboratory tests was started.

  7. Regulatory and technical reports: (Abstract index journal). Compilation for first quarter 1997, January--March

    SciTech Connect

    Sheehan, M.A.

    1997-06-01

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the U.S. Nuclear Regulatory Commission (NRC) Staff and its contractors. This compilation is published quarterly and cummulated annually. Reports consist of staff-originated reports, NRC-sponsored conference reports, NRC contractor-prepared reports, and international agreement reports.

  8. [Kelastic variable wall mining machine]. Ninth quarterly technical report, October 1, 1995--December 31, 1995

    SciTech Connect

    1995-12-31

    This is the Ninth Quarterly Technical Report of Grant Number DE-FG01-93CE15394 entitled Kelastic Variable Wall Mining Machine. This reporting period comprised a time extension which was requested and authorized by correspondence from the Department of Energy on August 9, 1995. The work described in this report was completed on the modified termination date.

  9. Offshore scientific and technical publications, February-July, Spring 1989. Quarterly report

    SciTech Connect

    Not Available

    1989-01-01

    The catalog lists all current (1987-1989) scientific and technical publications of the Offshore Minerals Management Program. The catalog is updated and released on a quarterly basis in winter, spring, summer, and fall. Publications available after July 21, 1989, will be listed in the next issue.

  10. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, March 22, 1993--June 22, 1993

    SciTech Connect

    McCormick, C.; Hester, R.

    1993-08-01

    The overall goal of this research is the development of advanced water-soluble copolymers for use in enhanced oil recovery which rely on reversible microheterogeneous associations for mobility control and reservoir conformance. Technical progress for the quarter is summarized for the following tasks: advanced copolymer syntheses; characterization of molecular structure of copolymers; and polymer solution rheology.

  11. SRC-1 Quarterly technical report, April-June 1980

    SciTech Connect

    Not Available

    1980-01-01

    The SRC-1 quarterly report has chapters on: an evaluation of current technologies for deashing coal liquids; domestic vendors of thick-wall pressure vessels; a comparative evaluation of GKT, Texaco and Shell-Koppers gasification processes (GKT is a modification of Koppers-Totzek and is recommended for reasons given); disposal or gasification of residues; evaluation of one or two slurry feed tanks; evaluation of one or two critical solvent deashing trains; analysis of causes of corrosion in the fractionating tower (chlorides and phenols); identifying and planning for pollution control in the demonstration plant; and characterizing waste center and monitoring its treatment. (LTN)

  12. MHD Integrated Topping Cycle Project. Fourteenth quarterly technical progress report, November 1, 1990-- January 31, 1991

    SciTech Connect

    Not Available

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  13. Mechanism for Clastogenic Activity of Naphthalene. Quarterly Technical Progress Report

    SciTech Connect

    Buchholz, B. A.

    2016-02-05

    The project has two main goals: 1) Identify the types of adducts naphthalene (NA) forms with DNA and 2) determine whether adduct formation correlates with site selective tumor formation in defined subcompartments of the respiratory tract (respiratory and olfactory nasal epithelium and airways of mice, rats and rhesus monkeys). Five tasks are associated with the completion of the goals. Task 1: Contracting and Animal Use Approvals. IACUC and ACURO approvals are complete. The subcontract with UC Davis (UCD) was executed in December 2014. Task 2: Perform In Vitro Study for Goal 1. Rat and mouse samples exposures completed. Monkey samples need to be exposed in next quarter. Task 3: Perform In Vitro Study for Goal 2. Mouse and rat ex vivo exposures completed. Monkey samples need to be completed in the next quarter. Task 4: Sample Preparation and Analysis. Mouse and Rat Goal 2 samples completed. Monkey samples remain to be done for Goal 2. Rat samples completed for Goal 1. Mouse and Monkey samples for Goal 1 need to be completed. Task 5: Data Interpretation and Reporting. Poster will be presented at 2016 Society of Toxicology Meeting. Outline for paper on adduct formation complete and similar to poster for SOT meeting.

  14. Bench-scale testing of the micronized magnetite process. Second quarterly technical progress report, October 1994--December 1994

    SciTech Connect

    1995-01-19

    This document contains the Quarterly Technical Progress Report for the Micronized Magnetite Testing Project being performed at PETC`s Process Research Facility (PRF). This second quarterly report covers the period from October, 1994 through December, 1994. The main accomplishments of Custom Coals and the project subcontractors, during this period, included: (1) Submitted all overdue project documents and kept up with routine reporting requirements; (2) Worked with CLI Corporation, the design subcontractor, and completed the circuit design and finalized all design drawings; (3) Specified and procured all of the process equipment for the circuit, as well as a number of ancillary equipment, instruments, and supplies; (4) Assisted Vangura Iron Inc. in detailing and constructing the structural and platework steel; (5) Subcontracted Rizzo & Sons to perform the circuit mechanical and electrical installation, and prepared for January 23rd installation start date; (6) Organized and prepared for coal and magnetite procurement; (7) Specified and organized an operating personnel plan for the commissioning and testing tasks in the project; (8) Assessed analytical challenges for project, and began to research problem areas. This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the abovementioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  15. Los Alamos National Laboratory Environmental Restoration Project quarterly technical report, April--June 1994

    SciTech Connect

    Not Available

    1994-08-18

    This quarterly report describes the technical status of activities in the Los Alamos National Laboratory Environmental Restoration (ER) Project. Each activity is identified by an activity data sheet number, a brief title describing the activity or the technical area where the activity is located, and the name of the project leader. The Hazardous and Solid Waste Amendments (HSWA) portion of the facility operating permit requires the submission of a technical progress report on a quarterly basis. This report, submitted to fulfill the permit`s requirement, summarizes the work performed and the results of sampling and analysis in the ER Project. Suspect waste found include: Radionuclides, high explosives, metals, solvents and organics. The data provided in this report have not been validated. These data are considered ``reviewed data.``

  16. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report

    SciTech Connect

    1995-12-31

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  17. Management of dry flue gas desulfurization by-products in underground mines. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    Chugh, Y.P.; Dutta, D.; Esling, S.

    1995-07-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, and a discussion of these is not repeated here. Rather, this report discusses the technical progress made during the period April 1 - June 30, 1995. A final topical report on the SEEC, Inc. demonstration of its technology for the transporting of coal combustion residues was completed during the quarter, although final printing of the report was accomplished early in July, 1995. The SEEC technology involves the use of Collapsible Intermodal Containers (CIC`s) developed by SEEC, and the transportation of such containers - filled with fly ash or other coal combustion residues - on rail coal cars or other transportation means. Copies of the final topical report, entitled {open_quotes}The Development and Testing of Collapsible Intermodal Containers for the Handling and Transport of Coal Combustion Residues{close_quotes} were furnished to the Morgantown Energy Technology Center. The Rapid Aging Test colums were placed in operation during the quarter. This test is to determine the long-term reaction of both the pneumatic and hydraulic mixtures to brine as a leaching material, and simulates the conditions that will be encountered in the actual underground placement of the coal combustion residues mixtures. The tests will continue for about one year.

  18. Yucca Mountain Site Characterization Project: Technical data catalog,(quarterly supplement)

    SciTech Connect

    1993-03-31

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year.

  19. HAMS II Quarterly Progress Report (Technical and Financial)

    DTIC Science & Technology

    2015-01-09

    Monitoring, Alert and Mitigation System (HAMS) program is progressing as expected with no technical issues to report. The program consists of two...outlined a research thrust entitled “Hypoxia Monitoring, Alert and Mitigation System” (HAMS) that was launched under the ONR BAA 14-001 Long Range Broad... alerting the user to the suspicion of growing hypoxia. Novel and non-traditional sensor locations and technologies will be investigated as they

  20. Clean Energy Works Oregon Final Technical Report

    SciTech Connect

    Jacob, Andria; Cyr, Shirley

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  1. Quarterly technical progress report, February 1, 1996--April 30, 1996

    SciTech Connect

    1996-05-28

    This report from the Amarillo National REsource Center for PLutonium provides research highlights and provides information regarding the public dissemination of information. The center is a a scientific resource for information regarding the issues of the storage, disposition, potential utilization and transport of plutonium, high explosives, and other hazardous materials generated from nuclear weapons dismantlement. The center responds to informational needs and interpretation of technical and scientific data raised by interested parties and advisory groups. Also, research efforts are carried out on remedial action programs and biological/agricultural studies.

  2. Nuclear magnetic resonance studies of granular flows: Technical progress report, quarter ending 09/30/93

    SciTech Connect

    Not Available

    1993-10-27

    This Technical Progress Report for the quarter ending 09/30/93 describes work on two tasks which are part of nuclear magnetic resonance studies of granular flows. (1) Research has been directed toward improving concentration measurements under reasonably fast conditions. (2) The process continues of obtaining comprehensive velocity, concentration, and diffusion information at several angular velocities of the cylinder for seeds (mustard, sesame, and sunflower seeds) flowing in a half-filled cylinder.

  3. Energy Impact Illinois - Final Technical Report

    SciTech Connect

    Olson, Daniel; Plagman, Emily; Silberhorn, Joey-Lin

    2014-02-18

    Energy Impact Illinois (EI2) is an alliance of government organizations, nonprofits, and regional utility companies led by the Chicago Metropolitan Agency for Planning (CMAP) that is dedicated to helping communities in the Chicago metropolitan area become more energy efficient. Originally organized as the Chicago Region Retrofit Ramp-Up (CR3), EI2 became part of the nationwide Better Buildings Neighborhood Program (BBNP) in May 2010 after receiving a $25 million award from the U.S. Department of Energy (DOE) authorized through the American Recovery and Reinvestment Act of 2009 (ARRA). The program’s primary goal was to fund initiatives that mitigate barriers to energy efficiency retrofitting activities across residential, multifamily, and commercial building sectors in the seven-county CMAP region and to help to build a sustainable energy efficiency marketplace. The EI2 Final Technical Report provides a detailed review of the strategies, implementation methods, challenges, lessons learned, and final results of the EI2 program during the initial grant period from 2010-2013. During the program period, EI2 successfully increased direct retrofit activity in the region and was able to make a broader impact on the energy efficiency market in the Chicago region. As the period of performance for the initial grant comes to an end, EI2’s legacy raises the bar for the region in terms of helping homeowners and building owners to take action on the continually complex issue of energy efficiency.

  4. Technical data base quarterly report, April--June 1992; Yucca Mountain Site Characterization Project

    SciTech Connect

    1992-09-01

    The acquisition and development of technical data are activities that provide the information base from which the Yucca mountain Site will be characterized and may P-ventually be licensed as a high-level waste repository. The Project Technical Data Base (TDB) is the repository for the regional and site-specific technical data required in intermediate and license application analyses and models. The TDB Quarterly Report provides the mechanism for identifying technical data currently available from the Project TDB. Due to the variety of scientific information generated by YMP activities, the Project TDB consists of three components, each designed to store specific types of data. The Site and Engineering Properties Data Base (SEPDB) maintains technical data best stored in a tabular format. The Geographic Nodal Information Study and Evaluation System (GENISES), which is the Geographic Information System (GIS) component of the Project TDB, maintains spatial or map-like data. The Geologic and Engineering Materials Bibliography of Chemical Species (GEMBOCHS) data base maintains thermodynamic/geochemical data needed to support geochemical reaction models involving the waste package and repository geochemical environment. Each of these data bases are addressed independently within the TDB Quarterly Report.

  5. Critical Technology List update. Final technical report

    SciTech Connect

    Not Available

    1983-03-01

    ICRC has reviewed and updated its List of critical technology. The List comprises all proposed SRC-I Demonstration Plant equipment whose use has been determined to involve some degree of potential safety, performance, or environmental risk. ICRC has subjected equipment on the Critical Technology c to special technical review to ensure the highest possible level of quality and lowest cost commensurate with acceptable overall risks. Equipment or equipment systems still considered to be high risk are the following: Coal Slurry/Hot Oil Heat Exchangers, Coal Slurry Heaters, Second-Stage Feed Heaters, Vacuum Tower Heater, Vacuum Column, SRC/Light SRC Stripper - CSD, Severe Service Valves, Wastewater Reuse System, and the Solid Waste Disposal System. Equipment systems or pieces of equipment that have been downgraded to a lower risk category are the following: Coal Weigh-Feed System, Coal Slurry Dissolvers, Coal Dissolver Effluent Separator, and LC-Fining Reactors. Finally, ICRC has determined that many types of equipment are no longer Critical Technology, and has therefore removed them from the List.

  6. West Hackberry Tertiary Project. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Gillham, T.; Cerveny, B.; Turek, E.

    1996-04-10

    The goal of the West Hackberry Tertiary Project is to demonstrate the technical and economic feasibility of combining air injection with the Double Displacement Process for tertiary oil recovery. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering oil through gravity drainage. The novel aspect of this project is the use of air as the injection fluid. The target reservoir for the project is the Camerina C-1,2,3 sand located on the West Flank of West Hackberry Field in Cameron Parish, Louisiana. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process can economically recover oil in reservoirs where tertiary oil recovery is presently uneconomic. The first quarter of 1996 was outstanding both in terms of volume of air injected and low cost operations. More air was injected during this quarter than in any preceding quarter. The compressors experienced much improved run time with minimal repairs. Low operating costs resulted from no repairs required for injection or production wells. A discussion of the following topics are contained herein: (1) performance summary for the injection and production wells, (2) air compressor operations, (3) updated bottom hole pressure data, (4) technology transfer activities and (5) plans for the upcoming quarter.

  7. Heber geothermal binary demonstration project quarterly technical progress report, October 1, 1982--December 31, 1982

    SciTech Connect

    Lacy, R.G.; Allen, R.F.; Dixon, J.R.; Hsiao, W.P.; Liparidis, G.S.; Lombard, G.L.; Nelson, T.T.; Van De Mark, G.D.

    1983-05-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of October 1, 1982--December 31, 1982. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the U.S. Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  8. Power systems development facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-07-01

    This quarterly technical progress report summarizes work completed during the last quarter of the Second Budget Period, January 1 through March 31, 1994, entitled {open_quotes}Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.{close_quotes} The objective of this project is to evaluate hot gas particulate control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size.

  9. Heber geothermal binary demonstration project quarterly technical progress report, July 1, 1981--September 30, 1981

    SciTech Connect

    Lacy, R.G.; Allen, R.F.; Alsup, R.A.; Liparidis, G.S.; Van De Mark, G.D.

    1983-08-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of July 1, 1981, through September 30, 1981. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the US Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  10. Community College Technical Mathematics Project. Final Report.

    ERIC Educational Resources Information Center

    Self, Samuel L.

    The purpose of the research project was to develop an applied or technical mathematics curriculum which would meet the needs of vocational-technical students at the community college level. The research project was divided into three distinct phases: Identifying the mathematical concepts requisite for job-entry competencies in each of the…

  11. PFBC HGCU test facility technical progress report. First Quarter, CY 1994

    SciTech Connect

    Not Available

    1994-04-01

    This is the eighteenth Technical Progress Report submitted in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. During this quarter, the Tidd Hot Gas Clean Up System operated for 835 hours during six separate test runs. The system was starting into a seventh run at the end of the quarter. Highlights of this period are summarized below: the longest run during the quarter was approximately 333 hours; filter pressure drop was stable during all test runs this quarter using spoiling air to the primary cyclone upstream of the Advanced Particle Filter (APF); the tempering air system was commissioned this quarter which enabled the unit to operate at full load conditions while limiting the gas temperature in the APF to 1,400 F; during a portion of the one run, the tempering air was removed and the filter operated without problems up to 1,450 F; ash sampling was performed by Battelle personnel upstream and downstream of the APF and ash loading and particle size distribution data were obtained, a summary report is included; a hot area on the APF head was successfully repaired in service; a hot spot on the top of an expansion joint was successfully repaired by drilling holes from the inside of the pipe and pumping in refractory insulation; a corrosion inspection program for the HGCU system was issued giving recommendations for points to inspect; filter internal inspections following test runs 13 and 17 revealed a light coating (up to 1/4 inch thick) of residual ash on the candles and some ash bridging between the dust sheds and inner rows of candles. Data from these inspections are included with this report.

  12. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1994

    SciTech Connect

    Not Available

    1994-05-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation of chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.

  13. Coal-fired MHD combustor development project: Phase IIIB. First quarterly technical progress report, 13 January-30 April 1982

    SciTech Connect

    1982-05-20

    The first quarterly technical progress report of the Coal-Fired MHD Combustor Development Project (Phase IIIB) presents the accomplishments during the period 13 January to 30 April, 1982. The scope of work covered by this quarterly report relates to those tasks associated with preparing the TRW 20 MW/sub t/ MHD coal combustor for delivery to AERL for integrated power tests and the work associated with the preliminary design of a 50 MW/sub t/ coal-fired combustor. Progress during this reporting period is described. All new 20 MW/sub t/ hardware was designed and fabricated. Interface coordination meetings were conducted with AERL and DOE. Interface control drawings were completed and a 20 MW/sub t/ coal combustion User's manual was delivered to AERL. The User's manual contained a shipping plan, a crew training plan, an assembly manual, interface documentation and recommended operating procedures. Facility/combustor set-up was completed and the pre-delivery 20 MW/sub t/ coal combustor qualification test series was completed. The 50 MW/sub t/ coal-fired MHD combustor preliminary designs were finalized and the DOE preliminary design review (PDR) was successfully completed.

  14. Projects at the Component Development and Integration Facility. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the first quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept project; mine waste technology pilot program; plasma projects; resource recovery project; sodium sulfide/ferrous sulfate project; soil washing project; and spray casting project.

  15. Projects at the Component Development and Integration Facility. Quarterly technical progress report, April 1--June 30, 1993

    SciTech Connect

    Not Available

    1993-12-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the third quarter of FY93. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: MHD Proof-of-Concept Project; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; Soil Washing Project; and Spray Casting Project.

  16. Projects at the Component Development and Integration Facility. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Not Available

    1994-08-01

    This quarterly technical progress report presents progress on the projects at the Component Development and Integration Facility (CDIF) during the second quarter of FY94. The CDIF is a major US Department of Energy test facility in Butte, Montana, operated by MSE, Inc. Projects in progress include: Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Pilot Program; Plasma Projects; Resource Recovery Project; Sodium Sulfide/Ferrous Sulfate Project; and Spray Casting Project.

  17. Development of vanidum-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report, 1996

    SciTech Connect

    McCormick, R.L.; Alptekin, G.O.

    1996-06-01

    Activities this past quarter, focused on acquisition of kinetic data for oxidation of formaldehyde and methanol on these catalysts. In the next quarter these results will be used to propose a simple reaction network and kinetic model. To date we have completed Task 1: Laboratory Setup and Task 2: Process Variable Study. Activities in the current quarter focused on finalizing these tasks and on Task 3: Promoters and Supports, this task is approximately 50% completed. Task 4: Advanced Catalysts is to be initiated in the next quarter. Specific accomplishments this quarter include: finalizing and calibrating a new reaction product analytical system with markedly improved precision and accuracy relative to older. approaches; development of procedures for accurately feeding formaldehyde to the reactor; examination of formaldehyde and methanol oxidation kinetics over vanadyl pyrophosphate at a range of temperatures; and preliminary studies of methane oxidation over a silica support.

  18. 78 FR 29239 - Final Priority; Technical Assistance To Improve State Data Capacity-National Technical Assistance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... CFR Chapter III Final Priority; Technical Assistance To Improve State Data Capacity--National Technical Assistance Center To Improve State Capacity To Accurately Collect and Report IDEA Data AGENCY... under the Technical Assistance to Improve State Data Capacity program. The Assistant Secretary may...

  19. Technical assistance contractor Management Plan. Final [report

    SciTech Connect

    Not Available

    1993-09-01

    The Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project comprises Jacobs Engineering Group Inc. (JEG) and its major teaming partners [Roy F. Weston, Inc. (RFW), Sergent, Hauskins & Beckwith Agra, Inc. (SHB Agra), and Geraghty & Miller, Inc. (G&M)]. The first three companies have worked together effectively on the UMTRA Project for more than 10 years. With the initiation of the UMTRA Groundwater Project in April 1991, a need arose to increase the TAC`s groundwater technical breadth and depth, so G&M was brought in to augment the team`s capabilities. The TAC contract`s scope is to provide technical, analytical, environmental, engineering, design, inspection, and management support services to the US Department of Energy (DOE) for both surface and groundwater projects. The TAC team continues to support the DOE in completing surface remedial actions and initiating groundwater remediation work for start-up, characterization, design, construction oversight, and remedial operations. A key feature of the TAC`s management approach is the extensive set of communication systems implemented for the UMTRA Project. These systems assist all functional disciplines in performing UMTRA Project tasks associated with management, technical support, administrative support, and financial/project controls.

  20. Southwest Region Experiment Station - Final Technical Report

    SciTech Connect

    Rosenthal, A

    2011-08-19

    Southwest Technology Development Institute (SWTDI), an independent, university-based research institute, has been the operator of the Southwest Region Photovoltaic Experiment Station (SWRES) for almost 30 years. The overarching mission of SWTDI is to position PV systems and solar technologies to become cost-effective, major sources of energy for the United States. Embedded in SWTDI's general mission has been the more-focused mission of the SWRES: to provide value added technical support to the DOE Solar Energy Technologies Program (SETP) to effectively and efficiently meet the R&D needs and targets specified in the SETP Multi-Year Technical Plan. : The DOE/SETP goals of growing U.S. PV manufacturing into giga-watt capacities and seeing tera-watt-hours of solar energy production in the U.S. require an infrastructure that is under development. The staff of the SWRES has supported DOE/SETP through a coherent, integrated program to address infrastructural needs inhibiting wide-scale PV deployment in three major technical categories: specialized engineering services, workforce development, and deployment facilitation. The SWRES contract underwent three major revisions during its five year period-of- performance, but all tasks and deliverables fell within the following task areas: Task 1: PV Systems Assistance Center 1. Develop a Comprehensive multi-year plan 2. Provide technical workforce development materials and workshops for PV stakeholder groups including university, professional installers, inspectors, state energy offices, Federal agencies 3. Serve on the NABCEP exam committee 4. Provide on-demand technical PV system design reviews for U.S. PV stakeholders 5. Provide PV system field testing and instrumentation, technical outreach (including extensive support for the DOE Market Transformation program) Task 2: Design-for-Manufacture PV Systems 1. Develop and install 18 kW parking carport (cost share) and PV-thermal carport (Albuquerque) deriving and publishing

  1. [Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report

    SciTech Connect

    Blackwell, D.D.

    1998-04-25

    During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

  2. Soladigm DOE Final Scientific/Technical Report

    SciTech Connect

    Rozbicki, Robert

    2011-12-31

    Soladigm's research has produced a fundamental improvement in the technology for dynamic windows by successfully transitioning a low-cost, high-performance dynamic glass fabrication process from a simple 2" research prototype into a full-scale manufacturing environment capable of producing commercial dynamic insulated glass units (IGUs), and developing and optimizing the production process to meet all specifications for mass commercial production. The technology developed under this project is a revolutionary process for fabricating electrochromic glass that today exceeds DOE's 2020 performance and reliability targets at a compelling consumer price point. Before this project, we had demonstrated 2" prototypes using our deposition process that met these performance targets. The goal of this project was to prove that we could transition this lab-scale process to a scalable, "inline" manufacturing process, leveraging existing manufacturing tools capable of achieving a commercially attractive pricepoint in the near-term. Under this project we demonstrated the technical effectiveness of our manufacturing process by achieving or exceeding all of our technical and performance targets for inline fabrication of electrochromic IGUs. These performance specifications exceed DOE's 2020 performance and reliability targets. We also demonstrated the economic feasibility of our manufacturing process by reaching an initial production process that will achieve our target costs, which are compatible with mass adoption.

  3. Final Technical Report CMS fast optical calorimetry

    SciTech Connect

    Winn, David R.

    2012-07-12

    This is the final report of CMS FAST OPTICAL CALORIMETRY, a grant to Fairfield University for development, construction, installation and operation of the forward calorimeter on CMS, and for upgrades of the forward and endcap calorimeters for higher luminosity and radiation damage amelioration.

  4. PFBC HGCU Test Facility. Fourth quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

  5. MHD Integrated Topping Cycle Project. Seventeenth quarterly technical progress report, August 1, 1991--October 31, 1991

    SciTech Connect

    Not Available

    1992-07-01

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  6. Regulatory and technical reports (abstract index journal). Volume 20, No. 2: Compilation for second quarter April--June 1995

    SciTech Connect

    1995-09-01

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the U.S. Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC`s intention to publish this compilation quarterly and to cumulate it annually.

  7. Project LIFE--Language Improvement to Facilitate Education. (Technical Progress Report; Third Quarter; March 1, 1974-May 31, 1974).

    ERIC Educational Resources Information Center

    National Foundation for the Improvement of Education, Washington, DC.

    Reported is the third quarter, fiscal year 1974 (March 1, 1974-May 31, 1974) technical progress of Project LIFE (Language Improvement to Facilitate Education), toward developing an instructional system in which filmstrips in the areas of perceptual training, perceptual thinking, and language/reading are used to assist hearing impaired children in…

  8. Hydrogen energy systems studies. Final technical report

    SciTech Connect

    Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.

    1996-08-13

    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

  9. Study of gelled LNG. Final technical report

    SciTech Connect

    Rudnicki, M I; Cabeal, J A; Hoffman, L C; Newton, R A; Schaplowsky, R K; Vander Wall, E M

    1980-01-01

    Research involved the characterization of gelled LNG (GELNG) with respect to process, flow, and use properties and an examination of the degree of safety enhancement attainable by gelation. The investigation included (1) an experimental examination of gel properties and gel safety characteristics as well as (2) an analytical study involving the economics and preliminary design of an industrial scale gelation system. The safety-related criterion for successful application of gelled LNG is the substantial reduction of the Maximum Distance to the Lower Flammability Limit, MDLFL. This will be achieved by first, gel-inhibition of the hydrodynamic pooling and spreading of the spill, and second, the suppressed thermal transport properties of the GELNG relative to those of LNG. The industrial scale gelation study evaluated a design capable of producing 11,000 gallons (LNG tank truck) of gel in two hours. The increased cost of gelation using this equipment was estimated at $0.23/10/sup 6/ Btu for plants with liquefaction facilities. The technical results of this study are supportive of the conclusion that gelation of LNG will reduce, relative to ungelled LNG, the hazard associated with a given size spill. Parameters of interest to the LNG facility operator (such as pumpability) are not significantly affected by gelation, and the impact on LNG delivery cost appears to be small, about 5%. Thus, the initial assumption that gelation would provide a practical means to enhance safety is supported by the results of this study. Larger scale, comparative spill tests of LNG and GELNG are now required to confirm the safety aspects of use of the gelled material.

  10. Long pulse chemical laser. Final technical report

    SciTech Connect

    Bardon, R.L.; Breidenthal, R.E.; Buonadonna, V.R.

    1989-02-01

    This report covers the technical effort through February, 1989. This effort was directed towards the technology associated with the development of a large scale, long pulse DF-CO{sub 2} chemical laser. Optics damage studies performed under Task 1 assessed damage thresholds for diamond-turned salt windows. Task 2 is a multi-faceted task involving the use of PHOCL-50 for laser gain measurements, LTI experiments, and detector testing by LANL personnel. To support these latter tests, PHOCL-50 was upgraded with Boeing funding to incorporate a full aperture outcoupler that increased its energy output by over a factor of 3, to a full kilojoule. The PHOCL-50 carbon block calorimeter was also recalibrated and compared with the LANL Scientech meter. Cloud clearing studies under Task 3 initially concentrated on delivering a Boeing built Cloud Simulation Facility to LANL, and currently involves design of a Cold Cloud Simulation Facility. A Boeing IRAD funded theoretical study on cold cloud clearing revealed that ice clouds may be easier to clear then warm clouds. Task 4 involves the theoretical and experimental study of flow system design as related to laser beam quality. Present efforts on this task are concentrating on temperature gradients induced by the gas filling process. General support for the LPCL field effort is listed under Task 5, with heavy emphasis on assuring reliable operation of the Boeing built Large Slide Valve and other device related tests. The modification of the PHOCL-50 system for testing long pulse DF (4{mu}m only) chemical laser operation is being done under Task 6.

  11. AISI Direct Steelmaking Program. Final technical report

    SciTech Connect

    Aukrust, E.

    1994-08-01

    This final report deals with the results of a 5-yr project for developing a more energy-efficient, environmentally friendly, less costly process for producing hot metal than current coke ovens and blast furnaces. In the process, iron ore pellets are smelted in a foamy slag created by reaction of coal char with molten slag to produce CO. The CO further reacts with oxygen, which also reacts with coal volatile matter, to produce the heat necessary to sustain the endothermic reduction reaction. The uncombusted CO and H{sub 2} from the coal are used to preheat and prereduce hematite pellets for the most efficient use of the energy in the coal. Laboratory programs confirmed that the process steps worked. Pilot plant studies were successful. Economic analysis for a 1 million tpy plant is promising.

  12. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    SciTech Connect

    Charles M. Falco

    2012-09-13

    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  13. Final Technical Report: Results of Phase 1

    SciTech Connect

    Narang, David, J.; Hambrick, Joshua; Srinivasan, Devarajan; Ayyannar, Raja; O'Brien, Kathleen; Bebic, Jovan; Schelenz, Owen

    2011-09-28

    working, utility distribution feeder. To address the technical challenges related to the integration of distributed PV when PV penetration levels reach or exceed 30% of the total load, technologies and methods to ensure the stable and safe operation of the feeder will be evaluated. Lessons learned will enable APS to improve the framework for future PV integration on its system and may also aid other utilities across the United States energy sector in accelerating the adoption of distributed photovoltaic generation.

  14. Geothermal research, Oregon Cascades: Final technical report

    SciTech Connect

    Priest, G.R.; Black, G.L.

    1988-10-27

    Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

  15. Final Technical Report - DE-EE0003542

    SciTech Connect

    Haley, James D

    2013-03-31

    Wind has provided energy for thousands of years: some of the earliest windmill engineering designs date back to ancient Babylonia and India where wind would be used as a source of irrigation. Today, wind is the quickest growing resource in Americas expanding energy infrastructure. However, to continue to positively diversify Americas energy portfolio and further reduce the countrys reliance of foreign oil, the industry must grow substantially over the next two decades in both turbine installations and skilled industrial manpower to support. The wind sector is still an emergent industry requiring maturation and development of its labor force: dedicated training is needed to provide the hard and soft skills to support the increasingly complex wind turbine generators as the technology evolves. Furthermore, the American workforce is facing a steep decline in available labor resources as the baby boomer generation enters retirement age. It is therefore vital that a process is quickly created for supporting the next generation of wind technicians. However, the manpower growth must incorporate three key components. First, the safety and technical training curriculum must be standardized across the industry - current wind educational programs are disparate and dedicated standardization programs must be further refined and implemented. Second, it is essential that the wind sector avoid disrupting other energy production industries by cannibalizing workers, which would indirectly affect the rest of Americas energy portfolio. The future wind workforce must be created organically utilizing either young people entering the workforce or train personnel emerging from careers outside of energy production. Third, the training must be quick and efficient as large amounts of wind turbines are being erected each year and this growth is expected to continue until at least 2035. One source that matches these three requirements is personnel transitioning from military service to the

  16. Molecular biological enhancement of coal biodesulfurization. Quarterly technical report, September 1, 1993--November 30, 1993

    SciTech Connect

    Kilbane, J.J. II

    1993-12-31

    IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore will permit more favorable biodesulfurization process conditions: faster rates, more complete removal, and smaller reactor size. strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. During this quarter the promoter probe vectors that were constructed last quarter were found to be unstable in E. coli. Fragments of R. rhodochrous IGTS8 chromosomal DNA were cloned into pRCAT3 and pRCM1 (previously described in final ICCI report 1993). Many derivatives of pRCM1 and pRCAT3 receiving inserts that regulated the expression of chloramphenicol resistance in Rhodococcus rhodochrous IGTS8 proved to be unstable in E. coli frequently yielding plasmids containing deletions. Stable inserts have been observed ranging from 100 bp to 2.0 kb that regulated expression in Rhodococcus rhodochrous IGTS8. Subtractive hybridization studies continue, several candidates have been isolated and are being confirmed for inducible promoters. Primer extension analysis of the Rhodococcus rhodochrous IGTS8 16S RNA promoter region was initiated this quarter.

  17. Final Technical Report 09 LW 112

    SciTech Connect

    Lenhoff, R J

    2010-11-28

    Since the development of new antibiotics is out-paced by the emergence of bacterial resistance to existing antibiotics, it is crucial to understand the genetic mechanisms underlying resistance existing antibiotics. At the center of this mystery is a poorly understood phenomenon, heteroresistance: the coexistence of multiple subpopulations with varying degrees of antibiotic resistance. A better understanding of the fundamental basis of heteroresistance could result in sorely needed breakthroughs in treatment options. This project proposed to leverage a novel microfluidic (microchemostat) technology to probe the heteroresistance phenomenon in bacteria, with the aim of restoring the efficacy of existing {beta}-lactam antibiotics. The clinically important bacteria Methicillin Resistant S. aureus (MRSA) was used as the test case of bacteria that exhibits antibiotic heteroresistance. MRSA is difficult to treat because it is resistant to all {beta}-lactam antibiotics, as well as other classes of antimicrobials. Whereas {beta}-lactams such as methicillin and oxacillin are the preferred antibiotics to treat S. aureus infections due to their efficacy and low side effects, accurate determination and use of oxacillin/methicillin dosage is hampered by heteroresistance. In fact, invasive MRSA infections now account for about 95,000 deaths per year, a number that exceeds the deaths due to either influenza or HIV (12). In some MRSA strains, two subpopulations of cells may coexist: both populations carry the mecA gene that confers resistance, but mecA is differentially expressed so that only a small number of cells are observed during in vitro testing. Why this occurs is not understood. Prior experiments have sought to explain this phenomenon with conflicting results, with technology being the primary barrier to test the system sufficiently. This is the final report on work accomplished under the Lab-wide LDRD project 09-LW-112. This project was awarded to Frederick Balagadde who

  18. Power systems development facility. Quarterly technical progress report, July 1--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, July 1 through September 30, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  19. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 13, October--December 1994

    SciTech Connect

    1995-02-01

    The purpose of this contract is to develop a process for converting light alkane gases to methyl chloride via oxyhydrochlorination using highly selective, stable catalysts in fixed-bed reactors designed to remove the large amount of heat generated, so as to control the reaction temperature. Further, the objective is to obtain the engineering data base necessary for developing a commercially feasible process and to evaluate t economics of the process. Significant progress was made in six different technical areas during this quarter. These key highlights are: (1) Evaluation of catalyst samples from UCI led to the ordering of the OHC PDU catalyst batch. This catalyst batch arrived, was screened and found to be defective, and was reordered. (2) Natural gas containing higher hydrocarbons was used as a methane source. The reactant mixture formed oxygenates at temperatures lower than observed in the past. Burning at such low temperatures seems to create a product stream containing very little CH{sub 2}Cl{sub 2}. (3) Although it has not been decided if the PDU will use natural gas from the plant or methane or natural gas from cylinders as a methane feed source, it was concluded that an adsorption unit to remove sulfur and higher hydrocarbons is not necessary at this time. (4) PDU construction was completed in December. The bulk of insulation work was completed at the end of November. Much effort has been put into pressure testing the PDU`s systems. The startup team has become adept at finding and correcting such leaks. (5) SOP writing for the PDU was completed this quarter with communication with the software programmer to insure agreement between the software and SOP.

  20. Advancement of flash hydrogasification. Quarterly technical progress report, January-March 1984

    SciTech Connect

    Falk, A.Y.

    1984-06-25

    This first quarterly report documents technical progress during the period 31 December 1983 through 30 March 1984. The technical effort is 17 months in duration and is divided into two major technical tasks: Task VII, Hardware Fabrication and PDU Modifications, and Task VIII, Performance Testing. The design of test hardware and process development unit modifications had been previously completed as part of Task VI of the current contract. Task VII involves the fabrication of test hardware and modification of an existing 1-ton/h hydroliquefaction PDU at Rockwell's facilities for use as a hydrogasifier test facility. During this report period, fabrication of the test hardware and modifications to the PDU were initiated. Test hardware fabrication is now approximately 80% complete and should be completed by the end of May 1984. PDU modifications are progressing well and should be completed by the end of June 1984. The completed test hardware fabrication and PDU modifications will allow the conduct of short duration (1 to 2 h) hydrogasification tests along with preburner assembly performance evaluation tests in order to fulfill the test program objectives. Separate supplies of hydrogen, oxygen, methane, carbon monoxide, and water (for steam generation) are provided for this purpose. The modified facility is designed to accommodate both 10- and 20-ft-long hydrogasifier reactors so that residence times will be in the range of 2 to 6 s when coal is fed at a nominal 1/2 ton/h into reactors at 1000 psia pressure. Provisions are being made for real-time analysis of the product gases using an on-line gas chromatograph system. Test planning was the only Task VIII effort active during this report period. An initial (preliminary) test matrix has been defined. Preparation of a data analysis plan is underway, and data reduction programs are being programmed. 17 references, 25 figures, 6 tables.

  1. Bench-scale testing of the micronized magnetite process. Third quarterly technical progress report, January 1995--March 1995

    SciTech Connect

    1995-04-29

    The major focus of the project, which is scheduled to occur through December 1995, will be to install and test a 500{number_sign}/hr. fine-coal cleaning circuit at DOE`s Process Research Facility (PRF), located at the Pittsburgh Energy Technology Center (PETC). The circuit will utilize an extremely fine, micron-sized magnetite media and small diameter cyclones to make efficient density separations on minus-28-Mesh coal. The overall objectives of the project are to: Determine the effects of operating time on the characteristics of the recirculating medium in a continuous integrated processing circuit, and subsequently, the sensitivity of cyclone separation performance to the quality of the recirculating medium; and determine the technical and economic feasibility of various unit operations and systems in optimizing the separation and recovery of the micronized magnetite from the coal products. This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  2. Bench-scale testing of on-line control of column flotation using a novel analyzer. Third quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1993-08-24

    This document contains the third quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTETM Column Flotation Technology and PTI`s On-Line Quality Monitor and Control System. The twelve-month project involves installation and testing of a 200--300 lb/hr. bench-scale flotation circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) for two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). Figure 1 contains the project plan, as well as the approach to completing the major tasks within the twelve-month project schedule. The project is broken down into three phases, which include: Phase I -- Preparation: The preparation phase was performed principally at PTI`s Calumet offices from October through December, 1992. It involved building of the equipment and circuitry, as well as some preliminary design and equipment testing; Phase II -- ET Circuit Installation and Testing: This installation and testing phase of the project was performed at PETC`s CPPRF from January through June, 1993, and was the major focus of the project. It involved testing of the continuous 200--300 lb/hr. circuit; and Phase III -- Project Finalization: The project finalization phase is occurring from July through September, 1993, at PTI`s Calumet offices and involves finalizing analytical work and data evaluation, as well as final project reporting. This Third Quarterly Technical Progress Report principally summarizes the results from the benchscale testing with the second coal (Pittsburgh No. 8 Seam Coal), which occurred in April through June, 1993. It also contains preliminary economic evaluations that will go into the Final Report, as well as the plan for the final reporting task.

  3. Title VII 1987-88 Final Technical Report.

    ERIC Educational Resources Information Center

    Austin Independent School District, TX. Office of Research and Evaluation.

    This document comprises the final technical report of the evaluation of the 1988-89 secondary bilingual and English-as-a-Second-Language programs for Hispanic limited-English-proficient (LEP) students in the Austin (Texas) Independent School District (AISD); these programs are enhanced with federal funding under the Emergency School Aid Act of…

  4. The Independent Technical Analysis Process Final Report 2006-2007.

    SciTech Connect

    Duberstein, Corey; Ham, Kenneth; Dauble, Dennis; Johnson, Gary

    2007-03-01

    The Bonneville Power Administration (BPA) contracted with the Pacific Northwest National Laboratory (PNNL) to provide technical analytical support for system-wide fish passage information (BPA Project No. 2006-010-00). The goal of this project was to produce rigorous technical analysis products using independent analysts and anonymous peer reviewers. This project provided an independent technical source for non-routine fish passage analyses while allowing routine support functions to be performed by other well-qualified entities. The Independent Technical Analysis Process (ITAP) was created to provide non-routine analysis for fish and wildlife agencies and tribes in particular and the public in general on matters related to juvenile and adult salmon and steelhead passage through the mainstem hydrosystem. The process was designed to maintain the independence of analysts and reviewers from parties requesting analyses, to avoid potential bias in technical products. The objectives identified for this project were to administer a rigorous, transparent process to deliver unbiased technical assistance necessary to coordinate recommendations for storage reservoir and river operations that avoid potential conflicts between anadromous and resident fish. Seven work elements, designated by numbered categories in the Pisces project tracking system, were created to define and accomplish project goals as follows: (1) 118 Coordination - Coordinate technical analysis and review process: (a) Retain expertise for analyst/reviewer roles. (b) Draft research directives. (c) Send directive to the analyst. (d) Coordinate two independent reviews of the draft report. (e) Ensure reviewer comments are addressed within the final report. (2) 162 Analyze/Interpret Data - Implement the independent aspects of the project. (3) 122 Provide Technical Review - Implement the review process for the analysts. (4) 132 Produce Annual Report - FY06 annual progress report with Pisces Disseminate (5) 161

  5. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1992

    SciTech Connect

    Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to ``calibrate`` the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850{degrees}F{sup +} , 1050{degrees}F{sup +}, and 850 {times} 1050{degrees}F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

  6. TIDD PFBC Demonstration Project: Third quarterly technical progress report 1992, CY 1992

    SciTech Connect

    Not Available

    1992-10-01

    This is the 22nd Technical Progress Report submitted to the Department of Energy in connection with the Cooperative Agreement between the DOE and the Ohio Power Company for the Tidd PFBC Demonstration Plant. This report covers the period from July 1, 1992 to September 30, 1992. The unit was operated for a total of 903 hours (including gas turbine air prewarming). There were 9 gas turbine starts, 11 preheating starts, and 8 operating periods with coal fire. The peak gross output of 59 MWH was achieved for the period of 1600 to 1700 hours on September 23, 1992. The longest coal fire was 422 hourb beginning at 1349 hours on August 9, 1992. Total gross generation was 32,418 MWH, and coal consumption was 15,846 tons. Testing was completed on the gas turbine blade resonance frequency problem. The report showed that a resonant frequency problem existing at high LPT speeds and at a mostly closed guide vane position. An operating curve was developed by ABBC to avoid the points of blade resonance. Monitoring of solid, liquid and gaseous waste streams, as detailed in the operations phase monitoring requirements in the EMP, were performed throughout the quarter.

  7. MHD Integrated Topping Cycle Project. Sixteenth quarterly technical progress report, May 1991--July 1991

    SciTech Connect

    Not Available

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  8. EDS coal liquefaction process development. Phase V. Quarterly technical progress report, July 1-September 30, 1980

    SciTech Connect

    1981-02-01

    This report is the tenth Quarterly Technical Progress Report for US Department of Energy Cooperative Agreement No. DE-FC01-77ET10069 (formerly EF-77-A-01-2893) for Exxon Donor Solvent (EDS) Coal Liquefaction Process Development - Phase V. The Laboratory Process Research and Development studies were conducted at various Exxon Research and Engineering Co. (ER and E) facilities: Research and Development Division at Baytown, Texas; Products Research Division at Linden, New Jersey; and the Exxon Research and Development Laboratories at Baton Rouge, Louisiana. The Engineering Research and Development studies were performed at the Synthetic Fuels Engineering and Exxon Engineering Technology Departments of ER and E at Florham Park, New Jersey. The information dealing with the Management, Detailed Engineering, and Procurement activities related to revamp of the FLEXICOKING Prototype Unit was generated at Exxon Company, USA, Houston, Texas, and Exxon Engineering - Project Management Department of ER and E, Florham Park, New Jersey. The information dealing with operation of the 250 T/D Exxon Coal Liquefaction Pilot Plant (ECLP) was generated at Exxon Company, USA, Houston, Texas.

  9. PFBC HGCU Test Facility. Second quarterly technical progress report, CY 1993

    SciTech Connect

    Not Available

    1993-07-01

    This is the fifteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd Pressurized Fluidized Bed Combustion (PFBC) Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Second Quarter of CY 1993.Work accomplished during the reporting period includes: the expansion joint heaters and control system were installed and tested. The system consists of 8 bellows heaters and 14 heaters on the adjacent piping. During initial testing, 11 of the 14 pipe and heaters failed due to overheating caused by control and installation problems; A pneumatically powered vibrator was installed in the APF manway nozzle to vibrate the hopper liner during back pulsing. This should eliminate any build-up on the pipes of the hopper; Two half capacity diesel driven back-up pulse air compressors were rented and installed; Installation of an emergency ash removal system was completed. The system enables ash to be removed via a line connected to the pipe between the outlet of the screw cooler and the inlet of the lockhopper system; Installation of the spoiling air line, valves, and metering orifice to the primary cyclone was completed; Numerous revisions were made to the Net 90 instrumentation and control system and the POPS data trending system to enhance system control and performance monitoring capability.

  10. Heterogeneous kinetics of coal gasification. Quarterly technical progress report, 1 April 1983-30 June 1983

    SciTech Connect

    Calo, J.M.; Ganapathi, R.

    1983-01-01

    In the current quarterly technical progress report we present data and results on transient kinetic studies of the steam-char reaction system for activated coconut and lignite chars. These experiments were conducted in a fashion similar to the previous char-CO/sub 2/ studies, under approximately the same experimental conditions. The two principal product species, H/sub 2/ and CO, were monitored using the automatic mass programming system developed especially for this project. In order to perform the steam-char experiments, the original apparatus was modified by the addition of a steam generation/condensate removal system. The steam-char reaction system, being somewhat more complex than the CO/sub 2/-char reaction system, was modeled with a six-parameter, elementary kinetic scheme. The ''effective'' active site concentrations determined from the steam gasification data were of the same order of magnitude, and behaved in a similar fashion, to those obtained for the CO/sub 2/ gasification studies. The implications of this result are briefly discussed. 21 refs., 23 figs., 2 tabs.

  11. EDS coal liquefaction process development: Phase V. Quarterly technical progress report, January 1-March 31, 1984

    SciTech Connect

    1984-07-01

    This report is the twenty-first Quarterly Technical Progress Report for US Department of Energy Cooperative Agreement No. DE-FC05-77ET10069 for EDS Coal Liquefaction Process Development Phase V. A detailed comparison of RCLU, CLPP, and ECLP yields has been initiated. This study builds off previous yield modeling results, which found that RCLU, CLPP, and ECLP yields were generally consistent given the scatter of the data, although some differences were noted. These pilot unit yield differences have now been quantified, and operating/configurational differences which account for some of them have been identified. Preliminary yield comparison results after correcting for these known process differences between the pilot plants indicate that: RCLU and CLPP yields are generally consistent; ECLP's conversion is about 5 lb/100 lb DAF coal lower than RCLU/CLPP at comparable operating conditions; and work has been initiated to define the EDS slurry preheater feed system design (based on slurry distributor manifold guidelines and coking correlation predictions, which influence furnace pass control issues such as slurry flow measurement). EDS hydrotreated naphtha showed a low level of systemic toxicity to rats exposed to the vapor six hours per day, five days per week for thirteen weeks.

  12. Production and screening of carbon products precursors from coal. Quarterly technical report, October 1, 1996--December 31, 1996

    SciTech Connect

    Irwin, C.L.

    1997-02-01

    The technical work during this past quarter has focused on enhancing equipment and instrumentation in the WVU Carbon Products Laboratory. Development work on coal-based precursors for carbon foams, pitches, cokes, and fibers continues. The effects of carbon powders and chopped fibers as additives to the foam precursor are being evaluated. Extensive coordination and technology transfer activities have been undertaken and are described in Section 5 of this report.

  13. Optimization of reactor configuration in coal liquefaction. Seventh quarterly report for the period 1 April--30 June 1993. Final report

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H.

    1993-08-01

    This quarterly report covers activities of Optimization of Reactor Configuration in Coal Liquefaction during the period April 1 - June 30, 1993, at Hydrocarbon Research, Inc. in Lawrenceville and Princeton, New Jersey. This DOE contract period is from October 1, 1991 to September 30, 1993 and has been extended to December 31, 1993. The overall objective of the program is to achieve a new approach to liquefaction that generates an all distillates product slate at reduced cost of about $25 per barrel of crude oil equivalent. The quarterly report covers work on Laboratory Support, Laboratory Scale Operations, Technical Assessment, and Project Management.

  14. Joint Technical Architecture for Robotic Systems (JTARS)-Final Report

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Holloway, Sidney E., III

    2006-01-01

    This document represents the final report for the Joint Technical Architecture for Robotic Systems (JTARS) project, funded by the Office of Exploration as part of the Intramural Call for Proposals of 2005. The project was prematurely terminated, without review, as part of an agency-wide realignment towards the development of a Crew Exploration Vehicle (CEV) and meeting the near-term goals of lunar exploration.

  15. High energy physics research. Final technical report, 1957--1994

    SciTech Connect

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  16. Final Screening Program, Third and Fourth Quarters. Version 3.1. Task 4. Volume 1.

    DTIC Science & Technology

    1988-05-01

    network, but historical occurrences are present within ISP distribution patterns for both the alluvial and Denver aquifers . Third and Fourth Quarter...FY86) APPENDIX C--THIRD AND FOURTH QUARTERS (FY86) ALLUVIAL AND DENVER AQUIFER COMPOUND DISTRIBUTIOýN PLOTS C-RMA-04D/FIN•PT. TOC.Iii 05/20/88 TABLE...Level Measurement Well Network, Third and Fourth Quarter, Fiscal Year 1986 2 Water Level Elevation Alluvial Aquifer , Third Quarter, Fiscal Year 1986

  17. Stanford Geothermal Program (quarterly technical progress reports, July--September 1990 and October--December 1990)

    SciTech Connect

    Not Available

    1991-02-18

    For the summer quarter, progress is summarized and data are presented on the following: well test analysis of finite-conductivity fractures, theoretical investigation of adsorption phenomena, and optimization of reinjection strategy. For the fall quarter, activity focused on the adsorption and well testing projects. A new project investigating reinjection at the Geysers was initiated. (MHR)

  18. Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 10

    SciTech Connect

    Tim Richter

    2005-05-05

    This tenth quarterly status report for the Hybrid Off Highway Vehicle (OHV) project, DOE Award DE-FC04-2002AL68080 presents the project status at the end of March 2005, and covers activities in the tenth project quarter, January-March 2005.

  19. Quarterly Reporting of Government-Funded Activity to the 2015 National VET Provider Collection. Technical Paper

    ERIC Educational Resources Information Center

    Foley, Paul

    2016-01-01

    The topic of more frequent and timely vocational education and training (VET) data has been an issue of interest for a number of years. Since 2015, the National Centre for Vocational Education Research (NCVER) has collected and reported data on government-funded students and courses on a quarterly basis. These quarterly data submissions are…

  20. Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 9

    SciTech Connect

    Tim Richter

    2005-03-02

    This ninth quarterly status report for the Hybrid Off Highway Vehicle (OHV) project, DOE Award DEFC04- 2002AL68080 presents the project status at the end of December 2004, and covers activities in the ninth project quarter, October - December 2004.

  1. Development of analytical procedures for coprocessing. Quarterly technical progress report, July 1, 1990--September 30, 1990

    SciTech Connect

    Anderson, R.P.

    1991-05-01

    This is the eighth quarterly report under DOE Contract No. DE-AC22-88PC88810, Development of Analytical Procedures for Coprocessing. The overall objective of the contract is to improve our understanding of the fundamental chemistry of coprocessing. This includes the evaluation of methods to distinguish between compound classes originating from coal versus those originating from petroleum resid. Techniques being evaluated include carbon isotope ratios and the variations in compound classes in response to changes in the coal/resid ratio in the feed. A final objective of this project is to provide detailed knowledge on the composition of coprocessing products. This report reviews the use of isotope ratios to determine the source of compound classes (e.g., acids, bases, neutrals, aromatics, saturates, etc.). Selective isotope fractionation is a complicating factor in the use of carbon isotope ratios to determine the source of coprocessing products. Other researchers have shown that through the use of appropriate correction factors to correct for this isotope selectivity, isotope ratios can be used to quantitatively determine the source of coprocessing fractions obtained by distillation. It is concluded in this report that although isotope ratios may provide qualitative information on the source of coprocessing compound classes, that the high degree of isotope selectivity in compound classes originating from a single feed prohibits the quantitative determination of the origin of such compound classes.

  2. Precombustion removal of hazardous air pollutant precursors. Third quarterly technical progress report, April 1, 1996--June 30, 1996

    SciTech Connect

    1996-07-19

    This project involves the development of an optimized, bench-scale processing circuit capable of efficiently removing trace elements from run-of-mine coals. The optimized circuit will be developed using characterization data obtained from detailed washability studies and release analyses tests conducted with several eastern US coals. The optimized circuit will incorporate a variety of conventional and advanced coal cleaning processes which are believed to be the most cost-effective and commercially viable. The coal products from the optimized circuit will be further treated with complexing agents specifically designed to extract organometallic trace elements that are difficult to remove by physical cleaning operations. Finally, innovative bioremediation schemes will be investigated as a means of controlling the release of trace elements from the process waste streams. Emphasis has been placed on the development of a processing circuit which maximizes the rejection of trace elements, minimizes the production of coal fines which are costly to process and less marketable, and minimizes the downstream impacts of the process waste streams on the environment. During the past quarter, the project work plan and all associated technical/management reports were successfully approved. Activities associated with the selection and acquisition of all three base coal samples have also been completed. Characterization work is continuing to move ahead at an accelerated pace in both Subtask 3.2--Washability Analysis and Subtask 3.3-- Flotation Release Analyses. In addition, mineralogical analyses are underway as part of the characterization work. In Task 4--Bench-Scale Testing, the experimental program is now well underway to assess the trace element cleanability of the Pittsburgh No. 8 coal. Effort has also been initiated under Task 4--Toxics Fate Studies to identify viable methods for controlling the release of trace metals from refuse samples for the Pittsburgh No. 8 seam.

  3. Evaluation, engineering and development of advanced cyclone processes. Quarterly technical progress report No. 15, April 1, 1994--June 30, 1994

    SciTech Connect

    1994-12-31

    The project goal is to develop an advanced coal beneficiation technology that can achieve high recovery of the parent coal`s calorific value, while maximizing pyritic sulfur removal. Coal cleaning is to be accomplished by physical means incorporating an advanced form of cycloning or gravimetric process. Evaluation of different media types and their attendant systems for recovery, concentration, and regeneration is to be completed. Phase I, media evaluation, now completed involved a paper study and a number of laboratory tests to eliminate all but the best media options. Phase II, media testing, involved detailed testing of the more promising media and separators in a closed-loop pilot facility circuit. In the final phase, Phase III, it is proposed to test individual components of the process using the optimum medium, separator, and medium recovery systems(s) selected in prior phases. Some of the highlights for this reporting period are: (1) Outomec conducted a second set of hot water wash experiments. These hot water experiments, using prefiltered medium, yielded a significant improvement in calcium nitrate recovery, and showed a consistent decrease in residuum calcium nitrate with increasing wash rate. (2) Several alternatives were investigated for potential reduction in thermal regeneration process costs. Culligan, Spin Tek, and Rochem, manufacturers of reverse osmosis or ultra filtration systems were contacted. Rochem ultimately performed laboratory experiments. Starting with a dilute medium density of 1.07, the Rochem laboratory system achieved a density of 1.11. A density of 1.22 sg would be commercially attainable. This is less than the target medium density of 1.35, meaning that if their system were utilized, some thermal means would still be required to regenerate medium to operating density. (3) Management and Technical Systems initiated work on a preliminary economic study and will submit a report during the next quarterly reporting period.

  4. Fundamental mechanisms in flue gas conditioning. Quarterly technical progress report, April 1995--June 1995

    SciTech Connect

    Snyder, T.R.; Bush, P.V.

    1995-07-11

    This project is divided into four tasks. We developed our Management Plan in Task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focused on characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, was designed to examine effects of various conditioning agents on fine ash particles to determine mechanisms by which these agents alter physical properties of ash. We began Tasks 2 and 3 with an extensive literature search and assembly of existing theories. We completed this phase of the project with publication of two special Topical Reports. In our literature reviews reported in Topical Reports 1 and 2, we emphasized the roles adsorbed water can have in controlling bulk properties of powders. During the next phase of the project we analyzed a variety of fly ashes and fine powders in the laboratory. The experiments we performed were primarily designed to define the extent to which water affects key properties of ashes, powders, and mixtures of sorbents and ashes. We have recently completed a series of pilot-scale tests designed to determine the effects that adsorbed water has on fabric filtration and electrostatic precipitation of entrained fly ash particles in actual flue gas environments. Under Task 4 we will issue our Final Report that will summarize the results of our laboratory and pilot-scale work and will also include a model of flue gas conditioning. Our efforts during this reporting quarter have been directed toward production of the Draft Final Report and the Flue Gas Conditioning Model. In addition to these efforts, we have prepared a paper for presentation at the Eleventh Annual Coal Preparation, Utilization, and Environmental Control Contractor`s Conference to be held in Pittsburgh in July, 1995.

  5. BX in situ oil shale project. Quarterly technical progress report, September 1-November 30, 1981

    SciTech Connect

    Dougan, P.M.

    1981-12-20

    September 1, 1981-November 30, 1981, was the fourth consecutive quarter of superheated steam injection at the BX In Situ Oil Shale Project. During the quarter, 117,520 barrels of water as steam were injected into project injection wells at an average wellhead temperature of 715/sup 0/F and an average wellhead pressure of 1378 PSIG. During the same period, 148,516 barrels of fluid were produced from the project production wells for a produced-to-injected fluid ratio of 1.26 to 1.0. Net oil production for the quarter was 169 barrels.

  6. Identification and Evaluation of Fluvial-Dominated Deltaic Reservoirs. Quarterly technical report, April 1 -June 30, 1997

    SciTech Connect

    Banken, M.K.; Andrews, R.

    1997-09-12

    This document is provided as a Quarterly Technical Progress Report for the program entitled `Identification and Evaluation of Fluvial- Dominated Deltaic (Class 1 Oil) Reservoirs in Oklahoma`, covering the reporting period of April 1 - June 30, 1997. Work is progressing as expected for the project. The FDD computer facility is fully operational. During this quarter, there were 27 industry individuals who used the facility. The Tonkawa Play workshop is scheduled for July 9, 1997 in Norman. The Tonkawa publication and presentation graphics are nearly completed. The Bartlesville workshop is scheduled for October and November, 1997, in three different sites. Text and illustrations for that play are in progress. This project is serving an extremely valuable role in the technology transfer activities for the Oklahoma petroleum industry, with very positive industry feedback.

  7. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1996-05-01

    Our objective for this quarter was to compare performance of the Ruhrchemie catalyst in different modes of operation: fixed bed reactor (conventional and supercritical mode of operation), and stirred tank slurry reactor. Diffusion coefficients are discussed.

  8. [National Institute for Petroleum and Energy Research] quarterly technical report, October 1--December 31, 1992

    SciTech Connect

    Not Available

    1993-04-01

    Accomplishments for the past quarter are described for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  9. PFBC HGCU Test Facility. Fourth quarterly technical progress report, [October--December 1993

    SciTech Connect

    Not Available

    1994-01-01

    The APF was shut down on September 23, 1993 and no operation was performed during this quarter. This report summarizes inspection, candle reinstallation, retrofit and accelerometer testing conducted during this three month outage.

  10. Genetic effects of plutonium in Drosophila. Final technical report

    SciTech Connect

    1995-07-01

    This three year project, initiated in 1987, involved the genetic effects of alpha radiations on Drosophila. This document represents the final technical report. Plutonium residue was used as the alpha source of radon gas. Spontaneous mutation frequency in the Drosophila stock was very low. In the experiments using alpha radiation from radon gas, radiation doses as low as 20R induced significant numbers of mutations, with higher numbers of mutations at higher doses. If X-ray induced mutation frequencies reported in the literature are used for comparison, it can be concluded that alpha radiation from radon gas induces at least 2 to 3 time more mutations in Drosophila.

  11. MHD Integrated Topping Cycle Project. Fifteenth quarterly technical progress report, February 1991--April 1991

    SciTech Connect

    Not Available

    1992-02-01

    A summary of the work is excerpted here. Final design of an MHD channel for the ITC program POC test has been completed. The channel was designed to be capable of 1.5 MW {sub e} power output and a lifetime of 2000 hours. Emphasis was placed upon durability and reliability. Hence, specific measures were taken to design against channel damage due to electric faults. The life-limiting issues associated with electrochemical corrosion and erosion of gas-side surfaces were addressed by the use of various materials with proven wear characteristics in a coal-fired MHD channel environment. Pitting of prototypical sidewall coupons was observed in the CDIF workhorse testing. The most likely cause of the observed pitting, water leaks resulting from cooling water tube braze failures, has been remedied. New brazing procedures and isolation of the sidebar gas-side material from water contact will prevent sidebar pitting in the prototypical channel. Water-side corrosion tests reported in this quarterly report include the latest results of tungsten-copper elements at controlled pH, heat flux and voltage levels. In the combustion subsystem, efforts continued to focus on understanding and improving the current levels of slag recovery and seed utilization achieved by the combustor. Analytical support was also provided in the areas of slag rejection system operation, precombustor operation, and oil burner design modification. Channel data analysis activities continued in support of prototypical coupon testing at the CDIF. Analyses are presented on channel wall slagging behavior and sidewall voltage distributions.

  12. Bench-scale testing of on-line control of column flotation using a novel analyzer. Quarterly technical progress report, September 21, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1992-01-22

    This document contains the first quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTETM Column Flotation Technology and PTI`s On-Line Quality Monitor Control System. The twelve-month project will involve installation of a 300 lb/hr. bench-scale testing circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) and testing of two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). Figure 1 contains the project plan as well as the approach to completing the major tasks within the twelvemonth project. The project is broken down into three phases, which include: Phase I - Preparation: The preparation phase was performed principally at PTI`s Calumet offices from October through December, 1992. It involved building of the equipment and circuitry, as well as some preliminary design and equipment testing. Phase II - ET Circuit Installation and Testing: This installation and testing phase of the project will be performed at PETC`s CPPRF from January through May, 1993, and will be the major focus of the project. It will involve testing of the continuous 300 lb/hr. circuit. Phase II - Project Finalization: The project finalization phase will occur from June through September, 1993, at PTI`s Calumet offices and will involve finalizing analytical work and data evaluation, as well as final project reporting. This quarterly progress report principally summarizes the results from the Phase I preparation work and the plan for the early portions of the Phase 11 installation and commissioning, which will occur in January and the first week of February, 1993.

  13. Admiralty Inlet Pilot Tidal Project Final Technical Report

    SciTech Connect

    Collar, Craig

    2015-09-14

    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  14. Excimer laser annealing to fabricate low cost solar cells. Quarterly technical report No. 1, 26 March-30 June 1984

    SciTech Connect

    Not Available

    1984-07-01

    The objective of this research is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed during the first quarter of this program shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process described by JPL. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. The technical goal of this research is to develop an optimized PELA process compatible with commercial production, and to demonstrate increased cell efficiency with sufficient product for adequate statistical analysis. During the first quarter of this program an excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon. Preliminary results showed that the PELA processed cells had overall efficiencies comparable to furnace annealed ion implanted controls, and that texture-etched material requires lower fluence for annealing than polished silicon. Process optimization will be carried out in the second quarter.

  15. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  16. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Harb, J.N.

    1996-05-01

    Progress during the tenth quarter of a three-year study of ash formation and deposition was made in several areas. One of the key contributions this quarter was the development of an algorithm to distinguish between ash particles that are associated with char particles (included) and ash particles which are excluded. This algorithm was used to determine the extent to which pyrite transformations are influenced by whether the pyrite grains are included or excluded. The results indicate that pyrite oxidation is slower for included pyrite grains. Replicate experiments were also performed for the Pittsburgh No. 8 coal (washed) under both staged and conventional conditions. An objective of these experiments was to validate the effect of staged combustion on the size distribution of ash particles as reported for the previous quarter. Analysis of the new samples and repeat analyses of previous samples showed no significant difference in the ash particle size for samples collected at stoichiometric ratios of 0.75 (before the stage) and 1.04. The number of points in the new analyses was considerably higher than in previous analyses, resulting in greater confidence. The similarity in the ash composition for samples collected under staged and conventional conditions was also verified this quarter with replicate samples and analyses. The net result is that staged combustion does not appear to have a significant impact on either ash size or composition for the Pittsburgh No. 8 coal. Finally, numerical simulations of the temperature distribution in the laboratory combustor were performed and evaluated. Also, a paper documenting the classification algorithm developed last quarter was presented at the March ACS meeting in New Orleans and published in the ACS Division of Fuel Chemistry Preprints.

  17. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 4, July--September 1993

    SciTech Connect

    McCormick, R.L.; Jha, M.C.; Streuber, R.D.

    1993-12-07

    This document is the fourth quarterly technical progress report under Contract No. DE-AC22-92PC92110, {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane.{close_quotes} During this quarter, the authors focused primarily on catalyst activity testing in the microreactor. Additional blank runs using methane and methanol were performed. Initial attempts at preparing a silica supported catalyst are described. These results are discussed in detail and plans for the coming quarter are outlined.

  18. Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1983

    SciTech Connect

    Linville, B.

    1983-07-01

    Accomplishments for the quarter ending March 1983 are presented under the following headings: liquid fossil fuel cycle, processing, utilization, and project integration and technology transfer. Feature articles for this quarter are: (1) abandoned oil field reports issued; (2) oilfield water data bank report published; (3) microbial enhanced recovery report issued; (4) polymer-augmented project could be economic today; (5) carbon dioxide EOR estimates given; (6) BETC passes 65th milestone; and (7) fifty achievements for fifty years (1918-1968). BETC publications are also listed. (ATT)

  19. Characterization and supply of coal based fuels. Quarterly technical progress report, February 1, 1987--April 30, 1987

    SciTech Connect

    Not Available

    1987-07-01

    Contract objectives are as follows: develop fuel specifications to serve combustor requirements; select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. During the second quarter of this contract effort, the primary activities were involved with: continuation of development of fuel requirements (i.e., specifications, quantities, schedule); acquisition and bench-scale characterization of candidate coal samples; selection of coal water slurry fuel manufacturer; procurement of parent coal for fuel production; deep cleaning by froth flotation of parent coal; production of solid fuel (i.e., size reduction of deep cleaned parent coal) and delivery to combustors/experimenters; production of slurry fuel and delivery to combustors/experimenters; and completion of Final Version of First Quarterly Report.

  20. Development of a $10/kW bipolar separator plate. Technical quarterly progress report, July 1--September 30, 1998

    SciTech Connect

    1998-12-31

    The authors have identified a moldable graphite blend separator plate material, have molded complex shape bipolar separator plates, have tested the molded plate properties and function in single fuel cells, and have designed a conceptual rapid manufacturing line. In this quarter, the project received a three-month interim funding period to continue progress while the proposal is in DOE review. Thus, this fourth quarterly report is submitted in place of the originally scheduled final report for this project. All of the objectives of this project have been accomplished. Specifically, the electrical, chemical, and physical properties of the molded separator plates have met or exceeded the DOE specifications. Performance and endurance tests of the molded plates in single cells have shown comparable performance to the state-of-art machined graphite separator plates. The DOE cost target of $10 per kW appears to be achievable with the low cost composite materials.

  1. Amarillo National Resource Center for Plutonium quarterly technical progress report, August 1, 1997--October 31, 1997

    SciTech Connect

    1997-12-31

    This report summarizes activities of the Amarillo National Resource Center for Plutonium during the quarter. The report describes the Electronic Resource Library; DOE support activities; current and future environmental health and safety programs; pollution prevention and pollution avoidance; communication, education, training, and community involvement programs; and nuclear and other material studies, including plutonium storage and disposition studies.

  2. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 6, January--March 1993

    SciTech Connect

    Not Available

    1993-11-01

    The purpose of this contract is to develop a process for converting light alkane gases to methyl chloride via oxyhydrochlorination using highly selective, stable catalysts in fixed-bed reactors designed to remove the large amount of heat generated, so as to control the reaction temperature. Further, the objective is to obtain the engineering data base necessary for developing a commercially feasible process and to evaluate the economics of the process. This document reports significant progress this quarter toward the development of a stable heterogeneous packed bed catalyst for the oxyhydrochlorination of methane. This quarter`s data shows a catalyst which gave an average 18% methane conversion and 78% MeCl selectivity for a 12 day period of time. The PDU (Process Development Unit) design engineering effort made significant progress this quarter. A bid on a modular unit by Xytel Corp. was received and evaluated. The pre-engineering estimate showed that costs were considerably higher than the original project capital estimates. A rigorous effort was made to eliminate all non-essential equipment and scope of work. A reduced scope was agreed upon and in the second round both Xytel and the Dow Corning in-house facilities engineering team were allowed to bid on the package.

  3. Projects at the Western Environmental Technology Office. Quarterly technical progress report, January 1--March 31, 1995

    SciTech Connect

    1995-06-01

    This quarterly report briefly describes recent progress in eight projects. The projects are entitled Biomass Remediation Project; Heavy Metal-Contaminated Soil Project; MHD Shutdown; Mine Waste Technology Program; Plasma Projects; Resource Recovery Project; Spray Casting Project; and Watervliet Arsenal Project.

  4. Educational Technology Program. Quarterly Technical Summary, 1 September Through 30 November 1972.

    ERIC Educational Resources Information Center

    Frick, Frederick C.

    Several on-goint activities were conducted during this quarter. Field trials of the Lincoln Training System-3 (LTS-3) at Keesler Air Force Base were extended to include high-aptitude students previously excluded. Results showed such students scored significantly higher on achievement tests and learned substantially faster when they received LTS…

  5. Educational Technology Program. Quarterly Technical Summary, 1 March through 31 May 1973.

    ERIC Educational Resources Information Center

    Frick, Frederick C.

    During this quarter further investigations of alternative designs for the Lincoln Training System LTS-4 project's features and subsystems continued. Software efforts proceeded concurrently in three areas: 1) system architecture, monitor, and input/output programs; 2) a new version of the Lincoln Terminal Language, LTL-2; and 3) programs to apply…

  6. Educational Technology Program. Quarterly Technical Summary; 1 December 1974 through 28 February 1975.

    ERIC Educational Resources Information Center

    Frick, Frederick C.

    The development of the Lincoln Terminal System (LTS) terminals is described. During the quarter, a decision was made to discontinue work on a cassette-based microfiche storage and retrieval system and to continue work on a carousel-based system. The center has continued its preparation of lessons for use with LTS. Application of LTS to the…

  7. Educational Technology Program. Quarterly Technical Summary, 1 June through 31 August 1971.

    ERIC Educational Resources Information Center

    Frick, Frederick C.

    During the quarter covered by this report, the design of the Lincoln Training System-3 (LTS-3) Terminal System was completed and construction of a prototype unit begun. Four major hardware developments occurred: 1) An Image Systems, Incorporated Model 201 CARD Reader was converted into the LTS-3 audio-visual student terminal; 2) the first of five…

  8. Los Angeles County Juvenile Justice Crime Prevention Act. RAND Quarterly Report, October 2008. Technical Report

    ERIC Educational Resources Information Center

    Fain, Terry; Turner, Susan; Ridgeway, Greg

    2009-01-01

    This document is the second quarterly progress report for the evaluation of Juvenile Justice Crime Prevention Act (JJCPA) programs for the Los Angeles County Probation Department. The report covers the period from July 1, 2008, through September 30, 2008. The intent of the report is to provide Probation and the community-based organizations (CBOs)…

  9. OTEC support services. Quarterly technical progress report No. 17, 15 May 1982-14 August 1982

    SciTech Connect

    1982-08-01

    Progress relative to accomplishments and relative to meetings, conferences, etc. are reported in the areas of OTEC commercialization support, program technical engineering and instrumentation analysis, technical and management services, OTEC system integration, and transmission subsystem considerations. (LEW)

  10. OTEC support services. Quarterly technical progress report No. 19, November 15, 1982-February 14, 1983

    SciTech Connect

    Not Available

    1983-03-01

    Activities relative to accomplishments and to meetings, conferences, etc. are reported in the areas of: OTEC commercialization support, program technical engineering and instrumentation analysis, technical and management services, OTEC systems integration, and transmission subsystem considerations. (LEW)

  11. OTEC support services. Quarterly technical progress report No. 11, 15 November 1980-14 February 1981

    SciTech Connect

    1981-02-01

    Technical engineering and management support services for the Ocean Thermal Energy Conversion Program are listed along with their objectives. Progress is reported on the following: technical assessments, OTEC system integration, environment and siting considerations, and transmission subsystem considerations. (MHR)

  12. PFBC HGCU Test facility. Technical progress report, Fourth quarter, CY 1994

    SciTech Connect

    1995-01-01

    During this quarter, the Tidd Hot Gas Clean Up System completed a 691-hour test run which began during the third quarter. Table 1 summarizes all test runs since initial operation. Following this test run the system was shut down and the filter opened for inspection and recandling. The system remained out of service during the remainder of the quarter. In addition to monitoring and evaluating the performance of the HGCU system during testing, engineering effort was devoted to posttest inspection of the APF (Advanced Particle Filter) and evaluation of the effects of totally spoiling the primary cyclone. In addition, the authors worked with Westinghouse in the selection of replacement candles that were installed during the fourth quarter. During the unit outage this quarter, the primary cyclone upstream of the APF was modified to force all of the ash to pass through the cyclone and enter the APF without using spoiling air. Appendices to this report describe the dust shroud support strap design; an analysis of the effect of support-transferred vibrations on the failure of ceramic candle filters; the Tidd APF operation; the Tidd APF boroscope inspection; a general inspection of Tidd filter internals; tally of Tidd filters; ash formations in the W-APF-October 1994 post-test inspection; characterization of the as-manufactured and PFBC-exposed 3M CVI-SiC composite filter matrix; strength characterization of the first and second generation candle filters after 1,705 hours of PFBC operation at Tidd; and filters used in the December 1994 recandling effort at Tidd.

  13. OTEC support services. Quarterly technical progress report No. 16, 15 February 1982-14 May 1982

    SciTech Connect

    Not Available

    1982-05-01

    Technical progress is reported in the area of OTEC program survey, analysis, evaluation, and recommendation concerning program performance, including OTEC commercialization support and program technical engineering and instrumentation analysis. Progress is also reported in the areas of program technical monitoring, OTEC system integration, and transmission subsystem considerations. Participation in meetings, conferences, etc. is also reported. (LEW)

  14. OTEC support services. Quarterly technical progress report No. 18, 15 August 1982-14 November 1982

    SciTech Connect

    Not Available

    1982-11-01

    After a brief description of the technical engineering and management support services for the OTEC Program and of the task objectives, technical progress is reported in the areas of: survey, analysis, and evaluation; program technical monitoring; and transmission subsystem subsytem considerations. (LEW)

  15. OTEC support services quarterly technical progress report No. 14, 15 August 1981-14 November 1981

    SciTech Connect

    1981-11-01

    The progress in the areas of system integration, system engineering, and management services is reported. The effort is divided into seven tasks: survey, analysis, and evaluation of technical program status; program technical monitoring; development and implementation of methodology for identification, evaluation, and trade-off for major subsystem configurations; technical assessments; OTEC system integration; environment and siting considerations; and transmission subsystem considerations. (LEW)

  16. SafeConnect Solar - Final Scientific/Technical Report (Updated)

    SciTech Connect

    McNish, Zachary

    2016-02-03

    Final Scientific/Technical Report from Tier 0 SunShot Incubator award for hardware-based solution to reducing soft costs of installed solar. The primary objective of this project was for SafeConnect Solar (“SafeConnect”) to create working proof-of-concept hardware prototypes from its proprietary intellectual property and business concepts for a plug-and-play, safety-oriented hardware solution for photovoltaic solar systems. Specifically, SafeConnect sought to build prototypes of its “SmartBox” and related cabling and connectors, as well as the firmware needed to run the hardware. This hardware is designed to ensure a residential PV system installed with it can address all safety concerns that currently form the basis of AHJ electrical permitting and licensing requirements, thereby reducing the amount of permitting and specialized labor required on a residential PV system, and also opening up new sales channels and customer acquisition opportunities.

  17. Mathematics Intensive Summer Session (MISS). Final technical report

    SciTech Connect

    1998-11-01

    This final technical report appears in two parts: the report for the 1995 summer MISS program and the report for the 1996 summer MISS program. Copies of the US Department of Energy Pre-Freshman Enrichment Program 1995 Entry Form and 1996 Entry Form completed by all participants were sent to the Oak Ridge Institute for Science and Education in the fall of 1995 and 1996 respectively. Those forms are on file should they be needed. Attached also is a copy of the Summary of ideas for panel discussions, problem-solving sessions, or small group discussions presented at the Department of Energy Oak Ridge Institute for Science and Education Pre-Freshman Enrichment Program Project Directors Meeting held in San Antonio, TX, November 12--14, 1995.

  18. FERMI@Elettra FEL Design Technical Optimization Final Report

    SciTech Connect

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno,Giovanni; Graves, William

    2006-07-31

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI{at}ELETTRA project. The FERMI{at}ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn.

  19. 77 FR 30512 - Native American Career and Technical Education Program; Final Waivers and Extension of Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Native American Career and Technical Education Program; Final Waivers and Extension of Project Period... Information: Final Waivers and Extension of Project Period for the Native American Career and Technical... projects funded in fiscal year (FY) 2007 under the Native American Career and Technical Education...

  20. 48 CFR 1852.235-73 - Final Scientific and Technical Reports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Technical Reports. 1852.235-73 Section 1852.235-73 Federal Acquisition Regulations System NATIONAL... Provisions and Clauses 1852.235-73 Final Scientific and Technical Reports. As prescribed in 1835.070(d) insert the following clause: Final Scientific and Technical Reports (DEC 2006) (a) The Contractor...

  1. 48 CFR 1852.235-73 - Final Scientific and Technical Reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Technical Reports. 1852.235-73 Section 1852.235-73 Federal Acquisition Regulations System NATIONAL... Provisions and Clauses 1852.235-73 Final Scientific and Technical Reports. As prescribed in 1835.070(d) insert the following clause: Final Scientific and Technical Reports (DEC 2006) (a) The Contractor...

  2. 48 CFR 1852.235-73 - Final Scientific and Technical Reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Technical Reports. 1852.235-73 Section 1852.235-73 Federal Acquisition Regulations System NATIONAL... Provisions and Clauses 1852.235-73 Final Scientific and Technical Reports. As prescribed in 1835.070(d) insert the following clause: Final Scientific and Technical Reports (DEC 2006) (a) The Contractor...

  3. 48 CFR 1852.235-73 - Final Scientific and Technical Reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Technical Reports. 1852.235-73 Section 1852.235-73 Federal Acquisition Regulations System NATIONAL... Provisions and Clauses 1852.235-73 Final Scientific and Technical Reports. As prescribed in 1835.070(d) insert the following clause: Final Scientific and Technical Reports (DEC 2006) (a) The Contractor...

  4. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report, December 1980-February 1981

    SciTech Connect

    Eby, R.J.

    1981-03-01

    Work was performed in the following areas of the Pipeline Gas Demonstration Plant Program: site evaluation and selection; demonstration plant environmental analysis; feedstock plans, licenses, permits and easements; demonstration plant definitive design; construction planning; economic reassessment; technical support; long lead procurement list; and project management. Major work activity continued to be the effort on Demonstration Plant Definitive Design. A Construction Readiness Audit was held on January 14 to 16, 1981 by a Government/Procon team to review the project and assess the readiness of the project to proceed into the construction phase. Documents for the 60% Design Review were prepared for ICGG review and submitted to the Contracting Officer's authorized representative prior to transmittal to the Corps of Engineers for review. The Corps of Engineers conducted a design audit. The primary objective of the audit was to prepare an independent estimate of the work remaining to complete Phase I of the project. Work continued on the production of a single bid package for the Demonstration Plant, suitable for release to a single constructor, and organized so it can be easily broken down into subpackages by construction specialty. A formal audit of the ICGG R/QA Plan and implementation thereof was performed February 11-12, 1981 by the Corps of Engineers. The Contract Deliverable Final Feedstock-Product-Waste Disposal Plan was delivered to the Government on February 25, 1981.

  5. Investigation of mineral transformations and ash deposition during staged combustion. Quarterly technical progress report, October 1, 1995--December 31, 1995

    SciTech Connect

    Harb, J.N.

    1996-02-07

    Progress during the ninth quarter of a three-year study of ash formation and deposition was made in several areas. One of the key contributions this quarter was the development of an enhanced method for classification of CCSEM data. This classification algorithm permits grouping and comparison of particles previously labeled as ``unclassifiable.`` A second analytical advancement, also made this quarter, provides more detailed information on the distribution of minerals in the coal and the potential for coalescence. This new multiple analysis technique is also applicable to ash and will permit identification of heterogeneous ash particles. Additional analyses of ash samples were also performed and it was found that the firing of Pittsburgh {number_sign}8 under staged combustion conditions yields an ash with a significantly larger particle size distribution than that obtained under conventional firing conditions, but without a significant change in composition. the size difference was noted previously, but the new classification algorithm allowed a detailed comparison of all composition groups, including unclassifiable particles, in the ashes. A mechanistic explanation for this behavior has been developed and is provided in the report. Finally, a paper documenting the new classification algorithm has been prepared and is scheduled for presentation at the March ACS meeting in New Orleans.

  6. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 10, January 1944--March 1994

    SciTech Connect

    1994-08-01

    In work related to the design and construction of the Process Development Unit (PDU) this quarter involved further detail design and a real start to the construction activities. Status updates are given below for each discipline in the Task 2.0 and 3.0 headings. This work is progressing well. with the caveat of several small slips in the scheduling. On the catalyst development front this quarter was extremely productive. Many catalyst screening experiments were completed and they showed that control of the reaction exotherm is going to be quite challenging under PDU conditions. The presence of much more efficient reactor design and the ability to maintain closer to isothermal conditions is expected to give a significant advantage in actual PDU operation. A major concern at the moment is the cost of La in the catalyst being used. An action plan to remedy this is being put together.

  7. FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, April 1-June 30, 1997

    SciTech Connect

    Hughes, E.; Tillman, D.

    1997-12-01

    The FETC/EPRI Biomass Cofiring Program has accelerated the pace of cofiring development by increasing the testing activities plus the support activities for interpreting test results. Past tests conducted and analyzed include the Allen Fossil Plant and Seward Generating Station programs. On-going tests include the Colbert Fossil Plant precommercial test program, the Greenidge Station commercialization program, and the Blount St. Station switchgrass program. Tests in the formative stages included the NIPSCO cofiring test at Michigan City Generating Station. Analytical activities included modeling and related support functions required to analyze the cofiring test results, and to place those results into context. Among these activities is the fuel availability study in the Pittsburgh, PA area. This study, conducted for Duquesne Light, supports their initial investigation into reburn technology using wood waste as a fuel. This Quarterly Report, covering the third quarter of the FETC/EPRI Biomass Cofiring Program, highlights the progress made on the 16 projects funded under this cooperative agreement.

  8. Wetland treatment of oil and gas well wastewaters. Quarterly technical report, August 25--November 24, 1992

    SciTech Connect

    Kadlec, R.H.; Srinivasan, K.R.

    1992-12-24

    In this quarterly report, results of efforts on Tasks 2 and 3 are presented and discussed. Construction of a laboratory-type wetland (green house) has been begun and this undertaking is described in this report. The literature search has shown that clay amendments to wetlands are beginning to be used in Europe for P removal in agricultural drainage systems. The authors have undertaken similar studies on the use of inexpensive amendments to wetlands such as modified-clays and algae to enhance the performance of a constructed wetland for the treatment of oil and gas well wastewaters. The results from these studies are presented and analyzed in this report. Further, the literature search (nominally completed under Task 1) unearthed more recent studies (some unpublished) and a summary is included in this quarterly report.

  9. Reliability Information Analysis Center 1st Quarter 2007, Technical Area Task (TAT) Report

    DTIC Science & Technology

    2007-02-05

    Propeller Reliability and Maintenance Support 0008 NASA Marshall Space Flight Center Failure Mode & Effects Analysis CONTRACT HC1047-05-D-4005 3...11 7C MSFC, AL 35812 SUBJECT: NASA Marshall Space Flight Center Failure Mode & Effects Analysis Program Quarterly Report under Contract No. HC 1047-05...Block Diagram for NERVA. Reviewed with NASA Marshall and NASA Los Alamos. Failure Modes have been developed and agreed to with NASA. The Failure Modes

  10. SRC-1 solvent-refined coal. Quarterly technical report, January-March 1980

    SciTech Connect

    Not Available

    1980-01-01

    Four papers in this quarterly report have been entered individually into EDB and ERA. They deal with reducing organic solvent losses in the Kerr-McGee solvent deashing process; with the design of heaters for the process (which involved determining the temperature dependence of the enthalpy of the organic solvent, coal and hydrogen mixture); with a review of the carbon dioxide greenhouse effect on global climates; and with a methodology for fractionating and evaluating the coal liquids produced. (LTN)

  11. [Establishment and support of the International Power Institute]. Quarterly technical progress report, October--December, 1997

    SciTech Connect

    Coles, J.E.

    1998-04-02

    This is the quarterly report of the International Power Institute for October--December 1997. The topics of the report include pre-cooperative agreement activities, a discussion of the deputy director position, the IPI brochure, exploration of collaborative arrangements, formation of the IPI advisory board, a review of the advisory board meeting, report of a meeting with African electric utility executives, report of a visit to South Africa to explore a collaborative relationship.

  12. Quarterly Performance/Technical Report of the National Marrow Donor Program

    DTIC Science & Technology

    2011-01-28

    quarter 2011: o KIR-DS, CIBMTR Sample Tracking Application , 09 MRD Study • All Audit Recipient module development milestones are complete...CSS Custom Search Support PSA Public Service Announcement CT Confirmatory Testing PT Proficiency Testing CTA Clinical Trial Application QAMS Quality...the first week of October 2010 with a Recovery Time of 42 hours. Tier 1 is comprised of the following Core Business critical applications and

  13. Bioconversion of coal derived synthesis gas to liquid fuels. Quarterly technical progress report, October 1, 1994--December 27, 1994

    SciTech Connect

    Jain, M.K.; Worden, R.M.; Grethlein, A.

    1995-01-16

    The overall objective of the project is to develop an integrated two-stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: (1) Development/isolation of superior strains for fermentation of syngas; (2) Evaluation of bioreactor configuration for improved mass transfer of syngas, specifically gas lift; (3) Pervaporation for recovery of solvents; (4) Write and submit final report.

  14. OTEC support services. Quarterly technical progress report No. 8, February 15-May 14, 1980

    SciTech Connect

    Lipari, M. V.

    1980-05-01

    Technical engineering and management support services provided by the VSE Corporation for the Ocean Thermal Energy Conversion Program of the Ocean Systems Branch, Division of Central Solar Technology are reported. Tasks include: (1) survey, analysis, evaluation, and recommendation concerning program performance; (2) program technical monitoring; (3) development and implementation of methodology to identify and evaluate program alternatives; (4) technical assessments; (5) OTEC system integration; (6) environment and siting considerations; and (7) transmission subsystem considerations. (WHK)

  15. Environmentally conscious manufacturing & technology access project: Final technical progress report, April 1, 1994--September 30, 1996

    SciTech Connect

    1997-05-01

    This final report is being submitted in fulfillment of the management obligations associated with the TRP/DOE grant which funded the Environmentally Conscious Manufacturing & Technology Access (ECM) Project. A {open_quotes}Federal Assistance Project Status Report{close_quotes} is also being submitted with this form. This report will elaborate on the successful completion of this project in achieving and in most cases exceeding its programmatic goals and fulfilling it statutory financial match obligation. A review of the Year 1 {open_quotes}Technical Progress Report{close_quotes} and the Quarterly Reports filed during the project period, clearly portray that, in all substantive areas, the Environmentally Conscious Manufacturing & Technology Access Project (ECM Project) achieved or exceeded its goals. The success of the Project is largely due to the tremendous support provided by the Center for Technology Transfer (CTT) and the Maine Metal Products Association (MMPA). Both organizations provided extensive administrative and financial support and were instrumental in promoting the work of the project within the metals industry. The programmatic oversight provided by the industry Steering Committee and the broad partnership represented on the Board of Advisors were invaluable in developing, promoting and implementing the work of the ECM Project.

  16. Instrumentation of dynamic gas pulse loading system. Technical progress report, first quarter 1992

    SciTech Connect

    Mohaupt, H.

    1992-04-14

    The overall goal of this work is to further develop and field test a system of stimulating oil and gas wells, which increases the effective radius of the well bore so that more oil can flow into it, by recording pressure during the gas generation phase in real time so that fractures can be induced more predictably in the producing formation. Task 1: Complete the laboratory studies currently underway with the prototype model of the instrumentation currently being studied. Task 2: Perform field tests of the model in the Taft/Bakersfield area, utilizing operations closest to the engineers working on the project, and optimize the unit for various conditions encountered there. Task 3: Perform field test of the model in DGPL jobs which are scheduled in the mid-continent area, and optimize the unit for downhole conditions encountered there. Task 4: Analyze and summarize the results achieved during the complete test series, documenting the steps for usage of downhole instrumentation in the field, and compile data specifying use of the technology by others. Task 5: Prepare final report for DOE, and include also a report on the field tests completed. Describe and estimate the probability of the technology being commercialized and in what time span. The project has made substantial technical progress, though we are running about a month behind schedule. Expenditures are in line with the schedule. Increased widespread interest in the use of DGPL stimulation has kept us very busy. The computer modeling and test instrumentation developed under this program is already being applied to commercial operations.

  17. 48 CFR 1852.235-73 - Final Scientific and Technical Reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Final Scientific and... Provisions and Clauses 1852.235-73 Final Scientific and Technical Reports. As prescribed in 1835.070(d) insert the following clause: Final Scientific and Technical Reports (DEC 2006) (a) The Contractor...

  18. Identification and Evaluation of Fluvial-Dominated Deltaic Reservoirs. Quarterly technical report, January 1-March 31, 1997

    SciTech Connect

    Banken, M.K.; Andrews, R.

    1997-09-12

    This document is provided as a Quarterly Technical Progress Report for the program entitled `Identification and Evaluation of Fluvial- Dominated Deltaic (Class 1 Oil) Reservoirs in Oklahoma`, covering the reporting period of January 1 - March 31, 1997. Work is progressing as expected for the project. The FDD computer facility is fully operational. During this quarter, there were 28 industry `visits` to use the facility. The Red Fork Play workshop was completed on March 5 in Norman, and on March 12, 1997 in Bartlesville, with a total of 195 attendees. The Tonkawa Play workshop is scheduled for July 9, 1997 in Norman. The Tonkawa text, figures, maps, and plates are in preparation. The Bartlesville workshop is scheduled for October, 1997, although the exact time and place have yet to be determined. Regional work and field studies for that play are in progress. This project is serving an extremely valuable role in the technology transfer activities for the Oklahoma petroleum industry, with very positive industry feedback.

  19. OTEC support services. Quarterly technical progress report No. 20, 15 February - 14 May 1983

    SciTech Connect

    Not Available

    1983-01-01

    The following task areas are described briefly for the system integration, system engineering, and management services provided for the OTEC program: (1) survey, analysis and evaluation; (2) program technical monitoring; (3) development and implementation of methodology; (4) technical assessment; (5) OTEC systems integration; (6) environment and siting considerations; and (7) transmission subsystem considerations.

  20. OTEC support services. Quarterly technical progress report No. 21, 15 May-15 August 1983

    SciTech Connect

    Not Available

    1983-09-01

    Progress is reported on the system integration, system engineering, and management services for the OTEC program under the following tasks: (1) survey, analysis, and evaluation; (2) program technical monitoring; (3) development and implementation of methodology; (4) technical assessments; (5) OTEC systems integration; (6) environment and siting considerations; and (7) transmission subsystem considerations.

  1. Development and Evaluation of an Experimental Curriculum for the New Quincy (Mass.) Vocational-Technical School. First Quarterly Technical Report.

    ERIC Educational Resources Information Center

    Morrison, Edward J.

    Technical activity from April 1 through June 30, 1965 was concentrated in behavior analysis and guidance program development. The behavior analysis involved identifying 1,051 jobs as candidates for inclusion in the training program and grouping them into 30 sub-families on the basis of task similarities. Data necessary for decision to include the…

  2. Regulatory and technical reports (abstract index journal): Compilation for third quarter 1994, July--September. Volume 19, Number 3

    SciTech Connect

    1994-12-01

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issues by the U.S. Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC`s intention to publish this compilation quarterly and to cumulate it annually. The main citations and abstracts in this compilation are listed in NUREG number order: NUREG-XXXX, NUREG/CP-XXXX, NUREG/CR-XXXX, and NUREG/IA-XXXX. These precede the following indexes: Secondary Report Number Index, Personal Author Index, Subject Index, NRC Originating Organization Index (Staff Reports), NRC Originating Organization Index (International Agreements), NRC Contract Sponsor Index (Contractor Reports) Contractor Index, International Organization Index, Licensed Facility Index. A detailed explanation of the entries precedes each index.

  3. Regulatory and technical reports (abstract index journal): Compilation for third quarter 1996 July--September. Volume 21, Number 3

    SciTech Connect

    1997-02-01

    This compilation consists of bibliographic data and abstracts for the formal regulatory and technical reports issued by the US Nuclear Regulatory Commission (NRC) Staff and its contractors. It is NRC`s intention to publish this compilation quarterly and to cumulate it annually. The main citations and abstracts in this compilation are listed in NUREG number order: NUREG-XXXX, NUREG/CP-XXXX, NUREG/CR-XXXX, and NUREG/IA-XXXX. These precede the following indexes: secondary report number index; personal author index; subject index; NRC originating organization index (staff reports); NRC originating organization index (international agreements); NRC contract sponsor index (contractor reports); contractor index; international organization index; and licensed facility index. A detailed explanation of the entries precedes each index.

  4. Inventors Center of Michigan Technical Assessment Program. Final progress report

    SciTech Connect

    Not Available

    1992-12-31

    The Technical Assessment Program at the Inventors Center of Michigan is designed to provide independent inventors with a reliable assessment of the technical merits of their proposed inventions. Using faculty from within Ferris State University`s College of Technology an assessment process examines the inventor`s assumptions, documentation, and prototypes, as well as, reviewing patent search results and technical literature to provide the inventor with a written report on the technical aspects of the proposed invention. The forms for applying for a technical assessment of an invention are included.

  5. Nucla circulating atmospheric fluidized bed demonstration project. Quarterly technical progress report, October--December 1990

    SciTech Connect

    Not Available

    1991-01-31

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  6. FETC/EPRI Biomass Cofiring Cooperative Agreement. Quarterly technical report, July 1-September 30, 1997

    SciTech Connect

    Hughes, E.; Tillman, D.

    1997-12-01

    The FETC/EPRI Biomass Cofiring Program has completed one year of activity, accelerating the pace of cofiring development. Cofiring tests were completed at the Seward Generating Station of GPU Genco and at the Michigan City Generating Station of NIPSCO. The NYSEG work at Greenidge Station resulted in a workable, low cost method for injecting biofuels into coal-fired PC boilers. Support studies and modeling continued to provide analytics for the cofiring program. This report summarizes the activities during the fourth quarter of the FETC/EPRI Biomass Cofiring Cooperative Agreement. It focuses upon the results of testing in order to highlight the progress at utilities.

  7. Robotic weld overlay coatings for erosion control. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Levin, B.F.; Dupont, J.N.; Marder, A.R.

    1993-07-20

    Twelve weld overlay hardfacing alloys have been selected for preliminary erosion testing based upon a literature review. Four of the selected coatings were deposited on a 1018 steel substrate using plasma arc welding process. During the past quarter, the remaining eight coatings were deposited in the same manner. Ten samples from each coatings were prepared for erosion testing. Microstructural characterization of each coating is in progress. This progress report describes coating deposition and sample preparation procedures. Relation between coatings hardness and formation of cracks in coatings is discussed.

  8. Novel concepts in electrochemical solar cells. Quarterly technical progress report, December 15, 1980-March 15, 1981

    SciTech Connect

    Not Available

    1981-01-01

    During the past quarter, the following areas were emphasized: (a) characterization of redox couples with very positive potentials in room-temperature AlCl/sub 3/-BPC electrolytes and comparison of the electrochemical behavior of decamethyl ferrocene in these electrolytes with the previously-studied ferrocene/ferricenium ion couple, (b) photoelectrochemical characterization of CdSe thin-film anodes in aqueous polysulfide electrolytes and (c) refinement of the admittance measurement technique for extraction of Mott-Schottky parameters. The results of research in these areas are detailed in turn below.

  9. Final Technical Report - Kotzebue Wind Power Project - Volume II

    SciTech Connect

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-31

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  10. AISI waste oxide recycling program. Final technical report

    SciTech Connect

    Aukrust, E.; Downing, K.B.; Sarma, B.

    1995-08-01

    In March 1995 AISI completed a five-year, $60 million collaborative development program on Direct Steelmaking cost-shared by DOE under the Metals Initiative. This program defined an energy-efficient and environmentally-friendly technology to produce hot metal for steelmaking directly from coal and iron ore pellets without incurring the high capital costs and environmental problems associated with traditional coke oven and blast furnace technology. As it becomes necessary to replace present capacity, this new technology will be favored because of reduced capital costs, higher energy efficiency, and lower operating costs. In April 1994, having failed to move forward with a demonstration plant for direct ironmaking, despite substantial efforts by both Stelco and Geneva Steel, an alternative opportunity was sought to commercialize this new technology without waiting until existing ironmaking capacity needed to be replaced. Recycling and resource recovery of steel plant waste oxides was considered an attractive possibility. This led to approval of a ten-month, $8.3 million joint program with DOE on recycling steel plant waste oxides utilizing this new smelting technology. This highly successful trial program was completed in December 1994. The results of the pilot plant work and a feasibility study for a recycling demonstration plant are presented in this final technical report.

  11. Energy-related inventions program invention 637. Final technical report

    SciTech Connect

    1997-07-31

    The final technical report for the Pegasus plow, a stalk and root embedding apparatus, describes progress from the development stage to the product support stage. The US Department of Agriculture - Agriculture Research Service (ARS) is now in the second year of a three year study comparing the Pegasus to conventional tillage. So far, no downside has been with the Pegasus and the following benefits have been documented: (1) Energy savings of 65.0 kilowatt hours per hectare over conventional tillage. This is when the Pegasus plow is used to bury whole stalks, and represents a 70% savings over conventional tillage (92.5 kilowatt hours per hectare). (2) Four to seven fewer passes of tillage, depending on the particular situation. This represents a substantial time savings to farmers. (3) So far, no differences in cotton yields. Recent cotton boll counts in one study indicate a higher yield potential with the Pegasus. (4) No disease problems. (5) Significantly higher levels of organic matter in the soil. A hypothesis of the study is that whole stalk burial may reduce plant disease problems. This hypothesis has not yet been proven. (6) Significantly higher levels of nitrate nitrogen. Total nitrogen and ammonia nitrogen trended higher but were not significantly different. This shows that whole stalk burial does not adversely affect the nitrogen cycle in the soil and may actually improve it. The marketing support stage of the project is also described in the report.

  12. Final Technical Report - Kotzebue Wind Power Porject - Volume I

    SciTech Connect

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-26

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  13. Mild coal pretreatment to improve liquefaction reactivity. Quarterly technical progress report, September--November 1991

    SciTech Connect

    Miller, R.L.

    1991-12-31

    This report describes work completed during the fifth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. Work this quarter focused on analytical characterization of untreated and treated Wyodak subbituminous coal and Illinois {number_sign}6 bituminous coal. Mossbauer spectroscopy and x-ray diffraction techniques were used to study the effect of methanol/HCl pretreatment on the composition of each coal`s inorganic phase. Results from these studies indicated that calcite is largely removed during pretreatment, but that other mineral species such as pyrite are unaffected. This finding is significant, since calcite removal appears to directly correlate with low severity liquefaction enhancement. Further work will be performed to study this phenomenon in more detail.

  14. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Not Available

    1992-12-31

    The specific objectives for the reporting period of October, 1992 to December, 1992 were as follows: (1) Finish analyzing leachates from the third annual core samples from the Ohio site, collected in August 1992; (2) Collect and analyze the sixth quarterly water samples from the first Illinois test case in August, 1992. Make field measurements and collect data from the data logger; (3) Begin construction of the second Illinois test case; (4) Continue production of a video presentation on the project; (5) Load all remaining EERC data on the Colorado and Ohio sites into the project database; (6) Finalize plans with METC for continued monitoring at the Colorado and Ohio sites beyond the initial three year period, and (7) Submit and the Final Case Report on the Colorado site to the DOE and EPRI.

  15. 76 FR 50201 - National Early Childhood Technical Assistance Center; Final Extension of Project Period and Waiver

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... National Early Childhood Technical Assistance Center; Final Extension of Project Period and Waiver AGENCY... Childhood Technical Assistance Center. SUMMARY: The Secretary issues this notice to waive the requirements... Early Childhood Technical Assistance Center to receive funding from October 1, 2011 through September...

  16. 77 FR 30516 - Tribally Controlled Postsecondary Career and Technical Institutions Program; Final Waivers and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Tribally Controlled Postsecondary Career and Technical Institutions Program; Final Waivers and Extension of... Postsecondary Career and Technical Institutions Program Catalog of Federal Domestic Assistance (CFDA) Number: 84... Postsecondary Career and Technical Institutions Program (TCPCTIP), the Secretary waives 34 CFR 75.250 and...

  17. Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Akgerman, A.; Bukur, D.B.

    1993-12-31

    Objectives for the first quarter for Task A, Diffusion Coefficients of F-T Products in Supercritical Fluids, were to measure diffusion coefficients of 1-tetradecene in subcritical propane and the diffusion coefficients of 1-octene and 1-tetradecene in subcritical propane and the diffusion coefficients of 1-octene and 1-tetradecene in subcritical and supercritical ethane. We planned to use ethane as a solvent because its lower critical temperature enabled measurements without modification of the existing unit. Our objective was to investigate the behavior of the diffusion coefficients in crossing from subcritical to supercritical conditions. Objectives for Task B, Fischer Tropsch reaction related studies, were: (1) to install and test the temperature probe and the flammable gas detector: (2) to conduct Fischer-Tropsch experiments at baseline conditions and at a high pressure in order to test the newly constructed fixed bed reactor assembly. Accomplishments and problems, are presented.

  18. Pulsed atmospheric fluidized bed combustion. Quarterly technical progress report, July 1992--September 1992

    SciTech Connect

    Not Available

    1992-10-01

    The design of the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) as described in the Quarterly Report for the period April--June, 1992 was reviewed and minor modifications were included. The most important change made was in the coal/limestone preparation and feed system. Instead of procuring pre-sized coal for testing of the PAFBC, it was decided that the installation of a milling system would permit greater flexibility in the testing with respect to size distributions and combustion characteristics in the pulse combustor and the fluid bed. Particle size separation for pulse combustor and fluid bed will be performed by an air classifier. The modified process flow diagram for the coal/limestone handling system is presented in Figure 1. The modified process flow diagrams of the fluidized bed/steam cycle and ash handling systems are presented in Figures 2 and 3, respectively.

  19. Commercialization of atom interferometers for borehole gravity gradiometry. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Clauser, J.F.

    1993-01-30

    Perform a mathematical analysis of the tomography inversion problem for various configurations of a borehole gravity gradiometer. Our simulations typically call for logging a hole for about 4km of depth. Within the limits imposed by our presumed detector sensitivity, the device appears to be capable of measuring the 0.1 g/cm{sup 3} density in all rings to about 10% accuracy, with the rings extending out to about 500 meters from the hole. At this range, the vertical resolution has dropped to about 50m. Closer to the hole, the resolution improves so that we can determine the density in each of about 400 rings. We anticipate that this most important task (No. l) will be complete within the next quarter.

  20. Mild coal pretreatment to improve liquefaction reactivity. Quarterly technical progress report, June--August 1991

    SciTech Connect

    Miller, R.L.

    1991-12-31

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  1. NTRCI Legacy Engine Research and Development Project Final Technical Report

    SciTech Connect

    Smith-Holbert, Connie; Petrolino, Joseph; Watkins, Bart; Irick, David

    2011-12-31

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine's commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector was

  2. Flue gas desulfurization by rotating beds. Final technical report

    SciTech Connect

    Gardner, N.; Keyvani, M.; Coskundeniz, A.

    1992-12-01

    The operating and mass transfer characteristics of rotating foam metal beds were studied to determine the potential for flue gas desulfurization. This is a final technical report on the work supported by DOE {number_sign}FG22-87-PC79924. The report is divided into two sections, Part 1 deals primarily with the operating characteristics of rotating beds, and Part 2 covers the mass transfer characteristics of S0{sub 2} absorption in water-lime slurries. Rotating foam metal beds are in essence packed towers operated in high gravitational fields. The foam metal bed is in the form of a cylindrical donut, or torus, and is rotated to produced the high centrifugal forces. The liquid phase enters the bed at the inner surface of the torus and is pulled by the field through the bed. Gas flows countercurrent to the liquid. The bed packing can have a very large specific surface areas and not flood. Possible benefits include much smaller height of a transfer unit resulting in smaller equipment and supporting structures, reduced solvent inventory, faster response with improved process control, reduced pressure drop, and shorter startup and shut-down times. This work is concerned broadly with the operating characteristics of rotating beds, the objectives being to (1) determine the pressure drop through the rotating bed; (2) determine the power required to operate the beds, (3) investigate the residence time distribution of the liquid phase in the beds; and (4) determine the mass transfer coefficients of S0{sub 2} absorption. Three packings of differing specific surface areas were studied, with areas ranging from 656 to 2952 m{sub 2}/m{sub 3}. Liquid flow rates to 36 kg/s*m{sub 2}, gas flow rate to 2.2 kg/s*m{sub 2}, and gravitational fields to 300 g were covered in this study.

  3. Final Technical/Scientific Report: Commodity Scale Thermostable Enzymatic Transformations

    SciTech Connect

    James J. Lalonde; Brian Davison

    2003-08-30

    The conversion of corn starch to high fructose corn-syrup sweetener is a commodity process, producing over 3 billion kg/y. In the last step of the process, an enzyme catalyst is used to convert glucose to the much sweeter sugar fructose. Due to incomplete conversion in the last step, the syrup must be purified using a chromatographic separation technique, which results in equal quantities of water being added to the syrup, and finally the water must be evaporated (up to 1 lb of water/lb of syrup). We have estimated the energy requirement in the evaporation step to be on the order of 13 billion BTU's/y. This process inefficiency could be eliminated if a thermostable form of glucose isomerase (GI), the enzyme catalyst used in the final step, was developed. Our chosen strategy was to develop an immobilized form of the enzyme in which the protein is first crystallized and then chemically cross-linked to form an insoluble particle. This so-called cross-linked enzyme crystal (CLE C(reg. sign)) technology had been shown to be a powerful method for enzyme stabilization for several other protein catalysts. In this work we have developed more than 30 CLEC preparations of glucose isomerase and tested them for activity and stability. We found these preparations to be highly active, with a 10-50 fold rate per gram of catalyst increase over existing commercial catalysts. The initial rates were also higher at higher temperatures as expected, however the efficiency of the CLEC GI preparations unexpectedly rapidly decreased to a low constant value with use at the higher temperatures. At this point, the source of this activity loss is unclear, however during this loss, the catalyst is found to form a solid mass indicating either breakage of the chemical cross-links or simple aggregation of the particles. It is likely that the increased mass transfer resistance due to this agglomeration is a major component of the activity loss. This research suggests that one potentially beneficial

  4. Development of analytical procedures for coprocessing. Quarterly technical progress report, April 1, 1991--June 30, 1991

    SciTech Connect

    Green, J.B.; Anderson, R.P.

    1991-07-01

    The overall objective of the contract is to improve understanding of the fundamental chemistry of coprocessing. A primary objective is to evaluate methods to distinguish between compound classes originating from coal versus those originating from petroleum resid while a corollary objective is to provide detailed knowledge on the composition of coprocessing products. This and the prior quarterly report summarize work conducted in support of the latter objective in which process development unit samples produced by HRI, Inc. were subjected to detailed analysis. Coprocessing resid samples selected for detailed analysis were made under constant conditions except for variations in coal concentration or in the coal (New Mexico subbituminous or Texas lignite). Separation of the resids into acid, base, saturate, and neutral-aromatic subtractions, separation of the neutral-aromatics by ring number and high temperature gas chromatography were discussed in the previous quarterly. This report includes results of nonaqueous titrations, elemental analyses and infrared spectroscopy. The hydrocarbon skeletons of saturated hydrocarbons in the coprocessing resids appear to be fundamentally different than those of aromatic species. Neutral-aromatic fractions contain minor levels of sulfur compounds, an unknown proportion of ether or other oxygen-containing species, and major concentrations of aromatic hydrocarbons containing from 3 to 7 aromatic rings. Base fractions contain predominantly single nitrogen compounds of azaarene or aminoaromatic type. Aminoaromatics (compounds analogous to aniline) are present in significant amounts in products made from New Mexico subbituminous coal but are nearly absent in the Texas lignite product. Acid fractions contain appreciable quantities of pyrrolic benzologs, but surprisingly low concentrations of compounds with a free OH group.

  5. Project 88: A New Technical Nursing Curriculum. Final Report.

    ERIC Educational Resources Information Center

    Jorenby, Barbara; And Others

    A project was conducted in Minnesota: (1) to describe and document a new level of technical nursing appropriate for 1988 for people educated at less than baccalaureate level; (2) to identify exit competencies of graduates of new programs; and (3) to develop model curricula for new programs in Minnesota's adult vocational technical institutes,…

  6. OTEC support services. Quarterly technical progress report No. 9, 15 May-14 August 1980

    SciTech Connect

    1980-08-01

    System integration, system engineering, and management support services provided by the VSE Corporation for the Ocean Thermal Energy Conversion Program of the Ocean Systems Branch, Division of Central Solar Technology, DOE are described. The services are provided under seven task areas: (1) survey, analysis, evaluation, and recommendation concerning program performance; (2) program technical monitoring; (3) development and implementation of methodology to identify and evaluate program alternatives; (4) technical assignments; (5) OTEC system integration; (6) environment and siting considerations; and (7) transmission subsystem considerations. (WHK)

  7. System-Cost-Optimized Smart EVSE for Residential Application: Final Technical Report including Manufacturing Plan

    SciTech Connect

    Zhu, Charles

    2015-05-15

    In the 2nd quarter of 2012, a program was formally initiated at Delta Products to develop smart-grid-enabled Electric Vehicle Supply Equipment (EVSE) product for residential use. The project was funded in part by the U.S. Department of Energy (DOE), under award DE-OE0000590. Delta products was the prime contractor to DOE during the three year duration of the project. In addition to Delta Products, several additional supplier-partners were engaged in this research and development (R&D) program, including Detroit Edison DTE, Mercedes Benz Research and Development North America, and kVA. This report summarizes the program and describes the key research outcomes of the program. A technical history of the project activities is provided, which describes the key steps taken in the research and the findings made at successive stages in the multi-stage work. The evolution of an EVSE prototype system is described in detail, culminating in prototypes shipped to Department of Energy Laboratories for final qualification. After the program history is reviewed, the key attributes of the resulting EVSE are described in terms of functionality, performance, and cost. The results clearly demonstrate the ability of this EVSE to meet or exceed DOE's targets for this program, including: construction of a working product-intent prototype of a smart-grid-enabled EVSE, with suitable connectivity to grid management and home-energy management systems, revenue-grade metering, and related technical functions; and cost reduction of 50% or more compared to typical market priced EVSEs at the time of DOE's funding opportunity announcement (FOA), which was released in mid 2011. In addition to meeting all the program goals, the program was completed within the original budget and timeline established at the time of the award. The summary program budget and timeline, comparing plan versus actual values, is provided for reference, along with several supporting explanatory notes. Technical information

  8. Development of enhanced sulfur rejection processes. Final technical progress report, third quarter (8. quarterly report), July 1--September 30, 1994

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Tao, D.P.; Lu, M.X.; Richardson, P.E.

    1996-03-20

    Pyrite becomes hydrophobic upon superficial oxidation and floats without a collector. The flotation begins to occur at potentials above the stable potentials identified by the chronoamperometry experiments conducted with freshly fractured pyrite. This finding suggests that iron polysulfide, formed during the initial stages of oxidation, is responsible for the flotation. The collectorless flotation is suppressed above the potential where the mineral is aggressively oxidized, forming iron hydroxide and soluble sulfoxy species. The collectorless flotation is less significant at pH 9.2 than at pH 4.6, possibly due to the formation of iron hydroxide. At pH 9.2, the collectorless flotation increases in the presence of EDTA and hydrocarbon oil. The collectorless flotation of pyrite can be suppressed by galvanically coupling the mineral with reactive metals such as aluminum, manganese, and zinc. This effectively prevents the mineral from oxidation. The microflotation tests conducted with mono-sized pyrite samples show that the collectorless flotation can be suppressed effectively in the presence of metal powders. Bench-scale flotation experiments conducted using Denver laboratory flotation cell and a 2-inch diameter Microcel flotation column, also demonstrates that the collectorless flotation can be suppressed in the presence of the reactive metals. It has been established that the most important parameters determining the effectiveness of suppressing pyrite flotation by the galvanic coupling technique are the surface area of the galvanic contractors and the solids concentration of the slurry during conditioning.

  9. Maintainability design of underground-mining equipment. Volume 1. Final technical report. Research report (Final)

    SciTech Connect

    Conway, E.J.; Unger, R.

    1988-09-01

    The objectives of the project were to: (1) determine the extent to which maintainability design concepts and principles have been applied to the design of underground coal mining equipment, (2) try to assess its impact on productivity and personnel safety, and (3) develop maintainability guidelines to enhance the design of new or rebuilt equipment. An equipment design review was completed at ten operational coal mines. The purpose was to identify design approaches and features that enhanced and degraded the maintenance process. Mine management, safety, and maintenance personnel were also interviewed to identify machine specific design problems. Six original equipment manufacturers were visited and the procedures used to enhance the maintainability of their equipment discussed. Volume I of the Final Technical Report presents an overview of procedures and protocol used and a summary of the findings. Volume II includes the maintainability design guide for mobile underground mining equipment.

  10. Survey of Aviation Maintenance Technical Manuals Phase 3 Report: Final Report and Recommendations

    DTIC Science & Technology

    2002-12-01

    DOTIFAAIAR-021123 Survey of Aviation Maintenance Office of Aviation Research Technical Manuals Phase 3 Washington, D.C. 20591 Report: Final Report...Title and Subtitle 5. Report Date SURVEY OF AVIATION MAINTENANCE TECHNICAL MANUALS PHASE 3 December 2002 REPORT: FINAL REPORT AND RECOMMENDATIONS 6

  11. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, December 22, 1992--March 21, 1993

    SciTech Connect

    Hester, R.; McCormick, C.

    1993-06-01

    The overall objective of this research is the development of advanced water-soluble copolymers for use in enhanced oil recovery which rely on reversible microheterogeneous associations for mobility control and reservoir conformance. Technical progress is summarized for the following tasks: advanced copolymer synthesis; characterization of molecular structure; and solution rheology.

  12. Technical progress report for the quarter 1 October-31 December 1980

    SciTech Connect

    Not Available

    1981-01-01

    This report describes the technical accomplishments on the commercial nuclear waste management programs and on the geologic disposal of nuclear wastes. The program is organized into eight tasks: systems, waste package, site, repository, regulatory and institutional, test facilities and excavations, land acquisition, and program management. (DLC)

  13. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1--July 31, 1998

    SciTech Connect

    1998-09-01

    Progress is reported on research projects related to the following: Electronic resource library; Environment, safety, and health; Communication, education, training, and community involvement; Nuclear and other materials; and Reporting, evaluation, monitoring, and administration. Technical studies investigate remedial action of high explosives-contaminated lands, radioactive waste management, nondestructive assay methods, and plutonium processing, handling, and storage.

  14. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, September 22, 1992--December 22, 1992

    SciTech Connect

    McCormick, C.; Hester, R.

    1992-12-31

    The overall goal of this research is the development of advanced water-soluble copolymers for use in enhanced oil recovery which rely on reversible microheterogeneous associations for mobility control and reservoir conformance. Technical progress is summarized for the following tasks: advanced copolymer synthesis; characterization of macromolecular structure and properties; and solution rheology in a porous media.

  15. Educational Technology Program. Quarterly Technical Summary, Period Ending 31 May 1970.

    ERIC Educational Resources Information Center

    Frick, Frederick C.

    An overview of the Lincoln Training System (LTS) and descriptions of the hardward and software of the LTS-1 and LTS-2 systems are provided. The overall program seeks to develop, test, and evaluate technical aids to vocational training systems. These are appropriate to this field because the high costs need to be reduced and because there are clear…

  16. A novel carbon-based process for flue gas cleanup. Fifth quarterly technical progress report, July 1--September 30, 1992

    SciTech Connect

    Gangwal, S.K.; Silveston, P.L.

    1992-10-01

    The objective of this project is to demonstrate the preliminary technical and economic feasibility of a novel carbon-based process for removal of at least 95% S0{sub 2} and at least 75 % NO{sub x}, from coal combustion flue gas. In the process, flue gas leaving the electrostatic precipitator (ESP) is passed through a trickle bed of activated carbon catalyst employing a periodic flush of low strength sulfuric acid. The S0{sub 2} is oxidized to S0{sub 3} and removed as medium strength sulfuric acid. The S0{sub 2}-free flue gas is then mixed with NH{sub 3}, and the NO{sub x} in the gas is subjected to selective catalytic reduction (SCR) to N{sub 2} over a fixed bed of activated carbon catalyst. In the previous four quarters, a detailed project management plan was prepared describing the experimental setup, work plan, and test plan. The experimental system was completed for SO{sub 2} conversion at Waterloo and for NO{sub x} conversion at Research Triangle Institute. Shakedown experiments were completed. The NO{sub x} removal performance of two additional modified carbon catalysts (MCCII and MCCIII) was studied. MCCII showed NO{sub 2} removal efficiency which was similar to that observed for MCCI. However, MCCIII was considerably less active for NO{sub x} removal. In the present quarter, further tests of MCCI were performed for SO{sub 2} removal with NO in the feed gas, except the reactor was operated at 130{degrees}C (instead of 80{degrees}C during previous tests). Tests were also performed with MCCII for NO removal with nominally 100 ppm SO{sub 2} in the feed gas.

  17. Final Technical Report Advanced Solar Resource Modeling and Analysis.

    SciTech Connect

    Hansen, Clifford

    2015-12-01

    The SunShot Initiative coordinates research, development, demonstration, and deployment activities aimed at dramatically reducing the total installed cost of solar power. The SunShot Initiative focuses on removing critical technical and non-technical barriers to installing and integrating solar energy into the electricity grid. Uncertainty in projected power and energy production from solar power systems contributes to these barriers by increasing financial risks to photovoltaic (PV) deployment and by exacerbating the technical challenges to integration of solar power on the electricity grid.

  18. An advanced control system for fine coal flotation. Fifth quarterly technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect

    Adel, G.T.; Luttrell, G.H.

    1997-03-04

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on- line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as reagent dosage, pulp density and pulp level are adjusted using model-base control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the fifth quarter of this project, all work was on hold pending the final novation of the contract to Virginia Polytechnic Institute and State University.

  19. Low-cost-silicon-process development. Phase IV: process improvement. Second quarterly technical progress report

    SciTech Connect

    Giraudi, R. V.; Newman, C. G.

    1981-04-01

    A number of promising techniques for improving the overall yield and economics of the tribromosilane based process to produce solar cell grade silicon is investigated. The current work is aimed at the identification of an optimum process and the characterization of that process through mini-plant operation and analysis. The three project tasks include process improvement studies, kinetic studies, and process economic studies. During this second quarter reporting period process improvement studies continued in the mini-plant, focusing on the correlation of current mini-plant yield results with prior laboratory scale work. Silicon bromination in the synthesis unit and tribromosilane purification in the distillation unit proceeded efficiently and without complication during this reporting period. Tribromosilane yields in the synthesis unit were low due to unobtainable higher reaction temperatures. Initial polycrystalline silicon production studies have indicated consistent yields of 85%. The laboratory scale static bulb reactor system was calibrated by observing the decomposition of t-butyl chloride. These results compared very well to results obtained by previous investigators for the same decomposition. Upon the conclusion of the calibration tests, the tribromosilane decomposition rate study was initiated. Two decompositions were completed and it was concluded that the reaction order can not be determined at this time. A free space reactor apparatus was assembled and tribromosilane decompositions, as a function of dilution in argon, was studied.

  20. National Institute for Petroleum and Energy Research quarterly technical report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-06-01

    Accomplishments for the past quarter are briefly described for the following tasks: chemical flooding -- supporting research; gas displacement -- supporting research; thermal recovery -- supporting research; geoscience technology; resource assessment technology; and microbial technology. Chemical flooding covers: surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; and surfactant-enhanced alkaline flooding field project. Gas displacement covers: gas flooding performance prediction improvement; and mobility control, profile modification and sweep improvement in gas flooding. Thermal recovery includes: thermal processes for light oil recovery; thermal processes for heavy oil recovery; and feasibility study of heavy oil recovery in the mid-continent region -- Oklahoma, Kansas, and Missouri; simulation analysis of steam-foam projects; and field application of foams for oil production symposium. Geoscience technology covers: three-phase relative permeability; and imaging techniques applied to the study of fluids in porous media. Resource assessment technology includes: reservoir assessment and characterization; TORIS research support; upgrade the BPO crude oil analysis data base; and compilation and analysis of outcrop data from the Muddy and Almond Formations. Microbial technology covers development of improved microbial flooding methods; and microbial-enhanced waterflooding field project.

  1. GBRN/DOE Project: Dynamic enhanced recovery technologies. Quarterly technical report, January 1994--March 1994

    SciTech Connect

    Anderson, R.N.

    1994-04-15

    Global Basins Research Network will perform a field demonstration of their ``Dynamic Enhanced Recovery Technology`` to test the concept that the growth faults in EI-330 field are conduits through which producing reservoirs are charged and that enhanced production can be developed by producing directly from the fault zone. The site, operated by Penzoil, is located in 250 feet of water the productive depth intervals include 4000 to 9000 feet. Previous work, which incorporated pressure, temperature, fluid flow, heat flow, seismic, production, and well log data, indicated active fluid flow along fault zones. The field demonstration will be accomplished by drilling and production test of growth fault systems associated with the EI-330 field. The project utilizes advanced 3-D seismic analysis, geochemical studies, structural and stratigraphic reservoir characterization, reservoir simulation, and compact visualization systems. The quarterly progress reports contains accomplishments to date for the following tasks: Management start-up; database management; field and demonstration equipment; reservoir characterization, modeling; geochemistry; and data integration.

  2. Studies of clusters. Fourth quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Farley, J.W.

    1993-08-01

    Positive cluster ions were produced, and the mass spectrum was measured using a radiofrequency quadrupole mass spectrometer. Mass spectra are attached, showing the cluster ions produced using pure ammonia. They have the general formula (NH {sub 3}){sub n}H {sub m}{sup +}, where n and m are integers. Peaks with different numbers of hydrogens can barely be resolved. This shows that the ion source can produce cluster ions. The development of sensitive laser techniques is necessary for probing the clusters. During this quarter, we succeeded in using a weak diode laser was used to probe a bean of negative molecular ion. The work on the visible absorption spectrum of D{sub 2}O{sup +} continues, and is now in the analysis phase. The work on the infrared vibrational -- rotational spectrum of H{sup 15}NO{sup {minus}} continues. In the second ion beam machine, a complete reworking of the voltages has been completed, and is being reassembled.

  3. Microbial stabilization of sulfur-laden sorbents. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Miller, K.W.

    1993-09-01

    Clean coal technologies that involve limestone for in situ sulfur capture generate lime/limestone products laden with sulfur at various oxidation states. If sulfur is completely stabilized as sulfate, the spent sorbent is ready for commercial utilization as gypsum. However, the presence of reduced sulfur species requires additional processing. Thermal oxidation of reduced sulfur frequently results in undesirable release of SO{sub 2}. Microbial oxidation might provide an inexpensive and effective alternative. Sorbents laden with reduced forms of sulfur such as sulfide or sulfite can serve as growth substrates for sulfur-oxidizing bacteria, which convert all sulfur to sulfate. The goals of this project are the following: (1) to optimize conditions for sulfate generation from sulfide, thiosulfate, and sulfite; (2) to test and optimize the effectiveness of microbial processing on spent sorbents from flue gas desulfurization, coal gasification, and fluidized bed combustion; (3) to search for hyperalkalinophilic thiobacilli, which would be effective up to pH 11. This quarter, temperature, nitrogen, and phosphate requirements for sulfate generation on thiosulfate were optimized with respect to two named strains and two promising isolates. Spent sorbents from three different power plants were tested for sulfite and thiosulfate contents, in preparation for bioprocessing.

  4. Advanced separation technology for flue gas cleanup. Quarterly technical report No. 7, [October--December 1993

    SciTech Connect

    Bhown, A.S.; Alvarado, D.; Stearns, P.; Ventura, S.; Sirkar, K.K.; Majumdar, S.; Bhaumick, D.

    1994-02-01

    During the third quarter of 1993, we continued work on Tasks 2, 3, 4, 5, and 6. In Task 2, we tested the NO{sub x} sorption capacity of Fe(II)-EDTA and five new SRI-synthesized compounds. We also made a comparison of all the tests so far and have selected two compounds as the leading candidates. In Task 3, we electrochemically converted FE(III) phthalocyanine to its Fe(II) analog and synthesized several metal phthalocyanine compounds. In Task 4, we evaluated 200-fiber HFC modules for SO{sub 2} removal with water and solutions of Na{sub 2}SO{sub 3}. We also connected this HFC unit to the liquor regenerating HFC unit described in Task 6. We continue to observe 95--100% SO{sub 2} removal. In Task 5, we calculated the overall mass transfer coefficients of earlier Fe(II)-EDTA runs for scrubbing NO{sub x}. We also obtained a new module from Hoechst-Celanese and began its characterization. In Task 6, we demonstrated that the spent liquor from Task 4 can be regenerated using a second HFC. The spent liquor was regenerating using DMA with initial recovery of SO{sub 2} up to 52%.

  5. Stable carbon isotope analysis of coprocessing materials: Quarterly technical progress report, October 1--December 31, 1988

    SciTech Connect

    Burke, F.P.; Winschel, R.A.; Lancet, M.S.

    1989-03-01

    Consol R and D will develop and demonstrate stable carbon isotope analysis as a method to quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken will be to develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation will be determined and, if necessary, corrections will be applied to account for it. Precision, accuracy and range of applicability will be defined. The value of accessory analytical techniques will also be assessed. Results achieved this quarter include: feed and product fractions from hydroprocessing bench unit runs at the Kentucky Center for Applied Energy Research (CAER) were received, and samples from a Kentucky tar sand bitumen-only run were analyzed for carbon isotope ratios. Repeat carbon isotope analyses of seven samples from HRI Coprocessing Run 227-53 resulted in improved carbon balances for one run period. Athabasca ASB, Cold Lake ASB and Maya ASB were fractionated by distillation and solubility fractionation to determine the homogeneity of each petroleum with respect to carbon isotope ratios. 9 figs., 2 tabs.

  6. Western Research Institute quarterly technical progress report, July--September 1993

    SciTech Connect

    Not Available

    1993-12-31

    Accomplishments for the quarter are described briefly for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers process studies. Tar sand research is on recycle oil pyrolysis and extraction (ROPE{sup TM}) Process. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: CROW{sup TM} field demonstration with Bell Lumber and Pole; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid state NMR analysis of Mowry formation shale from different sedimentary basins; solid state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  7. Characterization of available coals from Illinois mines. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Demir, I.; Harvey, R.D.; Ruch, R.R.; Chaven, C.; Damberger, H.H.; Steele, J.D.; Frankie, W.T.

    1993-09-01

    The goal of this project is to characterize marketed coals from Illinois mines. The characterization parameters that are being determined include the concentration of all trace and minor elements that are of environmental concern, proximate and ultimate compositions, the pyrite size distribution and maceral association, preliminary froth flotation cleanability, slagging and fouling characteristics relevant to the coal`s behavior in utility boilers, chlorine forms and distribution, and certain gasification and rheology parameters. During the third quarter, the trace element data base on Illinois coals was fully checked and edited. The determinations of the trace and minor element contents and proximate and ultimate compositions of the 34 project samples were largely completed. The pyritic S content, still high in some of the marketed samples, could be reduced further in the samples by advanced physical cleaning techniques. Results from the analysis of all 34 samples for Ba, Hg, Mn, and Zr indicate that these elements are primarily or partly associated with mineral matter and, therefore, their concentrations could also be reduced further in the product coals by advanced physical cleaning techniques. A sequential extraction of Cl from two of the samples revealed that regardless of the initial chlorine concentration of the two coals, the total combined amount of chlorine extracted by water, ammonia, and sodium hydroxide is about the same.

  8. Mild pyrolysis of selectively oxidized coals. [Quarterly] technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Hippo, E.J.; Palmer, S.R.

    1992-10-01

    The primary objective of this study is to investigate the removal organic sulfur from selectively oxidized Illinois coals using mild thermal/chemical processes. Work completed this quarter primarily concerned the investigation of the desulfurization of the selectively oxidized coals using aqueous or alcoholic base mixtures. Model compound studies were initiated. Results were: Levels of desulfurization obtained in this study are at, or very close to, the 90% removal levels required for these coals to be in compliance with the Clean Air Act legislation; Up to 89.4% of the sulfur in the IBC 101 coal and 88.9% of the sulfur in the IBC 106 coal has been removed by combining selective oxidation and alcoholic/base reactions; Overall, selective oxidation pretreatment always led to a lower sulfur product than the untreated sample; Substantial enhancement in the reactivity of the sulfur in the coal has been achieved by the selective oxidation pretreatment; The highest levels of desulfurization obtained so far all involve bases as additives; The water/Na{sub 2}CO{sub 3} combination, was superior than any of the aqueous hydroxide bases. Possible synergistic interactions between the alcohol and the base are suspected. Over 70% of the sulfur in the IBC 101 coal can be removed by performing vacuum pyrolysis on the selectively oxidized coal. Lower sulfur contents are obtained by lowing the pyrolysis pressure.

  9. Mild pyrolysis of selectively oxidized coals. [Quarterly] technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Hippo, E.J.; Palmer, S.R.

    1992-08-01

    The primary objective of this study is to investigate the removal organic sulfur from selectively oxidized Illinois coals using mild thermal/chemical processes. Work completed this quarter primarily concerned establishing the level of selective oxidation required for successful desulfurization in subsequent treatments. Many desulfurization reactions were performed on pretreated as well as unoxidized coal. The results obtained support the following new conclusions: (1) The extent of selective oxidation in the pretreatment step does not effect the level of desulfurization obtained by pyrolysis alone. However this factor was important in the desulfurization obtained with supercritical methanol (SCM)/base. (2) Up to 84% of the sulfur in the IBC 106 coal and 86% of the sulfur in the IBC 106 coal has been removed by combining selective oxidation and SCM/base reactions. (3) Most desulfurizations at 250{degree}C did not produce significant levels of desulfurization. However as the temperature was increased levels of desulfurization increased considerably. (4) Although aqueous base was successful in removing sulfur from both pretreated and untreated samples, the most pronounced desulfurizations were obtained for the untreated samples. This is explained primarily by the dissolution of pyrite in the untreated samples. (5) The best desulfurizations involved SCM and base. Possible synergistic interactions between the methanol and the base are suspected. (6) Overall, selective oxidation pretreatment always led to a lower sulfur product. The severity of desulfurization is reduced by selective oxidation pretreatment.

  10. Biodesulfurization of mild gasification liquid products. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Kilbane, J.J. II

    1993-09-01

    The mild gasification of coal is a promising new technology that can convert coal to multiple products: gas, solid, and liquids. However, the sulfur content and aromaticity of mild gasification liquids limits their usefulness. Biodesulfurization can potentially decrease both sulfur content and aromaticity. The objective of this project is to investigate the feasibility of using biodesulfurization to upgrade the quality of mild gasification liquids. Previously it was shown that the middle distillate (360--440{degrees}F) fraction of liquids derived from the mild gasification of coal could be biodesulfurized. During this quarter it was demonstrated that unfractionated liquids can be biodesulfurized. Moreover, it was demonstrated that lysed cell preparations and freeze-dried cells can be used to biodesulfurize mild coal gasification liquids. The importance of the finding that freeze-dried biocatalysts can be used to biodesulfurize mild coal gasification liquids is that freezedried cells can be produced at one location, stored indefinitely, and then shipped to another location for coal biodesulfurization. Moreover, freeze-dried biocatalysts can be added directly to mild coal gasification liquids with only minimal additions of water so that reactor volumes can be minimized.

  11. National Institute for Petroleum and Energy Research quarterly technical report, January 1--March 31, 1990

    SciTech Connect

    Not Available

    1990-04-19

    Fuels research is discussed in the following areas: (1) Department of Analytical Methodology for Analysis of Heavy Crudes; and (2) thermochemistry and thermophysical properties of organic nitrogen-, and diheteroatom-containing compounds. This quarter for project (1), inspection analysis of five 1000{degree}F+ resids employed in the carbonization study were completed. Also, subfractionation of Cerro Negro neutrals fraction was carried out. Progress on Project 2 consisted of: a thermodynamic analysis for the key hydrogen-consuming steps in the hydrodenitrogenation (HDN) reaction network for quinoline; heat-capacity and enthalpy measurements were completed for the diheteroatom-containing compound, thianthrene. Following completion measurements on thianthrene, the heat capacity of the empty calorimeter was determined, and in another calorimeter, heat-capacity and enthalpy studies were started on benzoxazole. Methods to convert benzoxazole to its low-temperature form were developed, and measurements were completed between 80 and 240 K; and high-temperature heat capacities were determined for phenoxathin and carbazole. 1 ref., 14 figs., 11 tabs.

  12. [Dynamic enhanced recovery techniques]. Quarterly technical report, April 1994--June 1994

    SciTech Connect

    Anderson, R.N.

    1994-07-15

    Global Basins Research Network will perform a field demonstration of their ``Dynamic Enhanced Recovery Technology`` to test the concept that the growth of faults in Eugene Island Block 330 (EI-330 field) are conduits through which producing reservoirs are charged and that enhanced production can be developed by producing directly from the fault zone. The site, operated by Penzoil, is located in 250 feet of water and the productive depth intervals include 4000 to 9000 feet. The field demonstration will be accomplished by drilling and production testing of growth fault systems associated with the EI-330 field. The project utilizes advanced 3-D seismic analysis, geochemical studies, structural and stratigraphic reservoir characterization, reservoir simulation, and compact visualization systems. In this quarterly report, progress reports are presented for the following tasks: Task one--management start-up; Task two--database management; Task three--field demonstration experiment; Task four--reservoir characterization; Task five--modeling; Task six--geochemistry; and Task seven--data integration.

  13. Molecular biological enhancement of coal biodesulfurization. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect

    Kilbane, J.J. II

    1994-06-01

    IGT has developed a microbial culture of Rhodococcus rhodochrous, IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strain`s of microorganisms that possess higher levels of desulfurization activity and therefore wall permit more favorable biodesulfurization process conditions: faster rates, mare complete removal, and smaller reactor size. Strain improvement is the single most important aspect to the development of a practical coal biodesulfurization process and accordingly is the focus of research in this project. Several possible strong promoters have been isolated and are in the process of being analyzed. When these promoters have been characterized for inducibility, strength, transcriptional start sites and other physical properties, they will be placed in front of the desulfurization genes and expression will be monitored. Improved promoter probe vectors have been constructed, allowing a conclusive screen of all putative Rhodococcus promoters. With the improved methodologies in the handling of Rhodococcus RNA, we have begun to gauge promoter expression using Northern blots. During this quarter we have constructed and successfully used a promoter probe vector using the {beta}-galactosidane gene from E. coli. A chromosomal promoter library was constructed upstream from the {beta}-galactosidase gene. Over 200 colonies were isolated that yielded {beta}-galactosidase activity.

  14. ERIP invention 637. Technical progress report 2nd quarter, April 1997--June 1997

    SciTech Connect

    Thacker, G.W.

    1997-07-22

    This technical report describes progress in the development of the Pegasus plow, a stalk and root embedding apparatus. Prototype testing is reported, and includes the addition of precision tillage. Disease data, organic matter, and nitrogen levels results are very briefly described. Progress in marketing is also reported. Current marketing issues include test use by cotton and wheat growers, establishment of dealer relationships, incorporation of design modifications, expansion of marketing activities, and expansion of loan and lease program.

  15. Final Technical Report: Hydrogen Codes and Standards Outreach

    SciTech Connect

    Hall, Karen I.

    2007-05-12

    This project contributed significantly to the development of new codes and standards, both domestically and internationally. The NHA collaborated with codes and standards development organizations to identify technical areas of expertise that would be required to produce the codes and standards that industry and DOE felt were required to facilitate commercialization of hydrogen and fuel cell technologies and infrastructure. NHA staff participated directly in technical committees and working groups where issues could be discussed with the appropriate industry groups. In other cases, the NHA recommended specific industry experts to serve on technical committees and working groups where the need for this specific industry expertise would be on-going, and where this approach was likely to contribute to timely completion of the effort. The project also facilitated dialog between codes and standards development organizations, hydrogen and fuel cell experts, the government and national labs, researchers, code officials, industry associations, as well as the public regarding the timeframes for needed codes and standards, industry consensus on technical issues, procedures for implementing changes, and general principles of hydrogen safety. The project facilitated hands-on learning, as participants in several NHA workshops and technical meetings were able to experience hydrogen vehicles, witness hydrogen refueling demonstrations, see metal hydride storage cartridges in operation, and view other hydrogen energy products.

  16. I-NERI QUARTERLY TECHNICAL PROGRESS REPORT - JANUARY 1 - MARCH 31, 2005

    SciTech Connect

    Chang Oh

    2005-03-01

    The objective of this Korean/United States/laboratory/university collaboration is to develop new advanced computational methods for safety analysis codes for very-high-temperature gas-cooled reactors (VHTGRs) and numerical and experimental validation of these computer codes. The research will improve two well-respected light water reactor transient response codes (RELAP5/ATHENA and MELCOR) in the modeling of molecular diffusion and chemical equilibrium, and to validate these codes against the VHTGR accident data, i.e., air ingress and others from the literature. The VHTGR is intrinsically safe, has a proliferation-resistant fuel cycle, and many advantages relative to light water reactors (LWRs). This study consists of five tasks for FY-03: (1) development of computational methods for the VHTGR, (2) theoretical modification of aforementioned computer codes for molecular diffusion (RELAP5/ATHENA) and modeling CO and CO{sub 2} equilibrium (MELCOR), (3) development of a state-of-the-art methodology for VHTGR neutronic analysis and calculation of accurate power distributions and decay heat deposition rates, (4) reactor cavity cooling system experiment, and (5) graphite oxidation experiment. First quarter of Year 3: (A) Prof. NO and Kim continued Task 1. We first performed the chemical reaction test for the VELUNA pebble oxidation experiment and then the analysis of the air ingress accident for PBMR 268MWt. In the GAMMA analysis, significant rise in pebble temperature was observed at the bottom of the core due to graphite oxidation. Since the air ingress process depends on the vault conditions, further analysis coupled with more detailed vault or containment modeling would be necessary as a future study. (B) Prof. Park continued Task 2. The experiments for SNU-RCCS were continued to provide the experimental data for the validation of the thermal hydraulic code being developed at KAIST and to evaluate the performance of the system using the experiments and system analysis

  17. Direct catalytic decomposition of nitric oxide. Quarterly technical progress report No. 10, January--March 1994

    SciTech Connect

    Flytzani-Stephanopoulos, M.; Sarofim, A.F.; Zhang, Y.; Sun, T.

    1994-06-01

    This project investigates a suitable catalyst system for the direct nitric oxide decomposition in post-combustion gas streams. This process does not use a reductant, such as the ammonia used in the Selective Catalytic Reduction (SCR) of NO{sub x} to nitrogen. Therefore, it is a greatly simplified process basically involving passing the flue gas through a catalytic converter. Catalysts are prepared by incorporating metal cations into zeolite supports according to ion exchange procedures widely used in preparation of metal/zeolite catalysts. Particular emphasis is given in this work on promoted Cu-exchanged zeolites, especially the catalyst systems Mg/Cu-ZSM-5 and Ce/Cu-ZSM-5, which are promising for NO conversion to nitrogen at typical flue gas O{sub 2} and NO levels and over the temperature range of 673--873{degrees}C. The effect of zeolite modification, copper exchange level and catalyst preparation conditions on the catalytic activity are studied in O{sub 2}-free, O{sub 2}-rich gases, as well as wet (2--20% H{sub 2}O) gas streams in a packed-bed microreactor. Characterization of catalysts is performed by XRD, STEM, TEM and ESR. During this quarter it was found that severe steaming (20% H{sub 2}O) of Na-ZSM-5 at temperatures above 600{degrees}C caused partial vitreous glass formation and dealumination. Unpromoted Cu-ZSM-5 catalysts suffer drastic loss of NO decomposition activity in wet gas streams at 500{degrees}C. Activity is partially recovered in dry gas. Copper migration out of the zeolite channels leading to CuO formation has been identified by STEM/EDX. In Ce/Cu-ZSM-5 catalysts the wet gas activity i`s greatly improved. CuO particle formation is less extensive and the dry gas activity is largely recovered upon removal of the water vapor.

  18. Quarterly technical progress report for the period ending June 30, 1984

    SciTech Connect

    Not Available

    1984-10-01

    The Magnetohydrodynamics Program (Component Development and Integration Facility) in Butte, Montana, continued its site preparation for the TRW first-stage combustor installation. In the area of flue gas cleanup, our in-house research program is continuing its investigation into the causes of sorbent attrition in PETC's fluidized-bed copper oxide process for simultaneous SO/sub 2//NO/sub x/ removal. Interwoven with these tests is a series of spray dryer/electrostatic precipitator tests that are being conducted with the cooperation of Wheelabrator-Frye, Inc. This test series was completed this quarter, and the data show that when using a Kentucky coal, Wheelabrator-Frye's electrostatic precipitator provides excellent particulate control efficiency while using a spray dryer for sulfur dioxide removal. A unique project at Carnegie-Mellon University is looking at the concept of integrated environmental control for coal-fired power plants making use of precombustion, combustion, and postcombustion control, including systems for the simultaneous removal of more than one pollutant. The objective of this research is to develop a computer model and assessment for integrated environmental control systems that utilize conventional or advanced systems. The Liquid Phase Methanol Project Development Unit in LaPorte, Texas, was restarted after a successful shakedown run was completed. PETC has recently begun an in-house research project aimed at exploring the basic chemistry of liquefying coal in the presence of water under supercritical conditions. In the Alternative Fuels Technology Program, the Gulf Research and Development Company has completed the preliminary testing phase of its erosion test loop. Their results indicate that when pumping a coal-water slurry fuel through a flow loop, the erosion rate increases as velocity increases, suggesting a well-defined relationship between these two parameters.

  19. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 7, April--June 1993

    SciTech Connect

    Not Available

    1994-01-01

    The purpose of this contract is to develop a process for converting light alkane gases to methyl chloride via oxyhydrochlorination using highly selective, stable catalysts in fixed-bed reactors designed to remove the large amount of heat generated, so as to control the reaction temperature. Further, the objective is to obtain the engineering data base necessary for developing a commercially feasible process and to evaluate the economics of the process. Several key technology areas were evaluated this quarter. The catalyst definition effort focused on the determination of the role of the Li and La promoters that have been found to be useful in enhancing Cu based oxyhydrochlorination of methane catalysts. Initial experiments show that the La acts to provide a much more active catalyst than the Cu only case. The role of the Li is ambiguous at this point. The Li enhances the stability of the La promoted catalyst, but gives only marginal improvement by itself This work will be continued, with additional emphasis on the analysis of the catalysts to determine the structural role that the promoters may play. The separation unit operation definition made significant progress by demonstrating in a laboratory system that a process solvent may be used to remove the product CH{sub 3}Cl from the reactor effluent stream. To date the data has been qualitative, but clear. Work will continue to gather the information possible in the laboratory to help with PDU design. An extensive amount of testing was performed on the chosen process solvent, Multitherm. A comprehensive review of all the thermal testing and associated FTIR, UV/VIS, and physical property testing is included in this report. This work shows that Multitherm should give the desired stability and solubility that are necessary to make the separation unit operation successful.

  20. Syn-Fuel reciprocating charge pump improvement program. Quarterly technical project report, April-June 1984

    SciTech Connect

    Not Available

    1984-01-01

    Major accomplishments during the second quarter of 1984 were completion of the Diaphragm Separation Seal clear liquid testing, and initiation of Phase III Field Testing. Diaphragm operational testing was conducted on a clear water test loop. The test goals were to ensure; mechanical reliability of the Diaphragm Seal, safe operation with simulated component failure, and proper operation of the Diaphragm Buffer Volume Control System. This latter system is essential in controlling the phasing of the diaphragm with its driving plunger. These tests were completed successfully. All operational problems were solved. However, it must be emphasized that the Diaphragm Seal would be damaged by allowing the pump to operate in a cavitating condition for an extended period of time. A change in the Field Test phase of the program was made regarding choice of field test site. There is no operating Syn-Fuel pilot plant capable of inexpensively producing the slurry stream required for the reciprocating pump testing. The Field Tests will now be conducted by first testing the prototype pump and separation seals in an ambient temperature sand water slurry. This will determine resistence to abrasive wear and determine any operation problems at pressure over a lengthy period of time. After successful conclusion of these tests the pump and seals will be operated with a high temperature oil, but without solids, to identify any problems associated with thermal gradients, thermal shock and differential growth. After successful completion of the high temperature clean oil tests the pump will be deemed ready for in-line installation at a designated Syn-Fuel pilot plant. The above approach avoids the expense and complications of a separate hot slurry test loop. It also reduces risk of operational problems while in-line at the pilot plant. 5 figs.

  1. Solvent refined coal (SRC) process. Quarterly technical progress report, January 1980-March 1980. [In process streams

    SciTech Connect

    Not Available

    1981-01-01

    This report summarizes the progress of the Solvent Refined Coal (SRC) project at the SRC Pilot Plant in Fort Lewis, Wahsington, and the Process Development Unit (P-99) in Harmarville, Pennsylvania. After the remaining runs of the slurry preheater survey test program were completed January 14, the Fort Lewis Pilot Plant was shut down to inspect Slurry Preheater B and to insulate the coil for future testing at higher rates of heat flux. Radiographic inspection of the coil showed that the welds at the pressure taps and the immersion thermowells did not meet design specifications. Slurry Preheater A was used during the first 12 days of February while weld repairs and modifications to Slurry Preheater B were completed. Two attempts to complete a material balance run on Powhatan No. 6 Mine coal were attempted but neither was successful. Slurry Preheater B was in service the remainder of the quarter. The start of a series of runs at higher heat flux was delayed because of plugging in both the slurry and the hydrogen flow metering systems. Three baseline runs and three slurry runs of the high heat flux program were completed before the plant was shut down March 12 for repair of the Inert Gas Unit. Attempts to complete a fourth slurry run at high heat flux were unsuccessful because of problems with the coal feed handling and the vortex mix systems. Process Development Unit (P-99) completed three of the four runs designed to study the effect of dissolver L/D ratio. The fourth was under way at the end of the period. SRC yield correlations have been developed that include coal properties as independent variables. A preliminary ranking of coals according to their reactivity in PDU P-99 has been made. Techniques for studying coking phenomenona are now in place.

  2. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending December 31, 1985

    SciTech Connect

    Not Available

    1986-10-01

    Microbial desulfurization is the use of ''bugs'' to remove sulfur from coal. Four projects illustrate the variety of ways in which microbes can be used to desulfurize coal. In the liquefaction program area, a joint effort between PETC and Catalytic, Inc., was established for process-modeling studies of two-stage coal liquefaction experiments at Wilsonville. Researchers at PETC have developed a process model for Integrated Two-Stage Liquefaction and are currently focusing on characterization of an engineering (ASPEN Public) simulator. The goal of this work is to establish realistic process performance indices for different reactor configurations and coal feedstocks based on heat and material balance calculations. In another liquefaction research effort this quarter, Hydrocarbon Research, Inc., started the first bench run under its new contract for research on low-severity, two-stage liquefaction. The run is planned for 29 days and will test nine separate operating conditions. Research in the field of magnetohydrodynamics (MHD) continued at the Avco Everett Research Laboratory (AERL). A significant achievement fiscal year was the first-time operation of the Avco MK VIII channel with the total power controlled and/or consolidated using nonresistive circuitry. An electrostatic precipitator (ESP) was delivered, installed, and tested at the DOE's MHD Coal-Fired Flow Facility at the University of Tennessee Space Institute. Shakedown tests of PETC's Continuous Life-Cycle Copper Oxide Test Facility are complete. This PETC facility will be used to conduct the first integrated process tests of the Fluidized-Bed Copper Oxide Process unit for the control of SO/sub 2/ and NO/sub x/. PETC has recently initiated a project to study the fundamental properties of coal surfaces by measuring the heat of immersion of coal and its associated mineral matter using a Setaram C-80 heat flow calorimeter.

  3. Development of analytical procedures for coprocessing. Quarterly technical progress report, January 1, 1991--March 31, 1991

    SciTech Connect

    Anderson, R.P.

    1991-06-01

    This is the tenth quarterly report under DOE Contract No. DE-AC22-88PC88810, Development of Analytical Procedures for Coprocessing. The overall objective of the contract is to improve understanding of the fundamental chemistry of coprocessing. A primary objective is to evaluate methods to distinguish between compound classes originating from coal versus those originating from petroleum resid while a corollary objective is to provide detailed knowledge on the composition of coprocessing products. This report summarizes work conducted in support of the latter objective in which process development unit samples produced by HRI, Inc. are being subjected to detailed analysis. Coprocessing resid samples selected for detailed analysis were made under constant conditions except for variations in coal concentration or in the coal (New Mexico subbituminous or Texas lignite). The soluble material was separated into strong and weak acids, strong and weak bases, and neutrals. The predominant fraction from the ABN separations was the neutral fraction (67-81%). All of the polar fractions increase with increasing coal concentration. The concentration of saturates in the neutrals is high in a run with 33% subbituminous coal but drops substantially with either increasing coal concentration or the substitution of lignite for subbituminous coal. High temperature gas chromatography showed that both the neutral aromatics fractions and saturates fractions from all of the runs are extremely similar regardless of the coal concentration or coal type. The neutral aromatics fractions were further separated by ring number separation. Chromatograms were again very similar regardless of the initial coal concentration or coal type with most material eluting in the 3-ring to 6-ring region.

  4. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect

    Not Available

    1994-02-01

    Several promising leads that have developed during the course of this program are being evaluated in this phase of the study. These have been selected from those that can be economically evaluated within the time constraints of the program schedule. A detailed plan for evaluating these approaches was formulated. The individual steps that will be evaluated are: (1) Dewaxing of the distillate recycle solvent stream treating either 25% or 100% of the stream. (2) Hydrotreating the dewaxed distillate streams in a downflow fixed bed reactor. (3) Agglomerating the coal using both the 25% and 100% dewaxed-hydrotreated distillate streams. (4) Liquefying the as-received coal and the agglomerated coals using two different Mo-promoted hematite particulate catalysts. (5) Liquefying two different Mo-Fe impregnated coals. (6) Liquefying the two off-agglomerated, Mo-Fe impregnated coals. The effect of the presence of molybdenum in the 1050{degrees}F{sup +} will be determined by making comparisons in both Mo-containing and Mo-free full range V-131B process solvent. The solvents that will be used in this study are the full-range reconstituted Mo-containing V-131B from Run 262E and a Mo-free V-131B made up of 1050{degrees}F{sup +} bottoms from Run 258K V-131B and V-1074 distillate from Run 262E. The series of experiments are described and a chart has been prepared summarizing this series of runs. The plan requires significant exchange of samples between the different participants in the program with the schedule timed for providing the data for economic evaluation within the next quarterly reporting period.

  5. Electrochemical photovoltaic cells. Project 65021 quarterly technical progress report, October 15, 1979-January 15, 1980

    SciTech Connect

    Ang, P.G.P.; Remick, R.J.; Sammells, A.F.

    1980-03-01

    During the third quarter of this program, liquid junction devices based upon the semiconductors MoSe/sub 2/, MoS/sub 2/, GaAs, and CdSe have been evaluated. Lifetime testing of MoSe/sub 2/ and MoS/sub 2/ materials in acidic halogen electrolytes at constant current densities of 5 mA/cm/sup 2/ have shown excellent stability to date. For MoSe/sub 2/ single crystals in the electrolyte 1M HBr + 1M Br/sub 2/, short-circuit currents of 63 mA/cm/sup 2/ were achieved with a power conversion efficiency of 6.7% for 200 mW/cm/sup 2/ xenon light illumination. Transient potentiostatic measurements made on MoSe/sub 2/ in this electrolyte indicated little diffusion control, with exchange currents being of the order of 1 to 10 mA/cm/sup 2/. Good photoresponse of MoS/sub 2/ has been observed in 1M HBr + 1M Br/sub 2/. The performance of the natural crystal is comparable to the performance of a single-crystal MoS/sub 2/ in this electrolyte. CdSe thermally evaporated onto porous titanium gave efficiencies of about 4% with 100 mW/cm/sup 2/ xenon illumination. Experimental work was initiated on the dye sensitization of Fe/sub 2/O/sub 3/ and TiO/sub 2/ materials. Of the twelve dyes evaluated, little enhancement of the photoresponse of these materials was noted. Solid-state photoelectrochemical cells have been fabricated, based upon LiI. Cells of the configuration - cond. glass CdSe/LiI + PbI/sub 2//LiI/LiI + C + PbI/sub 2//cond. glass - were fabricated. Photoresponses up to 150 mV were observed.

  6. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-04-01

    This reports reports the progress/efforts performed on six technical projects: 1. systematic assessment of the state of hazardous waste clean-up technologies; 2. site remediation technologies (SRT):drain- enhanced soil flushing for organic contaminants removal; 3. SRT: in situ bio-remediation of organic contaminants; 4. excavation systems for hazardous waste sites: dust control methods for in-situ nuclear waste handling; 5. chemical destruction of polychlorinated biphenyls; and 6. development of organic sensors: monolayer and multilayer self-assembled films for chemical sensors.

  7. Molecular biological enhancement of coal biodesulfurization. Ninth quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Zupancic, T.J.; Baker, B.; Palmer, D.T.; Fry, I.J.; Tranuero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N.; Chakravanty, L.; Tuovinen, O.H.

    1991-09-13

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  8. Molecular biological enhancement of coal biodesulfurization. Third quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N.

    1990-03-15

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: Clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; Return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; Transfer this pathway into a fast-growing chemolithotrophic bacterium; Conduct a batch-mode optimization/analysis of scale-up variables.

  9. Molecular biological enhancement of coal biodesulfurization. Fourth quarterly technical progress report

    SciTech Connect

    Litchfield, J.H.; Fry, I.; Wyza, R.E.; Palmer, D.T.; Zupancic, T.J.; Conkle, H.N.

    1990-06-14

    The objective of this project is to produce one or more microorganisms capable of removing the organic and inorganic sulfur in coal. The original specific technical objectives of the project were to: clone and characterize the genes encoding the enzymes of the ``4S`` pathway (sulfoxide/sulfone/sulfonate/sulfate) for release of organic sulfur from coal; return multiple copies of genes to the original host to enhance the biodesulfurization activity of that organism; transfer this pathway into a fast-growing chemolithotropic bacterium; conduct a batch-mode optimization/analysis of scale-up variables.

  10. Final Technical Report DOE/GO/13142-1

    SciTech Connect

    Patrick Mulvihill; Quang Nguyen

    2010-09-15

    This research adds to the understanding of the areas of residual starch and biomass conversion to alcohol, by providing data from pilot plant equipment of larger scale than the minimum required to give commercially scalable data. Instrumentation and control is in place to capture the information produced, for economic and technical evaluation. The impact of rheology, recycle streams, and residence time distributions on the technical and economic performance can be assessed. Various processes can be compared technically and economically because the pilot plants are readily modifiable. Several technologies for residual starch yield improvement have been identified, implemented, and patent applications filed. Various biomass-to-ethanol processes have been compared and one selected for technical optimization and commercialization. The technical and economic feasibility of the current simplified biomass conversion process is being confirmed by intensive pilot plant efforts as of this writing. Optimization of the feedstock handling and pretreatment is occurring to increase the alcohol yield above the minimum commercially viable level already demonstrated. Samples of biomass residue and reactor blowdown condensate are being collected to determine the technical and economic performance of the high-water-recycle waste treatment system being considered for the process. The project is of benefit to the public because it is advancing the efforts to achieve low-cost fermentable substrates for conversion to transportation fuels. This process combines the hydrolysis of agricultural residues with novel enzymes and organisms to convert the sugars released to transportation fuels. The process development is taking place at a scale allowing commercial development to proceed at a rapid pace.

  11. Acoustic agglomeration of power plant fly ash: Quarterly technical report, November 5, 1986--February 5, 1987

    SciTech Connect

    Reethof, G.

    1987-03-20

    The objective of this project is to complete the investigations on the use of high intensity acoustic energy to agglomerate micron and submicron sized particulates in fly ash aerosols in order to provide the necessary scientific knowledge and design criteria for the specification of technically and economically viable intermediate flue gas treatment of coal fired power plants. The results of the project are to provide technical and economic information for the better development and evaluation of potential fine particulate control systems. The goals of the proposed work are to further the understanding of certain fundamental processes by means of theoretical and experimental investigations, to include this knowledge in an advanced computerized model of the agglomeration processes. Tests with the two acoustic agglomerators available in Penn State's new High Intensity Acoustics Laboratory will be used to verify the results from the agglomeration simulation. Research work will continue on high power, high efficiency sirens with special emphasis on the nonlinear acoustic phenomena and novel means of significantly increasing siren efficiency. A study will be carried out to evaluate the economics of conventional coal fired power plant clean-up systems using acoustic agglomerators as intermediate flue gas treatment.

  12. Bioconversion of coal derived synthesis gas to liquid fuels. Quarterly technical progress report, 1 April--30 June 1994

    SciTech Connect

    Jain, M.K.; Worden, R.M.; Grethlein, A.

    1994-07-18

    The overall objective of the project is to develop an integrated two-stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: development/isolation of superior strains for fermentation of syngas; evaluation of bioreactor configuration for improved mass transfer of syngas; recovery of carbon and electrons from H{sub 2}-CO{sub 2}; initiation of pervaporation for recovery of solvents; and selection of solid support material for trickle-bed fermentation. Technical progress included the following. Butyrate production was enhanced during H{sub 2}/CO{sub 2} (50/50) batch fermentation. Isolation of CO-utilizing anaerobic strains is in progress. Pressure (15 psig) fermentation was evaluated as a means of increasing CO availability. Polyurethane foam packing material was selected for trickle bed solid support. Cell recycle fermentation on syngas operated for 3 months. Acetate was the primary product at pH 6.8. Trickle bed and gas lift fermentor designs were modified after initial water testing. Pervaporation system was constructed. No alcohol selectivity was shown with the existing membranes during initial start-up.

  13. A Dissemination Model for New Technical Education Programs. Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    The Technical Education Research Center-SW has conceived, tested, and refined a model for disseminating newly developed programs and materials throughout the nation. The model performed successfully in the dissemination of more than 50,000 educational units (modules) of Laser/Electro-Optics Technician (LEOT) materials during a four-year period…

  14. VOCATIONAL-TECHNICAL EDUCATION LEADERSHIP DEVELOPMENT SEMINAR. FINAL REPORT.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Coll. of Education.

    SIXTY VOCATIONAL EDUCATION LEADERS FROM 18 STATES MET FOR A 2-WEEK SEMINAR IN JULY 1967 TO GAIN--(1) EXPERIENCE IN CONFERENCE LEADING AND OTHER LEADERSHIP TECHNIQUES, (2) AN INSIGHT INTO THE POSSIBILITIES AND RESPONSIBILITIES OF LEADERSHIP IN VOCATIONAL-TECHNICAL EDUCATION, (3) AN UNDERSTANDING OF TRENDS AND FUTURE DEVELOPMENTS, AND (4) AN INSIGHT…

  15. Ad Hoc Technical Committee for Vocational Agriculture. Final Report.

    ERIC Educational Resources Information Center

    Indiana State Commission on Vocational and Technical Education, Indianapolis.

    The goal of the Ad Hoc Technical Committee for Vocational Agriculture in Indiana was to develop a model and recommendations that would result in improved student knowledge and skills for the present and future, address labor market needs, and promote program excellence at all levels of education. The committee developed recommendations for…

  16. Onondaga Lake, New York. Technical annex. Final report

    SciTech Connect

    Not Available

    1992-03-01

    This technical report on Onondaga Lake, New York has compiled existing data to determine which water quality and environmental enhancements are advisable. The report identifies sediment and water quality problems and needs, potential clean-up methodologies, fisheries and fish habitat improvements, and water quality improvements.

  17. Technical report, Onondaga Lake, New York. Main report. Final report

    SciTech Connect

    Not Available

    1992-01-01

    This technical report on Onondaga Lake, New York has compiled existing data to determine which water quality and environmental enhancements are advisable. The report identifies sediment and water quality problems and needs, potential clean-up methodologies, fisheries and fish habitat improvements, and water quality improvements.

  18. Final report on technical work accomplished under contract NASw-2953

    NASA Technical Reports Server (NTRS)

    Fredricks, R. W.

    1977-01-01

    A report is given on the technical work accomplished in the area of plasma physics. The subjects covered are: (1) oblique whistler instabilities, (2) current-limited electron beam injection, (3) three-dimensional ion sound turbulence, (4) theoretical aspects of sounder antenna operation and (5) whistler modes in bow shock structures.

  19. Technical Theatre Project. Final Report 1984-85.

    ERIC Educational Resources Information Center

    Meyer, George

    A project was conducted to enhance the vocational training program of approximately 300 students enrolled in carpentry/general building construction, electrical/electronics, and cosmetology courses by introducing them to possible career opportunities available in the technical theater field. The program was conducted through Somerset County and…

  20. Modular Radioisotope Thermoelectric Generator (RTG) Program. Final technical report

    SciTech Connect

    Not Available

    1992-12-31

    Section 2.0 of this report summarizes the MOD-RTG reference flight design, and Section 3.0 discusses the Ground Demonstration System design. Multicouple technology development is discussed in Section 4.0, and Section 5.0 lists all published technical papers prepared during the course of the contract.

  1. Word Lists to Simplify Vocabulary of Technical Information. Final Report.

    ERIC Educational Resources Information Center

    Kincaid, J. Peter; And Others

    This report describes eight word lists developed for use as part of the computer readability editing system (CRES), which was developed to serve as an author's aid in improving the ease of comprehending Navy technical manuals and training materials. The system has features which flag uncommon and misspelled words and long sentences, suggest simple…

  2. An investigation of the mechanism of IGA/SCC of alloy 600 in corrosion accelerating heated crevice environments. Quarterly Technical Progress Report No. 4 for the period May 1, 2000 through July 31, 2000

    SciTech Connect

    Dr. Jesse Lumsden

    2000-07-31

    OAK-B135 An investigation of the mechanism of IGA/SCC of alloy 600 in corrosion accelerating heated crevice environments. Quarterly Technical Progress Report No. 4 for the period May 1, 2000 through July 31, 2000

  3. Separation of flue-gas scrubber sludge into marketable products. Third year, second quarterly technical progress report, December 1, 1995--February 29, 1996 (Quarter {number_sign}10)

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.

    1996-03-01

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of. Knowledge of scrubber sludge characteristics is necessary for the development of purification technologies which will make it possible to directly utilize scrubber sludges rather than landfilling them. This project is studying the use of minimal-reagent froth flotation as the purification process, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified calcium sulfite/gypsum product. In the current quarter, research was focused on two different areas. The first part of this quarter the optimization of the feed slurry percent solids for the two inch water-only cyclone was completed. The optimization of the vortex finder, spigot diameter and inlet feed pressure was completed in the previous quarter. The second part of this quarter began the investigation of why water-only cycloning helps froth flotation performance. The hypothesis is that water-only cycloning scrubs the surface of the unreacted limestone. This scrubbing effect provides a clean calcium carbonate surface, which results in better flotation reagent adsorption. This study used the scanning electron microscope to investigate the surface of the unreacted limestone particles.

  4. Reliability centered maintenance (RCM) technical reference for substations. Final report

    SciTech Connect

    Schwan, C.A.

    1996-06-01

    The document is a technical reference for individuals performing Reliability Centered Maintenance (RCM) evaluations of substation systems and equipment. It contains helpful hints and insights for the RCM analyst to use in completing a study. The bulk of the guidance contained herein is centered around the use of a function-based approach to RCM, since this is akin to the original approach to RCM that was developed in the air transport industry. An alternate approach to completing RCM studies is also suggested. Regardless of te technical approach employed, the data and guidance of this reference can be successfully applied to support efficiency in completing RCM studies and consistency of study results. To ensure successful application, the technical reference explains how to use the information and contains a technical example. The technical example encompasses a complete, yet abbreviated, RCM study of a small system. This provides the user with an understanding of the RCM process and how the reference materials can be used to support completion of the process. In the guidance on usage of the information, frequent references are made to more detailed information in the document. In addition, a summary of key information is provided at the end of each section as a review of the most important information for the user. The reference materials of this document establish standards in terminology and provide expert data regarding equipment types, failure modes, failure causes and preventive maintenance actions. The information is intended to be useful for RCM activities conducted with or without the aid of a software program. A guide to better understanding of maintenance technologies is also provided.

  5. Matching Community and Technical College Professional/Technical Education Capacity to Employer Demand. Final Report.

    ERIC Educational Resources Information Center

    Sommers, Paul; Heg, Deena

    A project was conducted to improve the state of Washington's community and technical college system by developing and using an improved occupational forecasting system to assess and respond to education and training needs. First, long-term occupational forecast data from Washington's Employment Security Department were matched with technical and…

  6. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, June 23--September 21, 1994

    SciTech Connect

    McCormick, C.; Hester, R.

    1994-12-31

    Summaries are given on the technical progress on three tasks of this project. Monomer and polymer synthesis discusses the preparation of 1(7-aminoheptyloxymethyl)naphthalene and poly(maleic anhydride-alt-ethyl vinyl ether). Task 2, Characterization of molecular structure, discusses terpolymer solution preparation, UV analysis, fluorescence analysis, low angle laser light scattering, and viscometry. The paper discusses the effects of hydrophobic groups, the effect of pH, the effect of electrolyte addition, and photophysical studies. Task 3, Solution properties, describes the factorial experimental design for characterizing polymer solutions by light scattering, the light scattering test model, orthogonal factorial test design, linear regression in coded space, confidence level for coded space test mode coefficients, coefficients of the real space test model, and surface analysis of the model equations.

  7. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, April 1994--June 1994

    SciTech Connect

    1994-09-01

    The technical approach of the contract has been expanded to provide additional economic evaluation of related process options. Additional data will be developed in the following areas to facilitate these evaluations. The effect of several modified pretreatments on liquefaction will be investigated. These include catalytic and thermal dewaxing of distillate solvents, the effect that adding light resid to distillate solvent has on hydrotreating and dewaxing, the liquefaction behavior of dense-media separated low-rank coals, and methods of selectively removing oxygen from low-rank coals. Additional chemical, physical, and performance information on improved first-stage catalysts will be developed. Upgrading of ash concentrate to recover catalysts and improve low-rank coals will be assessed. The conversion of residual fractions to distillate by hydropyrolysis will be evaluated. The economic impact of these processes will be determined.

  8. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Not Available

    1993-08-01

    Section 1 contains a report of the progress by the University of Kentucky Center for Applied Energy Research on the following tasks: laboratory support (liquefaction in dewaxed and hydrotreated dewaxed solvent); CO pretreatment (effect of process variables on CO pretreatment, CO-pretreated product characterization, and liquefaction results); and iron based dispersed catalysts (production, characterization and testing of sulfated hematites and reaction model development). Section 2 contains a progress report by CONSOL, Inc. on the following tasks: laboratory support; pretreatment work on dewaxing; pretreatment work on agglomeration; and economic evaluation. Progress by Sandia National Laboratories is reported in Section 3 on the following: laboratory support (TGA methods) and solvent pretreatment (coker tar hydrogenation and coal liquefaction results). Section 4 gives a preliminary technical assessment by LDP Associates on the following: baseline economic assessment; assessment of improved coal conversion; and fluid coking.

  9. Pipeline gas demonstration plant, Phase I. Quarterly technical progress report for September 1980-November 1980

    SciTech Connect

    Eby, R.J.

    1980-12-01

    Work was performed in the following tasks in Phase I of the Pipeline Gas Demonstration Plant Program: Site Evaluation and Selection; Demonstration Plant Environmental Analysis; Feedstock Plans, Licenses, Permits and Easements; Demonstration Plant Definitive Design; Construction Planning; Economic Reassessment; Technical Support; Long Lead Procurement List; and Project Management. The Preliminary Construction Schedule was delivered to the Government on October 3, 1980, constituting an early delivery of the construction schedule called for in the scope of work for Task VI. The major work activity continues to be the effort in Task VI, Demonstration Plant Definitive Design, with two 30% Design Review meetings being held with the Government. Work in Task VII, Construction Planning, was initiated. Work has progressed satisfactorily in the other tasks in support of the Demonstration Plant Program. A Cost Change Proposal was submitted because of an increase in the scope of work and an extension of the schedule for Phase I to 47 months.

  10. Coal combustion: Effect of process conditions on char reactivity. Sixth quarterly technical report, December 1, 1992--March 1, 1993

    SciTech Connect

    Zygourakis, K.

    1993-05-01

    During the past quarter, we developed the image analysis procedure for obtaining the transient swelling patterns of pyrolyzing coal particles. Pyrolysis experiments were videotaped and a sequence of digital images was acquired from each experiment tape at rates of 1.5 to 6 images per second. These digital images were then processed to measure the size and shape of pyrolyzing particles as a function of pyrolysis temperature. A systematic analysis of the transient swelling patterns showed significant differences among runs carried out at different heating rates. At low heating rates (1{degree}C/s), the particles swelled rapidly to their maximum size. This initial swelling was followed by a ``bubbling`` phase during which the particles underwent a rapid sequence of expansions and contractions as bubbles of volatiles grew in the particle interior and broke through their surface. The particle size then decreased to show a small final swelling. At higher heating rates, the particle size decreased significantly during the ``bubbling`` phase and the final swelling was higher. A systematic comparison of particle swelling and devolatilization rates is also presented.

  11. Bench-scale testing of the micronized magnetite process. Fourth quarterly technical progress report, April--June 1995

    SciTech Connect

    1995-08-10

    The main accomplishments of Custom Coals and the project subcontractors, during this period, included: continued purchase of small equipment and supplies for the circuit; completed the circuit commissioning task; procured one lot of PennMag Grade-K and one lot Grade-L magnetite; completed work on analytical investigations; completed Classifying Circuit Component Testing on Pittsburgh No. 8 coal; completed the final Heavy-Media cyclone component testing on the Pittsburgh No. 8 seam using Grade-K and Grade-L magnetites; continued QA/QC tests on wet screening, wet splitting, Marcy Balance, and reproducibility checks on component tests and component test samples; and completed the magnetite recovery circuit component testing with and without screens using the Grade-K magnetite and the Pittsburgh No. 8 coal seam. This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the above mentioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  12. Technical Assistance for Southwest Solar Technologies Inc. Final Report

    SciTech Connect

    Munoz-Ramos, Karina; Brainard, James Robert; McIntyre, Annie; Bauer, Stephen J.; Akin, Lili A.; Nicol, Katherine; Hayden, Herb

    2012-07-01

    Southwest Solar Technologies Inc. is constructing a Solar-Fuel Hybrid Turbine energy system. This innovative energy system combines solar thermal energy with compressed air energy storage and natural gas fuel backup capability to provide firm, non-intermittent power. In addition, the energy system will have very little impact on the environment since, unlike other Concentrated Solar Power (CSP) technologies, it requires minimal water. In 2008 Southwest Solar Technologies received a Solar America Showcase award from the Department of Energy for Technical Assistance from Sandia National Laboratories. This report details the work performed as part of the Solar America Showcase award for Southwest Solar Technologies. After many meetings and visits between Sandia National Labs and Southwest Solar Technologies, several tasks were identified as part of the Technical Assistance and the analysis and results for these are included here.

  13. Composite quarterly technical report long-term high-level-waste technology, October-December 1981

    SciTech Connect

    Cornman, W.R.

    1982-06-01

    This document summarizes work performed at participating sites on the immobilization of high-level wastes from the chemical reprocessing of reactor fuels. The plan is to develop waste form alternatives for each of the three DOE sites (SRP, ICPP, and Hanford). Progress is reported in the following areas: waste preparation; fixation in glass, concrete, tailored ceramics, and coated particles; process and equipment development; and final handling. 12 figures, 19 tables. (DLC)

  14. HAMS (Hypoxia, Monitoring, and Mitigation System) II Quarterly Progress Report (Technical and Financial)

    DTIC Science & Technology

    2015-04-10

    21 3.4 Task 4 (Option) – Preliminary Human Testing of SpO2 Sensor and Electronics ......................... 21 3.5 Task 5...Option) – Final Human Testing of SpO2 Sensor and Electronics .................................... 21 ….……. Document No.: CDRL A001-2...three optional task: 1. Initial Prototypes 2. Design and Development Evolution 3. Production Ready HW/SW (Option) 4. Preliminary Human Testing of

  15. Molten-Caustic-Leaching System Integration Project. Technical progress report, quarter ending March 27, 1992

    SciTech Connect

    Not Available

    1992-06-01

    The objective of this project is to modify an existing molten-caustic-leaching (MCL) system for coal upgrading so that it operates in an integrated continuous manner. The overall strategy consists of several tasks, but only a few are discussed here. Tasks discussed are: MCL circuit component testing (coal sample procurement), final circuit modifications for integrated operation, coal product handling/waste disposal (coal inventory disposal, MCL solid waste disposal), project management and control. (VC)

  16. I-NERI Quarterly Technical Report (April 1 to June 30, 2005)

    SciTech Connect

    Chang Oh; Prof. Hee Cheon NO; Prof. John Lee; Prof. William Martin; Prof. James Holloway; Prof. Jong Kim; Prof. Goon Cherl Park

    2005-06-01

    The objective of this Korean/United States/laboratory/university collaboration is to develop new advanced computational methods for safety analysis codes for very-high-temperature gas-cooled reactors (VHTGRs) and numerical and experimental validation of these computer codes. This study consists of five tasks for FY-03: (1) development of computational methods for the VHTGR, (2) theoretical modification of aforementioned computer codes for molecular diffusion (RELAP5/ATHENA) and modeling CO and CO2 equilibrium (MELCOR), (3) development of a state-of-the-art methodology for VHTGR neutronic analysis and calculation of accurate power distributions and decay heat deposition rates, (4) reactor cavity cooling system experiment, and (5) graphite oxidation experiment. Second quarter of Year 3: (A) Prof. NO and Kim continued Task 1. As a further plant application of GAMMA code, we conducted two analyses: IAEA GT-MHR benchmark calculation for LPCC and air ingress analysis for PMR 600MWt. The GAMMA code shows comparable peak fuel temperature trend to those of other country codes. The analysis results for air ingress show much different trend from that of previous PBR analysis: later onset of natural circulation and less significant rise in graphite temperature. (B) Prof. Park continued Task 2. We have designed new separate effect test device having same heat transfer area and different diameter and total number of U-bands of air cooling pipe. New design has smaller pressure drop in the air cooling pipe than the previous one as designed with larger diameter and less number of U-bands. With the device, additional experiments have been performed to obtain temperature distributions of the water tank, the surface and the center of cooling pipe on axis. The results will be used to optimize the design of SNU-RCCS. (C) Prof. NO continued Task 3. The experimental work of air ingress is going on without any concern: With nuclear graphite IG-110, various kinetic parameters and reaction

  17. Final Scientific and Technical Report State and Regional Biomass Partnerships

    SciTech Connect

    Handley, Rick; Stubbs, Anne D.

    2008-12-29

    The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

  18. Technical oversight for installation of TNX piezometers, Final Report

    SciTech Connect

    Pidcoe, W.W. Jr.

    1997-06-05

    Science Applications International Corporation was tasked under subcontract C002025P to provide technical oversight for the drilling of one pilot borehole, and the drilling and installation of five piezometers in the TNX Area Swamp. The work was performed in accordance with the Statement of Work in Task Order Proposal No. ER39-129 dated August 6, 1996. This report describes the activities associated with the performance of the task.

  19. Advanced coal liquefaction. Final quarterly report, January 1, 1996--March 31, 1996

    SciTech Connect

    1997-06-01

    Coal liquid upgrading using compound No. 9, 4-(1-naphthymethyl) bibenzyl, as a model was performed in a catalytic membrane reactor in this quarter. Membrane packed with granular catalyst synthesized from Si-CVD coatedy-Al{sub 2}O{sub 3} was used as a reactor. A control was also performed using the same reactor under a packed-bed operation mode. About 52% conversion of compound No. 9 was obtained in a packed-bed at 400{degrees}C and 200 psi. Under a similar operating condition, compound No. 9 was completely decomposed in the catalytic membrane reactor. The results offer the experimental evidence of enhanced upgrading efficiency of upgrading coal liquid using a membrane reactor. A similar study will be duplicated before the end of the contract.

  20. Methyl chloride via oxyhydrochlorination of methane. Final quarterly technical report, October 1, 1991--December 31, 1991

    SciTech Connect

    Naasz, B.

    1992-02-10

    Purpose of this contract is to develop a process for converting light alkane gases to methyl chloride via oxyhydrochlorination using highly selective, stable catalysts (Cu) in either fixed-bed or fluid-bed reactors. Catalyst development and micro-packed bed screening studies are underway. Engineering support for pre-design on the miniplant is struggling with the unit operations problem associated with separation of products from unreacted methane.

  1. TIDD PFBC Demonstration Project. First quarterly technical progress report, CY 1993

    SciTech Connect

    Not Available

    1993-04-01

    This is the 24th Technical Progress Report submitted in connection with the cooperative agreement between the DOE and the Ohio Power Company for the Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Plant. This report covers the period from January 1, 1993 to March 31, 1993. The following activities are reported: The unit was operated for a total of 331 hours (including gas turbine air prewarming). There were three gas turbine starts, five bed preheater starts, and two operating periods with coal fire. The peak gross output of 61 MWH was achieved for the period of 2200 to 2300 hours on January 20, 1993. The longest coal fire was 273 hours beginning at 0605 hours on January 20, 1993; total gross generation was 13,453 MWH, and coal consumption was 6,481 tons; The sorbent fines injection system was installed and is ready for use; A totally new secondary ash removal system was designed; New sparge ducts are being fabricated to replace the existing ducts; The plant was found to be in compliance with applicable Ohio regulation after an EPA inspection; and The unit has been out of service since early February due to the failure of the gas turbine. Replacement parts are being fabricated

  2. Advanced emissions control development program. Quarterly technical progress report No. 9, October 1--December 31, 1996

    SciTech Connect

    Evans, A.P.

    1996-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U.S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emission compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emission control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  3. Jointly sponsored research program quarterly technical progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-08-01

    Progress reports are presented for the following tasks: Development and demonstration of a practical electric downhole steam generator for thermal recovery of heavy oil and tar; wetting behavior of selected crude oil/brine/rock systems; coal gasification, power generation, and product market study; impact of leachate from clean coal technology waste on the stability of clay liners; investigation of coprocessing of heavy oil, automobile shredder residue, and coal; injection into coal seams for simultaneous CO{sub 2} mitigation and enhanced recovery of coalbed methane; optimization of carbonizer operations in the FMC coke process; chemical sensor and field screening technology development; demonstration of the Koppelman ``Series C`` Power River Basin coal as feed; remote chemical sensor development; market assessment and technical feasibility study of PFBC ash use; solid-state NMR analysis and interpretation of naturally and artificially matured kerogens; Crow{trademark} field demonstration with Bell Lumber and Pole; ``B`` series pilot plant tests; and in-situ treatment of manufactured gas plant contaminated soils demonstration program.

  4. Tidd PFBC Demonstration Project fourth quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This is the 23rd technical progress report submitted to the Department of Energy in connection with the cooperative agreement between the DOE and the Ohio Power Company for the Tidd PFBC Demonstration Plant. This report covers the period from October 1, 1992 to December 31, 1992. Major activities during this period involve: (1) The unit was operated for a total of 714 hours (including gas turbine air prewarming). There were seven gas turbine starts, seven bed preheater starts, and seven operating periods with coal fire. The peak gross output of 64 MWH was achieved for the period of 1000 to 1100 hours on November 23, 1992. The longest coal fire was 285 hours beginning at 1211 hours on November 25, 1992. (2) Total gross generation was 24,643, and coal consumption was 11,900 tons. (3) The hot gas clean up system was commissioned. (4) Active end fluidization system to address sparge duct cracking and deformation problem was jointly initiated by ABB carbon, B&W and AEPSC. (5) All testing continued using Plum Run dolomite. This approach was taken as a conservative means to avoid sintering and unit trips which were encountered during the previous two start-ups in September using limestone and (6) monitoring of solid, liquid and gaseous waste streams, as detailed in the operations phase monitoring requirements in the EMP, were performed.

  5. Tidd PFBC Demonstration Project fourth quarterly technical progress report, CY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This is the 23rd technical progress report submitted to the Department of Energy in connection with the cooperative agreement between the DOE and the Ohio Power Company for the Tidd PFBC Demonstration Plant. This report covers the period from October 1, 1992 to December 31, 1992. Major activities during this period involve: (1) The unit was operated for a total of 714 hours (including gas turbine air prewarming). There were seven gas turbine starts, seven bed preheater starts, and seven operating periods with coal fire. The peak gross output of 64 MWH was achieved for the period of 1000 to 1100 hours on November 23, 1992. The longest coal fire was 285 hours beginning at 1211 hours on November 25, 1992. (2) Total gross generation was 24,643, and coal consumption was 11,900 tons. (3) The hot gas clean up system was commissioned. (4) Active end fluidization system to address sparge duct cracking and deformation problem was jointly initiated by ABB carbon, B W and AEPSC. (5) All testing continued using Plum Run dolomite. This approach was taken as a conservative means to avoid sintering and unit trips which were encountered during the previous two start-ups in September using limestone and (6) monitoring of solid, liquid and gaseous waste streams, as detailed in the operations phase monitoring requirements in the EMP, were performed.

  6. Soot formation in synthetic-fuel droplets. Second quarterly technical progress report

    SciTech Connect

    England, G.; Kramlich, J.; Payne, R.

    1981-04-01

    The main objective of this program is to provide detailed information on methods of minimizing soot formation during synthetic liquid fuel combustion under conditions which minimize the formation of nitric oxides. The program comprises two main tasks, Fuel Screening Studies, and Flame Studies. The purpose of the first task is to investigate the impact of fuel properties on particulate production, to establish the importance of droplet size and examine atomizer effects, and to develop techniques for surrogate fuels production. In the second task, fundamental details of soot formation from synfuel droplet combustion will be investigated in variable slip velocity configurations. This report describes technical progress during the second three-month period of program effort (January-March 1981). During this period attention has continued to be focussed on the design, construction and commissioning of experimental systems. The Task 1 tunnel furnace modification was completed and made operational, and some preliminary fuel screening studies were carried out. Similarly, construction of the controlled flow droplet reactor was completed and efforts directed towards the design and testing of diagnostic systems. Details of this work are discussed.

  7. Advanced Coal Conversion Process Demonstration Project. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    1996-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1994, through March 31, 1994. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  8. Upgraded coal interest group. First quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Weber, W.; Lebowitz, H.E.

    1994-12-31

    The interest group got under way effective January 1, 1994, with nine utility members, EPRI, Bechtel, and the Illinois Clean Coal Institute. DOE participation was effective October 1, 1994. The first meeting was held on April 22, 1994 in Springfield, Illinois and the second meeting was held on August 10--11, 1994 at Johnstown, Pennsylvania. Technical reviews were prepared in several areas, including the following: status of low rank coal upgrading, advanced physical coal cleaning, organic sulfur removal from coal, handling of fine coal, combustion of coal water slurries. It was concluded that, for bituminous coals, processing of fines from coal cleaning plants or impoundments was going to be less costly than processing of coal, since the fines were intrinsically worth less and advanced upgrading technologies require fine coal. Penelec reported on benefits of NOX reductions when burning slurry fuels. Project work was authorized in the following areas: Availability of fines (CQ, Inc.), Engineering evaluations (Bechtel), and Evaluation of slurry formulation and combustion demonstrations (EER/MATS). The first project was completed.

  9. Thermal treatment for chlorine removal from coal. [Quarterly] technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Muchmore, C.B.; Hesketh, H.E.; Chen, Han Lin

    1992-10-01

    It is the goal of this research to provide the technical basis for development of a process to remove chlorine from coal prior to combustion, based on a thermal treatment process. Under the reaction conditions employed, the behavior of other trace elements of concern will also be evaluated. The recovery of the chlorine removed from the coal as a marketable byproduct, calcium chloride suitable for use as a road deicer, is also being investigated using a novel absorption/crystallization device. A value of 6.29 hr{sup {minus}1} was determined for the dechlorination rate constant of IBC-109 coal at 385{degrees}C, and an activation energy of 34.7 kcal/mol was obtained from an Arrhenius plot over the temperature range of 300--385{degrees}C. A significant removal of chlorine (84.3%) was attained while retaining 92% of the energy of the coal in the solid product by preheating the coal at lower temperatures prior to a six-minute reaction at 385{degrees}C. Volatiles lost during the thermal dechlorination may be recovered for their heating value, and/or as a source of chemical feedstocks; this aspect will require further study, but it appears that the overall energy balance on the system should prove to be favorable. The design of the bench scale fluidized bed thermal dechlorination unit has been completed, and components ordered. Operation of this system should provide the information required for further scale-up of the process.

  10. Jointly sponsored research program. Quarterly technical progress report, October--December 1993

    SciTech Connect

    Deans, H.A.

    1994-05-01

    This is a progress report on work performed by Western Research Institute for the U.S. DOE, Morgantown Energy Technology Center in the period October- December 1993. Tasks addressed include: development and demonstration of a practical electric downhole steam generator for thermal recovery of heavy oil and tar; wetting behavior of selected crude oil/brine/rock systems; coal gasification, power generation, and product market study; the impact of leachate from clean coal technology waste on the stability of clay liners; investigation of coprocessing of heavy oil, automobile shredder residue, and coal; injection into coal seams for simultaneous CO{sub 2} mitigation and enhanced recovery of coalbed methane; optimization of carbonizer operations in the FMC coke process; chemical sensor and field screening technology development; demonstration of the koppelman {open_quotes}series c{close_quotes} process using a batch test unit with Powder River Basin coal as feed; remote chemical sensor development; market assessment and technical feasibility study of PFBC ash use; solid-state NMR analysis and interpretation of naturally and artificially matured kerogens; Crow{trademark} field demonstration with bell lumber and pole; {open_quotes}B{close_quotes} series pilot plant tests; in situ treatment of manufactured gas plant contaminated soils demonstration program.

  11. Pulverized coal firing of aluminum melting furnaces. Quarterly technical progress report, July 1-September 30, 1979

    SciTech Connect

    West, C E

    1980-09-01

    The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 pound (coal) per hour staged slagging cyclone combustor (SSCC) attached to a 7-ft diameter aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 pound capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time.

  12. National Evaluation of the Comprehensive Technical Assistance Centers. Final Report. NCEE 2011-4031

    ERIC Educational Resources Information Center

    Turnbull, Brenda J.; White, Richard N.; Sinclair, Elizabeth; Riley, Derek L.; Pistorino, Carol

    2011-01-01

    This final report presents findings from a multi-year evaluation of the Comprehensive Technical Assistance Centers, a federally funded program that provides technical assistance to states in connection with the Elementary and Secondary Education Act, as reauthorized by the No Child Left Behind (NCLB) Act of 2001. With the redesign of the Center…

  13. National Evaluation of the Comprehensive Technical Assistance Centers. Final Report. Executive Summary. NCEE 2011-4032

    ERIC Educational Resources Information Center

    Turnbull, Brenda J.; White, Richard N.; Sinclair, Elizabeth; Riley, Derek L.; Pistorino, Carol

    2011-01-01

    This final report presents findings from a multi-year evaluation of the Comprehensive Technical Assistance Centers, a federally funded program that provides technical assistance to states in connection with the Elementary and Secondary Education Act, as reauthorized by the No Child Left Behind (NCLB) Act of 2001. With the redesign of the Center…

  14. Final Technical Report_Clean Energy Program_SLC-SELF

    SciTech Connect

    Henderson, Glenn; Coward, Doug

    2014-01-22

    This is the Final Technical Report for DOE's Energy Efficiency and Conservation Block Grant, Award No. DE-EE0003813, submitted by St. Lucie County, FL (prime recipient) and the Solar and Energy Loan Fund (SELF), the program's third-party administrator. SELF is a 501(c)(3) and a certified Community Development Financial Institution (CDFI). SELF is a community-based lending organization that operates the Clean Energy Loan Program, which focuses on improving the overall quality of life of underserved populations in Florida with an emphasis on home energy improvements and cost-effective renewable energy alternatives. SELF was launched in 2010 through the creation of the non-profit organization and with a $2.9 million Energy Efficiency and Conservation Block (EECBG) grant from the U.S. Department of Energy (DOE). SELF has its main office and headquarters in St. Lucie County, in the region known as the Treasure Coast in East-Central Florida. St. Lucie County received funding to create SELF as an independent non-profit institution, outside the control of local government. This was important for SELF to create its identity as an integral part of the business community and to help in its quest to become a Community Development Financial Institution (CDFI). This goal was accomplished in 2013, allowing SELF to focus on its mission to increase energy savings while serving markets that have struggled to find affordable financial assistance. These homeowners are most impacted by high energy costs. Energy costs are a disproportionate percentage of household expenses for low to moderate income (LMI) households. Electricity costs have been steadily rising in Florida by nearly 5% per year. Housing in LMI neighborhoods often includes older inefficient structures that further exacerbate the problem. Despite the many available clean energy solutions, most LMI property owners do not have the disposable income or equity in their homes necessary to afford the high upfront cost of energy

  15. University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report

    SciTech Connect

    Dorland, William

    2014-11-18

    The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA were the host universities. This final technical report describes the physics results from the UMD CMPD.

  16. Predoctoral training grant in the area of physical sciences. Final technical report, October 1989--October 1993

    SciTech Connect

    Venkateswarlu, P.

    1993-11-01

    This final technical report represents the results of the research in nonlinear optics (optical phase conjugation) obtained by five (5) predoctoral students in the department of physics at Alabama Agricultural and Mechanical University (AAMU).

  17. 21st Century Locomotive Technology: Quarterly Technical Status Report 9 DOE/AL68284-TSR09

    SciTech Connect

    Lembit Salasoo; Paul Houpt; Jennifer Topinka; Anthony Furman

    2005-06-29

    Locomotive-scale single cylinder engine with common rail fuel injection data was gathered to explore the fuel consumption and particulate matter emissions entitlement. A structured experiment on thermal spray application of polymer based compressor abradables was begun. Turbine performance improvements were found due to metallic abradables coatings. Hybrid energy storage battery ripple current and long-term cycling tests have been performed. Final track test of advanced energy management system was performed. Fuel optimization computational methods have been enhanced, and a prototype real-time graphic interface developed.

  18. [Dynamic enhanced recovery technologies]. Quarterly technical report, August 1992--October 1993

    SciTech Connect

    Anderson, R.N.

    1993-10-15

    This paper has presented the investigation of the mechanism of geopressure occurrence, the transition of elastic properties from the hydrostatic pressured formation to the geopressured formation, and finally, a novel seismic amplitude analysis technique to map the top-of-geopresure surface. The successful application of our new technique to the Pleistocene, offshore Louisiana, Gulf of Mexico has again demonstrated that seismic attributes analyses are of importantance in the hydrocarbon exploration. There are three parts in this paper corresponding to the above discussed topics: Part I discusses mechanisms of geopressuring, and the effects of changing porosity, pressure, and fluid saturation on the elastic properties; Part II investigates the controlling factors in the geopressure transition zone, their seismic responses, and theoretical derivations of our new prediction method; and Part III demonstrates the application of the proposed method to the Pleistocene, Offshore Louisiana, Gulf of Mexico, the prediction discrpepancy between the seismic predicted top-of-geopressure and that dericed from 145 well logs, and finally, the importance of this hydrodynamic surface.

  19. Model assessment for delineating wellhead protection areas. Technical report (Final)

    SciTech Connect

    Van der Heijde, P.; Beljin, M.S.

    1988-05-01

    This report offers a compilation of ground-water computer flow models potentially applicable to Wellhead Protection Areas (WHPA) delineation. EPA's Office of Ground-Water Protection prepared the document in a continuing effort to provide technical assistance to State and local Wellhead Protection Programs based on requirements of the Safe Drinking Water act (SDWA) as amended in 1986. The criteria used to select and evaluate the applicable analytical and numerical models for WHPA delineation is explained in the document and informative reference material of each of 64 models is listed.

  20. FINAL TECHNICAL REPORT: 20% Wind by 2030: Overcoming the Challenges

    SciTech Connect

    Tom Kaiserski; Dan Lloyd

    2012-02-28

    The funds allocated through the Wind Powering America (WPA) grant were utilized by the State of Montana to support broad outreach activities communicating the benefits and opportunities of increased wind energy and transmission development. The challenges to increased wind development were also clearly communicated with the understanding that a clearer comprehension of the challenges would be beneficial in overcoming the obstacles to further development. The ultimate purpose of these activities was to foster the increased development of Montana's rich wind resources through increased public acceptance and wider dissemination of technical resources.

  1. Establishment of the International Power Institute. Final technical report

    SciTech Connect

    Julius E. Coles

    2000-08-04

    The International Power Institute, in collaboration with American industries, seeks to address technical, political, economic and cultural issues of developing countries in the interest of facilitating profitable transactions in power related infrastructure projects. IPI works with universities, governments and commercial organizations to render project-specific recommendations for private-sector investment considerations. IPI also established the following goals: Facilitate electric power infrastructure transactions between developing countries and the US power industry; Collaborate with developing countries to identify development strategies to achieve energy stability; and Encourage market driven solutions and work collaboratively with other international trade energy, technology and banking organizations.

  2. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available

    1988-02-01

    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  3. Hybrid 240 Ton Off Highway Haul Truck: Quarterly Technical Status Report 19, DOE/AL68080-TSR19

    SciTech Connect

    Tim Richter

    2007-06-30

    This nineteenth quarterly status report for the Hybrid Off Highway Vehicle (OHV) project, DOE Award DE-FC04-02AL68080 presents the project status at the end of June 2007, and covers activities in the nineteenth project quarter, April 2007 – June 2007.

  4. Molecular biology of coal bio-desulfurization. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Young, K.D.; Gallagher, J.R.

    1992-04-30

    Genes cloned from Rhodococcus rhodochrous IGTS8 can transfer the DBT desulfurization phenotype to a different species (R. Fascians). The product was identified as 2-phenylphenol by gas chromatography. This result parallels the results we have previously reported for the activity of these genes in a DBT-negative mutant of IGTS8. Thus, the evidence is strong that we have identified and cloned the entire set of genes that are responsible for this very specific desulfurization reaction. Sequencing of these genes has commenced. A genomic library was constructed from the bacterium, Besulfovibrio desulfuricans. Screening has not yet identified a clone that carries the desulfurization genes from that organism. Two open reading frames, doxH and doxJ, in the C18 DBT degradation pathway were mutated and are now believed to be dispensable to that pathway. Finally, progress was made toward beginning to sequence the DBT dixoygenase genes from strain A15.

  5. An advanced control system for fine coal flotation. Fourth quarterly technical progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Adel, G.T.; Luttrell, G.H.

    1997-03-04

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as reagent dosage, pulp density and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the fourth quarter of this project, a final attempt was made to calibrate a video-based ash analyzer for use in this application. It was concluded that the low ash content and the coarse particle size of the flotation tailings slurry at the Maple Meadow plant site made the video-based system unsuitable for this application. Plans are now underway to lease a nuclear-based analyzer as the primary sensor for this project.

  6. Bench-scale testing of the micronized magnetite process. Eighth quarterly technical progress report, April--June, 1996

    SciTech Connect

    1996-08-13

    The major focus of the project is to install and test a 500 lbs./hr. fine-coal cleaning circuit at DOE`s Process Research Facility (PRF), located at the Pittsburgh Energy Technology Center (PETC). The circuit will utilize an extremely fine, micron-sized magnetite media and small diameter cyclones to make efficient density separations on minus-28-Mesh coal. The circuit consists of three subcircuits: Classification Circuit; Dense-Medium Cycloning Circuit; and Magnetite Recovery Circuit. The testing scope involves initial closed-loop testing of each subcircuit to optimize the performance of the equipment in each subcircuit (i.e., Component Testing), followed by open-circuit testing of the entire integrated circuit to optimize the process and quantify the process efficiency (i.e., Integrated Testing). This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the above mentioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  7. Bench-scale testing of the micronized magnetite process. Seventh quarterly technical progress report, January--March, 1996

    SciTech Connect

    1996-08-13

    The major focus of the project is to install and test a 500 lbs./hr. fine-coal cleaning circuit at DOE`s Process Research Facility (PRF), located at the Pittsburgh Energy Technology Center (PETC). The circuit will utilize an extremely fine, micron-sized magnetite media and small diameter cyclones to make efficient density separations on minus-28-Mesh coal. The circuit consists of three subcircuits: Classification Circuit; Dense-Medium Cycloning Circuit; and Magnetite Recovery Circuit. The testing scope involves initial closed-loop testing of each subcircuit to optimize the performance of the equipment in each subcircuit (i.e., Component Testing), followed by open-circuit testing of the entire integrated circuit to optimize the process and quantify the process efficiency (i.e., Integrated Testing). This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the above mentioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  8. Bench-scale testing of the micronized magnetite process. Sixth quarterly technical progress report, October--December, 1995

    SciTech Connect

    1996-08-13

    The major focus of the project is to install and test a 500 lbs./hr. fine-coal cleaning circuit at DOE`s Process Research Facility (PRF), located at the Pittsburgh Energy Technology Center (PETC). The circuit will utilize an extremely fine, micron-sized magnetite media and small diameter cyclones to make efficient density separations on minus-28-Mesh coal. The circuit consists of three subcircuits: Classification Circuit; Dense-Medium Cycloning Circuit; and Magnetite Recovery Circuit. The testing scope involves initial closed-loop testing of each subcircuit to optimize the performance of the equipment in each subcircuit (i.e., Component Testing), followed by open-circuit testing of the entire integrated circuit to optimize the process and quantify the process efficiency (i.e., Integrated Testing). This report contains a short discussion of the project description, objectives, budget, schedule, and teaming arrangement. It also includes a detailed discussion of the above mentioned project accomplishments and plans, organized by the various task series within the project work plan. The final section contains an outline of the specific project goals for the next quarterly reporting period.

  9. Semiconductor electrochemistry of coal pyrite. Quarterly technical progress report, July--September 1993

    SciTech Connect

    Osseo-Asare, K.; Wei, D.

    1993-12-31

    Pyrite (FeS{sub 2}) synthesis was studied in aqueous solution at room temperature and pressure using ferric chloride (FeCl{sub 3}) and sodium hydrosulfide (NaHS) as reactants, and sodium hexametaphosphate ((NaPO{sub 3}){sub 6}) as dispersant, which was added in the system to control the particle size of pyrite. The effects of the reaction pH and the concentrations of the reactants and the dispersant on the characterization of pyrite were studied. The pH of the reaction determines the products of the reaction. Elemental sulfur is produced at pH 2.4. As pH increases, the reaction product becomes a mixture of elemental sulfur plus pyrite at pH 2.9. In the pH range of 3.6 to 5.7, pyrite is formed with a spherical shape and a size of 2 {mu}m. Further increasing pH, the amorphous iron sulfides are obtained. lowering of the concentration of the reactant can decrease the particle size of pyrite only in the earlier stage of the reaction. The final particles have the same size for any initial concentration of the reactants used in the study. Addition of dispersant can change the properties of the products. The mechanism of the dispersant reaction is carrying out currently in this laboratory.

  10. Direct methanol fuel cells for transportation applications. Quarterly technical report, April--June 1997

    SciTech Connect

    Fuller, T.F.; Kunz, H.R.; Moore, R.

    1997-11-01

    The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in Phase 2 of the program. Progress in these areas is described.

  11. Power Systems Development Facility. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect

    Not Available

    1993-10-01

    The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: 1. Carbonizer/Pressurized Circulating Fluidized Bed Gas Source. 2. Hot Gas Cleanup Units to mate to all gas streams. 3. Combustion Gas Turbine. 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility, finalizing the selection for the Carbonizer/Transport and the circulating pressurized fluidized-bed combustor (CPFBC) particulate control devices (PCDs), drafting the air permit for the facility and continue the installation of the transport reactor development unit (TRDU). The detailed design of the PSDF continued to refine interface points to streamline the design of the facility.

  12. Biological production of ethanol from coal. [Quarterly technical report], September 22, 1991--December 21, 1991

    SciTech Connect

    Not Available

    1991-12-31

    Research is continuing in attempting to increase both the ethanol concentration and product ratio from the C. ljungdahlii fermentation. Both batch and continuous reactors are being used for this purpose. The purpose of this report is four-fold. First, the data presented in PETC Report No. 2-4-91 (June--September 1991) are analyzed and interpreted using normalized specific growth and production rates. This technique eliminates experimental variation due to the differences in inoculum history. Secondly, the effects of the sulfur gases H{sub 2}S and COS on the performance of C. ljungdahlii are presented and discussed. Although these are preliminary results, they illustrate the tolerance of the bacterium to low levels of sulfur gases. Thirdly, the results of continuous stirred tank reactor studies are presented, where cell and product concentrations are shown as a function of agitation rate and gas flow rate. Finally, additional data are presented showing the performance of C. ljungdahlii in a CSTR with cell recycle.

  13. Direct methanol fuel cells for transportation applications. Quarterly technical report, June 1996--September 1996

    SciTech Connect

    Fuller, T.F.; Kunz, H.R.; Moore, R.

    1996-11-01

    The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in phase II of the program.

  14. SIAM Conference on Geometric Design and Computing. Final Technical Report

    SciTech Connect

    2002-03-11

    The SIAM Conference on Geometric Design and Computing attracted 164 domestic and international researchers, from academia, industry, and government. It provided a stimulating forum in which to learn about the latest developments, to discuss exciting new research directions, and to forge stronger ties between theory and applications. Final Report

  15. Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856

    SciTech Connect

    McDonald, Dale Edward

    2013-02-12

    This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  16. Workshop on molecular methods for genetic diagnosis. Final technical report

    SciTech Connect

    Rinchik, E.M.

    1997-07-01

    The Sarah Lawrence College Human Genetics Program received Department of Energy funding to offer a continuing medical education workshop for genetic counselors in the New York metropolitan area. According to statistics from the National Society of Genetic Counselors, there are approximately 160 genetic counselors working in the tri-state area (New York, New Jersey, and Connecticut), and many of them had been working in the field for more than 10 years. Thus, there was a real need to offer these counselors an in-depth opportunity to learn the specifics of the major advances in molecular genetics, and, in particular, the new approaches to diagnostic testing for genetic disease. As a result of the DOE Award DE-FG02-95ER62048 ($20,583), in July 1995 we offered the {open_quotes}Workshop on Molecular Methods for Genetic Diagnosis{close_quotes} for 24 genetic counselors in the New York metropolitan area. The workshop included an initial review session on the basics of molecular biology, lectures and discussions on past and current topics in molecular genetics and diagnostic procedures, and, importantly, daily laboratory exercises. Each counselor gained not only background, but also firsthand experience, in the major techniques of biochemical and molecular methods for diagnosing genetic diseases as well as in mathematical and computational techniques involved in human genetics analyses. Our goal in offering this workshop was not to make genetic counselors experts in these laboratory diagnostic techniques, but to acquaint them, by hands-on experience, about some of the techniques currently in use. We also wanted to provide them a technical foundation upon which they can understand and appreciate new technical developments arising in the near future.

  17. Advanced separation technology for flue gas cleanup. Quarterly technical report No. 15

    SciTech Connect

    Bhown, A.S.; Pakala, N.; Riggs, T.; Tagg, T.

    1996-02-01

    The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regeneration of spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub x} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process will make only marketable byproducts, if any (no waste streams). Our approach is to reduce the capital cost by using high efficiency hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. For example, we will extract the SO{sub 2} from the aqueous scrubbing liquor into an oligomer of dimethylaniline to avoid the problem of organic liquid losses in the regeneration of the organic liquid. Our novel chemistry for scrubbing NO{sub x} will consist of water soluble phthalocyanine compounds invented by SRI and also of polymeric forms of Fe{sup ++} complexes similar to traditional NO{sub x} scrubbing media. Finally, the arrangement of the absorbers is in cassette (stackable) form so that the NO{sub x} absorber can be on top of the SO{sub x} absorber. This cassette (stacked) arrangement makes it possible for the SO{sub 2} and NO{sub x} scrubbing chambers to be separate without incurring the large ducting and gas pressure drop costs necessary if a second conventional absorber vessel were used.

  18. Build, install and demonstrate a variable stroke pump control and windmill system: 2nd quarterly technical progress report

    SciTech Connect

    Not Available

    1986-12-30

    Most of the time during the second quarter has been spent on the new gear drive. At the end of the 1st quarter the VSM (Variable Stroke Mechanism) was approximately 50% complete. Some work was done the second quarter on the VSM. An all steel mount was nearly completed for the hydraulic cyclinder. The purchased parts to finish the plumbing are on hand, the feedback control chain purchased, and one of the two pulleys was made. A safety device, that could be optional, is being designed and constructed. This addition would prevent damage to the equipment if all of the hydraulic fluid were lost for some reason.

  19. Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Quarterly technical progress report, September 13--December 12, 1996

    SciTech Connect

    1996-12-12

    Eighteen 10-acre infill wells have been drilled and completed as part of the Field Demonstration phase of the project at the North Robertson (Clearfork) Unit (NRU). The fourteen producing wells are pumped-off and producing at stable rates. The four injection wells are completed and have been on injection for three to four weeks. Current Unit production is approximately 3,400 STBO/D, of which approximately 900 STBO/D is being produced from the 10-acre infill wells. A change in the Statement of Work has been approved so that additional 10-acre infill wells can be drilled and/or 20-acre producing wells can be converted to injection during the next quarter as budget constraints and rig availability allow. Technical progress is described for the quarter in many related areas: implementation of the field demonstration; reservoir characterization; reservoir management activities and performance analysis; reservoir simulation; and technology transfer.

  20. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 15, April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1993-02-12

    The Department of Energy (DOE) awarded a contract entitled ``Engineering Development of Advanced Physical Fine Coal Cleaning Technology - Froth Flotation``, to ICF Kaiser Engineers with the following team members, Ohio Coal Development Office, Babcock and Wilcox, Consolidation Coal Company, Eimco Process Equipment Company, Illinois State Geological Survey, Virginia Polytechnic Institute and State University, Process Technology, Inc. This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  1. Modular Electric Vehicle Program (MEVP). Final technical report

    SciTech Connect

    1994-03-01

    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  2. Investigation of gigawatt millimeter wave source applications. Final technical report

    SciTech Connect

    Bruder, J.A.; Belcher, M.L.

    1991-09-01

    The Georgia Tech Research Institute (GTRI) investigated potential applications of millimeter wave (MMW) sources with peak powers on the order of a gigawatt. This power level is representative of MMW devices such as the free electron laser (FEL) and the cyclotron auto-resonance maser (CARM) that are under development at the Lawrence Livermore National Laboratory (LLNL). In addition to determining the technical requirements for these applications, the investigation considered potential users and how a high power MMW system would expand their current capabilities. Two of the more promising applications were examined in detail to include trade-off evaluations system parameters. The trade-off evaluations included overall system configuration, frequency and coherence, component availability, and performance estimates. Brainstorming sessions were held to try and uncover additional applications for a gigawatt MMW source. In setting up guidelines for the session, the need to attempt to predict applications for the years 2000 to 2030 was stressed. Also, possible non-DoD applications needed to be considered. While some of these applications could not in themselves justify the costs involved in the development of the radar system, they could be considered potential secondary applications of the system. As a result of the sessions, a number of interesting potential applications evolved including: space object identification; low angle tracking; illuminator for space-based radar; radio astronomy; space vehicle navigation; space debris location; atmospheric research; wind shear detection; electronic countermeasures; low observable detection; and long range detection via ducting.

  3. [National Institute for Petroleum and Energy Research] quarterly technical report, October 1--December 31, 1992. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1993-04-01

    Accomplishments for the past quarter are described for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and microbial technology.

  4. Detoxification and generation of useful products from coal combustion wastes: Quarterly technical report, (October--December 1988)

    SciTech Connect

    Not Available

    1988-01-01

    This quarter, samples of dry fly ash, wet bottom ash, and desulfurization gypsum slurry were provided from an Ohio Edison power plant. Chemical analysis mineralogical examination, and an anion analysis were performed on the samples. 2 figs., 1 tab. (CBS)

  5. Multipurpose water heater. Final technical report, October 1995--August 1997

    SciTech Connect

    Guyer, E.C.; Coumou, K.G.

    1999-03-01

    This final report describes SBIR Phase 2 project for the development of a multi-purpose water heater for use in Army Food sanitation centers. The objective of the project was to develop a water heater--powered only by an M2 burner and requiring no external supply of electricity--capable of supplying a continuous flow of pressurized hot water to a faucet at the sanitation sink. In the course of the research, two developments took place that have had an impact on the final design. First, the Multifuel Burner Unit (MBU) became available as a potential replacement for the M2. The MBU runs on JP-8 or diesel fuel and requires an external 24-volt VDC power supply. Thus, in anticipation of eventual conversion from M2 to MBU, a DC-Powered Water Heater was also delivered. Second, a new method for heating water in the sanitation sinks was developed allowing three sinks to be heated by a single M2 or MBU.

  6. Final Technical Report Steam Cycle Washer for Unbleached Pulp

    SciTech Connect

    Starkey, Yvonne; Salminen, Reijo; Karlsnes, Andy

    2008-09-22

    Project Abstract for “Steam Cycle Washer for Unbleached Pulp” When completed, the patented SC Washer will provide an innovative, energy efficient demonstration project to wash unbleached pulp using a pressure vessel charged with steam. The Port Townsend Paper Corporation’s pulp mill in Port Townsend, WA was initially selected as the host site for conducting the demonstration of the SCW. Due to 2006 and 2007 delays in the project caused by issues with 21st Century Pulp & Paper, the developer of the SCW, and the 2007 bankruptcy proceedings and subsequent restructuring at Port Townsend Paper, the mill can no longer serve as a host site. An alternate host site is now being sought to complete the commercial demonstration of the Steam Cycle Washer for Unbleached Pulp. Additionally, estimated costs to complete the project have more than doubled since the initial estimates for the project were completed in 2002. Additional grant funding from DOE was sought and in July, 2008 the additional DOE funds were procured under a new DOE award, DE-PS36-08GO98014 issued to INL. Once the new host site is secured the completion of the project will begin under the management of INL. Future progress reports and milestone tracking will be completed under requirements of new DOE Award Number DE-PS36-08GO98014. The following are excerpts from the project Peer Review completed in 2006. They describe the project in some detail. Additional information can be found by reviewing DOE Award Number: DE-PS36-08GO98014. 5. Statement of Problem and Technical Barriers: The chemical pulping industry is one of the major users of fresh water in the United States. On average the industry uses over 80 tons of water to produce one ton of pulp, some states use up to 50% more (Washington 120 and Wisconsin 140). In order to process one ton of pulp using 80 tons of process water, a large amount of: • energy is used in process heat and • power is required for pumping the large volume of pulp slurries

  7. Pressurized Oxidative Recovery of Energy from Biomass Final Technical Report

    SciTech Connect

    M. Misra

    2007-06-10

    This study was conducted to evaluate the technical feasibility of using pressurized oxyfuel, the ThermoEnergy Integrated Power System (TIPS), to recover energy from biomass. The study was focused on two fronts—computer simulation of the TIPS plant and corrosion testing to determine the best materials of construction for the critical heat exchanger components of the process. The goals were to demonstrate that a successful strategy of applying the TIPS process to wood waste could be achieved. To fully investigate the technical and economic benefits of using TIPS, it was necessary to model a conventional air-fired biomass power plant for comparison purposes. The TIPS process recovers and utilizes the latent heat of vaporization of water entrained in the fuel or produced during combustion. This latent heat energy is unavailable in the ambient processes. An average composition of wood waste based on data from the Pacific Northwest, Pacific Southwest, and the South was used for the study. The high moisture content of wood waste is a major advantage of the TIPS process. The process can utilize the higher heating value of the fuel by condensing most of the water vapor in the flue gas and making the flue gas a useful source of heat. This is a considerable thermal efficiency gain over conventional power plants which use the lower heating value of the fuel. The elevated pressure also allows TIPS the option of recovering CO2 at near ambient temperatures with high purity oxygen used in combustion. Unlike ambient pressure processes which need high energy multi-stage CO2 compression to supply pipeline quality product, TIPS is able to simply pump the CO2 liquid using very little auxiliary power. In this study, a 15.0 MWe net biomass power plant was modeled, and when a CO2 pump was included it only used 0.1 MWe auxiliary power. The need for refrigeration is eliminated at such pressures resulting in significant energy, capital, and operating and maintenance savings. Since wood

  8. Development of an AC Module System: Final Technical Report

    SciTech Connect

    Suparna Kadam; Miles Russell

    2012-06-15

    The GreenRay Inc. program focused on simplifying solar electricity and making it affordable and accessible to the mainstream population. This was accomplished by integrating a solar module, micro-inverter, mounting and monitoring into a reliable, 'plug and play' AC system for residential rooftops, offering the following advantages: (1) Reduced Cost: Reduction in installation labor with fewer components, faster mounting, faster wiring. (2) Maximized Energy Production: Each AC Module operates at its maximum, reducing overall losses from shading, mismatch, or module downtime. (3) Increased Safety. Electrical and fire safety experts agree that AC Modules have significant benefits, with no energized wiring or live connections during installation, maintenance or emergency conditions. (4) Simplified PV for a Broader Group of Installers. Dramatic simplification of design and installation of a solar power system, enabling faster and more efficient delivery of the product into the market through well-established, mainstream channels. This makes solar more accessible to the public. (5) Broadened the Rooftop Market: AC Modules enable solar for many homes that have shading, split roofs, or obstructions. In addition, due to the smaller building block size of 200W vs. 1000W, homeowners with budget limitations can start small and add to their systems over time. Through this DOE program GreenRay developed the all-in-one AC Module system with an integrated PV Module and microinverter, custom residential mounting and performance monitoring. Development efforts took the product from its initial concept, through prototypes, to a commercial product sold and deployed in the residential market. This pilot deployment has demonstrated the technical effectiveness of the AC Module system in meeting the needs and solving the problems of the residential market. While more expensive than the traditional central inverter systems at the pilot scale, the economics of AC Modules become more and more

  9. Team Massachusetts & Central America Solar Decathlon 2015 Final Technical Report

    SciTech Connect

    Lee, Kenneth

    2016-04-29

    Our team was Team MASSCA (Massachusetts and Central America), which was a partnership of Western New England University (WNE) located in Massachusetts USA, The Technological University of Panama (UTP), and Central American Technological University (UNITEC) of Honduras. Together we had a group of 6 faculty members and approximately 30 undergraduate students. Our house is ‘The EASI’ House, which stands for Efficient, Affordable, Solar Innovation. The EASI house is rectangular with two bedrooms and one bath, and offers a total square footage of 680. Based on competition estimates, The EASI house costs roughly $121,000. The EASI house has a 5kW solar system. Faculty and students from all three institutions were represented at the competition in Irvine California. Team MASSCA did well considering this was our first entry in the Solar Decathlon competition. Team MASSCA won the following awards: First Place – Affordability Contest Second Place – Energy Balance Contest. The competition provided a great experience for our students (and faculty as well). This competition provided leadership, endurance, and technical knowledge/skills for our students, and was the single most important hands-on experience during their undergraduate years. We are extremely pleased with the awards we received. At the same time we have learned from our efforts and would do better if we were to compete in the future. Furthermore, as a result of our team’s Inter-Americas collaborative effort, UTP and WNE have partnered to form Team PANAMASS (PANAma and MASSachusetts) and have developed The 3 SMART House for the inaugural Solar Decathlon Latin America & Caribbean competition held in Colombia.

  10. Final Scientific Technical Report Crowder College MARET Center

    SciTech Connect

    Boyt, Art; Eberle, Dan; Hudson, Pam; Hopper, Russ

    2013-06-30

    and validating new applications of solar and other renewable technologies, the MARET Facility will house a wide variety of programs which will advance implementation of renewable energy throughout the region. These program goals include; Curriculum in renewable energy for pre-engineering transfer programs; Certification and degree programs for technical degrees for Energy Efficiency, Wind, Photovoltaic and Solar Thermal professionals; Short courses and workshops for building management and design professionals; Public education and demonstration projects in renewable energy through conferences and K-12 educational outreach; Technical degree offering in building construction incorporating “best practices” for energy efficiency and renewables; and Business incubators for new renewable energy businesses and new product development The new MARET facility will support the mission of the US Department of Energy (DOE) Solar Program, “to improve America’s security, environmental quality, and economic prosperity through public-private partnerships that bring reliable and affordable solar energy technologies to the marketplace,” through a variety of educational and business assistance programs. Further, technical innovations planned for the MARET facility and its applied research activities will advance the Solar Program strategic goals to “reduce the cost of solar energy to the point it becomes competitive in relevant energy markets (e.g., buildings, power plants) and for solar technology to enable a sustainable solar industry.” Overarching Goals relative to program needs, future expansion, flexibility, quality of materials, and construction and operational costs:; Experimental: The structure and systems of the building operate as an educational resource. The systems are meant to be a source for data collection and study for building users and instructors; Educational: Part of the evolution of this building and its ongoing goals is to use the building as an

  11. Energy efficient louver and blind. Final technical progress report

    SciTech Connect

    Khajavi, S.

    1996-10-14

    In the month of July, the authors completed the energy testing at Lawrence Berkeley Labs. The final testing was done with blinds in 15 degree position. This is a comfortable blind angle that allows for view of the outside while allowing for natural light to enter the room. It was found that the energy savings are much higher at this angle. At zero degree blind angle the savings were 150 W/sq. meter, in the 15 degree the heat gain is cut by 225 W/sq. meter. During the same period the heat gain in control chamber was 500 W. The heat gain reduction achieved in tests if used in commercial blinds, would result in an energy pay back period or one year and nine months.

  12. Transportation and Greenhouse Gas Emissions Trading. Final Technical Report

    SciTech Connect

    Steve Winkelman; Tim Hargrave; Christine Vanderlan

    1999-10-01

    The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the road prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation

  13. High-Intensity Plasma Glass Melter Final Technical Report

    SciTech Connect

    Gonterman, J. Ronald; Weinstein, Michael A.

    2006-10-27

    The purpose of this project was to demonstrate the energy efficiency and reduced emissions that can be obtained with a dual torch DC plasma transferred arc-melting system. Plasmelt Glass Technologies, LLC was formed to solicit and execute the project, which utilize a full-scale test melter system. The system is similar to the one that was originally constructed by Johns Manville, but Plasmelt has added significant improvements to the torch design and melter system that has extended the original JM short torch lives. The original JM design has been shown to achieve melt rates 5 to 10 times faster than conventional gas or electric melting, with improved energy efficiency and reduced emissions. This project began on 7/28/2003 and ended 7/27/06. A laboratory scale melter was designed, constructed, and operated to conduct multiple experimental melting trials on various glass compositions. Glass quality was assessed. Although the melter design is generic and equally applicable to all sectors within the glass industry, the development of this melter has focused primarily on fiberglass with additional exploratory melting trials of frits, specialty, and minerals-melting applications. Throughput, energy efficiency, and glass quality have been shown to be heavily dependent on the selected glass composition. During this project, Plasmelt completed the proof-of-concept work in our Boulder, CO Lab to show the technical feasibility of this transferred-arc plasma melter. Late in the project, the work was focused on developing the processes and evaluating the economic viability of plasma melting aimed at the specific glasses of interest to specific client companies. Post project work is on going with client companies to address broader non-glass materials such as refractories and industrial minerals. Exploratory melting trials have been conducted on several glasses of commercial interest including: C-glass, E-glass, S-Glass, AR-Glass, B-glass, Lighting Glass, NE-Glass, and various

  14. Texas Hydrogen Education Final Scientific/Technical Report

    SciTech Connect

    Hitchcock, David; Bullock, Dan

    2011-06-30

    , and hydrogen fueling) are effective for engaging target audiences, and (3) a clear path forward is needed for state and local agencies interested in project implementation (funding, financing, preliminary design, technical assistance, etc.).

  15. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, February 9, 1992--May 8, 1992

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production of iron-pillared clay catalysts and clay-supported iron hydroxyoxide catalysts and the determination of their catalytic activities was continued in this quarter. Previous work in this project showed that a catalyst prepared by adding ferric nitrate and ammonia to an acid-washed clay gave an active catalyst following sulfidation. Further testing of this catalyst with a model compound showed that its hydrocracking activity was considerably lower when used in 10% concentration rather than 50%. In contrast, the mixed iron/alumina pillared clay catalysts were still highly effective at 10% concentration and gave good conversions at one and two hour reaction times. An investigation of preparation methods demonstrated that calcination of both the iron hydroxyoxide-impregnated clay and the mixed iron/alumina pillared clays is essential for activity. High activity was obtained for these catalysts only when they were removed from the aqueous media rapidly, dried, and calcined. The use of ferric sulfate to prepare a clay-supported sulfated iron catalyst was attempted, the resulting catalyst was relatively inactive for hydrocracking. Several new catalysts were synthesized with the idea of decreasing the pillar density and thereby increasing the micropore volume. A zirconia-pillared clay with low pillar density was prepared and intercalated with triiron complex. The hydrocracking activity of this catalyst was somewhat lower than that of the mixed alumina/iron-pillared catalyst. Other new catalysts, that were prepared by first pillaring with an organic ammonium pillaring agent, then introducing a lower number of silica or alumina pillars, and finally the iron component, were also tested. The mixed alumina/iron-pillared catalysts was further tested at low concentration for pyrene hydrogenating and hydrocracking activities.

  16. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, November 9, 1991--February 8, 1992

    SciTech Connect

    Olson, E.S.

    1995-10-01

    The investigation of methods for the production and testing of iron-pillared clay catalysts was continued in this quarter. The surface area of the mixed alumina/iron pillared clay catalyst decreased to 51 m{sup 2}/g on sulfidation. Thus the stability of the alumina pillars during the sulfidation and thermal treatments prevented the total collapse that occurred in the case of the iron-pillared clays. Previously the mixed alumina/iron pillared clays were tested for hydrocracking activities with bibenzyl. This testing was extended to a determination of activity with a second model compound substrate (pyrene), representative of the polynuclear aromatic systems present in coal. Testing of the mixed alumina/iron-pillared catalysts with 1-methylnaphthalene gave interesting results that demonstrate shape selectivity. The clay-supported iron hydroxyoxide catalysts prepared by impregnation of iron species on acidic clays were further investigated. Sulfidation of these catalysts using the carbon disulfide in situ method gave hydrocracking activities with bibenzyl that were somewhat less than those obtained by presulfidation with H{sub 2}/H{sub 2}S mixtures. Liquefaction of Wyodak subbituminous coal was very successful with the iron impregnated clay catalyst, giving a highly soluble product. High conversions were also obtained with the mixed alumina/iron-pillared clay catalyst, but the yield of oil-solubles was considerably lower. Several new catalysts were synthesized with the idea of decreasing the pillar density and thereby increasing the micropore volume. These catalysts were prepared by first pillaring with an organic ammonium pillaring agent, then introducing a lower number of silica or alumina pillars. Finally the iron component was added either before or after thermal removal of organic pillars.

  17. Transition metal catalysis of hydrogen shuttling in coal liquefaction. Quarterly technical progress report, September 1, 1985-November 30, 1985

    SciTech Connect

    Eisch, J.J.

    1986-01-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines and ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes under moderate conditions of temperature and pressure. During the fifth quarter of this three-year grant the following phases of this study received particular attention: (a) the principal investigator completed his three-month period as visiting scientist at Cornell University, October 1 to December 31, 1985, with Professor Roald Hoffmann on the topic of Extended Hueckel Molecular Orbital calculations of organometallic structure; (b) final gas evolution studies between LiAlH/sub 4/ and bipyridyl(1,5-cyclooctadiene) nickel have been made and the related manuscript written for publication; (c) gas evolution studies between diisobutylaluminum hydride and phosphine complexes of Pt(0) and Ni(0) have been undertaken, as part of our trying to understand how powerful reducing agents can be generated from such combinations; (d) hydrogen shuttling studies continue between dihydroaromatic hydrocarbons and Ni(0) complexes; (e) studies on the cleavage of benzylic C-C bonds by Ni(0) and Cr(0) complexes are being intensified; and (f) attempts are being made to isolate crystalline samples of several organonickel intermediates in the foregoing cleavage reactions, so that x-ray structure determinations can be carried out.

  18. 77 FR 30514 - Native Hawaiian Career and Technical Education Program; Final Waiver and Extension of Project Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Native Hawaiian Career and Technical Education Program; Final Waiver and Extension of Project Period... Information Final Waiver and Extension of Project Period for the Native Hawaiian Career and Technical... projects funded in fiscal year (FY) 2009 under the Native Hawaiian Career and Technical Education...

  19. Quarterly Technical Progress Report

    SciTech Connect

    Yi Hua Ma

    1998-03-16

    The temperature dependence of the oxygen flux across the BaCe0G03 dense membrane (BCG membrane) tube was investigated. In the temperature range of 688C to 955C, the increase in the oxygen flux with temperature obeyed the Arrhenius law. An increase in the helium sweep flow membrane tube. rate in the tube side resulted in an increase in the oxygen flux through the The oxygen fluxes through the BCG dense membrane tube were measured at different oxygen partial pressures in the shell side. The oxygen flux increased with the oxygen partial pressure in the shell side. The BCG dense membrane was tested in a membrane reactor for the catalytic oxidative coupling of methane. The BCG membrane is not a complete combustion catalyst, and the catalytic activity of the BCG membrane was found to be much higher than the Argonne dense membrane. As the oxygen partial pressure in the shell side increased, the C2 decreased while the C2 yield remained unchanged, indicating that non-selective, reactions still played a significant role in the membrane reactor.

  20. Louisiana Industrial Assessment Center--Final Technical Report

    SciTech Connect

    Dr. Theodore A. Kozman

    2007-10-17

    This is the Final Report for the Louisiana Industrial Assessment Center for the period of 9/1/2002 through 11/30/2006, although we were still gathering data through 02/16/2007. During this period, our Industrial Assessment Center completed 109 energy assessments for manufacturing firms in our area, offered 3 Save Energy Workshops, taught 26 students (9 graduate and 17 undergraduate) energy management savings techniques and offered an Energy Management Graduate class three times. These 109 energy assessments made a total of 738 energy savings recommendations, 33 waste reduction recommendations, and 108 productivity improvement recommendations. These combined recommendations would save client companies more than $87,741,221.16, annually at the then current energy costs. If all of these recommendations were implemented separately, the implementation cost would have been $34,113,482.10 or a Simple Payback Period, SPP=4.7 months. Between 9 months and 12 months after the assessment, we surveyed the manufacturing firms to find out what they implemented. They had implemented approximately 50 percent of our recommendations at an annual saving of $25,867,613.18. The three Save Energy Workshops had an average attendance of twelve individuals. The three graduate Energy Management courses had an average attendance of eleven students.

  1. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  2. A novel carbon-based process for flue gas cleanup. Third quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Gangwal, S.K.; Silveston, P.L.

    1992-04-01

    The objective of this project is to demonstrate the preliminary technical and economic feasibility of a novel carbon-based process for removal of at least 95% SO{sub 2} and at least 75% NO{sub x} coal combustion flue gas. In the process, flue gas leaving the electrostatic precipitator (ESP) is passed through a trickle bed of achieved carbon catalyst employing a periodic flush of low strength sulfuric acid. The SO{sub 2} is oxidized to SO{sub 3} and removed as medium strength sulfuric acid. The SO{sub 2}-free flue gas is then mixed with NH{sub 3}, and the NO{sub x} in the gas is subjected to selective catalytic reduction (SCR) to N{sub 2} over a fixed bed of activated carbon catalyst. The experimental work is divided between Research Triangle Institute (RTI) and the University of Waterloo (Waterloo). RTI will conduct the NO{sub x} removal studies, whereas Waterloo will conduct the SO{sub 2} removal studies. The ultimate goal of the project is to demonstrate that the process can be reduce the cost of electricity by 20% over conventional SCR/flue gas desulfurization (FGD) processes. In the present quarter, the continuous SO{sub 2} analyzer system at Waterloo was completed. The SO{sub 2} removal factorial experiments were begun Waterloo with the BPL carbon at 21{degrees}C. Also, SO{sub 2} removal was tested on two catalyst at RTI at 80{degrees}C. NO{sub x} conversion was tested on a variety of catalysts at RTI. It was shown that the BPL carbon could remove over 95% SO{sub 2} at 21{degrees}C but would required several beds at space velocity in each bed of abut 1,500 scc/(cc{center_dot}h) to reduce SO{sub 2} from 2,500 ppm to 100 ppm. A modified carbon catalyst tested at RTI showed 99% SO{sub 2} removal at 80{degrees}C at 1,400 scc/(cc{center_dot}h). Also, it was possible to produce nearly 9 normal H{sub 2}SO{sub 4} by periodic flushing of this catalyst. The modified carbon catalyst also demonstrated removal of more than 80% NO{sub x}. 7 refs., 7 figs., 4 tabs.

  3. Verification of Steelmaking Slags Iron Content Final Technical Progress Report

    SciTech Connect

    J.Y. Hwang

    2006-10-04

    The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and

  4. Final Technical Report - Photovoltaics for You (PV4You) Program

    SciTech Connect

    Weissman, J. M.; Sherwood, L.; Pulaski, J.; Cook, C.; Kalland, S.; Haynes, J.

    2005-08-14

    position in developing quality and competency standards for solar professionals and for training programs critical components to bring the solar industry into step with other recognized craft labor forces. IREC's objective was to provide consumer assurances and assist the states and the solar industry in building a strong and qualified workforce. IREC's Schools Going Solar Clearinghouse provided channels of information to educate students, teachers, parents and the community at large about the benefits of solar energy. Solar school projects enhance science and math education while creating an initial entry market for domestic PV. And, IREC's community and outreach network got the right information out to capture the interest and met the needs of different audiences and reached groups that weren't traditionally part of the solar community. IREC's PV4You project was effective because it resulted in reduced costs through easier interconnection and better net metering agreements and by raising the competency standards for solar practitioners. The project provided ways to eliminate barriers and constraints by providing technical assistance, offering model agreements based on industry consensus that were used by state and local decision makers. And, the project increased public acceptance by providing information, news and guidelines for different audiences.

  5. Final Technical Report: Development of Post-Installation Monitoring Capabilities

    SciTech Connect

    Polagye, Brian

    2014-03-31

    The development of approaches to harness marine and hydrokinetic energy at large-scale is predicated on the compatibility of these generation technologies with the marine environment. At present, aspects of this compatibility are uncertain. Demonstration projects provide an opportunity to address these uncertainties in a way that moves the entire industry forward. However, the monitoring capabilities to realize these advances are often under-developed in comparison to the marine and hydrokinetic energy technologies being studied. Public Utility District No. 1 of Snohomish County has proposed to deploy two 6-meter diameter tidal turbines manufactured by OpenHydro in northern Admiralty Inlet, Puget Sound, Washington. The goal of this deployment is to provide information about the environmental, technical, and economic performance of such turbines that can advance the development of larger-scale tidal energy projects, both in the United States and internationally. The objective of this particular project was to develop environmental monitoring plans in collaboration with resource agencies, while simultaneously advancing the capabilities of monitoring technologies to the point that they could be realistically implemented as part of these plans. In this, the District was joined by researchers at the Northwest National Marine Renewable Energy Center at the University of Washington, Sea Mammal Research Unit, LLC, H.T. Harvey & Associates, and Pacific Northwest National Laboratory. Over a two year period, the project team successfully developed four environmental monitoring and mitigation plans that were adopted as a condition of the operating license for the demonstration project that issued by the Federal Energy Regulatory Commission in March 2014. These plans address nearturbine interactions with marine animals, the sound produced by the turbines, marine mammal behavioral changes associated with the turbines, and changes to benthic habitat associated with colonization

  6. Technical assistance for Meharry Medical College Energy Efficiency Project. Final project status and technical report

    SciTech Connect

    1996-05-08

    This report presents the results of a program to provide technical assistance to Meharry Medical College. The purpose of the program is to facilitate Meharry`s effort to finance a campus-wide facility retrofit. The US Department of Energy (USDOE) funded the program through a grant to the Tennessee Department of Economic and Community Development (TECD). The University of Memphis-Technology and Energy Services (UM-TES), under contract to TECD, performed program services. The report has three sections: (1) introduction; (2) project definition, financing, and participants; and (3) opportunities for federal participation.

  7. Production and screening of carbon products precursors from coal. Quarterly technical progress report No. 5, January 1,1996--March 31, 1996

    SciTech Connect

    1996-04-01

    Individual quarterly reports of four industrial participants of this project are included in this report. The technical emphasis continues to be the supply of coal-based feedstocks to the industrial participants. There have been several iterations of samples and feedback to meet feedstock characteristics for a wide variety of carbon products. Technology transfer and marketing of the Carbon Products Consortium (CPC) is a continual effort. Interest in the program and positive results from the research continue to grow. In several aspects, the program is ahead of schedule.

  8. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 6, January--March 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-05-03

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1- March 31, 1996.

  9. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No. 9, April 1995--June 1995

    SciTech Connect

    McCormick, R.L.

    1995-09-14

    This document is the ninth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes}. Activities were focused on fine tuning of the microreactor system by elimination of transport effects and improvements in the analytical system. Process variable studies were conducted on vanadyl pyrophosphate and screening studies were conducted on several modified catalyst. One additional catalyst was prepared and characterization studies continued. These results are reported.

  10. Northeast regional biomass program: Second and Third quarterlies and final report, January 1994--September 30, 1994

    SciTech Connect

    1995-07-01

    The Northeast Regional Biomass Program (NRBP) is comprised of the following states: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania. Rhode Island and Vermont. It is managed for the Department of Energy (DOE) by the CONEG Policy Research Center, Inc. The Northeast states face several near-term barriers to the expanded use of biomass energy. Informational and technical barriers have impeded industrial conversions, delaying the development of a wood energy supply infrastructure. Concern over the environmental impacts on resources are not well understood. Public awareness and concern about safety issues surrounding wood energy use has also grown to the point of applying a brake to the trend of increases in residential applications of biomass energy. In addition, many residential, commercial, industrial, and commercial energy users are discouraged from using biomass energy because of the convenience factor. Regardless of the potential for cost savings, biomass energy sources, aside from being perceived as more esoteric, are also viewed as more work for the user. The Northeast Regional Biomass Program (NRBP) is designed to help the eleven states overcome obstacles and achieve biomass energy potentials.

  11. Center for Extended Magnetohydrodynamics Modeling - Final Technical Report

    SciTech Connect

    Parker, Scott

    2016-02-14

    This project funding supported approximately 74 percent of a Ph.D. graduate student, not including costs of travel and supplies. We had a highly successful research project including the development of a second-order implicit electromagnetic kinetic ion hybrid model [Cheng 2013, Sturdevant 2016], direct comparisons with the extended MHD NIMROD code and kinetic simulation [Schnack 2013], modeling of slab tearing modes using the fully kinetic ion hybrid model and finally, modeling global tearing modes in cylindrical geometry using gyrokinetic simulation [Chen 2015, Chen 2016]. We developed an electromagnetic second-order implicit kinetic ion fluid electron hybrid model [Cheng 2013]. As a first step, we assumed isothermal electrons, but have included drift-kinetic electrons in similar models [Chen 2011]. We used this simulation to study the nonlinear evolution of the tearing mode in slab geometry, including nonlinear evolution and saturation [Cheng 2013]. Later, we compared this model directly to extended MHD calculations using the NIMROD code [Schnack 2013]. In this study, we investigated the ion-temperature-gradient instability with an extended MHD code for the first time and got reasonable agreement with the kinetic calculation in terms of linear frequency, growth rate and mode structure. We then extended this model to include orbit averaging and sub-cycling of the ions and compared directly to gyrokinetic theory [Sturdevant 2016]. This work was highlighted in an Invited Talk at the International Conference on the Numerical Simulation of Plasmas in 2015. The orbit averaging sub-cycling multi-scale algorithm is amenable to hybrid architectures with GPUS or math co-processors. Additionally, our participation in the Center for Extend Magnetohydrodynamics motivated our research on developing the capability for gyrokinetic simulation to model a global tearing mode. We did this in cylindrical geometry where the results could be benchmarked with existing eigenmode

  12. OTEC Advanced Composite Cold Water Pipe: Final Technical Report

    SciTech Connect

    Dr. Alan Miller; Matthew Ascari

    2011-09-12

    Ocean Thermal Energy Conversion can exploit natural temperature gradients in the oceans to generate usable forms of energy (for example, cost-competitive baseload electricity in tropical regions such as Hawaii) free from fossil fuel consumption and global warming emissions.The No.1 acknowledged challenge of constructing an OTEC plant is the Cold Water Pipe (CWP), which draws cold water from 1000m depths up to the surface, to serve as the coolant for the OTEC Rankine cycle. For a commercial-scale plant, the CWP is on the order of 10m in diameter.This report describes work done by LMSSC developing the CWP for LM MS2 New Ventures emerging OTEC business. The work started in early 2008 deciding on the minimum-cost CWP architecture, materials, and fabrication process. In order to eliminate what in previous OTEC work had been a very large assembly/deployment risk, we took the innovative approach of building an integral CWP directly from theOTEC platform and down into the water. During the latter half of 2008, we proceeded to a successful small-scale Proof-of-Principles validation of the new fabrication process, at the Engineering Development Lab in Sunnyvale. During 2009-10, under the Cooperative Agreement with the US Dept. of Energy, we have now successfully validated key elements of the process and apparatus at a 4m diameter scale suitable for a future OTEC Pilot Plant. The validations include: (1) Assembly of sandwich core rings from pre-pultruded hollow 'planks,' holding final dimensions accurately; (2) Machine-based dispensing of overlapping strips of thick fiberglass fabric to form the lengthwise-continuous face sheets, holding accurate overlap dimensions; (3) Initial testing of the fabric architecture, showing that the overlap splices develop adequate mechanical strength (work done under a parallel US Naval Facilities Command program); and (4) Successful resin infusion/cure of 4m diameter workpieces, obtaining full wet-out and a non-discernable knitline between

  13. Final Technical Report for DE-SC0005467

    SciTech Connect

    Broccoli, Anthony J.

    2014-09-14

    The objective of this project is to gain a comprehensive understanding of the key atmospheric mechanisms and physical processes associated with temperature extremes in order to better interpret and constrain uncertainty in climate model simulations of future extreme temperatures. To achieve this objective, we first used climate observations and a reanalysis product to identify the key atmospheric circulation patterns associated with extreme temperature days over North America during the late twentieth century. We found that temperature extremes were associated with distinctive signatures in near-surface and mid-tropospheric circulation. The orientations and spatial scales of these circulation anomalies vary with latitude, season, and proximity to important geographic features such as mountains and coastlines. We next examined the associations between daily and monthly temperature extremes and large-scale, recurrent modes of climate variability, including the Pacific-North American (PNA) pattern, the northern annular mode (NAM), and the El Niño-Southern Oscillation (ENSO). The strength of the associations are strongest with the PNA and NAM and weaker for ENSO, and also depend upon season, time scale, and location. The associations are stronger in winter than summer, stronger for monthly than daily extremes, and stronger in the vicinity of the centers of action of the PNA and NAM patterns. In the final stage of this project, we compared climate model simulations of the circulation patterns associated with extreme temperature days over North America with those obtained from observations. Using a variety of metrics and self-organizing maps, we found the multi-model ensemble and the majority of individual models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) generally capture the observed patterns well, including their strength and as well as variations with latitude and season. The results from this project indicate that current models are capable

  14. Final Technical Report - In-line Uranium Immunosensor

    SciTech Connect

    Blake, Diane A.

    2006-07-05

    In this project, personnel at Tulane University and Sapidyne Instruments Inc. developed an in-line uranium immunosensor that could be used to determine the efficacy of specific in situ biostimulation approaches. This sensor was designed to operate autonomously over relatively long periods of time (2-10 days) and was able to provide near real-time data about uranium immobilization in the absence of personnel at the site of the biostimulation experiments. An alpha prototype of the in-line immmunosensor was delivered from Sapidyne Instruments to Tulane University in December of 2002 and a beta prototype was delivered in November of 2003. The beta prototype of this instrument (now available commercially from Sapidyne Instruments) was programmed to autonomously dilute standard uranium to final concentrations of 2.5 to 100 nM (0.6 to 24 ppb) in buffer containing a fluorescently labeled anti-uranium antibody and the uranium chelator, 2,9-dicarboxyl-1,10-phenanthroline. The assay limit of detection for hexavalent uranium was 5.8 nM or 1.38 ppb. This limit of detection is well below the drinking water standard of 30 ppb recently promulgated by the EPA. The assay showed excellent precision; the coefficients of variation (CV’s) in the linear range of the assay were less than 5% and CV’s never rose above 14%. Analytical recovery in the immunosensors-based assay was assessed by adding variable known quantities of uranium to purified water samples. A quantitative recovery (93.75% - 108.17%) was obtained for sample with concentrations from 7.5 to 20 nM (2-4.75 ppb). In August of 2005 the sensor was transported to Oak Ridge National Laboratory, for testing of water samples at the Criddle test site (see Wu et al., Environ. Sci. Technol. 40:3978-3985 2006 for a description of this site). In this first on-site test, the in-line sensor was able to accurately detect changes in the concentrations of uranium in effluent samples from this site. Although the absolute values for the

  15. Stem Inc. SunShot Incubator Program Final Technical Report

    SciTech Connect

    Butterfield, Karen

    2016-04-30

    In this Energy Storage Control Algorithms project, Stem sought to develop tools and control algorithms to increase the value and reduce balance-of-system and grid integration costs associated with adding distributed solar generation to the grid. These advances fell under the headings SolarScope and SolarController. Stem sought to create initial market traction with a fully commercialized product for the solar industry to size storage systems (SolarScope) as well as a solar intermittency-mitigation framework for utilities (SolarController) in the course of the project. The company sought to align strategic growth plans and enable the rollout of the products to broader audiences in multiple geographic regions by leveraging the major solar companies in the national market as partners. Both final products were both intended to be commercialized. They are: SolarScope: Analysis tool to identify viable PV + storage projects and thereby expedite the sales and interconnection processes. SolarScope combines customer load data, PV production estimates, utility rate tariff, and simulated storage into a simple user interface for PV developers. Developers can easily identify viable solar + storage sites without the need for complex and time consuming, site-by-site spreadsheet modeling. SolarContoller: Tool to autonomously dispatch distributed storage in order to mitigate voltage fluctuation and reduce curtailment. SolarController co-optimizes, in real time, storage dispatch for circuit stability and curtailment reduction, enabling higher penetrations of PV. SolarController is automated, not requiring utility dispatch or management, as Stem hardware senses grid voltage, frequency, customer load, PV production, and power factor. In the end the two products met with different outcomes. SolarScope was tested by potential users, and continues to be used as a foundational platform for partnership with key solar industry partners. SolarController, on the other hand, was successful in

  16. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No. 6, July--September 1994

    SciTech Connect

    McCormick, R.L.

    1995-01-10

    This is the eighth quarterly technical progress report. During this quarter the project was initiated, after transfer via a novation agreement, at the Colorado School of Mines. Project initiation activities have included: set up of catalyst synthesis apparatus; training on x-ray diffraction and FTIR apparatus; set up of catalyst testing reactor; set up of reactor product analytical systems; and set up of method development for measuring catalyst acidity via FTIR. At the end of this quarter significant progress had been made towards completion of these initiation activities. Several catalyst syntheses have been performed and the catalysts characterized by x-ray diffraction and FTIR. The catalyst testing reactor system is operational. Reactor product analysis system is nearing completion. Initiation of this system was delayed by the unavailability of a Valco valve which has just recently arrived. Set up of the in-situ FTIR cell for catalyst acidity studies has begun. In this report the results of several catalyst syntheses are reported along with characterization results. In particular, impregnation of vanadyl pyrophosphate with potassim nitrate dramatically reduced the number of surface hydroxyl groups. Such groups may be important in the non-selective, total oxidation of hydrocarbons. Also, preliminary experimental results on FTIR spectra of adsorbed pyridine are presented. It is shown that pyridine adsorbed on the catalyst surface can be easily observed by the diffuse reflectance IR technique. We plan to apply this technique to measurement of the acid site strength of surfaces modified with promoters.

  17. Develop data management system for assistance in conducting area of reviews in Texas: Quarterly technical report- 10th quarter, January 1-March 31, 1997

    SciTech Connect

    Wrotenbery, L.; Burgess, D. F.; Weitzel, L.; Williams, D.; Morgan, H.; Matthews, J.

    1997-04-15

    The following technical report provides a detailed status report of the DOE grant project entitled `Develop Data Management System for Assistance in Conducting Area of Reviews (AORS) in Texas.` The grant funding allocated is for the purpose of providing the Railroad Commission of Texas (Commission or RRC) with resources and capabilities to conduct AOR and AOR variance analysis statewide.

  18. Flow in porous media, phase behavior and ultralow interfacial tensions: mechanisms of enhanced petroleum recovery. Final technical report

    SciTech Connect

    Davis, H.T.; Scriven, L.E.

    1982-01-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The 1982 outputs of the interdisciplinary team of investigators were again ideas, instruments, techniques, data, understanding and skilled people: forty-one scientific and engineering papers in leading journals; four pioneering Ph.D. theses; numerous presentations to scientific and technical meetings, and to industrial, governmental and university laboratories; vigorous program of research visits to and from Minnesota; and two outstanding Ph.D.'s to research positions in the petroleum industry, one to a university faculty position, one to research leadership in a governmental institute. This report summarizes the 1982 papers and theses and features sixteen major accomplishments of the program during that year. Abstracts of all forty-five publications in the permanent literature are appended. Further details of information transfer and personnel exchange with industrial, governmental and university laboratories appear in 1982 Quarterly Reports available from the Department of Energy and are not reproduced here. The Minnesota program continues in 1983, notwithstanding earlier uncertainty about the DOE funding which finally materialized and is the bulk of support. Supplemental grants-in-aid from nine companies in the petroleum industry are important, as are the limited University and departmental contributions. 839 references, 172 figures, 29 tables.

  19. Final Priority; Rehabilitation Training: Vocational Rehabilitation Technical Assistance Center--Youth With Disabilities. Final priority.

    PubMed

    2015-07-30

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Rehabilitation Training program. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2015 and later years. This priority is designed to ensure that professionals working in State vocational rehabilitation (VR) agencies receive the technical assistance (TA) they need to provide youth with disabilities with services and supports that lead to postsecondary education and competitive integrated employment.

  20. BX in-situ oil-shale project. Quarterly technical progress report, June 1, 1981-August 31, 1981

    SciTech Connect

    Dougan, P.M.

    1981-09-20

    June 1, 1981-August 31, 1981 was the third consecutive quarter of superheated steam injection at the BX In Situ Oil Shale Project. Injection was continuous except for the period of July 14th to August 1st when the injection was suspended during the drilling of core hole BX-37. During the quarter, 99,760 barrels of water as superheated steam were injected into Project injection wells at an average well head temperature of 752/sup 0/F and an average wellhead pressure of 1312 PSIG. During the same period, 135,469 barrels of fluid were produced from the Project production wells for a produced to injected fluid ratio of 1.36 to 1.0. Net oil production during the quarter was 38 barrels.

  1. Wetland treatment of oil and gas well wastewaters. Quarterly technical report, November 25, 1992--February 24, 1993

    SciTech Connect

    Kadlec, R.H.; Srinivasan, K.R.

    1993-04-02

    During the first quarter of the above contract, all the elements of Task 1 were completed. The first quarterly report presented an overview of a wetland and its increasing use in industrial wastewater treatment. An idealized, reaction engineering description of wetlands was presented to demonstrate how the various processes that occur in a wetland can be modeled. Previous work on the use of wetlands to remove BOD, TSS, Phosphorus and Nitrogen was reviewed. Recent literature on the application of wetland technology to the treatment of petroleum-related wastewater was critically evaluated and an outline of the research plans for the first year was delineated. Further, our literature search (nominally completed under Task 1) unearthed more recent studies (some unpublished) and a summary was included in the second quarterly report. In the second quarterly report, results of our efforts on the construction of a laboratory-type wetland were also reported. Initial studies on the use of wetland amendments such as modified-clays and algae cells were presented and discussed. Adsorption of heavy metal ions, Cu{sup 2+} and Cr(VI) onto soils drawn from the laboratory-type wetland built as a part of this contract has been undertaken and these results are presented and discussed in this quarterly report. A number of studies on the design and preparation of modified-clays for the adsorption of Cr(VI) and {beta}-naphthoic acid (NA) has been carried out during this quarter and these are also described and discussed in this report. The choice of {beta}-naphthoic acid (NA) as an ionogenic organic compound was made on the basis of a recent personal communication to the Project Director that NA is a major contaminant in many oil and gas well wastewaters.

  2. Projects at the Western Environmental Technology Office. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    1996-01-01

    The goal of this project is to demonstrate the technical and economic feasibility of commercializing a biotechnology that uses plants to remediate soils, sediments, surface waters, and groundwaters contaminated by heavy metals and radionuclides. This technology, known as phytoremediation, is particularly suited to remediation of soils or water where low levels of contaminants are widespread. Project objectives are to provide an accurate estimate of the capability and rate of phytoremediation for removal of contaminants of concern from soils and groundwaters at Department of Energy (DOE) sites and to develop data suitable for engineering design and economic feasibility evaluations, including methods for destruction or final disposition of plants containing contaminants of concern. The bioremediation systems being evaluated could be less expensive than soil removal and treatment systems, given the areal extent and topography of sites under consideration and the investment of energy and money in soil-moving and -treating processes. In situ technology may receive regulatory acceptance more easily than ex situ treatments requiring excavation, processing, and replacement of surface soils. In addition, phytoremediation may be viable for cleanup of contaminated waters, either as the primary treatment or the final polishing stage, depending on the contaminant concentrations and process economics considerations.

  3. Development and testing of a high efficiency advanced coal combustor Phase III industrial boiler retrofit. Quarterly technical progress report, July 1, 1995--September 30, 1995 No. 16

    SciTech Connect

    Borio, R.W.

    1995-12-15

    The objective of this project is to retrofit a burner, capable of firing microfine coal, to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the sixteenth quarter (July `95 through September `95) of the program. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components. (2) Design and experimental testing of a prototype HEACC (High Efficiency Advanced Coal Combustor) burner. (3) Installation and testing of a prototype HEACC system in a commercial retrofit application. (4) Economics evaluation of the HEACC concept for retrofit applications. (5) Long term demonstration under commercial user demand conditions.

  4. Compatibility of refrigerants and lubricants with motor materials. Quarterly technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Doerr, R.; Kujak, S.

    1992-07-23

    During this last quarter, evaluations were complete on the motor materials after 500-hr exposures to refrigerants CFC-123, HFC-134a and HCFC-22 at 90{degrees}C. Materials were also evaluated after exposure to nitrogen at 127{degrees}C to determine effect of the thermal exposure. Other exposures were started during this quarter with refrigerants HCFC-124, HFC-125, HFC-143a, HFC-32 and HFC-152a. One 500 hr exposure is set up per week and one is analyzed the same week. This will enable Trane to complete the 500 hour exposures by the end of the year.

  5. Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Fifth quarterly technical progress report, Third quarter, 1993

    SciTech Connect

    Eggington, W.J.

    1993-12-31

    The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. In 1992, Task 1, Environmental Considerations, and Task 2, Transport Requirements, were completed. In the first two quarters of 1993, Task 3, Parametric Analysis, Task 4, Preliminary Design, and Task 6, Ground Support, were completed. Individual reports containing results obtained from each of these tasks were submitted to DOE. In addition, through June 30, 1993, a Subscale Test Plan was prepared under Task 5, Subscale Tests, and work was initiated on Task 7, Environmental Impacts, Task 8, Development Plan, Task 9, Operating Costs, and Task 10, Technology Transfer.

  6. Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Fourth quarterly technical progress report, Second quarter, 1993

    SciTech Connect

    Eggington, W.J.

    1993-09-01

    The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. The major activity during the second quarter of 1993 was focussed on completion of Task 4, Preliminary Design. The selected design has been designated H.1 Cyclocraft by MRC. Also during the report period, Task 6, Ground Support, was completed and a report containing the results was submitted to DOE. This task addressed the complete H.1 Cyclocraft system, i.e. it included the need personnel, facilities and equipment to support cyclocraft operations in wetland areas.

  7. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. Quarterly technical progress report for the period ending March 31, 1986

    SciTech Connect

    Not Available

    1986-12-31

    The goal of this program is to develop polymer membranes useful in the preparation of hydrogen from coal-derived synthesis gas. During this quarter the first experiment were aimed at developing high performance composite membranes for the separation of hydrogen from nitrogen and carbon monoxide. Three polymers have been selected as materials for these membranes: polyetherimide cellulose acetate and ethylcellulose. This quarter the investigators worked on polyetherimide and cellulose acetate membranes. The overall structure of these membranes is shown schematically in Figure 1. As shown, a microporous support membrane is first coated with a high flux intermediate layer then with an ultrathin permselective layer and finally, if necessary, a thin protective high flux layer. 1 fig., 4 tabs.

  8. Final Priority. Rehabilitation Training: Vocational Rehabilitation Workforce Innovation Technical Assistance Center. Final priority.

    PubMed

    2015-08-13

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Rehabilitation Training program. The Assistant Secretary may use this priority for competitions in fiscal year 2015 and later years. We take this action to provide training and technical assistance to State vocational rehabilitation agencies to improve services under the State Vocational Rehabilitation Services program and State Supported Employment Services program for individuals with disabilities, including those with the most significant disabilities, and to implement changes to the Rehabilitation Act of 1973, as amended by the Workforce Innovation and Opportunity Act (WIOA), signed into law on July 22, 2014.

  9. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 12, July--September 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-10-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction and operation of a 2-t/hr process development unit. The project began in October, 1992, and is scheduled for completion by June, 1997. During Quarter 12 (July--September 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at Lady Dunn. Under Subtask 4.4, additional toxic trace element analysis of column flotation samples finalized the data set. Data analysis indicates that reasonably good mass balances were achieved for most elements. The final Subtask 6.3 Selective Agglomeration Process Optimization topical report was issued this quarter. Preliminary Subtask 6.4 work investigating coal-water-fuel slurry formulation indicated that selective agglomeration products formulate slurries with lower viscosities than advanced flotation products. Work continued on Subtask 6.5 agglomeration bench-scale testing. Results indicate that a 2 lb ash/MBtu product could be produced at a 100-mesh topsize with the Elkhorn No. 3 coal. The detailed design of the 2 t/hr selective agglomeration module neared completion this quarter with the completion of additional revisions of both the process flow, and the process piping and instrument diagrams. Construction of the 2 t/hr PDU and advanced flotation module was completed this quarter and startup and shakedown testing began.

  10. Support of enhanced oil recovery to independent producers in Texas. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Fotouh, K.H.

    1995-09-30

    The main objective of this project is to support independent oil producers in Texas and to improve the productivity of marginal wells utilizing enhanced oil recovery techniques. The main task carried out this quarter was the generation of an electronic data base.

  11. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Li, W.B.; Yang, R.T.

    1995-12-01

    During this quarter, progress was made on the following tasks: TPD techniques were employed to study the reaction mechanism of the selective catalytic reduction of nitrogen oxide with ammonia over iron oxide pillared clay catalyst; and a sulfur dioxide resistant iron oxide/titanium oxide catalyst was developed.

  12. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    SciTech Connect

    Fornetti, Micheal; Freeman, Douglas

    2012-10-31

    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  13. PITTSBURGH TECHNICAL HEALTH TRAINING INSTITUTE DEMONSTRATION PROJECT. FINAL REPORT, VOLUME II.

    ERIC Educational Resources Information Center

    KISHKUNAS, LOUIS J.

    APPENDIXES TO THE "FINAL REPORT," VOLUME I (VT 005 511), ARE INCLUDED--(1) A SCHEMATIC REPRESENTATION OF CURRICULUM DEVELOPMENT, (2) TECHNICAL BEHAVIOR CHECKLISTS, (3) PERFORMANCE INVENTORY FORMS USED IN ON-THE-JOB OBSERVATIONS, (4) REPORT FORM FOR TYPICAL JOB BEHAVIOR OF EMPLOYEE, (5) COOPERATING AREA HEALTH INSTITUTIONS, (6) TABLES OF Z SCORES…

  14. Great Lakes Area Resource Center. Final Technical Report. June 1, 1974-May 31, 1977.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison.

    The final technical report of the Great Lakes Regional Resource Center summarizes special education activities in five major areas: state program development, educational appraisal, educational programing, sharing resources, and project accountability and administration. Explained are project goals of enhancing development, demonstration,…

  15. Southwest Regional Resource Center. Final Technical Report. June 1, 1974 Through September 30, 1977.

    ERIC Educational Resources Information Center

    Southwest Regional Resource Center, Salt Lake City, UT.

    The document presents the Southwest Regional Resource Center's (SRRC) final technical report on its major activities, products, and services for handicapped children from June 1, 1974, to September 30, 1977. The element summaries, which comprise the main text of the report, contain information on model development, regional task force work, direct…

  16. Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae

    SciTech Connect

    Saurabh W. Jha

    2012-10-03

    The final technical report from the project "Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae" led at Rutgers the State University of New Jersey by Prof. Saurabh W. Jha is presented, including all publications resulting from this award.

  17. Dissemination of Continuing Education Materials Via Television Delivery Systems. Final Technical Report and Final Report.

    ERIC Educational Resources Information Center

    Munushian, Jack

    In 1972, the University of Southern California School of Engineering established a 4-channel interactive instructional television network. It was designed to allow employees of participating industries to take regular university science and engineering courses and special continuing education courses at or near their work locations. Final progress…

  18. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, 3rd quarter, 1994

    SciTech Connect

    Wehner, S.; Smith, V.; Cole, R.; Brugman, B.; Vogt, J.

    1994-10-18

    The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Texaco Exploration and Production Inc`s. (TEPI) long-term plans are to implement a full-scale miscible CO{sub 2} project in the CVU. However, the current market precludes acceleration of such a capital intensive project. The DOE partnership provides some relief to the associated R and D risks, allowing TEPI to evaluate a proven Gulf-coast sandstone technology in a waterflooded carbonate environment. Technical progress is described on the following studies: Porosity and permeability relationships; Initial water saturation and oil-water contact; Geostatistical realization; and Parametric simulation.

  19. BPA-Solicited Technical Review of "Echo Meadows Project Winter Artificial Recharge: Final Report for 2001 Baseline", Technical Report 2004.

    SciTech Connect

    Morgan, David

    2004-02-01

    The purpose of this report was to provide, at BPA's request, a technical review of interim products received for Project 2001-015-00 under contract 6925. BPA sometimes solicits technical reviews for Fish and Wildlife products or issues where outside expertise is required. External review of complex project deliverables assures BPA as a funding agency that the contractor is continuing with scientifically-credible experimental techniques envisioned in the original proposal. If the project's methodology proves feasible, there could be potential applications beyond the project area to similar situations in the Columbia Basin. The Experiment involves artificial flooding during high flow periods and a determination of the portion of the return flows that end up in the Umatilla River during low flow months and within acceptable water quality parameters (e.g., low temperature, few contaminants). Flooding could be a critical water source for aquatic organisms at times of the year when flows in the lower reaches of the Umatilla River are low and water is warmer than would be desired. The experiment was proposed to test whether 'this process, recharges the shallow aquifers of the old flood plain, for natural filtration through the alluvial soils as it returns to the Umatilla River, cleaner and cooler (about 50 degree Fahrenheit) five to six month later (about July and August) substantially cooling the river and [making it] more beneficial to anadromous [fish]'. A substantial amount of preliminary data had been collected and preliminary results were submitted in an interim report 'Echo Meadows Project Winter Artificial Recharge: Final Report for 2001 Baseline (December 2002)'. A substantial amount of addition funding was provided for the last cycle of flooding (Phases II) and final analyses of the full compliment of data collected over the life of the contract (Phase III). Third party scientific review may assist the contractor in producing a higher quality Final Report with

  20. Studies of granular flow down an inclined chute. Quarterly technical progress report, 13 June 1992--12 September 1992

    SciTech Connect

    Hanes, D.M.

    1992-12-01

    The driving force for the granular flow in the experimental region is gravity. The vehicle which re-circulates this flow is an 46 cm Corra-Trough belt conveyor manufactured by Buck-El, Inc. A drawing of this conveyor is shown in Figure 3. Entrance and exit chambers were designed to route the flow between the chute and the conveyor. Both devices had to be flexible because the position of the chute relative to the conveyor changes each time the angle of the chute is changed. Finally, to control the entering flow more accurately, an adjustable gate apparatus was constructed. The first step in setting up the chute is angle adjustment. The granular material used in the experiments described in this report are technical quality glass spheres, three millimeters in diameter. These beads are produced by Cataphote, Inc. Cataphote lists the tolerances for the 3mm spheres at {plus_minus}0.2 mm. The average mass of a single bead was measured to be 0.034 g which gives an average measured specific gravity of the glass at 2.42 g/cm{sup 3}.

  1. CO{sub 2} Hugg-n-Puff process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, 2nd quarter 1996

    SciTech Connect

    1996-07-25

    The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Tasks associated with this objective are carried out in what is considered a timely effort for near-term goals.

  2. Final Technical Report of Project DE-FG02-96ER14647

    SciTech Connect

    Lundeen, Stephen R.

    2015-05-31

    This is the final technical report of work completed under DOE support over the period Sept. 1, 1996 until May 31, 2015. The title of the project was "Ion/Excited Atom Collision Studies with a Rydberg Target and a CO2 Laser" from 9/1/96 to 10/31/06, and "Properties of Actinide Ions from Measurements of Rydberg Ion Fine Structure" from 11/1/06 until 5/31/15. The primary technical results were a detailed experimental study of resonant charge transfer between Rydberg atoms and highly-charged ions, and unique measurements of many properties of multiply-charged Thorium ions.

  3. Technical area status report for low-level mixed waste final waste forms. Volume 1

    SciTech Connect

    Mayberry, J.L.; DeWitt, L.M.; Darnell, R.

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

  4. Magnetic relaxation - coal swelling, extraction, pore size. Quarterly technical progress report, April 1, 1994--June 31, 1994

    SciTech Connect

    Doetschman, D.C.

    1994-08-01

    Work this quarter involved a CW EPR examination of the density separated fractions of the Lewiston-Stockton Argonne Coal and the initiation of EPR studies to probe molecular motion in coal pores. Eighteen densities between 1.24 g/cm{sup 3} and 1.56 g/cm{sup 3} were separated and combined into seven density ranges. Radicals with a narrow EPR line appear only in the samples with densities above 1.48 g/cm{sup 3}.

  5. Effects of surface chemistry on the porous structure of coal. Quarterly technical progress report, April 1996--June 1996

    SciTech Connect

    Anderson, S.A.; Radovic, L.R.; Hatcher, P.G.

    1996-11-01

    Objective is to use {sup 129}Xe NMR to study the microporous structure of coals. During this quarter, we have: performed a presaturation experiment on Wyodak subbituminous coal, monitored the progress of Xe adsorption in an anthracite, focusing on the changes observed in the external-surface adsorbed gas signal, used an echo sequence to obtain {sup 129}Xe NMR spectra of Blind Canyon hvAb coal, and improved and repeated the successive oxygen adsorption and desorption experiment on a microporous carbon.

  6. Advanced physical coal cleaning to comply with potential air toxic regulations. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect

    Honaker, R.Q.; Paul, B.C.; Wang, D.

    1994-12-31

    This research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Trace elements considered in this project will include mercury, selenium, cadmium, and chlorine. Work in the first quarter has focused on trace element analysis procedures and sample acquisition. Several experts in the field of trace element analysis of coal have been consulted and these procedures are presently being evaluated.

  7. DOE SBIR Phase II Final Technical Report - Assessing Climate Change Effects on Wind Energy

    SciTech Connect

    Whiteman, Cameron; Capps, Scott

    2014-11-05

    Specialized Vertum Partners software tools were prototyped, tested and commercialized to allow wind energy stakeholders to assess the uncertainties of climate change on wind power production and distribution. This project resulted in three commercially proven products and a marketing tool. The first was a Weather Research and Forecasting Model (WRF) based resource evaluation system. The second was a web-based service providing global 10m wind data from multiple sources to wind industry subscription customers. The third product addressed the needs of our utility clients looking at climate change effects on electricity distribution. For this we collaborated on the Santa Ana Wildfire Threat Index (SAWTi), which was released publicly last quarter. Finally to promote these products and educate potential users we released “Gust or Bust”, a graphic-novel styled marketing publication.

  8. Characterization of the radon source in North-Central Florida. Final report part 1 -- Final project report; Final report part 2 -- Technical report

    SciTech Connect

    1997-12-01

    This report contains two separate parts: Characterization of the Radon Source in North-Central Florida (final report part 1 -- final project report); and Characterization of the Radon Source in North-Central Florida (technical report). The objectives were to characterize the radon 222 source in a region having a demonstrated elevated indoor radon potential and having geology, lithology, and climate that are different from those in other regions of the U.S. where radon is being studied. Radon availability and transport in this region were described. Approaches for predicting the radon potential of lands in this region were developed.

  9. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, Fourth quarter 1995

    SciTech Connect

    Wehner, S.; Prieditis, J.

    1996-02-05

    The principle objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Texaco Exploration and Production Inc`s. (TEPI) mid-term plans are to implement a full-scale miscible CO{sub 2} project in the CVU. TEPI has concluded all of the Tasks associated with the First Budget Period. The DOE approved the TEPI continuation application. Budget Period No. 2 is now in progress. Initial injection of CO{sub 2} began in November, and after a short shut-in period for the soak, the well was returned to production in late December, 1995.

  10. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 3, April--June 1993

    SciTech Connect

    McCormick, R.L.; Jha, M.C.; Streuber, R.D.

    1993-08-20

    This document is the third quarterly technical progress report under Contract No. AC22-92PC92110, ``Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane.`` During this quarter, we have continued to develop methods for catalyst activation by investigating activation in wet gas environments. This procedure leads to the formation of highly crystalline (VO){sub 2}P{sub 2}O{sub 7}, while activation under identical conditions, but with no moisture, leads to a poorly crystalline sample. Published data indicate that the highly crystalline form is representative of commercial butane oxidation catalysts. The main focus of our work during this quarter has been in the area of catalyst testing in the microreactor system. In order to confirm that our microreactor system was providing reliable data, we tested a V{sub 2}O{sub 5}/SiO{sub 2} catalyst at atmospheric pressure and temperatures from 500 to 600{degree}C using 90 to 95 percent CH{sub 4}/O{sub 2}. Several studies of methane oxidation using this catalyst have been published with reasonably good agreement between different research groups. We were not able to reproduce the literature data using steel reactors. However, when the steel reactor was lined with quartz and the postcatalyst reactor volume was minimized by packing with quartz chips, we obtained results which agree closely with those previously published. Using the same quartz reactor and test conditions, we also tested a highly crystalline (wet activated) VPO catalyst.

  11. Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly technical progress report, March 30, 1995--June 30, 1995

    SciTech Connect

    Clarke, D.; Ershaghi, I.; Davies, D.; Phillips, C.; Mondragon, J.

    1995-07-28

    This is the first quarterly technical progress report for the project. Although the contract was awarded on March 30, 1995 and Pre-Award Approval was given on January 26, 1995, the partners of this project initiated work on October 1, 1994. As such, this progress report summarizes the work performed from project inception. The production and injection data, reservoir engineering data, and digitized and normalized log data were all completed sufficiently by the end of the quarter to start work on the basic reservoir engineering and geologic stochastic models. Basic reservoir engineering analysis began June 1 and will continue to March, 1996. Design work for the 5 observation/core holes, oil finger printing of the cored oil sands, and tracers surveys began in January, 1995. The wells will be drilled from July--August, 1995 and tracer injection work is projected to start in October, 1995. A preliminary deterministic 3-D geologic model was completed in June which is sufficient to start work on the stochastic 3-D geologic model. The four proposed horizontal wells (two injectors and two producers) have been designed, equipment has been ordered, and the wells will be drilled from mid-August through September. Four existing steam injection wells were converted to hot water injection in March, 1995. Initial rates were kept low to minimize operational problems. Injection rates will be increased significantly in July.

  12. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 11, April 1, 1991--June 30, 1991

    SciTech Connect

    Not Available

    1991-12-31

    This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. The conceptual flowsheet will be revised based on the results of the bench scale testing and areas will be identified that need further larger scale design data verification, to prove out the design.

  13. Government Information Quarterly. Volume 7, no. 2: National Aeronautics and Space Administration Scientific and Technical Information Programs. Special issue

    NASA Technical Reports Server (NTRS)

    Hernon, Peter (Editor); Mcclure, Charles R. (Editor); Pinelli, Thomas E. (Editor)

    1990-01-01

    NASA scientific and technical information (STI) programs are discussed. Topics include management of information in a research and development agency, the new space and Earth science information systems at NASA's archive, scientific and technical information management, and technology transfer of NASA aerospace technology to other industries.

  14. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, April 1996--June 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-07-31

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from April 1 - June 30, 1996.

  15. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, No. 4, July 1995--September 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1995-11-06

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 29, 1995.

  16. Bench-scale testing of on-line control of column flotation using a novel analyzer. Second quarterly technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-04-16

    This document contains the second quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTE{trademark} Column Flotation Technology and PTI`s On-Line Quality Monitor and Control System. The twelve-month project involves installation and testing of a 200--300 lb/hr. bench-scale testing circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) for two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). The project schedule timeline by task series for the twelve month project, as it was laid out in the initial Project Work Plan. At the present time, all tasks are progressing according to schedule with the exception of the Task 800 Circuit Testing and Sample Prep and Task 1000 Circuit Decommissioning, which have slipped approximately five weeks due to delays incurred within in the project.

  17. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 2, January 1995--March 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1995-05-05

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 to March 31, 1995.

  18. Advanced coal-gasification technical analyses. Appendix 3: technical/economic evaluations. Final report, December 1982-September 1985

    SciTech Connect

    Cover, A.E.; Hubbard, D.A.; Jain, S.K.; Shah, K.V.

    1986-01-01

    This document contains the final report on four tasks performed by KRSI as part of the Advanced Coal Gasification Technical Analysis contract with GRI. It provides extensive, consistent technical and economic information regarding application of (1) Lurgi gasification, (2) Westinghouse (now KRW) gasification, and (3) Direct Methanation (with Lurgi gasifiers) processes to produce SNG from North Dakota lignite. The results of Lurgi and Westinghouse studies were used to develop a plant size vs. cost-of-SNG relationship. The report on each task consists of a block flow diagram, component material balance, process flow sheets showing operating conditions and principal equipment in each major process area, a narrative process description, utility balances, plant efficiency calculations, documentation of design and cost-estimation basis and an economic analysis performed in accordance with the GRI Guidelines. Economic analysis consisted of capital-cost breakdown according to plant areas, variable operating and maintenance costs, and calculation of levelized, constant-dollar cost-of-gas with and without process development allowances (PDA). The sensitivities of the gas cost to major variables are presented in graphical form. For the plant size vs. cost-of-SNG task, similar information is provided at eight different plant capacities based on both Lurgi or Westinghouse gasifiers.

  19. Final Technical Report - Center for Technology for Advanced Scientific Component Software (TASCS)

    SciTech Connect

    Sussman, Alan

    2014-10-21

    This is a final technical report for the University of Maryland work in the SciDAC Center for Technology for Advanced Scientific Component Software (TASCS). The Maryland work focused on software tools for coupling parallel software components built using the Common Component Architecture (CCA) APIs. Those tools are based on the Maryland InterComm software framework that has been used in multiple computational science applications to build large-scale simulations of complex physical systems that employ multiple separately developed codes.

  20. Experimental Program Final Technical Progress Report: 15 February 2007 to 30 September 2012

    SciTech Connect

    Kinney, Edward R.

    2014-09-12

    This is the final technical report of the grant DE-FG02-04ER41301 to the University of Colorado at Boulder entitled "Intermediate Energy Nuclear Physics" and describes the results of our funded activities during the period 15 February 2007 to 30 September 2012. These activities were primarily carried out at Fermilab, RHIC, and the German lab DESY. Significant advances in these experiments were carried out by members of the Colorado group and are described in detail.

  1. Final Technical Report for contract number DE-FG02-05ER15670

    SciTech Connect

    Glazebrook, Jane

    2016-02-29

    This is the final technical report for contract number DE-FG02-05ER15670. The project is now complete, and results of the project have been published. Two papers were published based on work done in the last three-year funding period. The DOIs of these papers are included below. The abstracts of the papers, providing summaries of the work, are included in the body of the report.

  2. ONR BAA 06-007 Phase 1 Final Technical Report. Version 1.1

    DTIC Science & Technology

    2007-04-10

    ONR BAA 06-007 Phase 1 Final Technical Report Version 1.1 Mercury Data Systems 10 April 2007 Abstract... Mercury Data Systems 4214 Beechwood Drive Suite 105 Greensboro, NC 27410 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S...the restriction(s) in the Confidentiality Statement of this document. Document Control This is a controlled document produced by Mercury Data Systems

  3. Upgrading mild gasification liquids to produce electrode binder pitch. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect

    Knight, R.A.

    1994-06-01

    The objective of this program is to investigate the production of electrode binder pitch, valued at $250--$300/ton, from mild gasification liquids. The IGT MILDGAS process pyrolyzes coal at 1000{degrees}--1500{degrees}F and, with Illinois coal, the 750{degrees}F+ distillation residue (crude pitch) comprises 40--70% of the MILDGAS liquids, representing up to 20 wt% of maf feed coal. The largest market for pitch made from coal liquids is the aluminum industry, which uses it to make carbon anodes for electrolytic furnaces. In this project, crude MILDGAS pitch is being modified by a flash thermocracking technique to achieve specifications typical of a binder pitch. Last year, a pitch thermocracking unit was constructed for operation at 1200{degrees}--1600{degrees}F. Reactor design features and process conditions are being examined to optimize the properties of the finished pitch. In the current year, improvements to the thermocracker are being made for better gas and pitch flow control, continuous electronic monitoring of feed rate and pressures, and improvements to allow longer tests. Tests are being conducted under both inert and reducing gases. During the current quarter, equipment modifications, calibrations, and shakedown were completed, and thermocracking tests were resumed. One test was completed at 1600{degrees}F in N{sub 2} with a pitch rate of 11 g/min. Data from this and following tests will be presented in the next quarterly report. During the next quarter, thermocracking tests will be completed and selected products (pitch and/or pitch coke) will be submitted to an aluminum company testing lab for production and evaluation of test electrodes.

  4. Development of molten carbonate fuel cell power plant. Quarterly technical progress report, February 1-April 30, 1980

    SciTech Connect

    Peterson, J. R.

    1980-01-01

    Work has been initiated during this first quarter under all four program tasks and by all major participants as described. Task 1.0 activity (establish power plant reference design) concentrated upon definition of user requirements and establishment of power plant subsystem alternatives and characteristics. Task 2.0 work (stack and cell design development and verification) was initiated with a heavy emphasis upon test facilities preparation. A total of 27 laboratory cells were operated during this reporting period and a total of nine cells continued on test at the end of the quarter. Investigation of alternative anode and cathode materials proceeded; a dual-porosity anode was fabricated and tested. Over 10,000 endurance hours on a state-of-the-art cell carried-over from a previous program has been achieved and 1500 hours endurance has been obtained with sheet metal cells. Results presented for electrolyte structure development include comparative data for spray-dried and modified aqueous slurry process powders. Shake-down tests with a rotating disc electrode apparatus for fundamental measurements are described. Concept designs for both prototype and subscale stacks have been identified. Task 3.0 effort (development capability for full-scale stack tests) included preparation of an overall test plan to commercialization for molten carbonate fuel cells and of a functional specification for the tenth-scale stack test facility; drafts of both documents were completed for internal review. Cost-effective manufacturing assessment of available designs and processes was initiated. Task 4.0 work (develop capabilities for operation of stacks on coal-derived gas) included gathering of available contaminants concentration and effects information and preparation of initial projections of contaminant ranges and concentrations. Accomplishments to date and activities planned for the next quarter are described.

  5. Development and testing of a high efficiency advanced coal combustor phase III industrial boiler retrofit. Quarterly technical progress report No. 9, 1 October 1993--31 December 1993

    SciTech Connect

    Jennings, P.; Borio, R.; McGowan, J.G.

    1994-03-01

    This report documents the technical aspects of this project during the ninth quarter of the program. During this quarter, the natural gas baseline testing at the Penn State demonstration boiler was completed, results were analyzed and are presented here. The burner operates in a stable manner over an 8/1 turndown, however due to baghouse temperature limitations (300{degrees}F for acid dewpoint), the burner is not operated for long periods of time below 75% load. Boiler efficiency averaged 83.1% at the 100 percent load rate while increasing to 83.7% at 75% load. NO{sub x} emissions ranged from a low of 0.17 Lbs/MBtu to a high of 0.24 Lbs/MBtu. After the baseline natural gas testing was completed, work continued on hardware optimization and testing with the goal of increasing carbon conversion efficiency on 100% coal firing from {approx}95% to 98%. Several coal handling and feeding problems were encountered during this quarter and no long term testing was conducted. While resolving these problems several shorter term (less than 6 hour) tests were conducted. These included, 100% coal firing tests, 100% natural gas firing tests, testing of air sparges on coal to simulate more primary air and a series of cofiring tests. For 100% coal firing, the carbon conversion efficiency (CCE) obtained this quarter did not exceed the 95-96% barrier previously reached. NO{sub x} emissions on coal only ranged from {approx} 0.42 to {approx} 0.78 Lbs/MBtu. The burner has not been optimized for low NO{sub x} yet, however, due to the short furnace residence time, meeting the goals of 98% CCE and <0.6 Lbs/MBtu NO{sub x} simultaneously will be difficult. Testing on 100% natural gas in the boiler after coal firing indicated no changes in efficiency due to firing in a `dirty` boiler. The co-firing tests showed that increased levels of natural gas firing proportionately decreased NO{sub x}, SO{sub 2}, and CO.

  6. Evaluation of using cyclocranes to support drilling and production of oil and gas in wetland areas. Third quarterly technical progress report, First quarter, 1993

    SciTech Connect

    Eggington, W.J.

    1993-06-01

    The planned program falls under wetlands area research related to drilling, production, and transportation of oil and gas resources. Specifically the planned program addresses an evaluation of using cyclocraft to transport drill rigs, mud, pipes and other materials and equipment in a cost effective and environmentally safe manner to support oil and gas drilling and production operations in wetland areas. The cyclocraft is a proven hybrid aircraft that utilizes aerostatic and aerodynamic lift. This type of aircraft has considerable payload capacity, VTOL capability, high controllability, low operating cost, low downwash and high safety. The benefits of using a cyclocraft to transport drill rigs and materials over environmentally-sensitive surfaces would be significant. The cyclocraft has considerable cost and operational advantages over the helicopter. The major activity during the report period was focussed on Task 4, Preliminary Design. The selected design has been designated H.1 Cyclocraft by MRC. The preliminary design work was based on the results of the three preceding tasks. A report was initiated that contains descriptions of the H.1 Cyclocraft and its subsystems; options available for the final aircraft design process; performance, geometry, weights and power data; logistics and considerations relating to cyclocraft operations in wetlands.

  7. Recovery and utilization of gypsum and limestone from scrubber sludge. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.

    1993-09-01

    Wet flue-gas desulfurization units in coal-fired power plants produce a large amount of sludge which must be disposed of, and which is currently landfilled in most cases. Increasing landfill costs are gradually forcing utilities to find other alternatives. In principle, this sludge can be used to make gypsum (CaSO{sub 4}-2H{sub 2}O) for products such as plaster-of-Paris and wallboard, but only if impurities such as unreacted limestone and soluble salts are removed, and the calcium sulfite (CaSO{sub 3}) is oxidized to calcium sulfate (CaSO{sub 4}). This project is investigating methods for removing the impurities from the sludge so that high-quality, salable gypsum products can be made. Work done in the previous quarter concentrated on developing a low-cost froth flotation process that could remove limestone, unburned carbon, and related contaminants from the sludge while recovering the bulk of the calcium sulfite and gypsum. In the current quarter, experiments to remove impurities from the sludge using a water-only cyclone were conducted. The cyclone has been found to be effective for removing the coarser limestone impurities, as well as removing contaminants such as fine gravel and grinding-ball chips. These results show that the cyclone will be very complementary with froth flotation, which mainly removes the very fine impurities.

  8. Oxidation of phenolics in supercritical water. Combined quarterly technical progress report, December 1, 1995--May 31, 1996

    SciTech Connect

    1996-11-01

    Over the past two quarters, our work has focused on three main areas. The first area of interest involved a reexamination of the rate laws that were formed in past quarters. A possible error was discovered for the analytical methods used in the o-cresol oxidation study and the data were corrected, yielding a new rate equation. The data for hydroxybenzaldehydes were studied again, this time as a system of parallel oxidation and thermolysis reactions. The second area in which progress was made was the study of the thermolysis of nitrophenols and dihydroxybenzenes in supercritical water. These investigations were needed to determine the effect that pyrolysis or hydrolysis had on our previous supercritical water oxidation experiments. Thirdly, we have continued to investigate the use of molecular orbital theory in the determination reactivity indices. A reactivity index, such as the enthalpy of formation, may be used in a structure-reactivity relationship to summarize the kinetics for the oxidation of phenolics in supercritical water. Progress in each of these areas is summarized.

  9. Advanced sulfur control concepts in hot-gas desulfurization technology. Quarterly technical progress report, July--September 1995

    SciTech Connect

    Harrison, D.P.

    1995-10-01

    Both the Antek total sulfur analyzer and the modifications to the Shimadzu GC-14A gas chromatograph to be used for analysis for SO{sub 2} and H{sub 2}S were delivered during the quarter. Problems were faced during the installation and calibration phases of both instruments. By the end of the quarter we believe that the GC problems have been solved, but problems remain with the Antek analyzer. It appears that too much sulfur (as SO{sub 2}) reaches the UV detector and causes it to become saturated. This shows up as a maximum in the instrument calibration curve. At 200 psia, the capillary flow restrictor allows a total flow rate of about 180 sccm, and the maximum occurs at about 1 % H{sub 2}S in the calibration gas. Reducing the pressure so that the total flow is reduced to about 25 sccm shifts the calibration curve maximum to about 5.7% H{sub 2}S. It appears that we must reduce the total flow rate to the detector or provide additional dilution. This may be accomplished by increasing the resistance of the capillary restrictor, by diverting a portion of the flow leaving the pyrotube to vent, or adding an inert such as N{sub 2} to the gases exiting the pyrotube. We are in contact with Antek representatives about the problem. Both the atmospheric pressure and high pressure electrobalances were used during the quarter to study the regeneration of FeS in atmospheres of O{sub 2}/N{sub 2} or H{sub 2}O/N{sub 2}. In the atmospheric pressure unit the effects of temperature (600 - 800{degrees}C), flow rate (130 - 500 sccm), and reactive gas mol fraction (0.005 to 0.03 O{sub 2} and 0.1 to 0.5 H{sub 2}O) are being studied. Regeneration tests completed to date in the high pressure unit have utilized only O{sub 2}/N. and the parameters studied include temperature (600 - 800{degrees}C), flow rate (500 - 1000 sccm), pressure (1 - 15 atm) ad O{sub 2} mol fraction (0.005 - 0.03).

  10. Fiber-optic, anti-cycling, high pressure sodium street light control. Final technical progress report

    SciTech Connect

    1995-05-01

    This is the Final Technical Progress Report on a project to develop and market a Fiber-Optic Anti-Cycling High Pressure Sodium Street Light Control. The field test units are now being made with a single vertical PC board design and contains a computer-on-a-chip or PROM IC to take the place of the majority of the components previously contained on the upper logic board. This will reduce the final costs of the unit when it is in production and increase the control`s flexibility. The authors have finished the soft tooling and have made the 400 plastic cases for the field test units. The new configuration of the cases entails a simplified design of the control shell which will have the lenses cast in place. The shell and base plastics are now finished and in final assembly awaiting the completion of the PC boards.

  11. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect

    Li, W.B.; Yang, R.T.

    1994-12-31

    During the past quarter, progress was made in three tasks. The poisoning effects of alkali metals (as Na{sub 2}O, K{sub 2}0 and Cs{sub 2}O) on iron oxide pillared clay (Fe-Bentonite) catalyst for selective catalytic reduction (SCR) of NO with NH{sub 3} were investigated. The effects of sulfur dioxide and water vapor on the performance of the high activity catalyst, that is, Ce-doped Fe-Bentonite pillared clay (Ce-Fe-Bentonite) were examined. In addition, an iron ion-exchanged titania pillared clay (Ti-PILC) was prepared and its catalytic activity for the SCR of NO with NH{sub 3} was studied, which showed a high activity and a high S0{sub 2} and H{sub 2}0 resistance at high temperatures (i.e., above 400{degree}C).

  12. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Quarterly] technical progress report, April--June 1993

    SciTech Connect

    Doyle, F.M.

    1993-06-30

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eleventh quarter, dry thermal oxidation tests were done on coal samples from the Pennsylvania State Coal Bank. As-received and oxidized coal samples were studied by ion-exchange methods to determine the carboxylate and phenolic group concentrations. Film flotation tests were done to characterize the flotability of as-received and oxidized coals. In addition, electrokinetic tests were done on different coals, to obtain information pertinent to the selection of flotation reagents. DRIFT analysis was done to characterize the structure of coals.

  13. Photovoltaic mechanisms in polycrystalline thin film silicon solar cells. Quarterly technical progress report No. 1, July 30-October 31, 1980

    SciTech Connect

    Sopori, B.

    1980-07-30

    Major accomplishments during the first quarter of the contract period are reported. Small area diode fabrication and analysis has been continued. This technique has further been applied to many RTR ribbons. An optical technique for determination of crystallite orientations has been placed in operation. This technique has many distinct advantages. These are: (1) rapid; (2) can be set-up very inexpensively; (3) well suited for polycrystalline substrates of small grain size; and (4) can easily characterize twins. Accuracies obtained with this technique are about the same as that of the Laue technique. A technique to qualitatively evaluate grain boundary activity in unprocessed substrates has been used and valuable results obtained. Further analysis is being done to use this technique for quantitative evaluation. A major study of G.B. orientation effects is underway. Initial results on RTR ribbons have shown a good correlation of G.B. barrier height with misorientation (tilt boundaries).

  14. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, July 1 - September 31, 1996

    SciTech Connect

    Suuberg, E.M.; Oja, V.; Lilly, W.D.

    1996-12-31

    The vapor pressure correlations that exist at present for coal tars are very crude and they are not considered reliable to even an order of magnitude. This project seeks to address this important gap in the near term by direct measurement of vapor pressures of coal tar fractions, by application of well-established techniques and modifications thereof. The principal objectives of the program are to: (1) obtain data on the vapor pressures and heats of vaporization of tars from a range of ranks of coal; (2) develop correlations based on a minimum set of conveniently measurable characteristics of the tars; and (3) develop equipment that would allow performing such measurements in a reliable, straightforward fashion. During this quarter we have extended the work on measurements of vapor pressures of coal tars, using the continuous Knudsen effusion technique. These results need further analysis and therefore in this report we describe only the general idea behind the technique, and also show some typical results.

  15. Removal of CO{sub 2} from flue gases by algae. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Akin, C.; Pradhan, S.

    1993-09-01

    The objective of this research program is to determine the feasibility of the alga Botryococcus braunii as a biocatalyst for the photosynthetic conversion of flue gas CO{sub 2} to hydrocarbons. The research program involves the determination of the biocatalytic characteristics of free and immobilized cultures of Botryococcus braunii in bench-scale studies, and the feasibility study and economic analysis of the Botryococcus braunii culture systems for the conversion of flue gas CO{sub 2} to hydrocarbons. The objective of the third quarter of this research program was to determine the growth and hydrogen formation characteristics of free and immobilized cells of Botryococcus braunii in bench-scale photobioreactors. Raceway and inclined surface type bioreactors were used for free cell and immobilized cell studies respectively. The free cell studies with air and CO{sub 2} enriched air [10% (v/v) CO{sub 2} in air] in media with and without NaHCO{sub 3} were conducted.

  16. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, January 1, 1996--March 31, 1996

    SciTech Connect

    Buckley, J.S.; Ouenes, A.

    1996-06-01

    The objective of this project is to integrate advanced geoscience and reservoir engineering concepts with the goal of quantifying the dynamics of fluid-rock and fluid-fluid interactions as they relate to reservoir architecture and lithologic characterization. This interdisciplinary effort will integrate geological and geophysical data with engineering and petrophysical results through reservoir simulation. The essence of the work completed in the first quarter of 1996 is summarized in the following three statements: automatic log digitizing software is superior to hand digitizing; laboratory wettability tests suggest that the reservoir is mixed-wet and results of the non-reactive tracer test were used to revise the mechanics of the wettability test design to include tracer injection below a packer.

  17. Assistance to the states with risk based data management. Quarterly technical progress report, April 1--June 30, 1995

    SciTech Connect

    Paque, M.J.

    1995-07-28

    The Tasks of this project are to: (1) complete implementation of a Risk Based Data Management System (RBDMS) in the States of Alaska, Mississippi, Montana, Nebraska; and (2) conduct Area of Review (AOR) Workshops in the states of California, Oklahoma, Kansas, and Texas. The RBDMS was designed to be a comprehensive database with the ability to expand into multiple areas, including oil and gas production. The database includes comprehensive well information for both producing and injection wells. It includes automated features for performing functions redated to AOR analyses, environmental risk analyses, well evaluation, permit evaluation, compliance monitoring, operator bonding assessments, operational monitoring and tracking, and more. This quarterly report describes the status of the development of the RBDMS project in both stated tasks and proposes further steps in its implementation.

  18. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, February 9, 1993--May 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production and utilization of tetralin-soluble iron oxometallate precursors for coal liquefaction catalysts was continued in this quarter. Further descriptions of the catalytic activities of the sulfided forms were obtained. The hydrogenation activities of catalysts derived from iron oxotitanate and cobalt oxoaluminate were investigated using pyrene as a the test compound, and results were compared with thermal reactions. The hydrogenation activity of iron oxotitanate was superior to other catalysts including iron oxoaluminate. The hydrogenation activity of cobalt oxoaluminate was similar to that of iron oxoaluminate reported in previous quarterly report. The liquefaction of Wyodak subbituminous coal was investigated using in situ sulfided iron oxotitanate catalyst. In order to improve the usefulness of iron oxoaluminate as a liquefaction catalyst, iron oxoaluminate was supported on acid-treated montmorillonite (K-10). Supporting the iron oxoaluminate on an acidic support significantly improved the hydrogenation activity of iron oxoaluminate. The hydrocracking activity was increased by a large factor. Thus the aluminate and titanate structures surrounding the pyrrhotite that forms during sulfidation have a beneficial effect in preventing deactivation of the iron sites, and the presence of the acidic sites in the clay results in effective catalytic synergism between catalyst and support. These clay-supported iron oxometallates are highly promising catalysts for coal liquefaction. Iron oxyhydroxide and triiron supported on acid-treated montmorillonite (K-10) were tested for the liquefaction of ion-exchanged Wyodak (IEW) to minimize effects of the coal mineral matter. Both sulfided catalysts gave very high conversions of coal to THF-soluble and heptane-soluble (oils) products.

  19. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, November 9, 1992--February 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    The mixed iron/alumina pillared clay catalysts and clay-supported iron catalysts have been shown in previous reports of this project to significantly improve yields of heptane-soluble products obtained in the liquefaction of both as received and acid-exchanged Wyodak subbituminous coal and Blind Canyon bituminous coal. In this quarter, the soluble product (LSW) obtained from the noncatalytic low-severity liquefaction of Wyodak coal was used as a feed to determine the activity of iron based catalysts for the hydrogenation and depolymerization steps. Comparison data for liquefaction of the soluble LSW with other catalysts were desired, and these data were obtained for a dispersed form of iron sulfide, prepared via iron hydroxyoxide (PETC method). The iron oxyhydroxide catalyst was directly precipitated on LSW product using either water or ethanol as the solvent. An insight into the functioning of the mixed iron/alumina pillared clay in coal liquefaction was investigated by preparing and studying an iron oxoaluminate structure. An investigation of new methods for the production of tetralin soluble iron oxometallate catalysts and the determination of their catalytic activities was continued in this quarter. The hydrogenation activity of iron oxoaluminate was investigated using pyrene and 1-methylnaphthalene as the test compounds, and results were compared with thermal reactions. In order to determine the loss of activity, recovered catalyst was recycled a second time for the hydrotreating of pyrene. Reaction of 1-methylnaphthalene with iron oxoaluminate also gave very high conversion to 1- and 5-methyltetralins and small amount of 2- and 6-methyltetralins. Liquefaction of Wyodak subbituminous and Blind Canyon bituminous coal was investigated using an in situ sulfided soluble iron oxoaluminate catalyst.

  20. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. Quarterly technical progress report, 1996

    SciTech Connect

    Zauderer, B.

    1996-11-01

    The objective of this 24 month project is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor with sulfur capture by calcium oxide sorbent injection into the combustor. This sulfur capture process consists of two steps: Capture of sulfur with calcined calcium oxide followed by impact of the reacted sulfur-calcium particles on the liquid slag lining the combustor. The sulfur bearing slag must be removed within several minutes from the combustor to prevent re-evolution of the sulfur from the slag. To accomplish this requires slag mass flow rates in the range of several 100 lb/hr. To study this two step process in the combustor, two groups of tests are being implemented. In the first group, calcium sulfate in the form of gypsum, or plaster of Paris, was injected in the combustor to determine sulfur evolution from slag. In the second group, the entire process is tested with limestone and/or calcium hydrate injected into the combustor. This entire effort consists of a series of up to 16 parametric tests in a 20 MMtu/hr slagging, air cooled, cyclone combustor. During the present quarterly reporting period ending September 30,1996, three tests in this project were implemented, bringing the total tests to 5. In addition, a total of 10 test days were completed during this quarter on the parallel project that utilizes the same 20 MMtu/hr combustor. The results of that project, especially those related to improved slagging performance, have a direct bearing on this project in assuring proper operation at the high slag flow rates that may be necessary to achieve high sulfur retention in slag.

  1. Microbial strain improvement for organosulfur removal from coal. [Quarterly] technical report, March 1, 1993--May 31, 1993

    SciTech Connect

    Kilbane, J.J. II

    1993-09-01

    IGT has developed a microbial culture Rhodococcus rhodochrous, designated as IGTS8, that is of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without significantly sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore permit favorable biodesulfurization process conditions. During the past quarter, promoter probe vectors thought to possess promoter inserts were isolated. Two new promoter probe vectors were constructed: pRCAT2; which is pRAT1 (second quarterly report) with the BamHI site removed, and pRCAT3; which is pRCAT2 with a synthetic oligonucleotide inserted at the HindIII site that will allow a wider range of restriction fragments to be examined for promoter activity including the fragments from the twenty mutants isolated from the Rhodococcus strains exhibiting increased resistance to chloramphenicol. Sequence analysis of six of these mutants has been initiated, computer comparisons made, and base change confirmation is in progress. As research to isolate strong Rhodococcus promoters is the goal, the promoter for the 16S ribosomal RNA structural gene is a good candidate for a strong promoter based on analyses of the 16S RNA gene in other species. Since the sequence of the 16S RNA gene is well conserved among species, straightforward techniques are available to isolate the promoter and such efforts are in progress.

  2. Synthesis of acrylates and methacrlyates from coal-derived syngas. Quarterly technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Tischer, R.E.; Spivey, J.J.

    1995-08-01

    The objective Task 1, Synthesis of Propionates, is to develop the technology for the synthesis of low-cost propionates. These propionates are the basic feedstock for the subsequent reaction with formaldehyde to produce the target molecule, methyl methacrylate (MMA). Eastman has explored several possible routes to the propionates and has concluded that the most promising is the synthesis of propionic anhydride from the reaction of propionic acid from and ethylene (and also hydrogen in some cases). The main advantage of the anhydride over the acid is that its subsequent reaction with formaldehyde does not produce water, which can lead to undesired byproducts. Bechtel is carrying out a cost analysis of the Eastman route to the anhydride to determine if it is potentially competitive with commercially practiced routes to the same molecule. The answer is expected next quarter. The objective Task 2, Condensation Catalysis to develop catalysts for the condensation of the propionate (propionic anhydride is our target molecule) with formaldehyde. This reaction produces methacrylic acid (MAA), which would then be reacted with methanol to produce MMA in the slurry reactor. We have synthesized a wide range of catalysts and the results show that there is substantial byproduct formation, including 3-pentanone and some propionic acid. Our results show the highest yields of MAA using an alkalized alumina (1%Na/{sub y}-AI{sub 2}O{sub 3}). Although the condensation of propionic acid with formaldehyde is well studied in the literature, little is reported on the condensation of the anhydride. Although it is likely that the same general types of acid/base catalysts that promote the acid condensation will also promote that of the anhydride, the strength and balance of the acid and base sites is likely to be different. We plan to explore the relationship of the catalyst properties and MMA yields using the Altamira system, due to be delivered this next quarter.

  3. Nonequilibrium sulfur capture and retention in an air cooled slagging coal combustor. First quarterly technical progress report, September 14--December 31, 1995

    SciTech Connect

    Zauderer, B.

    1996-02-10

    The objective of this 24 month project is to determine the degree of sulfur retention in slag in a full scale cyclone coal combustor. This effort will consist of a series of up to 20 parametric tests in a 20 MMBtu/hr slagging, air cooled, cyclone combustor. During the present reporting period, this combustor was in the final stages of re-installation in a new facility in Philadelphia, PA following its relocation from a test facility in Williamsport, PA. Initial shakedown test on this new combustor facility began in December 1995, at the end of the present quarterly reporting period. The shakedown tests will continue through the next quarterly reporting period in the first three months of calendar year 1996. SO{sub 2} is controlled by injecting calcium oxide based sorbents into the combustor to react with sulfur emitted during combustion. The spent sorbent is dissolved in the slag and removed with it, thereby encapsulating the sulfur in slag. Part of the sorbent exits the combustor with the combustion products into the boiler where it can react with the sulfur. The primary objective of the present tests is to maximize the degree of sulfur retention in the slag. All spent sorbent not reporting to the slag is either deposited in the boiler or it is removed in the stack particle scrubber.

  4. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    SciTech Connect

    Anderson, Scott; Baca, Georgina; O'Connor, Michael

    2015-12-31

    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  5. Development and Evaluation of an Experimental Curriculum for the New Quincy (Mass). Vocational-Technical School. Sixth Quarterly Technical Report, the Development of Learning Units.

    ERIC Educational Resources Information Center

    Morrison, Edward J.; Lecznar, William B.

    Technical activity from July 1 through September 30, 1966 was concentrated on (1) completion of materials, staff training, and implementation arrangements for the junior high guidance program, (2) development of measures for assessing student achievement of instructional objectives, and (3) design of learning units for the curriculum. This report…

  6. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane: Quarterly technical progress report 15, October 1-December 31, 1996

    SciTech Connect

    McCormick, R.L., Alptekin, G.O.

    1997-04-02

    This document is the fifteenth quarterly technical progress report under Contract No. DE-AC22-92PC921 `Development of Vanadium- Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane` and covers the period October-December, 1996. Vanadium phosphate, vanadyl pyrophosphate specifically, is used commercially to oxidize butane to maleic anhydride and is one of the few examples of an active and selective oxidation catalyst for alkanes. In this project we are examining this catalyst for the methane oxidation reaction. Initial process variable and kinetic studies indicated that vanadyl pyrophosphate is a reasonably active catalyst below 5000{degrees}C but produces CO as the primary product, no formaldehyde or methanol were observed. A number of approaches for modification of the phosphate catalyst to improve selectivity have been tried during this project. During this quarter we have obtained surface areas of catalysts prepared with modified surface acidity. The results confirm the enhanced activity of two of the modified preparations in methanol conversion (a test reaction for surface acid sites). In previous work we noted no improvement in methane oxidation selectivity for these catalysts. Surface areas, surface analysis by XPS, and bulk analysis by ICP-AA have been obtained for vanadyl pyrophosphate promoted by Cr, Cu, and Fe. These data indicate that roughly one tenth of the surface metal atoms are promoter. A similar analysis was obtained for the bulk. Preliminary examination of binding energies suggests a slightly more reduced surface for the Cr and Fe promoted catalysts which exhibit a significant selectivity to formaldehyde in methane oxidation. A more detailed kinetic model has also been developed to aid in comparing the promoted catalysts and is discussed. Plans for the coming months are outlined.

  7. Detection of Potential Transit Signals in 17 Quarters of Kepler Data: Results of the Final Kepler Mission Transiting Planet Search (DR25)

    NASA Astrophysics Data System (ADS)

    Twicken, Joseph D.; Jenkins, Jon M.; Seader, Shawn E.; Tenenbaum, Peter; Smith, Jeffrey C.; Brownston, Lee S.; Burke, Christopher J.; Catanzarite, Joseph H.; Clarke, Bruce D.; Cote, Miles T.; Girouard, Forrest R.; Klaus, Todd C.; Li, Jie; McCauliff, Sean D.; Morris, Robert L.; Wohler, Bill; Campbell, Jennifer R.; Kamal Uddin, Akm; Zamudio, Khadeejah A.; Sabale, Anima; Bryson, Steven T.; Caldwell, Douglas A.; Christiansen, Jessie L.; Coughlin, Jeffrey L.; Haas, Michael R.; Henze, Christopher E.; Sanderfer, Dwight T.; Thompson, Susan E.

    2016-12-01

    We present results of the final Kepler Data Processing Pipeline search for transiting planet signals in the full 17-quarter primary mission data set. The search includes a total of 198,709 stellar targets, of which 112,046 were observed in all 17 quarters and 86,663 in fewer than 17 quarters. We report on 17,230 targets for which at least one transit signature is identified that meets the specified detection criteria: periodicity, minimum of three observed transit events, detection statistic (i.e., signal-to-noise ratio) in excess of the search threshold, and passing grade on three statistical transit consistency tests. Light curves for which a transit signal is identified are iteratively searched for additional signatures after a limb-darkened transiting planet model is fitted to the data and transit events are removed. The search for additional planets adds 16,802 transit signals for a total of 34,032; this far exceeds the number of transit signatures identified in prior pipeline runs. There was a strategic emphasis on completeness over reliability for the final Kepler transit search. A comparison of the transit signals against a set of 3402 well-established, high-quality Kepler Objects of Interest yields a recovery rate of 99.8%. The high recovery rate must be weighed against a large number of false-alarm detections. We examine characteristics of the planet population implied by the transiting planet model fits with an emphasis on detections that would represent small planets orbiting in the habitable zone of their host stars.

  8. Final Technical Report on DOE Grant for Modeling of Plasma Rotation in the National Spherical Torus Experiment

    SciTech Connect

    Shaing, K. C.

    2009-07-09

    This is the final technical report on the Modeling of Plasma Rotation in National Spherical Torus Experiment (NSTX) DOE Grant No. DE-FG02-02ER54679. The research subjects, technical abstracts, and publications where details of the research results can be found are reported here.

  9. 76 FR 50202 - National Technical Assistance and Dissemination Center for Children Who Are Deaf-Blind; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... National Technical Assistance and Dissemination Center for Children Who Are Deaf-Blind; Final Extension of... for the National Technical Assistance and Dissemination Center for Children Who Are Deaf-Blind... Who Are Deaf-Blind (Center) to receive funding from October 1, 2011, through September 30, 2013....

  10. DE-FG02-04ER63746 FinalTechnicalReport

    SciTech Connect

    Lidstrom, M.E.

    2009-09-05

    This is the final technical report for a project involving the study of stress response systems in the radiation-resistant bacterium, Deinococcus radiodurans. Three stresses of importance for a mixed waste treatment strain were studied, heat shock, solvent shock, and phosphate starvation. In each case, specific genes involved in the ability to survive the stress were identified using a systems biology approach, and analysis of mutants was used to understand mechanisms. This study has led to increased understanding of the ways in which a potential treatment strain could be manipulated to survive multiple stresses for treatment of mixed wastes.

  11. [Tampa Electric Company IGCC project]. Final public design report; Technical progress report

    SciTech Connect

    1996-07-01

    This final Public Design Report (PDR) provides completed design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the operating parameters and benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. Pending development of technically and commercially viable sorbent for the Hot Gas Cleanup System, the HGCU also is demonstrated. The report is organized under the following sections: design basis description; plant descriptions; plant systems; project costs and schedule; heat and material balances; general arrangement drawings; equipment list; and miscellaneous drawings.

  12. Opportunities given by final degree dissertations inside the EHEA to enhance ethical learning in technical education

    NASA Astrophysics Data System (ADS)

    Román-Suero, S.; Sánchez-Martín, J.; Zamora-Polo, F.

    2013-05-01

    Final degree dissertations in cooperation and development (FDDCD) can be a suitable tool for raising the awareness of the university community. In this paper the paradigmatic actions made in this frame in the University of Extremadura for the last five years have been analysed with the aim of elucidating the possible ways to improve the teaching-learning process. For this target, FDDCDs have to be included in a learning project that is designed according to the needs and circumstances of each student. In this way, both the ethics and technical knowledge of future professionals are enhanced.

  13. Investigation of flushing and clean-out methods for refrigeration equipment to ensure system compatibility. Quarterly technical progress report, September 15, 1994--December 15, 1994

    SciTech Connect

    Byrne, J.J.

    1995-07-01

    Integral Sciences Incorporated is engaged in Part 2 of ARTI Contract No. 660-52502 assessing methods for removing residual mineral oil during retrofits of refrigeration systems. Part 2 focuses on a low side oil separator technique for removing mineral oil from systems being retrofitted to use HFC-134a. The method appears less expensive than the current practice of three lubricant changes with polyolester and may effect an accelerated transition to HFC`s. Testing and method verification has been performed using a refrigeration system located at ISI`s facility. Two HFC-134a field retrofits employing this method will be implemented during the first quarter of 1995. A third and final field retrofit will also be performed to evaluate the advanced method in an R-502 conversion.

  14. Design and fabrication of advanced materials from Illinois coal wastes. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect

    Malhotra, V.M.; Wright, M.A.

    1994-12-31

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first quarter of the project, the thrust of the work was directed towards setting up the experimental facilities and undertaking preliminary tests to gauge the ability of coal tar derived binder in fabricating the brake skeletons. In addition systematic scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) were conducted on PCC fly ash (Baldwin), fly ash (ADM), FBC fly ash, FBC spent bed bottom ash, bottom ash (ADM), and scrubber sludge residues to characterize their geometrical shape and thermal stability. The PCC fly ash particles being highly spherical in shape and thermally inert up to 1100{degrees}C will make an excellent raw material for our composites. This is born out by fabricating brake skeletons from PCC fly ash colloids. Unlike the PCC fly ash and FBC fly ash, the scrubber sludge particles are not suitable hosts for our brake lining materials because of a whisker-like particle structure. Six different compositions of various combustion residues were tested in the fabrication of brake skeletons, and our tar derived binder shows great promise in the fabrication of composite materials.

  15. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, May 8, 1993--August 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    High hydrocracking and liquefaction activity can be achieved with 10 wt.% of sulfided clay-supported iron catalysts. Further tests and demonstrations of this activity were required. Iron hydroxyoxide was generated on acid-treated montmorillonite. The new batch of catalyst exhibited high hydrocracking activity, Three hour tests with the solubilized intermediate from low-severity treatment of Wyodak coal (LSW) gave a high conversion (45%) of the heptane-insoluble LSW intermediate to heptane-soluble products. An investigation of new methods for the production of catalysts from tetralin-soluble iron oxometallates and the determination of their catalytic activities was continued in this quarter. Iron oxotitanate and iron oxoaluminate gave very high conversions of LSW to heptane solubles (61% and 54%, respectively). The high yields of heptane soluble products obtained with these catalysts offers a potential for use in liquefaction stages with solubilized coal, or at least serve as a model for producing active catalysts via mixed metal oxides. Methods for successfully testing dispersed iron catalysts with the low-severity intermediate were also devised. Catalyst recovered from the dispersed iron hydroxyoxide-catalyzed reaction of ion-exchanged Wyodak gave a high conversion (47%) of LSW to heptane solubles.

  16. Molten salt coal gasification process development unit, Phase 2. Quarterly technical progress report No. 1, July-September 1980

    SciTech Connect

    Slater, M.H.

    1980-10-01

    This represents the first quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of a PDU to test the Molten Salt Coal Gasification Process. On July 24, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. The primary activities during the period covered by this report related to preparations for PDU Run 6, the initial run of the Phase 2 program. These activities included restaffing the PDU operations group, reactivation of the facility, and effecting plant modifications and improvements based on an evaluation of previous operation experience. The Melt Withdrawal System which had proven unreliable during the previous runs, was completely redesigned; thermal and flow analyses were performed; new components procured; and assembly initiated. Run 6 which is scheduled for the next report period, is aimed primarily at verifying the adequacy of the redesigned Melt Withdrawal System.

  17. Molten Salt Coal Gasification Process Development Unit. Phase 2. Quarterly technical progress report No. 2, October-December 1980

    SciTech Connect

    Slater, M. H.

    1981-01-20

    This represents the second quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of the PDU. On June 25, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. During this report period, Run 6, the initial run of the Phase 2 program was completed. The gasification system was operated for a total of 95 h at pressures up to 10 atm. Average product gas HHV values of 100 Btu/scf were recorded during 10-atm operation, while gasifying coal at a rate of 1100 lb/h. The run was terminated when the melt overflow system plugged after 60 continuous hours of overflow. Following this run, melt withdrawal system revisions were made, basically by changing the orifice materials from Monofrax to an 80 Cobalt-20 Chromium alloy. By the end of the report period, the PDU was being prepared for Run 7.

  18. National Institute for Petroleum and Energy Research quarterly technical report, January 1--March 31, 1993. Volume 2, Energy production research

    SciTech Connect

    Not Available

    1993-06-01

    Accomplishments for the past quarter are briefly described for the following tasks: chemical flooding -- supporting research; gas displacement -- supporting research; thermal recovery -- supporting research; geoscience technology; resource assessment technology; and microbial technology. Chemical flooding covers: surfactant flooding methods; development of improved alkaline flooding methods; mobility control and sweep improvement in chemical flooding; and surfactant-enhanced alkaline flooding field project. Gas displacement covers: gas flooding performance prediction improvement; and mobility control, profile modification and sweep improvement in gas flooding. Thermal recovery includes: thermal processes for light oil recovery; thermal processes for heavy oil recovery; and feasibility study of heavy oil recovery in the mid-continent region -- Oklahoma, Kansas, and Missouri; simulation analysis of steam-foam projects; and field application of foams for oil production symposium. Geoscience technology covers: three-phase relative permeability; and imaging techniques applied to the study of fluids in porous media. Resource assessment technology includes: reservoir assessment and characterization; TORIS research support; upgrade the BPO crude oil analysis data base; and compilation and analysis of outcrop data from the Muddy and Almond Formations. Microbial technology covers development of improved microbial flooding methods; and microbial-enhanced waterflooding field project.

  19. Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for January 2000 through March 2000

    SciTech Connect

    Moore, J.P.

    2000-08-18

    The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides radioisotope Power Systems (BPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of .I 997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at OBNL.

  20. Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for April 2000 through June 2000

    SciTech Connect

    Moore, J.P.

    2000-10-23

    The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at ORNL.

  1. (Study of the behavioral and biological effects of high intensity 60 Hz electric fields): Quarterly technical progress report No. 29

    SciTech Connect

    Orr, J.L.

    1989-07-14

    Activities this quarter involved all phases of the project plus a meeting of the Joint Committee in Tokyo. Detailed mapping of the exposure facility is scheduled to be completed during the week of August 14, 1989. Both electric and magnetic fields should be available for tests of the components of the tether and blood sampling system for the neuroendocrine pilot study in September 1989. The groups for the social behavior study are stabilizing appropriately. Details on the formation of the groups and their status has been provided. Dr. Coelho has included information related to aspects of the social experiment ranging from age estimation in baboons through the cardiovascular consequences of psychosocial stress. In addition, a draft manuscript is included on the data from the previous experiments which describes the effects of 30 and 60 kV/m electric fields on the social behavior of baboons. Tests of the blood handling procedures and analysis methods have been completed. With the exception of the catecholamine analyses, the handling procedures and variability in replicate measurements are satisfactory. Logistic and practical considerations now weigh strongly against including the analysis of the blood samples for catecholamines. Preliminary tests indicate that a sampling procedure which will work for the other compounds is probably not satisfactory for the catecholamines.

  2. Superior catalysts for selective catalytic reduction of nitric oxides; Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Chen, J.P.; Cheng, L.S.; Kikkinides, E.S.; Yang, R.T.

    1993-12-31

    Work was done in three tasks during the first quarter. In Task 1, a new SCR reactor system has been built, complete with on-line GC and MS analyses. The GC is used to monitor the N{sub 2} product so the NO{sub x} > N{sub 2} conversion can be calculated. The MS is used to analyze the N{sub 2}0 concentration. In addition, a wet analytical technique has been established for SO{sub 3} analysis. The new SCR system and the SO{sub 3} analytical technique have been subjected to shakedown tests with success. Along with the existing SCR reactor system, there are now two systems that are being run independently. In Task 2, a procedure for the synthesis of stable Fe{sub 2}O{sub 3} Pillared clay has been established. Inductive coupled plasma spectrometric analysis (ICP) has been used to analyze the chemical composition of the Fe{sub 2}O{sub 3} Pillared clay. Preliminary results for the SCR activities of the Fe{sub 2}O{sub 3} pillared clay are obtained in Task 3. The results show that the activities are near that of the commercial V{sub 2}O{sub 5}/TiO{sub 2} catalysts. However, the SO{sub 2}-to-SO{sub 3} conversion is substantially lower with the pillared clay catalyst, which could be an important advantage.

  3. Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 December 1993--28 February 1994

    SciTech Connect

    Crelling, J.C.

    1994-06-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter a sample of the feed coal that is being used for injection into the No. 7 Blast Furnace of Inland Steel has been analyzed petrographically and compared to both the Herrin No. 6 coal and Armco feed coal. Additional characterization is underway and an advanced program of pyrolysis and reactivity testing has been initiated.

  4. Microbial strain improvement for organosulfur removal from coal. [Quarterly] technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Kilbane, J.J. II

    1992-08-01

    IGT has developed a microbial culture of Rhodococcus rhodochrous, designated as IGTS8, that is capable of specifically cleaving carbon-sulfur bonds in a range of organosulfur model compounds and is capable of removing organic sulfur from coal and petroleum without sacrificing the calorific value of the fuel. Although IGTS8 possesses the ability to specifically remove organic sulfur from coal, a major research need is to develop improved strains of microorganisms that possess higher levels of desulfurization activity and therefore will permit more favorable biodesulfurization process conditions: faster rates, more complete removal, and smaller reactor size. Strain improvement is the single most important aspect to the development of a practical coal desulfurization process and accordingly is the focus of research in this project. During the current quarter improved cloning vectors have been constructed and genomic libraries have been constructed and screened both in Escherichia coli and in Rhodococcus rhodochrous. Desulfurization genes have not yet been identified; however, the construction of additional genomic libraries and the implementation of new strategies for the detection of desulfurization genes are currently in progress.

  5. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Not Available

    1993-07-30

    Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the designs of the remaining major components of the integrated system were completed and the equipment was ordered. DOE has elected to modify the scope of the existing R&D program being conducted under this contract to include testing of a simulated TSCA incinerator ash. The modification will be in the form of an additional Task (Task 8 -- TSCA Ash Testing) to the original Statement of Work.

  6. Development of the Selective Hydrophobic Coagulation process. Seventh quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1993-11-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, known as Selective Hydrophobic Coagulation (SHC), has been studied under the sponsorship of the US Department of Energy since 1986 (Contracts DE-AC22-86PC91221 and DE-AC22-90PC90174). The SHC process differs from oil agglomeration, shear flocculation, polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. Often, simple pH control is all that is required to (i) induce the coagulation of coal particles, and (ii) effectively disperse particles of mineral matter. When the coal is superficially oxidized, a small dosage of reagents may be used to promote coagulation. During the quarter, work was completed on the development of the hydrophobic interaction energy function (Subtask 2.1) and the extended DLVO equation (Subtask 2.2.). Work to predict optimum operating conditions using the extended DLVO equation (Subtask 2.3) is underway. In Task 3 -- Process Development, work was completed on the study to determine the effect of mixing on coagula growth (Subtask 3.2) and on the use of column flotation for the recovery of coal coagula (subtask 3.3.4). Work is underway on the use of the lamella thickener and filter for the recovery of coagula (Subtasks 3.3.1 and 3.3.2).

  7. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Quarterly technical progress report, 1 July--30 September 1988

    SciTech Connect

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (F-T) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  8. Development and process evaluation of improved Fischer-Tropsch slurry catalysts. Quarterly technical progress report, 1 October--31 December 1988

    SciTech Connect

    Withers, H.P.; Bukur, D.B.; Rosynek, M.P.

    1988-12-31

    The objective of this contract is to develop a consistent technical data base on the use of iron-based catalysts in Fischer-Tropsch (FT) synthesis reactions. This data base will be developed to allow the unambiguous comparison of the performance of these catalysts with each other and with state-of-the-art iron catalyst compositions. Particular attention will be devoted to generating reproducible kinetic and selectivity data and to developing reproducible improved catalyst compositions.

  9. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, January 1--March 31, 1994

    SciTech Connect

    Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1994-12-31

    The objective of this project is to integrate advanced geoscience and reservoir engineering concepts, with the goal of quantifying the dynamics of fluid-rock and fluid-fluid interactions as they relate to reservoir architecture and lithologic characterization. This interdisciplinary effort will integrate geological and geophysical data with engineering and petrophysical results through reservoir simulation. Technical progress is summarized for the following: geological studies; hydrologic and tracer research; and geophysical research.

  10. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, 1 January 1994--31 March 1994

    SciTech Connect

    Chen, J.P.; Cheng, L.S.; Hausladen, M.C.; Kikkinides, E.S.; Yang, R.T.

    1994-05-01

    During the past quarter, progress has been made in four tasks as summarized below: Task 1: A delaminated Fe{sub 2}O{sub 3} pillared clay was synthesized and carefully characterized. The chemical composition was measured by ICP atomic emission spectrometry. The structural changes in the clay as well as the iron oxide particle sizes were characterized by X-ray diffraction techniques. Task 2: The Selective Catalytic Reduction (SCR, i.e., NO reduction with NH{sub 3}) activities of the delaminated pillared clay were tested and compared with four other most active SCR catalysts: a commercial V{sub 2}O{sub 5} + WO{sub 3}/TiO{sub 2} catalyst, a Fe{sub 2}O{sub 3}-pillared clay, and two supported Fe{sub 2}O{sub 3} catalysts (on Al{sub 2}O{sub 3} and TiO{sub 2}). The delaminated Fe{sub 2}O{sub 3} pillared clay exhibited the highest SCR activities. Catalyst stability test showed that the delaminated sample was also stable. Task 3: To further increase the SCR activity of the delaminated pillared clay, Cr{sub 2}O{sub 3} was doped as a promoter by incipient wetness. Task 4: Deactivation effects of SO{sub 2} and H{sub 2}O on the SCR activities of the delaminated Fe{sub 2}O{sub 3} pillared clay were studied, and compared with other SCR catalysts. The delaminated clay catalyst showed the least deactivation.

  11. Near-neutral oxidation of pyrite in coal slurry solids. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect

    Frost, J.K.; Dreher, G.B.

    1994-12-31

    In this research project we plan to determine the rate of oxidation of pyrite associated with coaly particles (coal slurry solid) when the pH of the surrounding environment is held at approximately 7.8. Coaly particles that contain pyrite are generated during the preparation of Illinois Basin coal for market. These particles are discharged to an impoundment, which eventually must be reclaimed. The purpose for reclamation is either to prevent the generation of acidic solution as the pyrite in the coal slurry solid reacts with air, or to prevent the migration of the acidic solution to a groundwater aquifer. The reclamation is usually accomplished by covering the impoundment with a four-foot-thick layer of topsoil. One possible alternative method for reclamation of a coal slurry impoundment is to mix in alkaline residue from the fluidized-bed combustion of coal. This codisposal would slow the production of acid and would also neutralize any acid produced. If the codisposal method is found to be environmentally acceptable, it will save the coal mining companies part of their cost of reclamation, and also provide a safe and useful disposal outlet for a portion of the residue that is generated by the fluidized-bed combustion of coal. During this quarter we purchased and set up two automatic titrators, which will be used in determining the rate of pyrite oxidation at nearly neutral pH. The titrators will provide a means for maintaining the pH at the desired level. The rate at which sulfate ion is produced as a result of pyrite oxidation will be used to measure the amount of pyrite oxidized over time.

  12. Studies of incipient oxidation of pyrite for improved rejection. Fifth quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Yoon, R.H.; Richardson, P.E.

    1993-12-31

    Oxidation of fresh surfaces of coal- and mineral-pyrite has been studied using electrochemical and photoelectrochemical techniques. This work was undertaken to better understand the oxidation processes that cause self-induced flotation of pyrite. Fresh surfaces were created by fracturing pyrite in situ, i.e., in solution. Chronoamperometry was used to determine the potential at which a newly created surface does not show oxidation or reduction currents. The ``stable`` potentials for pyrite are {minus}0.28 V (SHE) at pH 9.2 and 0 V at pH 4.6. Subsequent cyclic voltammograms show the incipient oxidation mechanism that involves the formation of sulfur products, which are believed to be hydrophobic. It is shown that the lower flotation edge of pyrite coincides with its incipient oxidation potential. The photocurrent generated at fractured pyrite surfaces by chopped illumination was used to determine the semiconducting characteristics of the electrodes. The results indicate that a spontaneous depletion layer is formed on the fresh surfaces of n-type pyrite. The depletion layer is attributed to an intrinsic, acceptor-like surface state. Charge storage in this surface state pins the band edges over a wide potential range, accounting for the metallic-like electrochemical behavior that has been reported for pyrite. The existence of an intrinsic surface state is consistent with XPS studies on pyrite surfaces prepared in vacuum, which reveal an FeS-like species in the surface region. During this report period, all of the data previously obtained has been analyzed in an attempt to better understand the mechanism of pyrite flotation with respect to its oxidation. The results of this analysis are included in this quarterly report. In addition, samples of pyrite from seven different sources were obtained. In situ fracture, photoelectrochemical and cyclic voltammetry studies have been conducted on electrodes made from these pyrites.

  13. Controlling incipient oxidation of pyrite for improved rejection. Technical progress report for the ninth quarter, October 1--December 31, 1994

    SciTech Connect

    Yoon, R.H.; Richardson, P.E.

    1995-07-01

    The major objectives of this work are (1) to determine the Eh-pH conditions under which pyrite is stable, (2) to determine the mechanism of the initial stages of pyrite oxidation, and (3) to determine if the semi-conducting properties of pyrite effects its oxidation behavior. It is known that moderate oxidation of pyrite produces a hydrophobic surface product. This hydrophobic product makes it extremely difficult to depress pyrite in coal flotation circuits. The eventual objective of this work is to prevent pyrite oxidation in order to better depress pyrite in coal flotation circuits. It has been shown that by holding the potential of pyrite at its stable potential during fracture, pyrite undergoes neither oxidation nor reduction. It has also been found that fresh pyrite surfaces created by fracture in an electrochemical begin to oxidize at potentials that are about 200 mV more negative than the potentials reported in the literature for pyrite oxidation. This report period, electrochemical impedance spectroscopy (EIS) studies were continued. As discussed in the seventh quarterly progress report, the impedance of pyrite does not show the characteristics expected for either semi-conducting or metallic electrodes. Additional studies were conducted to confirm the anomalous impedance behavior. For this purpose, freshly fractured surfaces were progressively polished on 600 and 1,200 grit silicon carbide paper, and with 0.3 {micro} {alpha}-alumina and 0.05 {micro} {gamma}-alumina micropolish. Polishing is known to introduce defects in the lattice structure of semi-conducting electrodes and it was anticipated that the defects would effect the interfacial capacitance.

  14. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, May 9, 1992--August 8, 1992

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production of mixed pillared clay catalysts and clay-supported catalysts and determination of their catalytic activities were continued in this quarter. To demonstrate the reproducibility of the preparative method for high activity iron/alumina-pillared montmorillonite catalysts, a new batch of the catalyst was prepared and tested for hydrocracking activity with bibenzyl. This preparation gave conversion and product distribution similar to that reported previously. The mixed iron/alumina-pillared clay was also prepared using a pillaring solution that was aged for longer period of time. To determine the importance of the type of pillaring support in hydrocracking activity, iron/zirconia-pillared montmorillonite was prepared using the same technique as that for iron/alumina-pillared montmorillonite. The reaction of bibenzyl with the sulfided iron/zirconia-pillared catalyst gave a lower hydrocracking conversion than the iron/alumina-pillared catalyst. Addition of a second catalytic metal to the clay support was attempted to determine if a synergistic effect could improve liquefaction. Ferric nitrate and stannous chloride were added to the clay, but the resulting catalyst was relatively poor for hydrocracking and hydrogenation compared with ferric nitrate supported on the clay. New disposable iron catalysts with high acidity and surface area are desired for coal liquefaction. Synthetic iron aluminosilicates were prepared by methods similar to those used for the nickel-substituted synthetic mica montmorillonite (NiSMM) catalysts, which are very effective for hydrogenation and reforming of hydrocarbons. The iron aluminosilicate catalysts were tested for hydrocracking and hydrogenation of bibenzyl, naphthalene and pyrene. Pyrene hydrogenation was effectively catalyzed by the sulfided synthetic iron catalyst.

  15. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, October 1--December 31, 1994

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. During this quarter, analyses were completed on 65 process samples from representative periods of HRI Run POC-2 in which coal, coal/plastics, and coal/rubber were the feedstocks. A sample of the oil phase of the oil/water separator from HRI Run POC-1 was analyzed to determine the types and concentrations of phenolic compounds. Chemical analyses and microautoclave tests were performed to monitor the oxidation and measure the reactivity of the standard coal (Old Ben Mine No. 1) which has been used for the last six years to determine solvent quality of process oils analyzed in this and previous DOE contracts.

  16. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

  17. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1993-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase 3 research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing some of the system modification installation designs, completing industry funded testing, developing a surrogate TSCA ash composition, and completing the TSCA ash Test Plan. The installation designs will be used for the equipment modifications planned for the end of CY 93. The industry funded testing consisted of vitrifying Spent Aluminum Potliner (SPL) which is a listed hazardous waste. This testing has verified that SPL can be vitrified into a safe, recyclable glass product. Some results from this testing are provided in Section 2.2.1. The surrogate TSCA ash composition was developed with input from various DOE laboratories and subcontractors. The surrogate ash consists of a mixture of MSW fly ash and bottom ash spiked with heavy metal contaminants. The levels of metal additives are sufficient to ascertain the partitioning of the contaminants between the glass and effluent flow streams. Details of the surrogate composition and the planned testing is provided in Section 4.2.2.

  18. Particulate hot gas stream cleanup technical issues: Task 1.0, Assessment of ash characteristics. Quarterly report, October-- December 1994

    SciTech Connect

    1995-03-01

    This is the first in a series of quarterly reports describing the activities performed under Task 1. The analyses of Hot Gas Stream Cleanup (HGCU) ashes and descriptions of filter performance presented in this report were designed to address the problems with filter operation that are apparently linked to the characteristics of the collected ash. This task is designed to generate a data base of the key characteristics of ashes collected from operating advanced particle filters (APF`s) and to relate these ash properties to the operation and performance of these filters and their components. Observations of the filter assembly during site visits to the Tidd Demonstration Plant APF have led to the conclusion that that tenacious ash deposits that form in the APF apparently induce stresses that result in bent and/or broken ceramic candle filter elements. A site visit, was made to the Tidd APF on October 27, 1994 to collect ash samples from various locations in the filter vessel and to document the condition of the APF. A variety of laboratory analyses were performed on ash samples collected during this site visit to assess whether recent attempts to introduce larger particles into the ash deposits by derating the cyclone upstream of the APF have been successful. Some particles larger than 45 Jim were identified in various ash samples from the APF, but they account for less than 5 % of the mass of the ash. Although Scanning Electron Microscope EDX spectra and elemental maps lack the resolution to identify the bonds between particles in the ash agglomerates found in the APF, an excellent stereographic image of the structure of an ash nodule collected from the APF was generated with the Scanning Electron Microscope. The stereographic image was very enlightening as to the structure of the nodule.

  19. Vhf EPR quantitation and speciation of organic sulfur in coal. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect

    Clarkson, R.B.; Belford, R.I.

    1994-06-01

    The existence of free electrons in coals` natural site offers a great attraction for Electron Paramagnetic Resonance (EPR) analysis to aid in the study of the structure and composition of coal. This direct and non-destructive approach to coal analysis has been hindered by the problem of resolution using the conventional 9.5 GHz EPR spectrometers. In the past few years, we have developed techniques including W-band Very High Frequency EPR spectroscopy as a means of determining the quantity and structure of organic sulfur in native and desulfurized coals. The state of the art 95 GHz (W-band) EPR spectrometer which we have constructed shows a well resolved spectrum including the interaction between unpaired electrons and the heteroatom like sulfur. The spectra also provide quantitative as well as qualitative information regarding different sulfur species. In collaboration with researchers at the University of Kentucky, we are also analyzing the result of desulfurization techniques on the presence of various sulfur species in coal. In the past, we have tried to synthesize various model compounds comparing their W-band spectra with other models, the predictions of theoretical models, and with the W-band spectra of coal specimens. In this quarter, we have been concentrating our efforts on developing a new standard protocol in handling and preparing the coal samples for EPR measurements to provide a quantitative comparison between the EPR spectra of coal in the natural state and desulfurized. Ten coal samples, both native and desulfurized, have been provided to us. These samples have been run in both laboratories. The simulation of coal EPR spectra has been carried out using several mathematical models. EPR results now are being compared with XANES data.

  20. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, July-September 1983

    SciTech Connect

    Wiltsee, G.A. Jr.

    1983-01-01

    Two long gasification tests were accomplished (66 and 72 hours of slagging operation) this quarter, and the balance of the wastewater needed for the second cooling tower (CT) test (approx. 11,000 gallons) was generated. Eleven thousand gallons of slagging fixed-bed gasifier (SFBG) wastewater were solvent extracted and ammonia stripped (AS) to nominal levels of 160 mg/1 phenol and 600 mg/1 NH/sub 3/. This wastewater is being further treated by activated sludge (AS) and granular activated carbon (GAC) processing to prepare a high quality makeup for the second CT test. Phenol mass balances indicated that > 90 pct of the phenol was stripped from the tower, indicating that previous assumptions of high levels of biodegradation were erroneous. Over 80 pct of the ammonia and about 25 pct of the methanol were also stripped. Data collected during steady state operation of the bench-scale rotating biological contractor indicate complete removal of phenolics and alcohols, and 94 pct removal of BOD. Nitrification also occurred in this unit, with over 30 pct removal of ammonia. Problems due to individual bacteria, present in the biotreated wastewater, passing through the multi-media filter and thus decreasing the carbon adsorption efficiency of the GAC system, have resulted in lower treatment rates than originally anticipated. As a result, to achieve the desired treatment, the contact time of the wastewater with the carbon in the granular activated carbon system has been increased. Since this has decreased the treatment rate, a larger carbon adsorption system has been designed and is presently being constructed.

  1. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, June 22, 1993 through September 22, 1993

    SciTech Connect

    McCormick, C.; Hester, R.

    1993-12-01

    This report summarizes technical progress on advanced copolymer synthesis and characterization of the molecular structure of copolymers to be used to enhanced recovery of petroleum. Polymers examined are acrylamide/acrylamido-3-methylbutanoic acid/N-(4-butyl)phenylacrylamide (AM/AMBA/BPAM) terpolymers, sodium 2-(acrylamido)-2-methylpropanesulfonate and (2-(acrylamido)-2-methylpropyl)trimethylammonium chloride (NaAMPS/AMPTAC) copolymers, AM/NaAMPS/AMPTAC terpolymers, and AM/APS (APS is 2-(1-pyrenylsulfonamido) ethyl acrylamide) copolymers. Polymer associative behavior and polymer solution behavior is characterized.

  2. Production and screening of carbon products precursors from coal. Quarterly technical progress report and key personnel staffing report No. 6, April 1, 1996--June 30, 1996

    SciTech Connect

    1996-07-01

    The main goal of this program is to demonstrate the utility of coal extracts from the West Virginia University (WVU) extraction process as suitable base raw materials for the carbon products encompassed by the Carbon Products Consortium (CPC) team. This quarterly report covers activities during the period from April 1, 1996 through June 30, 1996. The first year of the project ended in February, 1996; however, the WVU research effort has continued on a no-cost extension of the original contract. Samples have been supplied to CPC participants so they could conduct their portions of the project as contracted through ORNL. Progress reports are presented for the following tasks: project planning and administration; consortium administration and reporting; coal extraction; technical/economic evaluation of WVU extraction process; and technology transfer. Previous work has shown that the WVU coal extraction process coupled with hydrotreatment, does have the potential for producing suitable base raw materials for carbon products. Current effort, therefore, involved the screening and evaluation of extracts produced by the WVU Group and recommending appropriate materials for scaleup for subsequent evaluation by Consortium Team members. As part of this program, the activation of the coal extraction residues was investigated for the purpose of producing a useful active carbon. A further task, which was started towards the end of the program, was to fabricate a small graphite artifact using Coke derived from coal extract as the filler and the coal extract itself as a binder. The results of these studies are summarized in this report.

  3. Development and testing of industrial scale, coal fired combustion system, Phase 3. Second quarterly technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Zauderer, B.

    1992-07-10

    In the second quarter of calendar year 1992, work continued on Task 1.1. ``DESIGN MODIFICATIONS TO THE 20 MMBTU/HR AIR COOLED COMBUSTOR AND BOILER COMPONENTS``. This consisted of specifying and designing the changes needed to prepare the 20 MMBtu/hr air cooled combustor at the Tampella boiler house site in Williamsport, PA. In depth review of the technical status of the combustor showed that no major design changes were necessary in order to implement the effort of task 2 testing and part of the task 3 testing. Among the major planned changes eliminated were replacement of the inlet swirl air flow section of the combustor. The major changes undertaken were to improve the coal and sorbent injection into the combustor; refurbishing various components and controls systems such as the stack particle scrubber and temperature probes; automating key elements of the combustor, such as the slag tap, upgrading the computer control and automatic data acquisition; and upgrading the long duration capability of the exit nozzle. To support this effort advanced analytical modeling was used to provide guidance for the design changes. A multi-dimensional computer code was used to analyze the combustor performance for different combustor stoichiometries and geometry. A heat transfer analysis of the exit nozzle was performed to determine the best method of adding cooling capacity to the exit nozzle to allow its use for multi-day, round-the-clock coal testing.

  4. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 26, January 1, 1995--March 31, 1995

    SciTech Connect

    1995-07-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  5. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 25, October 1, 1994--December 31, 1994

    SciTech Connect

    1994-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  6. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 10, July 1, 1995--September 31, 1995

    SciTech Connect

    McCormick, R.L.

    1995-12-07

    This document is the tenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes}. Activities focused on testing of additional modified and promoted catalysts and characterization of these materials. Attempts at improving the sensitivity of our GC based analytical systems were also made with some success. Methanol oxidation studies were initiated. These results are reported. Specific accomplishments include: (1) Methane oxidation testing of a suite of catalysts promoted with most of the first row transition metals was completed. Several of these materials produced low, difficult to quantify yields of formaldehyde. (2) Characterization of these materials by XRD and FTIR was performed with the goal of correlating activity and selectivity with catalyst properties. (3) We began to characterize catalysts prepared via modified synthesis methods designed to enhance acidity using TGA measurements of acetonitrile chemisorption and methanol dehydration to dimethyl ether as a test reaction. (4) A catalyst prepared in the presence of naphthalene methanol as a structural disrupter was tested for activity in methane oxidation. It was found that this material produced low yields of formaldehyde which were difficult to quantify. (5) Preparation of catalysts with no Bronsted acid sites. This was accomplished by replacement of exchangeable protons with potassium, and (6) Methanol oxidation studies were initiated to provide an indication of catalyst activity for decomposition of this desired product and as a method of characterizing the catalyst surface.

  7. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No. 13, April 1996--June 1996

    SciTech Connect

    McCormick, R.L.; Alptekin, G.O.

    1996-07-30

    This document is the thirteenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes} and covers the period April-June 1996. The basic premise of this project is that vanadyl pyrophosphate (VPO), a catalyst used commercially in the selective oxidation of butane to maleic anhydride, can be developed as a catalyst for selective methane oxidation. Data supporting this idea include published reports indicating moderate to high selectivity in oxidation of ethane, propane, and pentane, as well as butane. Methane oxidation is a much more difficult reaction to catalyze than that of other alkanes and it is expected that considerable modification of vanadyl pyrophosphate will be required for this application. It is well known that VPO can be modified extensively with a large number of different promoters and in particular that promoters can enhance selectivity and lower the temperature required for butane conversion.

  8. Coal log pipeline research at University of Missouri. Second quarterly technical progress report, 1 April--30 June 1996

    SciTech Connect

    Liu, H.

    1996-06-01

    During this quarter, significant progress has been made in the following, fronts of coal log pipeline research, development and technology transfer: 1. Design of the special 300-ton coal log compaction machine was completed, Furthermore, much progress has been made in the design of the system needed to feed coal into the coal log compaction machine, and the design of the system to remove logs automatically as soon as they are compacted. 2. Coal mixtures containing different amounts of moisture were compacted into 1.91- inch-diameter coal logs rapidly (in 6 seconds). It was found that for the Mettiki coal tested, the optimum moisture is around 8%. Under the test conditions (room temperature and 3% binders), the rapidly compacted coal logs with 8% moisture had less than 4% weight loss in 350 cycles of circulation. 3. Completed evaluation of the effectiveness of using wall lubricants to enhance coal log quality. Both calcium sterarate and MoS{sub 2} were found to be effective. 4. It was found that when the interior of a mold is not cleaned after coal log has been compacted, the coal mixture film clinging to the wall hardens in time and form a hard crust which affects the quality of the next log to be produced. But, if the second log is produced immediately after the first, no hard crust is formed and the quality of the second log, is not affected. 5. Coal logs made with the coal crushed by the Gundlach Company were found to be better than coal logs made with the coal crushed by the CPRC`s hammer mill. 7. A 320-ft-long, 6-inch-diameter coal log pipeline test facility was constructed in Rolla during this period. 8. Completed the simulation of an 8-inch-diameter, 20-mile-long coal log pipeline recirculating loop driven by a pump bypass. 9. Continued improvement was accomplished in the hydraulic model of HCP and CLP to predict pressure drop and capsule velocity for both single capsules and capsule train. Also, work has started to extend the analysis to sloped pipelines.

  9. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 13, October--December, 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-01-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit. During Quarter 13 (October--December 1995), testing of the GranuFlow dewatering process indicated a 3--4% reduction in cake moisture for screen-bowl and solid-bowl centrifuge products. The Orimulsion additions were also found to reduce the potential dustiness of the fine coal, as well as improve solids recovery in the screen-bowl centrifuge. Based on these results, Lady Dunn management now plans to use a screen bowl centrifuge to dewater their Microcel{trademark} column froth product. Subtask 3.3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter. Continuing Subtask 6.4 work, investigating coal-water-slurry formulation, indicated that selective agglomeration products can be formulated into slurries with lower viscosities than advanced flotation products. Subtask 6.5 agglomeration bench-scale testing results indicate that a very fine grind is required to meet the 2 lb ash/MBtu product specification for the Winifrede coal, while the Hiawatha coal requires a grind in the 100- to 150-mesh topsize range. Detailed design work remaining involves the preparation and issuing of the final task report. Utilizing this detailed design, a construction bid package was prepared and submitted to three Colorado based contractors for quotes as part of Task 9.

  10. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 14, January--March 1996

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-04-30

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by June 1997. During Quarter 14 (January--March 1996), parametric testing of the 30-inch Microcel{trademark} flotation column at the Lady Dunn Plant continued under Subtask 3.2. Subtask 3. 3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter with parametric testing of the batch dewatering unit. Coal product moistures of 3 to 12 percent were achieved, with higher percent solids slurry feeds resulting in lower product moistures. For a given percent solids feed, the product moisture decreased with increasing butane to dry coal ratios. Stirring time, stirring rate, and settling time were all found to have little effect on the final moisture content. Continuing Subtask 6.4 work, investigating coal-water-fuel slurry formulation for coals cleaned by selective agglomeration, indicated that pH adjustment to 10 resulted in marginally better (lower viscosity) slurries for one of the two coals tested. Subtask 6.5 agglomeration bench-scale testing results indicate that the new Taggart coal requires a grind with a d{sub 80} of approximately 33 microns to achieve the 1 lb ash/MBtu product quality specification. Also under Subtask 6.5, reductions in the various trace element concentrations accomplished during selective agglomeration were determined. Work was essentially completed on the detailed design of the PDU selective agglomeration module under Task 7 with the issuing of a draft report.

  11. Advanced direct liquefaction concepts for PETC generic units, Phase 2. Quarterly technical progress report, January--March 1996

    SciTech Connect

    1996-05-01

    The aims of this research program are to advance to bench-scale testing, concepts that have the potential for making net reductions in direct coal liquefaction process costs. The research involves a teaming arrangement between the University of Kentucky Center for Applied Energy Research (CAER), Consolidation Coal Company (CONSOL), Sandia National Laboratories (SNL), and LDP Associates. Progress reports are presented for: Task 2.1.1 development of a catalyst screening test (UK/CAER); Task 2.1.2 activation of impregnated catalysts (UK/CAER); Task 2.2 laboratory support (CONSOL); Task 3 continuous operations/parametric studies (Hydrocarbon Technologies, Inc.) and; Task 4.4 conceptual design, preliminary technical assessment (LDP Associates).

  12. Synthesis of oxygenate products for high volume fuels applications. Quarterly technical progress report, November 1, 1994--January 31, 1995

    SciTech Connect

    1995-03-08

    The objective of this project is to develop high yield syntheses of oxygenate products that are liquid at room temperature using as starting materials dimethy ether (DME) or methanol. The identified products include: Dimethyl Carbonate (DMC), 1,1-Dimethoxyethane (DMOE), C{sub 2}{sup +} Alcohols/Ethers (C{sub 2}AE). The technical strategy is outlined below: (A) Synthesis of DMC via oxidative carbonylation of DME instead of methanol. Since this synthesis would not co-produce water as a byproduct, there is a potential for very high DME conversions in contrast to the low (ca 20%) conversions obtained in conventional plants. Technical emphasis will be placed on development of a supported copper catalyst with a capability for cleavage of DME into its chemisorbed organic moieties. (B) Synthesis of 1,1-dimethoxymethane (DMOE) from acetylene/CO/H{sub 2} process streams obtained from commercial methane oxidative pyrolysis processes. In the overall processing scheme the syngas would be converted to DME. The wet acetylene stream would be partially condensed to retain an equivalent of water and then condensed with DME to produce EMOE. (C) Direct conversion of DME or DME/methanol to ethanol/propanol or their methyl ethers. Under the influence of functionalized alcohol condensation catalysts developed exclusively at Amoco it should be possible to achieve direct conversion of dimethyl ether (or methanol) to ethanol/propanol and/or the methyl ethers of these alcohols. Although this reaction is not currently known, a combination of key catalyst components from identified systems should result in a DME conversion catalyst to C{sub 2}+ oxygenates. (D) Reaction of DME or acetylene with synthesis gas (CO/H{sub 2}) or methanol. A variety of catalysts will be tested for conversion of acetylene/CO/H{sub 2} or acetylene/methanol to propylene and conversion of DME/CO/H{sub 2} or DME/methanol to dimenthyoxymethane (DMM) and/or other oxygenates.

  13. Technical reviews of cleanup and R and D results. Final technical progress report, March 15, 1982-December 30, 1983

    SciTech Connect

    Stopek, D.J.

    1984-01-16

    SAI reviewed for METC several reports on hot gas cleanup of flue gas, flue gas desulfurization methods and on materials and research programs on heat engines. The work done is listed here without technical discussion. (LTN)

  14. Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

    SciTech Connect

    1997-03-01

    This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff`s review of Atlas Corporation`s proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs.

  15. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    SciTech Connect

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  16. Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces

    SciTech Connect

    Aiken, George

    2014-10-02

    This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

  17. Burning of hazardous waste in boilers and industrial furnaces--EPA. Final rule: corrections; technical amendments.

    PubMed

    1991-07-17

    On February 21, 1991, the Environmental Protection Agency (EPA) published a final rule to regulate air emissions from the burning of hazardous waste in boilers and industrial furnaces (56 FR 7134). Today's notice corrects typographical and editorial errors that appeared in the regulatory text, including corrections to appendices II and III, and adds two appendices, appendix IX and appendix X, to part 266. Appendices IX and X were not ready at the time of publication; therefore, a note was placed in the appropriate location in the rule to inform readers that these appendices were to be published at a later date. Copies of these appendices were, however, made available to the public through the RCRA Docket maintained at EPA and through the National Technical Information Service (NTIS).

  18. Final Technical Report for Grant DE-FG02-04ER54795

    SciTech Connect

    Merlino, Robert L

    2015-10-02

    This is the final technical report for DOE Grant #DE-FG02-04ER54795-Experimental Investigations of Fundamental Processes in Dusty Plasmas. A plasma is an ionized gas, and a dusty plasmas is a plasma that contains, in addition to electrons and ions, micron-sized dust particles. The dust particles acquire and electric charge in the plasma by collecting electrons and ions. The electrons move more rapidly than the ions, so the dust charge is negative. A 1 micron dust particle in a typical low temperature plasma has a charge corresponding to approximately 2000 electrons. Dusty plasmas are naturally found in astrophysical plasmas, planetary rings, technological plasmas, and magnetic fusion plasmas. The goal of this project was to study in the laboratory, the basic physical processes that occur in dusty plasmas. This report provides a summary of the major scientific products and activities of this award.

  19. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993

    SciTech Connect

    Curtis, C.W.; Chander, S.; Gutterman, C.

    1994-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

  20. Advanced direct liquefaction concepts for PETC generic units, Phase 2. Quarterly technical progress report for period October--December 1995

    SciTech Connect

    1996-02-01

    Progress reports are presented for: Task 1 management plan; Task 2.1 laboratory support (University of Kentucky/Center for Applied Energy Research); Task 3 continuous operations/parametric studies (Hydrocarbon Technologies, Inc.); Task 4.1 process modeling; and Task 4.4 preliminary technical assessment (LDP Associates). Some of the high points for this period are: the activity of the base catalyst prepared by pressure filtration of the Wilsonville Run 262E V-1082 ashy resid was determined and compared with the conversion of coal in the absence of any added catalyst; this material was found to contain 740 mg Mo/kg; in the catalyst screening test, the pressure filtered solids that had been added to the reaction mixture to a level equivalent to the solids contained in Wilsonville Run 263J gave coal conversion of 98.2% with a resid conversion of 24%; and the effect of presulfiding conditions on activating a Mo-impregnated coal with different H{sub 2}S/H{sub 2} mixtures at different temperatures and reaction times was investigated.