Sample records for final regression equations

  1. Methods for estimating selected low-flow frequency statistics and mean annual flow for ungaged locations on streams in North Georgia

    USGS Publications Warehouse

    Gotvald, Anthony J.

    2017-01-13

    The U.S. Geological Survey, in cooperation with the Georgia Department of Natural Resources, Environmental Protection Division, developed regional regression equations for estimating selected low-flow frequency and mean annual flow statistics for ungaged streams in north Georgia that are not substantially affected by regulation, diversions, or urbanization. Selected low-flow frequency statistics and basin characteristics for 56 streamgage locations within north Georgia and 75 miles beyond the State’s borders in Alabama, Tennessee, North Carolina, and South Carolina were combined to form the final dataset used in the regional regression analysis. Because some of the streamgages in the study recorded zero flow, the final regression equations were developed using weighted left-censored regression analysis to analyze the flow data in an unbiased manner, with weights based on the number of years of record. The set of equations includes the annual minimum 1- and 7-day average streamflow with the 10-year recurrence interval (referred to as 1Q10 and 7Q10), monthly 7Q10, and mean annual flow. The final regional regression equations are functions of drainage area, mean annual precipitation, and relief ratio for the selected low-flow frequency statistics and drainage area and mean annual precipitation for mean annual flow. The average standard error of estimate was 13.7 percent for the mean annual flow regression equation and ranged from 26.1 to 91.6 percent for the selected low-flow frequency equations.The equations, which are based on data from streams with little to no flow alterations, can be used to provide estimates of the natural flows for selected ungaged stream locations in the area of Georgia north of the Fall Line. The regression equations are not to be used to estimate flows for streams that have been altered by the effects of major dams, surface-water withdrawals, groundwater withdrawals (pumping wells), diversions, or wastewater discharges. The regression equations should be used only for ungaged sites with drainage areas between 1.67 and 576 square miles, mean annual precipitation between 47.6 and 81.6 inches, and relief ratios between 0.146 and 0.607; these are the ranges of the explanatory variables used to develop the equations. An attempt was made to develop regional regression equations for the area of Georgia south of the Fall Line by using the same approach used during this study for north Georgia; however, the equations resulted with high average standard errors of estimates and poorly predicted flows below 0.5 cubic foot per second, which may be attributed to the karst topography common in that area.The final regression equations developed from this study are planned to be incorporated into the U.S. Geological Survey StreamStats program. StreamStats is a Web-based geographic information system that provides users with access to an assortment of analytical tools useful for water-resources planning and management, and for engineering design applications, such as the design of bridges. The StreamStats program provides streamflow statistics and basin characteristics for U.S. Geological Survey streamgage locations and ungaged sites of interest. StreamStats also can compute basin characteristics and provide estimates of streamflow statistics for ungaged sites when users select the location of a site along any stream in Georgia.

  2. Peak flow regression equations For small, ungaged streams in Maine: Comparing map-based to field-based variables

    USGS Publications Warehouse

    Lombard, Pamela J.; Hodgkins, Glenn A.

    2015-01-01

    Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.

  3. Methods for determining magnitude and frequency of floods in California, based on data through water year 2006

    USGS Publications Warehouse

    Gotvald, Anthony J.; Barth, Nancy A.; Veilleux, Andrea G.; Parrett, Charles

    2012-01-01

    Methods for estimating the magnitude and frequency of floods in California that are not substantially affected by regulation or diversions have been updated. Annual peak-flow data through water year 2006 were analyzed for 771 streamflow-gaging stations (streamgages) in California having 10 or more years of data. Flood-frequency estimates were computed for the streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Low-outlier and historic information were incorporated into the flood-frequency analysis, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low outliers. Special methods for fitting the distribution were developed for streamgages in the desert region in southeastern California. Additionally, basin characteristics for the streamgages were computed by using a geographical information system. Regional regression analysis, using generalized least squares regression, was used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins in California that are outside of the southeastern desert region. Flood-frequency estimates and basin characteristics for 630 streamgages were combined to form the final database used in the regional regression analysis. Five hydrologic regions were developed for the area of California outside of the desert region. The final regional regression equations are functions of drainage area and mean annual precipitation for four of the five regions. In one region, the Sierra Nevada region, the final equations are functions of drainage area, mean basin elevation, and mean annual precipitation. Average standard errors of prediction for the regression equations in all five regions range from 42.7 to 161.9 percent. For the desert region of California, an analysis of 33 streamgages was used to develop regional estimates of all three parameters (mean, standard deviation, and skew) of the log-Pearson Type III distribution. The regional estimates were then used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins. The final regional regression equations are functions of drainage area. Average standard errors of prediction for these regression equations range from 214.2 to 856.2 percent. Annual peak-flow data through water year 2006 were analyzed for eight streamgages in California having 10 or more years of data considered to be affected by urbanization. Flood-frequency estimates were computed for the urban streamgages by fitting a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Regression analysis could not be used to develop flood-frequency estimation equations for urban streams because of the limited number of sites. Flood-frequency estimates for the eight urban sites were graphically compared to flood-frequency estimates for 630 non-urban sites. The regression equations developed from this study will be incorporated into the U.S. Geological Survey (USGS) StreamStats program. The StreamStats program is a Web-based application that provides streamflow statistics and basin characteristics for USGS streamgages and ungaged sites of interest. StreamStats can also compute basin characteristics and provide estimates of streamflow statistics for ungaged sites when users select the location of a site along any stream in California.

  4. Using social cognitive theory to explain discretionary, "leisure-time" physical exercise among high school students.

    PubMed

    Winters, Eric R; Petosa, Rick L; Charlton, Thomas E

    2003-06-01

    To examine whether knowledge of high school students' actions of self-regulation, and perceptions of self-efficacy to overcome exercise barriers, social situation, and outcome expectation will predict non-school related moderate and vigorous physical exercise. High school students enrolled in introductory Physical Education courses completed questionnaires that targeted selected Social Cognitive Theory variables. They also self-reported their typical "leisure-time" exercise participation using a standardized questionnaire. Bivariate correlation statistic and hierarchical regression were conducted on reports of moderate and vigorous exercise frequency. Each predictor variable was significantly associated with measures of moderate and vigorous exercise frequency. All predictor variables were significant in the final regression model used to explain vigorous exercise. After controlling for the effects of gender, the psychosocial variables explained 29% of variance in vigorous exercise frequency. Three of four predictor variables were significant in the final regression equation used to explain moderate exercise. The final regression equation accounted for 11% of variance in moderate exercise frequency. Professionals who attempt to increase the prevalence of physical exercise through educational methods should focus on the psychosocial variables utilized in this study.

  5. Estimation of flood discharges at selected annual exceedance probabilities for unregulated, rural streams in Vermont, with a section on Vermont regional skew regression

    USGS Publications Warehouse

    Olson, Scott A.; with a section by Veilleux, Andrea G.

    2014-01-01

    This report provides estimates of flood discharges at selected annual exceedance probabilities (AEPs) for streamgages in and adjacent to Vermont and equations for estimating flood discharges at AEPs of 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent (recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-years, respectively) for ungaged, unregulated, rural streams in Vermont. The equations were developed using generalized least-squares regression. Flood-frequency and drainage-basin characteristics from 145 streamgages were used in developing the equations. The drainage-basin characteristics used as explanatory variables in the regression equations include drainage area, percentage of wetland area, and the basin-wide mean of the average annual precipitation. The average standard errors of prediction for estimating the flood discharges at the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEP with these equations are 34.9, 36.0, 38.7, 42.4, 44.9, 47.3, 50.7, and 55.1 percent, respectively. Flood discharges at selected AEPs for streamgages were computed by using the Expected Moments Algorithm. To improve estimates of the flood discharges for given exceedance probabilities at streamgages in Vermont, a new generalized skew coefficient was developed. The new generalized skew for the region is a constant, 0.44. The mean square error of the generalized skew coefficient is 0.078. This report describes a technique for using results from the regression equations to adjust an AEP discharge computed from a streamgage record. This report also describes a technique for using a drainage-area adjustment to estimate flood discharge at a selected AEP for an ungaged site upstream or downstream from a streamgage. The final regression equations and the flood-discharge frequency data used in this study will be available in StreamStats. StreamStats is a World Wide Web application providing automated regression-equation solutions for user-selected sites on streams.

  6. Quantifying components of the hydrologic cycle in Virginia using chemical hydrograph separation and multiple regression analysis

    USGS Publications Warehouse

    Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.

    2012-01-01

    This study by the U.S. Geological Survey, prepared in cooperation with the Virginia Department of Environmental Quality, quantifies the components of the hydrologic cycle across the Commonwealth of Virginia. Long-term, mean fluxes were calculated for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971–2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. The base-flow proportion for the 48 watersheds averaged 72 percent using specific conductance, a value that was substantially higher than the 61 percent average calculated using a graphical-separation technique (the USGS program PART). Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia.

  7. Methods for estimating selected spring and fall low-flow frequency statistics for ungaged stream sites in Iowa, based on data through June 2014

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.

    2016-09-19

    A statewide study was led to develop regression equations for estimating three selected spring and three selected fall low-flow frequency statistics for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include spring (April through June) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and fall (October through December) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years. Estimates of the three selected spring statistics are provided for 241 U.S. Geological Survey continuous-record streamgages, and estimates of the three selected fall statistics are provided for 238 of these streamgages, using data through June 2014. Because only 9 years of fall streamflow record were available, three streamgages included in the development of the spring regression equations were not included in the development of the fall regression equations. Because of regulation, diversion, or urbanization, 30 of the 241 streamgages were not included in the development of the regression equations. The study area includes Iowa and adjacent areas within 50 miles of the Iowa border. Because trend analyses indicated statistically significant positive trends when considering the period of record for most of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. Geographic information system software was used to measure 63 selected basin characteristics for each of the 211streamgages used to develop the regional regression equations. The study area was divided into three low-flow regions that were defined in a previous study for the development of regional regression equations.Because several streamgages included in the development of regional regression equations have estimates of zero flow calculated from observed streamflow for selected spring and fall low-flow frequency statistics, the final equations for the three low-flow regions were developed using two types of regression analyses—left-censored and generalized-least-squares regression analyses. A total of 211 streamgages were included in the development of nine spring regression equations—three equations for each of the three low-flow regions. A total of 208 streamgages were included in the development of nine fall regression equations—three equations for each of the three low-flow regions. A censoring threshold was used to develop 15 left-censored regression equations to estimate the three fall low-flow frequency statistics for each of the three low-flow regions and to estimate the three spring low-flow frequency statistics for the southern and northwest regions. For the northeast region, generalized-least-squares regression was used to develop three equations to estimate the three spring low-flow frequency statistics. For the northeast region, average standard errors of prediction range from 32.4 to 48.4 percent for the spring equations and average standard errors of estimate range from 56.4 to 73.8 percent for the fall equations. For the northwest region, average standard errors of estimate range from 58.9 to 62.1 percent for the spring equations and from 83.2 to 109.4 percent for the fall equations. For the southern region, average standard errors of estimate range from 43.2 to 64.0 percent for the spring equations and from 78.1 to 78.7 percent for the fall equations.The regression equations are applicable only to stream sites in Iowa with low flows not substantially affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. The regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system application. StreamStats allows users to click on any ungaged stream site and compute estimates of the six selected spring and fall low-flow statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged site are provided. StreamStats also allows users to click on any Iowa streamgage to obtain computed estimates for the six selected spring and fall low-flow statistics.

  8. Magnitude and Frequency of Floods for Urban and Small Rural Streams in Georgia, 2008

    USGS Publications Warehouse

    Gotvald, Anthony J.; Knaak, Andrew E.

    2011-01-01

    A study was conducted that updated methods for estimating the magnitude and frequency of floods in ungaged urban basins in Georgia that are not substantially affected by regulation or tidal fluctuations. Annual peak-flow data for urban streams from September 2008 were analyzed for 50 streamgaging stations (streamgages) in Georgia and 6 streamgages on adjacent urban streams in Florida and South Carolina having 10 or more years of data. Flood-frequency estimates were computed for the 56 urban streamgages by fitting logarithms of annual peak flows for each streamgage to a Pearson Type III distribution. Additionally, basin characteristics for the streamgages were computed by using a geographical information system and computer algorithms. Regional regression analysis, using generalized least-squares regression, was used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged urban basins in Georgia. In addition to the 56 urban streamgages, 171 rural streamgages were included in the regression analysis to maintain continuity between flood estimates for urban and rural basins as the basin characteristics pertaining to urbanization approach zero. Because 21 of the rural streamgages have drainage areas less than 1 square mile, the set of equations developed for this study can also be used for estimating small ungaged rural streams in Georgia. Flood-frequency estimates and basin characteristics for 227 streamgages were combined to form the final database used in the regional regression analysis. Four hydrologic regions were developed for Georgia. The final equations are functions of drainage area and percentage of impervious area for three of the regions and drainage area, percentage of developed land, and mean basin slope for the fourth region. Average standard errors of prediction for these regression equations range from 20.0 to 74.5 percent.

  9. A Comparison of QSAR Based Thermo and Water Solvation Property Prediction Tools and Experimental Data for Selected Traditional Chemical Warfare Agents and Simulants

    DTIC Science & Technology

    2014-07-01

    Labs uses parameterized Hammett -type equations to describe 1500 possible combinations of more than 650 ionizable functional groups. The change in...of the form ⋯ , ⋯ Equation (1) where Ypred is the predicted property, c0 is a constant, c1 to cn are coefficients from the...regression to the training set of measurements, X1 to Xn represent molecular or fragment or field-based descriptors, and the final term in Equation 1

  10. How many stakes are required to measure the mass balance of a glacier?

    USGS Publications Warehouse

    Fountain, A.G.; Vecchia, A.

    1999-01-01

    Glacier mass balance is estimated for South Cascade Glacier and Maclure Glacier using a one-dimensional regression of mass balance with altitude as an alternative to the traditional approach of contouring mass balance values. One attractive feature of regression is that it can be applied to sparse data sets where contouring is not possible and can provide an objective error of the resulting estimate. Regression methods yielded mass balance values equivalent to contouring methods. The effect of the number of mass balance measurements on the final value for the glacier showed that sample sizes as small as five stakes provided reasonable estimates, although the error estimates were greater than for larger sample sizes. Different spatial patterns of measurement locations showed no appreciable influence on the final value as long as different surface altitudes were intermittently sampled over the altitude range of the glacier. Two different regression equations were examined, a quadratic, and a piecewise linear spline, and comparison of results showed little sensitivity to the type of equation. These results point to the dominant effect of the gradient of mass balance with altitude of alpine glaciers compared to transverse variations. The number of mass balance measurements required to determine the glacier balance appears to be scale invariant for small glaciers and five to ten stakes are sufficient.

  11. Supply Rate and Equilibrium Inventory of Air Force Enlisted Personnel: A Simultaneous Model of the Accession and Retention Markets Incorporating Force Level Constraints. Final Report for Period July 1969-June 1976.

    ERIC Educational Resources Information Center

    DeVany, Arthur S.; And Others

    This research was designed to develop and test a model of the Air Force manpower market. The study indicates that previous manpower supply studies failed to account for simultaneous determination of enlistments and retentions and misinterpreted regressions as supply equations. They are, instead, reduced form equations resulting from joint…

  12. A quantitative model for designing keyboard layout.

    PubMed

    Shieh, K K; Lin, C C

    1999-02-01

    This study analyzed the quantitative relationship between keytapping times and ergonomic principles in typewriting skills. Keytapping times and key-operating characteristics of a female subject typing on the Qwerty and Dvorak keyboards for six weeks each were collected and analyzed. The results showed that characteristics of the typed material and the movements of hands and fingers were significantly related to keytapping times. The most significant factors affecting keytapping times were association frequency between letters, consecutive use of the same hand or finger, and the finger used. A regression equation for relating keytapping times to ergonomic principles was fitted to the data. Finally, a protocol for design of computerized keyboard layout based on the regression equation was proposed.

  13. Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana

    USGS Publications Warehouse

    Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.

    2016-09-06

    Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of prediction of these regression equations ranges from 55.7 to 61.5 percent.Regional weighted-least-squares regression equations were developed for estimating the harmonic-mean flows by dividing the State into three low-flow regions. The Northern region uses total drainage area and the average transmissivity of the entire thickness of unconsolidated deposits as explanatory variables. The Central region uses total drainage area, the average hydraulic conductivity of the entire thickness of unconsolidated deposits, and the index of permeability and thickness of the Quaternary surficial sediments. The Southern region uses total drainage area and the percent of the basin covered by forest. The average standard error of prediction for these equations ranges from 39.3 to 66.7 percent.The regional regression equations are applicable only to stream sites with low flows unaffected by regulation and to stream sites with drainage basin characteristic values within specified limits. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features and for urbanized basins. Extrapolations near and beyond the applicable basin characteristic limits will have unknown errors that may be large. Equations are presented for use in estimating the 90-percent prediction interval of the low-flow statistics estimated by use of the regression equations at a given stream site.The regression equations are to be incorporated into the U.S. Geological Survey StreamStats Web-based application for Indiana. StreamStats allows users to select a stream site on a map and automatically measure the needed basin characteristics and compute the estimated low-flow statistics and associated prediction intervals.

  14. Estimating the magnitude and frequency of floods in urban basins in Missouri

    USGS Publications Warehouse

    Southard, Rodney E.

    2010-01-01

    Streamgage flood-frequency analyses were done for 35 streamgages on urban streams in and adjacent to Missouri for estimation of the magnitude and frequency of floods in urban areas of Missouri. A log-Pearson Type-III distribution was fitted to the annual series of peak flow data retrieved from the U.S. Geological Survey National Water Information System. For this report, the flood frequency estimates are expressed in terms of percent annual exceedance probabilities of 50, 20, 10, 4, 2, 1, and 0.2. Of the 35 streamgages, 30 are located in Missouri. The remaining five non-Missouri streamgages were added to the dataset to improve the range and applicability of the regression analyses from the streamgage frequency analyses. Ordinary least-squares was used to determine the best set of independent variables for the regression equations. Basin characteristics selected for independent variables into the ordinary least-squares regression analyses were based on theoretical relation to flood flows, literature review of possible basin characteristics, and the ability to measure the basin characteristics using digital datasets and geographic information system technology. Results of the ordinary least-squares were evaluated on the basis of Mallow's Cp statistic, the adjusted coefficient of determination, and the statistical significance of the independent variables. The independent variables of drainage area and percent impervious area were determined to be statistically significant and readily determined from existing digital datasets. The drainage area variable was computed using the best elevation data available, either from a statewide 10-meter grid or high-resolution elevation data from urban areas. The impervious area variable was computed from the National Land Cover Dataset 2001 impervious area dataset. The National Land Cover Dataset 2001 impervious area data for each basin was compared to historical imagery and 7.5-minute topographic maps to verify the national dataset represented the urbanization of the basin at the time streamgage data were collected. Eight streamgages had less urbanization during the period of time streamflow data were collected than was shown on the 2001 dataset. The impervious area values for these eight urban basins were adjusted downward as much as 23 percent to account for the additional urbanization since the streamflow data were collected. Weighted least-squares regression techniques were used to determine the final regression equations for the statewide urban flood-frequency equations. Weighted least-squares techniques improve regression equations by adjusting for different and varying lengths in streamflow records. The final flood-frequency equations for the 50-, 20-, 10-, 4-, 2-, 1-, and 0.2-percent annual exceedance probability floods for Missouri provide a technique for estimating peak flows on urban streams at gaged and ungaged sites. The applicability of the equations is limited by the range in basin characteristics used to develop the regression equations. The range in drainage area is 0.28 to 189 square miles; range in impervious area is 2.3 to 46.0 percent. Seven of the 35 selected streamgages were used to compare the results of the existing rural and urban equations to the urban equations presented in this report for the 1-percent annual exceedance probability. Results of the comparison indicate that the estimated peak flows for the urban equation in this report ranged from 3 to 52 percent higher than the results from the rural equations. Comparing the estimated urban peak flows from this report to the existing urban equation developed in 1986 indicated the range was 255 percent lower to 10 percent higher. The overall comparison between the current (2010) and 1986 urban equations indicates a reduction in estimated peak flow values for the 1-percent annual exceedance probability flood.

  15. Methods for estimating annual exceedance probability discharges for streams in Arkansas, based on data through water year 2013

    USGS Publications Warehouse

    Wagner, Daniel M.; Krieger, Joshua D.; Veilleux, Andrea G.

    2016-08-04

    In 2013, the U.S. Geological Survey initiated a study to update regional skew, annual exceedance probability discharges, and regional regression equations used to estimate annual exceedance probability discharges for ungaged locations on streams in the study area with the use of recent geospatial data, new analytical methods, and available annual peak-discharge data through the 2013 water year. An analysis of regional skew using Bayesian weighted least-squares/Bayesian generalized-least squares regression was performed for Arkansas, Louisiana, and parts of Missouri and Oklahoma. The newly developed constant regional skew of -0.17 was used in the computation of annual exceedance probability discharges for 281 streamgages used in the regional regression analysis. Based on analysis of covariance, four flood regions were identified for use in the generation of regional regression models. Thirty-nine basin characteristics were considered as potential explanatory variables, and ordinary least-squares regression techniques were used to determine the optimum combinations of basin characteristics for each of the four regions. Basin characteristics in candidate models were evaluated based on multicollinearity with other basin characteristics (variance inflation factor < 2.5) and statistical significance at the 95-percent confidence level (p ≤ 0.05). Generalized least-squares regression was used to develop the final regression models for each flood region. Average standard errors of prediction of the generalized least-squares models ranged from 32.76 to 59.53 percent, with the largest range in flood region D. Pseudo coefficients of determination of the generalized least-squares models ranged from 90.29 to 97.28 percent, with the largest range also in flood region D. The regional regression equations apply only to locations on streams in Arkansas where annual peak discharges are not substantially affected by regulation, diversion, channelization, backwater, or urbanization. The applicability and accuracy of the regional regression equations depend on the basin characteristics measured for an ungaged location on a stream being within range of those used to develop the equations.

  16. Application of mathematical model methods for optimization tasks in construction materials technology

    NASA Astrophysics Data System (ADS)

    Fomina, E. V.; Kozhukhova, N. I.; Sverguzova, S. V.; Fomin, A. E.

    2018-05-01

    In this paper, the regression equations method for design of construction material was studied. Regression and polynomial equations representing the correlation between the studied parameters were proposed. The logic design and software interface of the regression equations method focused on parameter optimization to provide the energy saving effect at the stage of autoclave aerated concrete design considering the replacement of traditionally used quartz sand by coal mining by-product such as argillite. The mathematical model represented by a quadric polynomial for the design of experiment was obtained using calculated and experimental data. This allowed the estimation of relationship between the composition and final properties of the aerated concrete. The surface response graphically presented in a nomogram allowed the estimation of concrete properties in response to variation of composition within the x-space. The optimal range of argillite content was obtained leading to a reduction of raw materials demand, development of target plastic strength of aerated concrete as well as a reduction of curing time before autoclave treatment. Generally, this method allows the design of autoclave aerated concrete with required performance without additional resource and time costs.

  17. Estimation of Flood Discharges at Selected Recurrence Intervals for Streams in New Hampshire

    USGS Publications Warehouse

    Olson, Scott A.

    2009-01-01

    This report provides estimates of flood discharges at selected recurrence intervals for streamgages in and adjacent to New Hampshire and equations for estimating flood discharges at recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, and 500-years for ungaged, unregulated, rural streams in New Hampshire. The equations were developed using generalized least-squares regression. Flood-frequency and drainage-basin characteristics from 117 streamgages were used in developing the equations. The drainage-basin characteristics used as explanatory variables in the regression equations include drainage area, mean April precipitation, percentage of wetland area, and main channel slope. The average standard error of prediction for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence interval flood discharges with these equations are 30.0, 30.8, 32.0, 34.2, 36.0, 38.1, and 43.4 percent, respectively. Flood discharges at selected recurrence intervals for selected streamgages were computed following the guidelines in Bulletin 17B of the U.S. Interagency Advisory Committee on Water Data. To determine the flood-discharge exceedence probabilities at streamgages in New Hampshire, a new generalized skew coefficient map covering the State was developed. The standard error of the data on new map is 0.298. To improve estimates of flood discharges at selected recurrence intervals for 20 streamgages with short-term records (10 to 15 years), record extension using the two-station comparison technique was applied. The two-station comparison method uses data from a streamgage with long-term record to adjust the frequency characteristics at a streamgage with a short-term record. A technique for adjusting a flood-discharge frequency curve computed from a streamgage record with results from the regression equations is described in this report. Also, a technique is described for estimating flood discharge at a selected recurrence interval for an ungaged site upstream or downstream from a streamgage using a drainage-area adjustment. The final regression equations and the flood-discharge frequency data used in this study will be available in StreamStats. StreamStats is a World Wide Web application providing automated regression-equation solutions for user-selected sites on streams.

  18. Commitment Predictors: Long-Distance versus Geographically Close Relationships

    ERIC Educational Resources Information Center

    Pistole, M. Carole; Roberts, Amber; Mosko, Jonathan E.

    2010-01-01

    In this web-based study, the authors examined long-distance relationships (LDRs) and geographically close relationships (GCRs). Two hierarchical multiple regressions (N = 138) indicated that attachment predicted LDR and GCR commitment in Step 1. Final equations indicated that high satisfaction and investments predicted LDR commitment, whereas low…

  19. FIRE: an SPSS program for variable selection in multiple linear regression analysis via the relative importance of predictors.

    PubMed

    Lorenzo-Seva, Urbano; Ferrando, Pere J

    2011-03-01

    We provide an SPSS program that implements currently recommended techniques and recent developments for selecting variables in multiple linear regression analysis via the relative importance of predictors. The approach consists of: (1) optimally splitting the data for cross-validation, (2) selecting the final set of predictors to be retained in the equation regression, and (3) assessing the behavior of the chosen model using standard indices and procedures. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from brm.psychonomic-journals.org/content/supplemental.

  20. Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015

    USGS Publications Warehouse

    Kohn, Michael S.; Stevens, Michael R.; Harden, Tessa M.; Godaire, Jeanne E.; Klinger, Ralph E.; Mommandi, Amanullah

    2016-09-09

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Department of Transportation, developed regional-regression equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, 0.2-percent annual exceedance-probability discharge (AEPD) for natural streamflow in eastern Colorado. A total of 188 streamgages, consisting of 6,536 years of record and a mean of approximately 35 years of record per streamgage, were used to develop the peak-streamflow regional-regression equations. The estimated AEPDs for each streamgage were computed using the USGS software program PeakFQ. The AEPDs were determined using systematic data through water year 2013. Based on previous studies conducted in Colorado and neighboring States and on the availability of data, 72 characteristics (57 basin and 15 climatic characteristics) were evaluated as candidate explanatory variables in the regression analysis. Paleoflood and non-exceedance bound ages were established based on reconnaissance-level methods. Multiple lines of evidence were used at each streamgage to arrive at a conclusion (age estimate) to add a higher degree of certainty to reconnaissance-level estimates. Paleoflood or nonexceedance bound evidence was documented at 41 streamgages, and 3 streamgages had previously collected paleoflood data.To determine the peak discharge of a paleoflood or non-exceedanc bound, two different hydraulic models were used.The mean standard error of prediction (SEP) for all 8 AEPDs was reduced approximately 25 percent compared to the previous flood-frequency study. For paleoflood data to be effective in reducing the SEP in eastern Colorado, a larger ratio than 44 of 188 (23 percent) streamgages would need paleoflood data and that paleoflood data would need to increase the record length by more than 25 years for the 1-percent AEPD. The greatest reduction in SEP for the peak-streamflow regional-regression equations was observed when additional new basin characteristics were included in the peak-streamflow regional-regression equations and when eastern Colorado was divided into two separate hydrologic regions. To make further reductions in the uncertainties of the peak-streamflow regional-regression equations in the Foothills and Plains hydrologic regions, additional streamgages or crest-stage gages are needed to collect peak-streamflow data on natural streams in eastern Colorado.Generalized-Least Squares regression was used to compute the final peak-streamflow regional-regression equations for peak-streamflow. Dividing eastern Colorado into two new individual regions at –104° longitude resulted in peak-streamflow regional-regression equations with the smallest SEP. The new hydrologic region located between –104° longitude and the Kansas-Nebraska State line will be designated the Plains hydrologic region and the hydrologic region comprising the rest of eastern Colorado located west of the –104° longitude and east of the Rocky Mountains and below 7,500 feet in the South Platte River Basin and below 9,000 feet in the Arkansas River Basin will be designated the Foothills hydrologic region.

  1. Hybrid Rocket Performance Prediction with Coupling Method of CFD and Thermal Conduction Calculation

    NASA Astrophysics Data System (ADS)

    Funami, Yuki; Shimada, Toru

    The final purpose of this study is to develop a design tool for hybrid rocket engines. This tool is a computer code which will be used in order to investigate rocket performance characteristics and unsteady phenomena lasting through the burning time, such as fuel regression or combustion oscillation. When phenomena inside a combustion chamber, namely boundary layer combustion, are described, it is difficult to use rigorous models for this target. It is because calculation cost may be too expensive. Therefore simple models are required for this calculation. In this study, quasi-one-dimensional compressible Euler equations for flowfields inside a chamber and the equation for thermal conduction inside a solid fuel are numerically solved. The energy balance equation at the solid fuel surface is solved to estimate fuel regression rate. Heat feedback model is Karabeyoglu's model dependent on total mass flux. Combustion model is global single step reaction model for 4 chemical species or chemical equilibrium model for 9 chemical species. As a first step, steady-state solutions are reported.

  2. Methods for estimating the magnitude and frequency of peak streamflows at ungaged sites in and near the Oklahoma Panhandle

    USGS Publications Warehouse

    Smith, S. Jerrod; Lewis, Jason M.; Graves, Grant M.

    2015-09-28

    Generalized-least-squares multiple-linear regression analysis was used to formulate regression relations between peak-streamflow frequency statistics and basin characteristics. Contributing drainage area was the only basin characteristic determined to be statistically significant for all percentage of annual exceedance probabilities and was the only basin characteristic used in regional regression equations for estimating peak-streamflow frequency statistics on unregulated streams in and near the Oklahoma Panhandle. The regression model pseudo-coefficient of determination, converted to percent, for the Oklahoma Panhandle regional regression equations ranged from about 38 to 63 percent. The standard errors of prediction and the standard model errors for the Oklahoma Panhandle regional regression equations ranged from about 84 to 148 percent and from about 76 to 138 percent, respectively. These errors were comparable to those reported for regional peak-streamflow frequency regression equations for the High Plains areas of Texas and Colorado. The root mean square errors for the Oklahoma Panhandle regional regression equations (ranging from 3,170 to 92,000 cubic feet per second) were less than the root mean square errors for the Oklahoma statewide regression equations (ranging from 18,900 to 412,000 cubic feet per second); therefore, the Oklahoma Panhandle regional regression equations produce more accurate peak-streamflow statistic estimates for the irrigated period of record in the Oklahoma Panhandle than do the Oklahoma statewide regression equations. The regression equations developed in this report are applicable to streams that are not substantially affected by regulation, impoundment, or surface-water withdrawals. These regression equations are intended for use for stream sites with contributing drainage areas less than or equal to about 2,060 square miles, the maximum value for the independent variable used in the regression analysis.

  3. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

    NASA Astrophysics Data System (ADS)

    Bo, Z.; Chen, J. H.

    2010-02-01

    The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

  4. Effectiveness of the New Hampshire stream-gaging network in providing regional streamflow information

    USGS Publications Warehouse

    Olson, Scott A.

    2003-01-01

    The stream-gaging network in New Hampshire was analyzed for its effectiveness in providing regional information on peak-flood flow, mean-flow, and low-flow frequency. The data available for analysis were from stream-gaging stations in New Hampshire and selected stations in adjacent States. The principles of generalized-least-squares regression analysis were applied to develop regional regression equations that relate streamflow-frequency characteristics to watershed characteristics. Regression equations were developed for (1) the instantaneous peak flow with a 100-year recurrence interval, (2) the mean-annual flow, and (3) the 7-day, 10-year low flow. Active and discontinued stream-gaging stations with 10 or more years of flow data were used to develop the regression equations. Each stream-gaging station in the network was evaluated and ranked on the basis of how much the data from that station contributed to the cost-weighted sampling-error component of the regression equation. The potential effect of data from proposed and new stream-gaging stations on the sampling error also was evaluated. The stream-gaging network was evaluated for conditions in water year 2000 and for estimated conditions under various network strategies if an additional 5 years and 20 years of streamflow data were collected. The effectiveness of the stream-gaging network in providing regional streamflow information could be improved for all three flow characteristics with the collection of additional flow data, both temporally and spatially. With additional years of data collection, the greatest reduction in the average sampling error of the regional regression equations was found for the peak- and low-flow characteristics. In general, additional data collection at stream-gaging stations with unregulated flow, relatively short-term record (less than 20 years), and drainage areas smaller than 45 square miles contributed the largest cost-weighted reduction to the average sampling error of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active stations, the reactivation of discontinued stations, or the activation of new stations to maximize the regional information content provided by the stream-gaging network. Final decisions regarding altering the New Hampshire stream-gaging network would require the consideration of the many uses of the streamflow data serving local, State, and Federal interests.

  5. Estimating mean long-term hydrologic budget components for watersheds and counties: An application to the commonwealth of Virginia, USA

    USGS Publications Warehouse

    Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.

    2015-01-01

    Mean long-term hydrologic budget components, such as recharge and base flow, are often difficult to estimate because they can vary substantially in space and time. Mean long-term fluxes were calculated in this study for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow using long-term estimates of mean ET and precipitation and the assumption that the relative change in storage over that 30-year period is small compared to the total ET or precipitation. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance (SC) data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971-2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. A new approach to estimate riparian ET using seasonal SC data gave results consistent with those from other methods. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia. The method has the potential to be applied in many other states in the U.S. or in other regions or countries of the world where climate and stream flow data are plentiful.

  6. Regression equations for estimation of annual peak-streamflow frequency for undeveloped watersheds in Texas using an L-moment-based, PRESS-minimized, residual-adjusted approach

    USGS Publications Warehouse

    Asquith, William H.; Roussel, Meghan C.

    2009-01-01

    Annual peak-streamflow frequency estimates are needed for flood-plain management; for objective assessment of flood risk; for cost-effective design of dams, levees, and other flood-control structures; and for design of roads, bridges, and culverts. Annual peak-streamflow frequency represents the peak streamflow for nine recurrence intervals of 2, 5, 10, 25, 50, 100, 200, 250, and 500 years. Common methods for estimation of peak-streamflow frequency for ungaged or unmonitored watersheds are regression equations for each recurrence interval developed for one or more regions; such regional equations are the subject of this report. The method is based on analysis of annual peak-streamflow data from U.S. Geological Survey streamflow-gaging stations (stations). Beginning in 2007, the U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, began a 3-year investigation concerning the development of regional equations to estimate annual peak-streamflow frequency for undeveloped watersheds in Texas. The investigation focuses primarily on 638 stations with 8 or more years of data from undeveloped watersheds and other criteria. The general approach is explicitly limited to the use of L-moment statistics, which are used in conjunction with a technique of multi-linear regression referred to as PRESS minimization. The approach used to develop the regional equations, which was refined during the investigation, is referred to as the 'L-moment-based, PRESS-minimized, residual-adjusted approach'. For the approach, seven unique distributions are fit to the sample L-moments of the data for each of 638 stations and trimmed means of the seven results of the distributions for each recurrence interval are used to define the station specific, peak-streamflow frequency. As a first iteration of regression, nine weighted-least-squares, PRESS-minimized, multi-linear regression equations are computed using the watershed characteristics of drainage area, dimensionless main-channel slope, and mean annual precipitation. The residuals of the nine equations are spatially mapped, and residuals for the 10-year recurrence interval are selected for generalization to 1-degree latitude and longitude quadrangles. The generalized residual is referred to as the OmegaEM parameter and represents a generalized terrain and climate index that expresses peak-streamflow potential not otherwise represented in the three watershed characteristics. The OmegaEM parameter was assigned to each station, and using OmegaEM, nine additional regression equations are computed. Because of favorable diagnostics, the OmegaEM equations are expected to be generally reliable estimators of peak-streamflow frequency for undeveloped and ungaged stream locations in Texas. The mean residual standard error, adjusted R-squared, and percentage reduction of PRESS by use of OmegaEM are 0.30log10, 0.86, and -21 percent, respectively. Inclusion of the OmegaEM parameter provides a substantial reduction in the PRESS statistic of the regression equations and removes considerable spatial dependency in regression residuals. Although the OmegaEM parameter requires interpretation on the part of analysts and the potential exists that different analysts could estimate different values for a given watershed, the authors suggest that typical uncertainty in the OmegaEM estimate might be about +or-0.1010. Finally, given the two ensembles of equations reported herein and those in previous reports, hydrologic design engineers and other analysts have several different methods, which represent different analytical tracks, to make comparisons of peak-streamflow frequency estimates for ungaged watersheds in the study area.

  7. New Generalized Equation for Predicting Maximal Oxygen Uptake (from the Fitness Registry and the Importance of Exercise National Database).

    PubMed

    Kokkinos, Peter; Kaminsky, Leonard A; Arena, Ross; Zhang, Jiajia; Myers, Jonathan

    2017-08-15

    Impaired cardiorespiratory fitness (CRF) is closely linked to chronic illness and associated with adverse events. The American College of Sports Medicine (ACSM) regression equations (ACSM equations) developed to estimate oxygen uptake have known limitations leading to well-documented overestimation of CRF, especially at higher work rates. Thus, there is a need to explore alternative equations to more accurately predict CRF. We assessed maximal oxygen uptake (VO 2 max) obtained directly by open-circuit spirometry in 7,983 apparently healthy subjects who participated in the Fitness Registry and the Importance of Exercise National Database (FRIEND). We randomly sampled 70% of the participants from each of the following age categories: <40, 40 to 50, 50 to 70, and ≥70 and used the remaining 30% for validation. Multivariable linear regression analysis was applied to identify the most relevant variables and construct the best prediction model for VO 2 max. Treadmill speed and treadmill speed × grade were considered in the final model as predictors of measured VO 2 max and the following equation was generated: VO 2 max in ml O 2 /kg/min = speed (m/min) × (0.17 + fractional grade × 0.79) + 3.5. The FRIEND equation predicted VO 2 max with an overall error >4 times lower than the error associated with the traditional ACSM equations (5.1 ± 18.3% vs 21.4 ± 24.9%, respectively). Overestimation associated with the ACSM equation was accentuated when different protocols were considered separately. In conclusion, The FRIEND equation predicts VO 2 max more precisely than the traditional ACSM equations with an overall error >4 times lower than that associated with the ACSM equations. Published by Elsevier Inc.

  8. Prediction of rectal temperature using non-invasive physiologic variable measurements in hair pregnant ewes subjected to natural conditions of heat stress.

    PubMed

    Vicente-Pérez, Ricardo; Avendaño-Reyes, Leonel; Mejía-Vázquez, Ángel; Álvarez-Valenzuela, F Daniel; Correa-Calderón, Abelardo; Mellado, Miguel; Meza-Herrera, Cesar A; Guerra-Liera, Juan E; Robinson, P H; Macías-Cruz, Ulises

    2016-01-01

    Rectal temperature (RT) is the foremost physiological variable indicating if an animal is suffering hyperthermia. However, this variable is traditionally measured by invasive methods, which may compromise animal welfare. Models to predict RT have been developed for growing pigs and lactating dairy cows, but not for pregnant heat-stressed ewes. Our aim was to develop a prediction equation for RT using non-invasive physiological variables in pregnant ewes under heat stress. A total of 192 records of respiratory frequency (RF) and hair coat temperature in various body regions (i.e., head, rump, flank, shoulder, and belly) obtained from 24 Katahdin × Pelibuey pregnant multiparous ewes were collected during the last third of gestation (i.e., d 100 to lambing) with a 15 d sampling interval. Hair coat temperatures were taken using infrared thermal imaging technology. Initially, a Pearson correlation analysis examined the relationship among variables, and then multiple linear regression analysis was used to develop the prediction equations. All predictor variables were positively correlated (P<0.01; r=0.59-0.67) with RT. The adjusted equation which best predicted RT (P<0.01; Radj(2)=56.15%; CV=0.65%) included as predictors RF and head and belly temperatures. Comparison of predicted and observed values for RT indicates a suitable agreement (P<0.01) between them with moderate accuracy (Radj(2)=56.15%) when RT was calculated with the adjusted equation. In general, the final equation does not violate any assumption of multiple regression analysis. The RT in heat-stressed pregnant ewes can be predicted with an adequate accuracy using non-invasive physiologic variables, and the final equation was: RT=35.57+0.004 (RF)+0.067 (heat temperature)+0.028 (belly temperature). Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Modelling of capital asset pricing by considering the lagged effects

    NASA Astrophysics Data System (ADS)

    Sukono; Hidayat, Y.; Bon, A. Talib bin; Supian, S.

    2017-01-01

    In this paper the problem of modelling the Capital Asset Pricing Model (CAPM) with the effect of the lagged is discussed. It is assumed that asset returns are analysed influenced by the market return and the return of risk-free assets. To analyse the relationship between asset returns, the market return, and the return of risk-free assets, it is conducted by using a regression equation of CAPM, and regression equation of lagged distributed CAPM. Associated with the regression equation lagged CAPM distributed, this paper also developed a regression equation of Koyck transformation CAPM. Results of development show that the regression equation of Koyck transformation CAPM has advantages, namely simple as it only requires three parameters, compared with regression equation of lagged distributed CAPM.

  10. Temperature preference of the white perch, Morone americana, collected in the Wicomico River, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, L.W. Jr.; Hocutt, C.H.; Stauffer, J.R. Jr.

    1979-06-01

    Temperature preference tests were conducted on fresh water white perch (Morone americana), collected from the Wicomico River, Maryland. Collection temperature was 27/sup 0/C and acclimation temperatures used in temperature preference tests were 6, 12, 18, 24, 30, and 33/sup 0/C. The following methods were used to determine the final temperature preference:linear regression, quadratic equation, and eyeball plots. Recorded final temperature preference values were 28.9, 29.3, and 30.6/sup 0/C using each method respectively.

  11. Using Regression Equations Built from Summary Data in the Psychological Assessment of the Individual Case: Extension to Multiple Regression

    ERIC Educational Resources Information Center

    Crawford, John R.; Garthwaite, Paul H.; Denham, Annie K.; Chelune, Gordon J.

    2012-01-01

    Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because…

  12. Median and Low-Flow Characteristics for Streams under Natural and Diverted Conditions, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    2005-01-01

    Flow-duration statistics under natural (undiverted) and diverted flow conditions were estimated for gaged and ungaged sites on 21 streams in northeast Maui, Hawaii. The estimates were made using the optimal combination of continuous-record gaging-station data, low-flow measurements, and values determined from regression equations developed as part of this study. Estimated 50- and 95-percent flow duration statistics for streams are presented and the analyses done to develop and evaluate the methods used in estimating the statistics are described. Estimated streamflow statistics are presented for sites where various amounts of streamflow data are available as well as for locations where no data are available. Daily mean flows were used to determine flow-duration statistics for continuous-record stream-gaging stations in the study area following U.S. Geological Survey established standard methods. Duration discharges of 50- and 95-percent were determined from total flow and base flow for each continuous-record station. The index-station method was used to adjust all of the streamflow records to a common, long-term period. The gaging station on West Wailuaiki Stream (16518000) was chosen as the index station because of its record length (1914-2003) and favorable geographic location. Adjustments based on the index-station method resulted in decreases to the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow computed on the basis of short-term records that averaged 7, 3, 4, and 1 percent, respectively. For the drainage basin of each continuous-record gaged site and selected ungaged sites, morphometric, geologic, soil, and rainfall characteristics were quantified using Geographic Information System techniques. Regression equations relating the non-diverted streamflow statistics to basin characteristics of the gaged basins were developed using ordinary-least-squares regression analyses. Rainfall rate, maximum basin elevation, and the elongation ratio of the basin were the basin characteristics used in the final regression equations for 50-percent duration total flow and base flow. Rainfall rate and maximum basin elevation were used in the final regression equations for the 95-percent duration total flow and base flow. The relative errors between observed and estimated flows ranged from 10 to 20 percent for the 50-percent duration total flow and base flow, and from 29 to 56 percent for the 95-percent duration total flow and base flow. The regression equations developed for this study were used to determine the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow at selected ungaged diverted and undiverted sites. Estimated streamflow, prediction intervals, and standard errors were determined for 48 ungaged sites in the study area and for three gaged sites west of the study area. Relative errors were determined for sites where measured values of 95-percent duration discharge of total flow were available. East of Keanae Valley, the 95-percent duration discharge equation generally underestimated flow, and within and west of Keanae Valley, the equation generally overestimated flow. Reduction in 50- and 95-percent flow-duration values in stream reaches affected by diversions throughout the study area average 58 to 60 percent.

  13. Objective Lightning Probability Forecasting for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Wheeler, Mark

    2005-01-01

    Five logistic regression equations were created that predict the probability of cloud-to-ground lightning occurrence for the day in the KSC/CCAFS area for each month in the warm season. These equations integrated the results from several studies over recent years to improve thunderstorm forecasting at KSC/CCAFS. All of the equations outperform persistence, which is known to outperform NPTI, the current objective tool used in 45 WS lightning forecasting operations. The equations also performed well in other tests. As a result, the new equations will be added to the current set of tools used by the 45 WS to determine the probability of lightning for their daily planning forecast. The results from these equations are meant to be used as first-guess guidance when developing the lightning probability forecast for the day. They provide an objective base from which forecasters can use other observations, model data, consultation with other forecasters, and their own experience to create the final lightning probability for the 1100 UTC briefing.

  14. Effect Modification and Interaction Terms: It Takes Two to Tango.

    PubMed

    Jupiter, Daniel C

    2016-01-01

    In this Investigators' Corner I look more deeply into the previously discussed phenomenon of effect modification. I revisit an explanation and examples of the phenomenon and then examine how to account for it statistically. Specifically, I show, in detail, how to write a regression equation that includes interaction terms that account for the effect modification. Finally, I look at interpretation of regression coefficients both with and without the presence of effect modification, and the associated interaction terms. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Adjustment of regional regression equations for urban storm-runoff quality using at-site data

    USGS Publications Warehouse

    Barks, C.S.

    1996-01-01

    Regional regression equations have been developed to estimate urban storm-runoff loads and mean concentrations using a national data base. Four statistical methods using at-site data to adjust the regional equation predictions were developed to provide better local estimates. The four adjustment procedures are a single-factor adjustment, a regression of the observed data against the predicted values, a regression of the observed values against the predicted values and additional local independent variables, and a weighted combination of a local regression with the regional prediction. Data collected at five representative storm-runoff sites during 22 storms in Little Rock, Arkansas, were used to verify, and, when appropriate, adjust the regional regression equation predictions. Comparison of observed values of stormrunoff loads and mean concentrations to the predicted values from the regional regression equations for nine constituents (chemical oxygen demand, suspended solids, total nitrogen as N, total ammonia plus organic nitrogen as N, total phosphorus as P, dissolved phosphorus as P, total recoverable copper, total recoverable lead, and total recoverable zinc) showed large prediction errors ranging from 63 percent to more than several thousand percent. Prediction errors for 6 of the 18 regional regression equations were less than 100 percent and could be considered reasonable for water-quality prediction equations. The regression adjustment procedure was used to adjust five of the regional equation predictions to improve the predictive accuracy. For seven of the regional equations the observed and the predicted values are not significantly correlated. Thus neither the unadjusted regional equations nor any of the adjustments were appropriate. The mean of the observed values was used as a simple estimator when the regional equation predictions and adjusted predictions were not appropriate.

  16. Methods for estimating low-flow statistics for Massachusetts streams

    USGS Publications Warehouse

    Ries, Kernell G.; Friesz, Paul J.

    2000-01-01

    Methods and computer software are described in this report for determining flow duration, low-flow frequency statistics, and August median flows. These low-flow statistics can be estimated for unregulated streams in Massachusetts using different methods depending on whether the location of interest is at a streamgaging station, a low-flow partial-record station, or an ungaged site where no data are available. Low-flow statistics for streamgaging stations can be estimated using standard U.S. Geological Survey methods described in the report. The MOVE.1 mathematical method and a graphical correlation method can be used to estimate low-flow statistics for low-flow partial-record stations. The MOVE.1 method is recommended when the relation between measured flows at a partial-record station and daily mean flows at a nearby, hydrologically similar streamgaging station is linear, and the graphical method is recommended when the relation is curved. Equations are presented for computing the variance and equivalent years of record for estimates of low-flow statistics for low-flow partial-record stations when either a single or multiple index stations are used to determine the estimates. The drainage-area ratio method or regression equations can be used to estimate low-flow statistics for ungaged sites where no data are available. The drainage-area ratio method is generally as accurate as or more accurate than regression estimates when the drainage-area ratio for an ungaged site is between 0.3 and 1.5 times the drainage area of the index data-collection site. Regression equations were developed to estimate the natural, long-term 99-, 98-, 95-, 90-, 85-, 80-, 75-, 70-, 60-, and 50-percent duration flows; the 7-day, 2-year and the 7-day, 10-year low flows; and the August median flow for ungaged sites in Massachusetts. Streamflow statistics and basin characteristics for 87 to 133 streamgaging stations and low-flow partial-record stations were used to develop the equations. The streamgaging stations had from 2 to 81 years of record, with a mean record length of 37 years. The low-flow partial-record stations had from 8 to 36 streamflow measurements, with a median of 14 measurements. All basin characteristics were determined from digital map data. The basin characteristics that were statistically significant in most of the final regression equations were drainage area, the area of stratified-drift deposits per unit of stream length plus 0.1, mean basin slope, and an indicator variable that was 0 in the eastern region and 1 in the western region of Massachusetts. The equations were developed by use of weighted-least-squares regression analyses, with weights assigned proportional to the years of record and inversely proportional to the variances of the streamflow statistics for the stations. Standard errors of prediction ranged from 70.7 to 17.5 percent for the equations to predict the 7-day, 10-year low flow and 50-percent duration flow, respectively. The equations are not applicable for use in the Southeast Coastal region of the State, or where basin characteristics for the selected ungaged site are outside the ranges of those for the stations used in the regression analyses. A World Wide Web application was developed that provides streamflow statistics for data collection stations from a data base and for ungaged sites by measuring the necessary basin characteristics for the site and solving the regression equations. Output provided by the Web application for ungaged sites includes a map of the drainage-basin boundary determined for the site, the measured basin characteristics, the estimated streamflow statistics, and 90-percent prediction intervals for the estimates. An equation is provided for combining regression and correlation estimates to obtain improved estimates of the streamflow statistics for low-flow partial-record stations. An equation is also provided for combining regression and drainage-area ratio estimates to obtain improved e

  17. Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011

    USGS Publications Warehouse

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis

    2014-01-01

    Reliable estimates of the magnitude and frequency of floods are essential for the design of transportation and water-conveyance structures, flood-insurance studies, and flood-plain management. Such estimates are particularly important in densely populated urban areas. In order to increase the number of streamflow-gaging stations (streamgages) available for analysis, expand the geographical coverage that would allow for application of regional regression equations across State boundaries, and build on a previous flood-frequency investigation of rural U.S Geological Survey streamgages in the Southeast United States, a multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The at-site flood-frequency analysis of annual peak-flow data for urban and small, rural streams (through September 30, 2011) included 116 urban streamgages and 32 small, rural streamgages, defined in this report as basins draining less than 1 square mile. The regional regression analysis included annual peak-flow data from an additional 338 rural streamgages previously included in U.S. Geological Survey flood-frequency reports and 2 additional rural streamgages in North Carolina that were not included in the previous Southeast rural flood-frequency investigation for a total of 488 streamgages included in the urban and small, rural regression analysis. The at-site flood-frequency analyses for the urban and small, rural streamgages included the expected moments algorithm, which is a modification of the Bulletin 17B log-Pearson type III method for fitting the statistical distribution to the logarithms of the annual peak flows. Where applicable, the flood-frequency analysis also included low-outlier and historic information. Additionally, the application of a generalized Grubbs-Becks test allowed for the detection of multiple potentially influential low outliers. Streamgage basin characteristics were determined using geographical information system techniques. Initial ordinary least squares regression simulations reduced the number of basin characteristics on the basis of such factors as statistical significance, coefficient of determination, Mallow’s Cp statistic, and ease of measurement of the explanatory variable. Application of generalized least squares regression techniques produced final predictive (regression) equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability flows for urban and small, rural ungaged basins for three hydrologic regions (HR1, Piedmont–Ridge and Valley; HR3, Sand Hills; and HR4, Coastal Plain), which previously had been defined from exploratory regression analysis in the Southeast rural flood-frequency investigation. Because of the limited availability of urban streamgages in the Coastal Plain of Georgia, South Carolina, and North Carolina, additional urban streamgages in Florida and New Jersey were used in the regression analysis for this region. Including the urban streamgages in New Jersey allowed for the expansion of the applicability of the predictive equations in the Coastal Plain from 3.5 to 53.5 square miles. Average standard error of prediction for the predictive equations, which is a measure of the average accuracy of the regression equations when predicting flood estimates for ungaged sites, range from 25.0 percent for the 10-percent annual exceedance probability regression equation for the Piedmont–Ridge and Valley region to 73.3 percent for the 0.2-percent annual exceedance probability regression equation for the Sand Hills region.

  18. Alternative Regression Equations for Estimation of Annual Peak-Streamflow Frequency for Undeveloped Watersheds in Texas using PRESS Minimization

    USGS Publications Warehouse

    Asquith, William H.; Thompson, David B.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, investigated a refinement of the regional regression method and developed alternative equations for estimation of peak-streamflow frequency for undeveloped watersheds in Texas. A common model for estimation of peak-streamflow frequency is based on the regional regression method. The current (2008) regional regression equations for 11 regions of Texas are based on log10 transformations of all regression variables (drainage area, main-channel slope, and watershed shape). Exclusive use of log10-transformation does not fully linearize the relations between the variables. As a result, some systematic bias remains in the current equations. The bias results in overestimation of peak streamflow for both the smallest and largest watersheds. The bias increases with increasing recurrence interval. The primary source of the bias is the discernible curvilinear relation in log10 space between peak streamflow and drainage area. Bias is demonstrated by selected residual plots with superimposed LOWESS trend lines. To address the bias, a statistical framework based on minimization of the PRESS statistic through power transformation of drainage area is described and implemented, and the resulting regression equations are reported. Compared to log10-exclusive equations, the equations derived from PRESS minimization have PRESS statistics and residual standard errors less than the log10 exclusive equations. Selected residual plots for the PRESS-minimized equations are presented to demonstrate that systematic bias in regional regression equations for peak-streamflow frequency estimation in Texas can be reduced. Because the overall error is similar to the error associated with previous equations and because the bias is reduced, the PRESS-minimized equations reported here provide alternative equations for peak-streamflow frequency estimation.

  19. Dry season mean monthly flow and harmonic mean flow regression equations for selected ungaged basins in Arkansas

    USGS Publications Warehouse

    Breaker, Brian K.

    2015-01-01

    Equations for two regions were found to be statistically significant for developing regression equations for estimating harmonic mean flows at ungaged basins; thus, equations are applicable only to streams in those respective regions in Arkansas. Regression equations for dry season mean monthly flows are applicable only to streams located throughout Arkansas. All regression equations are applicable only to unaltered streams where flows were not significantly affected by regulation, diversion, or urbanization. The median number of years used for dry season mean monthly flow calculation was 43, and the median number of years used for harmonic mean flow calculations was 34 for region 1 and 43 for region 2.

  20. Development of equations to predict the influence of floor space on average daily gain, average daily feed intake and gain : feed ratio of finishing pigs.

    PubMed

    Flohr, J R; Dritz, S S; Tokach, M D; Woodworth, J C; DeRouchey, J M; Goodband, R D

    2018-05-01

    Floor space allowance for pigs has substantial effects on pig growth and welfare. Data from 30 papers examining the influence of floor space allowance on the growth of finishing pigs was used in a meta-analysis to develop alternative prediction equations for average daily gain (ADG), average daily feed intake (ADFI) and gain : feed ratio (G : F). Treatment means were compiled in a database that contained 30 papers for ADG and 28 papers for ADFI and G : F. The predictor variables evaluated were floor space (m2/pig), k (floor space/final BW0.67), Initial BW, Final BW, feed space (pigs per feeder hole), water space (pigs per waterer), group size (pigs per pen), gender, floor type and study length (d). Multivariable general linear mixed model regression equations were used. Floor space treatments within each experiment were the observational and experimental unit. The optimum equations to predict ADG, ADFI and G : F were: ADG, g=337.57+(16 468×k)-(237 350×k 2)-(3.1209×initial BW (kg))+(2.569×final BW (kg))+(71.6918×k×initial BW (kg)); ADFI, g=833.41+(24 785×k)-(388 998×k 2)-(3.0027×initial BW (kg))+(11.246×final BW (kg))+(187.61×k×initial BW (kg)); G : F=predicted ADG/predicted ADFI. Overall, the meta-analysis indicates that BW is an important predictor of ADG and ADFI even after computing the constant coefficient k, which utilizes final BW in its calculation. This suggests including initial and final BW improves the prediction over using k as a predictor alone. In addition, the analysis also indicated that G : F of finishing pigs is influenced by floor space allowance, whereas individual studies have concluded variable results.

  1. Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams

    USGS Publications Warehouse

    Stuckey, Marla H.

    2006-01-01

    Low-flow, base-flow, and mean-flow characteristics are an important part of assessing water resources in a watershed. These streamflow characteristics can be used by watershed planners and regulators to determine water availability, water-use allocations, assimilative capacities of streams, and aquatic-habitat needs. Streamflow characteristics are commonly predicted by use of regression equations when a nearby streamflow-gaging station is not available. Regression equations for predicting low-flow, base-flow, and mean-flow characteristics for Pennsylvania streams were developed from data collected at 293 continuous- and partial-record streamflow-gaging stations with flow unaffected by upstream regulation, diversion, or mining. Continuous-record stations used in the regression analysis had 9 years or more of data, and partial-record stations used had seven or more measurements collected during base-flow conditions. The state was divided into five low-flow regions and regional regression equations were developed for the 7-day, 10-year; 7-day, 2-year; 30-day, 10-year; 30-day, 2-year; and 90-day, 10-year low flows using generalized least-squares regression. Statewide regression equations were developed for the 10-year, 25-year, and 50-year base flows using generalized least-squares regression. Statewide regression equations were developed for harmonic mean and mean annual flow using weighted least-squares regression. Basin characteristics found to be significant explanatory variables at the 95-percent confidence level for one or more regression equations were drainage area, basin slope, thickness of soil, stream density, mean annual precipitation, mean elevation, and the percentage of glaciation, carbonate bedrock, forested area, and urban area within a basin. Standard errors of prediction ranged from 33 to 66 percent for the n-day, T-year low flows; 21 to 23 percent for the base flows; and 12 to 38 percent for the mean annual flow and harmonic mean, respectively. The regression equations are not valid in watersheds with upstream regulation, diversions, or mining activities. Watersheds with karst features need close examination as to the applicability of the regression-equation results.

  2. Using instrumental variables to estimate a Cox's proportional hazards regression subject to additive confounding

    PubMed Central

    Tosteson, Tor D.; Morden, Nancy E.; Stukel, Therese A.; O'Malley, A. James

    2014-01-01

    The estimation of treatment effects is one of the primary goals of statistics in medicine. Estimation based on observational studies is subject to confounding. Statistical methods for controlling bias due to confounding include regression adjustment, propensity scores and inverse probability weighted estimators. These methods require that all confounders are recorded in the data. The method of instrumental variables (IVs) can eliminate bias in observational studies even in the absence of information on confounders. We propose a method for integrating IVs within the framework of Cox's proportional hazards model and demonstrate the conditions under which it recovers the causal effect of treatment. The methodology is based on the approximate orthogonality of an instrument with unobserved confounders among those at risk. We derive an estimator as the solution to an estimating equation that resembles the score equation of the partial likelihood in much the same way as the traditional IV estimator resembles the normal equations. To justify this IV estimator for a Cox model we perform simulations to evaluate its operating characteristics. Finally, we apply the estimator to an observational study of the effect of coronary catheterization on survival. PMID:25506259

  3. Using instrumental variables to estimate a Cox's proportional hazards regression subject to additive confounding.

    PubMed

    MacKenzie, Todd A; Tosteson, Tor D; Morden, Nancy E; Stukel, Therese A; O'Malley, A James

    2014-06-01

    The estimation of treatment effects is one of the primary goals of statistics in medicine. Estimation based on observational studies is subject to confounding. Statistical methods for controlling bias due to confounding include regression adjustment, propensity scores and inverse probability weighted estimators. These methods require that all confounders are recorded in the data. The method of instrumental variables (IVs) can eliminate bias in observational studies even in the absence of information on confounders. We propose a method for integrating IVs within the framework of Cox's proportional hazards model and demonstrate the conditions under which it recovers the causal effect of treatment. The methodology is based on the approximate orthogonality of an instrument with unobserved confounders among those at risk. We derive an estimator as the solution to an estimating equation that resembles the score equation of the partial likelihood in much the same way as the traditional IV estimator resembles the normal equations. To justify this IV estimator for a Cox model we perform simulations to evaluate its operating characteristics. Finally, we apply the estimator to an observational study of the effect of coronary catheterization on survival.

  4. Influence of Primary Gage Sensitivities on the Convergence of Balance Load Iterations

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred

    2012-01-01

    The connection between the convergence of wind tunnel balance load iterations and the existence of the primary gage sensitivities of a balance is discussed. First, basic elements of two load iteration equations that the iterative method uses in combination with results of a calibration data analysis for the prediction of balance loads are reviewed. Then, the connection between the primary gage sensitivities, the load format, the gage output format, and the convergence characteristics of the load iteration equation choices is investigated. A new criterion is also introduced that may be used to objectively determine if the primary gage sensitivity of a balance gage exists. Then, it is shown that both load iteration equations will converge as long as a suitable regression model is used for the analysis of the balance calibration data, the combined influence of non linear terms of the regression model is very small, and the primary gage sensitivities of all balance gages exist. The last requirement is fulfilled, e.g., if force balance calibration data is analyzed in force balance format. Finally, it is demonstrated that only one of the two load iteration equation choices, i.e., the iteration equation used by the primary load iteration method, converges if one or more primary gage sensitivities are missing. This situation may occur, e.g., if force balance calibration data is analyzed in direct read format using the original gage outputs. Data from the calibration of a six component force balance is used to illustrate the connection between the convergence of the load iteration equation choices and the existence of the primary gage sensitivities.

  5. Estimating peak-flow frequency statistics for selected gaged and ungaged sites in naturally flowing streams and rivers in Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Skinner, Kenneth D.; Veilleux, Andrea G.

    2016-06-27

    The U.S. Geological Survey, in cooperation with the Idaho Transportation Department, updated regional regression equations to estimate peak-flow statistics at ungaged sites on Idaho streams using recent streamflow (flow) data and new statistical techniques. Peak-flow statistics with 80-, 67-, 50-, 43-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (1.25-, 1.50-, 2.00-, 2.33-, 5.00-, 10.0-, 25.0-, 50.0-, 100-, 200-, and 500-year recurrence intervals, respectively) were estimated for 192 streamgages in Idaho and bordering States with at least 10 years of annual peak-flow record through water year 2013. The streamgages were selected from drainage basins with little or no flow diversion or regulation. The peak-flow statistics were estimated by fitting a log-Pearson type III distribution to records of annual peak flows and applying two additional statistical methods: (1) the Expected Moments Algorithm to help describe uncertainty in annual peak flows and to better represent missing and historical record; and (2) the generalized Multiple Grubbs Beck Test to screen out potentially influential low outliers and to better fit the upper end of the peak-flow distribution. Additionally, a new regional skew was estimated for the Pacific Northwest and used to weight at-station skew at most streamgages. The streamgages were grouped into six regions (numbered 1_2, 3, 4, 5, 6_8, and 7, to maintain consistency in region numbering with a previous study), and the estimated peak-flow statistics were related to basin and climatic characteristics to develop regional regression equations using a generalized least squares procedure. Four out of 24 evaluated basin and climatic characteristics were selected for use in the final regional peak-flow regression equations.Overall, the standard error of prediction for the regional peak-flow regression equations ranged from 22 to 132 percent. Among all regions, regression model fit was best for region 4 in west-central Idaho (average standard error of prediction=46.4 percent; pseudo-R2>92 percent) and region 5 in central Idaho (average standard error of prediction=30.3 percent; pseudo-R2>95 percent). Regression model fit was poor for region 7 in southern Idaho (average standard error of prediction=103 percent; pseudo-R2<78 percent) compared to other regions because few streamgages in region 7 met the criteria for inclusion in the study, and the region’s semi-arid climate and associated variability in precipitation patterns causes substantial variability in peak flows.A drainage area ratio-adjustment method, using ratio exponents estimated using generalized least-squares regression, was presented as an alternative to the regional regression equations if peak-flow estimates are desired at an ungaged site that is close to a streamgage selected for inclusion in this study. The alternative drainage area ratio-adjustment method is appropriate for use when the drainage area ratio between the ungaged and gaged sites is between 0.5 and 1.5.The updated regional peak-flow regression equations had lower total error (standard error of prediction) than all regression equations presented in a 1982 study and in four of six regions presented in 2002 and 2003 studies in Idaho. A more extensive streamgage screening process used in the current study resulted in fewer streamgages used in the current study than in the 1982, 2002, and 2003 studies. Fewer streamgages used and the selection of different explanatory variables were likely causes of increased error in some regions compared to previous studies, but overall, regional peak‑flow regression model fit was generally improved for Idaho. The revised statistical procedures and increased streamgage screening applied in the current study most likely resulted in a more accurate representation of natural peak-flow conditions.The updated, regional peak-flow regression equations will be integrated in the U.S. Geological Survey StreamStats program to allow users to estimate basin and climatic characteristics and peak-flow statistics at ungaged locations of interest. StreamStats estimates peak-flow statistics with quantifiable certainty only when used at sites with basin and climatic characteristics within the range of input variables used to develop the regional regression equations. Both the regional regression equations and StreamStats should be used to estimate peak-flow statistics only in naturally flowing, relatively unregulated streams without substantial local influences to flow, such as large seeps, springs, or other groundwater-surface water interactions that are not widespread or characteristic of the respective region.

  6. Regional Regression Equations to Estimate Flow-Duration Statistics at Ungaged Stream Sites in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2010-01-01

    Multiple linear regression equations for determining flow-duration statistics were developed to estimate select flow exceedances ranging from 25- to 99-percent for six 'bioperiods'-Salmonid Spawning (November), Overwinter (December-February), Habitat Forming (March-April), Clupeid Spawning (May), Resident Spawning (June), and Rearing and Growth (July-October)-in Connecticut. Regression equations also were developed to estimate the 25- and 99-percent flow exceedances without reference to a bioperiod. In total, 32 equations were developed. The predictive equations were based on regression analyses relating flow statistics from streamgages to GIS-determined basin and climatic characteristics for the drainage areas of those streamgages. Thirty-nine streamgages (and an additional 6 short-term streamgages and 28 partial-record sites for the non-bioperiod 99-percent exceedance) in Connecticut and adjacent areas of neighboring States were used in the regression analysis. Weighted least squares regression analysis was used to determine the predictive equations; weights were assigned based on record length. The basin characteristics-drainage area, percentage of area with coarse-grained stratified deposits, percentage of area with wetlands, mean monthly precipitation (November), mean seasonal precipitation (December, January, and February), and mean basin elevation-are used as explanatory variables in the equations. Standard errors of estimate of the 32 equations ranged from 10.7 to 156 percent with medians of 19.2 and 55.4 percent to predict the 25- and 99-percent exceedances, respectively. Regression equations to estimate high and median flows (25- to 75-percent exceedances) are better predictors (smaller variability of the residual values around the regression line) than the equations to estimate low flows (less than 75-percent exceedance). The Habitat Forming (March-April) bioperiod had the smallest standard errors of estimate, ranging from 10.7 to 20.9 percent. In contrast, the Rearing and Growth (July-October) bioperiod had the largest standard errors, ranging from 30.9 to 156 percent. The adjusted coefficient of determination of the equations ranged from 77.5 to 99.4 percent with medians of 98.5 and 90.6 percent to predict the 25- and 99-percent exceedances, respectively. Descriptive information on the streamgages used in the regression, measured basin and climatic characteristics, and estimated flow-duration statistics are provided in this report. Flow-duration statistics and the 32 regression equations for estimating flow-duration statistics in Connecticut are stored on the U.S. Geological Survey World Wide Web application ?StreamStats? (http://water.usgs.gov/osw/streamstats/index.html). The regression equations developed in this report can be used to produce unbiased estimates of select flow exceedances statewide.

  7. Nationwide summary of US Geological Survey regional regression equations for estimating magnitude and frequency of floods for ungaged sites, 1993

    USGS Publications Warehouse

    Jennings, M.E.; Thomas, W.O.; Riggs, H.C.

    1994-01-01

    For many years, the U.S. Geological Survey (USGS) has been involved in the development of regional regression equations for estimating flood magnitude and frequency at ungaged sites. These regression equations are used to transfer flood characteristics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally these equations have been developed on a statewide or metropolitan area basis as part of cooperative study programs with specific State Departments of Transportation or specific cities. The USGS, in cooperation with the Federal Highway Administration and the Federal Emergency Management Agency, has compiled all the current (as of September 1993) statewide and metropolitan area regression equations into a micro-computer program titled the National Flood Frequency Program.This program includes regression equations for estimating flood-peak discharges and techniques for estimating a typical flood hydrograph for a given recurrence interval peak discharge for unregulated rural and urban watersheds. These techniques should be useful to engineers and hydrologists for planning and design applications. This report summarizes the statewide regression equations for rural watersheds in each State, summarizes the applicable metropolitan area or statewide regression equations for urban watersheds, describes the National Flood Frequency Program for making these computations, and provides much of the reference information on the extrapolation variables needed to run the program.

  8. Validity of a heart rate monitor during work in the laboratory and on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Moore, A. D. Jr; Lee, S. M.; Greenisen, M. C.; Bishop, P.

    1997-01-01

    Accurate heart rate measurement during work is required for many industrial hygiene and ergonomics situations. The purpose of this investigation was to determine the validity of heart rate measurements obtained by a simple, lightweight, commercially available wrist-worn heart rate monitor (HRM) during work (cycle exercise) sessions conducted in the laboratory and also during the particularly challenging work environment of space flight. Three different comparisons were made. The first compared HRM data to simultaneous electrocardiogram (ECG) recordings of varying heart rates that were generated by an ECG simulator. The second compared HRM data to ECG recordings collected during work sessions of 14 subjects in the laboratory. Finally, ECG downlink and HRM data were compared in four astronauts who performed cycle exercise during space flight. The data were analyzed using regression techniques. The results were that the HRM recorded virtually identical heart rates compared with ECG recordings for the data set generated by an ECG simulator. The regression equation for the relationship between ECG versus HRM heart rate data during work in the laboratory was: ECG HR = 0.99 x (HRM) + 0.82 (r2 = 0.99). Finally, the agreement between ECG downlink data and HRM data during space flight was also very high, with the regression equation being: Downlink ECG HR = 1.05 x (HRM) -5.71 (r2 = 0.99). The results of this study indicate that the HRM provides accurate data and may be used to reliably obtain valid data regarding heart rate responses during work.

  9. Calibration of diatom-pH-alkalinity methodology for the interpretation of the sedimentary record in Emerald Lake Integrated watershed study. Final report, 6 May 1985-10 October 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, R.W.

    1986-10-10

    The present study was designed to establish quantitative relationships between lake air-equilibrated pH, alkalinity, and diatoms occurring in the surface sediments in high-elevation Sierra Nevada Lakes. These relationships provided the necessary information to develop predictive equations relating lake pH to the composition of surface-sediment diatom assemblages in 27 study lakes. Using the Hustedt diatom pH classification system, Index B of Renberg and Hellberg, and multiple linear regression analysis, two equations were developed which predict lake pH from the relative abundance of sediment diatoms occurring in each of four diatom pH groupings.

  10. Techniques for estimating flood-peak discharges from urban basins in Missouri

    USGS Publications Warehouse

    Becker, L.D.

    1986-01-01

    Techniques are defined for estimating the magnitude and frequency of future flood peak discharges of rainfall-induced runoff from small urban basins in Missouri. These techniques were developed from an initial analysis of flood records of 96 gaged sites in Missouri and adjacent states. Final regression equations are based on a balanced, representative sampling of 37 gaged sites in Missouri. This sample included 9 statewide urban study sites, 18 urban sites in St. Louis County, and 10 predominantly rural sites statewide. Short-term records were extended on the basis of long-term climatic records and use of a rainfall-runoff model. Linear least-squares regression analyses were used with log-transformed variables to relate flood magnitudes of selected recurrence intervals (dependent variables) to selected drainage basin indexes (independent variables). For gaged urban study sites within the State, the flood peak estimates are from the frequency curves defined from the synthesized long-term discharge records. Flood frequency estimates are made for ungaged sites by using regression equations that require determination of the drainage basin size and either the percentage of impervious area or a basin development factor. Alternative sets of equations are given for the 2-, 5-, 10-, 25-, 50-, and 100-yr recurrence interval floods. The average standard errors of estimate range from about 33% for the 2-yr flood to 26% for the 100-yr flood. The techniques for estimation are applicable to flood flows that are not significantly affected by storage caused by manmade activities. Flood peak discharge estimating equations are considered applicable for sites on basins draining approximately 0.25 to 40 sq mi. (Author 's abstract)

  11. Methods for estimating the magnitude and frequency of peak streamflows for unregulated streams in Oklahoma

    USGS Publications Warehouse

    Lewis, Jason M.

    2010-01-01

    Peak-streamflow regression equations were determined for estimating flows with exceedance probabilities from 50 to 0.2 percent for the state of Oklahoma. These regression equations incorporate basin characteristics to estimate peak-streamflow magnitude and frequency throughout the state by use of a generalized least squares regression analysis. The most statistically significant independent variables required to estimate peak-streamflow magnitude and frequency for unregulated streams in Oklahoma are contributing drainage area, mean-annual precipitation, and main-channel slope. The regression equations are applicable for watershed basins with drainage areas less than 2,510 square miles that are not affected by regulation. The resulting regression equations had a standard model error ranging from 31 to 46 percent. Annual-maximum peak flows observed at 231 streamflow-gaging stations through water year 2008 were used for the regression analysis. Gage peak-streamflow estimates were used from previous work unless 2008 gaging-station data were available, in which new peak-streamflow estimates were calculated. The U.S. Geological Survey StreamStats web application was used to obtain the independent variables required for the peak-streamflow regression equations. Limitations on the use of the regression equations and the reliability of regression estimates for natural unregulated streams are described. Log-Pearson Type III analysis information, basin and climate characteristics, and the peak-streamflow frequency estimates for the 231 gaging stations in and near Oklahoma are listed. Methodologies are presented to estimate peak streamflows at ungaged sites by using estimates from gaging stations on unregulated streams. For ungaged sites on urban streams and streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow magnitude and frequency.

  12. Estimation of Streamflow Characteristics for Charles M. Russell National Wildlife Refuge, Northeastern Montana

    USGS Publications Warehouse

    Sando, Steven K.; Morgan, Timothy J.; Dutton, DeAnn M.; McCarthy, Peter M.

    2009-01-01

    Charles M. Russell National Wildlife Refuge (CMR) encompasses about 1.1 million acres (including Fort Peck Reservoir on the Missouri River) in northeastern Montana. To ensure that sufficient streamflow remains in the tributary streams to maintain the riparian corridors, the U.S. Fish and Wildlife Service is negotiating water-rights issues with the Reserved Water Rights Compact Commission of Montana. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, conducted a study to gage, for a short period, selected streams that cross CMR, and analyze data to estimate long-term streamflow characteristics for CMR. The long-term streamflow characteristics of primary interest include the monthly and annual 90-, 80-, 50-, and 20-percent exceedance streamflows and mean streamflows (Q.90, Q.80, Q.50, Q.20, and QM, respectively), and the 1.5-, 2-, and 2.33- year peak flows (PK1.5, PK2, and PK2.33, respectively). The Regional Adjustment Relationship (RAR) was investigated for estimating the monthly and annual Q.90, Q.80, Q.50, Q.20, and QM, and the PK1.5, PK2, and PK2.33 for the short-term CMR gaging stations (hereinafter referred to as CMR stations). The RAR was determined to provide acceptable results for estimating the long-term Q.90, Q.80, Q.50, Q.20, and QM on a monthly basis for the months of March through June, and also on an annual basis. For the months of September through January, the RAR regression equations did not provide acceptable results for any long-term streamflow characteristic. For the month of February, the RAR regression equations provided acceptable results for the long-term Q.50 and QM, but poor results for the long-term Q.90, Q.80, and Q.20. For the months of July and August, the RAR provided acceptable results for the long-term Q.50, Q.20, and QM, but poor results for the long-term Q.90 and Q.80. Estimation coefficients were developed for estimating the long-term streamflow characteristics for which the RAR did not provide acceptable results. The RAR also was determined to provide acceptable results for estimating the PK1.5., PK2, and PK2.33 for the three CMR stations that lacked suitable peak-flow records. Methods for estimating streamflow characteristics at ungaged sites also were derived. Regression analyses that relate individual streamflow characteristics to various basin and climatic characteristics for gaging stations were performed to develop regression equations to estimate streamflow characteristics at ungaged sites. Final equations for the annual Q.50, Q.20, and QM are reported. Acceptable equations also were developed for estimating QM for the months of February, March, April, June, and July, and Q.50, Q.20, and QM on an annual basis. However, equations for QM for the months of February, March, April, June, and July were determined to be less consistent and reliable than the use of estimation coefficients applied to the regression equation results for the annual QM. Acceptable regression equations also were developed for the PK1.5, PK2, and PK2.33.

  13. Regression Equations for Estimating Flood Flows at Selected Recurrence Intervals for Ungaged Streams in Pennsylvania

    USGS Publications Warehouse

    Roland, Mark A.; Stuckey, Marla H.

    2008-01-01

    Regression equations were developed for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania with drainage areas less than 2,000 square miles. These equations were developed utilizing peak-flow data from 322 streamflow-gaging stations within Pennsylvania and surrounding states. All stations used in the development of the equations had 10 or more years of record and included active and discontinued continuous-record as well as crest-stage partial-record stations. The state was divided into four regions, and regional regression equations were developed to estimate the 2-, 5-, 10-, 50-, 100-, and 500-year recurrence-interval flood flows. The equations were developed by means of a regression analysis that utilized basin characteristics and flow data associated with the stations. Significant explanatory variables at the 95-percent confidence level for one or more regression equations included the following basin characteristics: drainage area; mean basin elevation; and the percentages of carbonate bedrock, urban area, and storage within a basin. The regression equations can be used to predict the magnitude of flood flows for specified recurrence intervals for most streams in the state; however, they are not valid for streams with drainage areas generally greater than 2,000 square miles or with substantial regulation, diversion, or mining activity within the basin. Estimates of flood-flow magnitude and frequency for streamflow-gaging stations substantially affected by upstream regulation are also presented.

  14. Regression equations to estimate seasonal flow duration, n-day high-flow frequency, and n-day low-flow frequency at sites in North Dakota using data through water year 2009

    USGS Publications Warehouse

    Williams-Sether, Tara; Gross, Tara A.

    2016-02-09

    Seasonal mean daily flow data from 119 U.S. Geological Survey streamflow-gaging stations in North Dakota; the surrounding states of Montana, Minnesota, and South Dakota; and the Canadian provinces of Manitoba and Saskatchewan with 10 or more years of unregulated flow record were used to develop regression equations for flow duration, n-day high flow and n-day low flow using ordinary least-squares and Tobit regression techniques. Regression equations were developed for seasonal flow durations at the 10th, 25th, 50th, 75th, and 90th percent exceedances; the 1-, 7-, and 30-day seasonal mean high flows for the 10-, 25-, and 50-year recurrence intervals; and the 1-, 7-, and 30-day seasonal mean low flows for the 2-, 5-, and 10-year recurrence intervals. Basin and climatic characteristics determined to be significant explanatory variables in one or more regression equations included drainage area, percentage of basin drainage area that drains to isolated lakes and ponds, ruggedness number, stream length, basin compactness ratio, minimum basin elevation, precipitation, slope ratio, stream slope, and soil permeability. The adjusted coefficient of determination for the n-day high-flow regression equations ranged from 55.87 to 94.53 percent. The Chi2 values for the duration regression equations ranged from 13.49 to 117.94, whereas the Chi2 values for the n-day low-flow regression equations ranged from 4.20 to 49.68.

  15. Collisional redistribution of radiation. II - The effects of degeneracy on the equations of motion for the density matrix. III - The equation of motion for the correlation function and the scattered spectrum

    NASA Technical Reports Server (NTRS)

    Burnett, K.; Cooper, J.

    1980-01-01

    The effect of correlations between an absorber atom and perturbers in the binary-collision approximation are applied to degenerate atomic systems. A generalized absorption profile which specifies the final state of the atom after an absorption event is related to the total intensities of Rayleigh scattering and fluorescence from the atom. It is suggested that additional dynamical information to that obtainable from ordinary absorption experiments is required in order to describe redistributed atomic radiation. The scattering of monochromatic radiation by a degenerate atom is computed in a binary-collision approximation; an equation of motion is derived for the correlation function which is valid outside the quantum-regression regime. Solutions are given for the weak-field conditions in terms of generalized absorption and emission profiles that depend on the indices of the atomic multipoles.

  16. [Ultrasonic measurements of fetal thalamus, caudate nucleus and lenticular nucleus in prenatal diagnosis].

    PubMed

    Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei

    2015-05-19

    To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.

  17. Estimating design-flood discharges for streams in Iowa using drainage-basin and channel-geometry characteristics

    USGS Publications Warehouse

    Eash, D.A.

    1993-01-01

    Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.

  18. Regression Simulation Model. Appendix X. Users Manual,

    DTIC Science & Technology

    1981-03-01

    change as the prediction equations become refined. Whereas no notice will be provided when the changes are made, the programs will be modified such that...NATIONAL BUREAU Of STANDARDS 1963 A ___,_ __ _ __ _ . APPENDIX X ( R4/ EGRESSION IMULATION ’jDEL. Ape’A ’) 7 USERS MANUA submitted to The Great River...regression analysis and to establish a prediction equation (model). The prediction equation contains the partial regression coefficients (B-weights) which

  19. The ties that bind what is known to the recall of what is new.

    PubMed

    Nelson, D L; Zhang, N

    2000-12-01

    Cued recall success varies with what people know and with what they do during an episode. This paper focuses on prior knowledge and disentangles the relative effects of 10 features of words and their relationships on cued recall. Results are reported for correlational and multiple regression analyses of data obtained from free association norms and from 29 experiments. The 10 features were only weakly correlated with each other in the norms and, with notable exceptions, in the experiments. The regression analysis indicated that forward cue-to-target strength explained the most variance, followed by backward target-to-cue strength. Target connectivity and set size explained the next most variance, along with mediated cue-to-target strength. Finally, frequency, concreteness, shared associate strength, and cue set size also contributed significantly to recall. Taken together, indices of prior word knowledge explain 49% of the recall variance. Theoretically driven equations that use free association to predict cued recall were also evaluated. Each equation was designed to condense multiple indices of word interconnectivity into a single predictor.

  20. Regression Analysis and Calibration Recommendations for the Characterization of Balance Temperature Effects

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Volden, T.

    2018-01-01

    Analysis and use of temperature-dependent wind tunnel strain-gage balance calibration data are discussed in the paper. First, three different methods are presented and compared that may be used to process temperature-dependent strain-gage balance data. The first method uses an extended set of independent variables in order to process the data and predict balance loads. The second method applies an extended load iteration equation during the analysis of balance calibration data. The third method uses temperature-dependent sensitivities for the data analysis. Physical interpretations of the most important temperature-dependent regression model terms are provided that relate temperature compensation imperfections and the temperature-dependent nature of the gage factor to sets of regression model terms. Finally, balance calibration recommendations are listed so that temperature-dependent calibration data can be obtained and successfully processed using the reviewed analysis methods.

  1. Methods for estimating selected low-flow frequency statistics and harmonic mean flows for streams in Iowa

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.

    2017-01-01

    A statewide study was conducted to develop regression equations for estimating six selected low-flow frequency statistics and harmonic mean flows for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include: the annual 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 5 years, and the seasonal (October 1 through December 31) 1- and 7-day mean low flows for a recurrence interval of 10 years. Estimation equations also were developed for the harmonic-mean-flow statistic. Estimates of these seven selected statistics are provided for 208 U.S. Geological Survey continuous-record streamgages using data through September 30, 2006. The study area comprises streamgages located within Iowa and 50 miles beyond the State's borders. Because trend analyses indicated statistically significant positive trends when considering the entire period of record for the majority of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. The median number of years of record used to compute each of these seven selected statistics was 35. Geographic information system software was used to measure 54 selected basin characteristics for each streamgage. Following the removal of two streamgages from the initial data set, data collected for 206 streamgages were compiled to investigate three approaches for regionalization of the seven selected statistics. Regionalization, a process using statistical regression analysis, provides a relation for efficiently transferring information from a group of streamgages in a region to ungaged sites in the region. The three regionalization approaches tested included statewide, regional, and region-of-influence regressions. For the regional regression, the study area was divided into three low-flow regions on the basis of hydrologic characteristics, landform regions, and soil regions. A comparison of root mean square errors and average standard errors of prediction for the statewide, regional, and region-of-influence regressions determined that the regional regression provided the best estimates of the seven selected statistics at ungaged sites in Iowa. Because a significant number of streams in Iowa reach zero flow as their minimum flow during low-flow years, four different types of regression analyses were used: left-censored, logistic, generalized-least-squares, and weighted-least-squares regression. A total of 192 streamgages were included in the development of 27 regression equations for the three low-flow regions. For the northeast and northwest regions, a censoring threshold was used to develop 12 left-censored regression equations to estimate the 6 low-flow frequency statistics for each region. For the southern region a total of 12 regression equations were developed; 6 logistic regression equations were developed to estimate the probability of zero flow for the 6 low-flow frequency statistics and 6 generalized least-squares regression equations were developed to estimate the 6 low-flow frequency statistics, if nonzero flow is estimated first by use of the logistic equations. A weighted-least-squares regression equation was developed for each region to estimate the harmonic-mean-flow statistic. Average standard errors of estimate for the left-censored equations for the northeast region range from 64.7 to 88.1 percent and for the northwest region range from 85.8 to 111.8 percent. Misclassification percentages for the logistic equations for the southern region range from 5.6 to 14.0 percent. Average standard errors of prediction for generalized least-squares equations for the southern region range from 71.7 to 98.9 percent and pseudo coefficients of determination for the generalized-least-squares equations range from 87.7 to 91.8 percent. Average standard errors of prediction for weighted-least-squares equations developed for estimating the harmonic-mean-flow statistic for each of the three regions range from 66.4 to 80.4 percent. The regression equations are applicable only to stream sites in Iowa with low flows not significantly affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. If the equations are used at ungaged sites on regulated streams, or on streams affected by water-supply and agricultural withdrawals, then the estimates will need to be adjusted by the amount of regulation or withdrawal to estimate the actual flow conditions if that is of interest. Caution is advised when applying the equations for basins with characteristics near the applicable limits of the equations and for basins located in karst topography. A test of two drainage-area ratio methods using 31 pairs of streamgages, for the annual 7-day mean low-flow statistic for a recurrence interval of 10 years, indicates a weighted drainage-area ratio method provides better estimates than regional regression equations for an ungaged site on a gaged stream in Iowa when the drainage-area ratio is between 0.5 and 1.4. These regression equations will be implemented within the U.S. Geological Survey StreamStats web-based geographic-information-system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the seven selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these seven selected statistics are provided for the streamgage.

  2. A Common Mechanism for Resistance to Oxime Reactivation of Acetylcholinesterase Inhibited by Organophosphorus Compounds

    DTIC Science & Technology

    2013-01-01

    application of the Hammett equation with the constants rph in the chemistry of organophosphorus compounds, Russ. Chem. Rev. 38 (1969) 795–811. [13...of oximes and OP compounds and the ability of oximes to reactivate OP- inhibited AChE. Multiple linear regression equations were analyzed using...phosphonate pairs, 21 oxime/ phosphoramidate pairs and 12 oxime/phosphate pairs. The best linear regression equation resulting from multiple regression anal

  3. Estimating Flow-Duration and Low-Flow Frequency Statistics for Unregulated Streams in Oregon

    USGS Publications Warehouse

    Risley, John; Stonewall, Adam J.; Haluska, Tana

    2008-01-01

    Flow statistical datasets, basin-characteristic datasets, and regression equations were developed to provide decision makers with surface-water information needed for activities such as water-quality regulation, water-rights adjudication, biological habitat assessment, infrastructure design, and water-supply planning and management. The flow statistics, which included annual and monthly period of record flow durations (5th, 10th, 25th, 50th, and 95th percent exceedances) and annual and monthly 7-day, 10-year (7Q10) and 7-day, 2-year (7Q2) low flows, were computed at 466 streamflow-gaging stations at sites with unregulated flow conditions throughout Oregon and adjacent areas of neighboring States. Regression equations, created from the flow statistics and basin characteristics of the stations, can be used to estimate flow statistics at ungaged stream sites in Oregon. The study area was divided into 10 regression modeling regions based on ecological, topographic, geologic, hydrologic, and climatic criteria. In total, 910 annual and monthly regression equations were created to predict the 7 flow statistics in the 10 regions. Equations to predict the five flow-duration exceedance percentages and the two low-flow frequency statistics were created with Ordinary Least Squares and Generalized Least Squares regression, respectively. The standard errors of estimate of the equations created to predict the 5th and 95th percent exceedances had medians of 42.4 and 64.4 percent, respectively. The standard errors of prediction of the equations created to predict the 7Q2 and 7Q10 low-flow statistics had medians of 51.7 and 61.2 percent, respectively. Standard errors for regression equations for sites in western Oregon were smaller than those in eastern Oregon partly because of a greater density of available streamflow-gaging stations in western Oregon than eastern Oregon. High-flow regression equations (such as the 5th and 10th percent exceedances) also generally were more accurate than the low-flow regression equations (such as the 95th percent exceedance and 7Q10 low-flow statistic). The regression equations predict unregulated flow conditions in Oregon. Flow estimates need to be adjusted if they are used at ungaged sites that are regulated by reservoirs or affected by water-supply and agricultural withdrawals if actual flow conditions are of interest. The regression equations are installed in the USGS StreamStats Web-based tool (http://water.usgs.gov/osw/streamstats/index.html, accessed July 16, 2008). StreamStats provides users with a set of annual and monthly flow-duration and low-flow frequency estimates for ungaged sites in Oregon in addition to the basin characteristics for the sites. Prediction intervals at the 90-percent confidence level also are automatically computed.

  4. Methods for estimating selected low-flow frequency statistics for unregulated streams in Kentucky

    USGS Publications Warehouse

    Martin, Gary R.; Arihood, Leslie D.

    2010-01-01

    This report provides estimates of, and presents methods for estimating, selected low-flow frequency statistics for unregulated streams in Kentucky including the 30-day mean low flows for recurrence intervals of 2 and 5 years (30Q2 and 30Q5) and the 7-day mean low flows for recurrence intervals of 5, 10, and 20 years (7Q2, 7Q10, and 7Q20). Estimates of these statistics are provided for 121 U.S. Geological Survey streamflow-gaging stations with data through the 2006 climate year, which is the 12-month period ending March 31 of each year. Data were screened to identify the periods of homogeneous, unregulated flows for use in the analyses. Logistic-regression equations are presented for estimating the annual probability of the selected low-flow frequency statistics being equal to zero. Weighted-least-squares regression equations were developed for estimating the magnitude of the nonzero 30Q2, 30Q5, 7Q2, 7Q10, and 7Q20 low flows. Three low-flow regions were defined for estimating the 7-day low-flow frequency statistics. The explicit explanatory variables in the regression equations include total drainage area and the mapped streamflow-variability index measured from a revised statewide coverage of this characteristic. The percentage of the station low-flow statistics correctly classified as zero or nonzero by use of the logistic-regression equations ranged from 87.5 to 93.8 percent. The average standard errors of prediction of the weighted-least-squares regression equations ranged from 108 to 226 percent. The 30Q2 regression equations have the smallest standard errors of prediction, and the 7Q20 regression equations have the largest standard errors of prediction. The regression equations are applicable only to stream sites with low flows unaffected by regulation from reservoirs and local diversions of flow and to drainage basins in specified ranges of basin characteristics. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features.

  5. Regression Equations for Monthly and Annual Mean and Selected Percentile Streamflows for Ungaged Rivers in Maine

    USGS Publications Warehouse

    Dudley, Robert W.

    2015-12-03

    The largest average errors of prediction are associated with regression equations for the lowest streamflows derived for months during which the lowest streamflows of the year occur (such as the 5 and 1 monthly percentiles for August and September). The regression equations have been derived on the basis of streamflow and basin characteristics data for unregulated, rural drainage basins without substantial streamflow or drainage modifications (for example, diversions and (or) regulation by dams or reservoirs, tile drainage, irrigation, channelization, and impervious paved surfaces), therefore using the equations for regulated or urbanized basins with substantial streamflow or drainage modifications will yield results of unknown error. Input basin characteristics derived using techniques or datasets other than those documented in this report or using values outside the ranges used to develop these regression equations also will yield results of unknown error.

  6. Comparative evaluation of urban storm water quality models

    NASA Astrophysics Data System (ADS)

    Vaze, J.; Chiew, Francis H. S.

    2003-10-01

    The estimation of urban storm water pollutant loads is required for the development of mitigation and management strategies to minimize impacts to receiving environments. Event pollutant loads are typically estimated using either regression equations or "process-based" water quality models. The relative merit of using regression models compared to process-based models is not clear. A modeling study is carried out here to evaluate the comparative ability of the regression equations and process-based water quality models to estimate event diffuse pollutant loads from impervious surfaces. The results indicate that, once calibrated, both the regression equations and the process-based model can estimate event pollutant loads satisfactorily. In fact, the loads estimated using the regression equation as a function of rainfall intensity and runoff rate are better than the loads estimated using the process-based model. Therefore, if only estimates of event loads are required, regression models should be used because they are simpler and require less data compared to process-based models.

  7. The Multivariate Regression Statistics Strategy to Investigate Content-Effect Correlation of Multiple Components in Traditional Chinese Medicine Based on a Partial Least Squares Method.

    PubMed

    Peng, Ying; Li, Su-Ning; Pei, Xuexue; Hao, Kun

    2018-03-01

    Amultivariate regression statisticstrategy was developed to clarify multi-components content-effect correlation ofpanaxginseng saponins extract and predict the pharmacological effect by components content. In example 1, firstly, we compared pharmacological effects between panax ginseng saponins extract and individual saponin combinations. Secondly, we examined the anti-platelet aggregation effect in seven different saponin combinations of ginsenoside Rb1, Rg1, Rh, Rd, Ra3 and notoginsenoside R1. Finally, the correlation between anti-platelet aggregation and the content of multiple components was analyzed by a partial least squares algorithm. In example 2, firstly, 18 common peaks were identified in ten different batches of panax ginseng saponins extracts from different origins. Then, we investigated the anti-myocardial ischemia reperfusion injury effects of the ten different panax ginseng saponins extracts. Finally, the correlation between the fingerprints and the cardioprotective effects was analyzed by a partial least squares algorithm. Both in example 1 and 2, the relationship between the components content and pharmacological effect was modeled well by the partial least squares regression equations. Importantly, the predicted effect curve was close to the observed data of dot marked on the partial least squares regression model. This study has given evidences that themulti-component content is a promising information for predicting the pharmacological effects of traditional Chinese medicine.

  8. Statistical summary of selected physical, chemical, and toxicity characteristics and estimates of annual constituent loads in urban stormwater, Maricopa County, Arizona

    USGS Publications Warehouse

    Fossum, Kenneth D.; O'Day, Christie M.; Wilson, Barbara J.; Monical, Jim E.

    2001-01-01

    Stormwater and streamflow in Maricopa County were monitored to (1) describe the physical, chemical, and toxicity characteristics of stormwater from areas having different land uses, (2) describe the physical, chemical, and toxicity characteristics of streamflow from areas that receive urban stormwater, and (3) estimate constituent loads in stormwater. Urban stormwater and streamflow had similar ranges in most constituent concentrations. The mean concentration of dissolved solids in urban stormwater was lower than in streamflow from the Salt River and Indian Bend Wash. Urban stormwater, however, had a greater chemical oxygen demand and higher concentrations of most nutrients. Mean seasonal loads and mean annual loads of 11 constituents and volumes of runoff were estimated for municipalities in the metropolitan Phoenix area, Arizona, by adjusting regional regression equations of loads. This adjustment procedure uses the original regional regression equation and additional explanatory variables that were not included in the original equation. The adjusted equations had standard errors that ranged from 161 to 196 percent. The large standard errors of the prediction result from the large variability of the constituent concentration data used in the regression analysis. Adjustment procedures produced unsatisfactory results for nine of the regressions?suspended solids, dissolved solids, total phosphorus, dissolved phosphorus, total recoverable cadmium, total recoverable copper, total recoverable lead, total recoverable zinc, and storm runoff. These equations had no consistent direction of bias and no other additional explanatory variables correlated with the observed loads. A stepwise-multiple regression or a three-variable regression (total storm rainfall, drainage area, and impervious area) and local data were used to develop local regression equations for these nine constituents. These equations had standard errors from 15 to 183 percent.

  9. Estimating bird damage from damage incidence in wine grape vineyards

    USGS Publications Warehouse

    DeHaven, R.W.; Hothem, R.L.

    1981-01-01

    Bird damage was measured during 1977 and 1978 at 32 wine grape vineyards in the San Joaquin Valley and North Coastal Region of California. Both the percentage bird loss (PBL) and the percentage of bunches damaged (BDI = bird damage incidence) were determined during 55 total-damage assessments, and the resulting data pairs were used to develop a regression of PBL on BDI. The final prediction equation was loge (PBL + 1) = 0.0385 BDI, for which the SE = 9.6297 10-4, and it accounted for 97% of the observed variation. We conclude that by using that equation, reasonably accurate predictions of PBL can be obtained from relatively quick and inexpensive estimates of BDI. Guidelines for the use of the prediction method and the accuracy of some PBL predictions are discussed.

  10. Who Will Win?: Predicting the Presidential Election Using Linear Regression

    ERIC Educational Resources Information Center

    Lamb, John H.

    2007-01-01

    This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…

  11. August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine

    USGS Publications Warehouse

    Lombard, Pamela J.; Tasker, Gary D.; Nielsen, Martha G.

    2003-01-01

    Methods for estimating August median streamflow were developed for ungaged, unregulated streams in the eastern part of Aroostook County, Maine, with drainage areas from 0.38 to 43 square miles and mean basin elevations from 437 to 1,024 feet. Few long-term, continuous-record streamflow-gaging stations with small drainage areas were available from which to develop the equations; therefore, 24 partial-record gaging stations were established in this investigation. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record stations was applied by relating base-flow measurements at these stations to concurrent daily flows at nearby long-term, continuous-record streamflow- gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for varying periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Twenty-three partial-record stations and one continuous-record station were used for the final regression equations. The basin characteristics of drainage area and mean basin elevation are used in the calculated regression equation for ungaged streams to estimate August median flow. The equation has an average standard error of prediction from -38 to 62 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -40 to 67 percent. Model error is larger than sampling error for both equations, indicating that additional basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow, which can be used when making estimates at partial-record or continuous-record gaging stations, range from 0.03 to 11.7 cubic feet per second or from 0.1 to 0.4 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in the eastern part of Aroostook County, within the range of acceptable explanatory variables, range from 0.03 to 30 cubic feet per second or 0.1 to 0.7 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as mean elevation and drainage area increase.

  12. Using regression equations built from summary data in the psychological assessment of the individual case: extension to multiple regression.

    PubMed

    Crawford, John R; Garthwaite, Paul H; Denham, Annie K; Chelune, Gordon J

    2012-12-01

    Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because (a) not all psychologists are aware that regression equations can be built not only from raw data but also using only basic summary data for a sample, and (b) the computations involved are tedious and prone to error. In an attempt to overcome these barriers, Crawford and Garthwaite (2007) provided methods to build and apply simple linear regression models using summary statistics as data. In the present study, we extend this work to set out the steps required to build multiple regression models from sample summary statistics and the further steps required to compute the associated statistics for drawing inferences concerning an individual case. We also develop, describe, and make available a computer program that implements these methods. Although there are caveats associated with the use of the methods, these need to be balanced against pragmatic considerations and against the alternative of either entirely ignoring a pertinent data set or using it informally to provide a clinical "guesstimate." Upgraded versions of earlier programs for regression in the single case are also provided; these add the point and interval estimates of effect size developed in the present article.

  13. Technique for estimating the 2- to 500-year flood discharges on unregulated streams in rural Missouri

    USGS Publications Warehouse

    Alexander, Terry W.; Wilson, Gary L.

    1995-01-01

    A generalized least-squares regression technique was used to relate the 2- to 500-year flood discharges from 278 selected streamflow-gaging stations to statistically significant basin characteristics. The regression relations (estimating equations) were defined for three hydrologic regions (I, II, and III) in rural Missouri. Ordinary least-squares regression analyses indicate that drainage area (Regions I, II, and III) and main-channel slope (Regions I and II) are the only basin characteristics needed for computing the 2- to 500-year design-flood discharges at gaged or ungaged stream locations. The resulting generalized least-squares regression equations provide a technique for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood discharges on unregulated streams in rural Missouri. The regression equations for Regions I and II were developed from stream-flow-gaging stations with drainage areas ranging from 0.13 to 11,500 square miles and 0.13 to 14,000 square miles, and main-channel slopes ranging from 1.35 to 150 feet per mile and 1.20 to 279 feet per mile. The regression equations for Region III were developed from streamflow-gaging stations with drainage areas ranging from 0.48 to 1,040 square miles. Standard errors of estimate for the generalized least-squares regression equations in Regions I, II, and m ranged from 30 to 49 percent.

  14. Estimation of peak-discharge frequency of urban streams in Jefferson County, Kentucky

    USGS Publications Warehouse

    Martin, Gary R.; Ruhl, Kevin J.; Moore, Brian L.; Rose, Martin F.

    1997-01-01

    An investigation of flood-hydrograph characteristics for streams in urban Jefferson County, Kentucky, was made to obtain hydrologic information needed for waterresources management. Equations for estimating peak-discharge frequencies for ungaged streams in the county were developed by combining (1) long-term annual peakdischarge data and rainfall-runoff data collected from 1991 to 1995 in 13 urban basins and (2) long-term annual peak-discharge data in four rural basins located in hydrologically similar areas of neighboring counties. The basins ranged in size from 1.36 to 64.0 square miles. The U.S. Geological Survey Rainfall- Runoff Model (RRM) was calibrated for each of the urban basins. The calibrated models were used with long-term, historical rainfall and pan-evaporation data to simulate 79 years of annual peak-discharge data. Peak-discharge frequencies were estimated by fitting the logarithms of the annual peak discharges to a Pearson-Type III frequency distribution. The simulated peak-discharge frequencies were adjusted for improved reliability by application of bias-correction factors derived from peakdischarge frequencies based on local, observed annual peak discharges. The three-parameter and the preferred seven-parameter nationwide urban-peak-discharge regression equations previously developed by USGS investigators provided biased (high) estimates for the urban basins studied. Generalized-least-square regression procedures were used to relate peakdischarge frequency to selected basin characteristics. Regression equations were developed to estimate peak-discharge frequency by adjusting peak-dischargefrequency estimates made by use of the threeparameter nationwide urban regression equations. The regression equations are presented in equivalent forms as functions of contributing drainage area, main-channel slope, and basin development factor, which is an index for measuring the efficiency of the basin drainage system. Estimates of peak discharges for streams in the county can be made for the 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals by use of the regression equations. The average standard errors of prediction of the regression equations ranges from ? 34 to ? 45 percent. The regression equations are applicable to ungaged streams in the county having a specific range of basin characteristics.

  15. Cognitive predictors of a common multitasking ability: Contributions from working memory, attention control, and fluid intelligence.

    PubMed

    Redick, Thomas S; Shipstead, Zach; Meier, Matthew E; Montroy, Janelle J; Hicks, Kenny L; Unsworth, Nash; Kane, Michael J; Hambrick, D Zachary; Engle, Randall W

    2016-11-01

    Previous research has identified several cognitive abilities that are important for multitasking, but few studies have attempted to measure a general multitasking ability using a diverse set of multitasks. In the final dataset, 534 young adult subjects completed measures of working memory (WM), attention control, fluid intelligence, and multitasking. Correlations, hierarchical regression analyses, confirmatory factor analyses, structural equation models, and relative weight analyses revealed several key findings. First, although the complex tasks used to assess multitasking differed greatly in their task characteristics and demands, a coherent construct specific to multitasking ability was identified. Second, the cognitive ability predictors accounted for substantial variance in the general multitasking construct, with WM and fluid intelligence accounting for the most multitasking variance compared to attention control. Third, the magnitude of the relationships among the cognitive abilities and multitasking varied as a function of the complexity and structure of the various multitasks assessed. Finally, structural equation models based on a multifaceted model of WM indicated that attention control and capacity fully mediated the WM and multitasking relationship. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Estimating flood magnitude and frequency at gaged and ungaged sites on streams in Alaska and conterminous basins in Canada, based on data through water year 2012

    USGS Publications Warehouse

    Curran, Janet H.; Barth, Nancy A.; Veilleux, Andrea G.; Ourso, Robert T.

    2016-03-16

    Estimates of the magnitude and frequency of floods are needed across Alaska for engineering design of transportation and water-conveyance structures, flood-insurance studies, flood-plain management, and other water-resource purposes. This report updates methods for estimating flood magnitude and frequency in Alaska and conterminous basins in Canada. Annual peak-flow data through water year 2012 were compiled from 387 streamgages on unregulated streams with at least 10 years of record. Flood-frequency estimates were computed for each streamgage using the Expected Moments Algorithm to fit a Pearson Type III distribution to the logarithms of annual peak flows. A multiple Grubbs-Beck test was used to identify potentially influential low floods in the time series of peak flows for censoring in the flood frequency analysis.For two new regional skew areas, flood-frequency estimates using station skew were computed for stations with at least 25 years of record for use in a Bayesian least-squares regression analysis to determine a regional skew value. The consideration of basin characteristics as explanatory variables for regional skew resulted in improvements in precision too small to warrant the additional model complexity, and a constant model was adopted. Regional Skew Area 1 in eastern-central Alaska had a regional skew of 0.54 and an average variance of prediction of 0.45, corresponding to an effective record length of 22 years. Regional Skew Area 2, encompassing coastal areas bordering the Gulf of Alaska, had a regional skew of 0.18 and an average variance of prediction of 0.12, corresponding to an effective record length of 59 years. Station flood-frequency estimates for study sites in regional skew areas were then recomputed using a weighted skew incorporating the station skew and regional skew. In a new regional skew exclusion area outside the regional skew areas, the density of long-record streamgages was too sparse for regional analysis and station skew was used for all estimates. Final station flood frequency estimates for all study streamgages are presented for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities.Regional multiple-regression analysis was used to produce equations for estimating flood frequency statistics from explanatory basin characteristics. Basin characteristics, including physical and climatic variables, were updated for all study streamgages using a geographical information system and geospatial source data. Screening for similar-sized nested basins eliminated hydrologically redundant sites, and screening for eligibility for analysis of explanatory variables eliminated regulated peaks, outburst peaks, and sites with indeterminate basin characteristics. An ordinary least‑squares regression used flood-frequency statistics and basin characteristics for 341 streamgages (284 in Alaska and 57 in Canada) to determine the most suitable combination of basin characteristics for a flood-frequency regression model and to explore regional grouping of streamgages for explaining variability in flood-frequency statistics across the study area. The most suitable model for explaining flood frequency used drainage area and mean annual precipitation as explanatory variables for the entire study area as a region. Final regression equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability discharge in Alaska and conterminous basins in Canada were developed using a generalized least-squares regression. The average standard error of prediction for the regression equations for the various annual exceedance probabilities ranged from 69 to 82 percent, and the pseudo-coefficient of determination (pseudo-R2) ranged from 85 to 91 percent.The regional regression equations from this study were incorporated into the U.S. Geological Survey StreamStats program for a limited area of the State—the Cook Inlet Basin. StreamStats is a national web-based geographic information system application that facilitates retrieval of streamflow statistics and associated information. StreamStats retrieves published data for gaged sites and, for user-selected ungaged sites, delineates drainage areas from topographic and hydrographic data, computes basin characteristics, and computes flood frequency estimates using the regional regression equations.

  17. Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2003-01-01

    Regional equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood-peak discharges at ungaged sites on rural, unregulated streams in Ohio were developed by means of ordinary and generalized least-squares (GLS) regression techniques. One-variable, simple equations and three-variable, full-model equations were developed on the basis of selected basin characteristics and flood-frequency estimates determined for 305 streamflow-gaging stations in Ohio and adjacent states. The average standard errors of prediction ranged from about 39 to 49 percent for the simple equations, and from about 34 to 41 percent for the full-model equations. Flood-frequency estimates determined by means of log-Pearson Type III analyses are reported along with weighted flood-frequency estimates, computed as a function of the log-Pearson Type III estimates and the regression estimates. Values of explanatory variables used in the regression models were determined from digital spatial data sets by means of a geographic information system (GIS), with the exception of drainage area, which was determined by digitizing the area within basin boundaries manually delineated on topographic maps. Use of GIS-based explanatory variables represents a major departure in methodology from that described in previous reports on estimating flood-frequency characteristics of Ohio streams. Examples are presented illustrating application of the regression equations to ungaged sites on ungaged and gaged streams. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site on the same stream. A region-of-influence method, which employs a computer program to estimate flood-frequency characteristics for ungaged sites based on data from gaged sites with similar characteristics, was also tested and compared to the GLS full-model equations. For all recurrence intervals, the GLS full-model equations had superior prediction accuracy relative to the simple equations and therefore are recommended for use.

  18. Aspects of porosity prediction using multivariate linear regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrnes, A.P.; Wilson, M.D.

    1991-03-01

    Highly accurate multiple linear regression models have been developed for sandstones of diverse compositions. Porosity reduction or enhancement processes are controlled by the fundamental variables, Pressure (P), Temperature (T), Time (t), and Composition (X), where composition includes mineralogy, size, sorting, fluid composition, etc. The multiple linear regression equation, of which all linear porosity prediction models are subsets, takes the generalized form: Porosity = C{sub 0} + C{sub 1}(P) + C{sub 2}(T) + C{sub 3}(X) + C{sub 4}(t) + C{sub 5}(PT) + C{sub 6}(PX) + C{sub 7}(Pt) + C{sub 8}(TX) + C{sub 9}(Tt) + C{sub 10}(Xt) + C{sub 11}(PTX) + C{submore » 12}(PXt) + C{sub 13}(PTt) + C{sub 14}(TXt) + C{sub 15}(PTXt). The first four primary variables are often interactive, thus requiring terms involving two or more primary variables (the form shown implies interaction and not necessarily multiplication). The final terms used may also involve simple mathematic transforms such as log X, e{sup T}, X{sup 2}, or more complex transformations such as the Time-Temperature Index (TTI). The X term in the equation above represents a suite of compositional variable and, therefore, a fully expanded equation may include a series of terms incorporating these variables. Numerous published bivariate porosity prediction models involving P (or depth) or Tt (TTI) are effective to a degree, largely because of the high degree of colinearity between p and TTI. However, all such bivariate models ignore the unique contributions of P and Tt, as well as various X terms. These simpler models become poor predictors in regions where colinear relations change, were important variables have been ignored, or where the database does not include a sufficient range or weight distribution for the critical variables.« less

  19. Flood-Frequency Estimates for Streams on Kaua`i, O`ahu, Moloka`i, Maui, and Hawai`i, State of Hawai`i

    USGS Publications Warehouse

    Oki, Delwyn S.; Rosa, Sarah N.; Yeung, Chiu W.

    2010-01-01

    This study provides an updated analysis of the magnitude and frequency of peak stream discharges in Hawai`i. Annual peak-discharge data collected by the U.S. Geological Survey during and before water year 2008 (ending September 30, 2008) at stream-gaging stations were analyzed. The existing generalized-skew value for the State of Hawai`i was retained, although three methods were used to evaluate whether an update was needed. Regional regression equations were developed for peak discharges with 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals for unregulated streams (those for which peak discharges are not affected to a large extent by upstream reservoirs, dams, diversions, or other structures) in areas with less than 20 percent combined medium- and high-intensity development on Kaua`i, O`ahu, Moloka`i, Maui, and Hawai`i. The generalized-least-squares (GLS) regression equations relate peak stream discharge to quantified basin characteristics (for example, drainage-basin area and mean annual rainfall) that were determined using geographic information system (GIS) methods. Each of the islands of Kaua`i,O`ahu, Moloka`i, Maui, and Hawai`i was divided into two regions, generally corresponding to a wet region and a dry region. Unique peak-discharge regression equations were developed for each region. The regression equations developed for this study have standard errors of prediction ranging from 16 to 620 percent. Standard errors of prediction are greatest for regression equations developed for leeward Moloka`i and southern Hawai`i. In general, estimated 100-year peak discharges from this study are lower than those from previous studies, which may reflect the longer periods of record used in this study. Each regression equation is valid within the range of values of the explanatory variables used to develop the equation. The regression equations were developed using peak-discharge data from streams that are mainly unregulated, and they should not be used to estimate peak discharges in regulated streams. Use of a regression equation beyond its limits will produce peak-discharge estimates with unknown error and should therefore be avoided. Improved estimates of the magnitude and frequency of peak discharges in Hawai`i will require continued operation of existing stream-gaging stations and operation of additional gaging stations for areas such as Moloka`i and Hawai`i, where limited stream-gaging data are available.

  20. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression.

    PubMed

    Ding, A Adam; Wu, Hulin

    2014-10-01

    We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.

  1. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression

    PubMed Central

    Ding, A. Adam; Wu, Hulin

    2015-01-01

    We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method. PMID:26401093

  2. A method for the selection of a functional form for a thermodynamic equation of state using weighted linear least squares stepwise regression

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.

    1976-01-01

    A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.

  3. Steady-state flow distribution and monthly flow duration in selected branches of St. Clair and Detroit rivers within the Great Lakes waterway

    USGS Publications Warehouse

    Holtschlag, D.J.; Koschik, J.A.

    2001-01-01

    St. Clair and Detroit Rivers are connecting channels between Lake Huron and Lake Erie in the Great Lakes waterway, and form part of the boundary between the United States and Canada. St. Clair River, the upper connecting channel, drains 222,400 square miles and has an average flow of about 182,000 cubic feet per second. Water from St. Clair River combines with local inflows and discharges into Lake St. Clair before flowing into Detroit River. In some reaches of St. Clair and Detroit Rivers, islands and dikes split the flow into two to four branches. Even when the flow in a reach is known, proportions of flows within individual branches of a reach are uncertain. Simple linear regression equations, subject to a flow continuity constraint, are developed to provide estimators of these proportions and flows. The equations are based on 533 paired measurements of flow in 13 reaches forming 31 branches. The equations provide a means for computing the expected values and uncertainties of steady-state flows on the basis of flow conditions specified at the upstream boundaries of the waterway. In 7 upstream reaches, flow is considered fixed because it can be determined on the basis of flows specified at waterway boundaries and flow continuity. In these reaches, the uncertainties of flow proportions indicated by the regression equations can be used directly to determine the uncertainties of the corresponding flows. In the remaining 6 downstream reaches, flow is considered uncertain because these reaches do not receive flow from all the branches of an upstream reach, or they receive flow from some branches of more than one upstream reach. Monte Carlo simulation analysis is used to quantify this increase in uncertainty associated with the propagation of uncertainties from upstream reaches to downstream reaches. To eliminate the need for Monte Carlo simulations for routine calculations, polynomial regression equations are developed to approximate the variation in uncertainties as a function of flow at the headwaters of St. Clair River. Finally, monthly flow-duration data on the main channels of St. Clair and Detroit Rivers are used with the equations developed in this report to estimate the steady-state flow-duration characteristics of selected branches.

  4. [Anthropometric model for the prediction of appendicular skeletal muscle mass in Chilean older adults].

    PubMed

    Lera, Lydia; Albala, Cecilia; Ángel, Bárbara; Sánchez, Hugo; Picrin, Yaisy; Hormazabal, María José; Quiero, Andrea

    2014-03-01

    To develop a predictive model of appendicular skeletal muscle mass (ASM) based on anthropometric measurements in elderly from Santiago, Chile. 616 community dwelling, non-disabled subjects ≥ 60 years (mean 69.9 ± 5.2 years) living in Santiago, 64.6% female, participating in ALEXANDROS study. Anthropometric measurements, handgrip strength, mobility tests and DEXA were performed. Step by step linear regression models were used to associate ASM from DEXA with anthropometric variables, age and sex. The sample was divided at random into two to obtain prediction equations for both subsamples, which were mutually validated by double cross-validation. The high correlation between the values of observed and predicted MMAE in both sub-samples and the low degree of shrinkage allowed developing the final prediction equation with the total sample. The cross-validity coefficient between prediction models from the subsamples (0.941 and 0.9409) and the shrinkage (0.004 and 0.006) were similar in both equations. The final prediction model obtained from the total sample was: ASM (kg) = 0.107(weight in kg) + 0.251( knee height in cm) + 0.197 (Calf Circumference in cm) +0.047 (dynamometry in kg) - 0.034 (Hip Circumference in cm) + 3.417 (Man) - 0.020 (age years) - 7.646 (R2 = 0.89). The mean ASM obtained by the prediction equation and the DEXA measurement were similar (16.8 ± 4.0 vs 16.9 ± 3.7) and highly concordant according Bland and Altman (95% CI: -2.6 -2.7) and Lin (concordance correlation coefficient = 0.94) methods. We obtained a low cost anthropometric equation to determine the appendicular skeletal muscle mass useful for the screening of sarcopenia in older adults. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  5. Minute ventilation of cyclists, car and bus passengers: an experimental study.

    PubMed

    Zuurbier, Moniek; Hoek, Gerard; van den Hazel, Peter; Brunekreef, Bert

    2009-10-27

    Differences in minute ventilation between cyclists, pedestrians and other commuters influence inhaled doses of air pollution. This study estimates minute ventilation of cyclists, car and bus passengers, as part of a study on health effects of commuters' exposure to air pollutants. Thirty-four participants performed a submaximal test on a bicycle ergometer, during which heart rate and minute ventilation were measured simultaneously at increasing cycling intensity. Individual regression equations were calculated between heart rate and the natural log of minute ventilation. Heart rates were recorded during 280 two hour trips by bicycle, bus and car and were calculated into minute ventilation levels using the individual regression coefficients. Minute ventilation during bicycle rides were on average 2.1 times higher than in the car (individual range from 1.3 to 5.3) and 2.0 times higher than in the bus (individual range from 1.3 to 5.1). The ratio of minute ventilation of cycling compared to travelling by bus or car was higher in women than in men. Substantial differences in regression equations were found between individuals. The use of individual regression equations instead of average regression equations resulted in substantially better predictions of individual minute ventilations. The comparability of the gender-specific overall regression equations linking heart rate and minute ventilation with one previous American study, supports that for studies on the group level overall equations can be used. For estimating individual doses, the use of individual regression coefficients provides more precise data. Minute ventilation levels of cyclists are on average two times higher than of bus and car passengers, consistent with the ratio found in one small previous study of young adults. The study illustrates the importance of inclusion of minute ventilation data in comparing air pollution doses between different modes of transport.

  6. Estimation of Magnitude and Frequency of Floods for Streams on the Island of Oahu, Hawaii

    USGS Publications Warehouse

    Wong, Michael F.

    1994-01-01

    This report describes techniques for estimating the magnitude and frequency of floods for the island of Oahu. The log-Pearson Type III distribution and methodology recommended by the Interagency Committee on Water Data was used to determine the magnitude and frequency of floods at 79 gaging stations that had 11 to 72 years of record. Multiple regression analysis was used to construct regression equations to transfer the magnitude and frequency information from gaged sites to ungaged sites. Oahu was divided into three hydrologic regions to define relations between peak discharge and drainage-basin and climatic characteristics. Regression equations are provided to estimate the 2-, 5-, 10-, 25-, 50-, and 100-year peak discharges at ungaged sites. Significant basin and climatic characteristics included in the regression equations are drainage area, median annual rainfall, and the 2-year, 24-hour rainfall intensity. Drainage areas for sites used in this study ranged from 0.03 to 45.7 square miles. Standard error of prediction for the regression equations ranged from 34 to 62 percent. Peak-discharge data collected through water year 1988, geographic information system (GIS) technology, and generalized least-squares regression were used in the analyses. The use of GIS seems to be a more flexible and consistent means of defining and calculating basin and climatic characteristics than using manual methods. Standard errors of estimate for the regression equations in this report are an average of 8 percent less than those published in previous studies.

  7. Prediction of oxygen consumption in cardiac rehabilitation patients performing leg ergometry

    NASA Astrophysics Data System (ADS)

    Alvarez, John Gershwin

    The purpose of this study was two-fold. First, to determine the validity of the ACSM leg ergometry equation in the prediction of steady-state oxygen consumption (VO2) in a heterogeneous population of cardiac patients. Second, to determine whether a more accurate prediction equation could be developed for use in the cardiac population. Thirty-one cardiac rehabilitation patients participated in the study of which 24 were men and 7 were women. Biometric variables (mean +/- sd) of the participants were as follows: age = 61.9 +/- 9.5 years; height = 172.6 +/- 1.6 cm; and body mass = 82.3 +/- 10.6 kg. Subjects exercised on a MonarchTM cycle ergometer at 0, 180, 360, 540 and 720 kgm ˙ min-1. The length of each stage was five minutes. Heart rate, ECG, and VO2 were continuously monitored. Blood pressure and heart rate were collected at the end of each stage. Steady state VO 2 was calculated for each stage using the average of the last two minutes. Correlation coefficients, standard error of estimate, coefficient of determination, total error, and mean bias were used to determine the accuracy of the ACSM equation (1995). The analysis found the ACSM equation to be a valid means of estimating VO2 in cardiac patients. Simple linear regression was used to develop a new equation. Regression analysis found workload to be a significant predictor of VO2. The following equation is the result: VO2 = (1.6 x kgm ˙ min-1) + 444 ml ˙ min-1. The r of the equation was .78 (p < .05) and the standard error of estimate was 211 ml ˙ min-1. Analysis of variance was used to determine significant differences between means for actual and predicted VO2 values for each equation. The analysis found the ACSM and new equation to significantly (p < .05) under predict VO2 during unloaded pedaling. Furthermore, the ACSM equation was found to significantly (p < .05) under predict VO 2 during the first loaded stage of exercise. When the accuracy of the ACSM and new equations were compared based on correlation coefficients, coefficients of determinations, SEEs, total error, and mean bias the new equation was found to have equal or better accuracy at all workloads. The final form of the new equation is: VO2 (ml ˙ min-1) = (kgm ˙ min-1 x 1.6 ml ˙ kgm-1) + (3.5 ml ˙ kg-1 ˙ min-1 x body mass in kg) + 156 ml ˙ min-1.

  8. Validation of Core Temperature Estimation Algorithm

    DTIC Science & Technology

    2016-01-29

    plot of observed versus estimated core temperature with the line of identity (dashed) and the least squares regression line (solid) and line equation...estimated PSI with the line of identity (dashed) and the least squares regression line (solid) and line equation in the top left corner. (b) Bland...for comparison. The root mean squared error (RMSE) was also computed, as given by Equation 2.

  9. A local equation for differential diagnosis of β-thalassemia trait and iron deficiency anemia by logistic regression analysis in Southeast Iran.

    PubMed

    Sargolzaie, Narjes; Miri-Moghaddam, Ebrahim

    2014-01-01

    The most common differential diagnosis of β-thalassemia (β-thal) trait is iron deficiency anemia. Several red blood cell equations were introduced during different studies for differential diagnosis between β-thal trait and iron deficiency anemia. Due to genetic variations in different regions, these equations cannot be useful in all population. The aim of this study was to determine a native equation with high accuracy for differential diagnosis of β-thal trait and iron deficiency anemia for the Sistan and Baluchestan population by logistic regression analysis. We selected 77 iron deficiency anemia and 100 β-thal trait cases. We used binary logistic regression analysis and determined best equations for probability prediction of β-thal trait against iron deficiency anemia in our population. We compared diagnostic values and receiver operative characteristic (ROC) curve related to this equation and another 10 published equations in discriminating β-thal trait and iron deficiency anemia. The binary logistic regression analysis determined the best equation for best probability prediction of β-thal trait against iron deficiency anemia with area under curve (AUC) 0.998. Based on ROC curves and AUC, Green & King, England & Frazer, and then Sirdah indices, respectively, had the most accuracy after our equation. We suggest that to get the best equation and cut-off in each region, one needs to evaluate specific information of each region, specifically in areas where populations are homogeneous, to provide a specific formula for differentiating between β-thal trait and iron deficiency anemia.

  10. Methods for estimating flood frequency in Montana based on data through water year 1998

    USGS Publications Warehouse

    Parrett, Charles; Johnson, Dave R.

    2004-01-01

    Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the different methods and the average standard errors of prediction. When all three methods were combined, the average standard errors of prediction ranged from 37.4 percent to 120.2 percent. Weighting of estimates reduced the standard errors of prediction for all T-year flood estimates in four regions, reduced the standard errors of prediction for some T-year flood estimates in two regions, and provided no reduction in average standard error of prediction in two regions. A computer program for solving the regression equations, weighting estimates, and determining reliability of individual estimates was developed and placed on the USGS Montana District World Wide Web page. A new regression method, termed Region of Influence regression, also was tested. Test results indicated that the Region of Influence method was not as reliable as the regional equations based on generalized least squares regression. Two additional methods for estimating flood frequency at ungaged sites located on the same streams as gaged sites also are described. The first method, based on a drainage-area-ratio adjustment, is intended for use on streams where the ungaged site of interest is located near a gaged site. The second method, based on interpolation between gaged sites, is intended for use on streams that have two or more streamflow-gaging stations.

  11. Flood-frequency prediction methods for unregulated streams of Tennessee, 2000

    USGS Publications Warehouse

    Law, George S.; Tasker, Gary D.

    2003-01-01

    Up-to-date flood-frequency prediction methods for unregulated, ungaged rivers and streams of Tennessee have been developed. Prediction methods include the regional-regression method and the newer region-of-influence method. The prediction methods were developed using stream-gage records from unregulated streams draining basins having from 1 percent to about 30 percent total impervious area. These methods, however, should not be used in heavily developed or storm-sewered basins with impervious areas greater than 10 percent. The methods can be used to estimate 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence-interval floods of most unregulated rural streams in Tennessee. A computer application was developed that automates the calculation of flood frequency for unregulated, ungaged rivers and streams of Tennessee. Regional-regression equations were derived by using both single-variable and multivariable regional-regression analysis. Contributing drainage area is the explanatory variable used in the single-variable equations. Contributing drainage area, main-channel slope, and a climate factor are the explanatory variables used in the multivariable equations. Deleted-residual standard error for the single-variable equations ranged from 32 to 65 percent. Deleted-residual standard error for the multivariable equations ranged from 31 to 63 percent. These equations are included in the computer application to allow easy comparison of results produced by the different methods. The region-of-influence method calculates multivariable regression equations for each ungaged site and recurrence interval using basin characteristics from 60 similar sites selected from the study area. Explanatory variables that may be used in regression equations computed by the region-of-influence method include contributing drainage area, main-channel slope, a climate factor, and a physiographic-region factor. Deleted-residual standard error for the region-of-influence method tended to be only slightly smaller than those for the regional-regression method and ranged from 27 to 62 percent.

  12. Techniques for estimating magnitude and frequency of peak flows for Pennsylvania streams

    USGS Publications Warehouse

    Stuckey, Marla H.; Reed, Lloyd A.

    2000-01-01

    Regression equations for estimating the magnitude and frequency of floods on ungaged streams in Pennsylvania with drainage areas less that 2,000 square miles were developed on the basis of peak-flow data collected at 313 streamflow-gaging stations. All streamflow-gaging stations used in the development of the equations had 10 or more years of record and include active and discontinued continuous-record and crest-stage partial-record streamflow-gaging stations. Regional regression equations were developed for flood flows expected every 10, 25, 50, 100, and 500 years by the use of a weighted multiple linear regression model.The State was divided into two regions. The largest region, Region A, encompasses about 78 percent of Pennsylvania. The smaller region, Region B, includes only the northwestern part of the State. Basin characteristics used in the regression equations for Region A are drainage area, percentage of forest cover, percentage of urban development, percentage of basin underlain by carbonate bedrock, and percentage of basin controlled by lakes, swamps, and reservoirs. Basin characteristics used in the regression equations for Region B are drainage area and percentage of basin controlled by lakes, swamps, and reservoirs. The coefficient of determination (R2) values for the five flood-frequency equations for Region A range from 0.93 to 0.82, and for Region B, the range is from 0.96 to 0.89.While the regression equations can be used to predict the magnitude and frequency of peak flows for most streams in the State, they should not be used for streams with drainage areas greater than 2,000 square miles or less than 1.5 square miles, for streams that drain extensively mined areas, or for stream reaches immediately below flood-control reservoirs. In addition, the equations presented for Region B should not be used if the stream drains a basin with more than 5 percent urban development.

  13. Predictive equations for the estimation of body size in seals and sea lions (Carnivora: Pinnipedia)

    PubMed Central

    Churchill, Morgan; Clementz, Mark T; Kohno, Naoki

    2014-01-01

    Body size plays an important role in pinniped ecology and life history. However, body size data is often absent for historical, archaeological, and fossil specimens. To estimate the body size of pinnipeds (seals, sea lions, and walruses) for today and the past, we used 14 commonly preserved cranial measurements to develop sets of single variable and multivariate predictive equations for pinniped body mass and total length. Principal components analysis (PCA) was used to test whether separate family specific regressions were more appropriate than single predictive equations for Pinnipedia. The influence of phylogeny was tested with phylogenetic independent contrasts (PIC). The accuracy of these regressions was then assessed using a combination of coefficient of determination, percent prediction error, and standard error of estimation. Three different methods of multivariate analysis were examined: bidirectional stepwise model selection using Akaike information criteria; all-subsets model selection using Bayesian information criteria (BIC); and partial least squares regression. The PCA showed clear discrimination between Otariidae (fur seals and sea lions) and Phocidae (earless seals) for the 14 measurements, indicating the need for family-specific regression equations. The PIC analysis found that phylogeny had a minor influence on relationship between morphological variables and body size. The regressions for total length were more accurate than those for body mass, and equations specific to Otariidae were more accurate than those for Phocidae. Of the three multivariate methods, the all-subsets approach required the fewest number of variables to estimate body size accurately. We then used the single variable predictive equations and the all-subsets approach to estimate the body size of two recently extinct pinniped taxa, the Caribbean monk seal (Monachus tropicalis) and the Japanese sea lion (Zalophus japonicus). Body size estimates using single variable regressions generally under or over-estimated body size; however, the all-subset regression produced body size estimates that were close to historically recorded body length for these two species. This indicates that the all-subset regression equations developed in this study can estimate body size accurately. PMID:24916814

  14. The National Flood Frequency Program, version 3 : a computer program for estimating magnitude and frequency of floods for ungaged sites

    USGS Publications Warehouse

    Ries, Kernell G.; Crouse, Michele Y.

    2002-01-01

    For many years, the U.S. Geological Survey (USGS) has been developing regional regression equations for estimating flood magnitude and frequency at ungaged sites. These regression equations are used to transfer flood characteristics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally, these equations have been developed on a Statewide or metropolitan-area basis as part of cooperative study programs with specific State Departments of Transportation. In 1994, the USGS released a computer program titled the National Flood Frequency Program (NFF), which compiled all the USGS available regression equations for estimating the magnitude and frequency of floods in the United States and Puerto Rico. NFF was developed in cooperation with the Federal Highway Administration and the Federal Emergency Management Agency. Since the initial release of NFF, the USGS has produced new equations for many areas of the Nation. A new version of NFF has been developed that incorporates these new equations and provides additional functionality and ease of use. NFF version 3 provides regression-equation estimates of flood-peak discharges for unregulated rural and urban watersheds, flood-frequency plots, and plots of typical flood hydrographs for selected recurrence intervals. The Program also provides weighting techniques to improve estimates of flood-peak discharges for gaging stations and ungaged sites. The information provided by NFF should be useful to engineers and hydrologists for planning and design applications. This report describes the flood-regionalization techniques used in NFF and provides guidance on the applicability and limitations of the techniques. The NFF software and the documentation for the regression equations included in NFF are available at http://water.usgs.gov/software/nff.html.

  15. Biostatistics Series Module 6: Correlation and Linear Regression.

    PubMed

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.

  16. Biostatistics Series Module 6: Correlation and Linear Regression

    PubMed Central

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient (r). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation (y = a + bx), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous. PMID:27904175

  17. Regression equations for estimating flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-Year recurrence intervals in Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.

    2004-01-01

    Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual maximum flows at the gaging station, and the other estimate from the regression equation?are weighted together based on the years of record at the gaging station and the equivalent years of record value determined from the regression. Weighted averages of flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are tabulated for the 70 streamflow-gaging stations used in the regression analysis. Generally, weighted averages give the most accurate estimate of flood flows at gaging stations. An evaluation of the Connecticut's streamflow-gaging network was performed to determine whether the spatial coverage and range of geographic and hydrologic conditions are adequately represented for transferring flood characteristics from gaged to ungaged sites. Fifty-one of 54 stations in the current (2004) network support one or more flood needs of federal, state, and local agencies. Twenty-five of 54 stations in the current network are considered high-priority stations by the U.S. Geological Survey because of their contribution to the longterm understanding of floods, and their application for regionalflood analysis. Enhancements to the network to improve overall effectiveness for regionalization can be made by increasing the spatial coverage of gaging stations, establishing stations in regions of the state that are not well-represented, and adding stations in basins with drainage area sizes not represented. Additionally, the usefulness of the network for characterizing floods can be maintained and improved by continuing operation at the current stations because flood flows can be more accurately estimated at stations with continuous, long-term record.

  18. June and August median streamflows estimated for ungaged streams in southern Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2010-01-01

    Methods for estimating June and August median streamflows were developed for ungaged, unregulated streams in southern Maine. The methods apply to streams with drainage areas ranging in size from 0.4 to 74 square miles, with percentage of basin underlain by a sand and gravel aquifer ranging from 0 to 84 percent, and with distance from the centroid of the basin to a Gulf of Maine line paralleling the coast ranging from 14 to 94 miles. Equations were developed with data from 4 long-term continuous-record streamgage stations and 27 partial-record streamgage stations. Estimates of median streamflows at the continuous-record and partial-record stations are presented. A mathematical technique for estimating standard low-flow statistics, such as June and August median streamflows, at partial-record streamgage stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term (at least 10 years of record) continuous-record streamgage stations (index stations). Weighted least-squares regression analysis (WLS) was used to relate estimates of June and August median streamflows at streamgage stations to basin characteristics at these same stations to develop equations that can be used to estimate June and August median streamflows on ungaged streams. WLS accounts for different periods of record at the gaging stations. Three basin characteristics-drainage area, percentage of basin underlain by a sand and gravel aquifer, and distance from the centroid of the basin to a Gulf of Maine line paralleling the coast-are used in the final regression equation to estimate June and August median streamflows for ungaged streams. The three-variable equation to estimate June median streamflow has an average standard error of prediction from -35 to 54 percent. The three-variable equation to estimate August median streamflow has an average standard error of prediction from -45 to 83 percent. Simpler one-variable equations that use only drainage area to estimate June and August median streamflows were developed for use when less accuracy is acceptable. These equations have average standard errors of prediction from -46 to 87 percent and from -57 to 133 percent, respectively.

  19. Age Estimation of Infants Through Metric Analysis of Developing Anterior Deciduous Teeth.

    PubMed

    Viciano, Joan; De Luca, Stefano; Irurita, Javier; Alemán, Inmaculada

    2018-01-01

    This study provides regression equations for estimation of age of infants from the dimensions of their developing deciduous teeth. The sample comprises 97 individuals of known sex and age (62 boys, 35 girls), aged between 2 days and 1,081 days. The age-estimation equations were obtained for the sexes combined, as well as for each sex separately, thus including "sex" as an independent variable. The values of the correlations and determination coefficients obtained for each regression equation indicate good fits for most of the equations obtained. The "sex" factor was statistically significant when included as an independent variable in seven of the regression equations. However, the "sex" factor provided an advantage for age estimation in only three of the equations, compared to those that did not include "sex" as a factor. These data suggest that the ages of infants can be accurately estimated from measurements of their developing deciduous teeth. © 2017 American Academy of Forensic Sciences.

  20. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  1. Techniques for estimating peak-streamflow frequency for unregulated streams and streams regulated by small floodwater retarding structures in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.

    1997-01-01

    Statewide regression equations for Oklahoma were determined for estimating peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years for ungaged sites on natural unregulated streams. The most significant independent variables required to estimate peak-streamflow frequency for natural unregulated streams in Oklahoma are contributing drainage area, main-channel slope, and mean-annual precipitation. The regression equations are applicable for watersheds with drainage areas less than 2,510 square miles that are not affected by regulation from manmade works. Limitations on the use of the regression relations and the reliability of regression estimates for natural unregulated streams are discussed. Log-Pearson Type III analysis information, basin and climatic characteristics, and the peak-stream-flow frequency estimates for 251 gaging stations in Oklahoma and adjacent states are listed. Techniques are presented to make a peak-streamflow frequency estimate for gaged sites on natural unregulated streams and to use this result to estimate a nearby ungaged site on the same stream. For ungaged sites on urban streams, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. For ungaged sites on streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. The statewide regression equations are adjusted by substituting the drainage area below the floodwater retarding structures, or drainage area that represents the percentage of the unregulated basin, in the contributing drainage area parameter to obtain peak-streamflow frequency estimates.

  2. Effects of Serum Creatinine Calibration on Estimated Renal Function in African Americans: the Jackson Heart Study

    PubMed Central

    Wang, Wei; Young, Bessie A.; Fülöp, Tibor; de Boer, Ian H.; Boulware, L. Ebony; Katz, Ronit; Correa, Adolfo; Griswold, Michael E.

    2015-01-01

    Background The calibration to Isotope Dilution Mass Spectroscopy (IDMS) traceable creatinine is essential for valid use of the new Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation to estimate the glomerular filtration rate (GFR). Methods For 5,210 participants in the Jackson Heart Study (JHS), serum creatinine was measured with a multipoint enzymatic spectrophotometric assay at the baseline visit (2000–2004) and re-measured using the Roche enzymatic method, traceable to IDMS in a subset of 206 subjects. The 200 eligible samples (6 were excluded, 1 for failure of the re-measurement and 5 for outliers) were divided into three disjoint sets - training, validation, and test - to select a calibration model, estimate true errors, and assess performance of the final calibration equation. The calibration equation was applied to serum creatinine measurements of 5,210 participants to estimate GFR and the prevalence of CKD. Results The selected Deming regression model provided a slope of 0.968 (95% Confidence Interval (CI), 0.904 to 1.053) and intercept of −0.0248 (95% CI, −0.0862 to 0.0366) with R squared 0.9527. Calibrated serum creatinine showed high agreement with actual measurements when applying to the unused test set (concordance correlation coefficient 0.934, 95% CI, 0.894 to 0.960). The baseline prevalence of CKD in the JHS (2000–2004) was 6.30% using calibrated values, compared with 8.29% using non-calibrated serum creatinine with the CKD-EPI equation (P < 0.001). Conclusions A Deming regression model was chosen to optimally calibrate baseline serum creatinine measurements in the JHS and the calibrated values provide a lower CKD prevalence estimate. PMID:25806862

  3. Effects of serum creatinine calibration on estimated renal function in african americans: the Jackson heart study.

    PubMed

    Wang, Wei; Young, Bessie A; Fülöp, Tibor; de Boer, Ian H; Boulware, L Ebony; Katz, Ronit; Correa, Adolfo; Griswold, Michael E

    2015-05-01

    The calibration to isotope dilution mass spectrometry-traceable creatinine is essential for valid use of the new Chronic Kidney Disease Epidemiology Collaboration equation to estimate the glomerular filtration rate. For 5,210 participants in the Jackson Heart Study (JHS), serum creatinine was measured with a multipoint enzymatic spectrophotometric assay at the baseline visit (2000-2004) and remeasured using the Roche enzymatic method, traceable to isotope dilution mass spectrometry in a subset of 206 subjects. The 200 eligible samples (6 were excluded, 1 for failure of the remeasurement and 5 for outliers) were divided into 3 disjoint sets-training, validation and test-to select a calibration model, estimate true errors and assess performance of the final calibration equation. The calibration equation was applied to serum creatinine measurements of 5,210 participants to estimate glomerular filtration rate and the prevalence of chronic kidney disease (CKD). The selected Deming regression model provided a slope of 0.968 (95% confidence interval [CI], 0.904-1.053) and intercept of -0.0248 (95% CI, -0.0862 to 0.0366) with R value of 0.9527. Calibrated serum creatinine showed high agreement with actual measurements when applying to the unused test set (concordance correlation coefficient 0.934, 95% CI, 0.894-0.960). The baseline prevalence of CKD in the JHS (2000-2004) was 6.30% using calibrated values compared with 8.29% using noncalibrated serum creatinine with the Chronic Kidney Disease Epidemiology Collaboration equation (P < 0.001). A Deming regression model was chosen to optimally calibrate baseline serum creatinine measurements in the JHS, and the calibrated values provide a lower CKD prevalence estimate.

  4. The Bland-Altman Method Should Not Be Used in Regression Cross-Validation Studies

    ERIC Educational Resources Information Center

    O'Connor, Daniel P.; Mahar, Matthew T.; Laughlin, Mitzi S.; Jackson, Andrew S.

    2011-01-01

    The purpose of this study was to demonstrate the bias in the Bland-Altman (BA) limits of agreement method when it is used to validate regression models. Data from 1,158 men were used to develop three regression equations to estimate maximum oxygen uptake (R[superscript 2] = 0.40, 0.61, and 0.82, respectively). The equations were evaluated in a…

  5. August median streamflow on ungaged streams in Eastern Coastal Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2004-01-01

    Methods for estimating August median streamflow were developed for ungaged, unregulated streams in eastern coastal Maine. The methods apply to streams with drainage areas ranging in size from 0.04 to 73.2 square miles and fraction of basin underlain by a sand and gravel aquifer ranging from 0 to 71 percent. The equations were developed with data from three long-term (greater than or equal to 10 years of record) continuous-record streamflow-gaging stations, 23 partial-record streamflow- gaging stations, and 5 short-term (less than 10 years of record) continuous-record streamflow-gaging stations. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record streamflow-gaging stations and short-term continuous-record streamflow-gaging stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term continuous-record streamflow-gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at streamflow-gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for different periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Thirty-one stations were used for the final regression equations. Two basin characteristics?drainage area and fraction of basin underlain by a sand and gravel aquifer?are used in the calculated regression equation to estimate August median streamflow for ungaged streams. The equation has an average standard error of prediction from -27 to 38 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -30 to 43 percent. Model error is larger than sampling error for both equations, indicating that additional or improved estimates of basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow at partial- record or continuous-record gaging stations range from 0.003 to 31.0 cubic feet per second or from 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in eastern coastal Maine, within the range of acceptable explanatory variables, range from 0.003 to 45 cubic feet per second or 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as drainage area and fraction of basin underlain by a sand and gravel aquifer increase.

  6. Data-driven discovery of partial differential equations.

    PubMed

    Rudy, Samuel H; Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2017-04-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.

  7. Methods for estimating magnitude and frequency of 1-, 3-, 7-, 15-, and 30-day flood-duration flows in Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Paretti, Nicholas V.; Veilleux, Andrea G.

    2014-01-01

    Regression equations, which allow predictions of n-day flood-duration flows for selected annual exceedance probabilities at ungaged sites, were developed using generalized least-squares regression and flood-duration flow frequency estimates at 56 streamgaging stations within a single, relatively uniform physiographic region in the central part of Arizona, between the Colorado Plateau and Basin and Range Province, called the Transition Zone. Drainage area explained most of the variation in the n-day flood-duration annual exceedance probabilities, but mean annual precipitation and mean elevation were also significant variables in the regression models. Standard error of prediction for the regression equations varies from 28 to 53 percent and generally decreases with increasing n-day duration. Outside the Transition Zone there are insufficient streamgaging stations to develop regression equations, but flood-duration flow frequency estimates are presented at select streamgaging stations.

  8. Systolic time interval v heart rate regression equations using atropine: reproducibility studies.

    PubMed Central

    Kelman, A W; Sumner, D J; Whiting, B

    1981-01-01

    1. Systolic time intervals (STI) were recorded in six normal male subjects over a period of 3 weeks. On one day per week, each subject received incremental doses of atropine intravenously to increase heart rate, allowing the determination of individual STI v HR regression equations. On the other days STI were recorded with the subjects resting, in the supine position. 2. There were highly significant regression relationships between heart rate and both LVET and QS2, but not between heart rate and PEP. 3. The regression relationships showed little intra-subject variability, but a large degree of inter-subject variability: they proved adequate to correct the STI for the daily fluctuations in heart rate. 4. Administration of small doses of atropine intravenously provides a satisfactory and convenient method of deriving individual STI v HR regression equations which can be applied over a period of weeks. PMID:7248136

  9. Systolic time interval v heart rate regression equations using atropine: reproducibility studies.

    PubMed

    Kelman, A W; Sumner, D J; Whiting, B

    1981-07-01

    1. Systolic time intervals (STI) were recorded in six normal male subjects over a period of 3 weeks. On one day per week, each subject received incremental doses of atropine intravenously to increase heart rate, allowing the determination of individual STI v HR regression equations. On the other days STI were recorded with the subjects resting, in the supine position. 2. There were highly significant regression relationships between heart rate and both LVET and QS2, but not between heart rate and PEP. 3. The regression relationships showed little intra-subject variability, but a large degree of inter-subject variability: they proved adequate to correct the STI for the daily fluctuations in heart rate. 4. Administration of small doses of atropine intravenously provides a satisfactory and convenient method of deriving individual STI v HR regression equations which can be applied over a period of weeks.

  10. Iterative Strain-Gage Balance Calibration Data Analysis for Extended Independent Variable Sets

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred

    2011-01-01

    A new method was developed that makes it possible to use an extended set of independent calibration variables for an iterative analysis of wind tunnel strain gage balance calibration data. The new method permits the application of the iterative analysis method whenever the total number of balance loads and other independent calibration variables is greater than the total number of measured strain gage outputs. Iteration equations used by the iterative analysis method have the limitation that the number of independent and dependent variables must match. The new method circumvents this limitation. It simply adds a missing dependent variable to the original data set by using an additional independent variable also as an additional dependent variable. Then, the desired solution of the regression analysis problem can be obtained that fits each gage output as a function of both the original and additional independent calibration variables. The final regression coefficients can be converted to data reduction matrix coefficients because the missing dependent variables were added to the data set without changing the regression analysis result for each gage output. Therefore, the new method still supports the application of the two load iteration equation choices that the iterative method traditionally uses for the prediction of balance loads during a wind tunnel test. An example is discussed in the paper that illustrates the application of the new method to a realistic simulation of temperature dependent calibration data set of a six component balance.

  11. Weather adjustment using seemingly unrelated regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noll, T.A.

    1995-05-01

    Seemingly unrelated regression (SUR) is a system estimation technique that accounts for time-contemporaneous correlation between individual equations within a system of equations. SUR is suited to weather adjustment estimations when the estimation is: (1) composed of a system of equations and (2) the system of equations represents either different weather stations, different sales sectors or a combination of different weather stations and different sales sectors. SUR utilizes the cross-equation error values to develop more accurate estimates of the system coefficients than are obtained using ordinary least-squares (OLS) estimation. SUR estimates can be generated using a variety of statistical software packagesmore » including MicroTSP and SAS.« less

  12. Developing A New Predictive Dispersion Equation Based on Tidal Average (TA) Condition in Alluvial Estuaries

    NASA Astrophysics Data System (ADS)

    Anak Gisen, Jacqueline Isabella; Nijzink, Remko C.; Savenije, Hubert H. G.

    2014-05-01

    Dispersion mathematical representation of tidal mixing between sea water and fresh water in The definition of dispersion somehow remains unclear as it is not directly measurable. The role of dispersion is only meaningful if it is related to the appropriate temporal and spatial scale of mixing, which are identified as the tidal period, tidal excursion (longitudinal), width of estuary (lateral) and mixing depth (vertical). Moreover, the mixing pattern determines the salt intrusion length in an estuary. If a physically based description of the dispersion is defined, this would allow the analytical solution of the salt intrusion problem. The objective of this study is to develop a predictive equation for estimating the dispersion coefficient at tidal average (TA) condition, which can be applied in the salt intrusion model to predict the salinity profile for any estuary during different events. Utilizing available data of 72 measurements in 27 estuaries (including 6 recently studied estuaries in Malaysia), regressions analysis has been performed with various combinations of dimensionless parameters . The predictive dispersion equations have been developed for two different locations, at the mouth D0TA and at the inflection point D1TA (where the convergence length changes). Regressions have been carried out with two separated datasets: 1) more reliable data for calibration; and 2) less reliable data for validation. The combination of dimensionless ratios that give the best performance is selected as the final outcome which indicates that the dispersion coefficient is depending on the tidal excursion, tidal range, tidal velocity amplitude, friction and the Richardson Number. A limitation of the newly developed equation is that the friction is generally unknown. In order to compensate this problem, further analysis has been performed adopting the hydraulic model of Cai et. al. (2012) to estimate the friction and depth. Keywords: dispersion, alluvial estuaries, mixing, salt intrusion, predictive equation

  13. The effect of service satisfaction and spiritual well-being on the quality of life of patients with schizophrenia.

    PubMed

    Lanfredi, Mariangela; Candini, Valentina; Buizza, Chiara; Ferrari, Clarissa; Boero, Maria E; Giobbio, Gian M; Goldschmidt, Nicoletta; Greppo, Stefania; Iozzino, Laura; Maggi, Paolo; Melegari, Anna; Pasqualetti, Patrizio; Rossi, Giuseppe; de Girolamo, Giovanni

    2014-05-15

    Quality of life (QOL) has been considered an important outcome measure in psychiatric research and determinants of QOL have been widely investigated. We aimed at detecting predictors of QOL at baseline and at testing the longitudinal interrelations of the baseline predictors with QOL scores at a 1-year follow-up in a sample of patients living in Residential Facilities (RFs). Logistic regression models were adopted to evaluate the association between WHOQoL-Bref scores and potential determinants of QOL. In addition, all variables significantly associated with QOL domains in the final logistic regression model were included by using the Structural Equation Modeling (SEM). We included 139 patients with a diagnosis of schizophrenia spectrum. In the final logistic regression model level of activity, social support, age, service satisfaction, spiritual well-being and symptoms' severity were identified as predictors of QOL scores at baseline. Longitudinal analyses carried out by SEM showed that 40% of QOL follow-up variability was explained by QOL at baseline, and significant indirect effects toward QOL at follow-up were found for satisfaction with services and for social support. Rehabilitation plans for people with schizophrenia living in RFs should also consider mediators of change in subjective QOL such as satisfaction with mental health services. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Abdominal girth and vertebral column length aid in predicting intrathecal hyperbaric bupivacaine dose for elective cesarean section

    PubMed Central

    Wei, Chang-Na; Zhou, Qing-He; Wang, Li-Zhong

    2017-01-01

    Abstract Currently, there is no consensus on how to determine the optimal dose of intrathecal bupivacaine for an individual undergoing an elective cesarean section. In this study, we developed a regression equation between intrathecal 0.5% hyperbaric bupivacaine volume and abdominal girth and vertebral column length, to determine a suitable block level (T5) for elective cesarean section patients. In phase I, we analyzed 374 parturients undergoing an elective cesarean section that received a suitable dose of intrathecal 0.5% hyperbaric bupivacaine after a combined spinal-epidural (CSE) was performed at the L3/4 interspace. Parturients with T5 blockade to pinprick were selected for establishing the regression equation between 0.5% hyperbaric bupivacaine volume and vertebral column length and abdominal girth. Six parturient and neonatal variables, intrathecal 0.5% hyperbaric bupivacaine volume, and spinal anesthesia spread were recorded. Bivariate line correlation analyses, multiple line regression analyses, and 2-tailed t tests or chi-square test were performed, as appropriate. In phase II, another 200 parturients with CSE for elective cesarean section were enrolled to verify the accuracy of the regression equation. In phase I, a total of 143 parturients were selected to establish the following regression equation: YT5 = 0.074X1 − 0.022X2 − 0.017 (YT5 = 0.5% hyperbaric bupivacaine volume for T5 block level; X1 = vertebral column length; and X2 = abdominal girth). In phase II, a total of 189 participants were enrolled in the study to verify the accuracy of the regression equation, and 155 parturients with T5 blockade were deemed eligible, which accounted for 82.01% of all participants. This study evaluated parturients with T5 blockade to pinprick after a CSE for elective cesarean section to establish a regression equation between parturient vertebral column length and abdominal girth and 0.5% hyperbaric intrathecal bupivacaine volume. This equation can accurately predict the suitable intrathecal hyperbaric bupivacaine dose for elective cesarean section. PMID:28834913

  15. Abdominal girth and vertebral column length aid in predicting intrathecal hyperbaric bupivacaine dose for elective cesarean section.

    PubMed

    Wei, Chang-Na; Zhou, Qing-He; Wang, Li-Zhong

    2017-08-01

    Currently, there is no consensus on how to determine the optimal dose of intrathecal bupivacaine for an individual undergoing an elective cesarean section. In this study, we developed a regression equation between intrathecal 0.5% hyperbaric bupivacaine volume and abdominal girth and vertebral column length, to determine a suitable block level (T5) for elective cesarean section patients.In phase I, we analyzed 374 parturients undergoing an elective cesarean section that received a suitable dose of intrathecal 0.5% hyperbaric bupivacaine after a combined spinal-epidural (CSE) was performed at the L3/4 interspace. Parturients with T5 blockade to pinprick were selected for establishing the regression equation between 0.5% hyperbaric bupivacaine volume and vertebral column length and abdominal girth. Six parturient and neonatal variables, intrathecal 0.5% hyperbaric bupivacaine volume, and spinal anesthesia spread were recorded. Bivariate line correlation analyses, multiple line regression analyses, and 2-tailed t tests or chi-square test were performed, as appropriate. In phase II, another 200 parturients with CSE for elective cesarean section were enrolled to verify the accuracy of the regression equation.In phase I, a total of 143 parturients were selected to establish the following regression equation: YT5 = 0.074X1 - 0.022X2 - 0.017 (YT5 = 0.5% hyperbaric bupivacaine volume for T5 block level; X1 = vertebral column length; and X2 = abdominal girth). In phase II, a total of 189 participants were enrolled in the study to verify the accuracy of the regression equation, and 155 parturients with T5 blockade were deemed eligible, which accounted for 82.01% of all participants.This study evaluated parturients with T5 blockade to pinprick after a CSE for elective cesarean section to establish a regression equation between parturient vertebral column length and abdominal girth and 0.5% hyperbaric intrathecal bupivacaine volume. This equation can accurately predict the suitable intrathecal hyperbaric bupivacaine dose for elective cesarean section.

  16. Optimum pelvic incidence minus lumbar lordosis value can be determined by individual pelvic incidence.

    PubMed

    Inami, Satoshi; Moridaira, Hiroshi; Takeuchi, Daisaku; Shiba, Yo; Nohara, Yutaka; Taneichi, Hiroshi

    2016-11-01

    Adult spinal deformity (ASD) classification showing that ideal pelvic incidence minus lumbar lordosis (PI-LL) value is within 10° has been received widely. But no study has focused on the optimum level of PI-LL value that reflects wide variety in PI among patients. This study was conducted to determine the optimum PI-LL value specific to an individual's PI in postoperative ASD patients. 48 postoperative ASD patients were recruited. Spino-pelvic parameters and Oswestry Disability Index (ODI) were measured at the final follow-up. Factors associated with good clinical results were determined by stepwise multiple regression model using the ODI. The patients with ODI under the 75th percentile cutoff were designated into the "good" health related quality of life (HRQOL) group. In this group, the relationship between the PI-LL and PI was assessed by regression analysis. Multiple regression analysis revealed PI-LL as significant parameters associated with ODI. Thirty-six patients with an ODI <22 points (75th percentile cutoff) were categorized into a good HRQOL group, and linear regression models demonstrated the following equation: PI-LL = 0.41PI-11.12 (r = 0.45, P = 0.0059). On the basis of this equation, in the patients with a PI = 50°, the PI-LL is 9°. Whereas in those with a PI = 30°, the optimum PI-LL is calculated to be as low as 1°. In those with a PI = 80°, PI-LL is estimated at 22°. Consequently, an optimum PI-LL is inconsistent in that it depends on the individual PI.

  17. Relationship between water quality and macro-scale parameters (land use, erosion, geology, and population density) in the Siminehrood River Basin.

    PubMed

    Bostanmaneshrad, Farshid; Partani, Sadegh; Noori, Roohollah; Nachtnebel, Hans-Peter; Berndtsson, Ronny; Adamowski, Jan Franklin

    2018-10-15

    To date, few studies have investigated the simultaneous effects of macro-scale parameters (MSPs) such as land use, population density, geology, and erosion layers on micro-scale water quality variables (MSWQVs). This research focused on an evaluation of the relationship between MSPs and MSWQVs in the Siminehrood River Basin, Iran. In addition, we investigated the importance of water particle travel time (hydrological distance) on this relationship. The MSWQVs included 13 physicochemical and biochemical parameters observed at 15 stations during three seasons. Primary screening was performed by utilizing three multivariate statistical analyses (Pearson's correlation, cluster and discriminant analyses) in seven series of observed data. These series included three separate seasonal data, three two-season data, and aggregated three-season data for investigation of relationships between MSPs and MSWQVs. Coupled data (pairs of MSWQVs and MSPs) repeated in at least two out of three statistical analyses were selected for final screening. The primary screening results demonstrated significant relationships between land use and phosphorus, total solids and turbidity, erosion levels and electrical conductivity, and erosion and total solids. Furthermore, water particle travel time effects were considered through three geographical pattern definitions of distance for each MSP by using two weighting methods. To find effective MSP factors on MSWQVs, a multivariate linear regression analysis was employed. Then, preliminary equations that estimated MSWQVs were developed. The preliminary equations were modified to adaptive equations to obtain the final models. The final models indicated that a new metric, referred to as hydrological distance, provided better MSWQV estimation and water quality prediction compared to the National Sanitation Foundation Water Quality Index. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  18. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, M.J.; Addis, R.P.

    1991-04-04

    The Department of Energy (DOE) Environment, Safety and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0--25 mph regression equations than 0--50 mphmore » regression equations. Higher wind speeds were slightly overpredicted by the 0--25 mph regression equations when compared to 0--50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweight the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0--25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.« less

  19. Wind tunnel test of Teledyne Geotech model 1564B cup anemometer

    NASA Astrophysics Data System (ADS)

    Parker, M. J.; Addis, R. P.

    1991-04-01

    The Department of Energy (DOE) Environment, Safety, and Health Compliance Assessment (Tiger Team) of the Savannah River Site (SRS) questioned the method by which wind speed sensors (cup anemometers) are calibrated by the Environmental Technology Section (ETS). The Tiger Team member was concerned that calibration data was generated by running the wind tunnel to only 26 miles per hour (mph) when speeds exceeding 50 mph are readily obtainable. A wind tunnel experiment was conducted and confirmed the validity of the practice. Wind speeds common to SRS (6 mph) were predicted more accurately by 0-25 mph regression equations than 0-50 mph regression equations. Higher wind speeds were slightly overpredicted by the 0-25 mph regression equations when compared to 0-50 mph regression equations. However, the greater benefit of more accurate lower wind speed predictions accuracy outweigh the benefit of slightly better high (extreme) wind speed predictions. Therefore, it is concluded that 0-25 mph regression equations should continue to be utilized by ETS at SRS. During the Department of Energy Tiger Team audit, concerns were raised about the calibration of SRS cup anemometers. Wind speed is measured by ETS with Teledyne Geotech model 1564B cup anemometers, which are calibrated in the ETS wind tunnel. Linear regression lines are fitted to data points of tunnel speed versus anemometer output voltages up to 25 mph. The regression coefficients are then implemented into the data acquisition computer software when an instrument is installed in the field. The concern raised was that since the wind tunnel at SRS is able to generate a maximum wind speed higher than 25 mph, errors may be introduced in not using the full range of the wind tunnel.

  20. Evaluation of the magnitude and frequency of floods in urban watersheds in Phoenix and Tucson, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Paretti, Nicholas V.

    2014-01-01

    Flooding in urban areas routinely causes severe damage to property and often results in loss of life. To investigate the effect of urbanization on the magnitude and frequency of flood peaks, a flood frequency analysis was carried out using data from urbanized streamgaging stations in Phoenix and Tucson, Arizona. Flood peaks at each station were predicted using the log-Pearson Type III distribution, fitted using the expected moments algorithm and the multiple Grubbs-Beck low outlier test. The station estimates were then compared to flood peaks estimated by rural-regression equations for Arizona, and to flood peaks adjusted for urbanization using a previously developed procedure for adjusting U.S. Geological Survey rural regression peak discharges in an urban setting. Only smaller, more common flood peaks at the 50-, 20-, 10-, and 4-percent annual exceedance probabilities (AEPs) demonstrate any increase in magnitude as a result of urbanization; the 1-, 0.5-, and 0.2-percent AEP flood estimates are predicted without bias by the rural-regression equations. Percent imperviousness was determined not to account for the difference in estimated flood peaks between stations, either when adjusting the rural-regression equations or when deriving urban-regression equations to predict flood peaks directly from basin characteristics. Comparison with urban adjustment equations indicates that flood peaks are systematically overestimated if the rural-regression-estimated flood peaks are adjusted upward to account for urbanization. At nearly every streamgaging station in the analysis, adjusted rural-regression estimates were greater than the estimates derived using station data. One likely reason for the lack of increase in flood peaks with urbanization is the presence of significant stormwater retention and detention structures within the watershed used in the study.

  1. Monitoring heavy metal Cr in soil based on hyperspectral data using regression analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ningyu; Xu, Fuyun; Zhuang, Shidong; He, Changwei

    2016-10-01

    Heavy metal pollution in soils is one of the most critical problems in the global ecology and environment safety nowadays. Hyperspectral remote sensing and its application is capable of high speed, low cost, less risk and less damage, and provides a good method for detecting heavy metals in soil. This paper proposed a new idea of applying regression analysis of stepwise multiple regression between the spectral data and monitoring the amount of heavy metal Cr by sample points in soil for environmental protection. In the measurement, a FieldSpec HandHeld spectroradiometer is used to collect reflectance spectra of sample points over the wavelength range of 325-1075 nm. Then the spectral data measured by the spectroradiometer is preprocessed to reduced the influence of the external factors, and the preprocessed methods include first-order differential equation, second-order differential equation and continuum removal method. The algorithms of stepwise multiple regression are established accordingly, and the accuracy of each equation is tested. The results showed that the accuracy of first-order differential equation works best, which makes it feasible to predict the content of heavy metal Cr by using stepwise multiple regression.

  2. Mean annual runoff and peak flow estimates based on channel geometry of streams in northeastern and western Montana

    USGS Publications Warehouse

    Parrett, Charles; Omang, R.J.; Hull, J.A.

    1983-01-01

    Equations for estimating mean annual runoff and peak discharge from measurements of channel geometry were developed for western and northeastern Montana. The study area was divided into two regions for the mean annual runoff analysis, and separate multiple-regression equations were developed for each region. The active-channel width was determined to be the most important independent variable in each region. The standard error of estimate for the estimating equation using active-channel width was 61 percent in the Northeast Region and 38 percent in the West region. The study area was divided into six regions for the peak discharge analysis, and multiple regression equations relating channel geometry and basin characteristics to peak discharges having recurrence intervals of 2, 5, 10, 25, 50 and 100 years were developed for each region. The standard errors of estimate for the regression equations using only channel width as an independent variable ranged from 35 to 105 percent. The standard errors improved in four regions as basin characteristics were added to the estimating equations. (USGS)

  3. The preliminary exploration of 64-slice volume computed tomography in the accurate measurement of pleural effusion.

    PubMed

    Guo, Zhi-Jun; Lin, Qiang; Liu, Hai-Tao; Lu, Jun-Ying; Zeng, Yan-Hong; Meng, Fan-Jie; Cao, Bin; Zi, Xue-Rong; Han, Shu-Ming; Zhang, Yu-Huan

    2013-09-01

    Using computed tomography (CT) to rapidly and accurately quantify pleural effusion volume benefits medical and scientific research. However, the precise volume of pleural effusions still involves many challenges and currently does not have a recognized accurate measuring. To explore the feasibility of using 64-slice CT volume-rendering technology to accurately measure pleural fluid volume and to then analyze the correlation between the volume of the free pleural effusion and the different diameters of the pleural effusion. The 64-slice CT volume-rendering technique was used to measure and analyze three parts. First, the fluid volume of a self-made thoracic model was measured and compared with the actual injected volume. Second, the pleural effusion volume was measured before and after pleural fluid drainage in 25 patients, and the volume reduction was compared with the actual volume of the liquid extract. Finally, the free pleural effusion volume was measured in 26 patients to analyze the correlation between it and the diameter of the effusion, which was then used to calculate the regression equation. After using the 64-slice CT volume-rendering technique to measure the fluid volume of the self-made thoracic model, the results were compared with the actual injection volume. No significant differences were found, P = 0.836. For the 25 patients with drained pleural effusions, the comparison of the reduction volume with the actual volume of the liquid extract revealed no significant differences, P = 0.989. The following linear regression equation was used to compare the pleural effusion volume (V) (measured by the CT volume-rendering technique) with the pleural effusion greatest depth (d): V = 158.16 × d - 116.01 (r = 0.91, P = 0.000). The following linear regression was used to compare the volume with the product of the pleural effusion diameters (l × h × d): V = 0.56 × (l × h × d) + 39.44 (r = 0.92, P = 0.000). The 64-slice CT volume-rendering technique can accurately measure the volume in pleural effusion patients, and a linear regression equation can be used to estimate the volume of the free pleural effusion.

  4. Estimation of premorbid general fluid intelligence using traditional Chinese reading performance in Taiwanese samples.

    PubMed

    Chen, Ying-Jen; Ho, Meng-Yang; Chen, Kwan-Ju; Hsu, Chia-Fen; Ryu, Shan-Jin

    2009-08-01

    The aims of the present study were to (i) investigate if traditional Chinese word reading ability can be used for estimating premorbid general intelligence; and (ii) to provide multiple regression equations for estimating premorbid performance on Raven's Standard Progressive Matrices (RSPM), using age, years of education and Chinese Graded Word Reading Test (CGWRT) scores as predictor variables. Four hundred and twenty-six healthy volunteers (201 male, 225 female), aged 16-93 years (mean +/- SD, 41.92 +/- 18.19 years) undertook the tests individually under supervised conditions. Seventy percent of subjects were randomly allocated to the derivation group (n = 296), and the rest to the validation group (n = 130). RSPM score was positively correlated with CGWRT score and years of education. RSPM and CGWRT scores and years of education were also inversely correlated with age, but the declining trend for RSPM performance against age was steeper than that for CGWRT performance. Separate multiple regression equations were derived for estimating RSPM scores using different combinations of age, years of education, and CGWRT score for both groups. The multiple regression coefficient of each equation ranged from 0.71 to 0.80 with the standard error of estimate between 7 and 8 RSPM points. When fitting the data of one group to the equations derived from its counterpart group, the cross-validation multiple regression coefficients ranged from 0.71 to 0.79. There were no significant differences in the 'predicted-obtained' RSPM discrepancies between any equations. The regression equations derived in the present study may provide a basis for estimating premorbid RSPM performance.

  5. Magnitude of flood flows for selected annual exceedance probabilities for streams in Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.

    2017-05-11

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Transportation, determined the magnitude of flood flows at selected annual exceedance prob­abilities (AEPs) at streamgages in Massachusetts and from these data developed equations for estimating flood flows at ungaged locations in the State. Flood magnitudes were deter­mined for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs at 220 streamgages, 125 of which are in Massachusetts and 95 are in the adjacent States of Connecticut, New Hamp­shire, New York, Rhode Island, and Vermont. AEP flood flows were computed for streamgages using the expected moments algorithm weighted with a recently computed regional skew­ness coefficient for New England.Regional regression equations were developed to estimate the magnitude of floods for selected AEP flows at ungaged sites from 199 selected streamgages and for 60 potential explanatory basin characteristics. AEP flows for 21 of the 125 streamgages in Massachusetts were not used in the final regional regression analysis, primarily because of regulation or redundancy. The final regression equations used general­ized least squares methods to account for streamgage record length and correlation. Drainage area, mean basin elevation, and basin storage explained 86 to 93 percent of the variance in flood magnitude from the 50- to 0.2-percent AEPs, respec­tively. The estimates of AEP flows at streamgages can be improved by using a weighted estimate that is based on the magnitude of the flood and associated uncertainty from the at-site analysis and the regional regression equations. Weighting procedures for estimating AEP flows at an ungaged site on a gaged stream also are provided that improve estimates of flood flows at the ungaged site when hydrologic characteristics do not abruptly change.Urbanization expressed as the percentage of imperviousness provided some explanatory power in the regional regression; however, it was not statistically significant at the 95-percent confidence level for any of the AEPs examined. The effect of urbanization on flood flows indicates a complex interaction with other basin characteristics. Another complicating factor is the assumption of stationarity, that is, the assumption that annual peak flows exhibit no significant trend over time. The results of the analysis show that stationarity does not prevail at all of the streamgages. About 27 percent of streamgages in Massachusetts and about 42 percent of streamgages in adjacent States with 20 or more years of systematic record used in the study show a significant positive trend at the 95-percent confidence level. The remaining streamgages had both positive and negative trends, but the trends were not statistically significant. Trends were shown to vary over time. In particular, during the past decade (2004–2013), peak flows were persistently above normal, which may give the impression of positive trends. Only continued monitoring will provide the information needed to determine whether recent increases in annual peak flows are a normal oscillation or a true trend.The analysis used 37 years of additional data obtained since the last comprehensive study of flood flows in Massa­chusetts. In addition, new methods for computing flood flows at streamgages and regionalization improved estimates of flood magnitudes at gaged and ungaged locations and better defined the uncertainty of the estimates of AEP floods.

  6. Estimating air drying times of lumber with multiple regression

    Treesearch

    William T. Simpson

    2004-01-01

    In this study, the applicability of a multiple regression equation for estimating air drying times of red oak, sugar maple, and ponderosa pine lumber was evaluated. The equation allows prediction of estimated air drying times from historic weather records of temperature and relative humidity at any desired location.

  7. National scale biomass estimators for United States tree species

    Treesearch

    Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey

    2003-01-01

    Estimates of national-scale forest carbon (C) stocks and fluxes are typically based on allometric regression equations developed using dimensional analysis techniques. However, the literature is inconsistent and incomplete with respect to large-scale forest C estimation. We compiled all available diameter-based allometric regression equations for estimating total...

  8. Data-driven discovery of partial differential equations

    PubMed Central

    Rudy, Samuel H.; Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan

    2017-01-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg–de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable. PMID:28508044

  9. Magnitude and Frequency of Rural Floods in the Southeastern United States, through 2006: Volume 2, North Carolina

    USGS Publications Warehouse

    Weaver, J. Curtis; Feaster, Toby D.; Gotvald, Anthony J.

    2009-01-01

    Reliable estimates of the magnitude and frequency of floods are required for the economical and safe design of transportation and water-conveyance structures. A multistate approach was used to update methods for estimating the magnitude and frequency of floods in rural, ungaged basins in North Carolina, South Carolina, and Georgia that are not substantially affected by regulation, tidal fluctuations, or urban development. In North Carolina, annual peak-flow data available through September 2006 were available for 584 sites; 402 of these sites had a total of 10 or more years of systematic record that is required for at-site, flood-frequency analysis. Following data reviews and the computation of 20 physical and climatic basin characteristics for each station as well as at-site flood-frequency statistics, annual peak-flow data were identified for 363 sites in North Carolina suitable for use in this analysis. Among these 363 sites, 19 sites had records that could be divided into unregulated and regulated/ channelized annual peak discharges, which means peak-flow records were identified for a total of 382 cases in North Carolina. Considering the 382 cases, at-site flood-frequency statistics are provided for 333 unregulated cases (also used for the regression database) and 49 regulated/channelized cases. The flood-frequency statistics for the 333 unregulated sites were combined with data for sites from South Carolina, Georgia, and adjacent parts of Alabama, Florida, Tennessee, and Virginia to create a database of 943 sites considered for use in the regional regression analysis. Flood-frequency statistics were computed by fitting logarithms (base 10) of the annual peak flows to a log-Pearson Type III distribution. As part of the computation process, a new generalized skew coefficient was developed by using a Bayesian generalized least-squares regression model. Exploratory regression analyses using ordinary least-squares regression completed on the initial database of 943 sites resulted in defining five hydrologic regions for North Carolina, South Carolina, and Georgia. Stations with drainage areas less than 1 square mile were removed from the database, and a procedure to examine for basin redundancy (based on drainage area and periods of record) also resulted in the removal of some stations from the regression database. Flood-frequency estimates and basin characteristics for 828 gaged stations were combined to form the final database that was used in the regional regression analysis. Regional regression analysis, using generalized least-squares regression, was used to develop a set of predictive equations that can be used for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent chance exceedance flows for rural ungaged, basins in North Carolina, South Carolina, and Georgia. The final predictive equations are all functions of drainage area and the percentage of drainage basin within each of the five hydrologic regions. Average errors of prediction for these regression equations range from 34.0 to 47.7 percent. Discharge estimates determined from the systematic records for the current study are, on average, larger in magnitude than those from a previous study for the highest percent chance exceedances (50 and 20 percent) and tend to be smaller than those from the previous study for the lower percent chance exceedances when all sites are considered as a group. For example, mean differences for sites in the Piedmont hydrologic region range from positive 0.5 percent for the 50-percent chance exceedance flow to negative 4.6 percent for the 0.2-percent chance exceedance flow when stations are grouped by hydrologic region. Similarly for the same hydrologic region, median differences range from positive 0.9 percent for the 50-percent chance exceedance flow to negative 7.1 percent for the 0.2-percent chance exceedance flow. However, mean and median percentage differences between the estimates from the previous and curre

  10. Comparison of methods for the prediction of human clearance from hepatocyte intrinsic clearance for a set of reference compounds and an external evaluation set.

    PubMed

    Yamagata, Tetsuo; Zanelli, Ugo; Gallemann, Dieter; Perrin, Dominique; Dolgos, Hugues; Petersson, Carl

    2017-09-01

    1. We compared direct scaling, regression model equation and the so-called "Poulin et al." methods to scale clearance (CL) from in vitro intrinsic clearance (CL int ) measured in human hepatocytes using two sets of compounds. One reference set comprised of 20 compounds with known elimination pathways and one external evaluation set based on 17 compounds development in Merck (MS). 2. A 90% prospective confidence interval was calculated using the reference set. This interval was found relevant for the regression equation method. The three outliers identified were justified on the basis of their elimination mechanism. 3. The direct scaling method showed a systematic underestimation of clearance in both the reference and evaluation sets. The "Poulin et al." and the regression equation methods showed no obvious bias in either the reference or evaluation sets. 4. The regression model equation was slightly superior to the "Poulin et al." method in the reference set and showed a better absolute average fold error (AAFE) of value 1.3 compared to 1.6. A larger difference was observed in the evaluation set were the regression method and "Poulin et al." resulted in an AAFE of 1.7 and 2.6, respectively (removing the three compounds with known issues mentioned above). A similar pattern was observed for the correlation coefficient. Based on these data we suggest the regression equation method combined with a prospective confidence interval as the first choice for the extrapolation of human in vivo hepatic metabolic clearance from in vitro systems.

  11. A Modified Double Multiple Nonlinear Regression Constitutive Equation for Modeling and Prediction of High Temperature Flow Behavior of BFe10-1-2 Alloy

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Wang, Kuaishe; Shi, Jiamin; Wang, Wen; Liu, Yingying

    2018-01-01

    Constitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress-strain data from isothermal hot compression tests, in a wide range of temperature of 1,023 1,273 K, and strain rate range of 0.001 10 s-1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.

  12. Ethnic Differences in Family Factors Related to Early Drug Initiation*

    PubMed Central

    CATALANO, RICHARD F.; MORRISON, DIANE M.; WELLS, ELIZABETH A.; GILLMORE, MARY R.; IRITANI, BONITA; HAWKINS, J. DAVID

    2007-01-01

    The literature on family predictors of substance use for the general population is reviewed and compared to findings for three specific ethnic groups: black, white and Asian-Americans. Rates of substance use initiation are examined in a sample of 919 urban 5th-grade students. Ethnic differences on measures of family predictors are examined and significant ethnic differences are found on several of these factors. Finally, separate regressions for black, white and Asian American youths of family factors on the variety of substances initiated examine ethnic similarities and differences in predictors. The results demonstrate significant differences by ethnicity in family management practices, involvement in family activity, sibling deviance, parental disapproval of children's drinking and family structure. The regression equations identified unique as well as common predictors of the variety of substances initiated by the end of 5th grade. Implications of the results are discussed. PMID:1285743

  13. Methods for estimating peak-flow frequencies at ungaged sites in Montana based on data through water year 2011: Chapter F in Montana StreamStats

    USGS Publications Warehouse

    Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from this study were compared with results of previous studies. For most hydrologic regions, the regression equations reported for this study had lower mean standard errors of prediction (in percent) than the previously reported regression equations for Montana. The equations presented for this study are considered to be an improvement on the previously reported equations primarily because this study (1) included 13 more years of peak-flow data; (2) included 35 more streamflow-gaging stations than previous studies; (3) used a detailed geographic information system (GIS)-based definition of the regulation status of streamflow-gaging stations, which allowed better determination of the unregulated peak-flow records that are appropriate for use in the regional regression analysis; (4) included advancements in GIS and remote-sensing technologies, which allowed more convenient calculation of basin characteristics and investigation of many more candidate basin characteristics; and (5) included advancements in computational and analytical methods, which allowed more thorough and consistent data analysis.This report chapter also presents other methods for estimating peak-flow frequencies at ungaged sites. Two methods for estimating peak-flow frequencies at ungaged sites located on the same streams as streamflow-gaging stations are described. Additionally, envelope curves relating maximum recorded annual peak flows to contributing drainage area for each of the eight hydrologic regions in Montana are presented and compared to a national envelope curve. In addition to providing general information on characteristics of large peak flows, the regional envelope curves can be used to assess the reasonableness of peak-flow frequency estimates determined using the regression equations.

  14. Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma

    USGS Publications Warehouse

    Esralew, Rachel A.; Smith, S. Jerrod

    2010-01-01

    Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage-basin characteristics by using a k-means cluster analysis. Three regions were identified for Oklahoma on the basis of the clustering of gaging stations and a manual delineation of distinguishable hydrologic and geologic boundaries: Region 1 (western Oklahoma excluding the Oklahoma and Texas Panhandles), Region 2 (north- and south-central Oklahoma), and Region 3 (eastern and central Oklahoma). A total of 228 regression equations (225 flow-duration regressions and three annual mean-flow regressions) were developed using ordinary least-squares and left-censored (Tobit) multiple-regression techniques. These equations can be used to estimate 75 flow-duration statistics and annual mean-flow for ungaged streams in the three regions. Drainage-basin characteristics that were statistically significant independent variables in the regression analyses were (1) contributing drainage area; (2) station elevation; (3) mean drainage-basin elevation; (4) channel slope; (5) percentage of forested canopy; (6) mean drainage-basin hillslope; (7) soil permeability; and (8) mean annual, seasonal, and monthly precipitation. The accuracy of flow-duration regression equations generally decreased from high-flow exceedance (low-exceedance probability) to low-flow exceedance (high-exceedance probability) . This decrease may have happened because a greater uncertainty exists for low-flow estimates and low-flow is largely affected by localized geology that was not quantified by the drainage-basin characteristics selected. The standard errors of estimate of regression equations for Region 1 (western Oklahoma) were substantially larger than those standard errors for other regions, especially for low-flow exceedances. These errors may be a result of greater variability in low flow because of increased irrigation activities in this region. Regression equations may not be reliable for sites where the drainage-basin characteristics are outside the range of values of independent vari

  15. A regression technique for evaluation and quantification for water quality parameters from remote sensing data

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.

    1979-01-01

    The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.

  16. Simple linear and multivariate regression models.

    PubMed

    Rodríguez del Águila, M M; Benítez-Parejo, N

    2011-01-01

    In biomedical research it is common to find problems in which we wish to relate a response variable to one or more variables capable of describing the behaviour of the former variable by means of mathematical models. Regression techniques are used to this effect, in which an equation is determined relating the two variables. While such equations can have different forms, linear equations are the most widely used form and are easy to interpret. The present article describes simple and multiple linear regression models, how they are calculated, and how their applicability assumptions are checked. Illustrative examples are provided, based on the use of the freely accessible R program. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.

  17. The Hydrothermal Chemistry of Gold, Arsenic, Antimony, Mercury and Silver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bessinger, Brad; Apps, John A.

    2003-03-23

    A comprehensive thermodynamic database based on the Helgeson-Kirkham-Flowers (HKF) equation of state was developed for metal complexes in hydrothermal systems. Because this equation of state has been shown to accurately predict standard partial molal thermodynamic properties of aqueous species at elevated temperatures and pressures, this study provides the necessary foundation for future exploration into transport and depositional processes in polymetallic ore deposits. The HKF equation of state parameters for gold, arsenic, antimony, mercury, and silver sulfide and hydroxide complexes were derived from experimental equilibrium constants using nonlinear regression calculations. In order to ensure that the resulting parameters were internally consistent,more » those experiments utilizing incompatible thermodynamic data were re-speciated prior to regression. Because new experimental studies were used to revise the HKF parameters for H2S0 and HS-1, those metal complexes for which HKF parameters had been previously derived were also updated. It was found that predicted thermodynamic properties of metal complexes are consistent with linear correlations between standard partial molal thermodynamic properties. This result allowed assessment of several complexes for which experimental data necessary to perform regression calculations was limited. Oxygen fugacity-temperature diagrams were calculated to illustrate how thermodynamic data improves our understanding of depositional processes. Predicted thermodynamic properties were used to investigate metal transport in Carlin-type gold deposits. Assuming a linear relationship between temperature and pressure, metals are predicted to predominantly be transported as sulfide complexes at a total aqueous sulfur concentration of 0.05 m. Also, the presence of arsenic and antimony mineral phases in the deposits are shown to restrict mineralization within a limited range of chemical conditions. Finally, at a lesser aqueous sulfur concentration of 0.01 m, host rock sulfidation can explain the origin of arsenic and antimony minerals within the paragenetic sequence.« less

  18. Estimating the magnitude of peak flows for streams in Kentucky for selected recurrence intervals

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Martin, Gary R.

    2003-01-01

    This report gives estimates of, and presents techniques for estimating, the magnitude of peak flows for streams in Kentucky for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. A flowchart in this report guides the user to the appropriate estimates and (or) estimating techniques for a site on a specific stream. Estimates of peak flows are given for 222 U.S. Geological Survey streamflow-gaging stations in Kentucky. In the development of the peak-flow estimates at gaging stations, a new generalized skew coefficient was calculated for the State. This single statewide value of 0.011 (with a standard error of prediction of 0.520) is more appropriate for Kentucky than the national skew isoline map in Bulletin 17B of the Interagency Advisory Committee on Water Data. Regression equations are presented for estimating the peak flows on ungaged, unregulated streams in rural drainage basins. The equations were developed by use of generalized-least-squares regression procedures at 187 U.S. Geological Survey gaging stations in Kentucky and 51 stations in surrounding States. Kentucky was divided into seven flood regions. Total drainage area is used in the final regression equations as the sole explanatory variable, except in Regions 1 and 4 where main-channel slope also was used. The smallest average standard errors of prediction were in Region 3 (from -13.1 to +15.0 percent) and the largest average standard errors of prediction were in Region 5 (from -37.6 to +60.3 percent). One section of this report describes techniques for estimating peak flows for ungaged sites on gaged, unregulated streams in rural drainage basins. Another section references two previous U.S. Geological Survey reports for peak-flow estimates on ungaged, unregulated, urban streams. Estimating peak flows at ungaged sites on regulated streams is beyond the scope of this report, because peak flows on regulated streams are dependent upon variable human activities.

  19. A Comparison of Regional and SiteSpecific Volume Estimation Equations

    Treesearch

    Joe P. McClure; Jana Anderson; Hans T. Schreuder

    1987-01-01

    Regression equations for volume by region and site class were examined for lobiolly pine. The regressions for the Coastal Plain and Piedmont regions had significantly different slopes. The results shared important practical differences in percentage of confidence intervals containing the true total volume and in percentage of estimates within a specific proportion of...

  20. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    ERIC Educational Resources Information Center

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  1. Correlations of turbidity to suspended-sediment concentration in the Toutle River Basin, near Mount St. Helens, Washington, 2010-11

    USGS Publications Warehouse

    Uhrich, Mark A.; Kolasinac, Jasna; Booth, Pamela L.; Fountain, Robert L.; Spicer, Kurt R.; Mosbrucker, Adam R.

    2014-01-01

    Researchers at the U.S. Geological Survey, Cascades Volcano Observatory, investigated alternative methods for the traditional sample-based sediment record procedure in determining suspended-sediment concentration (SSC) and discharge. One such sediment-surrogate technique was developed using turbidity and discharge to estimate SSC for two gaging stations in the Toutle River Basin near Mount St. Helens, Washington. To provide context for the study, methods for collecting sediment data and monitoring turbidity are discussed. Statistical methods used include the development of ordinary least squares regression models for each gaging station. Issues of time-related autocorrelation also are evaluated. Addition of lagged explanatory variables was used to account for autocorrelation in the turbidity, discharge, and SSC data. Final regression model equations and plots are presented for the two gaging stations. The regression models support near-real-time estimates of SSC and improved suspended-sediment discharge records by incorporating continuous instream turbidity. Future use of such models may potentially lower the costs of sediment monitoring by reducing time it takes to collect and process samples and to derive a sediment-discharge record.

  2. Thermal requirements of Dermanyssus gallinae (De Geer, 1778) (Acari: Dermanyssidae).

    PubMed

    Tucci, Edna Clara; do Prado, Angelo P; de Araújo, Raquel Pires

    2008-01-01

    The thermal requirements for development of Dermanyssus gallinae were studied under laboratory conditions at 15, 20, 25, 30 and 35 degrees C, a 12h photoperiod and 60-85% RH. The thermal requirements for D. gallinae were as follows. Preoviposition: base temperature 3.4 degrees C, thermal constant (k) 562.85 degree-hours, determination coefficient (R(2)) 0.59, regression equation: Y= -0.006035 + 0.001777x. Egg: base temperature 10.60 degrees C, thermal constant (k) 689.65 degree-hours, determination coefficient (R(2)) 0.94, regression equation: Y= -0.015367 + 0.001450x. Larva: base temperature 9.82 degrees C, thermal constant (k) 464.91 degree-hours, determination coefficient (R(2)) 0.87, regression equation: Y= -0.021123 + 0.002151x. Protonymph: base temperature 10.17 degrees C, thermal constant (k) 504.49 degree-hours, determination coefficient (R(2)) 0.90, regression equation: Y= -0.020152 + 0.001982x. Deutonymph: base temperature 11.80 degrees C, thermal constant (k) 501.11 degree-hours, determination coefficient (R(2)) 0.99, regression equation: Y= -0.023555 + 0.001996x. The results obtained showed that 15 to 42 generations of Dermanyssus gallinae may occur during the year in the State of São Paulo, as estimated based on isotherm charts. Dermanyssus gallinae may develop continually in the State of São Paulo, with a population decrease in the winter. There were differences between the developmental stages of D. gallinae in relation to thermal requirements.

  3. Stature estimation equations for South Asian skeletons based on DXA scans of contemporary adults.

    PubMed

    Pomeroy, Emma; Mushrif-Tripathy, Veena; Wells, Jonathan C K; Kulkarni, Bharati; Kinra, Sanjay; Stock, Jay T

    2018-05-03

    Stature estimation from the skeleton is a classic anthropological problem, and recent years have seen the proliferation of population-specific regression equations. Many rely on the anatomical reconstruction of stature from archaeological skeletons to derive regression equations based on long bone lengths, but this requires a collection with very good preservation. In some regions, for example, South Asia, typical environmental conditions preclude the sufficient preservation of skeletal remains. Large-scale epidemiological studies that include medical imaging of the skeleton by techniques such as dual-energy X-ray absorptiometry (DXA) offer new potential datasets for developing such equations. We derived estimation equations based on known height and bone lengths measured from DXA scans from the Andhra Pradesh Children and Parents Study (Hyderabad, India). Given debates on the most appropriate regression model to use, multiple methods were compared, and the performance of the equations was tested on a published skeletal dataset of individuals with known stature. The equations have standard errors of estimates and prediction errors similar to those derived using anatomical reconstruction or from cadaveric datasets. As measured by the number of significant differences between true and estimated stature, and the prediction errors, the new equations perform as well as, and generally better than, published equations commonly used on South Asian skeletons or based on Indian cadaveric datasets. This study demonstrates the utility of DXA scans as a data source for developing stature estimation equations and offer a new set of equations for use with South Asian datasets. © 2018 Wiley Periodicals, Inc.

  4. Application of stepwise multiple regression techniques to inversion of Nimbus 'IRIS' observations.

    NASA Technical Reports Server (NTRS)

    Ohring, G.

    1972-01-01

    Exploratory studies with Nimbus-3 infrared interferometer-spectrometer (IRIS) data indicate that, in addition to temperature, such meteorological parameters as geopotential heights of pressure surfaces, tropopause pressure, and tropopause temperature can be inferred from the observed spectra with the use of simple regression equations. The technique of screening the IRIS spectral data by means of stepwise regression to obtain the best radiation predictors of meteorological parameters is validated. The simplicity of application of the technique and the simplicity of the derived linear regression equations - which contain only a few terms - suggest usefulness for this approach. Based upon the results obtained, suggestions are made for further development and exploitation of the stepwise regression analysis technique.

  5. Selected Streamflow Statistics and Regression Equations for Predicting Statistics at Stream Locations in Monroe County, Pennsylvania

    USGS Publications Warehouse

    Thompson, Ronald E.; Hoffman, Scott A.

    2006-01-01

    A suite of 28 streamflow statistics, ranging from extreme low to high flows, was computed for 17 continuous-record streamflow-gaging stations and predicted for 20 partial-record stations in Monroe County and contiguous counties in north-eastern Pennsylvania. The predicted statistics for the partial-record stations were based on regression analyses relating inter-mittent flow measurements made at the partial-record stations indexed to concurrent daily mean flows at continuous-record stations during base-flow conditions. The same statistics also were predicted for 134 ungaged stream locations in Monroe County on the basis of regression analyses relating the statistics to GIS-determined basin characteristics for the continuous-record station drainage areas. The prediction methodology for developing the regression equations used to estimate statistics was developed for estimating low-flow frequencies. This study and a companion study found that the methodology also has application potential for predicting intermediate- and high-flow statistics. The statistics included mean monthly flows, mean annual flow, 7-day low flows for three recurrence intervals, nine flow durations, mean annual base flow, and annual mean base flows for two recurrence intervals. Low standard errors of prediction and high coefficients of determination (R2) indicated good results in using the regression equations to predict the statistics. Regression equations for the larger flow statistics tended to have lower standard errors of prediction and higher coefficients of determination (R2) than equations for the smaller flow statistics. The report discusses the methodologies used in determining the statistics and the limitations of the statistics and the equations used to predict the statistics. Caution is indicated in using the predicted statistics for small drainage area situations. Study results constitute input needed by water-resource managers in Monroe County for planning purposes and evaluation of water-resources availability.

  6. Estimating peak discharges, flood volumes, and hydrograph shapes of small ungaged urban streams in Ohio

    USGS Publications Warehouse

    Sherwood, J.M.

    1986-01-01

    Methods are presented for estimating peak discharges, flood volumes and hydrograph shapes of small (less than 5 sq mi) urban streams in Ohio. Examples of how to use the various regression equations and estimating techniques also are presented. Multiple-regression equations were developed for estimating peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The significant independent variables affecting peak discharge are drainage area, main-channel slope, average basin-elevation index, and basin-development factor. Standard errors of regression and prediction for the peak discharge equations range from +/-37% to +/-41%. An equation also was developed to estimate the flood volume of a given peak discharge. Peak discharge, drainage area, main-channel slope, and basin-development factor were found to be the significant independent variables affecting flood volumes for given peak discharges. The standard error of regression for the volume equation is +/-52%. A technique is described for estimating the shape of a runoff hydrograph by applying a specific peak discharge and the estimated lagtime to a dimensionless hydrograph. An equation for estimating the lagtime of a basin was developed. Two variables--main-channel length divided by the square root of the main-channel slope and basin-development factor--have a significant effect on basin lagtime. The standard error of regression for the lagtime equation is +/-48%. The data base for the study was established by collecting rainfall-runoff data at 30 basins distributed throughout several metropolitan areas of Ohio. Five to eight years of data were collected at a 5-min record interval. The USGS rainfall-runoff model A634 was calibrated for each site. The calibrated models were used in conjunction with long-term rainfall records to generate a long-term streamflow record for each site. Each annual peak-discharge record was fitted to a Log-Pearson Type III frequency curve. Multiple-regression techniques were then used to analyze the peak discharge data as a function of the basin characteristics of the 30 sites. (Author 's abstract)

  7. An evaluation of regression methods to estimate nutritional condition of canvasbacks and other water birds

    USGS Publications Warehouse

    Sparling, D.W.; Barzen, J.A.; Lovvorn, J.R.; Serie, J.R.

    1992-01-01

    Regression equations that use mensural data to estimate body condition have been developed for several water birds. These equations often have been based on data that represent different sexes, age classes, or seasons, without being adequately tested for intergroup differences. We used proximate carcass analysis of 538 adult and juvenile canvasbacks (Aythya valisineria ) collected during fall migration, winter, and spring migrations in 1975-76 and 1982-85 to test regression methods for estimating body condition.

  8. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North at Fargo and Grand Forks, North Dakota, 2003-12

    USGS Publications Warehouse

    Galloway, Joel M.

    2014-01-01

    The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time component also was a statistically significant explanatory variable for estimating chloride. The regression equations for chloride at the Red River at Fargo provided a fair relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.66 and the equation for the Red River at Grand Forks provided a relatively good relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.77. Turbidity and streamflow were statistically significant explanatory variables for estimating nitrate plus nitrite concentrations at the Red River at Fargo and turbidity was the only statistically significant explanatory variable for estimating nitrate plus nitrite concentrations at Grand Forks. The regression equation for the Red River at Fargo provided a relatively poor relation between nitrate plus nitrite concentrations, turbidity, and streamflow, with an adjusted coefficient of determination of 0.46. The regression equation for the Red River at Grand Forks provided a fair relation between nitrate plus nitrite concentrations and turbidity, with an adjusted coefficient of determination of 0.73. Some of the variability that was not explained by the equations might be attributed to different sources contributing nitrates to the stream at different times. Turbidity, streamflow, and a seasonal component were statistically significant explanatory variables for estimating total phosphorus at the Red River at Fargo and Grand Forks. The regression equation for the Red River at Fargo provided a relatively fair relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.74. The regression equation for the Red River at Grand Forks provided a good relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.87. For the Red River at Fargo, turbidity and streamflow were statistically significant explanatory variables for estimating suspended-sediment concentrations. For the Red River at Grand Forks, turbidity was the only statistically significant explanatory variable for estimating suspended-sediment concentration. The regression equation at the Red River at Fargo provided a good relation between suspended-sediment concentration, turbidity, and streamflow, with an adjusted coefficient of determination of 0.95. The regression equation for the Red River at Grand Forks provided a good relation between suspended-sediment concentration and turbidity, with an adjusted coefficient of determination of 0.96.

  9. Developing prediction equations and a mobile phone application to identify infants at risk of obesity.

    PubMed

    Santorelli, Gillian; Petherick, Emily S; Wright, John; Wilson, Brad; Samiei, Haider; Cameron, Noël; Johnson, William

    2013-01-01

    Advancements in knowledge of obesity aetiology and mobile phone technology have created the opportunity to develop an electronic tool to predict an infant's risk of childhood obesity. The study aims were to develop and validate equations for the prediction of childhood obesity and integrate them into a mobile phone application (App). Anthropometry and childhood obesity risk data were obtained for 1868 UK-born White or South Asian infants in the Born in Bradford cohort. Logistic regression was used to develop prediction equations (at 6 ± 1.5, 9 ± 1.5 and 12 ± 1.5 months) for risk of childhood obesity (BMI at 2 years >91(st) centile and weight gain from 0-2 years >1 centile band) incorporating sex, birth weight, and weight gain as predictors. The discrimination accuracy of the equations was assessed by the area under the curve (AUC); internal validity by comparing area under the curve to those obtained in bootstrapped samples; and external validity by applying the equations to an external sample. An App was built to incorporate six final equations (two at each age, one of which included maternal BMI). The equations had good discrimination (AUCs 86-91%), with the addition of maternal BMI marginally improving prediction. The AUCs in the bootstrapped and external validation samples were similar to those obtained in the development sample. The App is user-friendly, requires a minimum amount of information, and provides a risk assessment of low, medium, or high accompanied by advice and website links to government recommendations. Prediction equations for risk of childhood obesity have been developed and incorporated into a novel App, thereby providing proof of concept that childhood obesity prediction research can be integrated with advancements in technology.

  10. A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams

    USGS Publications Warehouse

    Flynn, Robert H.

    2003-01-01

    The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.

  11. Use of Thematic Mapper for water quality assessment

    NASA Technical Reports Server (NTRS)

    Horn, E. M.; Morrissey, L. A.

    1984-01-01

    The evaluation of simulated TM data obtained on an ER-2 aircraft at twenty-five predesignated sample sites for mapping water quality factors such as conductivity, pH, suspended solids, turbidity, temperature, and depth, is discussed. Using a multiple regression for the seven TM bands, an equation is developed for the suspended solids. TM bands 1, 2, 3, 4, and 6 are used with logarithm conductivity in a multiple regression. The assessment of regression equations for a high coefficient of determination (R-squared) and statistical significance is considered. Confidence intervals about the mean regression point are calculated in order to assess the robustness of the regressions used for mapping conductivity, turbidity, and suspended solids, and by regressing random subsamples of sites and comparing the resultant range of R-squared, cross validation is conducted.

  12. Development of Multiple Regression Equations To Predict Fourth Graders' Achievement in Reading and Selected Content Areas.

    ERIC Educational Resources Information Center

    Hafner, Lawrence E.

    A study developed a multiple regression prediction equation for each of six selected achievement variables in a popular standardized test of achievement. Subjects, 42 fourth-grade pupils randomly selected across several classes in a large elementary school in a north Florida city, were administered several standardized tests to determine predictor…

  13. Flood characteristics of urban watersheds in the United States

    USGS Publications Warehouse

    Sauer, Vernon B.; Thomas, W.O.; Stricker, V.A.; Wilson, K.V.

    1983-01-01

    A nationwide study of flood magnitude and frequency in urban areas was made for the purpose of reviewing available literature, compiling an urban flood data base, and developing methods of estimating urban floodflow characteristics in ungaged areas. The literature review contains synopses of 128 recent publications related to urban floodflow. A data base of 269 gaged basins in 56 cities and 31 States, including Hawaii, contains a wide variety of topographic and climatic characteristics, land-use variables, indices of urbanization, and flood-frequency estimates. Three sets of regression equations were developed to estimate flood discharges for ungaged sites for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years. Two sets of regression equations are based on seven independent parameters and the third is based on three independent parameters. The only difference in the two sets of seven-parameter equations is the use of basin lag time in one and lake and reservoir storage in the other. Of primary importance in these equations is an independent estimate of the equivalent rural discharge for the ungaged basin. The equations adjust the equivalent rural discharge to an urban condition. The primary adjustment factor, or index of urbanization, is the basin development factor, a measure of the extent of development of the drainage system in the basin. This measure includes evaluations of storm drains (sewers), channel improvements, and curb-and-gutter streets. The basin development factor is statistically very significant and offers a simple and effective way of accounting for drainage development and runoff response in urban areas. Percentage of impervious area is also included in the seven-parameter equations as an additional measure of urbanization and apparently accounts for increased runoff volumes. This factor is not highly significant for large floods, which supports the generally held concept that imperviousness is not a dominant factor when soils become more saturated during large storms. Other parameters in the seven-parameter equations include drainage area size, channel slope, rainfall intensity, lake and reservoir storage, and basin lag time. These factors are all statistically significant and provide logical indices of basin conditions. The three-parameter equations include only the three most significant parameters: rural discharge, basin-development factor, and drainage area size. All three sets of regression equations provide unbiased estimates of urban flood frequency. The seven-parameter regression equations without basin lag time have average standard errors of regression varying from ? 37 percent for the 5-year flood to ? 44 percent for the 100-year flood and ? 49 percent for the 500-year flood. The other two sets of regression equations have similar accuracy. Several tests for bias, sensitivity, and hydrologic consistency are included which support the conclusion that the equations are useful throughout the United States. All estimating equations were developed from data collected on drainage basins where temporary in-channel storage, due to highway embankments, was not significant. Consequently, estimates made with these equations do not account for the reducing effect of this temporary detention storage.

  14. Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in Minnesota Based on Data through Water Year 2005

    USGS Publications Warehouse

    Lorenz, David L.; Sanocki, Chris A.; Kocian, Matthew J.

    2010-01-01

    Knowledge of the peak flow of floods of a given recurrence interval is essential for regulation and planning of water resources and for design of bridges, culverts, and dams along Minnesota's rivers and streams. Statistical techniques are needed to estimate peak flow at ungaged sites because long-term streamflow records are available at relatively few places. Because of the need to have up-to-date peak-flow frequency information in order to estimate peak flows at ungaged sites, the U.S. Geological Survey (USGS) conducted a peak-flow frequency study in cooperation with the Minnesota Department of Transportation and the Minnesota Pollution Control Agency. Estimates of peak-flow magnitudes for 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are presented for 330 streamflow-gaging stations in Minnesota and adjacent areas in Iowa and South Dakota based on data through water year 2005. The peak-flow frequency information was subsequently used in regression analyses to develop equations relating peak flows for selected recurrence intervals to various basin and climatic characteristics. Two statistically derived techniques-regional regression equation and region of influence regression-can be used to estimate peak flow on ungaged streams smaller than 3,000 square miles in Minnesota. Regional regression equations were developed for selected recurrence intervals in each of six regions in Minnesota: A (northwestern), B (north central and east central), C (northeastern), D (west central and south central), E (southwestern), and F (southeastern). The regression equations can be used to estimate peak flows at ungaged sites. The region of influence regression technique dynamically selects streamflow-gaging stations with characteristics similar to a site of interest. Thus, the region of influence regression technique allows use of a potentially unique set of gaging stations for estimating peak flow at each site of interest. Two methods of selecting streamflow-gaging stations, similarity and proximity, can be used for the region of influence regression technique. The regional regression equation technique is the preferred technique as an estimate of peak flow in all six regions for ungaged sites. The region of influence regression technique is not appropriate for regions C, E, and F because the interrelations of some characteristics of those regions do not agree with the interrelations throughout the rest of the State. Both the similarity and proximity methods for the region of influence technique can be used in the other regions (A, B, and D) to provide additional estimates of peak flow. The peak-flow-frequency estimates and basin characteristics for selected streamflow-gaging stations and regional peak-flow regression equations are included in this report.

  15. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability?

    PubMed

    García-Ramos, Amador; Pestaña-Melero, Francisco L; Pérez-Castilla, Alejandro; Rojas, Francisco J; Gregory Haff, G

    2018-05-01

    García-Ramos, A, Pestaña-Melero, FL, Pérez-Castilla, A, Rojas, FJ, and Haff, GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res 32(5): 1273-1279, 2018-This study aimed to compare between 3 velocity variables (mean velocity [MV], mean propulsive velocity [MPV], and peak velocity [PV]): (a) the linearity of the load-velocity relationship, (b) the accuracy of general regression equations to predict relative load (%1RM), and (c) the between-session reliability of the velocity attained at each percentage of the 1-repetition maximum (%1RM). The full load-velocity relationship of 30 men was evaluated by means of linear regression models in the concentric-only and eccentric-concentric bench press throw (BPT) variants performed with a Smith machine. The 2 sessions of each BPT variant were performed within the same week separated by 48-72 hours. The main findings were as follows: (a) the MV showed the strongest linearity of the load-velocity relationship (median r = 0.989 for concentric-only BPT and 0.993 for eccentric-concentric BPT), followed by MPV (median r = 0.983 for concentric-only BPT and 0.980 for eccentric-concentric BPT), and finally PV (median r = 0.974 for concentric-only BPT and 0.969 for eccentric-concentric BPT); (b) the accuracy of the general regression equations to predict relative load (%1RM) from movement velocity was higher for MV (SEE = 3.80-4.76%1RM) than for MPV (SEE = 4.91-5.56%1RM) and PV (SEE = 5.36-5.77%1RM); and (c) the PV showed the lowest within-subjects coefficient of variation (3.50%-3.87%), followed by MV (4.05%-4.93%), and finally MPV (5.11%-6.03%). Taken together, these results suggest that the MV could be the most appropriate variable for monitoring the relative load (%1RM) in the BPT exercise performed in a Smith machine.

  16. Escherichia coli bacteria density in relation to turbidity, streamflow characteristics, and season in the Chattahoochee River near Atlanta, Georgia, October 2000 through September 2008—Description, statistical analysis, and predictive modeling

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2012-01-01

    Regression analyses show that E. coli density in samples was strongly related to turbidity, streamflow characteristics, and season at both sites. The regression equation chosen for the Norcross data showed that 78 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), streamflow event (dry-weather flow or stormflow), season (cool or warm), and an interaction term that is the cross product of streamflow event and turbidity. The regression equation chosen for the Atlanta data showed that 76 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), water temperature, streamflow event, and an interaction term that is the cross product of streamflow event and turbidity. Residual analysis and model confirmation using new data indicated the regression equations selected at both sites predicted E. coli density within the 90 percent prediction intervals of the equations and could be used to predict E. coli density in real time at both sites.

  17. Predicting Diameter at Breast Height from Stump Diameters for Northeastern Tree Species

    Treesearch

    Eric H. Wharton; Eric H. Wharton

    1984-01-01

    Presents equations to predict diameter at breast height from stump diameter measurements for 17 northeastern tree species. Simple linear regression was used to develop the equations. Application of the equations is discussed.

  18. Estimates of streamflow characteristics for selected small streams, Baker River basin, Washington

    USGS Publications Warehouse

    Williams, John R.

    1987-01-01

    Regression equations were used to estimate streamflow characteristics at eight ungaged sites on small streams in the Baker River basin in the North Cascade Mountains, Washington, that could be suitable for run-of-the-river hydropower development. The regression equations were obtained by relating known streamflow characteristics at 25 gaging stations in nearby basins to several physical and climatic variables that could be easily measured in gaged or ungaged basins. The known streamflow characteristics were mean annual flows, 1-, 3-, and 7-day low flows and high flows, mean monthly flows, and flow duration. Drainage area and mean annual precipitation were not the most significant variables in all the regression equations. Variance in the low flows and the summer mean monthly flows was reduced by including an index of glacierized area within the basin as a third variable. Standard errors of estimate of the regression equations ranged from 25 to 88%, and the largest errors were associated with the low flow characteristics. Discharge measurements made at the eight sites near midmonth each month during 1981 were used to estimate monthly mean flows at the sites for that period. These measurements also were correlated with concurrent daily mean flows from eight operating gaging stations. The correlations provided estimates of mean monthly flows that compared reasonably well with those estimated by the regression analyses. (Author 's abstract)

  19. Bankfull characteristics of Ohio streams and their relation to peak streamflows

    USGS Publications Warehouse

    Sherwood, James M.; Huitger, Carrie A.

    2005-01-01

    Regional curves, simple-regression equations, and multiple-regression equations were developed to estimate bankfull width, bankfull mean depth, bankfull cross-sectional area, and bankfull discharge of rural, unregulated streams in Ohio. The methods are based on geomorphic, basin, and flood-frequency data collected at 50 study sites on unregulated natural alluvial streams in Ohio, of which 40 sites are near streamflow-gaging stations. The regional curves and simple-regression equations relate the bankfull characteristics to drainage area. The multiple-regression equations relate the bankfull characteristics to drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope. Average standard errors of prediction for bankfull width equations range from 20.6 to 24.8 percent; for bankfull mean depth, 18.8 to 20.6 percent; for bankfull cross-sectional area, 25.4 to 30.6 percent; and for bankfull discharge, 27.0 to 78.7 percent. The simple-regression (drainage-area only) equations have the highest average standard errors of prediction. The multiple-regression equations in which the explanatory variables included drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope have the lowest average standard errors of prediction. Field surveys were done at each of the 50 study sites to collect the geomorphic data. Bankfull indicators were identified and evaluated, cross-section and longitudinal profiles were surveyed, and bed- and bank-material were sampled. Field data were analyzed to determine various geomorphic characteristics such as bankfull width, bankfull mean depth, bankfull cross-sectional area, bankfull discharge, streambed slope, and bed- and bank-material particle-size distribution. The various geomorphic characteristics were analyzed by means of a combination of graphical and statistical techniques. The logarithms of the annual peak discharges for the 40 gaged study sites were fit by a Pearson Type III frequency distribution to develop flood-peak discharges associated with recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The peak-frequency data were related to geomorphic, basin, and climatic variables by multiple-regression analysis. Simple-regression equations were developed to estimate 2-, 5-, 10-, 25-, 50-, and 100-year flood-peak discharges of rural, unregulated streams in Ohio from bankfull channel cross-sectional area. The average standard errors of prediction are 31.6, 32.6, 35.9, 41.5, 46.2, and 51.2 percent, respectively. The study and methods developed are intended to improve understanding of the relations between geomorphic, basin, and flood characteristics of streams in Ohio and to aid in the design of hydraulic structures, such as culverts and bridges, where stability of the stream and structure is an important element of the design criteria. The study was done in cooperation with the Ohio Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration.

  20. [Correlation between body fat percentage and general obesity indexes in middle aged and old people in Guangzhou].

    PubMed

    Hu, Q; Jiang, C Q; Zhang, W S; Cheng, J J; Xu, L; Jin, Y L; Rao, S L; Zheng, H Q; Lam, D Q

    2016-10-10

    Objective: To examine the correlation between body fat percentage (BFP) and general obesity indexes, including body mass index (BMI), waist circumference (WC) and waist to hip ratio (WHR) and calculate the corresponding BFP cutoff values in the middle aged and old people in Guangzhou. The corresponding cut-point of optimal body fat percentage for Guangzhou older population. Methods: Based on the Guangzhou Biobank Cohort Study (GBCS), 3 490 relatively healthy Guangzhou residents aged ≥50 years were selected and were randomly divided into 2 groups. The equations between BFP and BMI, WC, WHR were set up with Curve fitting analysis in one group. The multiple regression analysis was undertaken to establish predictive equations between BFP and BMI, WC, WHR with stepwise model for adding gender, age, physical activity, drinking and smoking. Then, the optimal cut-points of BFP corresponding to BMI, WC and WHR to reflect the degree of obesity were calculated. The equations were then validated with another group. Results: BFP increased with the increase of WHR, WC and BMI. BMI was a better predictor of body fat percentage than WC and WHR. The final regression equation was BFP=(-23.47 -8.87×sex) +2.94× (BMI) - 0.024 × (BMI) 2 ,the coefficient of determination was 0.805. Based on the equation, the BFP corresponding to overweight/obesity (24 kg/m 2 ≤BMI<28 kg/m 2 ) were 24.3 % ≤BFP<31.1 % in men and 33.2 % ≤BFP<40.0 % in women, respectively. BMI had a better consistency with BFP in identify obesity compared with WC and WHR, obtained the area of ROC 0.909 in men and 0.919 in women respectively. The sensitivity and specificity were 70.3 % and 85.5 % in men; and 75.2 % and 93.0 % in women respectively. Conclusion: BFP has a better correlation with BMI. The study results indicated that BFP for middle aged and old males and females in Guangzhou corresponding to overweight/obesity (BMI≥24 kg/m 2 ) were <24.0 % and <33.0 % respectively.

  1. Parameter estimation method and updating of regional prediction equations for ungaged sites in the desert region of California

    USGS Publications Warehouse

    Barth, Nancy A.; Veilleux, Andrea G.

    2012-01-01

    The U.S. Geological Survey (USGS) is currently updating at-site flood frequency estimates for USGS streamflow-gaging stations in the desert region of California. The at-site flood-frequency analysis is complicated by short record lengths (less than 20 years is common) and numerous zero flows/low outliers at many sites. Estimates of the three parameters (mean, standard deviation, and skew) required for fitting the log Pearson Type 3 (LP3) distribution are likely to be highly unreliable based on the limited and heavily censored at-site data. In a generalization of the recommendations in Bulletin 17B, a regional analysis was used to develop regional estimates of all three parameters (mean, standard deviation, and skew) of the LP3 distribution. A regional skew value of zero from a previously published report was used with a new estimated mean squared error (MSE) of 0.20. A weighted least squares (WLS) regression method was used to develop both a regional standard deviation and a mean model based on annual peak-discharge data for 33 USGS stations throughout California’s desert region. At-site standard deviation and mean values were determined by using an expected moments algorithm (EMA) method for fitting the LP3 distribution to the logarithms of annual peak-discharge data. Additionally, a multiple Grubbs-Beck (MGB) test, a generalization of the test recommended in Bulletin 17B, was used for detecting multiple potentially influential low outliers in a flood series. The WLS regression found that no basin characteristics could explain the variability of standard deviation. Consequently, a constant regional standard deviation model was selected, resulting in a log-space value of 0.91 with a MSE of 0.03 log units. Yet drainage area was found to be statistically significant at explaining the site-to-site variability in mean. The linear WLS regional mean model based on drainage area had a Pseudo- 2 R of 51 percent and a MSE of 0.32 log units. The regional parameter estimates were then used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins. The final equations are functions of drainage area.Average standard errors of prediction for these regression equations range from 214.2 to 856.2 percent.

  2. Comparison of anatomical, functional and regression methods for estimating the rotation axes of the forearm.

    PubMed

    Fraysse, François; Thewlis, Dominic

    2014-11-07

    Numerous methods exist to estimate the pose of the axes of rotation of the forearm. These include anatomical definitions, such as the conventions proposed by the ISB, and functional methods based on instantaneous helical axes, which are commonly accepted as the modelling gold standard for non-invasive, in-vivo studies. We investigated the validity of a third method, based on regression equations, to estimate the rotation axes of the forearm. We also assessed the accuracy of both ISB methods. Axes obtained from a functional method were considered as the reference. Results indicate a large inter-subject variability in the axes positions, in accordance with previous studies. Both ISB methods gave the same level of accuracy in axes position estimations. Regression equations seem to improve estimation of the flexion-extension axis but not the pronation-supination axis. Overall, given the large inter-subject variability, the use of regression equations cannot be recommended. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Individualized prediction of lung-function decline in chronic obstructive pulmonary disease

    PubMed Central

    Zafari, Zafar; Sin, Don D.; Postma, Dirkje S.; Löfdahl, Claes-Göran; Vonk, Judith; Bryan, Stirling; Lam, Stephen; Tammemagi, C. Martin; Khakban, Rahman; Man, S.F. Paul; Tashkin, Donald; Wise, Robert A.; Connett, John E.; McManus, Bruce; Ng, Raymond; Hollander, Zsuszanna; Sadatsafavi, Mohsen

    2016-01-01

    Background: The rate of lung-function decline in chronic obstructive pulmonary disease (COPD) varies substantially among individuals. We sought to develop and validate an individualized prediction model for forced expiratory volume at 1 second (FEV1) in current smokers with mild-to-moderate COPD. Methods: Using data from a large long-term clinical trial (the Lung Health Study), we derived mixed-effects regression models to predict future FEV1 values over 11 years according to clinical traits. We modelled heterogeneity by allowing regression coefficients to vary across individuals. Two independent cohorts with COPD were used for validating the equations. Results: We used data from 5594 patients (mean age 48.4 yr, 63% men, mean baseline FEV1 2.75 L) to create the individualized prediction equations. There was significant between-individual variability in the rate of FEV1 decline, with the interval for the annual rate of decline that contained 95% of individuals being −124 to −15 mL/yr for smokers and −83 to 15 mL/yr for sustained quitters. Clinical variables in the final model explained 88% of variation around follow-up FEV1. The C statistic for predicting severity grades was 0.90. Prediction equations performed robustly in the 2 external data sets. Interpretation: A substantial part of individual variation in FEV1 decline can be explained by easily measured clinical variables. The model developed in this work can be used for prediction of future lung health in patients with mild-to-moderate COPD. Trial registration: Lung Health Study — ClinicalTrials.gov, no. NCT00000568; Pan-Canadian Early Detection of Lung Cancer Study — ClinicalTrials.gov, no. NCT00751660 PMID:27486205

  4. Equations for predicting biomass in 2- to 6-year-old Eucalyptus saligna in Hawaii

    Treesearch

    Craig D. Whitesell; Susan C. Miyasaka; Robert F. Strand; Thomas H. Schubert; Katharine E. McDuffie

    1988-01-01

    Eucalyptus saligna trees grown in short-rotation plantations on the island of Hawaii were measured, harvested, and weighed to provide data for developing regression equations using non-destructive stand measurements. Regression analysis of the data from 190 trees in the 2.0- to 3.5-year range and 96 trees in the 4- to 6-year range related stem-only...

  5. Estimating parameters for tree basal area growth with a system of equations and seemingly unrelated regressions

    Treesearch

    Charles E. Rose; Thomas B. Lynch

    2001-01-01

    A method was developed for estimating parameters in an individual tree basal area growth model using a system of equations based on dbh rank classes. The estimation method developed is a compromise between an individual tree and a stand level basal area growth model that accounts for the correlation between trees within a plot by using seemingly unrelated regression (...

  6. Regression Levels of Selected Affective Factors on Science Achievement: A Structural Equation Model with TIMSS 2011 Data

    ERIC Educational Resources Information Center

    Akilli, Mustafa

    2015-01-01

    The aim of this study is to demonstrate the science success regression levels of chosen emotional features of 8th grade students using Structural Equation Model. The study was conducted by the analysis of students' questionnaires and science success in TIMSS 2011 data using SEM. Initially, the factors that are thought to have an effect on science…

  7. Low-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly streamflow statistics computed on the individual daily mean streamflows of selected continuous-record streamgaging stations and curves describing flow-duration are presented. Text, figures, and lists are provided summarizing low-flow estimates, selected low-flow sites, delineated physiographic regions, basin characteristics, regression equations, error estimates, definitions, and data sources. This study supersedes previous studies of low flows in Virginia.

  8. Regression equations for estimating concentrations of selected water-quality constituents for selected gaging stations in the Red River of the North Basin, North Dakota, Minnesota, and South Dakota

    USGS Publications Warehouse

    Williams-Sether, Tara

    2004-01-01

    The Dakota Water Resources Act, passed by the U.S. Congress on December 15, 2000, authorized the Secretary of the Interior to conduct a comprehensive study of future water-quantity and quality needs of the Red River of the North Basin in North Dakota and possible options to meet those water needs. Previous Red River of the North Basin studies conducted by the Bureau of Reclamation used streamflow and water-quality data bases developed by the U.S. Geological Survey that included data for 1931-84. As a result of the recent congressional authorization and results of previous studies by the Bureau of Reclamation, redevelopment of the streamflow and water-quality data bases with current data through 1999 are needed in order to evaluate and predict the water-quantity and quality effects within the Red River of the North Basin. This report provides updated statistical summaries of selected water-quality constituents and streamflow and the regression relations between them.  Available data for 1931-99 were used to develop regression equations between 5 selected water-quality constituents and streamflow for 38 gaging stations in the Red River of the North Basin. The water-quality constituents that were regressed against streamflow were hardness (as CaCO3), sodium, chloride, sulfate, and dissolved solids. Statistical summaries of the selected water-quality constituents and streamflow for the gaging stations used in the regression equations development and the applications and limitations of the regression equations are presented in this report.

  9. Linear models for calculating digestibile energy for sheep diets.

    PubMed

    Fonnesbeck, P V; Christiansen, M L; Harris, L E

    1981-05-01

    Equations for estimating the digestible energy (DE) content of sheep diets were generated from the chemical contents and a factorial description of diets fed to lambs in digestion trials. The diet factors were two forages (alfalfa and grass hay), harvested at three stages of maturity (late vegetative, early bloom and full bloom), fed in two ingredient combinations (all hay or a 50:50 hay and corn grain mixture) and prepared by two forage texture processes (coarsely chopped or finely chopped and pelleted). The 2 x 3 x 2 x 2 factorial arrangement produced 24 diet treatments. These were replicated twice, for a total of 48 lamb digestion trials. In model 1 regression equations, DE was calculated directly from chemical composition of the diet. In model 2, regression equations predicted the percentage of digested nutrient from the chemical contents of the diet and then DE of the diet was calculated as the sum of the gross energy of the digested organic components. Expanded forms of model 1 and model 2 were also developed that included diet factors as qualitative indicator variables to adjust the regression constant and regression coefficients for the diet description. The expanded forms of the equations accounted for significantly more variation in DE than did the simple models and more accurately estimated DE of the diet. Information provided by the diet description proved as useful as chemical analyses for the prediction of digestibility of nutrients. The statistics indicate that, with model 1, neutral detergent fiber and plant cell wall analyses provided as much information for the estimation of DE as did model 2 with the combined information from crude protein, available carbohydrate, total lipid, cellulose and hemicellulose. Regression equations are presented for estimating DE with the most currently analyzed organic components, including linear and curvilinear variables and diet factors that significantly reduce the standard error of the estimate. To estimate De of a diet, the user utilizes the equation that uses the chemical analysis information and diet description most effectively.

  10. Performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data.

    PubMed

    Yelland, Lisa N; Salter, Amy B; Ryan, Philip

    2011-10-15

    Modified Poisson regression, which combines a log Poisson regression model with robust variance estimation, is a useful alternative to log binomial regression for estimating relative risks. Previous studies have shown both analytically and by simulation that modified Poisson regression is appropriate for independent prospective data. This method is often applied to clustered prospective data, despite a lack of evidence to support its use in this setting. The purpose of this article is to evaluate the performance of the modified Poisson regression approach for estimating relative risks from clustered prospective data, by using generalized estimating equations to account for clustering. A simulation study is conducted to compare log binomial regression and modified Poisson regression for analyzing clustered data from intervention and observational studies. Both methods generally perform well in terms of bias, type I error, and coverage. Unlike log binomial regression, modified Poisson regression is not prone to convergence problems. The methods are contrasted by using example data sets from 2 large studies. The results presented in this article support the use of modified Poisson regression as an alternative to log binomial regression for analyzing clustered prospective data when clustering is taken into account by using generalized estimating equations.

  11. Survival modeling for the estimation of transition probabilities in model-based economic evaluations in the absence of individual patient data: a tutorial.

    PubMed

    Diaby, Vakaramoko; Adunlin, Georges; Montero, Alberto J

    2014-02-01

    Survival modeling techniques are increasingly being used as part of decision modeling for health economic evaluations. As many models are available, it is imperative for interested readers to know about the steps in selecting and using the most suitable ones. The objective of this paper is to propose a tutorial for the application of appropriate survival modeling techniques to estimate transition probabilities, for use in model-based economic evaluations, in the absence of individual patient data (IPD). An illustration of the use of the tutorial is provided based on the final progression-free survival (PFS) analysis of the BOLERO-2 trial in metastatic breast cancer (mBC). An algorithm was adopted from Guyot and colleagues, and was then run in the statistical package R to reconstruct IPD, based on the final PFS analysis of the BOLERO-2 trial. It should be emphasized that the reconstructed IPD represent an approximation of the original data. Afterwards, we fitted parametric models to the reconstructed IPD in the statistical package Stata. Both statistical and graphical tests were conducted to verify the relative and absolute validity of the findings. Finally, the equations for transition probabilities were derived using the general equation for transition probabilities used in model-based economic evaluations, and the parameters were estimated from fitted distributions. The results of the application of the tutorial suggest that the log-logistic model best fits the reconstructed data from the latest published Kaplan-Meier (KM) curves of the BOLERO-2 trial. Results from the regression analyses were confirmed graphically. An equation for transition probabilities was obtained for each arm of the BOLERO-2 trial. In this paper, a tutorial was proposed and used to estimate the transition probabilities for model-based economic evaluation, based on the results of the final PFS analysis of the BOLERO-2 trial in mBC. The results of our study can serve as a basis for any model (Markov) that needs the parameterization of transition probabilities, and only has summary KM plots available.

  12. [Selecting methods of controls concentration for internal quality control and continuity of control chart between different reagent lots for HBsAg qualitative detection].

    PubMed

    Li, Jin-ming; Zheng, Huai-jing; Wang, Lu-nan; Deng, Wei

    2003-04-01

    To establish a model for one choosing controls with a suitable concentration for internal quality control (IQC) with qualitative ELISA detection, and a consecutive plotting method on Levey-Jennings control chart when reagent kit lot is changed. First, a series of control serum with 0.2, 0.5, 1.0, 2.0 and 5.0ng/ml HBsAg respectively were assessed for within-run and between-run precision according to NCCLs EP5 document. Then, a linear regression equation (y=bx + a) with best correlation coefficient (r > 0.99) was established based on S/CO values of the series of control serum. Finally, one could choose controls with S/CO value calculated from the equation (y = bx + a) minus the product of the S/CO value multiplying three-fold between-run CV to be still more than 1.0 for IQC use. For consecutive plotting on Levey-Jennings control chart when ELISA kit lot was changed, the new lot kits were used to detect the same series of HBsAg control serum as above. Then, a new linear regression equation (y2 = b2x2 + a2) with best correlation coefficient was obtained. The old one (y1 =b1x1 + a1) could be obtained based on the mean values from above precision assessment. The S/CO value of a control serum detected by new lot kit could be changed to that detected by old kit lot based on the factor of y2/y1. Therefore, the plotting on primary Levey-Jennings control chart could be continued. The within-run coefficient of variation CV of the ELISA method for control serum with 0.2, 0.5, 1.0, 2.0 and 5.0ng/ml HBsAg were 11.08%, 9.49%, 9.83%, 9.18% and 7.25%, respectively, and between-run CV were 13.25%, 14.03%, 15.11%, 13.29% and 9.92%. The linear regression equation with best correlation coefficient from a test at random was y = 3.509x + 0.180. The suitable concentration of control serum for IQC could be 0.5ng/ml or 1.0ng/ml. The linear regression equation from the old lot and other two new lots of the ELISA kits were y1 = 3.550(x1) + 0.226, y2 = 3.238(x2) +0.388, and y3 =3.428(x3) + 0.148, respectively. Then, the transferring factors of 0.960 (y2/y1) and 0.908 (y3/y1) were obtained. The results shows that the model established for IQC control serum concentration selecting and for consecutive plotting on control chart when the reagent lot is changed is effective and practical.

  13. Magnitude, frequency, and trends of floods at gaged and ungaged sites in Washington, based on data through water year 2014

    USGS Publications Warehouse

    Mastin, Mark C.; Konrad, Christopher P.; Veilleux, Andrea G.; Tecca, Alison E.

    2016-09-20

    An investigation into the magnitude and frequency of floods in Washington State computed the annual exceedance probability (AEP) statistics for 648 U.S. Geological Survey unregulated streamgages in and near the borders of Washington using the recorded annual peak flows through water year 2014. This is an updated report from a previous report published in 1998 that used annual peak flows through the water year 1996. New in this report, a regional skew coefficient was developed for the Pacific Northwest region that includes areas in Oregon, Washington, Idaho and western Montana within the Columbia River drainage basin south of the United States-Canada border, the coastal areas of Oregon and western Washington, and watersheds draining into Puget Sound, Washington. The skew coefficient is an important term in the Log Pearson Type III equation used to define the distribution of the log-transformed annual peaks. The Expected Moments Algorithm was used to fit historical and censored peak-flow data to the log Pearson Type III distribution. A Multiple Grubb-Beck test was employed to censor low outliers of annual peak flows to improve on the frequency distribution. This investigation also includes a section on observed trends in annual peak flows that showed significant trends (p-value < 0.05) in 21 of 83 long-term sites, but with small magnitude Kendall tau values suggesting a limited monotonic trend in the time series of annual peaks. Most of the sites with a significant trend in western Washington were positive and all the sites with significant trends (three sites) in eastern Washington were negative.Multivariate regression analysis with measured basin characteristics and the AEP statistics at long-term, unregulated, and un-urbanized (defined as drainage basins with less than 5 percent impervious land cover for this investigation) streamgages within Washington and some in Idaho and Oregon that are near the Washington border was used to develop equations to estimate AEP statistics at ungaged basins. Washington was divided into four regions to improve the accuracy of the regression equations; a set of equations for eight selected AEPs and for each region were constructed. Selected AEP statistics included the annual peak flows that equaled or exceeded 50, 20, 10, 4, 2, 1, 0.5 and 0.2 percent of the time equivalent to peak flows for peaks with a 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively. Annual precipitation and drainage area were the significant basin characteristics in the regression equations for all four regression regions in Washington and forest cover was significant for the two regression regions in eastern Washington. Average standard error of prediction for the regional regression equations ranged from 70.19 to 125.72 percent for Regression Regions 1 and 2 on the eastern side of the Cascade Mountains and from 43.22 to 58.04 percent for Regression Regions 3 and 4 on the western side of the Cascade Mountains. The pseudo coefficient of determination (where a value of 100 signifies a perfect regression model) ranged from 68.39 to 90.68 for Regression Regions 1 and 2, and 92.35 to 95.44 for Regions 3 and 4.The calculated AEP statistics for the streamgages and the regional regression equations are expected to be incorporated into StreamStats after the publication of this report. StreamStats is the interactive Web-based map tool created by the U.S. Geological Survey to allow the user to choose a streamgage and obtain published statistics or choose ungaged locations where the program automatically applies the regional regression equations and computes the estimates of the AEP statistics.

  14. Regional regression equations for estimation of natural streamflow statistics in Colorado

    USGS Publications Warehouse

    Capesius, Joseph P.; Stephens, Verlin C.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Water Conservation Board and the Colorado Department of Transportation, developed regional regression equations for estimation of various streamflow statistics that are representative of natural streamflow conditions at ungaged sites in Colorado. The equations define the statistical relations between streamflow statistics (response variables) and basin and climatic characteristics (predictor variables). The equations were developed using generalized least-squares and weighted least-squares multilinear regression reliant on logarithmic variable transformation. Streamflow statistics were derived from at least 10 years of streamflow data through about 2007 from selected USGS streamflow-gaging stations in the study area that are representative of natural-flow conditions. Basin and climatic characteristics used for equation development are drainage area, mean watershed elevation, mean watershed slope, percentage of drainage area above 7,500 feet of elevation, mean annual precipitation, and 6-hour, 100-year precipitation. For each of five hydrologic regions in Colorado, peak-streamflow equations that are based on peak-streamflow data from selected stations are presented for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year instantaneous-peak streamflows. For four of the five hydrologic regions, equations based on daily-mean streamflow data from selected stations are presented for 7-day minimum 2-, 10-, and 50-year streamflows and for 7-day maximum 2-, 10-, and 50-year streamflows. Other equations presented for the same four hydrologic regions include those for estimation of annual- and monthly-mean streamflow and streamflow-duration statistics for exceedances of 10, 25, 50, 75, and 90 percent. All equations are reported along with salient diagnostic statistics, ranges of basin and climatic characteristics on which each equation is based, and commentary of potential bias, which is not otherwise removed by log-transformation of the variables of the equations from interpretation of residual plots. The predictor-variable ranges can be used to assess equation applicability for ungaged sites in Colorado.

  15. Ballistic limit regression analysis for Space Station Freedom meteoroid and space debris protection system

    NASA Technical Reports Server (NTRS)

    Jolly, William H.

    1992-01-01

    Relationships defining the ballistic limit of Space Station Freedom's (SSF) dual wall protection systems have been determined. These functions were regressed from empirical data found in Marshall Space Flight Center's (MSFC) Hypervelocity Impact Testing Summary (HITS) for the velocity range between three and seven kilometers per second. A stepwise linear least squares regression was used to determine the coefficients of several expressions that define a ballistic limit surface. Using statistical significance indicators and graphical comparisons to other limit curves, a final set of expressions is recommended for potential use in Probability of No Critical Flaw (PNCF) calculations for Space Station. The three equations listed below represent the mean curves for normal, 45 degree, and 65 degree obliquity ballistic limits, respectively, for a dual wall protection system consisting of a thin 6061-T6 aluminum bumper spaced 4.0 inches from a .125 inches thick 2219-T87 rear wall with multiple layer thermal insulation installed between the two walls. Normal obliquity is d(sub c) = 1.0514 v(exp 0.2983 t(sub 1)(exp 0.5228). Forty-five degree obliquity is d(sub c) = 0.8591 v(exp 0.0428) t(sub 1)(exp 0.2063). Sixty-five degree obliquity is d(sub c) = 0.2824 v(exp 0.1986) t(sub 1)(exp -0.3874). Plots of these curves are provided. A sensitivity study on the effects of using these new equations in the probability of no critical flaw analysis indicated a negligible increase in the performance of the dual wall protection system for SSF over the current baseline. The magnitude of the increase was 0.17 percent over 25 years on the MB-7 configuration run with the Bumper II program code.

  16. Reference Charts for Fetal Cerebellar Vermis Height: A Prospective Cross-Sectional Study of 10605 Fetuses

    PubMed Central

    Cignini, Pietro; Giorlandino, Maurizio; Brutti, Pierpaolo; Mangiafico, Lucia; Aloisi, Alessia; Giorlandino, Claudio

    2016-01-01

    Objective To establish reference charts for fetal cerebellar vermis height in an unselected population. Methods A prospective cross-sectional study between September 2009 and December 2014 was carried out at ALTAMEDICA Fetal–Maternal Medical Centre, Rome, Italy. Of 25203 fetal biometric measurements, 12167 (48%) measurements of the cerebellar vermis were available. After excluding 1562 (12.8%) measurements, a total of 10605 (87.2%) fetuses were considered and analyzed once only. Parametric and nonparametric quantile regression models were used for the statistical analysis. In order to evaluate the robustness of the proposed reference charts regarding various distributional assumptions on the ultrasound measurements at hand, we compared the gestational age-specific reference curves we produced through the statistical methods used. Normal mean height based on parametric and nonparametric methods were defined for each week of gestation and the regression equation expressing the height of the cerebellar vermis as a function of gestational age was calculated. Finally the correlation between dimension/gestation was measured. Results The mean height of the cerebellar vermis was 12.7mm (SD, 1.6mm; 95% confidence interval, 12.7–12.8mm). The regression equation expressing the height of the CV as a function of the gestational age was: height (mm) = -4.85+0.78 x gestational age. The correlation between dimension/gestation was expressed by the coefficient r = 0.87. Conclusion This is the first prospective cross-sectional study on fetal cerebellar vermis biometry with such a large sample size reported in literature. It is a detailed statistical survey and contains new centile-based reference charts for fetal height of cerebellar vermis measurements. PMID:26812238

  17. Ballistic limit regression analysis for Space Station Freedom meteoroid and space debris protection system

    NASA Astrophysics Data System (ADS)

    Jolly, William H.

    1992-05-01

    Relationships defining the ballistic limit of Space Station Freedom's (SSF) dual wall protection systems have been determined. These functions were regressed from empirical data found in Marshall Space Flight Center's (MSFC) Hypervelocity Impact Testing Summary (HITS) for the velocity range between three and seven kilometers per second. A stepwise linear least squares regression was used to determine the coefficients of several expressions that define a ballistic limit surface. Using statistical significance indicators and graphical comparisons to other limit curves, a final set of expressions is recommended for potential use in Probability of No Critical Flaw (PNCF) calculations for Space Station. The three equations listed below represent the mean curves for normal, 45 degree, and 65 degree obliquity ballistic limits, respectively, for a dual wall protection system consisting of a thin 6061-T6 aluminum bumper spaced 4.0 inches from a .125 inches thick 2219-T87 rear wall with multiple layer thermal insulation installed between the two walls. Normal obliquity is d(sub c) = 1.0514 v(exp 0.2983 t(sub 1)(exp 0.5228). Forty-five degree obliquity is d(sub c) = 0.8591 v(exp 0.0428) t(sub 1)(exp 0.2063). Sixty-five degree obliquity is d(sub c) = 0.2824 v(exp 0.1986) t(sub 1)(exp -0.3874). Plots of these curves are provided. A sensitivity study on the effects of using these new equations in the probability of no critical flaw analysis indicated a negligible increase in the performance of the dual wall protection system for SSF over the current baseline. The magnitude of the increase was 0.17 percent over 25 years on the MB-7 configuration run with the Bumper II program code.

  18. Development of regression equations to revise estimates of historical streamflows for the St. Croix River at Stillwater, Minnesota (water years 1910-2011), and Prescott, Wisconsin (water years 1910-2007)

    USGS Publications Warehouse

    Ziegeweid, Jeffrey R.; Magdalene, Suzanne

    2015-01-01

    The new regression equations were used to calculate revised estimates of historical streamflows for Stillwater and Prescott starting in 1910 and ending when index-velocity streamgages were installed. Monthly, annual, 30-year, and period of record statistics were examined between previous and revised estimates of historical streamflows. The abilities of the new regression equations to estimate historical streamflows were evaluated by using percent differences to compare new estimates of historical daily streamflows to discrete streamflow measurements made at Stillwater and Prescott before the installation of index-velocity streamgages. Although less variability was observed between estimated and measured streamflows at Stillwater compared to Prescott, the percent difference data indicated that the new estimates closely approximated measured streamflows at both locations.

  19. Evolutionary grinding model for nanometric control of surface roughness for aspheric optical surfaces.

    PubMed

    Han, Jeong-Yeol; Kim, Sug-Whan; Han, Inwoo; Kim, Geon-Hee

    2008-03-17

    A new evolutionary grinding process model has been developed for nanometric control of material removal from an aspheric surface of Zerodur substrate. The model incorporates novel control features such as i) a growing database; ii) an evolving, multi-variable regression equation; and iii) an adaptive correction factor for target surface roughness (Ra) for the next machine run. This process model demonstrated a unique evolutionary controllability of machining performance resulting in the final grinding accuracy (i.e. averaged difference between target and measured surface roughness) of -0.2+/-2.3(sigma) nm Ra over seven trial machine runs for the target surface roughness ranging from 115 nm to 64 nm Ra.

  20. Epidemiological characteristics of reported sporadic and outbreak cases of E. coli O157 in people from Alberta, Canada (2000-2002): methodological challenges of comparing clustered to unclustered data.

    PubMed

    Pearl, D L; Louie, M; Chui, L; Doré, K; Grimsrud, K M; Martin, S W; Michel, P; Svenson, L W; McEwen, S A

    2008-04-01

    Using multivariable models, we compared whether there were significant differences between reported outbreak and sporadic cases in terms of their sex, age, and mode and site of disease transmission. We also determined the potential role of administrative, temporal, and spatial factors within these models. We compared a variety of approaches to account for clustering of cases in outbreaks including weighted logistic regression, random effects models, general estimating equations, robust variance estimates, and the random selection of one case from each outbreak. Age and mode of transmission were the only epidemiologically and statistically significant covariates in our final models using the above approaches. Weighing observations in a logistic regression model by the inverse of their outbreak size appeared to be a relatively robust and valid means for modelling these data. Some analytical techniques, designed to account for clustering, had difficulty converging or producing realistic measures of association.

  1. Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2009-01-01

    In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…

  2. Regression Analysis of Mixed Panel Count Data with Dependent Terminal Events

    PubMed Central

    Yu, Guanglei; Zhu, Liang; Li, Yang; Sun, Jianguo; Robison, Leslie L.

    2017-01-01

    Event history studies are commonly conducted in many fields and a great deal of literature has been established for the analysis of the two types of data commonly arising from these studies: recurrent event data and panel count data. The former arises if all study subjects are followed continuously, while the latter means that each study subject is observed only at discrete time points. In reality, a third type of data, a mixture of the two types of the data above, may occur and furthermore, as with the first two types of the data, there may exist a dependent terminal event, which may preclude the occurrences of recurrent events of interest. This paper discusses regression analysis of mixed recurrent event and panel count data in the presence of a terminal event and an estimating equation-based approach is proposed for estimation of regression parameters of interest. In addition, the asymptotic properties of the proposed estimator are established and a simulation study conducted to assess the finite-sample performance of the proposed method suggests that it works well in practical situations. Finally the methodology is applied to a childhood cancer study that motivated this study. PMID:28098397

  3. Predicting tropical cyclone intensity using satellite measured equivalent blackbody temperatures of cloud tops. [regression analysis

    NASA Technical Reports Server (NTRS)

    Gentry, R. C.; Rodgers, E.; Steranka, J.; Shenk, W. E.

    1978-01-01

    A regression technique was developed to forecast 24 hour changes of the maximum winds for weak (maximum winds less than or equal to 65 Kt) and strong (maximum winds greater than 65 Kt) tropical cyclones by utilizing satellite measured equivalent blackbody temperatures around the storm alone and together with the changes in maximum winds during the preceding 24 hours and the current maximum winds. Independent testing of these regression equations shows that the mean errors made by the equations are lower than the errors in forecasts made by the peristence techniques.

  4. Estimating the magnitude of peak flows at selected recurrence intervals for streams in Idaho

    USGS Publications Warehouse

    Berenbrock, Charles

    2002-01-01

    The region-of-influence method is not recommended for use in determining flood-frequency estimates for ungaged sites in Idaho because the results, overall, are less accurate and the calculations are more complex than those of regional regression equations. The regional regression equations were considered to be the primary method of estimating the magnitude and frequency of peak flows for ungaged sites in Idaho.

  5. Validation of equations and proposed reference values to estimate fat mass in Chilean university students.

    PubMed

    Gómez Campos, Rossana; Pacheco Carrillo, Jaime; Almonacid Fierro, Alejandro; Urra Albornoz, Camilo; Cossío-Bolaños, Marco

    2018-03-01

    (i) To propose regression equations based on anthropometric measures to estimate fat mass (FM) using dual energy X-ray absorptiometry (DXA) as reference method, and (ii)to establish population reference standards for equation-derived FM. A cross-sectional study on 6,713 university students (3,354 males and 3,359 females) from Chile aged 17.0 to 27.0years. Anthropometric measures (weight, height, waist circumference) were taken in all participants. Whole body DXA was performed in 683 subjects. A total of 478 subjects were selected to develop regression equations, and 205 for their cross-validation. Data from 6,030 participants were used to develop reference standards for FM. Equations were generated using stepwise multiple regression analysis. Percentiles were developed using the LMS method. Equations for men were: (i) FM=-35,997.486 +232.285 *Weight +432.216 *CC (R 2 =0.73, SEE=4.1); (ii)FM=-37,671.303 +309.539 *Weight +66,028.109 *ICE (R2=0.76, SEE=3.8), while equations for women were: (iii)FM=-13,216.917 +461,302 *Weight+91.898 *CC (R 2 =0.70, SEE=4.6), and (iv) FM=-14,144.220 +464.061 *Weight +16,189.297 *ICE (R 2 =0.70, SEE=4.6). Percentiles proposed included p10, p50, p85, and p95. The developed equations provide valid and accurate estimation of FM in both sexes. The values obtained using the equations may be analyzed from percentiles that allow for categorizing body fat levels by age and sex. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Temperature-viscosity models reassessed.

    PubMed

    Peleg, Micha

    2017-05-04

    The temperature effect on viscosity of liquid and semi-liquid foods has been traditionally described by the Arrhenius equation, a few other mathematical models, and more recently by the WLF and VTF (or VFT) equations. The essence of the Arrhenius equation is that the viscosity is proportional to the absolute temperature's reciprocal and governed by a single parameter, namely, the energy of activation. However, if the absolute temperature in K in the Arrhenius equation is replaced by T + b where both T and the adjustable b are in °C, the result is a two-parameter model, which has superior fit to experimental viscosity-temperature data. This modified version of the Arrhenius equation is also mathematically equal to the WLF and VTF equations, which are known to be equal to each other. Thus, despite their dissimilar appearances all three equations are essentially the same model, and when used to fit experimental temperature-viscosity data render exactly the same very high regression coefficient. It is shown that three new hybrid two-parameter mathematical models, whose formulation bears little resemblance to any of the conventional models, can also have excellent fit with r 2 ∼ 1. This is demonstrated by comparing the various models' regression coefficients to published viscosity-temperature relationships of 40% sucrose solution, soybean oil, and 70°Bx pear juice concentrate at different temperature ranges. Also compared are reconstructed temperature-viscosity curves using parameters calculated directly from 2 or 3 data points and fitted curves obtained by nonlinear regression using a larger number of experimental viscosity measurements.

  7. Using a Linear Regression Method to Detect Outliers in IRT Common Item Equating

    ERIC Educational Resources Information Center

    He, Yong; Cui, Zhongmin; Fang, Yu; Chen, Hanwei

    2013-01-01

    Common test items play an important role in equating alternate test forms under the common item nonequivalent groups design. When the item response theory (IRT) method is applied in equating, inconsistent item parameter estimates among common items can lead to large bias in equated scores. It is prudent to evaluate inconsistency in parameter…

  8. Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Waite, Andrew M.

    2013-01-01

    Regression equations were developed for estimating bankfull geometry—width, mean depth, cross-sectional area—and discharge for streams in Massachusetts. The equations provide water-resource and conservation managers with methods for estimating bankfull characteristics at specific stream sites in Massachusetts. This information can be used for the adminstration of the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a protected riverfront area extending from the mean annual high-water line corresponding to the elevation of bankfull discharge along each side of a perennial stream. Additionally, information on bankfull channel geometry and discharge are important to Federal, State, and local government agencies and private organizations involved in stream assessment and restoration projects. Regression equations are based on data from stream surveys at 33 sites (32 streamgages and 1 crest-stage gage operated by the U.S. Geological Survey) in and near Massachusetts. Drainage areas of the 33 sites ranged from 0.60 to 329 square miles (mi2). At 27 of the 33 sites, field data were collected and analyses were done to determine bankfull channel geometry and discharge as part of the present study. For 6 of the 33 sites, data on bankfull channel geometry and discharge were compiled from other studies done by the U.S. Geological Survey, Natural Resources Conservation Service of the U.S. Department of Agriculture, and the Vermont Department of Environmental Conservation. Similar techniques were used for field data collection and analysis for bankfull channel geometry and discharge at all 33 sites. Recurrence intervals of the bankfull discharge, which represent the frequency with which a stream fills its channel, averaged 1.53 years (median value 1.34 years) at the 33 sites. Simple regression equations were developed for bankfull width, mean depth, cross-sectional area, and discharge using drainage area, which is the most significant explanatory variable in estimating these bankfull characteristics. The use of drainage area as an explanatory variable is also the most commonly published method for estimating these bankfull characteristics. Regional curves (graphic plots) of bankfull channel geometry and discharge by drainage area are presented. The regional curves are based on the simple regression equations and can be used to estimate bankfull characteristics from drainage area. Multiple regression analysis, which includes basin characteristics in addition to drainage area, also was used to develop equations. Variability in bankfull width, mean depth, cross-sectional area, and discharge was more fully explained by the multiple regression equations that include mean-basin slope and drainage area than was explained by equations based on drainage area alone. The Massachusetts regional curves and equations developed in this study are similar, in terms of values of slopes and intercepts, to those developed for other parts of the northeastern United States. Limitations associated with site selection and development of the equations resulted in some constraints for the application of equations and regional curves presented in this report. The curves and equations are applicable to stream sites that have (1) less than about 25 percent of their drainage basin area occupied by urban land use (commercial, industrial, transportation, and high-density residential), (2) little to no streamflow regulation, especially from flood-control structures, (3) drainage basin areas greater than 0.60 mi2 and less than 329 mi2, and (4) a mean basin slope greater than 2.2 percent and less than 23.9 percent. The equations may not be applicable where streams flow through extensive wetlands. The equations also may not apply in areas of Cape Cod and the Islands and the area of southeastern Massachusetts close to Cape Cod with extensive areas of coarse-grained glacial deposits where none of the study sites are located. Regardless of the setting, the regression equations are not intended for use as the sole method of estimating bankfull characteristics; however, they may supplement field identification of the bankfull channel when used in conjunction with field verified bankfull indicators, flood-frequency analysis, or other supporting evidence.

  9. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North, Fargo, North Dakota, 2003-05

    USGS Publications Warehouse

    Ryberg, Karen R.

    2006-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.

  10. Flood characteristics of Alaskan streams

    USGS Publications Warehouse

    Lamke, R.D.

    1979-01-01

    Peak discharge data for Alaskan streams are summarized and analyzed. Multiple-regression equations relating peak discharge magnitude and frequency to climatic and physical characteristics of 260 gaged basins were determined in order to estimate average recurrence interval of floods at ungaged sites. These equations are for 1.25-, 2-, 5-, 10-, 25-, and 50-year average recurrence intervals. In this report, Alaska was divided into two regions, one having a maritime climate with fall and winter rains and floods, the other having spring and summer floods of a variety or combinations of causes. Average standard errors of the six multiple-regression equations for these two regions were 48 and 74 percent, respectively. Maximum recorded floods at more than 400 sites throughout Alaska are tabulated. Maps showing lines of equal intensity of the principal climatic variables found to be significant (mean annual precipitation and mean minimum January temperature), and location of the 260 sites used in the multiple-regression analyses are included. Little flood data have been collected in western and arctic Alaska, and the predictive equations are therefore less reliable for those areas. (Woodard-USGS)

  11. Retro-regression--another important multivariate regression improvement.

    PubMed

    Randić, M

    2001-01-01

    We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.

  12. Estimation of Flood-Frequency Discharges for Rural, Unregulated Streams in West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Atkins, John T.

    2010-01-01

    Flood-frequency discharges were determined for 290 streamgage stations having a minimum of 9 years of record in West Virginia and surrounding states through the 2006 or 2007 water year. No trend was determined in the annual peaks used to calculate the flood-frequency discharges. Multiple and simple least-squares regression equations for the 100-year (1-percent annual-occurrence probability) flood discharge with independent variables that describe the basin characteristics were developed for 290 streamgage stations in West Virginia and adjacent states. The regression residuals for the models were evaluated and used to define three regions of the State, designated as Eastern Panhandle, Central Mountains, and Western Plateaus. Exploratory data analysis procedures identified 44 streamgage stations that were excluded from the development of regression equations representative of rural, unregulated streams in West Virginia. Regional equations for the 1.1-, 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year flood discharges were determined by generalized least-squares regression using data from the remaining 246 streamgage stations. Drainage area was the only significant independent variable determined for all equations in all regions. Procedures developed to estimate flood-frequency discharges on ungaged streams were based on (1) regional equations and (2) drainage-area ratios between gaged and ungaged locations on the same stream. The procedures are applicable only to rural, unregulated streams within the boundaries of West Virginia that have drainage areas within the limits of the stations used to develop the regional equations (from 0.21 to 1,461 square miles in the Eastern Panhandle, from 0.10 to 1,619 square miles in the Central Mountains, and from 0.13 to 1,516 square miles in the Western Plateaus). The accuracy of the equations is quantified by measuring the average prediction error (from 21.7 to 56.3 percent) and equivalent years of record (from 2.0 to 70.9 years).

  13. Modeling animal movements using stochastic differential equations

    Treesearch

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  14. Heuristic approach to capillary pressures averaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coca, B.P.

    1980-10-01

    Several methods are available to average capillary pressure curves. Among these are the J-curve and regression equations of the wetting-fluid saturation in porosity and permeability (capillary pressure held constant). While the regression equation seem completely empiric, the J-curve method seems to be theoretically sound due to its expression based on a relation between the average capillary radius and the permeability-porosity ratio. An analysis is given of each of these methods.

  15. Regional regression equations to estimate peak-flow frequency at sites in North Dakota using data through 2009

    USGS Publications Warehouse

    Williams-Sether, Tara

    2015-08-06

    Annual peak-flow frequency data from 231 U.S. Geological Survey streamflow-gaging stations in North Dakota and parts of Montana, South Dakota, and Minnesota, with 10 or more years of unregulated peak-flow record, were used to develop regional regression equations for exceedance probabilities of 0.5, 0.20, 0.10, 0.04, 0.02, 0.01, and 0.002 using generalized least-squares techniques. Updated peak-flow frequency estimates for 262 streamflow-gaging stations were developed using data through 2009 and log-Pearson Type III procedures outlined by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data. An average generalized skew coefficient was determined for three hydrologic zones in North Dakota. A StreamStats web application was developed to estimate basin characteristics for the regional regression equation analysis. Methods for estimating a weighted peak-flow frequency for gaged sites and ungaged sites are presented.

  16. Study on grain quality forecasting method and indicators by using hyperspectral data in wheat

    NASA Astrophysics Data System (ADS)

    Huang, Wenjiang; Wang, Jihua; Liu, Liangyun; Wang, Zhijie; Tan, Changwei; Song, Xiaoyu; Wang, Jingdi

    2005-01-01

    Field experiments were conducted to examine the influence factors of cultivar, nitrogen application and irrigation on grain protein content, gluten content and grain hardness in three winter wheat cultivars under four levels of nitrogen and irrigation treatments. Firstly, the influence of cultivars and environment factors on grain quality were studied, the effective factors were cultivars, irrigation, fertilization, et al. Secondly, total nitrogen content around winter wheat anthesis stage was proved to be significant correlative with grain protein content, and spectral vegetation index significantly correlated to total nitrogen content around anthesis stage were the potential indicators for grain protein content. Accumulation of total nitrogen content and its transfer to grain is the physical link to produce the final grain protein, and total nitrogen content at anthesis stage was proved to be an indicator of final grain protein content. The selected normalized photochemical reflectance index (NPRI) was proved to be able to predict of grain protein content on the close correlation between the ratio of total carotenoid to chlorophyll a and total nitrogen content. The method contributes towards developing optimal procedures for predicting wheat grain quality through analysis of their canopy reflected spectrum at anthesis stage. Regression equations were established for forecasting grain protein and dry gluten content by total nitrogen content at anthesis stage, so it is feasible for forecasting grain quality by establishing correlation equations between biochemical constitutes and canopy reflected spectrum.

  17. Biomass equations for major tree species of the Northeast

    Treesearch

    Louise M. Tritton; James W. Hornbeck

    1982-01-01

    Regression equations are used in both forestry and ecosystem studies to estimate tree biomass from field measurements of dbh (diameter at breast height) or a combination of dbh and height. Literature on biomass is reviewed, and 178 sets of publish equation for 25 species common to the Northeastern Unites States are listed. On the basis of these equations, estimates of...

  18. Characterizing functional lung heterogeneity in COPD using reference equations for CT scan-measured lobar volumes.

    PubMed

    Come, Carolyn E; Diaz, Alejandro A; Curran-Everett, Douglas; Muralidhar, Nivedita; Hersh, Craig P; Zach, Jordan A; Schroeder, Joyce; Lynch, David A; Celli, Bartolome; Washko, George R

    2013-06-01

    CT scanning is increasingly used to characterize COPD. Although it is possible to obtain CT scan-measured lung lobe volumes, normal ranges remain unknown. Using COPDGene data, we developed reference equations for lobar volumes at maximal inflation (total lung capacity [TLC]) and relaxed exhalation (approximating functional residual capacity [FRC]). Linear regression was used to develop race-specific (non-Hispanic white [NHW], African American) reference equations for lobar volumes. Covariates included height and sex. Models were developed in a derivation cohort of 469 subjects with normal pulmonary function and validated in 546 similar subjects. These cohorts were combined to produce final prediction equations, which were applied to 2,191 subjects with old GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II to IV COPD. In the derivation cohort, women had smaller lobar volumes than men. Height positively correlated with lobar volumes. Adjusting for height, NHWs had larger total lung and lobar volumes at TLC than African Americans; at FRC, NHWs only had larger lower lobes. Age and weight had no effect on lobar volumes at TLC but had small effects at FRC. In subjects with COPD at TLC, upper lobes exceeded 100% of predicted values in GOLD II disease; lower lobes were only inflated to this degree in subjects with GOLD IV disease. At FRC, gas trapping was severe irrespective of disease severity and appeared uniform across the lobes. Reference equations for lobar volumes may be useful in assessing regional lung dysfunction and how it changes in response to pharmacologic therapies and surgical or endoscopic lung volume reduction.

  19. Analysis of the streamflow-gaging station network in Ohio for effectiveness in providing regional streamflow information

    USGS Publications Warehouse

    Straub, D.E.

    1998-01-01

    The streamflow-gaging station network in Ohio was evaluated for its effectiveness in providing regional streamflow information. The analysis involved application of the principles of generalized least squares regression between streamflow and climatic and basin characteristics. Regression equations were developed for three flow characteristics: (1) the instantaneous peak flow with a 100-year recurrence interval (P100), (2) the mean annual flow (Qa), and (3) the 7-day, 10-year low flow (7Q10). All active and discontinued gaging stations with 5 or more years of unregulated-streamflow data with respect to each flow characteristic were used to develop the regression equations. The gaging-station network was evaluated for the current (1996) condition of the network and estimated conditions of various network strategies if an additional 5 and 20 years of streamflow data were collected. Any active or discontinued gaging station with (1) less than 5 years of unregulated-streamflow record, (2) previously defined basin and climatic characteristics, and (3) the potential for collection of more unregulated-streamflow record were included in the network strategies involving the additional 5 and 20 years of data. The network analysis involved use of the regression equations, in combination with location, period of record, and cost of operation, to determine the contribution of the data for each gaging station to regional streamflow information. The contribution of each gaging station was based on a cost-weighted reduction of the mean square error (average sampling-error variance) associated with each regional estimating equation. All gaging stations included in the network analysis were then ranked according to their contribution to the regional information for each flow characteristic. The predictive ability of the regression equations developed from the gaging station network could be improved for all three flow characteristics with the collection of additional streamflow data. The addition of new gaging stations to the network would result in an even greater improvement of the accuracy of the regional regression equations. Typically, continued data collection at stations with unregulated streamflow for all flow conditions that had less than 11 years of record with drainage areas smaller than 200 square miles contributed the largest cost-weighted reduction to the average sampling-error variance of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active gaging stations or the reactivation of discontinued gaging stations if the objective is to maximize the regional information content in the streamflow-gaging station network.

  20. Allometric Biomass Equations for 98 Species of Herbs, Shrubs, and Small Trees

    Treesearch

    W. Brad Smith; Gary J. Brand

    1983-01-01

    Biomass regression coefficients from the literature for the allometric equation form are presented for 98 species of shrubs and herbs in the northern U.S. and Canada. The equation and coeffients provide estimates of grams of biomass (oven-dry weight) for foliage, woody stem and total biomass.

  1. Methods for Adjusting U.S. Geological Survey Rural Regression Peak Discharges in an Urban Setting

    USGS Publications Warehouse

    Moglen, Glenn E.; Shivers, Dorianne E.

    2006-01-01

    A study was conducted of 78 U.S. Geological Survey gaged streams that have been subjected to varying degrees of urbanization over the last three decades. Flood-frequency analysis coupled with nonlinear regression techniques were used to generate a set of equations for converting peak discharge estimates determined from rural regression equations to a set of peak discharge estimates that represent known urbanization. Specifically, urban regression equations for the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year return periods were calibrated as a function of the corresponding rural peak discharge and the percentage of impervious area in a watershed. The results of this study indicate that two sets of equations, one set based on imperviousness and one set based on population density, performed well. Both sets of equations are dependent on rural peak discharges, a measure of development (average percentage of imperviousness or average population density), and a measure of homogeneity of development within a watershed. Average imperviousness was readily determined by using geographic information system methods and commonly available land-cover data. Similarly, average population density was easily determined from census data. Thus, a key advantage to the equations developed in this study is that they do not require field measurements of watershed characteristics as did the U.S. Geological Survey urban equations developed in an earlier investigation. During this study, the U.S. Geological Survey PeakFQ program was used as an integral tool in the calibration of all equations. The scarcity of historical land-use data, however, made exclusive use of flow records necessary for the 30-year period from 1970 to 2000. Such relatively short-duration streamflow time series required a nonstandard treatment of the historical data function of the PeakFQ program in comparison to published guidelines. Thus, the approach used during this investigation does not fully comply with the guidelines set forth in U.S. Geological Survey Bulletin 17B, and modifications may be needed before it can be applied in practice.

  2. Use of the Priestley-Taylor evaporation equation for soil water limited conditions in a small forest clearcut

    USGS Publications Warehouse

    Flint, A.L.; Childs, S.W.

    1991-01-01

    The Priestley-Taylor equation, a simplification of the Penman equation, was used to allow calculations of evapotranspiration under conditions where soil water supply limits evapotranspiration. The Priestley-Taylor coefficient, ??, was calculated to incorporate an exponential decrease in evapotranspiration as soil water content decreases. The method is appropriate for use when detailed meteorological measurements are not available. The data required to determine the parameter for the ?? coefficient are net radiation, soil heat flux, average air temperature, and soil water content. These values can be obtained from measurements or models. The dataset used in this report pertains to a partially vegetated clearcut forest site in southwest Oregon with soil depths ranging from 0.48 to 0.70 m and weathered bedrock below that. Evapotranspiration was estimated using the Bowen ratio method, and the calculated Priestley-Taylor coefficient was fitted to these estimates by nonlinear regression. The calculated Priestley-Taylor coefficient (?????) was found to be approximately 0.9 when the soil was near field capacity (0.225 cm3 cm-3). It was not until soil water content was less than 0.14 cm3 cm-3 that soil water supply limited evapotranspiration. The soil reached a final residual water content near 0.05 cm3 cm-3 at the end of the growing season. ?? 1991.

  3. Assessment of power output in jump tests for applicants to a sports sciences degree.

    PubMed

    Lara, A J; Abián, J; Alegre, L M; Jiménez, L; Aguado, X

    2006-09-01

    Our study aimed: 1) to describe the jump performance in a population of male applicants to a Faculty of Sports Sciences, 2) to apply different power equations from the literature to assess their accuracy, and 3) to develop a new regression equation from this population. The push off phases of the counter-movement jumps (CMJ) on a force platform of 161 applicants (age: 19+/-2.9 years; weight: 70.4+/-8.3 kg) to a Spanish Faculty of Sports Sciences were recorded and subsequently analyzed. Their hands had to be placed on the hips and the knee angle during the counter movement was not controlled. Each subject had 2 trials to reach a minimum of 29 cm of jump height, and when 2 jumps were performed the best trial was analyzed. Multiple regression analysis was performed to develop a new regression equation. Mean jump height was 34.6+/-4.3 cm, peak vertical force 1 663.9+/-291.1 N and peak power 3524.4+/-562 W. All the equations underestimated power, from 74% (Lewis) to 8% (Sayers). However, there were high and significant correlations between peak power measured on the force platform, and those assessed by the equations. The results of the present study support the development of power equations for specific populations, to achieve more accurate assessments. The power equation from this study [Power = (62.5 x jump height (cm)) + (50.3 x body mass (kg)) 2184.7] can be used accurately in populations of male physical education students.

  4. Deletion Diagnostics for Alternating Logistic Regressions

    PubMed Central

    Preisser, John S.; By, Kunthel; Perin, Jamie; Qaqish, Bahjat F.

    2013-01-01

    Deletion diagnostics are introduced for the regression analysis of clustered binary outcomes estimated with alternating logistic regressions, an implementation of generalized estimating equations (GEE) that estimates regression coefficients in a marginal mean model and in a model for the intracluster association given by the log odds ratio. The diagnostics are developed within an estimating equations framework that recasts the estimating functions for association parameters based upon conditional residuals into equivalent functions based upon marginal residuals. Extensions of earlier work on GEE diagnostics follow directly, including computational formulae for one-step deletion diagnostics that measure the influence of a cluster of observations on the estimated regression parameters and on the overall marginal mean or association model fit. The diagnostic formulae are evaluated with simulations studies and with an application concerning an assessment of factors associated with health maintenance visits in primary care medical practices. The application and the simulations demonstrate that the proposed cluster-deletion diagnostics for alternating logistic regressions are good approximations of their exact fully iterated counterparts. PMID:22777960

  5. Water quality parameter measurement using spectral signatures

    NASA Technical Reports Server (NTRS)

    White, P. E.

    1973-01-01

    Regression analysis is applied to the problem of measuring water quality parameters from remote sensing spectral signature data. The equations necessary to perform regression analysis are presented and methods of testing the strength and reliability of a regression are described. An efficient algorithm for selecting an optimal subset of the independent variables available for a regression is also presented.

  6. Is adult gait less susceptible than paediatric gait to hip joint centre regression equation error?

    PubMed

    Kiernan, D; Hosking, J; O'Brien, T

    2016-03-01

    Hip joint centre (HJC) regression equation error during paediatric gait has recently been shown to have clinical significance. In relation to adult gait, it has been inferred that comparable errors with children in absolute HJC position may in fact result in less significant kinematic and kinetic error. This study investigated the clinical agreement of three commonly used regression equation sets (Bell et al., Davis et al. and Orthotrak) for adult subjects against the equations of Harrington et al. The relationship between HJC position error and subject size was also investigated for the Davis et al. set. Full 3-dimensional gait analysis was performed on 12 healthy adult subjects with data for each set compared to Harrington et al. The Gait Profile Score, Gait Variable Score and GDI-kinetic were used to assess clinical significance while differences in HJC position between the Davis and Harrington sets were compared to leg length and subject height using regression analysis. A number of statistically significant differences were present in absolute HJC position. However, all sets fell below the clinically significant thresholds (GPS <1.6°, GDI-Kinetic <3.6 points). Linear regression revealed a statistically significant relationship for both increasing leg length and increasing subject height with decreasing error in anterior/posterior and superior/inferior directions. Results confirm a negligible clinical error for adult subjects suggesting that any of the examined sets could be used interchangeably. Decreasing error with both increasing leg length and increasing subject height suggests that the Davis set should be used cautiously on smaller subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Growth and inactivation of Salmonella at low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media: mixed effect meta-analysis.

    PubMed

    Smadi, Hanan; Sargeant, Jan M; Shannon, Harry S; Raina, Parminder

    2012-12-01

    Growth and inactivation regression equations were developed to describe the effects of temperature on Salmonella concentration on chicken meat for refrigerated temperatures (⩽10°C) and for thermal treatment temperatures (55-70°C). The main objectives were: (i) to compare Salmonella growth/inactivation in chicken meat versus laboratory media; (ii) to create regression equations to estimate Salmonella growth in chicken meat that can be used in quantitative risk assessment (QRA) modeling; and (iii) to create regression equations to estimate D-values needed to inactivate Salmonella in chicken meat. A systematic approach was used to identify the articles, critically appraise them, and pool outcomes across studies. Growth represented in density (Log10CFU/g) and D-values (min) as a function of temperature were modeled using hierarchical mixed effects regression models. The current meta-analysis analysis found a significant difference (P⩽0.05) between the two matrices - chicken meat and laboratory media - for both growth at refrigerated temperatures and inactivation by thermal treatment. Growth and inactivation were significantly influenced by temperature after controlling for other variables; however, no consistent pattern in growth was found. Validation of growth and inactivation equations against data not used in their development is needed. Copyright © 2012 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  8. Kinetic Study of Methyl Acetate Oxidation in a Pt/Al2O3 Fixed-Bed Reactor

    NASA Technical Reports Server (NTRS)

    Hoy, Michael; Li, K. Y.; Li, Jeffrey S.; Chen, S. M.; Yaws, C. L.; Chu, H. W.; Simon, W. E.

    1994-01-01

    To support technology development for future long-term missions, a metabolic simulator will be used in a closed chamber to test the functions of a Controlled Ecological Life Support System (CELSS). Methyl acetate (MA) was selected as the fuel because its metabolic respiratory quotient is near that of humans. A kinetic study of the catalytic oxidation of MA over Pt/Al203 was then conducted to support the design and operation of the simulator. Kinetic data were obtained as a conversion percentage of MA versus retention time. The reaction was studied at one atmosphere and temperatures from 220 to 340 deg. C. The inlet MA concentration was varied from 100 to 2000 ppm with retention times from 0.01 to 10 sec. A first-order rate law and a Langmuir-Hinshelwood rate equation were tested by nonlinear regression of the kinetic data to estimate rate constants in the rate law. Regression results of the L-H equation explain the kinetic data better than the results of the first-order rate law. A Taguchi experimental design was used to study the effects of temperature, retention time, and concentrations of MA, CO2, and O2 on the conversion of MA. Results indicate that temperature has greatest effect, followed by retention time, and finally MA concentration. It was further determined that the effects of CO2 and O2 concentrations, and the cross effects, are negligible.

  9. The discovery of indicator variables for QSAR using inductive logic programming

    NASA Astrophysics Data System (ADS)

    King, Ross D.; Srinivasan, Ashwin

    1997-11-01

    A central problem in forming accurate regression equations in QSAR studies isthe selection of appropriate descriptors for the compounds under study. Wedescribe a novel procedure for using inductive logic programming (ILP) todiscover new indicator variables (attributes) for QSAR problems, and show thatthese improve the accuracy of the derived regression equations. ILP techniqueshave previously been shown to work well on drug design problems where thereis a large structural component or where clear comprehensible rules arerequired. However, ILP techniques have had the disadvantage of only being ableto make qualitative predictions (e.g. active, inactive) and not to predictreal numbers (regression). We unify ILP and linear regression techniques togive a QSAR method that has the strength of ILP at describing stericstructure, with the familiarity and power of linear regression. We evaluatedthe utility of this new QSAR technique by examining the prediction ofbiological activity with and without the addition of new structural indicatorvariables formed by ILP. In three out of five datasets examined the additionof ILP variables produced statistically better results (P < 0.01) over theoriginal description. The new ILP variables did not increase the overallcomplexity of the derived QSAR equations and added insight into possiblemechanisms of action. We conclude that ILP can aid in the process of drugdesign.

  10. The Impact and Implication of Peripheral Vascular Leakage on Ultra-Widefield Fluorescein Angiography in Uveitis.

    PubMed

    Thomas, Akshay S; Redd, Travis; Campbell, John P; Palejwala, Neal V; Baynham, Justin T; Suhler, Eric B; Rosenbaum, James T; Lin, Phoebe

    2017-10-16

    To study if peripheral vascular leakage (PVL) on ultra-widefield fluorescein angiography (UWFFA) prognosticates complications of uveitis or necessitates treatment augmentation. Retrospective cohort study of uveitis patients imaged with UWFFA and ≥1 yr of follow-up. We included 73 eyes of 42 patients with uveitis. There was no difference in baseline, intermediate, final visual acuity (p = 0.47-0.95) or rates of cystoid macular edema (CME) (p = 0.37-0.87) in eyes with PVL vs. those without. Eyes with PVL receiving baseline treatment augmentation were more likely to have baseline CME but were not more likely to have impaired visual acuity at final follow-up. PVL was independently associated with treatment augmentation on generalized estimating equation analysis with multivariable linear regression (OR: 4.39, p = 0.015). PVL did not confer an increased risk of impaired VA or CME at ≥1 yr follow-up but was possibly an independent driver of treatment augmentation.

  11. Relationship between long working hours and depression: a 3-year longitudinal study of clerical workers.

    PubMed

    Amagasa, Takashi; Nakayama, Takeo

    2013-08-01

    To clarify how long working hours affect the likelihood of current and future depression. Using data from four repeated measurements collected from 218 clerical workers, four models associating work-related factors to the depressive mood scale were established. The final model was constructed after comparing and testing the goodness-of-fit index using structural equation modeling. Multiple logistic regression analysis was also performed. The final model showed the best fit (normed fit index = 0.908; goodness-of-fit index = 0.936; root-mean-square error of approximation = 0.018). Its standardized total effect indicated that long working hours affected depression at the time of evaluation and 1 to 3 years later. The odds ratio for depression risk was 14.7 in employees who were not long-hours overworked according to the initial survey but who were long-hours overworked according to the second survey. Long working hours increase current and future risks of depression.

  12. A multiple linear regression analysis of hot corrosion attack on a series of nickel base turbine alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1985-01-01

    Multiple linear regression analysis was used to determine an equation for estimating hot corrosion attack for a series of Ni base cast turbine alloys. The U transform (i.e., 1/sin (% A/100) to the 1/2) was shown to give the best estimate of the dependent variable, y. A complete second degree equation is described for the centered" weight chemistries for the elements Cr, Al, Ti, Mo, W, Cb, Ta, and Co. In addition linear terms for the minor elements C, B, and Zr were added for a basic 47 term equation. The best reduced equation was determined by the stepwise selection method with essentially 13 terms. The Cr term was found to be the most important accounting for 60 percent of the explained variability hot corrosion attack.

  13. General Nature of Multicollinearity in Multiple Regression Analysis.

    ERIC Educational Resources Information Center

    Liu, Richard

    1981-01-01

    Discusses multiple regression, a very popular statistical technique in the field of education. One of the basic assumptions in regression analysis requires that independent variables in the equation should not be highly correlated. The problem of multicollinearity and some of the solutions to it are discussed. (Author)

  14. Predictive equations for central obesity via anthropometrics, stereovision imaging, and MRI in adults

    PubMed Central

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Yao, Ming; Xu, Bugao

    2013-01-01

    Objective Abdominal visceral adiposity is related to risks for insulin resistance and metabolic perturbations. Magnetic resonance imaging (MRI) and computed tomography are advanced instruments that quantify abdominal adiposity; yet field use is constrained by their bulkiness and costliness. The purpose of this study is to develop prediction equations for total abdominal, subcutaneous, and visceral adiposity via anthropometrics, stereovision body imaging (SBI), and MRI. Design and Methods Participants (67 men and 55 women) were measured for anthropometrics, and abdominal adiposity volumes evaluated by MRI umbilicus scans. Body circumferences and central obesity were obtained via SBI. Prediction models were developed via multiple linear regression analysis, utilizing body measurements and demographics as independent predictors, and abdominal adiposity as a dependent variable. Cross-validation was performed by the data-splitting method. Results The final total abdominal adiposity prediction equation was –470.28+7.10waist circumference–91.01gender+5.74sagittal diameter (R²=89.9%); subcutaneous adiposity was –172.37+8.57waist circumference–62.65gender–450.16stereovision waist-to-hip ratio (R²=90.4%); and visceral adiposity was –96.76+11.48central obesity depth–5.09 central obesity width+204.74stereovision waist-to-hip ratio–18.59gender (R²=71.7%). R² significantly improved for predicting visceral fat when SBI variables were included, but not for total abdominal or subcutaneous adiposity. Conclusions SBI is effective for predicting visceral adiposity and the prediction equations derived from SBI measurements can assess obesity. PMID:23613161

  15. Predictive equations for central obesity via anthropometrics, stereovision imaging and MRI in adults.

    PubMed

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Yao, Ming; Xu, Bugao

    2014-03-01

    Abdominal visceral adiposity is related to risks for insulin resistance and metabolic perturbations. Magnetic resonance imaging (MRI) and computed tomography are advanced instruments that quantify abdominal adiposity; yet field use is constrained by their bulkiness and costliness. The purpose of this study is to develop prediction equations for total abdominal, subcutaneous, and visceral adiposity via anthropometrics, stereovision body imaging (SBI), and MRI. Participants (67 men and 55 women) were measured for anthropometrics and abdominal adiposity volumes evaluated by MRI umbilicus scans. Body circumferences and central obesity were obtained via SBI. Prediction models were developed via multiple linear regression analysis, utilizing body measurements and demographics as independent predictors, and abdominal adiposity as a dependent variable. Cross-validation was performed by the data-splitting method. The final total abdominal adiposity prediction equation was -470.28 + 7.10 waist circumference - 91.01 gender + 5.74 sagittal diameter (R2 = 89.9%), subcutaneous adiposity was -172.37 + 8.57 waist circumference - 62.65 gender - 450.16 stereovision waist-to-hip ratio (R2 =90.4%), and visceral adiposity was -96.76 + 11.48 central obesity depth - 5.09 central obesity width + 204.74 stereovision waist-to-hip ratio - 18.59 gender (R2 = 71.7%). R2 significantly improved for predicting visceral fat when SBI variables were included, but not for total abdominal or subcutaneous adiposity. SBI is effective for predicting visceral adiposity and the prediction equations derived from SBI measurements can assess obesity. Copyright © 2013 The Obesity Society.

  16. Evaluation of driver fatigue on two channels of EEG data.

    PubMed

    Li, Wei; He, Qi-chang; Fan, Xiu-min; Fei, Zhi-min

    2012-01-11

    Electroencephalogram (EEG) data is an effective indicator to evaluate driver fatigue. The 16 channels of EEG data are collected and transformed into three bands (θ, α, and β) in the current paper. First, 12 types of energy parameters are computed based on the EEG data. Then, Grey Relational Analysis (GRA) is introduced to identify the optimal indicator of driver fatigue, after which, the number of significant electrodes is reduced using Kernel Principle Component Analysis (KPCA). Finally, the evaluation model for driver fatigue is established with the regression equation based on the EEG data from two significant electrodes (Fp1 and O1). The experimental results verify that the model is effective in evaluating driver fatigue. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Decreasing Multicollinearity: A Method for Models with Multiplicative Functions.

    ERIC Educational Resources Information Center

    Smith, Kent W.; Sasaki, M. S.

    1979-01-01

    A method is proposed for overcoming the problem of multicollinearity in multiple regression equations where multiplicative independent terms are entered. The method is not a ridge regression solution. (JKS)

  18. Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio

    USGS Publications Warehouse

    Koltun, G.F.; Roberts, J.W.

    1990-01-01

    Multiple-regression equations are presented for estimating flood-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at ungaged sites on rural, unregulated streams in Ohio. The average standard errors of prediction for the equations range from 33.4% to 41.4%. Peak discharge estimates determined by log-Pearson Type III analysis using data collected through the 1987 water year are reported for 275 streamflow-gaging stations. Ordinary least-squares multiple-regression techniques were used to divide the State into three regions and to identify a set of basin characteristics that help explain station-to- station variation in the log-Pearson estimates. Contributing drainage area, main-channel slope, and storage area were identified as suitable explanatory variables. Generalized least-square procedures, which include historical flow data and account for differences in the variance of flows at different gaging stations, spatial correlation among gaging station records, and variable lengths of station record were used to estimate the regression parameters. Weighted peak-discharge estimates computed as a function of the log-Pearson Type III and regression estimates are reported for each station. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site located on the same stream. Limitations and shortcomings cited in an earlier report on the magnitude and frequency of floods in Ohio are addressed in this study. Geographic bias is no longer evident for the Maumee River basin of northwestern Ohio. No bias is found to be associated with the forested-area characteristic for the range used in the regression analysis (0.0 to 99.0%), nor is this characteristic significant in explaining peak discharges. Surface-mined area likewise is not significant in explaining peak discharges, and the regression equations are not biased when applied to basins having approximately 30% or less surface-mined area. Analyses of residuals indicate that the equations tend to overestimate flood-peak discharges for basins having approximately 30% or more surface-mined area. (USGS)

  19. An algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equations

    NASA Astrophysics Data System (ADS)

    Daud, Wan Suhana Wan; Ahmad, Nazihah; Malkawi, Ghassan

    2017-11-01

    Sylvester matrix equations played a prominent role in various areas including control theory. Considering to any un-certainty problems that can be occurred at any time, the Sylvester matrix equation has to be adapted to the fuzzy environment. Therefore, in this study, an algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equation is constructed. The construction of the algorithm is based on the max-min arithmetic multiplication operation. Besides that, an associated arbitrary matrix equation is modified in obtaining the final solution. Finally, some numerical examples are presented to illustrate the proposed algorithm.

  20. Analytical solutions to time-fractional partial differential equations in a two-dimensional multilayer annulus

    NASA Astrophysics Data System (ADS)

    Chen, Shanzhen; Jiang, Xiaoyun

    2012-08-01

    In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.

  1. Updated generalized biomass equations for North American tree species

    Treesearch

    David C. Chojnacky; Linda S. Heath; Jennifer C. Jenkins

    2014-01-01

    Historically, tree biomass at large scales has been estimated by applying dimensional analysis techniques and field measurements such as diameter at breast height (dbh) in allometric regression equations. Equations often have been developed using differing methods and applied only to certain species or isolated areas. We previously had compiled and combined (in meta-...

  2. Comprehensive database of diameter-based biomass regressions for North American tree species

    Treesearch

    Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey

    2004-01-01

    A database consisting of 2,640 equations compiled from the literature for predicting the biomass of trees and tree components from diameter measurements of species found in North America. Bibliographic information, geographic locations, diameter limits, diameter and biomass units, equation forms, statistical errors, and coefficients are provided for each equation,...

  3. Biomass equations for shrub species of Tamualipan thornscrub of North-Eastern Mexico

    Treesearch

    J. Navar; E. Mendez; A. Najera; J. Graciano; V. Dale; B. Parresol

    2004-01-01

    Nine additive allometric equations for computing above-ground, standing biomass were developed for the plant community and for each of 18 single species typical of the Tamaulipan thornscrub of north-eastern Mexico. Equations developed using additive procedures in seemingly unrelated linear regression provided statistical efficiency in total biomass estimates at the...

  4. Methods for estimating annual exceedance-probability discharges and largest recorded floods for unregulated streams in rural Missouri

    USGS Publications Warehouse

    Southard, Rodney E.; Veilleux, Andrea G.

    2014-01-01

    Regression analysis techniques were used to develop a set of equations for rural ungaged stream sites for estimating discharges with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. Basin and climatic characteristics were computed using geographic information software and digital geospatial data. A total of 35 characteristics were computed for use in preliminary statewide and regional regression analyses. Annual exceedance-probability discharge estimates were computed for 278 streamgages by using the expected moments algorithm to fit a log-Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data from water year 1844 to 2012. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized multiple Grubbs-Beck test was used to detect potentially influential low floods. Annual peak flows less than a minimum recordable discharge at a streamgage were incorporated into the at-site station analyses. An updated regional skew coefficient was determined for the State of Missouri using Bayesian weighted least-squares/generalized least squares regression analyses. At-site skew estimates for 108 long-term streamgages with 30 or more years of record and the 35 basin characteristics defined for this study were used to estimate the regional variability in skew. However, a constant generalized-skew value of -0.30 and a mean square error of 0.14 were determined in this study. Previous flood studies indicated that the distinct physical features of the three physiographic provinces have a pronounced effect on the magnitude of flood peaks. Trends in the magnitudes of the residuals from preliminary statewide regression analyses from previous studies confirmed that regional analyses in this study were similar and related to three primary physiographic provinces. The final regional regression analyses resulted in three sets of equations. For Regions 1 and 2, the basin characteristics of drainage area and basin shape factor were statistically significant. For Region 3, because of the small amount of data from streamgages, only drainage area was statistically significant. Average standard errors of prediction ranged from 28.7 to 38.4 percent for flood region 1, 24.1 to 43.5 percent for flood region 2, and 25.8 to 30.5 percent for region 3. The regional regression equations are only applicable to stream sites in Missouri with flows not significantly affected by regulation, channelization, backwater, diversion, or urbanization. Basins with about 5 percent or less impervious area were considered to be rural. Applicability of the equations are limited to the basin characteristic values that range from 0.11 to 8,212.38 square miles (mi2) and basin shape from 2.25 to 26.59 for Region 1, 0.17 to 4,008.92 mi2 and basin shape 2.04 to 26.89 for Region 2, and 2.12 to 2,177.58 mi2 for Region 3. Annual peak data from streamgages were used to qualitatively assess the largest floods recorded at streamgages in Missouri since the 1915 water year. Based on existing streamgage data, the 1983 flood event was the largest flood event on record since 1915. The next five largest flood events, in descending order, took place in 1993, 1973, 2008, 1994 and 1915. Since 1915, five of six of the largest floods on record occurred from 1973 to 2012.

  5. A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narlesky, Joshua Edward; Kelly, Elizabeth J.

    2015-09-10

    This report documents the new PG calibration regression equation. These calibration equations incorporate new data that have become available since revision 1 of “A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis” was issued [3] The calibration equations are based on a weighted least squares (WLS) approach for the regression. The WLS method gives each data point its proper amount of influence over the parameter estimates. This gives two big advantages, more precise parameter estimates and better and more defensible estimates of uncertainties. The WLS approach makes sense both statistically and experimentally because themore » variances increase with concentration, and there are physical reasons that the higher measurements are less reliable and should be less influential. The new magnesium calibration includes a correction for sodium and separate calibration equation for items with and without chlorine. These additional calibration equations allow for better predictions and smaller uncertainties for sodium in materials with and without chlorine. Chlorine and sodium have separate equations for RICH materials. Again, these equations give better predictions and smaller uncertainties chlorine and sodium for RICH materials.« less

  6. The Variance Normalization Method of Ridge Regression Analysis.

    ERIC Educational Resources Information Center

    Bulcock, J. W.; And Others

    The testing of contemporary sociological theory often calls for the application of structural-equation models to data which are inherently collinear. It is shown that simple ridge regression, which is commonly used for controlling the instability of ordinary least squares regression estimates in ill-conditioned data sets, is not a legitimate…

  7. A fully distributed implementation of mean annual streamflow regional regression equations

    USGS Publications Warehouse

    Verdin, K.L.; Worstell, B.

    2008-01-01

    Estimates of mean annual streamflow are needed for a variety of hydrologic assessments. Away from gage locations, regional regression equations that are a function of upstream area, precipitation, and temperature are commonly used. Geographic information systems technology has facilitated their use for projects, but traditional approaches using the polygon overlay operator have been too inefficient for national scale applications. As an alternative, the Elevation Derivatives for National Applications (EDNA) database was used as a framework for a fully distributed implementation of mean annual streamflow regional regression equations. The raster “flow accumulation” operator was used to efficiently achieve spatially continuous parameterization of the equations for every 30 m grid cell of the conterminous United States (U.S.). Results were confirmed by comparing with measured flows at stations of the Hydro-Climatic Data Network, and their applications value demonstrated in the development of a national geospatial hydropower assessment. Interactive tools at the EDNA website make possible the fast and efficient query of mean annual streamflow for any location in the conterminous U.S., providing a valuable complement to other national initiatives (StreamStats and the National Hydrography Dataset Plus).

  8. [Relation between Body Height and Combined Length of Manubrium and Mesosternum of Sternum Measured by CT-VRT in Southwest Han Population].

    PubMed

    Luo, Ying-zhen; Tu, Meng; Fan, Fei; Zheng, Jie-qian; Yang, Ming; Li, Tao; Zhang, Kui; Deng, Zhen-hua

    2015-06-01

    To establish the linear regression equation between body height and combined length of manubrium and mesostenum of sternum measured by CT volume rendering technique (CT-VRT) in southwest Han population. One hundred and sixty subjects, including 80 males and 80 females were selected from southwest Han population for routine CT-VRT (reconstruction thickness 1 mm) examination. The lengths of both manubrium and mesosternum were recorded, and the combined length of manubrium and mesosternum was equal to the algebraic sum of them. The sex-specific linear regression equations between the combined length of manubrium and mesosternum and the real body height of each subject were deduced. The sex-specific simple linear regression equations between the combined length of manubrium and mesostenum (x3) and body height (y) were established (male: y = 135.000+2.118 x3 and female: y = 120.790+2.808 x3). Both equations showed statistical significance (P < 0.05) with a 100% predictive accuracy. CT-VRT is an effective method for measurement of the index of sternum. The combined length of manubrium and mesosternum from CT-VRT can be used for body height estimation in southwest Han population.

  9. Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey

    USGS Publications Warehouse

    Watson, Kara M.; McHugh, Amy R.

    2014-01-01

    Regional regression equations were developed for estimating monthly flow-duration and monthly low-flow frequency statistics for ungaged streams in Coastal Plain and non-coastal regions of New Jersey for baseline and current land- and water-use conditions. The equations were developed to estimate 87 different streamflow statistics, which include the monthly 99-, 90-, 85-, 75-, 50-, and 25-percentile flow-durations of the minimum 1-day daily flow; the August–September 99-, 90-, and 75-percentile minimum 1-day daily flow; and the monthly 7-day, 10-year (M7D10Y) low-flow frequency. These 87 streamflow statistics were computed for 41 continuous-record streamflow-gaging stations (streamgages) with 20 or more years of record and 167 low-flow partial-record stations in New Jersey with 10 or more streamflow measurements. The regression analyses used to develop equations to estimate selected streamflow statistics were performed by testing the relation between flow-duration statistics and low-flow frequency statistics for 32 basin characteristics (physical characteristics, land use, surficial geology, and climate) at the 41 streamgages and 167 low-flow partial-record stations. The regression analyses determined drainage area, soil permeability, average April precipitation, average June precipitation, and percent storage (water bodies and wetlands) were the significant explanatory variables for estimating the selected flow-duration and low-flow frequency statistics. Streamflow estimates were computed for two land- and water-use conditions in New Jersey—land- and water-use during the baseline period of record (defined as the years a streamgage had little to no change in development and water use) and current land- and water-use conditions (1989–2008)—for each selected station using data collected through water year 2008. The baseline period of record is representative of a period when the basin was unaffected by change in development. The current period is representative of the increased development of the last 20 years (1989–2008). The two different land- and water-use conditions were used as surrogates for development to determine whether there have been changes in low-flow statistics as a result of changes in development over time. The State was divided into two low-flow regression regions, the Coastal Plain and the non-coastal region, in order to improve the accuracy of the regression equations. The left-censored parametric survival regression method was used for the analyses to account for streamgages and partial-record stations that had zero flow values for some of the statistics. The average standard error of estimate for the 348 regression equations ranged from 16 to 340 percent. These regression equations and basin characteristics are presented in the U.S. Geological Survey (USGS) StreamStats Web-based geographic information system application. This tool allows users to click on an ungaged site on a stream in New Jersey and get the estimated flow-duration and low-flow frequency statistics. Additionally, the user can click on a streamgage or partial-record station and get the “at-site” streamflow statistics. The low-flow characteristics of a stream ultimately affect the use of the stream by humans. Specific information on the low-flow characteristics of streams is essential to water managers who deal with problems related to municipal and industrial water supply, fish and wildlife conservation, and dilution of wastewater.

  10. Maine StreamStats: a water-resources web application

    USGS Publications Warehouse

    Lombard, Pamela J.

    2015-01-01

    Reports referenced in this fact sheet present the regression equations used to estimate the flow statistics, describe the errors associated with the estimates, and describe the methods used to develop the equations and to measure the basin characteristics used in the equations. Limitations of the methods are also described in the reports; for example, all of the equations are appropriate only for ungaged, unregulated, rural streams in Maine.

  11. Estimation of left ventricular mass in conscious dogs

    NASA Technical Reports Server (NTRS)

    Coleman, Bernell; Cothran, Laval N.; Ison-Franklin, E. L.; Hawthorne, E. W.

    1986-01-01

    A method for the assessment of the development or the regression of left ventricular hypertrophy (LVH) in a conscious instrumented animal is described. First, the single-slice short-axis area-length method for estimating the left-ventricular mass (LVM) and volume (LVV) was validated in 24 formaldehyde-fixed canine hearts, and a regression equation was developed that could be used in the intact animal to correct the sonomicrometrically estimated LVM. The LVM-assessment method, which uses the combined techniques of echocardiography and sonomicrometry (in conjunction with the regression equation), was shown to provide reliable and reproducible day-to-day estimates of LVM and LVV, and to be sensitive enough to detect serial changes during the development of LVH.

  12. Preliminary bioelectrical impedance analysis (BIA) equation for body composition assessment in young females from Colombia

    NASA Astrophysics Data System (ADS)

    Caicedo-Eraso, J. C.; González-Correa, C. H.; González-Correa, C. A.

    2013-04-01

    A previous study showed that reported BIA equations for body composition are not suitable for Colombian population. The purpose of this study was to develop and validate a preliminary BIA equation for body composition assessment in young females from Colombia, using hydrodensitometry as reference method. A sample of 30 young females was evaluated. Inclusion and exclusion criteria were defined to minimize the variability of BIA. Height, weight, BIA, residual lung volume (RV) and underwater weight (UWW) were measured. A preliminary BIA equation was developed (r2 = 0.72, SEE = 2.48 kg) by stepwise multiple regression with fat-free mass (FFM) as dependent variable and weight, height and impedance measurements as independent variables. The quality of regression was evaluated and a cross-validation against 50% of sample confirmed that results obtained with the preliminary BIA equation is interchangeable with results obtained with hydrodensitometry (r2 = 0.84, SEE = 2.62 kg). The preliminary BIA equation can be used for body composition assessment in young females from Colombia until a definitive equation is developed. The next step will be increasing the sample, including a second reference method, as deuterium oxide dilution (D2O), and using multi-frequency BIA (MF-BIA). It would also be desirable to develop equations for males and other ethnic groups in Colombia.

  13. Skinfold Prediction Equations Fail to Provide an Accurate Estimate of Body Composition in Elite Rugby Union Athletes of Caucasian and Polynesian Ethnicity.

    PubMed

    Zemski, Adam J; Broad, Elizabeth M; Slater, Gary J

    2018-01-01

    Body composition in elite rugby union athletes is routinely assessed using surface anthropometry, which can be utilized to provide estimates of absolute body composition using regression equations. This study aims to assess the ability of available skinfold equations to estimate body composition in elite rugby union athletes who have unique physique traits and divergent ethnicity. The development of sport-specific and ethnicity-sensitive equations was also pursued. Forty-three male international Australian rugby union athletes of Caucasian and Polynesian descent underwent surface anthropometry and dual-energy X-ray absorptiometry (DXA) assessment. Body fat percent (BF%) was estimated using five previously developed equations and compared to DXA measures. Novel sport and ethnicity-sensitive prediction equations were developed using forward selection multiple regression analysis. Existing skinfold equations provided unsatisfactory estimates of BF% in elite rugby union athletes, with all equations demonstrating a 95% prediction interval in excess of 5%. The equations tended to underestimate BF% at low levels of adiposity, whilst overestimating BF% at higher levels of adiposity, regardless of ethnicity. The novel equations created explained a similar amount of variance to those previously developed (Caucasians 75%, Polynesians 90%). The use of skinfold equations, including the created equations, cannot be supported to estimate absolute body composition. Until a population-specific equation is established that can be validated to precisely estimate body composition, it is advocated to use a proven method, such as DXA, when absolute measures of lean and fat mass are desired, and raw anthropometry data routinely to derive an estimate of body composition change.

  14. Methods for estimating annual exceedance-probability discharges for streams in Iowa, based on data through water year 2010

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.; Veilleux, Andrea G.

    2013-01-01

    A statewide study was performed to develop regional regression equations for estimating selected annual exceedance-probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedance-probability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized least-squares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized least-squares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.

  15. Body fat measurement by bioelectrical impedance and air displacement plethysmography: a cross-validation study to design bioelectrical impedance equations in Mexican adults

    PubMed Central

    Macias, Nayeli; Alemán-Mateo, Heliodoro; Esparza-Romero, Julián; Valencia, Mauro E

    2007-01-01

    Background The study of body composition in specific populations by techniques such as bio-impedance analysis (BIA) requires validation based on standard reference methods. The aim of this study was to develop and cross-validate a predictive equation for bioelectrical impedance using air displacement plethysmography (ADP) as standard method to measure body composition in Mexican adult men and women. Methods This study included 155 male and female subjects from northern Mexico, 20–50 years of age, from low, middle, and upper income levels. Body composition was measured by ADP. Body weight (BW, kg) and height (Ht, cm) were obtained by standard anthropometric techniques. Resistance, R (ohms) and reactance, Xc (ohms) were also measured. A random-split method was used to obtain two samples: one was used to derive the equation by the "all possible regressions" procedure and was cross-validated in the other sample to test predicted versus measured values of fat-free mass (FFM). Results and Discussion The final model was: FFM (kg) = 0.7374 * (Ht2 /R) + 0.1763 * (BW) - 0.1773 * (Age) + 0.1198 * (Xc) - 2.4658. R2 was 0.97; the square root of the mean square error (SRMSE) was 1.99 kg, and the pure error (PE) was 2.96. There was no difference between FFM predicted by the new equation (48.57 ± 10.9 kg) and that measured by ADP (48.43 ± 11.3 kg). The new equation did not differ from the line of identity, had a high R2 and a low SRMSE, and showed no significant bias (0.87 ± 2.84 kg). Conclusion The new bioelectrical impedance equation based on the two-compartment model (2C) was accurate, precise, and free of bias. This equation can be used to assess body composition and nutritional status in populations similar in anthropometric and physical characteristics to this sample. PMID:17697388

  16. Probabilistic estimates of number of undiscovered deposits and their total tonnages in permissive tracts using deposit densities

    USGS Publications Warehouse

    Singer, Donald A.; Kouda, Ryoichi

    2011-01-01

    Empirical evidence indicates that processes affecting number and quantity of resources in geologic settings are very general across deposit types. Sizes of permissive tracts that geologically could contain the deposits are excellent predictors of numbers of deposits. In addition, total ore tonnage of mineral deposits of a particular type in a tract is proportional to the type’s median tonnage in a tract. Regressions using size of permissive tracts and median tonnage allow estimation of number of deposits and of total tonnage of mineralization. These powerful estimators, based on 10 different deposit types from 109 permissive worldwide control tracts, generalize across deposit types. Estimates of number of deposits and of total tonnage of mineral deposits are made by regressing permissive area, and mean (in logs) tons in deposits of the type, against number of deposits and total tonnage of deposits in the tract for the 50th percentile estimates. The regression equations (R2 = 0.91 and 0.95) can be used for all deposit types just by inserting logarithmic values of permissive area in square kilometers, and mean tons in deposits in millions of metric tons. The regression equations provide estimates at the 50th percentile, and other equations are provided for 90% confidence limits for lower estimates and 10% confidence limits for upper estimates of number of deposits and total tonnage. Equations for these percentile estimates along with expected value estimates are presented here along with comparisons with independent expert estimates. Also provided are the equations for correcting for the known well-explored deposits in a tract. These deposit-density models require internally consistent grade and tonnage models and delineations for arriving at unbiased estimates.

  17. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults

    PubMed Central

    Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A.; Aguiló, Antoni

    2015-01-01

    Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF. PMID:25821960

  18. A comparison between multiple regression models and CUN-BAE equation to predict body fat in adults.

    PubMed

    Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A; Aguiló, Antoni

    2015-01-01

    Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.

  19. Methods for estimating streamflow at mountain fronts in southern New Mexico

    USGS Publications Warehouse

    Waltemeyer, S.D.

    1994-01-01

    The infiltration of streamflow is potential recharge to alluvial-basin aquifers at or near mountain fronts in southern New Mexico. Data for 13 streamflow-gaging stations were used to determine a relation between mean annual stream- flow and basin and climatic conditions. Regression analysis was used to develop an equation that can be used to estimate mean annual streamflow on the basis of drainage areas and mean annual precipi- tation. The average standard error of estimate for this equation is 46 percent. Regression analysis also was used to develop an equation to estimate mean annual streamflow on the basis of active- channel width. Measurements of the width of active channels were determined for 6 of the 13 gaging stations. The average standard error of estimate for this relation is 29 percent. Stream- flow estimates made using a regression equation based on channel geometry are considered more reliable than estimates made from an equation based on regional relations of basin and climatic conditions. The sample size used to develop these relations was small, however, and the reported standard error of estimate may not represent that of the entire population. Active-channel-width measurements were made at 23 ungaged sites along the Rio Grande upstream from Elephant Butte Reservoir. Data for additional sites would be needed for a more comprehensive assessment of mean annual streamflow in southern New Mexico.

  20. Body Composition of Bangladeshi Children: Comparison and Development of Leg-to-Leg Bioelectrical Impedance Equation

    PubMed Central

    Khan, I.; Hawlader, Sophie Mohammad Delwer Hossain; Arifeen, Shams El; Moore, Sophie; Hills, Andrew P.; Wells, Jonathan C.; Persson, Lars-Åke; Kabir, Iqbal

    2012-01-01

    The aim of this study was to investigate the validity of the Tanita TBF 300A leg-to-leg bioimpedance analyzer for estimating fat-free mass (FFM) in Bangladeshi children aged 4-10 years and to develop novel prediction equations for use in this population, using deuterium dilution as the reference method. Two hundred Bangladeshi children were enrolled. The isotope dilution technique with deuterium oxide was used for estimation of total body water (TBW). FFM estimated by Tanita was compared with results of deuterium oxide dilution technique. Novel prediction equations were created for estimating FFM, using linear regression models, fitting child's height and impedance as predictors. There was a significant difference in FFM and percentage of body fat (BF%) between methods (p<0.01), Tanita underestimating TBW in boys (p=0.001) and underestimating BF% in girls (p<0.001). A basic linear regression model with height and impedance explained 83% of the variance in FFM estimated by deuterium oxide dilution technique. The best-fit equation to predict FFM from linear regression modelling was achieved by adding weight, sex, and age to the basic model, bringing the adjusted R2 to 89% (standard error=0.90, p<0.001). These data suggest Tanita analyzer may be a valid field-assessment technique in Bangladeshi children when using population-specific prediction equations, such as the ones developed here. PMID:23082630

  1. Applicability of the Tanaka-Johnston and Moyers mixed dentition analyses in Northeast Han Chinese.

    PubMed

    Sherpa, Jangbu; Sah, Gopal; Rong, Zeng; Wu, Lipeng

    2015-06-01

    To assess applicability of the Tanaka-Johnston and Moyers prediction methods in a Han ethnic group from Northeast China and to develop prediction equations for this same population. Cross-sectional study. Department of Orthodontics, School of Stomatology, Jiamusi University, Heilongjiang, China. A total of 130 subjects (65 male and 65 female) aged 16-21 years from a Han ethnic group of Northeast China were recruited from dental students and patients seeking orthodontic treatment. Ethnicity was verified by questionnaire. Mesio-distal tooth width was measured using Digital Vernier calipers. Predicted values were obtained from the Tanaka-Johnston and Moyers methods in both arches were compared with the actual measured widths. Based on regression analysis, prediction equations were developed. Tanaka-Johnston equations were not precise, except for the upper arch in males. However, the Moyers 85th percentile in the upper arch and 75th percentile in the lower arch predicted the sum precisely in males. For females, the Moyers 75th percentile predicted the sum precisely for the upper arch, but none of the Moyers percentiles predicted in the lower arch. Both the Tanaka-Johnston and Moyers method may not be applied universally without question. Hence, it may be safer to develop regression equations for specific populations. Validating studies must be conducted to confirm the precision of these newly developed regression equations.

  2. A logistic regression equation for estimating the probability of a stream in Vermont having intermittent flow

    USGS Publications Warehouse

    Olson, Scott A.; Brouillette, Michael C.

    2006-01-01

    A logistic regression equation was developed for estimating the probability of a stream flowing intermittently at unregulated, rural stream sites in Vermont. These determinations can be used for a wide variety of regulatory and planning efforts at the Federal, State, regional, county and town levels, including such applications as assessing fish and wildlife habitats, wetlands classifications, recreational opportunities, water-supply potential, waste-assimilation capacities, and sediment transport. The equation will be used to create a derived product for the Vermont Hydrography Dataset having the streamflow characteristic of 'intermittent' or 'perennial.' The Vermont Hydrography Dataset is Vermont's implementation of the National Hydrography Dataset and was created at a scale of 1:5,000 based on statewide digital orthophotos. The equation was developed by relating field-verified perennial or intermittent status of a stream site during normal summer low-streamflow conditions in the summer of 2005 to selected basin characteristics of naturally flowing streams in Vermont. The database used to develop the equation included 682 stream sites with drainage areas ranging from 0.05 to 5.0 square miles. When the 682 sites were observed, 126 were intermittent (had no flow at the time of the observation) and 556 were perennial (had flowing water at the time of the observation). The results of the logistic regression analysis indicate that the probability of a stream having intermittent flow in Vermont is a function of drainage area, elevation of the site, the ratio of basin relief to basin perimeter, and the areal percentage of well- and moderately well-drained soils in the basin. Using a probability cutpoint (a lower probability indicates the site has perennial flow and a higher probability indicates the site has intermittent flow) of 0.5, the logistic regression equation correctly predicted the perennial or intermittent status of 116 test sites 85 percent of the time.

  3. Regression analysis of mixed panel count data with dependent terminal events.

    PubMed

    Yu, Guanglei; Zhu, Liang; Li, Yang; Sun, Jianguo; Robison, Leslie L

    2017-05-10

    Event history studies are commonly conducted in many fields, and a great deal of literature has been established for the analysis of the two types of data commonly arising from these studies: recurrent event data and panel count data. The former arises if all study subjects are followed continuously, while the latter means that each study subject is observed only at discrete time points. In reality, a third type of data, a mixture of the two types of the data earlier, may occur and furthermore, as with the first two types of the data, there may exist a dependent terminal event, which may preclude the occurrences of recurrent events of interest. This paper discusses regression analysis of mixed recurrent event and panel count data in the presence of a terminal event and an estimating equation-based approach is proposed for estimation of regression parameters of interest. In addition, the asymptotic properties of the proposed estimator are established, and a simulation study conducted to assess the finite-sample performance of the proposed method suggests that it works well in practical situations. Finally, the methodology is applied to a childhood cancer study that motivated this study. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Development and validation of a mortality risk model for pediatric sepsis.

    PubMed

    Chen, Mengshi; Lu, Xiulan; Hu, Li; Liu, Pingping; Zhao, Wenjiao; Yan, Haipeng; Tang, Liang; Zhu, Yimin; Xiao, Zhenghui; Chen, Lizhang; Tan, Hongzhuan

    2017-05-01

    Pediatric sepsis is a burdensome public health problem. Assessing the mortality risk of pediatric sepsis patients, offering effective treatment guidance, and improving prognosis to reduce mortality rates, are crucial.We extracted data derived from electronic medical records of pediatric sepsis patients that were collected during the first 24 hours after admission to the pediatric intensive care unit (PICU) of the Hunan Children's hospital from January 2012 to June 2014. A total of 788 children were randomly divided into a training (592, 75%) and validation group (196, 25%). The risk factors for mortality among these patients were identified by conducting multivariate logistic regression in the training group. Based on the established logistic regression equation, the logit probabilities for all patients (in both groups) were calculated to verify the model's internal and external validities.According to the training group, 6 variables (brain natriuretic peptide, albumin, total bilirubin, D-dimer, lactate levels, and mechanical ventilation in 24 hours) were included in the final logistic regression model. The areas under the curves of the model were 0.854 (0.826, 0.881) and 0.844 (0.816, 0.873) in the training and validation groups, respectively.The Mortality Risk Model for Pediatric Sepsis we established in this study showed acceptable accuracy to predict the mortality risk in pediatric sepsis patients.

  5. Development and validation of a mortality risk model for pediatric sepsis

    PubMed Central

    Chen, Mengshi; Lu, Xiulan; Hu, Li; Liu, Pingping; Zhao, Wenjiao; Yan, Haipeng; Tang, Liang; Zhu, Yimin; Xiao, Zhenghui; Chen, Lizhang; Tan, Hongzhuan

    2017-01-01

    Abstract Pediatric sepsis is a burdensome public health problem. Assessing the mortality risk of pediatric sepsis patients, offering effective treatment guidance, and improving prognosis to reduce mortality rates, are crucial. We extracted data derived from electronic medical records of pediatric sepsis patients that were collected during the first 24 hours after admission to the pediatric intensive care unit (PICU) of the Hunan Children's hospital from January 2012 to June 2014. A total of 788 children were randomly divided into a training (592, 75%) and validation group (196, 25%). The risk factors for mortality among these patients were identified by conducting multivariate logistic regression in the training group. Based on the established logistic regression equation, the logit probabilities for all patients (in both groups) were calculated to verify the model's internal and external validities. According to the training group, 6 variables (brain natriuretic peptide, albumin, total bilirubin, D-dimer, lactate levels, and mechanical ventilation in 24 hours) were included in the final logistic regression model. The areas under the curves of the model were 0.854 (0.826, 0.881) and 0.844 (0.816, 0.873) in the training and validation groups, respectively. The Mortality Risk Model for Pediatric Sepsis we established in this study showed acceptable accuracy to predict the mortality risk in pediatric sepsis patients. PMID:28514310

  6. Annual peak streamflow and ancillary data for small watersheds in central and western Texas

    USGS Publications Warehouse

    Harwell, Glenn R.; Asquith, William H.

    2011-01-01

    Estimates of annual peak-streamflow frequency are needed for flood-plain management, assessment of flood risk, and design of structures, such as roads, bridges, culverts, dams, and levees. Regional regression equations have been developed and are used extensively to estimate annual peak-streamflow frequency for ungaged sites in natural (unregulated and rural or nonurbanized) watersheds in Texas (Asquith and Slade, 1997; Asquith and Thompson, 2008; Asquith and Roussel, 2009). The most recent regional regression equations were developed by using data from 638 Texas streamflow-gaging stations throughout the State with eight or more years of data by using drainage area, channel slope, and mean annual precipitation as predictor variables (Asquith and Roussel, 2009). However, because of a lack of sufficient historical streamflow data from small, rural watersheds in certain parts of the State (central and western), substantial uncertainity exists when using the regional regression equations for the purpose of estimating annual peak-streamflow frequency.

  7. Estimating magnitude and frequency of peak discharges for rural, unregulated, streams in West Virginia

    USGS Publications Warehouse

    Wiley, J.B.; Atkins, John T.; Tasker, Gary D.

    2000-01-01

    Multiple and simple least-squares regression models for the log10-transformed 100-year discharge with independent variables describing the basin characteristics (log10-transformed and untransformed) for 267 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions of the State, designated East, North, and South. Exploratory data analysis procedures identified 31 gaging stations at which discharges are different than would be expected for West Virginia. Regional equations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak discharges were determined by generalized least-squares regression using data from 236 gaging stations. Log10-transformed drainage area was the most significant independent variable for all regions.Equations developed in this study are applicable only to rural, unregulated, streams within the boundaries of West Virginia. The accuracy of estimating equations is quantified by measuring the average prediction error (from 27.7 to 44.7 percent) and equivalent years of record (from 1.6 to 20.0 years).

  8. Establishing a Mathematical Equations and Improving the Production of L-tert-Leucine by Uniform Design and Regression Analysis.

    PubMed

    Jiang, Wei; Xu, Chao-Zhen; Jiang, Si-Zhi; Zhang, Tang-Duo; Wang, Shi-Zhen; Fang, Bai-Shan

    2017-04-01

    L-tert-Leucine (L-Tle) and its derivatives are extensively used as crucial building blocks for chiral auxiliaries, pharmaceutically active ingredients, and ligands. Combining with formate dehydrogenase (FDH) for regenerating the expensive coenzyme NADH, leucine dehydrogenase (LeuDH) is continually used for synthesizing L-Tle from α-keto acid. A multilevel factorial experimental design was executed for research of this system. In this work, an efficient optimization method for improving the productivity of L-Tle was developed. And the mathematical model between different fermentation conditions and L-Tle yield was also determined in the form of the equation by using uniform design and regression analysis. The multivariate regression equation was conveniently implemented in water, with a space time yield of 505.9 g L -1  day -1 and an enantiomeric excess value of >99 %. These results demonstrated that this method might become an ideal protocol for industrial production of chiral compounds and unnatural amino acids such as chiral drug intermediates.

  9. Estimating Dbh from Stump Diameter for 15 Southern Species

    Treesearch

    Carl V. Bylin

    1982-01-01

    Regression equations for predicting dbh from tree stump diameter inside and outside bark are presented for 15 southern species. Equations were certified on idependent test subsets using the F distrubution statistic with signigicance level of .05.

  10. The study of correlation among different scattering parameters in an aggregate dust model

    NASA Astrophysics Data System (ADS)

    Mazarbhuiya, A. M.; Das, H. S.

    2017-09-01

    We study the light scattering properties of aggregate particles in a wide range of complex refractive indices (m = n + i k, where 1.4 ≤ n ≤ 2.0, 0.001 ≤ k ≤1.0) and wavelengths (0.45 ≤ λ≤1.25 μ m) to investigate the correlation among different parameters e.g., the positive polarization maximum (P_{max}), the amplitude of the negative polarization (P_{min}), geometric albedo (A), (n,k) and λ. Numerical computations are performed by the Superposition T-matrix code with Ballistic Cluster-Cluster Aggregate (BCCA) particles of 128 monomers and Ballistic Aggregates (BA) particles of 512 monomers, where monomer's radius of aggregates is considered to be 0.1 μm. At a fixed value of k, P_{max} and n are correlated via a quadratic regression equation and this nature is observed at all wavelengths. Further, P_{max} and k are found to be related via a polynomial regression equation when n is taken to be fixed. The degree of the equation depends on the wavelength, higher the wavelength lower is the degree. We find that A and P_{max} are correlated via a cubic regression at λ= 0.45 μ m whereas this correlation is quadratic at higher wavelengths. We notice that |P_{min}| increases with the decrease of P_{max} and a strong linear correlation between them is observed when n is fixed at some value and k is changed from higher to lower value. Further, at a fix value of k, P_{min} and P_{max} can be fitted well via a quartic regression equation when n is changed from higher to lower value. We also find that P_{max} increases with λ and they are correlated via a quartic regression.

  11. Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.

    PubMed

    Xie, Yanmei; Zhang, Biao

    2017-04-20

    Missing covariate data occurs often in regression analysis, which frequently arises in the health and social sciences as well as in survey sampling. We study methods for the analysis of a nonignorable covariate-missing data problem in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Bartlett et al. (Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics 2014;15:719-30) on regression analyses with nonignorable missing covariates, in which they have introduced the use of two working models, the working probability model of missingness and the working conditional score model. In this paper, we study an empirical likelihood approach to nonignorable covariate-missing data problems with the objective of effectively utilizing the two working models in the analysis of covariate-missing data. We propose a unified approach to constructing a system of unbiased estimating equations, where there are more equations than unknown parameters of interest. One useful feature of these unbiased estimating equations is that they naturally incorporate the incomplete data into the data analysis, making it possible to seek efficient estimation of the parameter of interest even when the working regression function is not specified to be the optimal regression function. We apply the general methodology of empirical likelihood to optimally combine these unbiased estimating equations. We propose three maximum empirical likelihood estimators of the underlying regression parameters and compare their efficiencies with other existing competitors. We present a simulation study to compare the finite-sample performance of various methods with respect to bias, efficiency, and robustness to model misspecification. The proposed empirical likelihood method is also illustrated by an analysis of a data set from the US National Health and Nutrition Examination Survey (NHANES).

  12. Methods for estimating the magnitude and frequency of peak discharges of rural, unregulated streams in Virginia

    USGS Publications Warehouse

    Bisese, James A.

    1995-01-01

    Methods are presented for estimating the peak discharges of rural, unregulated streams in Virginia. A Pearson Type III distribution is fitted to the logarithms of the unregulated annual peak-discharge records from 363 stream-gaging stations in Virginia to estimate the peak discharge at these stations for recurrence intervals of 2 to 500 years. Peak-discharge characteristics for 284 unregulated stations are divided into eight regions based on physiographic province, and regressed on basin characteristics, including drainage area, main channel length, main channel slope, mean basin elevation, percentage of forest cover, mean annual precipitation, and maximum rainfall intensity. Regression equations for each region are computed by use of the generalized least-squares method, which accounts for spatial and temporal correlation between nearby gaging stations. This regression technique weights the significance of each station to the regional equation based on the length of records collected at each cation, the correlation between annual peak discharges among the stations, and the standard deviation of the annual peak discharge for each station.Drainage area proved to be the only significant explanatory variable in four regions, while other regions have as many as three significant variables. Standard errors of the regression equations range from 30 to 80 percent. Alternate equations using drainage area only are provided for the five regions with more than one significant explanatory variable.Methods and sample computations are provided to estimate peak discharges at gaged and engaged sites in Virginia for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, and to adjust the regression estimates for sites on gaged streams where nearby gaging-station records are available.

  13. Estimating annual suspended-sediment loads in the northern and central Appalachian Coal region

    USGS Publications Warehouse

    Koltun, G.F.

    1985-01-01

    Multiple-regression equations were developed for estimating the annual suspended-sediment load, for a given year, from small to medium-sized basins in the northern and central parts of the Appalachian coal region. The regression analysis was performed with data for land use, basin characteristics, streamflow, rainfall, and suspended-sediment load for 15 sites in the region. Two variables, the maximum mean-daily discharge occurring within the year and the annual peak discharge, explained much of the variation in the annual suspended-sediment load. Separate equations were developed employing each of these discharge variables. Standard errors for both equations are relatively large, which suggests that future predictions will probably have a low level of precision. This level of precision, however, may be acceptable for certain purposes. It is therefore left to the user to asses whether the level of precision provided by these equations is acceptable for the intended application.

  14. Prediction of elemental creep. [steady state and cyclic data from regression analysis

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Rummler, D. R.

    1975-01-01

    Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.

  15. An Evaluation of Statistical Strategies for Making Equating Function Selections. Research Report. ETS RR-08-60

    ERIC Educational Resources Information Center

    Moses, Tim

    2008-01-01

    Nine statistical strategies for selecting equating functions in an equivalent groups design were evaluated. The strategies of interest were likelihood ratio chi-square tests, regression tests, Kolmogorov-Smirnov tests, and significance tests for equated score differences. The most accurate strategies in the study were the likelihood ratio tests…

  16. Family differences in equations for predicting biomass and leaf area in Douglas-fir (Pseudotsuga menziesii var. menziesii).

    Treesearch

    J.B. St. Clair

    1993-01-01

    Logarithmic regression equations were developed to predict component biomass and leaf area for an 18-yr-old genetic test of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) based on stem diameter or cross-sectional sapwood area. Equations did not differ among open-pollinated families in slope, but intercepts...

  17. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Treesearch

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  18. Regression estimators for generic health-related quality of life and quality-adjusted life years.

    PubMed

    Basu, Anirban; Manca, Andrea

    2012-01-01

    To develop regression models for outcomes with truncated supports, such as health-related quality of life (HRQoL) data, and account for features typical of such data such as a skewed distribution, spikes at 1 or 0, and heteroskedasticity. Regression estimators based on features of the Beta distribution. First, both a single equation and a 2-part model are presented, along with estimation algorithms based on maximum-likelihood, quasi-likelihood, and Bayesian Markov-chain Monte Carlo methods. A novel Bayesian quasi-likelihood estimator is proposed. Second, a simulation exercise is presented to assess the performance of the proposed estimators against ordinary least squares (OLS) regression for a variety of HRQoL distributions that are encountered in practice. Finally, the performance of the proposed estimators is assessed by using them to quantify the treatment effect on QALYs in the EVALUATE hysterectomy trial. Overall model fit is studied using several goodness-of-fit tests such as Pearson's correlation test, link and reset tests, and a modified Hosmer-Lemeshow test. The simulation results indicate that the proposed methods are more robust in estimating covariate effects than OLS, especially when the effects are large or the HRQoL distribution has a large spike at 1. Quasi-likelihood techniques are more robust than maximum likelihood estimators. When applied to the EVALUATE trial, all but the maximum likelihood estimators produce unbiased estimates of the treatment effect. One and 2-part Beta regression models provide flexible approaches to regress the outcomes with truncated supports, such as HRQoL, on covariates, after accounting for many idiosyncratic features of the outcomes distribution. This work will provide applied researchers with a practical set of tools to model outcomes in cost-effectiveness analysis.

  19. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

    PubMed

    Murase, Kenya

    2016-01-01

    Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

  20. Tolerance of ciliated protozoan Paramecium bursaria (Protozoa, Ciliophora) to ammonia and nitrites

    NASA Astrophysics Data System (ADS)

    Xu, Henglong; Song, Weibo; Lu, Lu; Alan, Warren

    2005-09-01

    The tolerance to ammonia and nitrites in freshwater ciliate Paramecium bursaria was measured in a conventional open system. The ciliate was exposed to different concentrations of ammonia and nitrites for 2h and 12h in order to determine the lethal concentrations. Linear regression analysis revealed that the 2h-LC50 value for ammonia was 95.94 mg/L and for nitrite 27.35 mg/L using probit scale method (with 95% confidence intervals). There was a linear correlation between the mortality probit scale and logarithmic concentration of ammonia which fit by a regression equation y=7.32 x 9.51 ( R 2=0.98; y, mortality probit scale; x, logarithmic concentration of ammonia), by which 2 h-LC50 value for ammonia was found to be 95.50 mg/L. A linear correlation between mortality probit scales and logarithmic concentration of nitrite is also followed the regression equation y=2.86 x+0.89 ( R 2=0.95; y, mortality probit scale; x, logarithmic concentration of nitrite). The regression analysis of toxicity curves showed that the linear correlation between exposed time of ammonia-N LC50 value and ammonia-N LC50 value followed the regression equation y=2 862.85 e -0.08 x ( R 2=0.95; y, duration of exposure to LC50 value; x, LC50 value), and that between exposed time of nitrite-N LC50 value and nitrite-N LC50 value followed the regression equation y=127.15 e -0.13 x ( R 2=0.91; y, exposed time of LC50 value; x, LC50 value). The results demonstrate that the tolerance to ammonia in P. bursaria is considerably higher than that of the larvae or juveniles of some metozoa, e.g. cultured prawns and oysters. In addition, ciliates, as bacterial predators, are likely to play a positive role in maintaining and improving water quality in aquatic environments with high-level ammonium, such as sewage treatment systems.

  1. Monitoring of bone regeneration process by means of texture analysis

    NASA Astrophysics Data System (ADS)

    Kokkinou, E.; Boniatis, I.; Costaridou, L.; Saridis, A.; Panagiotopoulos, E.; Panayiotakis, G.

    2009-09-01

    An image analysis method is proposed for the monitoring of the regeneration of the tibial bone. For this purpose, 130 digitized radiographs of 13 patients, who had undergone tibial lengthening by the Ilizarov method, were studied. For each patient, 10 radiographs, taken at an equal number of postoperative successive time moments, were available. Employing available software, 3 Regions Of Interest (ROIs), corresponding to the: (a) upper, (b) central, and (c) lower aspect of the gap, where bone regeneration was expected to occur, were determined on each radiograph. Employing custom developed algorithms: (i) a number of textural features were generated from each of the ROIs, and (ii) a texture-feature based regression model was designed for the quantitative monitoring of the bone regeneration process. Statistically significant differences (p < 0.05) were derived for the initial and the final textural features values, generated from the first and the last postoperatively obtained radiographs, respectively. A quadratic polynomial regression equation fitted data adequately (r2 = 0.9, p < 0.001). The suggested method may contribute to the monitoring of the tibial bone regeneration process.

  2. The Mental Health Parity and Addiction Equity Act evaluation study: Impact on specialty behavioral health utilization and expenditures among "carve-out" enrollees.

    PubMed

    Ettner, Susan L; M Harwood, Jessica; Thalmayer, Amber; Ong, Michael K; Xu, Haiyong; Bresolin, Michael J; Wells, Kenneth B; Tseng, Chi-Hong; Azocar, Francisca

    2016-12-01

    Interrupted time series with and without controls was used to evaluate whether the federal Mental Health Parity and Addiction Equity Act (MHPAEA) and its Interim Final Rule increased the probability of specialty behavioral health treatment and levels of utilization and expenditures among patients receiving treatment. Linked insurance claims, eligibility, plan and employer data from 2008 to 2013 were used to estimate segmented regression analyses, allowing for level and slope changes during the transition (2010) and post-MHPAEA (2011-2013) periods. The sample included 1,812,541 individuals ages 27-64 (49,968,367 person-months) in 10,010 Optum "carve-out" plans. Two-part regression models with Generalized Estimating Equations were used to estimate expenditures by payer and outpatient, intermediate and inpatient service use. We found little evidence that MHPAEA increased utilization significantly, but somewhat more robust evidence that costs shifted from patients to plans. Thus the primary impact of MHPAEA among carve-out enrollees may have been a reduction in patient financial burden. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Face aging effect simulation model based on multilayer representation and shearlet transform

    NASA Astrophysics Data System (ADS)

    Li, Yuancheng; Li, Yan

    2017-09-01

    In order to extract detailed facial features, we build a face aging effect simulation model based on multilayer representation and shearlet transform. The face is divided into three layers: the global layer of the face, the local features layer, and texture layer, which separately establishes the aging model. First, the training samples are classified according to different age groups, and we use active appearance model (AAM) at the global level to obtain facial features. The regression equations of shape and texture with age are obtained by fitting the support vector machine regression, which is based on the radial basis function. We use AAM to simulate the aging of facial organs. Then, for the texture detail layer, we acquire the significant high-frequency characteristic components of the face by using the multiscale shearlet transform. Finally, we get the last simulated aging images of the human face by the fusion algorithm. Experiments are carried out on the FG-NET dataset, and the experimental results show that the simulated face images have less differences from the original image and have a good face aging simulation effect.

  4. Heat rejection efficiency research of new energy automobile radiators

    NASA Astrophysics Data System (ADS)

    Ma, W. S.; Shen, W. X.; Zhang, L. W.

    2018-03-01

    The driving system of new energy vehicle has larger heat load than conventional engine. How to ensure the heat dissipation performance of the cooling system is the focus of the design of new energy vehicle thermal management system. In this paper, the heat dissipation efficiency of the radiator of the hybrid electric vehicle is taken as the research object, the heat dissipation efficiency of the radiator of the new energy vehicle is studied through the multi-working-condition enthalpy difference test. In this paper, the test method in the current standard QC/T 468-2010 “automobile radiator” is taken, but not limited to the test conditions specified in the standard, 5 types of automobile radiator are chosen, each of them is tested 20 times in simulated condition of different wind speed and engine inlet temperature. Finally, regression analysis is carried out for the test results, and regression equation describing the relationship of radiator heat dissipation heat dissipation efficiency air side flow rate cooling medium velocity and inlet air temperature is obtained, and the influence rule is systematically discussed.

  5. A resilient and efficient CFD framework: Statistical learning tools for multi-fidelity and heterogeneous information fusion

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em

    2017-09-01

    Exascale-level simulations require fault-resilient algorithms that are robust against repeated and expected software and/or hardware failures during computations, which may render the simulation results unsatisfactory. If each processor can share some global information about the simulation from a coarse, limited accuracy but relatively costless auxiliary simulator we can effectively fill-in the missing spatial data at the required times by a statistical learning technique - multi-level Gaussian process regression, on the fly; this has been demonstrated in previous work [1]. Based on the previous work, we also employ another (nonlinear) statistical learning technique, Diffusion Maps, that detects computational redundancy in time and hence accelerate the simulation by projective time integration, giving the overall computation a "patch dynamics" flavor. Furthermore, we are now able to perform information fusion with multi-fidelity and heterogeneous data (including stochastic data). Finally, we set the foundations of a new framework in CFD, called patch simulation, that combines information fusion techniques from, in principle, multiple fidelity and resolution simulations (and even experiments) with a new adaptive timestep refinement technique. We present two benchmark problems (the heat equation and the Navier-Stokes equations) to demonstrate the new capability that statistical learning tools can bring to traditional scientific computing algorithms. For each problem, we rely on heterogeneous and multi-fidelity data, either from a coarse simulation of the same equation or from a stochastic, particle-based, more "microscopic" simulation. We consider, as such "auxiliary" models, a Monte Carlo random walk for the heat equation and a dissipative particle dynamics (DPD) model for the Navier-Stokes equations. More broadly, in this paper we demonstrate the symbiotic and synergistic combination of statistical learning, domain decomposition, and scientific computing in exascale simulations.

  6. Development of reference equations for spirometry in Japanese children aged 6-18 years.

    PubMed

    Takase, Masato; Sakata, Hiroshi; Shikada, Masahiro; Tatara, Katsuyoshi; Fukushima, Takayoshi; Miyakawa, Tomoo

    2013-01-01

    Spirometry is the most widely used pulmonary function test and the measured values of spirometric parameters need to be evaluated using reference values predicted for the corresponding race, sex, age, and height. However, none of the existing reference equations for Japanese children covers the entire age range of 6-18 years. The Japanese Society of Pediatric Pulmonology had organized a working group in 2006, in order to develop a new set of national standard reference equations for commonly used spirometric parameters that are applicable through the age range of 6-18 years. Quality assured spirometric data were collected through 2006-2008, from 14 institutions in Japan. We applied multiple regression analysis, using age in years (A), square of age (A(2)), height in meters (H), square of height (H(2)), and the product of age and height (AH) as explanatory variables to predict forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV(1)), peak expiratory flow (PEF), forced expiratory flow between 25% and 75% of the FVC (FEF(25-75%)), instantaneous forced expiratory flow when 50% (FEF(50%)) or 75% (FEF(75%)) of the FVC have been expired. Finally, 1,296 tests (674 boys, 622 girls) formed the reference data set. Distributions of the percent predicted values did not differ by ages, confirming excellent fit of the prediction equations throughout the entire age range from 6 to 18 years. Cut-off values (around 5 percentile points) for the parameters were also determined. We recommend the use of this new set of prediction equations together with suggested cut-off values, for assessment of spirometry in Japanese children and adolescents. Copyright © 2012 Wiley Periodicals, Inc.

  7. RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,

    DTIC Science & Technology

    This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)

  8. Regression analysis for solving diagnosis problem of children's health

    NASA Astrophysics Data System (ADS)

    Cherkashina, Yu A.; Gerget, O. M.

    2016-04-01

    The paper includes results of scientific researches. These researches are devoted to the application of statistical techniques, namely, regression analysis, to assess the health status of children in the neonatal period based on medical data (hemostatic parameters, parameters of blood tests, the gestational age, vascular-endothelial growth factor) measured at 3-5 days of children's life. In this paper a detailed description of the studied medical data is given. A binary logistic regression procedure is discussed in the paper. Basic results of the research are presented. A classification table of predicted values and factual observed values is shown, the overall percentage of correct recognition is determined. Regression equation coefficients are calculated, the general regression equation is written based on them. Based on the results of logistic regression, ROC analysis was performed, sensitivity and specificity of the model are calculated and ROC curves are constructed. These mathematical techniques allow carrying out diagnostics of health of children providing a high quality of recognition. The results make a significant contribution to the development of evidence-based medicine and have a high practical importance in the professional activity of the author.

  9. Combustion performance and scale effect from N2O/HTPB hybrid rocket motor simulations

    NASA Astrophysics Data System (ADS)

    Shan, Fanli; Hou, Lingyun; Piao, Ying

    2013-04-01

    HRM code for the simulation of N2O/HTPB hybrid rocket motor operation and scale effect analysis has been developed. This code can be used to calculate motor thrust and distributions of physical properties inside the combustion chamber and nozzle during the operational phase by solving the unsteady Navier-Stokes equations using a corrected compressible difference scheme and a two-step, five species combustion model. A dynamic fuel surface regression technique and a two-step calculation method together with the gas-solid coupling are applied in the calculation of fuel regression and the determination of combustion chamber wall profile as fuel regresses. Both the calculated motor thrust from start-up to shut-down mode and the combustion chamber wall profile after motor operation are in good agreements with experimental data. The fuel regression rate equation and the relation between fuel regression rate and axial distance have been derived. Analysis of results suggests improvements in combustion performance to the current hybrid rocket motor design and explains scale effects in the variation of fuel regression rate with combustion chamber diameter.

  10. An Estimation Theory for Differential Equations and other Problems, with Applications.

    DTIC Science & Technology

    1981-11-01

    order differential -8- operators and M-operators, in particular, the Perron - Frobenius theory and generalizations. Convergence theory for iterative... THEORY FOR DIFFERENTIAL 0EQUATIONS AND OTHER FROBLEMS, WITH APPLICATIONS 0 ,Final Technical Report by Johann Schr6der November, 1981 EUROPEAN RESEARCH...COVERED An estimation theory for differential equations Final Report and other problrms, with app)lications A981 6. PERFORMING ORG. RN,-ORT NUMfFR 7

  11. Using High Resolution Model Data to Improve Lightning Forecasts across Southern California

    NASA Astrophysics Data System (ADS)

    Capps, S. B.; Rolinski, T.

    2014-12-01

    Dry lightning often results in a significant amount of fire starts in areas where the vegetation is dry and continuous. Meteorologists from the USDA Forest Service Predictive Services' program in Riverside, California are tasked to provide southern and central California's fire agencies with fire potential outlooks. Logistic regression equations were developed by these meteorologists several years ago, which forecast probabilities of lightning as well as lightning amounts, out to seven days across southern California. These regression equations were developed using ten years of historical gridded data from the Global Forecast System (GFS) model on a coarse scale (0.5 degree resolution), correlated with historical lightning strike data. These equations do a reasonably good job of capturing a lightning episode (3-5 consecutive days or greater of lightning), but perform poorly regarding more detailed information such as exact location and amounts. It is postulated that the inadequacies in resolving the finer details of episodic lightning events is due to the coarse resolution of the GFS data, along with limited predictors. Stability parameters, such as the Lifted Index (LI), the Total Totals index (TT), Convective Available Potential Energy (CAPE), along with Precipitable Water (PW) are the only parameters being considered as predictors. It is hypothesized that the statistical forecasts will benefit from higher resolution data both in training and implementing the statistical model. We have dynamically downscaled NCEP FNL (Final) reanalysis data using the Weather Research and Forecasting model (WRF) to 3km spatial and hourly temporal resolution across a decade. This dataset will be used to evaluate the contribution to the success of the statistical model of additional predictors in higher vertical, spatial and temporal resolution. If successful, we will implement an operational dynamically downscaled GFS forecast product to generate predictors for the resulting statistical lightning model. This data will help fire agencies be better prepared to pre-deploy resources in advance of these events. Specific information regarding duration, amount, and location will be especially valuable.

  12. Calculating the refractive index for pediatric parenteral nutrient solutions.

    PubMed

    Nelson, Scott; Barrows, Jason; Haftmann, Richard; Helm, Michael; MacKay, Mark

    2013-02-15

    The utility of refractometric analysis for calculating the refractive index (RI) of compounded parenteral nutrient solutions for pediatric patients was examined. An equation for calculating the RI of parenteral nutrient solutions was developed by chemical and linear regression analysis of 154 pediatric parenteral nutrient solutions. This equation was then validated by analyzing 1057 pediatric parenteral nutrition samples. The RI for the parenteral nutrient solutions could be calculated by summing the RI contribution for each ingredient and then adding the RI of water. The RI contribution for each ingredient was determined by multiplying the RI of the manufacturer's concentrate by the volume of the manufacturer's concentrate mixed into the parenteral nutrient solution divided by the total volume of the parenteral nutrient solution. The calculated RI was highly correlated with the measured RI (R(2) = 0.94, p < 0.0001). Using a range of two standard deviations (±0.0045), 99.8% of the samples fell into the comparative range. RIs of electrolytes, vitamins, and trace elements in the concentrations used did not affect the RI, similar to the findings of other studies. There was no statistical difference between the calculated RI and the measured RI in the final product of a pediatric parenteral nutrient solution. This method of quality control can be used by personnel compounding parenteral nutrient solutions to confirm the compounding accuracy of dextrose and amino acid concentrations in the final product, and a sample can be sent to the hospital laboratory for electrolyte verification.

  13. Improving precision of glomerular filtration rate estimating model by ensemble learning.

    PubMed

    Liu, Xun; Li, Ningshan; Lv, Linsheng; Fu, Yongmei; Cheng, Cailian; Wang, Caixia; Ye, Yuqiu; Li, Shaomin; Lou, Tanqi

    2017-11-09

    Accurate assessment of kidney function is clinically important, but estimates of glomerular filtration rate (GFR) by regression are imprecise. We hypothesized that ensemble learning could improve precision. A total of 1419 participants were enrolled, with 1002 in the development dataset and 417 in the external validation dataset. GFR was independently estimated from age, sex and serum creatinine using an artificial neural network (ANN), support vector machine (SVM), regression, and ensemble learning. GFR was measured by 99mTc-DTPA renal dynamic imaging calibrated with dual plasma sample 99mTc-DTPA GFR. Mean measured GFRs were 70.0 ml/min/1.73 m 2 in the developmental and 53.4 ml/min/1.73 m 2 in the external validation cohorts. In the external validation cohort, precision was better in the ensemble model of the ANN, SVM and regression equation (IQR = 13.5 ml/min/1.73 m 2 ) than in the new regression model (IQR = 14.0 ml/min/1.73 m 2 , P < 0.001). The precision of ensemble learning was the best of the three models, but the models had similar bias and accuracy. The median difference ranged from 2.3 to 3.7 ml/min/1.73 m 2 , 30% accuracy ranged from 73.1 to 76.0%, and P was > 0.05 for all comparisons of the new regression equation and the other new models. An ensemble learning model including three variables, the average ANN, SVM, and regression equation values, was more precise than the new regression model. A more complex ensemble learning strategy may further improve GFR estimates.

  14. Rank-preserving regression: a more robust rank regression model against outliers.

    PubMed

    Chen, Tian; Kowalski, Jeanne; Chen, Rui; Wu, Pan; Zhang, Hui; Feng, Changyong; Tu, Xin M

    2016-08-30

    Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Crown area equations for 13 species of trees and shrubs in northern California and southwestern Oregon

    Treesearch

    Fabian C.C. Uzoh; Martin W. Ritchie

    1996-01-01

    The equations presented predict crown area for 13 species of trees and shrubs which may be found growing in competition with commercial conifers during early stages of stand development. The equations express crown area as a function of basal area and height. Parameters were estimated for each species individually using weighted nonlinear least square regression.

  16. Calibration of volume and component biomass equations for Douglas-fir and lodgepole pine in Western Oregon forests

    Treesearch

    Krishna P. Poudel; Temesgen Hailemariam

    2016-01-01

    Using data from destructively sampled Douglas-fir and lodgepole pine trees, we evaluated the performance of regional volume and component biomass equations in terms of bias and RMSE. The volume and component biomass equations were calibrated using three different adjustment methods that used: (a) a correction factor based on ordinary least square regression through...

  17. Learning climate and feedback as predictors of dental students' self-determined motivation: The mediating role of basic psychological needs satisfaction.

    PubMed

    Orsini, C; Binnie, V; Wilson, S; Villegas, M J

    2018-05-01

    The aim of this study was to test the mediating role of the satisfaction of dental students' basic psychological needs of autonomy, competence and relatedness on the association between learning climate, feedback and student motivation. The latter was based on the self-determination theory's concepts of differentiation of autonomous motivation, controlled motivation and amotivation. A cross-sectional correlational study was conducted where 924 students completed self-reported questionnaires measuring motivation, perception of the learning climate, feedback and basic psychological needs satisfaction. Descriptive statistics, Cronbach's alpha scores and bivariate correlations were computed. Mediation of basic needs on each predictor-outcome association was tested based on a series of regression analyses. Finally, all variables were integrated into one structural equation model, controlling for the effects of age, gender and year of study. Cronbach's alpha scores were acceptable (.655 to .905). Correlation analyses showed positive and significant associations between both an autonomy-supportive learning climate and the quantity and quality of feedback received, and students' autonomous motivation, which decreased and became negative when correlated with controlled motivation and amotivation, respectively. Regression analyses revealed that these associations were indirect and mediated by how these predictors satisfied students' basic psychological needs. These results were corroborated by the structural equation analysis, in which data fit the model well and regression paths were in the expected direction. An autonomy-supportive learning climate and the quantity and quality of feedback were positive predictors of students' autonomous motivation and negative predictors of amotivation. However, this was an indirect association mediated by the satisfaction of students' basic psychological needs. Consequently, supporting students' needs of autonomy, competence and relatedness might lead to optimal types of motivation, which has an important influence on dental education. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Deriving the Regression Equation without Using Calculus

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.; Gordon, Florence S.

    2004-01-01

    Probably the one "new" mathematical topic that is most responsible for modernizing courses in college algebra and precalculus over the last few years is the idea of fitting a function to a set of data in the sense of a least squares fit. Whether it be simple linear regression or nonlinear regression, this topic opens the door to applying the…

  19. The Collinearity Free and Bias Reduced Regression Estimation Project: The Theory of Normalization Ridge Regression. Report No. 2.

    ERIC Educational Resources Information Center

    Bulcock, J. W.; And Others

    Multicollinearity refers to the presence of highly intercorrelated independent variables in structural equation models, that is, models estimated by using techniques such as least squares regression and maximum likelihood. There is a problem of multicollinearity in both the natural and social sciences where theory formulation and estimation is in…

  20. Effects of land use on water quality and transport of selected constituents in streams in Mecklenburg County, North Carolina, 1994–98

    USGS Publications Warehouse

    Ferrell, Gloria M.

    2001-01-01

    Transport rates for total solids, total nitrogen, total phosphorus, biochemical oxygen demand, chromium, copper, lead, nickel, and zinc during 1994–98 were computed for six stormwater-monitoring sites in Mecklenburg County, North Carolina. These six stormwater-monitoring sites were operated by the Mecklenburg County Department of Environmental Protection, in cooperation with the City of Charlotte, and are located near the mouths of major streams. Constituent transport at the six study sites generally was dominated by nonpoint sources, except for nitrogen and phosphorus at two sites located downstream from the outfalls of major municipal wastewater-treatment plants.To relate land use to constituent transport, regression equations to predict constituent yield were developed by using water-quality data from a previous study of nine stormwater-monitoring sites on small streams in Mecklenburg County. The drainage basins of these nine stormwater sites have relatively homogeneous land-use characteristics compared to the six study sites. Mean annual construction activity, based on building permit files, was estimated for all stormwater-monitoring sites and included as an explanatory variable in the regression equations. These regression equations were used to predict constituent yield for the six study sites. Predicted yields generally were in agreement with computed yields. In addition, yields were predicted by using regression equations derived from a national urban water-quality database. Yields predicted from the regional regression equations generally were about an order of magnitude lower than computed yields.Regression analysis indicated that construction activity was a major contributor to transport of the constituents evaluated in this study except for total nitrogen and biochemical oxygen demand. Transport of total nitrogen and biochemical oxygen demand was dominated by point-source contributions. The two study basins that had the largest amounts of construction activity also had the highest total solids yields (1,300 and 1,500 tons per square mile per year). The highest total phosphorus yields (3.2 and 1.7 tons per square mile per year) attributable to nonpoint sources also occurred in these basins. Concentrations of chromium, copper, lead, nickel, and zinc were positively correlated with total solids concentrations at most of the study sites (Pearson product-moment correlation >0.50). The site having the highest median concentrations of chromium, copper, and nickel also was the site having the highest computed yield for total solids.

  1. Father-son attachment and sexual partner orientation in Taiwan.

    PubMed

    Lung, For-Wey; Shu, Bih-Ching

    2007-01-01

    The topic of homosexual adjustment problems has never been explored in Taiwan. The aim of this study was to investigate the role of parental bonding in the adjustment problems of homosexuals. A total of 51 young homosexual males, 100 nonhomosexual personnel with adjustment disorder, and 124 controls were administered the Parental Bonding Instrument, the Eysenck Personality Questionnaire, and the Chinese Health Questionnaire. The final parsimonious logistic regression and structural equation modeling showed paternal attachment, especially paternal overprotection, to be a predisposing factor in the development of homosexuality. Paternal attachment, introversion, and neurotic characteristics were key factors in the development of homosexuals. In particular, paternal overprotection played the most important role in the developmental process of male homosexuals. This study can be used as a reference for clinical personnel in caring for male homosexuals.

  2. Validity Study of a Jump Mat Compared to the Reference Standard Force Plate.

    PubMed

    Rogan, Slavko; Radlinger, Lorenz; Imhasly, Caroline; Kneubuehler, Andrea; Hilfiker, Roger

    2015-12-01

    In the field of vertical jump diagnostics, force plates (FP) are the reference standard. Recently, despite a lack of evidence, jump mats have been used increasingly. Important factors in favor of jumping mats are their low cost and portability. This validity study compared the Haynl-Elektronik jump mat (HE jump mat) with the reference standard force plate. Ten healthy volunteers participated and each participant completed three series of five drop jumps (DJ). The parameters ground contact time (GCT) and vertical jump height (VJH) from the HE jump mat and the FP were used to evaluate the concurrent validity. The following statistical calculations were performed: Pearson's correlation (r), Bland-Altman plots (standard and for adjusted trend), and regression equations. The Bland-Altman plots suggest that the HE jump mat measures shorter contact times and higher jump heights than the FP. The trend-adjusted Bland-Altman plot shows higher mean differences and wider wing-spreads of confidence limits during longer GCT. During the VJH the mean differences and the wing-spreads of the confidence limits throughout the range present as relatively constant. The following regression equations were created, as close as possible to the true value: GCT = 5.920385 + 1.072293 × [value HE jump mat] and VJH = -1.73777 + 1.011156 × [value HE jump mat]. The HE jump mat can be recommended in relation to the validity of constraints. In this study, only a part of the quality criteria were examined. For the final recommendation it is advised to examine the HE jump mat on the other quality criteria (test-retest reliability, sensitivity change).

  3. Equations for predicting biomass of six introduced tree species, island of Hawaii

    Treesearch

    Thomas H. Schukrt; Robert F. Strand; Thomas G. Cole; Katharine E. McDuffie

    1988-01-01

    Regression equations to predict total and stem-only above-ground dry biomass for six species (Acacia melanoxylon, Albizio falcataria, Eucalyptus globulus, E. grandis, E. robusta, and E. urophylla) were developed by felling and measuring 2- to 6-year-old...

  4. Principal component regression analysis with SPSS.

    PubMed

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  5. Are Scores From NBME Subject Examinations Valid Measures of Knowledge Acquired During Clinical Clerkships?

    PubMed

    Ryan, Michael S; Bishop, Steven; Browning, Joel; Anand, Rahul J; Waterhouse, Elizabeth; Rigby, Fidelma; Al-Mateen, Cheryl S; Lee, Clifton; Bradner, Melissa; Colbert-Getz, Jorie M

    2017-06-01

    The National Board of Medical Examiners' Clinical Science Subject Examinations are a component used by most U.S. medical schools to determine clerkship grades. The purpose of this study was to examine the validity of this practice. This was a retrospective cohort study of medical students at the Virginia Commonwealth University School of Medicine who completed clerkships in 2012 through 2014. Linear regression was used to determine how well United States Medical Licensing Examination Step 1 scores predicted Subject Examination scores in seven clerkships. The authors then substituted each student's Subject Examination standard scores with his or her Step 1 standard score. Clerkship grades based on the Step 1 substitution were compared with actual grades with the Wilcoxon rank test. A total of 2,777 Subject Examination scores from 432 students were included in the analysis. Step 1 scores significantly predicted between 23% and 44% of the variance in Subject Examination scores, P < .001 for all clerkship regression equations. Mean differences between expected and actual Subject Examination scores were small (≤ 0.2 points). There was a match between 73% of Step 1 substituted final clerkship grades and actual final clerkship grades. The results of this study suggest that performance on Step 1 can be used to identify and counsel students at risk for poor performance on the Subject Examinations. In addition, these findings call into the question the validity of using scores from Subject Examinations as a high-stakes assessment of learning in individual clerkships.

  6. Estimated fecal coliform bacteria concentrations using near real-time continuous water-quality and streamflow data from five stream sites in Chester County, Pennsylvania, 2007–16

    USGS Publications Warehouse

    Senior, Lisa A.

    2017-09-15

    Several streams used for recreational activities, such as fishing, swimming, and boating, in Chester County, Pennsylvania, are known to have periodic elevated concentrations of fecal coliform bacteria, a type of bacteria used to indicate the potential presence of fecally related pathogens that may pose health risks to humans exposed through water contact. The availability of near real-time continuous stream discharge, turbidity, and other water-quality data for some streams in the county presents an opportunity to use surrogates to estimate near real-time concentrations of fecal coliform (FC) bacteria and thus provide some information about associated potential health risks during recreational use of streams.The U.S. Geological Survey (USGS), in cooperation with the Chester County Health Department (CCHD) and the Chester County Water Resources Authority (CCWRA), has collected discrete stream samples for analysis of FC concentrations during March–October annually at or near five gaging stations where near real-time continuous data on stream discharge, turbidity, and water temperature have been collected since 2007 (or since 2012 at 2 of the 5 stations). In 2014, the USGS, in cooperation with the CCWRA and CCHD, began to develop regression equations to estimate FC concentrations using available near real-time continuous data. Regression equations included possible explanatory variables of stream discharge, turbidity, water temperature, and seasonal factors calculated using Julian Day with base-10 logarithmic (log) transformations of selected variables.The regression equations were developed using the data from 2007 to 2015 (101–106 discrete bacteria samples per site) for three gaging stations on Brandywine Creek (West Branch Brandywine Creek at Modena, East Branch Brandywine Creek below Downingtown, and Brandywine Creek at Chadds Ford) and from 2012 to 2015 (37–38 discrete bacteria samples per site) for one station each on French Creek near Phoenixville and White Clay Creek near Strickersville. Fecal coliform bacteria data collected by USGS in 2016 (about nine samples per site) were used to validate the equations. The best-fit regression equations included log turbidity and seasonality factors computed using Julian Day as explanatory variables to estimate log FC concentrations at all five stream sites. The adjusted coefficient of determination for the equations ranged from 0.61 to 0.76, with the strength of the regression equations likely affected in part by the limited amount and variability of FC bacteria data. During summer months, the estimated and measured FC concentrations commonly were greater than the Pennsylvania Department of Environmental Protection established standards of 200 and 400 colonies per 100 milliliters for water contact from May through September at the 5 stream sites, with concentrations typically higher at 2 sites (White Clay Creek and West Branch Brandywine Creek at Modena) than at the other 3 sites. The estimated concentrations of FC bacteria during the summer months commonly were higher than measured concentrations and therefore could be considered cautious estimates of potential human-health risk. Additional water-quality data are needed to maintain and (or) improve the ability of regression equations to estimate FC concentrations by use of surrogate data.

  7. Development of a traveltime prediction equation for streams in Arkansas

    USGS Publications Warehouse

    Funkhouser, Jaysson E.; Barks, C. Shane

    2004-01-01

    During 1971 and 1981 and 2001 and 2003, traveltime measurements were made at 33 sample sites on 18 streams throughout northern and western Arkansas using fluorescent dye. Most measurements were made during steady-state base-flow conditions with the exception of three measurements made during near steady-state medium-flow conditions (for the study described in this report, medium-flow is approximately 100-150 percent of the mean monthly streamflow during the month the dye trace was conducted). These traveltime data were compared to the U.S. Geological Survey?s national traveltime prediction equation and used to develop a specific traveltime prediction equation for Arkansas streams. In general, the national traveltime prediction equation yielded results that over-predicted the velocity of the streams for 29 of the 33 sites measured. The standard error for the national traveltime prediction equation was 105 percent. The coefficient of determination was 0.78. The Arkansas prediction equation developed from a regression analysis of dye-tracing results was a significant improvement over the national prediction equation. This regression analysis yielded a standard error of 46 percent and a coefficient of determination of 0.74. The predicted velocities using this equation compared better to measured velocities. Using the variables in a regression analysis, the Arkansas prediction equation derived for the peak velocity in feet per second was: (Actual Equation Shown in report) In addition to knowing when the peak concentration will arrive at a site, it is of great interest to know when the leading edge of a contaminant plume will arrive. The traveltime of the leading edge of a contaminant plume indicates when a potential problem might first develop and also defines the overall shape of the concentration response function. Previous USGS reports have shown no significant relation between any of the variables and the time from injection to the arrival of the leading edge of the dye plume. For this report, the analysis of the dye-tracing data yielded a significant correlation between traveltime of the leading edge and traveltime of the peak concentration with an R2 value of 0.99. These data indicate that the traveltime of the leading edge can be estimated from: (Actual Equation Shown in Report)

  8. [Aboveground biomass of three conifers in Qianyanzhou plantation].

    PubMed

    Li, Xuanran; Liu, Qijing; Chen, Yongrui; Hu, Lile; Yang, Fengting

    2006-08-01

    In this paper, the regressive models of the aboveground biomass of Pinus elliottii, P. massoniana and Cunninghamia lanceolata in Qianyanzhou of subtropical China were established, and the regression analysis on the dry weight of leaf biomass and total biomass against branch diameter (d), branch length (L), d3 and d2L was conducted with linear, power and exponent functions. Power equation with single parameter (d) was proved to be better than the rests for P. massoniana and C. lanceolata, and linear equation with parameter (d3) was better for P. elliottii. The canopy biomass was derived by the regression equations for all branches. These equations were also used to fit the relationships of total tree biomass, branch biomass and foliage biomass with tree diameter at breast height (D), tree height (H), D3 and D2H, respectively. D2H was found to be the best parameter for estimating total biomass. For foliage-and branch biomass, both parameters and equation forms showed some differences among species. Correlations were highly significant (P <0.001) for foliage-, branch-and total biomass, with the highest for total biomass. By these equations, the aboveground biomass and its allocation were estimated, with the aboveground biomass of P. massoniana, P. elliottii, and C. lanceolata forests being 83.6, 72. 1 and 59 t x hm(-2), respectively, and more stem biomass than foliage-and branch biomass. According to the previous studies, the underground biomass of these three forests was estimated to be 10.44, 9.42 and 11.48 t x hm(-2), and the amount of fixed carbon was 47.94, 45.14 and 37.52 t x hm(-2), respectively.

  9. Prediction of maximal surface electromyographically based voluntary contractions of erector spinae muscles from sonographic measurements during isometric contractions.

    PubMed

    Cuesta-Vargas, Antonio I; González-Sánchez, Manuel

    2014-03-01

    Currently, there are no studies combining electromyography (EMG) and sonography to estimate the absolute and relative strength values of erector spinae (ES) muscles in healthy individuals. The purpose of this study was to establish whether the maximum voluntary contraction (MVC) of the ES during isometric contractions could be predicted from the changes in surface EMG as well as in fiber pennation and thickness as measured by sonography. Thirty healthy adults performed 3 isometric extensions at 45° from the vertical to calculate the MVC force. Contractions at 33% and 100% of the MVC force were then used during sonographic and EMG recordings. These measurements were used to observe the architecture and function of the muscles during contraction. Statistical analysis was performed using bivariate regression and regression equations. The slope for each regression equation was statistically significant (P < .001) with R(2) values of 0.837 and 0.986 for the right and left ES, respectively. The standard error estimate between the sonographic measurements and the regression-estimated pennation angles for the right and left ES were 0.10 and 0.02, respectively. Erector spinae muscle activation can be predicted from the changes in fiber pennation during isometric contractions at 33% and 100% of the MVC force. These findings could be essential for developing a regression equation that could estimate the level of muscle activation from changes in the muscle architecture.

  10. Beyond logistic regression: structural equations modelling for binary variables and its application to investigating unobserved confounders.

    PubMed

    Kupek, Emil

    2006-03-15

    Structural equation modelling (SEM) has been increasingly used in medical statistics for solving a system of related regression equations. However, a great obstacle for its wider use has been its difficulty in handling categorical variables within the framework of generalised linear models. A large data set with a known structure among two related outcomes and three independent variables was generated to investigate the use of Yule's transformation of odds ratio (OR) into Q-metric by (OR-1)/(OR+1) to approximate Pearson's correlation coefficients between binary variables whose covariance structure can be further analysed by SEM. Percent of correctly classified events and non-events was compared with the classification obtained by logistic regression. The performance of SEM based on Q-metric was also checked on a small (N = 100) random sample of the data generated and on a real data set. SEM successfully recovered the generated model structure. SEM of real data suggested a significant influence of a latent confounding variable which would have not been detectable by standard logistic regression. SEM classification performance was broadly similar to that of the logistic regression. The analysis of binary data can be greatly enhanced by Yule's transformation of odds ratios into estimated correlation matrix that can be further analysed by SEM. The interpretation of results is aided by expressing them as odds ratios which are the most frequently used measure of effect in medical statistics.

  11. Estimating basin lagtime and hydrograph-timing indexes used to characterize stormflows for runoff-quality analysis

    USGS Publications Warehouse

    Granato, Gregory E.

    2012-01-01

    A nationwide study to better define triangular-hydrograph statistics for use with runoff-quality and flood-flow studies was done by the U.S. Geological Survey (USGS) in cooperation with the Federal Highway Administration. Although the triangular hydrograph is a simple linear approximation, the cumulative distribution of stormflow with a triangular hydrograph is a curvilinear S-curve that closely approximates the cumulative distribution of stormflows from measured data. The temporal distribution of flow within a runoff event can be estimated using the basin lagtime, (which is the time from the centroid of rainfall excess to the centroid of the corresponding runoff hydrograph) and the hydrograph recession ratio (which is the ratio of the duration of the falling limb to the rising limb of the hydrograph). This report documents results of the study, methods used to estimate the variables, and electronic files that facilitate calculation of variables. Ten viable multiple-linear regression equations were developed to estimate basin lagtimes from readily determined drainage basin properties using data published in 37 stormflow studies. Regression equations using the basin lag factor (BLF, which is a variable calculated as the main-channel length, in miles, divided by the square root of the main-channel slope in feet per mile) and two variables describing development in the drainage basin were selected as the best candidates, because each equation explains about 70 percent of the variability in the data. The variables describing development are the USGS basin development factor (BDF, which is a function of the amount of channel modifications, storm sewers, and curb-and-gutter streets in a basin) and the total impervious area variable (IMPERV) in the basin. Two datasets were used to develop regression equations. The primary dataset included data from 493 sites that have values for the BLF, BDF, and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and BDF variables. The secondary dataset included data from 896 sites that have values for the BLF and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and IMPERV variables. Analysis of hydrograph recession ratios and basin characteristics for 41 sites indicated that recession ratios are random variables. Thus, recession ratios cannot be estimated quantitatively using multiple linear regression equations developed using the data available for these sites. The minimums of recession ratios for different streamgages are well characterized by a value of one. The most probable values and maximum values of recession ratios for different streamgages are, however, more variable than the minimums. The most probable values of recession ratios for the 41 streamgages analyzed ranged from 1.0 to 3.52 and had a median of 1.85. The maximum values ranged from 2.66 to 11.3 and had a median of 4.36.

  12. Estimating the magnitude of annual peak discharges with recurrence intervals between 1.1 and 3.0 years for rural, unregulated streams in West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Atkins, John T.; Newell, Dawn A.

    2002-01-01

    Multiple and simple least-squares regression models for the log10-transformed 1.5- and 2-year recurrence intervals of peak discharges with independent variables describing the basin characteristics (log10-transformed and untransformed) for 236 streamflow-gaging stations were evaluated, and the regression residuals were plotted as areal distributions that defined three regions in West Virginia designated as East, North, and South. Regional equations for the 1.1-, 1.2-, 1.3-, 1.4-, 1.5-, 1.6-, 1.7-, 1.8-, 1.9-, 2.0-, 2.5-, and 3-year recurrence intervals of peak discharges were determined by generalized least-squares regression. Log10-transformed drainage area was the most significant independent variable for all regions. Equations developed in this study are applicable only to rural, unregulated streams within the boundaries of West Virginia. The accuracies of estimating equations are quantified by measuring the average prediction error (from 27.4 to 52.4 percent) and equivalent years of record (from 1.1 to 3.4 years).

  13. A general equation to obtain multiple cut-off scores on a test from multinomial logistic regression.

    PubMed

    Bersabé, Rosa; Rivas, Teresa

    2010-05-01

    The authors derive a general equation to compute multiple cut-offs on a total test score in order to classify individuals into more than two ordinal categories. The equation is derived from the multinomial logistic regression (MLR) model, which is an extension of the binary logistic regression (BLR) model to accommodate polytomous outcome variables. From this analytical procedure, cut-off scores are established at the test score (the predictor variable) at which an individual is as likely to be in category j as in category j+1 of an ordinal outcome variable. The application of the complete procedure is illustrated by an example with data from an actual study on eating disorders. In this example, two cut-off scores on the Eating Attitudes Test (EAT-26) scores are obtained in order to classify individuals into three ordinal categories: asymptomatic, symptomatic and eating disorder. Diagnoses were made from the responses to a self-report (Q-EDD) that operationalises DSM-IV criteria for eating disorders. Alternatives to the MLR model to set multiple cut-off scores are discussed.

  14. Simulated peak inflows for glacier dammed Russell Fiord, near Yakutat, Alaska

    USGS Publications Warehouse

    Neal, Edward G.

    2004-01-01

    In June 2002, Hubbard Glacier advanced across the entrance to 35-mile-long Russell Fiord creating a glacier-dammed lake. After closure of the ice and moraine dam, runoff from mountain streams and glacial melt caused the level in ?Russell Lake? to rise until it eventually breached the dam on August 14, 2002. Daily mean inflows to the lake during the period of closure were estimated on the basis of lake stage data and the hypsometry of Russell Lake. Inflows were regressed against the daily mean streamflows of nearby Ophir Creek and Situk River to generate an equation for simulating Russell Lake inflow. The regression equation was used to produce 11 years of synthetic daily inflows to Russell Lake for the 1992-2002 water years. A flood-frequency analysis was applied to the peak daily mean inflows for these 11 years of record to generate a 100-year peak daily mean inflow of 235,000 cubic feet per second. Regional-regression equations also were applied to the Russell Lake basin, yielding a 100-year inflow of 157,000 cubic feet per second.

  15. Analysis of the Magnitude and Frequency of Peak Discharges for the Navajo Nation in Arizona, Utah, Colorado, and New Mexico

    USGS Publications Warehouse

    Waltemeyer, Scott D.

    2006-01-01

    Estimates of the magnitude and frequency of peak discharges are necessary for the reliable flood-hazard mapping in the Navajo Nation in Arizona, Utah, Colorado, and New Mexico. The Bureau of Indian Affairs, U.S. Army Corps of Engineers, and Navajo Nation requested that the U.S. Geological Survey update estimates of peak discharge magnitude for gaging stations in the region and update regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites using data collected through 1999 at 146 gaging stations, an additional 13 years of peak-discharge data since a 1997 investigation, which used gaging-station data through 1986. The equations for estimation of peak discharges at ungaged sites were developed for flood regions 8, 11, high elevation, and 6 and are delineated on the basis of the hydrologic codes from the 1997 investigation. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 82 of the 146 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge having a recurrence interval of less than 1.4 years in the probability-density function. Within each region, logarithms of the peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then was applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction for a peak discharge have a recurrence interval of 100-years for region 8 was 53 percent (average) for the 100-year flood. The average standard of prediction, which includes average sampling error and average standard error of regression, ranged from 45 to 83 percent for the 100-year flood. Estimated standard error of prediction for a hybrid method for region 11 was large in the 1997 investigation. No distinction of floods produced from a high-elevation region was presented in the 1997 investigation. Overall, the equations based on generalized least-squares regression techniques are considered to be more reliable than those in the 1997 report because of the increased length of record and improved GIS method. Techniques for transferring flood-frequency relations to ungaged sites on the same stream can be estimated at an ungaged site by a direct application of the regional regression equation or at an ungaged site on a stream that has a gaging station upstream or downstream by using the drainage-area ratio and the drainage-area exponent from the regional regression equation of the respective region.

  16. Estimating Locations of Perennial Streams in Idaho Using a Generalized Least-Squares Regression Model of 7-Day, 2-Year Low Flows

    USGS Publications Warehouse

    Wood, Molly S.; Rea, Alan; Skinner, Kenneth D.; Hortness, Jon E.

    2009-01-01

    Many State and Federal agencies use information regarding the locations of streams having intermittent or perennial flow when making management and regulatory decisions. For example, the application of some Idaho water quality standards depends on whether streams are intermittent. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 ft3/s. However, there is a general recognition that the cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not as accurate or consistent as desirable from one map to another, which makes broad management and regulatory assessments difficult and inconsistent. To help resolve this problem, the USGS has developed a methodology for predicting the locations of perennial streams based on regional generalized least-squares (GLS) regression equations for Idaho streams for the 7Q2 low-flow statistic. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams in most areas in Idaho. The use of these equations in conjunction with a geographic information system (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along stream reaches. The USGS has developed a GIS-based map of the locations of streams in Idaho with perennial flow based on a 7Q2 of 0.1 ft3/s and a transition zone of plus or minus 1 standard error. Idaho State cooperators plan to use this information to make regulatory and water-quality management decisions. Originally, 7Q2 equations were developed for eight regions of similar hydrologic characteristics in the study area, using long-term data from 234 streamflow-gaging stations. Equations in five of the regions were revised based on spatial patterns observed in the initial perennial streams map and unrealistic behavior of the equations in extrapolation. The standard errors of prediction for the final equations ranged from a minimum of +75.0 to -42.9 percent in the central part of the study area to a maximum of +277 to -73.5 percent in the southern part of the study area. The equations are applicable only to unregulated, naturally-flowing streams and may produce unreliable results outside the range of explanatory variables used for equation development. Extrapolation outside the range of available data was necessary, however, to predict perennial flow initiation points and transition zones along stream reaches. The map of perennial streams was evaluated by comparing predicted stream classifications with four independent datasets, including field observations by other government agencies. Overall, 81 percent of the comparison data points agreed with the USGS perennial streams model. Regions with the highest number of disagreements had a high percentage of mountainous and forested area with potential mountain front recharge zones, and regions with the highest agreements had a high percentage of low gradient, low elevation area. As a whole, the USGS model predicted a higher number of perennial streams than predictions made with the independent datasets. Some disagreements were due to poor site location coordinates, timing of the comparison site visits during unusually wet or dry years, discrepancies in classification criteria, and variable ground water contributions to flow in some areas. The Idaho Department of Environmental Quality Beneficial Use Reconnaissance Program (BURP) dataset is considered the most representative dataset for comparison because it covered a range of climate conditions and the number of sites visited were consistent from year to year during the study period. Eighty-five percent of BURP comparison data points agreed with the USGS perennial streams model. Although site-specific flow data may be needed to correctly classify streams in some areas, this information rarely is available and is not always practical to o

  17. Criteria for the use of regression analysis for remote sensing of sediment and pollutants

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Kuo, C. Y.; Lecroy, S. R.

    1982-01-01

    An examination of limitations, requirements, and precision of the linear multiple-regression technique for quantification of marine environmental parameters is conducted. Both environmental and optical physics conditions have been defined for which an exact solution to the signal response equations is of the same form as the multiple regression equation. Various statistical parameters are examined to define a criteria for selection of an unbiased fit when upwelled radiance values contain error and are correlated with each other. Field experimental data are examined to define data smoothing requirements in order to satisfy the criteria of Daniel and Wood (1971). Recommendations are made concerning improved selection of ground-truth locations to maximize variance and to minimize physical errors associated with the remote sensing experiment.

  18. [Simulation of three-dimensional green biomass of urban forests in Shenyang City and the factors affecting the biomass].

    PubMed

    Liu, Chang-Fu; He, Xing-Yuan; Chen, Wei; Zhao, Gui-Ling; Xue, Wen-Duo

    2008-06-01

    Based on the fractal theory of forest growth, stepwise regression was employed to pursue a convenient and efficient method of measuring the three-dimensional green biomass (TGB) of urban forests in small area. A total of thirteen simulation equations of TGB of urban forests in Shenyang City were derived, with the factors affecting the TGB analyzed. The results showed that the coefficients of determination (R2) of the 13 simulation equations ranged from 0.612 to 0.842. No evident pattern was shown in residual analysis, and the precisions were all higher than 87% (alpha = 0.05) and 83% (alpha = 0.01). The most convenient simulation equation was ln Y = 7.468 + 0.926 lnx1, where Y was the simulated TGB and x1 was basal area at breast height per hectare (SDB). The correlations between the standard regression coefficients of the simulation equations and 16 tree characteristics suggested that SDB was the main factor affecting the TGB of urban forests in Shenyang.

  19. Methods for estimating drought streamflow probabilities for Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.

    2014-01-01

    Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.

  20. Laplace and the era of differential equations

    NASA Astrophysics Data System (ADS)

    Weinberger, Peter

    2012-11-01

    Between about 1790 and 1850 French mathematicians dominated not only mathematics, but also all other sciences. The belief that a particular physical phenomenon has to correspond to a single differential equation originates from the enormous influence Laplace and his contemporary compatriots had in all European learned circles. It will be shown that at the beginning of the nineteenth century Newton's "fluxionary calculus" finally gave way to a French-type notation of handling differential equations. A heated dispute in the Philosophical Magazine between Challis, Airy and Stokes, all three of them famous Cambridge professors of mathematics, then serves to illustrate the era of differential equations. A remark about Schrödinger and his equation for the hydrogen atom finally will lead back to present times.

  1. Statistical experiments using the multiple regression research for prediction of proper hardness in areas of phosphorus cast-iron brake shoes manufacturing

    NASA Astrophysics Data System (ADS)

    Kiss, I.; Cioată, V. G.; Ratiu, S. A.; Rackov, M.; Penčić, M.

    2018-01-01

    Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. This article focuses on expressing the multiple linear regression model related to the hardness assurance by the chemical composition of the phosphorous cast irons destined to the brake shoes, having in view that the regression coefficients will illustrate the unrelated contributions of each independent variable towards predicting the dependent variable. In order to settle the multiple correlations between the hardness of the cast-iron brake shoes, and their chemical compositions several regression equations has been proposed. Is searched a mathematical solution which can determine the optimum chemical composition for the hardness desirable values. Starting from the above-mentioned affirmations two new statistical experiments are effectuated related to the values of Phosphorus [P], Manganese [Mn] and Silicon [Si]. Therefore, the regression equations, which describe the mathematical dependency between the above-mentioned elements and the hardness, are determined. As result, several correlation charts will be revealed.

  2. Computing daily mean streamflow at ungaged locations in Iowa by using the Flow Anywhere and Flow Duration Curve Transfer statistical methods

    USGS Publications Warehouse

    Linhart, S. Mike; Nania, Jon F.; Sanders, Curtis L.; Archfield, Stacey A.

    2012-01-01

    The U.S. Geological Survey (USGS) maintains approximately 148 real-time streamgages in Iowa for which daily mean streamflow information is available, but daily mean streamflow data commonly are needed at locations where no streamgages are present. Therefore, the USGS conducted a study as part of a larger project in cooperation with the Iowa Department of Natural Resources to develop methods to estimate daily mean streamflow at locations in ungaged watersheds in Iowa by using two regression-based statistical methods. The regression equations for the statistical methods were developed from historical daily mean streamflow and basin characteristics from streamgages within the study area, which includes the entire State of Iowa and adjacent areas within a 50-mile buffer of Iowa in neighboring states. Results of this study can be used with other techniques to determine the best method for application in Iowa and can be used to produce a Web-based geographic information system tool to compute streamflow estimates automatically. The Flow Anywhere statistical method is a variation of the drainage-area-ratio method, which transfers same-day streamflow information from a reference streamgage to another location by using the daily mean streamflow at the reference streamgage and the drainage-area ratio of the two locations. The Flow Anywhere method modifies the drainage-area-ratio method in order to regionalize the equations for Iowa and determine the best reference streamgage from which to transfer same-day streamflow information to an ungaged location. Data used for the Flow Anywhere method were retrieved for 123 continuous-record streamgages located in Iowa and within a 50-mile buffer of Iowa. The final regression equations were computed by using either left-censored regression techniques with a low limit threshold set at 0.1 cubic feet per second (ft3/s) and the daily mean streamflow for the 15th day of every other month, or by using an ordinary-least-squares multiple linear regression method and the daily mean streamflow for the 15th day of every other month. The Flow Duration Curve Transfer method was used to estimate unregulated daily mean streamflow from the physical and climatic characteristics of gaged basins. For the Flow Duration Curve Transfer method, daily mean streamflow quantiles at the ungaged site were estimated with the parameter-based regression model, which results in a continuous daily flow-duration curve (the relation between exceedance probability and streamflow for each day of observed streamflow) at the ungaged site. By the use of a reference streamgage, the Flow Duration Curve Transfer is converted to a time series. Data used in the Flow Duration Curve Transfer method were retrieved for 113 continuous-record streamgages in Iowa and within a 50-mile buffer of Iowa. The final statewide regression equations for Iowa were computed by using a weighted-least-squares multiple linear regression method and were computed for the 0.01-, 0.05-, 0.10-, 0.15-, 0.20-, 0.30-, 0.40-, 0.50-, 0.60-, 0.70-, 0.80-, 0.85-, 0.90-, and 0.95-exceedance probability statistics determined from the daily mean streamflow with a reporting limit set at 0.1 ft3/s. The final statewide regression equation for Iowa computed by using left-censored regression techniques was computed for the 0.99-exceedance probability statistic determined from the daily mean streamflow with a low limit threshold and a reporting limit set at 0.1 ft3/s. For the Flow Anywhere method, results of the validation study conducted by using six streamgages show that differences between the root-mean-square error and the mean absolute error ranged from 1,016 to 138 ft3/s, with the larger value signifying a greater occurrence of outliers between observed and estimated streamflows. Root-mean-square-error values ranged from 1,690 to 237 ft3/s. Values of the percent root-mean-square error ranged from 115 percent to 26.2 percent. The logarithm (base 10) streamflow percent root-mean-square error ranged from 13.0 to 5.3 percent. Root-mean-square-error observations standard-deviation-ratio values ranged from 0.80 to 0.40. Percent-bias values ranged from 25.4 to 4.0 percent. Untransformed streamflow Nash-Sutcliffe efficiency values ranged from 0.84 to 0.35. The logarithm (base 10) streamflow Nash-Sutcliffe efficiency values ranged from 0.86 to 0.56. For the streamgage with the best agreement between observed and estimated streamflow, higher streamflows appear to be underestimated. For the streamgage with the worst agreement between observed and estimated streamflow, low flows appear to be overestimated whereas higher flows seem to be underestimated. Estimated cumulative streamflows for the period October 1, 2004, to September 30, 2009, are underestimated by -25.8 and -7.4 percent for the closest and poorest comparisons, respectively. For the Flow Duration Curve Transfer method, results of the validation study conducted by using the same six streamgages show that differences between the root-mean-square error and the mean absolute error ranged from 437 to 93.9 ft3/s, with the larger value signifying a greater occurrence of outliers between observed and estimated streamflows. Root-mean-square-error values ranged from 906 to 169 ft3/s. Values of the percent root-mean-square-error ranged from 67.0 to 25.6 percent. The logarithm (base 10) streamflow percent root-mean-square error ranged from 12.5 to 4.4 percent. Root-mean-square-error observations standard-deviation-ratio values ranged from 0.79 to 0.40. Percent-bias values ranged from 22.7 to 0.94 percent. Untransformed streamflow Nash-Sutcliffe efficiency values ranged from 0.84 to 0.38. The logarithm (base 10) streamflow Nash-Sutcliffe efficiency values ranged from 0.89 to 0.48. For the streamgage with the closest agreement between observed and estimated streamflow, there is relatively good agreement between observed and estimated streamflows. For the streamgage with the poorest agreement between observed and estimated streamflow, streamflows appear to be substantially underestimated for much of the time period. Estimated cumulative streamflow for the period October 1, 2004, to September 30, 2009, are underestimated by -9.3 and -22.7 percent for the closest and poorest comparisons, respectively.

  3. Numerical simulations for tumor and cellular immune system interactions in lung cancer treatment

    NASA Astrophysics Data System (ADS)

    Kolev, M.; Nawrocki, S.; Zubik-Kowal, B.

    2013-06-01

    We investigate a new mathematical model that describes lung cancer regression in patients treated by chemotherapy and radiotherapy. The model is composed of nonlinear integro-differential equations derived from the so-called kinetic theory for active particles and a new sink function is investigated according to clinical data from carcinoma planoepitheliale. The model equations are solved numerically and the data are utilized in order to find their unknown parameters. The results of the numerical experiments show a good correlation between the predicted and clinical data and illustrate that the mathematical model has potential to describe lung cancer regression.

  4. Rapid and Cost-Effective Quantification of Glucosinolates and Total Phenolic Content in Rocket Leaves by Visible/Near-Infrared Spectroscopy.

    PubMed

    Toledo-Martín, Eva María; Font, Rafael; Obregón-Cano, Sara; De Haro-Bailón, Antonio; Villatoro-Pulido, Myriam; Del Río-Celestino, Mercedes

    2017-05-20

    The potential of visible-near infrared spectroscopy to predict glucosinolates and total phenolic content in rocket ( Eruca vesicaria ) leaves has been evaluated. Accessions of the E. vesicaria species were scanned by NIRS as ground leaf, and their reference values regressed against different spectral transformations by modified partial least squares (MPLS) regression. The coefficients of determination in the external validation (R²VAL) for the different quality components analyzed in rocket ranged from 0.59 to 0.84, which characterize those equations as having from good to excellent quantitative information. These results show that the total glucosinolates, glucosativin and glucoerucin equations obtained, can be used to identify those samples with low and high contents. The glucoraphanin equation obtained can be used for rough predictions of samples and in case of total phenolic content, the equation showed good correlation. The standard deviation (SD) to standard error of prediction ratio (RPD) and SD to range (RER) were variable for the different quality compounds and showed values that were characteristic of equations suitable for screening purposes or to perform accurate analyses. From the study of the MPLS loadings of the first three terms of the different equations, it can be concluded that some major cell components such as protein and cellulose, highly participated in modelling the equations for glucosinolates.

  5. Stereoselective Degradation and Molecular Ecological Mechanism of Chiral Pesticides Beta-Cypermethrin in Soils with Different pH Values.

    PubMed

    Yang, Zhong-Hua; Ji, Guo-Dong

    2015-12-15

    For decades, pesticides have been widely used for agricultural activities around the world, and the environmental problems caused by these compounds have raised widespread concern. However, the different enantioselective behaviors of chiral pesticide enantiomers are often ignored. Here, the selective degradation patterns and mechanisms of chiral pesticide enantiomers were successfully investigated for the first time in the soils of three cultivation areas with different pH values. Beta-cypermethrin was chosen as the target analyte. We found that the degradation rates of the four isomers of beta-cypermethrin were different. We used stepwise regression equations between degradation rates and functional genes to quantitatively study their relationships. Quantitative response analysis revealed that different isomers have different equations even under identical conditions. The results of path analysis showed that a single functional gene can make different direct and indirect contributions to the degradation of different isomers. Finally, the high-throughput technology was used to analysis the genome of the three tested soils and then compared the main microbial communities in them. We have successfully devised a method to investigate the molecular biological mechanisms of the selective degradation behavior of chiral compounds, thus enabling us to better understand these mechanisms.

  6. Solving a mixture of many random linear equations by tensor decomposition and alternating minimization.

    DOT National Transportation Integrated Search

    2016-09-01

    We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...

  7. Twig and foliar biomass estimation equations for major plant species in the Tanana River Basin of interior Alaska.

    Treesearch

    John Yarie; Bert R. Mead

    1988-01-01

    Equations are presented for estimating the twig, foliage, and combined biomass for 58 plant species in interior Alaska. The equations can be used for estimating biomass from percentage of foliar cover of 10-centimeter layers in a vertical profile from 0 to 6 meters. Few differences were found in regressions of the same species between layers except when the ratio of...

  8. Weight estimation techniques for composite airplanes in general aviation industry

    NASA Technical Reports Server (NTRS)

    Paramasivam, T.; Horn, W. J.; Ritter, J.

    1986-01-01

    Currently available weight estimation methods for general aviation airplanes were investigated. New equations with explicit material properties were developed for the weight estimation of aircraft components such as wing, fuselage and empennage. Regression analysis was applied to the basic equations for a data base of twelve airplanes to determine the coefficients. The resulting equations can be used to predict the component weights of either metallic or composite airplanes.

  9. Regional equations for estimation of peak-streamflow frequency for natural basins in Texas

    USGS Publications Warehouse

    Asquith, William H.; Slade, Raymond M.

    1997-01-01

    Peak-streamflow frequency for 559 Texas stations with natural (unregulated and rural or nonurbanized) basins was estimated with annual peak-streamflow data through 1993. The peak-streamflow frequency and drainage-basin characteristics for the Texas stations were used to develop 16 sets of equations to estimate peak-streamflow frequency for ungaged natural stream sites in each of 11 regions in Texas. The relation between peak-streamflow frequency and contributing drainage area for 5 of the 11 regions is curvilinear, requiring that one set of equations be developed for drainage areas less than 32 square miles and another set be developed for drainage areas greater than 32 square miles. These equations, developed through multiple-regression analysis using weighted least squares, are based on the relation between peak-streamflow frequency and basin characteristics for streamflow-gaging stations. The regions represent areas with similar flood characteristics. The use and limitations of the regression equations also are discussed. Additionally, procedures are presented to compute the 50-, 67-, and 90-percent confidence limits for any estimation from the equations. Also, supplemental peak-streamflow frequency and basin characteristics for 105 selected stations bordering Texas are included in the report. This supplemental information will aid in interpretation of flood characteristics for sites near the state borders of Texas.

  10. Seasonal mean pressure reconstruction for the North Atlantic (1750 1850) based on early marine data

    NASA Astrophysics Data System (ADS)

    Gallego, D.; Garcia-Herrera, R.; Ribera, P.; Jones, P. D.

    2005-12-01

    Measurements of wind strength and direction abstracted from European ships' logbooks during the recently finished CLIWOC project have been used to produce the first gridded Sea Level Pressure (SLP) reconstruction for the 1750-1850 period over the North Atlantic based solely on marine data. The reconstruction is based on a spatial regression analysis calibrated by using data taken from the ICOADS database. An objective methodology has been developed to select the optimal calibration period and spatial domain of the reconstruction by testing several thousands of possible models. The finally selected area, limited by the performance of the regression equations and by the availability of data, covers the region between 28° N and 52° N close to the European coast and between 28° N and 44° N in the open Ocean. The results provide a direct measure of the strength and extension of the Azores High during the 101 years of the study period. The comparison with the recent land-based SLP reconstruction by Luterbacher et al. (2002) indicates the presence of a common signal. The interannual variability of the CLIWOC reconstructions is rather high due to the current scarcity of abstracted wind data in the areas with best response in the regression. Guidelines are proposed to optimize the efficiency of future abstraction work.

  11. Seasonal mean pressure reconstruction for the North Atlantic (1750 1850) based on early marine data

    NASA Astrophysics Data System (ADS)

    Gallego, D.; Garcia-Herrera, R.; Ribera, P.; Jones, P. D.

    2005-08-01

    Measures of wind strength and direction abstracted from European ships' logbooks during the recently finished CLIWOC project have been used to produce the first gridded Sea Level Pressure (SLP) reconstruction for the 1750-1850 period over the North Atlantic based solely on marine data. The reconstruction is based on a spatial regression analysis calibrated by using data taken from the ICOADS database. An objective methodology has been developed to select the optimal calibration period and spatial domain of the reconstruction by testing several thousands of possible models. The finally selected area, limited by the performance of the regression equations and by the availability of data, covers the region between 28°N and 52°N close to the European coast and between 28°N and 44°N in the open Ocean. The results provide a direct measure of the strength and extension of the Azores High during the 101 years of the study period. The comparison with the recent land-based SLP reconstruction by Luterbacher et al. (2002) indicates the presence of a common signal. The interannual variability of the CLIWOC reconstructions is rather high due to the current scarcity of abstracted wind data in the areas with best response in the regression. Guidelines are proposed to optimize the efficiency of future abstraction work.

  12. An empirical study using permutation-based resampling in meta-regression

    PubMed Central

    2012-01-01

    Background In meta-regression, as the number of trials in the analyses decreases, the risk of false positives or false negatives increases. This is partly due to the assumption of normality that may not hold in small samples. Creation of a distribution from the observed trials using permutation methods to calculate P values may allow for less spurious findings. Permutation has not been empirically tested in meta-regression. The objective of this study was to perform an empirical investigation to explore the differences in results for meta-analyses on a small number of trials using standard large sample approaches verses permutation-based methods for meta-regression. Methods We isolated a sample of randomized controlled clinical trials (RCTs) for interventions that have a small number of trials (herbal medicine trials). Trials were then grouped by herbal species and condition and assessed for methodological quality using the Jadad scale, and data were extracted for each outcome. Finally, we performed meta-analyses on the primary outcome of each group of trials and meta-regression for methodological quality subgroups within each meta-analysis. We used large sample methods and permutation methods in our meta-regression modeling. We then compared final models and final P values between methods. Results We collected 110 trials across 5 intervention/outcome pairings and 5 to 10 trials per covariate. When applying large sample methods and permutation-based methods in our backwards stepwise regression the covariates in the final models were identical in all cases. The P values for the covariates in the final model were larger in 78% (7/9) of the cases for permutation and identical for 22% (2/9) of the cases. Conclusions We present empirical evidence that permutation-based resampling may not change final models when using backwards stepwise regression, but may increase P values in meta-regression of multiple covariates for relatively small amount of trials. PMID:22587815

  13. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    NASA Astrophysics Data System (ADS)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for maximal response. For the calculation of the regression coefficients, dispersion and correlation coefficients, the software Matlab was used.

  14. Dosing algorithm for warfarin using CYP2C9 and VKORC1 genotyping from a multi-ethnic population: comparison with other equations.

    PubMed

    Wu, Alan H B; Wang, Ping; Smith, Andrew; Haller, Christine; Drake, Katherine; Linder, Mark; Valdes, Roland

    2008-02-01

    Polymorphism in the genes for cytochrome (CYP)2C9 and the vitamin K epoxide reductase complex subunit 1 (VKORC1) affect the pharmacokinetics and pharmacodynamics of warfarin. We developed and validated a warfarin-dosing algorithm for a multi-ethnic population that predicts the best dose for stable anticoagulation, and compared its performance against other regression equations. We determined the allele and haplotype frequencies of genes for CYP2C9 and VKORC1 on 167 Caucasian, African-American, Asian and Hispanic patients on warfarin. On a subset where complete data were available (n=92), we developed a dosing equation that predicts the actual dose needed to maintain target anticoagulation using demographic variables and genotypes. This regression was validated against an independent group of subjects. We also applied our data to five other published warfarin-dosing equations. The allele frequency for CYP2C9*2 and *3 and the A allele for VKORC1 3673 was similar to previously published reports. For Caucasians and Asians, VKORC1 SNPs were in Hardy-Weinberg linkage equilibrium. Some VKORC1 SNPs among the African-American population and one SNP among Hispanics were not in equilibrium. The linear regression of predicted versus actual warfarin dose produced r-values of 0.71 for the training set and 0.67 for the validation set. The regression coefficient improved (to r=0.78 and 0.75, respectively) when rare genotypes were eliminated or when the 7566 VKORC1 genotype was added to the model. All of the regression models tested produced a similar degree of correlation. The exclusion of rare genotypes that are more associated with certain ethnicities improved the model. Minor improvements in algorithms can be observed with the inclusion of ethnicity and more CYP2C9 and VKORC1 SNPs as variables. Major improvements will likely require the identification of new gene associations with warfarin dosing.

  15. Exact and Approximate Statistical Inference for Nonlinear Regression and the Estimating Equation Approach.

    PubMed

    Demidenko, Eugene

    2017-09-01

    The exact density distribution of the nonlinear least squares estimator in the one-parameter regression model is derived in closed form and expressed through the cumulative distribution function of the standard normal variable. Several proposals to generalize this result are discussed. The exact density is extended to the estimating equation (EE) approach and the nonlinear regression with an arbitrary number of linear parameters and one intrinsically nonlinear parameter. For a very special nonlinear regression model, the derived density coincides with the distribution of the ratio of two normally distributed random variables previously obtained by Fieller (1932), unlike other approximations previously suggested by other authors. Approximations to the density of the EE estimators are discussed in the multivariate case. Numerical complications associated with the nonlinear least squares are illustrated, such as nonexistence and/or multiple solutions, as major factors contributing to poor density approximation. The nonlinear Markov-Gauss theorem is formulated based on the near exact EE density approximation.

  16. REGRES: A FORTRAN-77 program to calculate nonparametric and ``structural'' parametric solutions to bivariate regression equations

    NASA Astrophysics Data System (ADS)

    Rock, N. M. S.; Duffy, T. R.

    REGRES allows a range of regression equations to be calculated for paired sets of data values in which both variables are subject to error (i.e. neither is the "independent" variable). Nonparametric regressions, based on medians of all possible pairwise slopes and intercepts, are treated in detail. Estimated slopes and intercepts are output, along with confidence limits, Spearman and Kendall rank correlation coefficients. Outliers can be rejected with user-determined stringency. Parametric regressions can be calculated for any value of λ (the ratio of the variances of the random errors for y and x)—including: (1) major axis ( λ = 1); (2) reduced major axis ( λ = variance of y/variance of x); (3) Y on Xλ = infinity; or (4) X on Y ( λ = 0) solutions. Pearson linear correlation coefficients also are output. REGRES provides an alternative to conventional isochron assessment techniques where bivariate normal errors cannot be assumed, or weighting methods are inappropriate.

  17. Magnitude and frequency of floods in Arkansas

    USGS Publications Warehouse

    Hodge, Scott A.; Tasker, Gary D.

    1995-01-01

    Methods are presented for estimating the magnitude and frequency of peak discharges of streams in Arkansas. Regression analyses were developed in which a stream's physical and flood characteristics were related. Four sets of regional regression equations were derived to predict peak discharges with selected recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years on streams draining less than 7,770 square kilometers. The regression analyses indicate that size of drainage area, main channel slope, mean basin elevation, and the basin shape factor were the most significant basin characteristics that affect magnitude and frequency of floods. The region of influence method is included in this report. This method is still being improved and is to be considered only as a second alternative to the standard method of producing regional regression equations. This method estimates unique regression equations for each recurrence interval for each ungaged site. The regression analyses indicate that size of drainage area, main channel slope, mean annual precipitation, mean basin elevation, and the basin shape factor were the most significant basin and climatic characteristics that affect magnitude and frequency of floods for this method. Certain recommendations on the use of this method are provided. A method is described for estimating the magnitude and frequency of peak discharges of streams for urban areas in Arkansas. The method is from a nationwide U.S. Geeological Survey flood frequency report which uses urban basin characteristics combined with rural discharges to estimate urban discharges. Annual peak discharges from 204 gaging stations, with drainage areas less than 7,770 square kilometers and at least 10 years of unregulated record, were used in the analysis. These data provide the basis for this analysis and are published in the Appendix of this report as supplemental data. Large rivers such as the Red, Arkansas, White, Black, St. Francis, Mississippi, and Ouachita Rivers have floodflow characteristics that differ from those of smaller tributary streams and were treated individually. Regional regression equations are not applicable to these large rivers. The magnitude and frequency of floods along these rivers are based on specific station data. This section is provided in the Appendix and has not been updated since the last Arkansas flood frequency report (1987b), but is included at the request of the cooperator.

  18. Estimates of Flow Duration, Mean Flow, and Peak-Discharge Frequency Values for Kansas Stream Locations

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean flow, and peak-discharge frequency values determined at available gaging stations were used to interpolate the regression-estimated flows for the stream locations where available. Streamflow statistics for locations that had uncontrolled flow were interpolated using data from gaging stations weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled reaches of Kansas streams, the streamflow statistics were interpolated between gaging stations using only gaged data weighted by drainage area.

  19. Estimated Perennial Streams of Idaho and Related Geospatial Datasets

    USGS Publications Warehouse

    Rea, Alan; Skinner, Kenneth D.

    2009-01-01

    The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of record, generally would be considered to represent flow conditions better at a given site than flow estimates based on regionalized regression models. The geospatial datasets of modeled perennial streams are considered a first-cut estimate, and should not be construed to override site-specific flow data.

  20. Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Saito, Riki J.; Veilleux, Andrea G.; Sharpe, Jennifer B.; Soong, David T.; Ishii, Audrey L.

    2016-06-28

    This report provides two sets of equations for estimating peak discharge quantiles at annual exceedance probabilities (AEPs) of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for watersheds in Illinois based on annual maximum peak discharge data from 117 watersheds in and near northeastern Illinois. One set of equations was developed through a temporal analysis with a two-step least squares-quantile regression technique that measures the average effect of changes in the urbanization of the watersheds used in the study. The resulting equations can be used to adjust rural peak discharge quantiles for the effect of urbanization, and in this study the equations also were used to adjust the annual maximum peak discharges from the study watersheds to 2010 urbanization conditions.The other set of equations was developed by a spatial analysis. This analysis used generalized least-squares regression to fit the peak discharge quantiles computed from the urbanization-adjusted annual maximum peak discharges from the study watersheds to drainage-basin characteristics. The peak discharge quantiles were computed by using the Expected Moments Algorithm following the removal of potentially influential low floods defined by a multiple Grubbs-Beck test. To improve the quantile estimates, regional skew coefficients were obtained from a newly developed regional skew model in which the skew increases with the urbanized land use fraction. The drainage-basin characteristics used as explanatory variables in the spatial analysis include drainage area, the fraction of developed land, the fraction of land with poorly drained soils or likely water, and the basin slope estimated as the ratio of the basin relief to basin perimeter.This report also provides the following: (1) examples to illustrate the use of the spatial and urbanization-adjustment equations for estimating peak discharge quantiles at ungaged sites and to improve flood-quantile estimates at and near a gaged site; (2) the urbanization-adjusted annual maximum peak discharges and peak discharge quantile estimates at streamgages from 181 watersheds including the 117 study watersheds and 64 additional watersheds in the study region that were originally considered for use in the study but later deemed to be redundant.The urbanization-adjustment equations, spatial regression equations, and peak discharge quantile estimates developed in this study will be made available in the web application StreamStats, which provides automated regression-equation solutions for user-selected stream locations. Figures and tables comparing the observed and urbanization-adjusted annual maximum peak discharge records by streamgage are provided at https://doi.org/10.3133/sir20165050 for download.

  1. Methods for estimating magnitude and frequency of peak flows for natural streams in Utah

    USGS Publications Warehouse

    Kenney, Terry A.; Wilkowske, Chris D.; Wright, Shane J.

    2007-01-01

    Estimates of the magnitude and frequency of peak streamflows is critical for the safe and cost-effective design of hydraulic structures and stream crossings, and accurate delineation of flood plains. Engineers, planners, resource managers, and scientists need accurate estimates of peak-flow return frequencies for locations on streams with and without streamflow-gaging stations. The 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were estimated for 344 unregulated U.S. Geological Survey streamflow-gaging stations in Utah and nearby in bordering states. These data along with 23 basin and climatic characteristics computed for each station were used to develop regional peak-flow frequency and magnitude regression equations for 7 geohydrologic regions of Utah. These regression equations can be used to estimate the magnitude and frequency of peak flows for natural streams in Utah within the presented range of predictor variables. Uncertainty, presented as the average standard error of prediction, was computed for each developed equation. Equations developed using data from more than 35 gaging stations had standard errors of prediction that ranged from 35 to 108 percent, and errors for equations developed using data from less than 35 gaging stations ranged from 50 to 357 percent.

  2. Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum

    2006-01-01

    A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…

  3. Predicting volumes in four Hawaii hardwoods...first multivariate equations developed

    Treesearch

    David A. Sharpnack

    1966-01-01

    Multivariate regression equations were developed for predicting board-foot (Int. 1/ 4-inch log rule ) and cubic-foot volumes in each 8.15-foot section of trees of four Hawaii hardwood species. The species are koa (Acacia koa), ohia (Metrosideros polymorpha), robusta eucalyptus (Eucalyptus robusta), and...

  4. System identification principles in studies of forest dynamics.

    Treesearch

    Rolfe A. Leary

    1970-01-01

    Shows how it is possible to obtain governing equation parameter estimates on the basis of observed system states. The approach used represents a constructive alternative to regression techniques for models expressed as differential equations. This approach allows scientists to more completely quantify knowledge of forest development processes, to express theories in...

  5. Effects of Employing Ridge Regression in Structural Equation Models.

    ERIC Educational Resources Information Center

    McQuitty, Shaun

    1997-01-01

    LISREL 8 invokes a ridge option when maximum likelihood or generalized least squares are used to estimate a structural equation model with a nonpositive definite covariance or correlation matrix. Implications of the ridge option for model fit, parameter estimates, and standard errors are explored through two examples. (SLD)

  6. Estimating total forest biomass in Maine, 1995

    Treesearch

    Eric H. Wharton; Douglas M. Griffith; Douglas M. Griffith

    1998-01-01

    Presents methods for synthesizing information from existing biomass literature for estimating biomass over extensive forest areas with specific applications to Maine. Tables of appropriate regression equations and the tree and shrub species to which these equations can be applied are presented as well as biomass estimates at the county and state level.

  7. Invariants for the generalized Lotka-Volterra equations

    NASA Astrophysics Data System (ADS)

    Cairó, Laurent; Feix, Marc R.; Goedert, Joao

    A generalisation of Lotka-Volterra System is given when self limiting terms are introduced in the model. We use a modification of the Carleman embedding method to find invariants for this system of equations. The position and stability of the equilibrium point and the regression of system under invariant conditions are studied.

  8. Merchantable sawlog and bole-length equations for the Northeastern United States

    Treesearch

    Daniel A. Yaussy; Martin E. Dale; Martin E. Dale

    1991-01-01

    A modified Richards growth model is used to develop species-specific coefficients for equations estimating the merchantable sawlog and bole lengths of trees from 25 species groups common to the Northeastern United States. These regression coefficients have been incorporated into the growth-and-yield simulation software, NE-TWIGS.

  9. Use of digital land-cover data from the Landsat satellite in estimating streamflow characteristics in the Cumberland Plateau of Tennessee

    USGS Publications Warehouse

    Hollyday, E.F.; Hansen, G.R.

    1983-01-01

    Streamflow may be estimated with regression equations that relate streamflow characteristics to characteristics of the drainage basin. A statistical experiment was performed to compare the accuracy of equations using basin characteristics derived from maps and climatological records (control group equations) with the accuracy of equations using basin characteristics derived from Landsat data as well as maps and climatological records (experimental group equations). Results show that when the equations in both groups are arranged into six flow categories, there is no substantial difference in accuracy between control group equations and experimental group equations for this particular site where drainage area accounts for more than 90 percent of the variance in all streamflow characteristics (except low flows and most annual peak logarithms). (USGS)

  10. Common y-intercept and single compound regressions of gas-particle partitioning data vs 1/T

    NASA Astrophysics Data System (ADS)

    Pankow, James F.

    Confidence intervals are placed around the log Kp vs 1/ T correlation equations obtained using simple linear regressions (SLR) with the gas-particle partitioning data set of Yamasaki et al. [(1982) Env. Sci. Technol.16, 189-194]. The compounds and groups of compounds studied include the polycylic aromatic hydrocarbons phenanthrene + anthracene, me-phenanthrene + me-anthracene, fluoranthene, pyrene, benzo[ a]fluorene + benzo[ b]fluorene, chrysene + benz[ a]anthracene + triphenylene, benzo[ b]fluoranthene + benzo[ k]fluoranthene, and benzo[ a]pyrene + benzo[ e]pyrene (note: me = methyl). For any given compound, at equilibrium, the partition coefficient Kp equals ( F/ TSP)/ A where F is the particulate-matter associated concentration (ng m -3), A is the gas-phase concentration (ng m -3), and TSP is the concentration of particulate matter (μg m -3). At temperatures more than 10°C from the mean sampling temperature of 17°C, the confidence intervals are quite wide. Since theory predicts that similar compounds sorbing on the same particulate matter should possess very similar y-intercepts, the data set was also fitted using a special common y-intercept regression (CYIR). For most of the compounds, the CYIR equations fell inside of the SLR 95% confidence intervals. The CYIR y-intercept value is -18.48, and is reasonably close to the type of value that can be predicted for PAH compounds. The set of CYIR regression equations is probably more reliable than the set of SLR equations. For example, the CYIR-derived desorption enthalpies are much more highly correlated with vaporization enthalpies than are the SLR-derived desorption enthalpies. It is recommended that the CYIR approach be considered whenever analysing temperature-dependent gas-particle partitioning data.

  11. Estimation of evapotranspiration across the conterminous United States using a regression with climate and land-cover data

    USGS Publications Warehouse

    Sanford, Ward E.; Selnick, David L.

    2013-01-01

    Evapotranspiration (ET) is an important quantity for water resource managers to know because it often represents the largest sink for precipitation (P) arriving at the land surface. In order to estimate actual ET across the conterminous United States (U.S.) in this study, a water-balance method was combined with a climate and land-cover regression equation. Precipitation and streamflow records were compiled for 838 watersheds for 1971-2000 across the U.S. to obtain long-term estimates of actual ET. A regression equation was developed that related the ratio ET/P to climate and land-cover variables within those watersheds. Precipitation and temperatures were used from the PRISM climate dataset, and land-cover data were used from the USGS National Land Cover Dataset. Results indicate that ET can be predicted relatively well at a watershed or county scale with readily available climate variables alone, and that land-cover data can also improve those predictions. Using the climate and land-cover data at an 800-m scale and then averaging to the county scale, maps were produced showing estimates of ET and ET/P for the entire conterminous U.S. Using the regression equation, such maps could also be made for more detailed state coverages, or for other areas of the world where climate and land-cover data are plentiful.

  12. Using heart rate to predict energy expenditure in large domestic dogs.

    PubMed

    Gerth, N; Ruoß, C; Dobenecker, B; Reese, S; Starck, J M

    2016-06-01

    The aim of this study was to establish heart rate as a measure of energy expenditure in large active kennel dogs (28 ± 3 kg bw). Therefore, the heart rate (HR)-oxygen consumption (V˙O2) relationship was analysed in Foxhound-Boxer-Ingelheim-Labrador cross-breds (FBI dogs) at rest and graded levels of exercise on a treadmill up to 60-65% of maximal aerobic capacity. To test for effects of training, HR and V˙O2 were measured in female dogs, before and after a training period, and after an adjacent training pause to test for reversibility of potential effects. Least squares regression was applied to describe the relationship between HR and V˙O2. The applied training had no statistically significant effect on the HR-V˙O2 regression. A general regression line from all data collected was prepared to establish a general predictive equation for energy expenditure from HR in FBI dogs. The regression equation established in this study enables fast estimation of energy requirement for running activity. The equation is valid for large dogs weighing around 30 kg that run at ground level up to 15 km/h with a heart rate maximum of 190 bpm irrespective of the training level. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  13. Updated logistic regression equations for the calculation of post-fire debris-flow likelihood in the western United States

    USGS Publications Warehouse

    Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.

    2016-06-30

    Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.

  14. Relationship between body composition and postural control in prepubertal overweight/obese children: A cross-sectional study.

    PubMed

    Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier

    2018-02-01

    Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Magnitude and frequency of floods in small drainage basins in Idaho

    USGS Publications Warehouse

    Thomas, C.A.; Harenberg, W.A.; Anderson, J.M.

    1973-01-01

    A method is presented in this report for determining magnitude and frequency of floods on streams with drainage areas between 0.5 and 200 square miles. The method relates basin characteristics, including drainage area, percentage of forest cover, percentage of water area, latitude, and longitude, with peak flow characteristics. Regression equations for each of eight regions are presented for determination of QIQ/ the peak discharge, which, on the average, will be exceeded once in 10 years. Peak flows, Q25 and Q 50 , can then be estimated from Q25/Q10 and Q-50/Q-10 ratios developed for each region. Nomographs are included which solve the equations for basins between 1 and 50 square miles. The regional regression equations were developed using multiple regression techniques. Annual peaks for 303 sites were analyzed in the study. These included all records on unregulated streams with drainage areas less than about 500 square miles with 10 years or more of record or which could readily be extended to 10 years on the basis of nearby streams. The log-Pearson Type III method as modified and a digital computer were employed to estimate magnitude and frequency of floods for each of the 303 gaged sites. A large number of physical and climatic basin characteristics were determined for each of the gaged sites. The multiple regression method was then applied to determine the equations relating the floodflows and the most significant basin characteristics. For convenience of the users, several equations were simplified and some complex characteristics were deleted at the sacrifice of some increase in the standard error. Standard errors of estimate and many other statistical data were computed in the analysis process and are available in the Boise district office files. The analysis showed that QIQ was the best defined and most practical index flood for determination of the Q25 and 0,50 flood estimates.Regression equations are not developed because of poor definition for areas which total about 20,000 square miles, most of which are in southern Idaho. These areas are described in the report to prevent use of regression equations where they do not apply. They include urbanized areas, streams affected by regulation or diversion by works of man, unforested areas, streams with gaining or losing reaches, streams draining alluvial valleys and the Snake Plain, intense thunderstorm areas, and scattered areas where records indicate recurring floods which depart from the regional equations. Maximum flows of record and basin locations are summarized in tables and maps. The analysis indicates deficiencies in data exist. To improve knowledge regarding flood characteristics in poorly defined areas, the following data-collection programs are recommended. Gages should be operated on a few selected small streams for an extended period to define floods at long recurrence intervals. Crest-stage gages should be operated in representative basins in urbanized areas, newly developed irrigated areas and grasslands, and in unforested areas. Unusual floods should continue to be measured at miscellaneous sites on regulated streams and in intense thunderstorm-prone areas. The relationship between channel geometry and floodflow characteristics should be investigated as an alternative or supplement to operation of gaging stations. Documentation of historic flood data from newspapers and other sources would improve the basic flood-data base.

  16. Flood quantile estimation at ungauged sites by Bayesian networks

    NASA Astrophysics Data System (ADS)

    Mediero, L.; Santillán, D.; Garrote, L.

    2012-04-01

    Estimating flood quantiles at a site for which no observed measurements are available is essential for water resources planning and management. Ungauged sites have no observations about the magnitude of floods, but some site and basin characteristics are known. The most common technique used is the multiple regression analysis, which relates physical and climatic basin characteristic to flood quantiles. Regression equations are fitted from flood frequency data and basin characteristics at gauged sites. Regression equations are a rigid technique that assumes linear relationships between variables and cannot take the measurement errors into account. In addition, the prediction intervals are estimated in a very simplistic way from the variance of the residuals in the estimated model. Bayesian networks are a probabilistic computational structure taken from the field of Artificial Intelligence, which have been widely and successfully applied to many scientific fields like medicine and informatics, but application to the field of hydrology is recent. Bayesian networks infer the joint probability distribution of several related variables from observations through nodes, which represent random variables, and links, which represent causal dependencies between them. A Bayesian network is more flexible than regression equations, as they capture non-linear relationships between variables. In addition, the probabilistic nature of Bayesian networks allows taking the different sources of estimation uncertainty into account, as they give a probability distribution as result. A homogeneous region in the Tagus Basin was selected as case study. A regression equation was fitted taking the basin area, the annual maximum 24-hour rainfall for a given recurrence interval and the mean height as explanatory variables. Flood quantiles at ungauged sites were estimated by Bayesian networks. Bayesian networks need to be learnt from a huge enough data set. As observational data are reduced, a stochastic generator of synthetic data was developed. Synthetic basin characteristics were randomised, keeping the statistical properties of observed physical and climatic variables in the homogeneous region. The synthetic flood quantiles were stochastically generated taking the regression equation as basis. The learnt Bayesian network was validated by the reliability diagram, the Brier Score and the ROC diagram, which are common measures used in the validation of probabilistic forecasts. Summarising, the flood quantile estimations through Bayesian networks supply information about the prediction uncertainty as a probability distribution function of discharges is given as result. Therefore, the Bayesian network model has application as a decision support for water resources and planning management.

  17. Additivity of nonlinear biomass equations

    Treesearch

    Bernard R. Parresol

    2001-01-01

    Two procedures that guarantee the property of additivity among the components of tree biomass and total tree biomass utilizing nonlinear functions are developed. Procedure 1 is a simple combination approach, and procedure 2 is based on nonlinear joint-generalized regression (nonlinear seemingly unrelated regressions) with parameter restrictions. Statistical theory is...

  18. Regression models to predict hip joint centers in pathological hip population.

    PubMed

    Mantovani, Giulia; Ng, K C Geoffrey; Lamontagne, Mario

    2016-02-01

    The purpose was to investigate the validity of Harrington's and Davis's hip joint center (HJC) regression equations on a population affected by a hip deformity, (i.e., femoroacetabular impingement). Sixty-seven participants (21 healthy controls, 46 with a cam-type deformity) underwent pelvic CT imaging. Relevant bony landmarks and geometric HJCs were digitized from the images, and skin thickness was measured for the anterior and posterior superior iliac spines. Non-parametric statistical and Bland-Altman tests analyzed differences between the predicted HJC (from regression equations) and the actual HJC (from CT images). The error from Davis's model (25.0 ± 6.7 mm) was larger than Harrington's (12.3 ± 5.9 mm, p<0.001). There were no differences between groups, thus, studies on femoroacetabular impingement can implement conventional regression models. Measured skin thickness was 9.7 ± 7.0mm and 19.6 ± 10.9 mm for the anterior and posterior bony landmarks, respectively, and correlated with body mass index. Skin thickness estimates can be considered to reduce the systematic error introduced by surface markers. New adult-specific regression equations were developed from the CT dataset, with the hypothesis that they could provide better estimates when tuned to a larger adult-specific dataset. The linear models were validated on external datasets and using leave-one-out cross-validation techniques; Prediction errors were comparable to those of Harrington's model, despite the adult-specific population and the larger sample size, thus, prediction accuracy obtained from these parameters could not be improved. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The Accuracy of Anthropometric Equations to Assess Body Fat in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Rossato, Mateus; Dellagrana, Rodolfo André; da Costa, Rafael Martins; de Souza Bezerra, Ewertton; dos Santos, João Otacílio Libardoni; Rech, Cassiano Ricardo

    2018-01-01

    Background: The aim of this study was to verify the accuracy of anthropometric equations to estimate the body density (BD) of adults with Down syndrome (DS), and propose new regression equations. Materials and methods: Twenty-one males (30.5 ± 9.4 years) and 17 females (27.3 ± 7.7 years) with DS participated in this study. The reference method for…

  20. ESEA Title I Linking Project. Final Report.

    ERIC Educational Resources Information Center

    Holmes, Susan E.

    The Rasch model for test score equating was compared with three other equating procedures as methods for implementing the norm referenced method (RMC Model A) of evaluating ESEA Title I projects. The Rasch model and its theoretical limitations were described. The three other equating methods used were: linear observed score equating, linear true…

  1. Toxicity prediction of ionic liquids based on Daphnia magna by using density functional theory

    NASA Astrophysics Data System (ADS)

    Nu’aim, M. N.; Bustam, M. A.

    2018-04-01

    By using a model called density functional theory, the toxicity of ionic liquids can be predicted and forecast. It is a theory that allowing the researcher to have a substantial tool for computation of the quantum state of atoms, molecules and solids, and molecular dynamics which also known as computer simulation method. It can be done by using structural feature based quantum chemical reactivity descriptor. The identification of ionic liquids and its Log[EC50] data are from literature data that available in Ismail Hossain thesis entitled “Synthesis, Characterization and Quantitative Structure Toxicity Relationship of Imidazolium, Pyridinium and Ammonium Based Ionic Liquids”. Each cation and anion of the ionic liquids were optimized and calculated. The geometry optimization and calculation from the software, produce the value of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). From the value of HOMO and LUMO, the value for other toxicity descriptors were obtained according to their formulas. The toxicity descriptor that involves are electrophilicity index, HOMO, LUMO, energy gap, chemical potential, hardness and electronegativity. The interrelation between the descriptors are being determined by using a multiple linear regression (MLR). From this MLR, all descriptors being analyzed and the descriptors that are significant were chosen. In order to develop the finest model equation for toxicity prediction of ionic liquids, the selected descriptors that are significant were used. The validation of model equation was performed with the Log[EC50] data from the literature and the final model equation was developed. A bigger range of ionic liquids which nearly 108 of ionic liquids can be predicted from this model equation.

  2. The National Streamflow Statistics Program: A Computer Program for Estimating Streamflow Statistics for Ungaged Sites

    USGS Publications Warehouse

    Ries(compiler), Kernell G.; With sections by Atkins, J. B.; Hummel, P.R.; Gray, Matthew J.; Dusenbury, R.; Jennings, M.E.; Kirby, W.H.; Riggs, H.C.; Sauer, V.B.; Thomas, W.O.

    2007-01-01

    The National Streamflow Statistics (NSS) Program is a computer program that should be useful to engineers, hydrologists, and others for planning, management, and design applications. NSS compiles all current U.S. Geological Survey (USGS) regional regression equations for estimating streamflow statistics at ungaged sites in an easy-to-use interface that operates on computers with Microsoft Windows operating systems. NSS expands on the functionality of the USGS National Flood Frequency Program, and replaces it. The regression equations included in NSS are used to transfer streamflow statistics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally, the equations were developed on a statewide or metropolitan-area basis as part of cooperative study programs. Equations are available for estimating rural and urban flood-frequency statistics, such as the 1 00-year flood, for every state, for Puerto Rico, and for the island of Tutuila, American Samoa. Equations are available for estimating other statistics, such as the mean annual flow, monthly mean flows, flow-duration percentiles, and low-flow frequencies (such as the 7-day, 0-year low flow) for less than half of the states. All equations available for estimating streamflow statistics other than flood-frequency statistics assume rural (non-regulated, non-urbanized) conditions. The NSS output provides indicators of the accuracy of the estimated streamflow statistics. The indicators may include any combination of the standard error of estimate, the standard error of prediction, the equivalent years of record, or 90 percent prediction intervals, depending on what was provided by the authors of the equations. The program includes several other features that can be used only for flood-frequency estimation. These include the ability to generate flood-frequency plots, and plots of typical flood hydrographs for selected recurrence intervals, estimates of the probable maximum flood, extrapolation of the 500-year flood when an equation for estimating it is not available, and weighting techniques to improve flood-frequency estimates for gaging stations and ungaged sites on gaged streams. This report describes the regionalization techniques used to develop the equations in NSS and provides guidance on the applicability and limitations of the techniques. The report also includes a users manual and a summary of equations available for estimating basin lagtime, which is needed by the program to generate flood hydrographs. The NSS software and accompanying database, and the documentation for the regression equations included in NSS, are available on the Web at http://water.usgs.gov/software/.

  3. Estimation of basal metabolic rate in Chinese: are the current prediction equations applicable?

    PubMed

    Camps, Stefan G; Wang, Nan Xin; Tan, Wei Shuan Kimberly; Henry, C Jeyakumar

    2016-08-31

    Measurement of basal metabolic rate (BMR) is suggested as a tool to estimate energy requirements. Therefore, BMR prediction equations have been developed in multiple populations because indirect calorimetry is not always feasible. However, there is a paucity of data on BMR measured in overweight and obese adults living in Asia and equations developed for this group of interest. The aim of this study was to develop a new BMR prediction equation for Chinese adults applicable for a large BMI range and compare it with commonly used prediction equations. Subjects were 121 men and 111 women (age: 21-67 years, BMI: 16-41 kg/m(2)). Height, weight, and BMR were measured. Continuous open-circuit indirect calorimetry using a ventilated hood system for 30 min was used to measure BMR. A regression equation was derived using stepwise regression and accuracy was compared to 6 existing equations (Harris-Benedict, Henry, Liu, Yang, Owen and Mifflin). Additionally, the newly derived equation was cross-validated in a separate group of 70 Chinese subjects (26 men and 44 women, age: 21-69 years, BMI: 17-39 kg/m(2)). The equation developed from our data was: BMR (kJ/d) = 52.6 x weight (kg) + 828 x gender + 1960 (women = 0, men = 1; R(2) = 0.81). The accuracy rate (within 10 % accurate) was 78 % which compared well to Owen (70 %), Henry (67 %), Mifflin (67 %), Liu (58 %), Harris-Benedict (45 %) and Yang (37 %) for the whole range of BMI. For a BMI greater than 23, the Singapore equation reached an accuracy rate of 76 %. Cross-validation proved an accuracy rate of 80 %. To date, the newly developed Singapore equation is the most accurate BMR prediction equation in Chinese and is applicable for use in a large BMI range including those overweight and obese.

  4. Sound attenuation of fiberglass lined ventilation ducts

    NASA Astrophysics Data System (ADS)

    Albright, Jacob

    Sound attenuation is a crucial part of designing any HVAC system. Most ventilation systems are designed to be in areas occupied by one or more persons. If these systems do not adequately attenuate the sound of the supply fan, compressor, or any other source of sound, the affected area could be subject to an array of problems ranging from an annoying hum to a deafening howl. The goals of this project are to quantify the sound attenuation properties of fiberglass duct liner and to perform a regression analysis to develop equations to predict insertion loss values for both rectangular and round duct liners. The first goal was accomplished via insertion loss testing. The tests performed conformed to the ASTM E477 standard. Using the insertion loss test data, regression equations were developed to predict insertion loss values for rectangular ducts ranging in size from 12-in x 18-in to 48-in x 48-in in lengths ranging from 3ft to 30ft. Regression equations were also developed to predict insertion loss values for round ducts ranging in diameters from 12-in to 48-in in lengths ranging from 3ft to 30ft.

  5. A PDE approach for quantifying and visualizing tumor progression and regression

    NASA Astrophysics Data System (ADS)

    Sintay, Benjamin J.; Bourland, J. Daniel

    2009-02-01

    Quantification of changes in tumor shape and size allows physicians the ability to determine the effectiveness of various treatment options, adapt treatment, predict outcome, and map potential problem sites. Conventional methods are often based on metrics such as volume, diameter, or maximum cross sectional area. This work seeks to improve the visualization and analysis of tumor changes by simultaneously analyzing changes in the entire tumor volume. This method utilizes an elliptic partial differential equation (PDE) to provide a roadmap of boundary displacement that does not suffer from the discontinuities associated with other measures such as Euclidean distance. Streamline pathways defined by Laplace's equation (a commonly used PDE) are used to track tumor progression and regression at the tumor boundary. Laplace's equation is particularly useful because it provides a smooth, continuous solution that can be evaluated with sub-pixel precision on variable grid sizes. Several metrics are demonstrated including maximum, average, and total regression and progression. This method provides many advantages over conventional means of quantifying change in tumor shape because it is observer independent, stable for highly unusual geometries, and provides an analysis of the entire three-dimensional tumor volume.

  6. Methods for estimating tributary streamflow in the Chattahoochee River basin between Buford Dam and Franklin, Georgia

    USGS Publications Warehouse

    Stamey, Timothy C.

    1998-01-01

    Simple and reliable methods for estimating hourly streamflow are needed for the calibration and verification of a Chattahoochee River basin model between Buford Dam and Franklin, Ga. The river basin model is being developed by Georgia Department of Natural Resources, Environmental Protection Division, as part of their Chattahoochee River Modeling Project. Concurrent streamflow data collected at 19 continuous-record, and 31 partial-record streamflow stations, were used in ordinary least-squares linear regression analyses to define estimating equations, and in verifying drainage-area prorations. The resulting regression or drainage-area ratio estimating equations were used to compute hourly streamflow at the partial-record stations. The coefficients of determination (r-squared values) for the regression estimating equations ranged from 0.90 to 0.99. Observed and estimated hourly and daily streamflow data were computed for May 1, 1995, through October 31, 1995. Comparisons of observed and estimated daily streamflow data for 12 continuous-record tributary stations, that had available streamflow data for all or part of the period from May 1, 1995, to October 31, 1995, indicate that the mean error of estimate for the daily streamflow was about 25 percent.

  7. Pattern of mathematic representation ability in magnetic electricity problem

    NASA Astrophysics Data System (ADS)

    Hau, R. R. H.; Marwoto, P.; Putra, N. M. D.

    2018-03-01

    The mathematic representation ability in solving magnetic electricity problem gives information about the way students understand magnetic electricity. Students have varied mathematic representation pattern ability in solving magnetic electricity problem. This study aims to determine the pattern of students' mathematic representation ability in solving magnet electrical problems.The research method used is qualitative. The subject of this study is the fourth semester students of UNNES Physics Education Study Program. The data collection is done by giving a description test that refers to the test of mathematical representation ability and interview about field line topic and Gauss law. The result of data analysis of student's mathematical representation ability in solving magnet electric problem is categorized into high, medium and low category. The ability of mathematical representations in the high category tends to use a pattern of making known and asked symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representation in the medium category tends to use several patterns of writing the known symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representations in the low category tends to use several patterns of making known symbols, writing equations, substituting quantities into equations, performing calculations and final answer.

  8. Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation

    NASA Astrophysics Data System (ADS)

    Ormerod, Christopher M.

    2014-01-01

    We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with E_6^{(1)} symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlevé equation. Finally, we exploit the simple symmetric form of the reduced equations to find rational and hypergeometric solutions of this discrete Painlevé equation.

  9. Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM

    ERIC Educational Resources Information Center

    Warner, Rebecca M.

    2007-01-01

    This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…

  10. USING LINEAR AND POLYNOMIAL MODELS TO EXAMINE THE ENVIRONMENTAL STABILITY OF VIRUSES

    EPA Science Inventory

    The article presents the development of model equations for describing the fate of viral infectivity in environmental samples. Most of the models were based upon the use of a two-step linear regression approach. The first step employs regression of log base 10 transformed viral t...

  11. On the Occurrence of Standardized Regression Coefficients Greater than One.

    ERIC Educational Resources Information Center

    Deegan, John, Jr.

    1978-01-01

    It is demonstrated here that standardized regression coefficients greater than one can legitimately occur. Furthermore, the relationship between the occurrence of such coefficients and the extent of multicollinearity present among the set of predictor variables in an equation is examined. Comments on the interpretation of these coefficients are…

  12. Equilibrium, kinetics and process design of acid yellow 132 adsorption onto red pine sawdust.

    PubMed

    Can, Mustafa

    2015-01-01

    Linear and non-linear regression procedures have been applied to the Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich, and Redlich-Peterson isotherms for adsorption of acid yellow 132 (AY132) dye onto red pine (Pinus resinosa) sawdust. The effects of parameters such as particle size, stirring rate, contact time, dye concentration, adsorption dose, pH, and temperature were investigated, and interaction was characterized by Fourier transform infrared spectroscopy and field emission scanning electron microscope. The non-linear method of the Langmuir isotherm equation was found to be the best fitting model to the equilibrium data. The maximum monolayer adsorption capacity was found as 79.5 mg/g. The calculated thermodynamic results suggested that AY132 adsorption onto red pine sawdust was an exothermic, physisorption, and spontaneous process. Kinetics was analyzed by four different kinetic equations using non-linear regression analysis. The pseudo-second-order equation provides the best fit with experimental data.

  13. Multiple concurrent recursive least squares identification with application to on-line spacecraft mass-property identification

    NASA Technical Reports Server (NTRS)

    Wilson, Edward (Inventor)

    2006-01-01

    The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.

  14. The allometric relationship between resting metabolic rate and body mass in wild waterfowl (Anatidae) and an application to estimation of winter habitat requirements

    USGS Publications Warehouse

    Miller, M.R.; Eadie, J. McA

    2006-01-01

    We examined the allometric relationship between resting metabolic rate (RMR; kJ day-1) and body mass (kg) in wild waterfowl (Anatidae) by regressing RMR on body mass using species means from data obtained from published literature (18 sources, 54 measurements, 24 species; all data from captive birds). There was no significant difference among measurements from the rest (night; n = 37), active (day; n = 14), and unspecified (n = 3) phases of the daily cycle (P > 0.10), and we pooled these measurements for analysis. The resulting power function (aMassb) for all waterfowl (swans, geese, and ducks) had an exponent (b; slope of the regression) of 0.74, indistinguishable from that determined with commonly used general equations for nonpasserine birds (0.72-0.73). In contrast, the mass proportionality coefficient (b; y-intercept at mass = 1 kg) of 422 exceeded that obtained from the nonpasserine equations by 29%-37%. Analyses using independent contrasts correcting for phylogeny did not substantially alter the equation. Our results suggest the waterfowl equation provides a more appropriate estimate of RMR for bioenergetics analyses of waterfowl than do the general nonpasserine equations. When adjusted with a multiple to account for energy costs of free living, the waterfowl equation better estimates daily energy expenditure. Using this equation, we estimated that the extent of wetland habitat required to support wintering waterfowl populations could be 37%-50% higher than previously predicted using general nonpasserine equations. ?? The Cooper Ornithological Society 2006.

  15. Validity of bioelectrical impedance measurement in predicting fat-free mass of Chinese children and adolescents.

    PubMed

    Wang, Lin; Hui, Stanley Sai-chuen; Wong, Stephen Heung-sang

    2014-11-15

    The current study aimed to examine the validity of various published bioelectrical impedance analysis (BIA) equations in estimating FFM among Chinese children and adolescents and to develop BIA equations for the estimation of fat-free mass (FFM) appropriate for Chinese children and adolescents. A total of 255 healthy Chinese children and adolescents aged 9 to 19 years old (127 males and 128 females) from Tianjin, China, participated in the BIA measurement at 50 kHz between the hand and the foot. The criterion measure of FFM was also employed using dual-energy X-ray absorptiometry (DEXA). FFM estimated from 24 published BIA equations was cross-validated against the criterion measure from DEXA. Multiple linear regression was conducted to examine alternative BIA equation for the studied population. FFM estimated from the 24 published BIA equations yielded high correlations with the directly measured FFM from DEXA. However, none of the 24 equations was statistically equivalent with the DEXA-measured FFM. Using multiple linear regression and cross-validation against DEXA measurement, an alternative prediction equation was determined as follows: FFM (kg)=1.613+0.742×height (cm)2/impedance (Ω)+0.151×body weight (kg); R2=0.95; SEE=2.45 kg; CV=6.5, 93.7% of the residuals of all the participants fell within the 95% limits of agreement. BIA was highly correlated with FFM in Chinese children and adolescents. When the new developed BIA equations are applied, BIA can provide a practical and valid measurement of body composition in Chinese children and adolescents.

  16. Validity of Bioelectrical Impedance Measurement in Predicting Fat-Free Mass of Chinese Children and Adolescents

    PubMed Central

    Wang, Lin; Hui, Stanley Sai-chuen; Wong, Stephen Heung-sang

    2014-01-01

    Background The current study aimed to examine the validity of various published bioelectrical impedance analysis (BIA) equations in estimating FFM among Chinese children and adolescents and to develop BIA equations for the estimation of fat-free mass (FFM) appropriate for Chinese children and adolescents. Material/Methods A total of 255 healthy Chinese children and adolescents aged 9 to 19 years old (127 males and 128 females) from Tianjin, China, participated in the BIA measurement at 50 kHz between the hand and the foot. The criterion measure of FFM was also employed using dual-energy X-ray absorptiometry (DEXA). FFM estimated from 24 published BIA equations was cross-validated against the criterion measure from DEXA. Multiple linear regression was conducted to examine alternative BIA equation for the studied population. Results FFM estimated from the 24 published BIA equations yielded high correlations with the directly measured FFM from DEXA. However, none of the 24 equations was statistically equivalent with the DEXA-measured FFM. Using multiple linear regression and cross-validation against DEXA measurement, an alternative prediction equation was determined as follows: FFM (kg)=1.613+0.742×height (cm)2/impedance (Ω)+0.151×body weight (kg); R2=0.95; SEE=2.45kg; CV=6.5, 93.7% of the residuals of all the participants fell within the 95% limits of agreement. Conclusions BIA was highly correlated with FFM in Chinese children and adolescents. When the new developed BIA equations are applied, BIA can provide a practical and valid measurement of body composition in Chinese children and adolescents. PMID:25398209

  17. [Prediction equations for fat percentage from body circumferences in prepubescent children].

    PubMed

    Gómez Campos, Rossana; De Marco, Ademir; de Arruda, Miguel; Martínez Salazar, Cristian; Margarita Salazar, Ciria; Valgas, Carmen; Fuentes, José Damián; Cossio-Bolaños, Marco Antonio

    2013-01-01

    The analysis of body composition through direct and indirect methods allows the study of the various components of the human body, becoming the central hub for assessing nutritional status. The objective of the study was to develop equations for predicting body fat% from circumferential body arm, waist and calf and propose percentiles to diagnose the nutritional status of school children of both sexes aged 4-10 years. We selected intentionally (non-probabilistic) 515 children, 261 children and 254 being girls belonging to Program interaction and development of children and adolescents from the State University of Campinas (Sao Paulo, Brazil). Anthropometric variables were evaluated for weight, height, triceps and subscapular skinfolds and body circumferences of arm, waist and calf, and the% fat determined by the equation proposed by Boileau, Lohman and Slaughter (1985). Through regression method 2 were generated equations to predict the percentage of fat from the body circumferences, the equations 1 and 2 were validated by cross validation method. The equations showed high predictive values ranging with a R² = 64-69%. In cross validation between the criterion and the regression equation proposed no significant difference (p > 0.05) and there was a high level of agreement to a 95% CI. It is concluded that the proposals are validated and shown as an alternative to assess the percentage of fat in school children of both sexes aged 4-10 years in the region of Campinas, SP (Brazil). Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  18. Depoliticizing Minority Admissions through Predicted Graduation Equations. AIR Forum 1982 Paper.

    ERIC Educational Resources Information Center

    Sanford, Timothy R.

    The way that the University of North Carolina, Chapel Hill, has tried to depoliticize minority admissions through the use of predicted graduation equations that are race specific is examined. Multiple regression and discriminant analyses were used with nine independent variables (primarily academic) to predict graduation status of 1974 entering…

  19. Estimating total forest biomass in New York, 1993

    Treesearch

    Eric Wharton; Carol Alerich; David A. Drake; David A. Drake

    1997-01-01

    Presents methods for synthesizing information from existing biomass literature for estimating biomass over extensive forest areas with specific applications to New York. Tables of appropriate regression equations and the tree and shrub species to which these equations can be applied are presented well as biomass estimates at the county, geographic unit, and state level...

  20. Urban stormwater quality, event-mean concentrations, and estimates of stormwater pollutant loads, Dallas-Fort Worth area, Texas, 1992-93

    USGS Publications Warehouse

    Baldys, Stanley; Raines, T.H.; Mansfield, B.L.; Sandlin, J.T.

    1998-01-01

    Local regression equations were developed to estimate loads produced by individual storms. Mean annual loads were estimated by applying the storm-load equations for all runoff-producing storms in an average climatic year and summing individual storm loads to determine the annual load.

  1. Whole stand volume tables for quaking aspen in the Rocky Mountains

    Treesearch

    Wayne D. Shepperd; H. Todd Mowrer

    1984-01-01

    Linear regression equations were developed to predict stand volumes for aspen given average stand basal area and average stand height. Tables constructed from these equations allow easy field estimation of gross merchantable cubic and board foot Scribner Rules per acre, and cubic meters per hectare using simple prism cruise data.

  2. Developing design methods of concrete mix with microsilica additives for road construction

    NASA Astrophysics Data System (ADS)

    Dmitrienko, Vladimir; Shrivel, Igor; Kokunko, Irina; Pashkova, Olga

    2017-10-01

    Based on the laboratory test results, regression equations having standard cone and concrete strength, to determine the available amount of cement, water and microsilica were obtained. The joint solution of these equations allowed the researchers to develop the algorithm of designing heavy concrete compositions with microsilica additives for road construction.

  3. The microcomputer scientific software series 5: the BIOMASS user's guide.

    Treesearch

    George E. Host; Stephen C. Westin; William G. Cole; Kurt S. Pregitzer

    1989-01-01

    BIOMASS is an interactive microcomputer program that uses allometric regression equations to calculate aboveground biomass of common tree species of the Lake States. The equations are species-specific and most use both diameter and height as independent variables. The program accommodates fixed area and variable radius sample designs and produces both individual tree...

  4. A new method for reconstruction of solar irradiance

    NASA Astrophysics Data System (ADS)

    Privalsky, Victor

    2018-07-01

    The purpose of this research is to show how time series should be reconstructed using an example with the data on total solar irradiation (TSI) of the Earth and on sunspot numbers (SSN) since 1749. The traditional approach through regression equation(s) is designed for time-invariant vectors of random variables and is not applicable to time series, which present random functions of time. The autoregressive reconstruction (ARR) method suggested here requires fitting a multivariate stochastic difference equation to the target/proxy time series. The reconstruction is done through the scalar equation for the target time series with the white noise term excluded. The time series approach is shown to provide a better reconstruction of TSI than the correlation/regression method. A reconstruction criterion is introduced which allows one to define in advance the achievable level of success in the reconstruction. The conclusion is that time series, including the total solar irradiance, cannot be reconstructed properly if the data are not treated as sample records of random processes and analyzed in both time and frequency domains.

  5. Silanols, a New Class of Antimicrobial Agent

    DTIC Science & Technology

    2006-04-01

    carbinols against the four bacteria was log (1/MLC) = 0.670 log P + 0.0035 ∆ν -1.836, n = 282, r = 0.96, s = 0.22. This equation and a significantly...activity relationship of antimicrobial agents by means of equations [8] based on a method proposed by Hansch and Fujita in 1964 [1]. This multiple...correlation equations between their antimicrobial activities and structural properties, log P and H-bond acidity, were created by a multiple regression

  6. Converting positive and negative symptom scores between PANSS and SAPS/SANS.

    PubMed

    van Erp, Theo G M; Preda, Adrian; Nguyen, Dana; Faziola, Lawrence; Turner, Jessica; Bustillo, Juan; Belger, Aysenil; Lim, Kelvin O; McEwen, Sarah; Voyvodic, James; Mathalon, Daniel H; Ford, Judith; Potkin, Steven G; Fbirn

    2014-01-01

    The Scale for the Assessment of Positive Symptoms (SAPS), the Scale for the Assessment of Negative Symptoms (SANS), and the Positive and Negative Syndrome Scale for Schizophrenia (PANSS) are the most widely used schizophrenia symptom rating scales, but despite their co-existence for 25 years no easily usable between-scale conversion mechanism exists. The aim of this study was to provide equations for between-scale symptom rating conversions. Two-hundred-and-five schizophrenia patients [mean age±SD=39.5±11.6, 156 males] were assessed with the SANS, SAPS, and PANSS. Pearson's correlations between symptom scores from each of the scales were computed. Linear regression analyses, on data from 176 randomly selected patients, were performed to derive equations for converting ratings between the scales. Intraclass correlations, on data from the remaining 29 patients, not part of the regression analyses, were performed to determine rating conversion accuracy. Between-scale positive and negative symptom ratings were highly correlated. Intraclass correlations between the original positive and negative symptom ratings and those obtained via conversion of alternative ratings using the conversion equations were moderate to high (ICCs=0.65 to 0.91). Regression-based equations may be useful for conversion between schizophrenia symptom severity as measured by the SANS/SAPS and PANSS, though additional validation is warranted. This study's conversion equations, implemented at http:/converteasy.org, may aid in the comparison of medication efficacy studies, in meta- and mega-analyses examining symptoms as moderator variables, and in retrospective combination of symptom data in multi-center data sharing projects that need to pool symptom rating data when such data are obtained using different scales. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Model parameter uncertainty analysis for an annual field-scale P loss model

    NASA Astrophysics Data System (ADS)

    Bolster, Carl H.; Vadas, Peter A.; Boykin, Debbie

    2016-08-01

    Phosphorous (P) fate and transport models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. Because all models are simplifications of complex systems, there will exist an inherent amount of uncertainty associated with their predictions. It is therefore important that efforts be directed at identifying, quantifying, and communicating the different sources of model uncertainties. In this study, we conducted an uncertainty analysis with the Annual P Loss Estimator (APLE) model. Our analysis included calculating parameter uncertainties and confidence and prediction intervals for five internal regression equations in APLE. We also estimated uncertainties of the model input variables based on values reported in the literature. We then predicted P loss for a suite of fields under different management and climatic conditions while accounting for uncertainties in the model parameters and inputs and compared the relative contributions of these two sources of uncertainty to the overall uncertainty associated with predictions of P loss. Both the overall magnitude of the prediction uncertainties and the relative contributions of the two sources of uncertainty varied depending on management practices and field characteristics. This was due to differences in the number of model input variables and the uncertainties in the regression equations associated with each P loss pathway. Inspection of the uncertainties in the five regression equations brought attention to a previously unrecognized limitation with the equation used to partition surface-applied fertilizer P between leaching and runoff losses. As a result, an alternate equation was identified that provided similar predictions with much less uncertainty. Our results demonstrate how a thorough uncertainty and model residual analysis can be used to identify limitations with a model. Such insight can then be used to guide future data collection and model development and evaluation efforts.

  8. Stature in archeological samples from central Italy: methodological issues and diachronic changes.

    PubMed

    Giannecchini, Monica; Moggi-Cecchi, Jacopo

    2008-03-01

    Stature reconstructions from skeletal remains are usually obtained through regression equations based on the relationship between height and limb bone length. Different equations have been employed to reconstruct stature in skeletal samples, but this is the first study to provide a systematic analysis of the reliability of the different methods for Italian historical samples. Aims of this article are: 1) to analyze the reliability of different regression methods to estimate stature for populations living in Central Italy from the Iron Age to Medieval times; 2) to search for trends in stature over this time period by applying the most reliable regression method. Long bone measurements were collected from 1,021 individuals (560 males, 461 females), from 66 archeological sites for males and 54 for females. Three time periods were identified: Iron Age, Roman period, and Medieval period. To determine the most appropriate equation to reconstruct stature the Delta parameter of Gini (Memorie di metodologia statistica. Milano: Giuffre A. 1939), in which stature estimates derived from different limb bones are compared, was employed. The equations proposed by Pearson (Philos Trans R Soc London 192 (1899) 169-244) and Trotter and Gleser for Afro-Americans (Am J Phys Anthropol 10 (1952) 463-514; Am J Phys Anthropol 47 (1977) 355-356) provided the most consistent estimates when applied to our sample. We then used the equation by Pearson for further analyses. Results indicate a reduction in stature in the transition from the Iron Age to the Roman period, and a subsequent increase in the transition from the Roman period to the Medieval period. Changes of limb lengths over time were more pronounced in the distal than in the proximal elements in both limbs. 2007 Wiley-Liss, Inc.

  9. A Quasi-Global Approach to Improve Day-Time Satellite Surface Soil Moisture Anomalies through the Land Surface Temperature Input

    NASA Technical Reports Server (NTRS)

    Parinussa, Robert M.; de Jeu, Richard A. M.; van Der Schalie, Robin; Crow, Wade T.; Lei, Fangni; Holmes, Thomas R. H.

    2016-01-01

    Passive microwave observations from various spaceborne sensors have been linked to the soil moisture of the Earth's surface layer. A new generation of passive microwave sensors are dedicated to retrieving this variable and make observations in the single theoretically optimal L-band frequency (1-2 GHz). Previous generations of passive microwave sensors made observations in a range of higher frequencies, allowing for simultaneous estimation of additional variables required for solving the radiative transfer equation. One of these additional variables is land surface temperature, which plays a unique role in the radiative transfer equation and has an influence on the final quality of retrieved soil moisture anomalies. This study presents an optimization procedure for soil moisture retrievals through a quasi-global precipitation-based verification technique, the so-called Rvalue metric. Various land surface temperature scenarios were evaluated in which biases were added to an existing linear regression, specifically focusing on improving the skills to capture the temporal variability of soil moisture. We focus on the relative quality of the day-time (01:30 pm) observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), as these are theoretically most challenging due to the thermal equilibrium theory, and existing studies indicate that larger improvements are possible for these observations compared to their night-time (01:30 am) equivalent. Soil moisture data used in this study were retrieved through the Land Parameter Retrieval Model (LPRM), and in line with theory, both satellite paths show a unique and distinct degradation as a function of vegetation density. Both the ascending (01:30 pm) and descending (01:30 am) paths of the publicly available and widely used AMSR-E LPRM soil moisture products were used for benchmarking purposes. Several scenarios were employed in which the land surface temperature input for the radiative transfer was varied by imposing a bias on an existing regression. These scenarios were evaluated through the Rvalue technique, resulting in optimal bias values on top of this regression. In a next step, these optimal bias values were incorporated in order to re-calibrate the existing linear regression, resulting in a quasi-global uniform LST relation for day-time observations. In a final step, day-time soil moisture retrievals using the re-calibrated land surface temperature relation were again validated through the Rvalue technique. Results indicate an average increasing Rvalue of 16.5%, which indicates a better performance obtained through the re-calibration. This number was confirmed through an independent Triple Collocation verification over the same domain, demonstrating an average root mean square error reduction of 15.3%. Furthermore, a comparison against an extensive in situ database (679 stations) also indicates a generally higher quality for the re-calibrated dataset. Besides the improved day-time dataset, this study furthermore provides insights on the relative quality of soil moisture retrieved from AMSR-E's day- and night-time observations.

  10. [Metacarpophalangeal and carpal numeric indices to calculate bone age and predict adult size].

    PubMed

    Ebrí Torné, B; Ebrí Verde, I

    2012-04-01

    This work presents new numerical methods from the meta-carpal-phalangeal and carpal indexes, for calculating bone age. In addition, these new methods enable the adult height to be predicted using multiple regression equations. The longitudinal case series studied included 160 healthy children from Zaragoza, of both genders, aged between 6 months and 20 years, and studied annually, including the radiological study. For the statistical analysis the statistical package "Statistix", as well as the Excel program, was used. The new indexes are closely co-related to the chronological age, thus leading to predictive equations for the calculation of the bone age of children up to 20 years of age. In addition, it presents particular equations for up to 4 years of age, in order to optimise the diagnosis at these early ages. The resulting bones ages can be applied to numerical standard deviation tables, as well as to an equivalences chart, which directly gives us the ossification diagnosis. The predictive equations of adult height allow a reliable forecast of the future height of the studied child. These forecasts, analysed by the Student test did not show significant differences as regards the adult height that children of the case series finally achieved. The results can be obtained with a pocket calculator or through free software available for the reader. For the first time, and using a centre-developed and non-foreign methods, bones age standards and adult height predictive equations for the study of children, are presented. We invite the practitioner to use these meta-carpal-phalangeal and carpal methods in order to achieve the necessary experience to apply it to a healthy population and those with different disorders. Copyright © 2011 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  11. Upgrade Summer Severe Weather Tool

    NASA Technical Reports Server (NTRS)

    Watson, Leela

    2011-01-01

    The goal of this task was to upgrade to the existing severe weather database by adding observations from the 2010 warm season, update the verification dataset with results from the 2010 warm season, use statistical logistic regression analysis on the database and develop a new forecast tool. The AMU analyzed 7 stability parameters that showed the possibility of providing guidance in forecasting severe weather, calculated verification statistics for the Total Threat Score (TTS), and calculated warm season verification statistics for the 2010 season. The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The results indicated that the logistic regression equation did not show an increase in skill over the previously developed TTS. The equation showed less accuracy than TTS at predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical accuracy measures and skill scores over TTS.

  12. A Predictive Model for Microbial Counts on Beaches where Intertidal Sand is the Primary Source

    PubMed Central

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K.; Solo-Gabriele, Helena M.; Wang, John D.; Fleming, Lora E.

    2015-01-01

    Human health protection at recreational beaches requires accurate and timely information on microbiological conditions to issue advisories. The objective of this study was to develop a new numerical mass balance model for enterococci levels on nonpoint source beaches. The significant advantage of this model is its easy implementation, and it provides a detailed description of the cross-shore distribution of enterococci that is useful for beach management purposes. The performance of the balance model was evaluated by comparing predicted exceedances of a beach advisory threshold value to field data, and to a traditional regression model. Both the balance model and regression equation predicted approximately 70% the advisories correctly at the knee depth and over 90% at the waist depth. The balance model has the advantage over the regression equation in its ability to simulate spatiotemporal variations of microbial levels, and it is recommended for making more informed management decisions. PMID:25840869

  13. The relationship between concentration of clorophyll-a with skipjack (Katsuwonus pelamis, Linnaeus 1758) production at West Sumatera waters, Indonesia

    NASA Astrophysics Data System (ADS)

    Usman; Ersti Yulika Sari, T.; Syaifuddin; Audina

    2017-01-01

    The regression and correlation technic was uses to evaluated the contribution of chlorophyll-a concentration on variation of longline skipjack tuna production. An analysis was performed by placing Chlorophyll-a as predictor and Skipjack (Katsuwonus pelamis, Linnaeus 1758) production as dependent variable, using Chlorophyll-a derived from NPP VIIRS, and CPUE derived from longline fisherman log books for the year of 2013. Chlorophyll-a distribution which derived from NPP VIIRS between 0.13-0.26 mg/m3 whereas maximum CPUE as much as 0,1875 kg/trip in April. The regression equation obtained was CPUE = -1.12 + 11.5 Chl-a. Correlation between chlorophyll-a and CPUE have moderate relationship (r=0.51). From regression equation for those variables showed that the variation of chlorophyll-a had affected about 26% on variation of CPUE, only.

  14. Regression Analysis of Stage Variability for West-Central Florida Lakes

    USGS Publications Warehouse

    Sacks, Laura A.; Ellison, Donald L.; Swancar, Amy

    2008-01-01

    The variability in a lake's stage depends upon many factors, including surface-water flows, meteorological conditions, and hydrogeologic characteristics near the lake. An understanding of the factors controlling lake-stage variability for a population of lakes may be helpful to water managers who set regulatory levels for lakes. The goal of this study is to determine whether lake-stage variability can be predicted using multiple linear regression and readily available lake and basin characteristics defined for each lake. Regressions were evaluated for a recent 10-year period (1996-2005) and for a historical 10-year period (1954-63). Ground-water pumping is considered to have affected stage at many of the 98 lakes included in the recent period analysis, and not to have affected stage at the 20 lakes included in the historical period analysis. For the recent period, regression models had coefficients of determination (R2) values ranging from 0.60 to 0.74, and up to five explanatory variables. Standard errors ranged from 21 to 37 percent of the average stage variability. Net leakage was the most important explanatory variable in regressions describing the full range and low range in stage variability for the recent period. The most important explanatory variable in the model predicting the high range in stage variability was the height over median lake stage at which surface-water outflow would occur. Other explanatory variables in final regression models for the recent period included the range in annual rainfall for the period and several variables related to local and regional hydrogeology: (1) ground-water pumping within 1 mile of each lake, (2) the amount of ground-water inflow (by category), (3) the head gradient between the lake and the Upper Floridan aquifer, and (4) the thickness of the intermediate confining unit. Many of the variables in final regression models are related to hydrogeologic characteristics, underscoring the importance of ground-water exchange in controlling the stage of karst lakes in Florida. Regression equations were used to predict lake-stage variability for the recent period for 12 additional lakes, and the median difference between predicted and observed values ranged from 11 to 23 percent. Coefficients of determination for the historical period were considerably lower (maximum R2 of 0.28) than for the recent period. Reasons for these low R2 values are probably related to the small number of lakes (20) with stage data for an equivalent time period that were unaffected by ground-water pumping, the similarity of many of the lake types (large surface-water drainage lakes), and the greater uncertainty in defining historical basin characteristics. The lack of lake-stage data unaffected by ground-water pumping and the poor regression results obtained for that group of lakes limit the ability to predict natural lake-stage variability using this method in west-central Florida.

  15. A reference equation for maximal aerobic power for treadmill and cycle ergometer exercise testing: Analysis from the FRIEND registry.

    PubMed

    de Souza E Silva, Christina G; Kaminsky, Leonard A; Arena, Ross; Christle, Jeffrey W; Araújo, Claudio Gil S; Lima, Ricardo M; Ashley, Euan A; Myers, Jonathan

    2018-05-01

    Background Maximal oxygen uptake (VO 2 max) is a powerful predictor of health outcomes. Valid and portable reference values are integral to interpreting measured VO 2 max; however, available reference standards lack validation and are specific to exercise mode. This study was undertaken to develop and validate a single equation for normal standards for VO 2 max for the treadmill or cycle ergometer in men and women. Methods Healthy individuals ( N = 10,881; 67.8% men, 20-85 years) who performed a maximal cardiopulmonary exercise test on either a treadmill or a cycle ergometer were studied. Of these, 7617 and 3264 individuals were randomly selected for development and validation of the equation, respectively. A Brazilian sample (1619 individuals) constituted a second validation cohort. The prediction equation was determined using multiple regression analysis, and comparisons were made with the widely-used Wasserman and European equations. Results Age, sex, weight, height and exercise mode were significant predictors of VO 2 max. The regression equation was: VO 2 max (ml kg -1  min -1 ) = 45.2 - 0.35*Age - 10.9*Sex (male = 1; female = 2) - 0.15*Weight (pounds) + 0.68*Height (inches) - 0.46*Exercise Mode (treadmill = 1; bike = 2) ( R = 0.79, R 2  = 0.62, standard error of the estimate = 6.6 ml kg -1  min -1 ). Percentage predicted VO 2 max for the US and Brazilian validation cohorts were 102.8% and 95.8%, respectively. The new equation performed better than traditional equations, particularly among women and individuals ≥60 years old. Conclusion A combined equation was developed for normal standards for VO 2 max for different exercise modes derived from a US national registry. The equation provided a lower average error between measured and predicted VO 2 max than traditional equations even when applied to an independent cohort. Additional studies are needed to determine its portability.

  16. Response Surface Modeling Tolerance and Inference Error Risk Specifications: Proposed Industry Standards

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2012-01-01

    This paper reviews the derivation of an equation for scaling response surface modeling experiments. The equation represents the smallest number of data points required to fit a linear regression polynomial so as to achieve certain specified model adequacy criteria. Specific criteria are proposed which simplify an otherwise rather complex equation, generating a practical rule of thumb for the minimum volume of data required to adequately fit a polynomial with a specified number of terms in the model. This equation and the simplified rule of thumb it produces can be applied to minimize the cost of wind tunnel testing.

  17. Proposed standard-weight equations for brook trout

    USGS Publications Warehouse

    Hyatt, M.W.; Hubert, W.A.

    2001-01-01

    Weight and length data were obtained for 113 populations of brook trout Salvelinus fontinalis across the species' geographic range in North America to estimate a standard-weight (Ws) equation for this species. Estimation was done by applying the regression-line-percentile technique to fish of 120-620 mm total length (TL). The proposed metric-unit (g and mm) equation is log10Ws = -5.186 + 3.103 log10TL; the English-unit (lb and in) equivalent is log10Ws = -3.483 + 3.103 log10TL. No systematic length bias was evident in the relative-weight values calculated from these equations.

  18. Effect of Contact Damage on the Strength of Ceramic Materials.

    DTIC Science & Technology

    1982-10-01

    variables that are important to erosion, and a multivariate , linear regression analysis is used to fit the data to the dimensional analysis. The...of Equations 7 and 8 by a multivariable regression analysis (room tem- perature data) Exponent Regression Standard error Computed coefficient of...1980) 593. WEAVER, Proc. Brit. Ceram. Soc. 22 (1973) 125. 39. P. W. BRIDGMAN, "Dimensional Analaysis ", (Yale 18. R. W. RICE, S. W. FREIMAN and P. F

  19. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.; Dowell, E. H.

    1974-01-01

    The equations of motion are developed by two complementary methods, Hamilton's principle and the Newtonian method. The resulting equations are valid to second order for long, straight, slender, homogeneous, isotropic beams undergoing moderate displacements. The ordering scheme is based on the restriction that squares of the bending slopes, the torsion deformation, and the chord/radius and thickness/radius ratios are negligible with respect to unity. All remaining nonlinear terms are retained. The equations are valid for beams with mass centroid axis and area centroid (tension) axis offsets from the elastic axis, nonuniform mass and stiffness section properties, variable pretwist, and a small precone angle. The strain-displacement relations are developed from an exact transformation between the deformed and undeformed coordinate systems. These nonlinear relations form an important contribution to the final equations. Several nonlinear structural and inertial terms in the final equations are identified that can substantially influence the aeroelastic stability and response of hingeless helicopter rotor blades.

  20. Automation of workplace lifting hazard assessment for musculoskeletal injury prevention.

    PubMed

    Spector, June T; Lieblich, Max; Bao, Stephen; McQuade, Kevin; Hughes, Margaret

    2014-01-01

    Existing methods for practically evaluating musculoskeletal exposures such as posture and repetition in workplace settings have limitations. We aimed to automate the estimation of parameters in the revised United States National Institute for Occupational Safety and Health (NIOSH) lifting equation, a standard manual observational tool used to evaluate back injury risk related to lifting in workplace settings, using depth camera (Microsoft Kinect) and skeleton algorithm technology. A large dataset (approximately 22,000 frames, derived from six subjects) of simultaneous lifting and other motions recorded in a laboratory setting using the Kinect (Microsoft Corporation, Redmond, Washington, United States) and a standard optical motion capture system (Qualysis, Qualysis Motion Capture Systems, Qualysis AB, Sweden) was assembled. Error-correction regression models were developed to improve the accuracy of NIOSH lifting equation parameters estimated from the Kinect skeleton. Kinect-Qualysis errors were modelled using gradient boosted regression trees with a Huber loss function. Models were trained on data from all but one subject and tested on the excluded subject. Finally, models were tested on three lifting trials performed by subjects not involved in the generation of the model-building dataset. Error-correction appears to produce estimates for NIOSH lifting equation parameters that are more accurate than those derived from the Microsoft Kinect algorithm alone. Our error-correction models substantially decreased the variance of parameter errors. In general, the Kinect underestimated parameters, and modelling reduced this bias, particularly for more biased estimates. Use of the raw Kinect skeleton model tended to result in falsely high safe recommended weight limits of loads, whereas error-corrected models gave more conservative, protective estimates. Our results suggest that it may be possible to produce reasonable estimates of posture and temporal elements of tasks such as task frequency in an automated fashion, although these findings should be confirmed in a larger study. Further work is needed to incorporate force assessments and address workplace feasibility challenges. We anticipate that this approach could ultimately be used to perform large-scale musculoskeletal exposure assessment not only for research but also to provide real-time feedback to workers and employers during work method improvement activities and employee training.

  1. A rotor optimization using regression analysis

    NASA Technical Reports Server (NTRS)

    Giansante, N.

    1984-01-01

    The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.

  2. Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Duman, T. Y.; Can, T.; Gokceoglu, C.; Nefeslioglu, H. A.; Sonmez, H.

    2006-11-01

    As a result of industrialization, throughout the world, cities have been growing rapidly for the last century. One typical example of these growing cities is Istanbul, the population of which is over 10 million. Due to rapid urbanization, new areas suitable for settlement and engineering structures are necessary. The Cekmece area located west of the Istanbul metropolitan area is studied, because the landslide activity is extensive in this area. The purpose of this study is to develop a model that can be used to characterize landslide susceptibility in map form using logistic regression analysis of an extensive landslide database. A database of landslide activity was constructed using both aerial-photography and field studies. About 19.2% of the selected study area is covered by deep-seated landslides. The landslides that occur in the area are primarily located in sandstones with interbedded permeable and impermeable layers such as claystone, siltstone and mudstone. About 31.95% of the total landslide area is located at this unit. To apply logistic regression analyses, a data matrix including 37 variables was constructed. The variables used in the forwards stepwise analyses are different measures of slope, aspect, elevation, stream power index (SPI), plan curvature, profile curvature, geology, geomorphology and relative permeability of lithological units. A total of 25 variables were identified as exerting strong influence on landslide occurrence, and included by the logistic regression equation. Wald statistics values indicate that lithology, SPI and slope are more important than the other parameters in the equation. Beta coefficients of the 25 variables included the logistic regression equation provide a model for landslide susceptibility in the Cekmece area. This model is used to generate a landslide susceptibility map that correctly classified 83.8% of the landslide-prone areas.

  3. Age estimation using pulp/tooth area ratio in maxillary canines-A digital image analysis.

    PubMed

    Juneja, Manjushree; Devi, Yashoda B K; Rakesh, N; Juneja, Saurabh

    2014-09-01

    Determination of age of a subject is one of the most important aspects of medico-legal cases and anthropological research. Radiographs can be used to indirectly measure the rate of secondary dentine deposition which is depicted by reduction in the pulp area. In this study, 200 patients of Karnataka aged between 18-72 years were selected for the study. Panoramic radiographs were made and indirectly digitized. Radiographic images of maxillary canines (RIC) were processed using a computer-aided drafting program (ImageJ). The variables pulp/root length (p), pulp/tooth length (r), pulp/root width at enamel-cementum junction (ECJ) level (a), pulp/root width at mid-root level (c), pulp/root width at midpoint level between ECJ level and mid-root level (b) and pulp/tooth area ratio (AR) were recorded. All the morphological variables including gender were statistically analyzed to derive regression equation for estimation of age. It was observed that 2 variables 'AR' and 'b' contributed significantly to the fit and were included in the regression model, yielding the formula: Age = 87.305-480.455(AR)+48.108(b). Statistical analysis indicated that the regression equation with selected variables explained 96% of total variance with the median of the residuals of 0.1614 years and standard error of estimate of 3.0186 years. There is significant correlation between age and morphological variables 'AR' and 'b' and the derived population specific regression equation can be potentially used for estimation of chronological age of individuals of Karnataka origin.

  4. Confidence Intervals for Squared Semipartial Correlation Coefficients: The Effect of Nonnormality

    ERIC Educational Resources Information Center

    Algina, James; Keselman, H. J.; Penfield, Randall D.

    2010-01-01

    The increase in the squared multiple correlation coefficient ([delta]R[superscript 2]) associated with a variable in a regression equation is a commonly used measure of importance in regression analysis. Algina, Keselman, and Penfield found that intervals based on asymptotic principles were typically very inaccurate, even though the sample size…

  5. Minimizing bias in biomass allometry: Model selection and log transformation of data

    Treesearch

    Joseph Mascaro; undefined undefined; Flint Hughes; Amanda Uowolo; Stefan A. Schnitzer

    2011-01-01

    Nonlinear regression is increasingly used to develop allometric equations for forest biomass estimation (i.e., as opposed to the raditional approach of log-transformation followed by linear regression). Most statistical software packages, however, assume additive errors by default, violating a key assumption of allometric theory and possibly producing spurious models....

  6. The Use of Multiple Regression and Trend Analysis to Understand Enrollment Fluctuations. AIR Forum 1979 Paper.

    ERIC Educational Resources Information Center

    Campbell, S. Duke; Greenberg, Barry

    The development of a predictive equation capable of explaining a significant percentage of enrollment variability at Florida International University is described. A model utilizing trend analysis and a multiple regression approach to enrollment forecasting was adapted to investigate enrollment dynamics at the university. Four independent…

  7. A Comparison of Methods for Estimating Quadratic Effects in Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen

    2012-01-01

    Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…

  8. Double Cross-Validation in Multiple Regression: A Method of Estimating the Stability of Results.

    ERIC Educational Resources Information Center

    Rowell, R. Kevin

    In multiple regression analysis, where resulting predictive equation effectiveness is subject to shrinkage, it is especially important to evaluate result replicability. Double cross-validation is an empirical method by which an estimate of invariance or stability can be obtained from research data. A procedure for double cross-validation is…

  9. Dispersive approaches for three-particle final state interaction

    DOE PAGES

    Guo, Peng; Danilkin, Igor V.; Szczepaniak, Adam P.

    2015-10-30

    In this work, we presented different representations of Khuri-Treiman equation, the advantage and disadvantage of each representations are discussed. With a scattering amplitude toy model, we also studied the sensitivity of solution of KT equation to left-hand cut of toy model and to the different approximate methods. At last, we give a brief discussion of Watson's theorem when three particles in final states are involved.

  10. Unobtrusive measurement of indoor energy expenditure using an infrared sensor-based activity monitoring system.

    PubMed

    Hwang, Bosun; Han, Jonghee; Choi, Jong Min; Park, Kwang Suk

    2008-11-01

    The purpose of this study was to develop an unobtrusive energy expenditure (EE) measurement system using an infrared (IR) sensor-based activity monitoring system to measure indoor activities and to estimate individual quantitative EE. IR-sensor activation counts were measured with a Bluetooth-based monitoring system and the standard EE was calculated using an established regression equation. Ten male subjects participated in the experiment and three different EE measurement systems (gas analyzer, accelerometer, IR sensor) were used simultaneously in order to determine the regression equation and evaluate the performance. As a standard measurement, oxygen consumption was simultaneously measured by a portable metabolic system (Metamax 3X, Cortex, Germany). A single room experiment was performed to develop a regression model of the standard EE measurement from the proposed IR sensor-based measurement system. In addition, correlation and regression analyses were done to compare the performance of the IR system with that of the Actigraph system. We determined that our proposed IR-based EE measurement system shows a similar correlation to the Actigraph system with the standard measurement system.

  11. Predicting lake trophic state by relating Secchi-disk transparency measurements to Landsat-satellite imagery for Michigan inland lakes, 2003-05 and 2007-08

    USGS Publications Warehouse

    Fuller, L.M.; Jodoin, R.S.; Minnerick, R.J.

    2011-01-01

    Inland lakes are an important economic and environmental resource for Michigan. The U.S. Geological Survey and the Michigan Department of Natural Resources and Environment have been cooperatively monitoring the quality of selected lakes in Michigan through the Lake Water Quality Assessment program. Sampling for this program began in 2001; by 2010, 730 of Michigan’s 11,000 inland lakes are expected to have been sampled once. Volunteers coordinated by the Michigan Department of Natural Resources and Environment began sampling lakes in 1974 and continue to sample (in 2010) approximately 250 inland lakes each year through the Michigan Cooperative Lakes Monitoring Program. Despite these sampling efforts, it still is impossible to physically collect measurements for all Michigan inland lakes; however, Landsat-satellite imagery has been used successfully in Minnesota, Wisconsin, Michigan, and elsewhere to predict the trophic state of unsampled inland lakes greater than 20 acres by producing regression equations relating in-place Secchi-disk measurements to Landsat bands. This study tested three alternatives to methods previously used in Michigan to improve results for predicted statewide Trophic State Index (TSI) computed from Secchi-disk transparency (TSI (SDT)). The alternative methods were used on 14 Landsat-satellite scenes with statewide TSI (SDT) for two time periods (2003– 05 and 2007–08). Specifically, the methods were (1) satellitedata processing techniques to remove areas affected by clouds, cloud shadows, haze, shoreline, and dense vegetation for inland lakes greater than 20 acres in Michigan; (2) comparison of the previous method for producing a single open-water predicted TSI (SDT) value (which was based on an area of interest (AOI) and lake-average approach) to an alternative Gethist method for identifying open-water areas in inland lakes (which follows the initial satellite-data processing and targets the darkest pixels, representing the deepest water, before regression equations are created); and (3) checking to see whether the predicted TSI (SDT) values compared well between two regression equations, one previously used in Michigan and an alternative equation from the hydrologic literature. The combination of improved satellite-data processing techniques and the Gethist method to identify open-water areas in inland lakes during 2003–05 and 2007–08 provided a stronger relation and statistical significance between predicted TSI (SDT) and measured TSI than did the AOI lake-average method; differences in results for the two methods were significant at the 99-percent confidence level. With regard to the comparison of the regression equations, there were no statistically significant differences at the 95-percent confidence level between results from the two equations. The previously used equation, in combination with the Gethist method, yielded coefficient of determination (R2) values of 0.71 and 0.77 for the periods 2003–05 and 2007–08, respectively. The alternative equation, in combination with the Gethist method, yielded R2 values of 0.74 and 0.75 for 2003–05 and 2007–08, respectively. Predicted TSI (SDT) and measured TSI (SDT) values for lakes used in the regression equations compared well, with R2 values of 0.95 and 0.96 for predicted TSI (SDT) for 2003–05 and 2007–08, respectively. The R2 values for statewide predicted TSI (SDT) for all inland lakes with available open-water areas for 2003–05 and 2007–08 were 0.91 and 0.93, respectively. Although the two equations predicted similar trophic-state classes, the alternative equation is planned to be used for future prediction of TSI (SDT) values for Michigan inland lakes, to promote consistency in comparing predicted values between States and for potential use in trend analysis.

  12. Equations for estimating selected streamflow statistics in Rhode Island

    USGS Publications Warehouse

    Bent, Gardner C.; Steeves, Peter A.; Waite, Andrew M.

    2014-01-01

    The equations, which are based on data from streams with little to no flow alterations, will provide an estimate of the natural flows for a selected site. They will not estimate flows for altered sites with dams, surface-water withdrawals, groundwater withdrawals (pumping wells), diversions, and wastewater discharges. If the equations are used to estimate streamflow statistics for altered sites, the user should adjust the flow estimates for the alterations. The regression equations should be used only for ungaged sites with drainage areas between 0.52 and 294 square miles and stream densities between 0.94 and 3.49 miles per square mile; these are the ranges of the explanatory variables in the equations.

  13. Regression method for estimating long-term mean annual ground-water recharge rates from base flow in Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.

    2008-01-01

    A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370 hydrologic units in Pennsylvania predicted a range of ground-water recharge from about 6.0 to 22 inches per year. A map of the predicted recharge illustrates the general magnitude and variability of recharge throughout Pennsylvania.

  14. Asymptotic of the Solutions of Hyperbolic Equations with a Skew-Symmetric Perturbation

    NASA Astrophysics Data System (ADS)

    Gallagher, Isabelle

    1998-12-01

    Using methods introduced by S. Schochet inJ. Differential Equations114(1994), 476-512, we compute the first term of an asymptotic expansion of the solutions of hyperbolic equations perturbated by a skew-symmetric linear operator. That result is first applied to two systems describing the motion of geophysic fluids: the rotating Euler equations and the primitive system of the quasigeostrophic equations. Finally in the last part, we study the slightly compressible Euler equations by application of that same result.

  15. Site conditions related to erosion on logging roads

    Treesearch

    R. M. Rice; J. D. McCashion

    1985-01-01

    Synopsis - Data collected from 299 road segments in northwestern California were used to develop and test a procedure for estimating and managing road-related erosion. Site conditions and the design of each segment were described by 30 variables. Equations developed using 149 of the road segments were tested on the other 150. The best multiple regression equation...

  16. Ten-year risk-rating systems for California red fir and white fir: development and use

    Treesearch

    George T. Ferrell

    1989-01-01

    Logistic regression equations predicting the probability that a tree will die from natural causes--insects, diseases, intertree competition--within 10 years have been developed for California red fir (Abies magnifica) and white fir (A. concolor). The equations, like those with a 5-year prediction period already developed for these...

  17. 40 CFR 92.121 - Oxides of nitrogen analyzer calibration and check.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of full-scale concentration. It is permitted to use additional concentrations. (v) Perform a linear least-square regression on the data generated. Use an equation of the form y=mx where x is the actual chart deflection and y is the concentration. (vi) Use the equation z=y/m to find the linear chart...

  18. Prediction of Battery Life and Behavior from Analysis of Voltage Data

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1984-01-01

    A method for simulating charge and discharge characteristics of secondary batteries is discussed. The analysis utilizes a nonlinear regression technique where empirical data is computer fitted with a five coefficient nonlinear equation. The equations for charge and discharge voltage are identical except for a change of sign before the second and third terms.

  19. Using structural equation modeling to construct calibration equations relating PM2.5 mass concentration samplers to the federal reference method sampler

    NASA Astrophysics Data System (ADS)

    Bilonick, Richard A.; Connell, Daniel P.; Talbott, Evelyn O.; Rager, Judith R.; Xue, Tao

    2015-02-01

    The objective of this study was to remove systematic bias among fine particulate matter (PM2.5) mass concentration measurements made by different types of samplers used in the Pittsburgh Aerosol Research and Inhalation Epidemiology Study (PARIES). PARIES is a retrospective epidemiology study that aims to provide a comprehensive analysis of the associations between air quality and human health effects in the Pittsburgh, Pennsylvania, region from 1999 to 2008. Calibration was needed in order to minimize the amount of systematic error in PM2.5 exposure estimation as a result of including data from 97 different PM2.5 samplers at 47 monitoring sites. Ordinary regression often has been used for calibrating air quality measurements from pairs of measurement devices; however, this is only appropriate when one of the two devices (the "independent" variable) is free from random error, which is rarely the case. A group of methods known as "errors-in-variables" (e.g., Deming regression, reduced major axis regression) has been developed to handle calibration between two devices when both are subject to random error, but these methods require information on the relative sizes of the random errors for each device, which typically cannot be obtained from the observed data. When data from more than two devices (or repeats of the same device) are available, the additional information is not used to inform the calibration. A more general approach that often has been overlooked is the use of a measurement error structural equation model (SEM) that allows the simultaneous comparison of three or more devices (or repeats). The theoretical underpinnings of all of these approaches to calibration are described, and the pros and cons of each are discussed. In particular, it is shown that both ordinary regression (when used for calibration) and Deming regression are particular examples of SEMs but with substantial deficiencies. To illustrate the use of SEMs, the 7865 daily average PM2.5 mass concentration measurements made by seven collocated samplers at an urban monitoring site in Pittsburgh, Pennsylvania, were used. These samplers, which included three federal reference method (FRM) samplers, three speciation samplers, and a tapered element oscillating microbalance (TEOM), operated at various times during the 10-year PARIES study period. Because TEOM measurements are known to depend on temperature, the constructed SEM provided calibration equations relating the TEOM to the FRM and speciation samplers as a function of ambient temperature. It was shown that TEOM imprecision and TEOM bias (relative to the FRM) both decreased as temperature increased. It also was shown that the temperature dependency for bias was non-linear and followed a sigmoidal (logistic) pattern. The speciation samplers exhibited only small bias relative to the FRM samplers, although the FRM samplers were shown to be substantially more precise than both the TEOM and the speciation samplers. Comparison of the SEM results to pairwise simple linear regression results showed that the regression results can differ substantially from the correctly-derived calibration equations, especially if the less-precise device is used as the independent variable in the regression.

  20. Coupled rotor and fuselage equations of motion

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.

    1979-01-01

    The governing equations of motion of a helicopter rotor coupled to a rigid body fuselage are derived. A consistent formulation is used to derive nonlinear periodic coefficient equations of motion which are used to study coupled rotor/fuselage dynamics in forward flight. Rotor/fuselage coupling is documented and the importance of an ordering scheme in deriving nonlinear equations of motion is reviewed. The nature of the final equations and the use of multiblade coordinates are discussed.

  1. Regional Relations in Bankfull Channel Characteristics determined from flow measurements at selected stream-gaging stations in West Virginia, 1911-2002

    USGS Publications Warehouse

    Messinger, Terence; Wiley, Jeffrey B.

    2004-01-01

    Three bankfull channel characteristics?cross-sectional area, width, and depth?were significantly correlated with drainage area in regression equations developed for two regions in West Virginia. Channel characteristics were determined from analysis of flow measurements made at 74 U.S. Geological Survey stream-gaging stations at flows between 0.5 and 5.0 times bankfull flow between 1911 and 2002. Graphical and regression analysis were used to delineate an 'Eastern Region' and a 'Western Region,' which were separated by the boundary between the Appalachian Plateaus and Valley and Ridge Physiographic Provinces. Streams that drained parts of both provinces had channel characteristics typical of the Eastern Region, and were grouped with it. Standard error for the six regression equations, three for each region, ranged between 8.7 and 16 percent. Cross-sectional area and depth were greater relative to drainage area for the Western Region than they were for the Eastern Region. Regression equations were defined for streams draining between 46.5 and 1,619 square miles for the Eastern Region, and between 2.78 and 1,354 square miles for the Western Region. Stream-gaging stations with two or more cross sections where flow had been measured at flows between 0.5 and 5.0 times the 1.5-year flow showed poor replication of channel characteristics compared to the 95-percent confidence intervals of the regression, suggesting that within-reach variability for the stream-gaging stations may be substantial. A disproportionate number of the selected stream-gaging stations were on large (drainage area greater than 100 square miles) streams in the central highlands of West Virginia, and only one stream-gaging station that met data-quality criteria was available to represent the region within about 50 miles of the Ohio River north of Parkersburg, West Virginia. Many of the cross sections were at bridges, which can change channel shape. Although the data discussed in this report may not be representative of channelcharacteristics on many or most streams, the regional equations in this report provide useful information for field identification of bankfull indicators.

  2. Statistical distribution sampling

    NASA Technical Reports Server (NTRS)

    Johnson, E. S.

    1975-01-01

    Determining the distribution of statistics by sampling was investigated. Characteristic functions, the quadratic regression problem, and the differential equations for the characteristic functions are analyzed.

  3. [Predicting the probability of development and progression of primary open angle glaucoma by regression modeling].

    PubMed

    Likhvantseva, V G; Sokolov, V A; Levanova, O N; Kovelenova, I V

    2018-01-01

    Prediction of the clinical course of primary open-angle glaucoma (POAG) is one of the main directions in solving the problem of vision loss prevention and stabilization of the pathological process. Simple statistical methods of correlation analysis show the extent of each risk factor's impact, but do not indicate the total impact of these factors in personalized combinations. The relationships between the risk factors is subject to correlation and regression analysis. The regression equation represents the dependence of the mathematical expectation of the resulting sign on the combination of factor signs. To develop a technique for predicting the probability of development and progression of primary open-angle glaucoma based on a personalized combination of risk factors by linear multivariate regression analysis. The study included 66 patients (23 female and 43 male; 132 eyes) with newly diagnosed primary open-angle glaucoma. The control group consisted of 14 patients (8 male and 6 female). Standard ophthalmic examination was supplemented with biochemical study of lacrimal fluid. Concentration of matrix metalloproteinase MMP-2 and MMP-9 in tear fluid in both eyes was determined using 'sandwich' enzyme-linked immunosorbent assay (ELISA) method. The study resulted in the development of regression equations and step-by-step multivariate logistic models that can help calculate the risk of development and progression of POAG. Those models are based on expert evaluation of clinical and instrumental indicators of hydrodynamic disturbances (coefficient of outflow ease - C, volume of intraocular fluid secretion - F, fluctuation of intraocular pressure), as well as personalized morphometric parameters of the retina (central retinal thickness in the macular area) and concentration of MMP-2 and MMP-9 in the tear film. The newly developed regression equations are highly informative and can be a reliable tool for studying of the influence vector and assessment of pathogenic potential of the independent risk factors in specific personalized combinations.

  4. Predicting the demand of physician workforce: an international model based on "crowd behaviors".

    PubMed

    Tsai, Tsuen-Chiuan; Eliasziw, Misha; Chen, Der-Fang

    2012-03-26

    Appropriateness of physician workforce greatly influences the quality of healthcare. When facing the crisis of physician shortages, the correction of manpower always takes an extended time period, and both the public and health personnel suffer. To calculate an appropriate number of Physician Density (PD) for a specific country, this study was designed to create a PD prediction model, based on health-related data from many countries. Twelve factors that could possibly impact physicians' demand were chosen, and data of these factors from 130 countries (by reviewing 195) were extracted. Multiple stepwise-linear regression was used to derive the PD prediction model, and a split-sample cross-validation procedure was performed to evaluate the generalizability of the results. Using data from 130 countries, with the consideration of the correlation between variables, and preventing multi-collinearity, seven out of the 12 predictor variables were selected for entry into the stepwise regression procedure. The final model was: PD = (5.014 - 0.128 × proportion under age 15 years + 0.034 × life expectancy)2, with R2 of 80.4%. Using the prediction equation, 70 countries had PDs with "negative discrepancy", while 58 had PDs with "positive discrepancy". This study provided a regression-based PD model to calculate a "norm" number of PD for a specific country. A large PD discrepancy in a country indicates the needs to examine physician's workloads and their well-being, the effectiveness/efficiency of medical care, the promotion of population health and the team resource management.

  5. Leveraging AMI data for distribution system model calibration and situational awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less

  6. Leveraging AMI data for distribution system model calibration and situational awareness

    DOE PAGES

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; ...

    2015-01-15

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less

  7. Global distribution of urban parameters derived from high-resolution global datasets for weather modelling

    NASA Astrophysics Data System (ADS)

    Kawano, N.; Varquez, A. C. G.; Dong, Y.; Kanda, M.

    2016-12-01

    Numerical model such as Weather Research and Forecasting model coupled with single-layer Urban Canopy Model (WRF-UCM) is one of the powerful tools to investigate urban heat island. Urban parameters such as average building height (Have), plain area index (λp) and frontal area index (λf), are necessary inputs for the model. In general, these parameters are uniformly assumed in WRF-UCM but this leads to unrealistic urban representation. Distributed urban parameters can also be incorporated into WRF-UCM to consider a detail urban effect. The problem is that distributed building information is not readily available for most megacities especially in developing countries. Furthermore, acquiring real building parameters often require huge amount of time and money. In this study, we investigated the potential of using globally available satellite-captured datasets for the estimation of the parameters, Have, λp, and λf. Global datasets comprised of high spatial resolution population dataset (LandScan by Oak Ridge National Laboratory), nighttime lights (NOAA), and vegetation fraction (NASA). True samples of Have, λp, and λf were acquired from actual building footprints from satellite images and 3D building database of Tokyo, New York, Paris, Melbourne, Istanbul, Jakarta and so on. Regression equations were then derived from the block-averaging of spatial pairs of real parameters and global datasets. Results show that two regression curves to estimate Have and λf from the combination of population and nightlight are necessary depending on the city's level of development. An index which can be used to decide which equation to use for a city is the Gross Domestic Product (GDP). On the other hand, λphas less dependence on GDP but indicated a negative relationship to vegetation fraction. Finally, a simplified but precise approximation of urban parameters through readily-available, high-resolution global datasets and our derived regressions can be utilized to estimate a global distribution of urban parameters for later incorporation into a weather model, thus allowing us to acquire a global understanding of urban climate (Global Urban Climatology). Acknowledgment: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.

  8. Determination of Watershed Lag Equation for Philippine Hydrology

    NASA Astrophysics Data System (ADS)

    Cipriano, F. R.; Lagmay, A. M. F. A.; Uichanco, C.; Mendoza, J.; Sabio, G.; Punay, K. N.; Oquindo, M. R.; Horritt, M.

    2014-12-01

    Widespread flooding is a major problem in the Philippines. The country experiences heavy amount of rainfall throughout the year and several areas are prone to flood hazards because of its unique topography. Human casualties and destruction of infrastructure are some of the damages caused by flooding and the country's government has undertaken various efforts to mitigate these hazards. One of the solutions was to create flood hazard maps of different floodplains and use them to predict the possible catastrophic results of different rain scenarios. To produce these maps, different types of data were needed and part of that is calculating hydrological components to come up with an accurate output. This paper presents how an important parameter, the time-to-peak of the watershed (Tp) was calculated. Time-to-peak is defined as the time at which the largest discharge of the watershed occurs. This is computed by using a lag time equation that was developed specifically for the Philippine setting. The equation involves three measurable parameters, namely, watershed length (L), maximum potential retention (S), and watershed slope (Y). This approach is based on a similar method developed by CH2M Hill and Horritt for Taiwan, which has a similar set of meteorological and hydrological parameters with the Philippines. Data from fourteen water level sensors covering 67 storms from all the regions in the country were used to estimate the time-to-peak. These sensors were chosen by using a screening process that considers the distance of the sensors from the sea, the availability of recorded data, and the catchment size. Values of Tp from the different sensors were generated from the general lag time equation based on the Natural Resource Conservation Management handbook by the US Department of Agriculture. The calculated Tp values were plotted against the values obtained from the equation L0.8(S+1)0.7/Y0.5. Regression analysis was used to obtain the final equation that would be used to calculate the time-to-peak specifically for rivers in the Philippine setting. The calculated values could then be used as a parameter for modeling different flood scenarios in the country.

  9. Prediction equations of forced oscillation technique: the insidious role of collinearity.

    PubMed

    Narchi, Hassib; AlBlooshi, Afaf

    2018-03-27

    Many studies have reported reference data for forced oscillation technique (FOT) in healthy children. The prediction equation of FOT parameters were derived from a multivariable regression model examining the effect of age, gender, weight and height on each parameter. As many of these variables are likely to be correlated, collinearity might have affected the accuracy of the model, potentially resulting in misleading, erroneous or difficult to interpret conclusions.The aim of this work was: To review all FOT publications in children since 2005 to analyze whether collinearity was considered in the construction of the published prediction equations. Then to compare these prediction equations with our own study. And to analyse, in our study, how collinearity between the explanatory variables might affect the predicted equations if it was not considered in the model. The results showed that none of the ten reviewed studies had stated whether collinearity was checked for. Half of the reports had also included in their equations variables which are physiologically correlated, such as age, weight and height. The predicted resistance varied by up to 28% amongst these studies. And in our study, multicollinearity was identified between the explanatory variables initially considered for the regression model (age, weight and height). Ignoring it would have resulted in inaccuracies in the coefficients of the equation, their signs (positive or negative), their 95% confidence intervals, their significance level and the model goodness of fit. In Conclusion with inaccurately constructed and improperly reported models, understanding the results and reproducing the models for future research might be compromised.

  10. Are Predictive Equations for Estimating Resting Energy Expenditure Accurate in Asian Indian Male Weightlifters?

    PubMed

    Joseph, Mini; Gupta, Riddhi Das; Prema, L; Inbakumari, Mercy; Thomas, Nihal

    2017-01-01

    The accuracy of existing predictive equations to determine the resting energy expenditure (REE) of professional weightlifters remains scarcely studied. Our study aimed at assessing the REE of male Asian Indian weightlifters with indirect calorimetry and to compare the measured REE (mREE) with published equations. A new equation using potential anthropometric variables to predict REE was also evaluated. REE was measured on 30 male professional weightlifters aged between 17 and 28 years using indirect calorimetry and compared with the eight formulas predicted by Harris-Benedicts, Mifflin-St. Jeor, FAO/WHO/UNU, ICMR, Cunninghams, Owen, Katch-McArdle, and Nelson. Pearson correlation coefficient, intraclass correlation coefficient, and multiple linear regression analysis were carried out to study the agreement between the different methods, association with anthropometric variables, and to formulate a new prediction equation for this population. Pearson correlation coefficients between mREE and the anthropometric variables showed positive significance with suprailiac skinfold thickness, lean body mass (LBM), waist circumference, hip circumference, bone mineral mass, and body mass. All eight predictive equations underestimated the REE of the weightlifters when compared with the mREE. The highest mean difference was 636 kcal/day (Owen, 1986) and the lowest difference was 375 kcal/day (Cunninghams, 1980). Multiple linear regression done stepwise showed that LBM was the only significant determinant of REE in this group of sportspersons. A new equation using LBM as the independent variable for calculating REE was computed. REE for weightlifters = -164.065 + 0.039 (LBM) (confidence interval -1122.984, 794.854]. This new equation reduced the mean difference with mREE by 2.36 + 369.15 kcal/day (standard error = 67.40). The significant finding of this study was that all the prediction equations underestimated the REE. The LBM was the sole determinant of REE in this population. In the absence of indirect calorimetry, the REE equation developed by us using LBM is a better predictor for calculating REE of professional male weightlifters of this region.

  11. Development of 1RM Prediction Equations for Bench Press in Moderately Trained Men.

    PubMed

    Macht, Jordan W; Abel, Mark G; Mullineaux, David R; Yates, James W

    2016-10-01

    Macht, JW, Abel, MG, Mullineaux, DR, and Yates, JW. Development of 1RM prediction equations for bench press in moderately trained men. J Strength Cond Res 30(10): 2901-2906, 2016-There are a variety of established 1 repetition maximum (1RM) prediction equations, however, very few prediction equations use anthropometric characteristics exclusively or in part, to estimate 1RM strength. Therefore, the purpose of this study was to develop an original 1RM prediction equation for bench press using anthropometric and performance characteristics in moderately trained male subjects. Sixty male subjects (21.2 ± 2.4 years) completed a 1RM bench press and were randomly assigned a load to complete as many repetitions as possible. In addition, body composition, upper-body anthropometric characteristics, and handgrip strength were assessed. Regression analysis was used to develop a performance-based 1RM prediction equation: 1RM = 1.20 repetition weight + 2.19 repetitions to fatigue - 0.56 biacromial width (cm) + 9.6 (R = 0.99, standard error of estimate [SEE] = 3.5 kg). Regression analysis to develop a nonperformance-based 1RM prediction equation yielded: 1RM (kg) = 0.997 cross-sectional area (CSA) (cm) + 0.401 chest circumference (cm) - 0.385%fat - 0.185 arm length (cm) + 36.7 (R = 0.81, SEE = 13.0 kg). The performance prediction equations developed in this study had high validity coefficients, minimal mean bias, and small limits of agreement. The anthropometric equations had moderately high validity coefficient but larger limits of agreement. The practical applications of this study indicate that the inclusion of anthropometric characteristics and performance variables produce a valid prediction equation for 1RM strength. In addition, the CSA of the arm uses a simple nonperformance method of estimating the lifter's 1RM. This information may be used to predict the starting load for a lifter performing a 1RM prediction protocol or a 1RM testing protocol.

  12. Vegetation Monitoring with Gaussian Processes and Latent Force Models

    NASA Astrophysics Data System (ADS)

    Camps-Valls, Gustau; Svendsen, Daniel; Martino, Luca; Campos, Manuel; Luengo, David

    2017-04-01

    Monitoring vegetation by biophysical parameter retrieval from Earth observation data is a challenging problem, where machine learning is currently a key player. Neural networks, kernel methods, and Gaussian Process (GP) regression have excelled in parameter retrieval tasks at both local and global scales. GP regression is based on solid Bayesian statistics, yield efficient and accurate parameter estimates, and provides interesting advantages over competing machine learning approaches such as confidence intervals. However, GP models are hampered by lack of interpretability, that prevented the widespread adoption by a larger community. In this presentation we will summarize some of our latest developments to address this issue. We will review the main characteristics of GPs and their advantages in vegetation monitoring standard applications. Then, three advanced GP models will be introduced. First, we will derive sensitivity maps for the GP predictive function that allows us to obtain feature ranking from the model and to assess the influence of examples in the solution. Second, we will introduce a Joint GP (JGP) model that combines in situ measurements and simulated radiative transfer data in a single GP model. The JGP regression provides more sensible confidence intervals for the predictions, respects the physics of the underlying processes, and allows for transferability across time and space. Finally, a latent force model (LFM) for GP modeling that encodes ordinary differential equations to blend data-driven modeling and physical models of the system is presented. The LFM performs multi-output regression, adapts to the signal characteristics, is able to cope with missing data in the time series, and provides explicit latent functions that allow system analysis and evaluation. Empirical evidence of the performance of these models will be presented through illustrative examples.

  13. Gender, space, and the location changes of jobs and people: a spatial simultaneous equations analysis.

    PubMed

    Hoogstra, Gerke J

    2012-01-01

    This article summarizes a spatial econometric analysis of local population and employment growth in the Netherlands, with specific reference to impacts of gender and space. The simultaneous equations model used distinguishes between population- and gender-specific employment groups, and includes autoregressive and cross-regressive spatial lags to detect relations both within and among these groups. Spatial weights matrices reflecting different bands of travel times are used to calculate the spatial lags and to gauge the spatial nature of these relations. The empirical results show that although population–employment interaction is more localized for women's employment, no gender difference exists in the direction of interaction. Employment growth for both men and women is more influenced by population growth than vice versa. The interaction within employment groups is even more important than population growth. Women's, and especially men's, local employment growth mostly benefits from the same employment growth in neighboring locations. Finally, interaction between these groups is practically absent, although men's employment growth may have a negative impact on women's employment growth within small geographic areas. In summary, the results confirm the crucial roles of gender and space, and offer important insights into possible relations within and among subgroups of jobs and people.

  14. Wife abuse prevalence and predisposing factors in women.

    PubMed

    Seif Rabiei, Ma; Nikooseresht, M

    2009-12-28

    Spouse abuse so called intimate partner violence (IPV) is a common problem in the world. This survey was conducted to identify IPV prevalence and related factors in district health centers in Hamadan, western Iran, in hope that, by identifying risk factors, preventive guidelines could be understood. In this descriptive analytic cross sectional study, 600 married women from six district health centers in Hamadan, western Iran were randomly enrolled in 2007. For gathering information we used a questionnaire which included demographic and specific questions about IPV, based on WHO guidelines. For increasing validity of results, questionnaires were nameless and participants were ensured about concealment of their identities. Finally data analyzed by SPSS software (version15). Wife abuse was identified in 34.2% of participants. For understanding IPV risk factors, we used logistic regression method and 27 variables were enrolled in the equation and finally 4 variables were statistically significant to wife abuse (P< 0.05). These variables were: weak religious believe of men, history of wife abuse in participant's mothers, men's criminal history and finally men's alcoholic abuse Wife abuse was prevalent in this survey, so that 1 from 3 women was abused by their husbands. Other similar investigations in different countries also verify this result. Because of so many women who disclaim violence due to cultural texture and religious believe, it is believed that, intimate partner violence is more than those being reported.

  15. Regarding to the Variance Analysis of Regression Equation of the Surface Roughness obtained by End Milling process of 7136 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    POP, A. B.; ȚÎȚU, M. A.

    2016-11-01

    In the metal cutting process, surface quality is intrinsically related to the cutting parameters and to the cutting tool geometry. At the same time, metal cutting processes are closely related to the machining costs. The purpose of this paper is to reduce manufacturing costs and processing time. A study was made, based on the mathematical modelling of the average of the absolute value deviation (Ra) resulting from the end milling process on 7136 aluminium alloy, depending on cutting process parameters. The novel element brought by this paper is the 7136 aluminium alloy type, chosen to conduct the experiments, which is a material developed and patented by Universal Alloy Corporation. This aluminium alloy is used in the aircraft industry to make parts from extruded profiles, and it has not been studied for the proposed research direction. Based on this research, a mathematical model of surface roughness Ra was established according to the cutting parameters studied in a set experimental field. A regression analysis was performed, which identified the quantitative relationships between cutting parameters and the surface roughness. Using the variance analysis ANOVA, the degree of confidence for the achieved results by the regression equation was determined, and the suitability of this equation at every point of the experimental field.

  16. Multiple regression equations modelling of groundwater of Ajmer-Pushkar railway line region, Rajasthan (India).

    PubMed

    Mathur, Praveen; Sharma, Sarita; Soni, Bhupendra

    2010-01-01

    In the present work, an attempt is made to formulate multiple regression equations using all possible regressions method for groundwater quality assessment of Ajmer-Pushkar railway line region in pre- and post-monsoon seasons. Correlation studies revealed the existence of linear relationships (r 0.7) for electrical conductivity (EC), total hardness (TH) and total dissolved solids (TDS) with other water quality parameters. The highest correlation was found between EC and TDS (r = 0.973). EC showed highly significant positive correlation with Na, K, Cl, TDS and total solids (TS). TH showed highest correlation with Ca and Mg. TDS showed significant correlation with Na, K, SO4, PO4 and Cl. The study indicated that most of the contamination present was water soluble or ionic in nature. Mg was present as MgCl2; K mainly as KCl and K2SO4, and Na was present as the salts of Cl, SO4 and PO4. On the other hand, F and NO3 showed no significant correlations. The r2 values and F values (at 95% confidence limit, alpha = 0.05) for the modelled equations indicated high degree of linearity among independent and dependent variables. Also the error % between calculated and experimental values was contained within +/- 15% limit.

  17. Effects of alloy composition on cyclic flame hot-corrosion attack of cast nickel-base superalloys at 900 deg C

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.

    1984-01-01

    The effects of Cr, Al, Ti, Mo, Ta, Nb, and W content on the hot corrosion of nickel base alloys were investigated. The alloys were tested in a Mach 0.3 flame with 0.5 ppmw sodium at a temperature of 900 C. One nondestructive and three destructive tests were conducted. The best corrosion resistance was achieved when the Cr content was 12 wt %. However, some lower-Cr-content alloys ( 10 wt%) exhibited reasonable resistance provided that the Al content alloys ( 10 wt %) exhibited reasonable resistance provided that the Al content was 2.5 wt % and the Ti content was Aa wt %. The effect of W, Ta, Mo, and Nb contents on the hot-corrosion resistance varied depending on the Al and Ti contents. Several commercial alloy compositions were also tested and the corrosion attack was measured. Predicted attack was calculated for these alloys from derived regression equations and was in reasonable agreement with that experimentally measured. The regression equations were derived from measurements made on alloys in a one-quarter replicate of a 2(7) statistical design alloy composition experiment. These regression equations represent a simple linear model and are only a very preliminary analysis of the data needed to provide insights into the experimental method.

  18. New method to generate the solutions of the reduced Einstein equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou Bo-Yu; Li Wei

    In this paper, we present a new transformation in the solution space of the Ernst equation and investigate the relationship between the solutions of the Ernst equation and our transformation. We show that the Ernst equation is invariant under such a transformation; i.e., our transformation can be used to generate the new solutions of the Ernst equation from the old ones. Finally, we discuss the relationship between the Virasoro algebra and this transformation.

  19. Experimental paleotemperature equation for planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Erez, Jonathan; Luz, Boaz

    1983-06-01

    Small live individuals of Globigerinoides sacculifer which were cultured in the laboratory reached maturity and produced garnets. Fifty to ninety percent of their skeleton weight was deposited under controlled water temperature (14° to 30°C) and water isotopic composition, and a correction was made to account for the isotopic composition of the original skeleton using control groups. Comparison of. the actual growth temperatures with the calculated temperature based on paleotemperature equations for inorganic CaCO 3 indicate that the foraminifera precipitate their CaCO 3 in isotopic equilibrium. Comparison with equations developed for biogenic calcite give a similarly good fit. Linear regression with CRAIG'S (1965) equation yields: t = -0.07 + 1.01 t̂ (r= 0.95) where t is the actual growth temperature and t̂ Is the calculated paleotemperature. The intercept and the slope of this linear equation show that the familiar paleotemperature equation developed originally for mollusca carbonate, is equally applicable for the planktonic foraminifer G. sacculifer. Second order regression of the culture temperature and the delta difference ( δ18Oc - δ18Ow) yield a correlation coefficient of r = 0.95: t̂ = 17.0 - 4.52(δ 18Oc - δ 18Ow) + 0.03(δ 18Oc - δ 18Ow) 2t̂, δ 18Oc and δ18Ow are the estimated temperature, the isotopic composition of the shell carbonate and the sea water respectively. A possible cause for nonequilibnum isotopic compositions reported earlier for living planktonic foraminifera is the improper combustion of the organic matter.

  20. Weighted linear regression using D2H and D2 as the independent variables

    Treesearch

    Hans T. Schreuder; Michael S. Williams

    1998-01-01

    Several error structures for weighted regression equations used for predicting volume were examined for 2 large data sets of felled and standing loblolly pine trees (Pinus taeda L.). The generally accepted model with variance of error proportional to the value of the covariate squared ( D2H = diameter squared times height or D...

  1. Fiber length - fiber strength interrelationship for slash pine and its effect on pulp-sheet properties

    Treesearch

    F.F. Wangaard; George E. Woodson

    1972-01-01

    Based on a model developed for hardwood fiber strength-pulp property relationships, multiple-regression equations involving fiber strength, fiber length, and sheet density were determined to predict the properties of kraft pulps of slash pine (Pinus elliottii). Regressions for breaking length and burst factor accounted for 88 and 90 percent,...

  2. Fiber length strength interrelationship for slash pine and its effect on pulp-sheet properties

    Treesearch

    F. G. Wangaard; G. E. Woodson

    1973-01-01

    Based on a model developed for hardwood fiber strength-pulp property relationships, multiple-regression equations involving fiber strength, fiber length, and sheet density were determined to predict the properties of kraft pulps of slash pine (Pinus elliottii). Regressions for breaking length and burst factor accounted for 88 and 90 percent,...

  3. Comparing Regression Coefficients between Nested Linear Models for Clustered Data with Generalized Estimating Equations

    ERIC Educational Resources Information Center

    Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer

    2013-01-01

    Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…

  4. Montana StreamStats—A method for retrieving basin and streamflow characteristics in Montana: Chapter A in Montana StreamStats

    USGS Publications Warehouse

    McCarthy, Peter M.; Dutton, DeAnn M.; Sando, Steven K.; Sando, Roy

    2016-04-05

    The U.S. Geological Survey (USGS) provides streamflow characteristics and other related information needed by water-resource managers to protect people and property from floods, plan and manage water-resource activities, and protect water quality. Streamflow characteristics provided by the USGS, such as peak-flow and low-flow frequencies for streamflow-gaging stations, are frequently used by engineers, flood forecasters, land managers, biologists, and others to guide their everyday decisions. In addition to providing streamflow characteristics at streamflow-gaging stations, the USGS also develops regional regression equations and drainage area-adjustment methods for estimating streamflow characteristics at locations on ungaged streams. Regional regression equations can be complex and often require users to determine several basin characteristics, which are physical and climatic characteristics of the stream and its drainage basin. Obtaining these basin characteristics for streamflow-gaging stations and ungaged sites traditionally has been time consuming and subjective, and led to inconsistent results.StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. StreamStats allows users to easily obtain streamflow and basin characteristics for USGS streamflow-gaging stations and user-selected locations on ungaged streams. The USGS, in cooperation with Montana Department of Transportation, Montana Department of Environmental Quality, and Montana Department of Natural Resources and Conservation, completed a study to develop a StreamStats application for Montana, compute streamflow characteristics at streamflow-gaging stations, and develop regional regression equations to estimate streamflow characteristics at ungaged sites. Chapter A of this Scientific Investigations Report describes the Montana StreamStats application and the datasets, streamflow-gaging stations, streamflow characteristics, and regression equations (as described fully in Chapters B through G of this report) that are used for development of the StreamStats application for Montana.

  5. Factor Structure of the Primary Scales of the Inventory of Personality Organization in a Nonclinical Sample Using Exploratory Structural Equation Modeling

    ERIC Educational Resources Information Center

    Ellison, William D.; Levy, Kenneth N.

    2012-01-01

    Using exploratory structural equation modeling and multiple regression, we examined the factor structure and criterion relations of the primary scales of the Inventory of Personality Organization (IPO; Kernberg & Clarkin, 1995) in a nonclinical sample. Participants (N = 1,260) completed the IPO and measures of self-concept clarity, defenses,…

  6. The Influence of Cognitive Reasoning Level, Cognitive Restructuring Ability, Disembedding Ability, Working Memory Capacity, and Prior Knowledge On Students' Performance On Balancing Equations by Inspection.

    ERIC Educational Resources Information Center

    Staver, John R.; Jacks, Tom

    1988-01-01

    Investigates the influence of five cognitive variables on high school students' performance on balancing chemical equations by inspection. Reports that reasoning, restructuring, and disembedding variables could be a single variable, and that working memory capacity does not influence overall performance. Results of hierarchical regression analysis…

  7. Environment, vegetation, and regeneration after timber harvest in the Hungry-Pickett area of southwest Oregon.

    Treesearch

    Joseph N. Graham; Edward W. Murray; Don Minore

    1982-01-01

    Environmental factors were related to forest regeneration on clearcut and partially cut areas managed by the Bureau of Land Management in the Hungry-Pickett area northwest of Grants Pass, Oregon. The multiple regression equations developed for this study can be used to compare the relative difficulty of regenerating forested sites within the study area. The equations...

  8. Equations for Estimating Biomass of Herbaceous and Woody Vegetation in Early-Successional Southern Appalachian Pine-Hardwood Forests

    Treesearch

    Katherine J. Elliott; Barton D. Clinton

    1993-01-01

    Allometric equations were developed to predict aboveground dry weight of herbaceous and woody species on prescribe-burned sites in the Southern Appalachians. Best-fit least-square regression models were developed using diamet,er, height, or both, as the independent variables and dry weight as the dependent variable. Coefficients of determination for the selected total...

  9. Use of Case History Data for the Development of Equations in Predicting High Risk, Reading Disabled Students.

    ERIC Educational Resources Information Center

    Stratton, Beverly D.; And Others

    Demographic data on 92 subjects identified as having reading problems were used to develop equations useful in identifying high risk, reading disabled students. Multiple linear regression analysis of the data indicated that reading disability (1) had a significant positive relationship with birth order and number of siblings; (2) had a positive…

  10. Fetal Biometric Charts and Reference Equations for Pregnant Women Living in Port Said and Ismailia Governorates in Egypt.

    PubMed

    Hegab, Moustafa; Midan, Mahmoud Farouk; Taha, Tamer; Bibars, Mamdouh; Wakeel, Khaled Helmi El; Amer, Hesham; Azmy, Osama

    2018-05-20

    To construct new fetal biometric charts and equations for some fetal biometric parameters for women between 12 th and 41 st weeks living in Ismailia and Port Said Governorates in Egypt. This cross-sectional study was carried out on 656 Egyptian women (from Ismailia and Port Said governorates) with an uncomplicated pregnancy, and all were sure of their dates. The selected group was between the 12 th and 41 st weeks of gestation, recruited from the district general hospital in Ismailia and Port Said to measure ultrasonographically biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC) and femur length (FL), then for each measurement separate regression models were fitted to estimate both the mean and the Standard deviation at each gestational age. New Egyptian charts were reported for BPD, HC, AC, and FL. Reference equations for the dating of pregnancy were presented. The mean of the previous measurements at 12 th and 41 st weeks were as follows: (23.37, 98.72), (83.05, 336.12), (67.85, 332.57) and (12.50, 74.92) respectively. New fetal biometric charts and regression equations for pregnant women living in Port Said & Ismailia governorates in Egypt.

  11. A Variational Assimilation Method for Satellite and Conventional Data: Development of Basic Model for Diagnosis of Cyclone Systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Scott, Robert W.; Chen, J.

    1991-01-01

    A summary is presented of the progress toward the completion of a comprehensive diagnostic objective analysis system based upon the calculus of variations. The approach was to first develop the objective analysis subject to the constraints that the final product satisfies the five basic primitive equations for a dry inviscid atmosphere: the two nonlinear horizontal momentum equations, the continuity equation, the hydrostatic equation, and the thermodynamic equation. Then, having derived the basic model, there would be added to it the equations for moist atmospheric processes and the radiative transfer equation.

  12. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete.

    PubMed

    Pour, Sadaf Moallemi; Alam, M Shahria; Milani, Abbas S

    2016-08-30

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models.

  13. Analysis of the low-flow characteristics of streams in Louisiana

    USGS Publications Warehouse

    Lee, Fred N.

    1985-01-01

    The U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, Office of Public Works, used geologic maps, soils maps, precipitation data, and low-flow data to define four hydrographic regions in Louisiana having distinct low-flow characteristics. Equations were derived, using regression analyses, to estimate the 7Q2, 7Q10, and 7Q20 flow rates for basically unaltered stream basins smaller than 525 square miles. Independent variables in the equations include drainage area (square miles), mean annual precipitation index (inches), and main channel slope (feet per mile). Average standard errors of regression ranged from +44 to +61 percent. Graphs are given for estimating the 7Q2, 7Q10, and 7Q20 for stream basins for which the drainage area of the most downstream data-collection site is larger than 525 square miles. Detailed examples are given in this report for the use of the equations and graphs.

  14. Nonlinear least-squares data fitting in Excel spreadsheets.

    PubMed

    Kemmer, Gerdi; Keller, Sandro

    2010-02-01

    We describe an intuitive and rapid procedure for analyzing experimental data by nonlinear least-squares fitting (NLSF) in the most widely used spreadsheet program. Experimental data in x/y form and data calculated from a regression equation are inputted and plotted in a Microsoft Excel worksheet, and the sum of squared residuals is computed and minimized using the Solver add-in to obtain the set of parameter values that best describes the experimental data. The confidence of best-fit values is then visualized and assessed in a generally applicable and easily comprehensible way. Every user familiar with the most basic functions of Excel will be able to implement this protocol, without previous experience in data fitting or programming and without additional costs for specialist software. The application of this tool is exemplified using the well-known Michaelis-Menten equation characterizing simple enzyme kinetics. Only slight modifications are required to adapt the protocol to virtually any other kind of dataset or regression equation. The entire protocol takes approximately 1 h.

  15. An analysis of the magnitude and frequency of floods on Oahu, Hawaii

    USGS Publications Warehouse

    Nakahara, R.H.

    1980-01-01

    An analysis of available peak-flow data for the island of Oahu, Hawaii, was made by using multiple regression techniques which related flood-frequency data to basin and climatic characteristics for 74 gaging stations on Oahu. In the analysis, several different groupings of stations were investigated, including divisions by geographic location and size of drainage area. The grouping consisting of two leeward divisions and one windward division produced the best results. Drainage basins ranged in area from 0.03 to 45.7 square miles. Equations relating flood magnitudes of selected frequencies to basin characteristics were developed for the three divisions of Oahu. These equations can be used to estimate the magnitude and frequency of floods for any site, gaged or ungaged, for any desired recurrence interval from 2 to 100 years. Data on basin characteristics, flood magnitudes for various recurrence intervals from individual station-frequency curves, and computed flood magnitudes by use of the regression equation are tabulated to provide the needed data. (USGS)

  16. Kozeny-Carman permeability relationship with disintegration process predicted from early dissolution profiles of immediate release tablets.

    PubMed

    Kumari, Parveen; Rathi, Pooja; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir

    2017-07-01

    This study was oriented toward the disintegration profiling of the diclofenac sodium (DS) immediate-release (IR) tablets and development of its relationship with medium permeability k perm based on Kozeny-Carman equation. Batches (L1-L9) of DS IR tablets with different porosities and specific surface area were prepared at different compression forces and evaluated for porosity, in vitro dissolution and particle-size analysis of the disintegrated mass. The k perm was calculated from porosities and specific surface area, and disintegration profiles were predicted from the dissolution profiles of IR tablets by stripping/residual method. The disintegration profiles were subjected to exponential regression to find out the respective disintegration equations and rate constants k d . Batches L1 and L2 showed the fastest disintegration rates as evident from their bi-exponential equations while the rest of the batches L3-L9 exhibited the first order or mono-exponential disintegration kinetics. The 95% confidence interval (CI 95% ) revealed significant differences between k d values of different batches except L4 and L6. Similar results were also spotted for dissolution profiles of IR tablets by similarity (f 2 ) test. The final relationship between k d and k perm was found to be hyperbolic, signifying the initial effect of k perm on the disintegration rate. The results showed that disintegration profiling is possible because a relationship exists between k d and k perm . The later being relatable with porosity and specific surface area can be determined by nondestructive tests.

  17. Forecasting Air Force Logistics Command Second Destination Transportation: An Application of Multiple Regression Analysis and Neural Networks

    DTIC Science & Technology

    1990-09-01

    without the help from the DSXR staff. William Lyons, Charles Ramsey , and Martin Meeks went above and beyond to help complete this research. Special...develop a valid forecasting model that is significantly more accurate than the one presently used by DSXR and suggested the development and testing of a...method, Strom tested DSXR’s iterative linear regression forecasting technique by examining P1 in the simple regression equation to determine whether

  18. Fungible weights in logistic regression.

    PubMed

    Jones, Jeff A; Waller, Niels G

    2016-06-01

    In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Computed statistics at streamgages, and methods for estimating low-flow frequency statistics and development of regional regression equations for estimating low-flow frequency statistics at ungaged locations in Missouri

    USGS Publications Warehouse

    Southard, Rodney E.

    2013-01-01

    The weather and precipitation patterns in Missouri vary considerably from year to year. In 2008, the statewide average rainfall was 57.34 inches and in 2012, the statewide average rainfall was 30.64 inches. This variability in precipitation and resulting streamflow in Missouri underlies the necessity for water managers and users to have reliable streamflow statistics and a means to compute select statistics at ungaged locations for a better understanding of water availability. Knowledge of surface-water availability is dependent on the streamflow data that have been collected and analyzed by the U.S. Geological Survey for more than 100 years at approximately 350 streamgages throughout Missouri. The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, computed streamflow statistics at streamgages through the 2010 water year, defined periods of drought and defined methods to estimate streamflow statistics at ungaged locations, and developed regional regression equations to compute selected streamflow statistics at ungaged locations. Streamflow statistics and flow durations were computed for 532 streamgages in Missouri and in neighboring States of Missouri. For streamgages with more than 10 years of record, Kendall’s tau was computed to evaluate for trends in streamflow data. If trends were detected, the variable length method was used to define the period of no trend. Water years were removed from the dataset from the beginning of the record for a streamgage until no trend was detected. Low-flow frequency statistics were then computed for the entire period of record and for the period of no trend if 10 or more years of record were available for each analysis. Three methods are presented for computing selected streamflow statistics at ungaged locations. The first method uses power curve equations developed for 28 selected streams in Missouri and neighboring States that have multiple streamgages on the same streams. Statistical estimates on one of these streams can be calculated at an ungaged location that has a drainage area that is between 40 percent of the drainage area of the farthest upstream streamgage and within 150 percent of the drainage area of the farthest downstream streamgage along the stream of interest. The second method may be used on any stream with a streamgage that has operated for 10 years or longer and for which anthropogenic effects have not changed the low-flow characteristics at the ungaged location since collection of the streamflow data. A ratio of drainage area of the stream at the ungaged location to the drainage area of the stream at the streamgage was computed to estimate the statistic at the ungaged location. The range of applicability is between 40- and 150-percent of the drainage area of the streamgage, and the ungaged location must be located on the same stream as the streamgage. The third method uses regional regression equations to estimate selected low-flow frequency statistics for unregulated streams in Missouri. This report presents regression equations to estimate frequency statistics for the 10-year recurrence interval and for the N-day durations of 1, 2, 3, 7, 10, 30, and 60 days. Basin and climatic characteristics were computed using geographic information system software and digital geospatial data. A total of 35 characteristics were computed for use in preliminary statewide and regional regression analyses based on existing digital geospatial data and previous studies. Spatial analyses for geographical bias in the predictive accuracy of the regional regression equations defined three low-flow regions with the State representing the three major physiographic provinces in Missouri. Region 1 includes the Central Lowlands, Region 2 includes the Ozark Plateaus, and Region 3 includes the Mississippi Alluvial Plain. A total of 207 streamgages were used in the regression analyses for the regional equations. Of the 207 U.S. Geological Survey streamgages, 77 were located in Region 1, 120 were located in Region 2, and 10 were located in Region 3. Streamgages located outside of Missouri were selected to extend the range of data used for the independent variables in the regression analyses. Streamgages included in the regression analyses had 10 or more years of record and were considered to be affected minimally by anthropogenic activities or trends. Regional regression analyses identified three characteristics as statistically significant for the development of regional equations. For Region 1, drainage area, longest flow path, and streamflow-variability index were statistically significant. The range in the standard error of estimate for Region 1 is 79.6 to 94.2 percent. For Region 2, drainage area and streamflow variability index were statistically significant, and the range in the standard error of estimate is 48.2 to 72.1 percent. For Region 3, drainage area and streamflow-variability index also were statistically significant with a range in the standard error of estimate of 48.1 to 96.2 percent. Limitations on the use of estimating low-flow frequency statistics at ungaged locations are dependent on the method used. The first method outlined for use in Missouri, power curve equations, were developed to estimate the selected statistics for ungaged locations on 28 selected streams with multiple streamgages located on the same stream. A second method uses a drainage-area ratio to compute statistics at an ungaged location using data from a single streamgage on the same stream with 10 or more years of record. Ungaged locations on these streams may use the ratio of the drainage area at an ungaged location to the drainage area at a streamgage location to scale the selected statistic value from the streamgage location to the ungaged location. This method can be used if the drainage area of the ungaged location is within 40 to 150 percent of the streamgage drainage area. The third method is the use of the regional regression equations. The limits for the use of these equations are based on the ranges of the characteristics used as independent variables and that streams must be affected minimally by anthropogenic activities.

  20. The Empirical Derivation of Equations for Predicting Subjective Textual Information. Final Report.

    ERIC Educational Resources Information Center

    Kauffman, Dan; And Others

    A study was made to derive an equation for predicting the "subjective" textual information contained in a text of material written in the English language. Specifically, this investigation describes, by a mathematical equation, the relationship between the "subjective" information content of written textual material and the relative number of…

  1. Estimation of stature from radiologic anthropometry of the lumbar vertebral dimensions in Chinese.

    PubMed

    Zhang, Kui; Chang, Yun-feng; Fan, Fei; Deng, Zhen-hua

    2015-11-01

    The recent study was to assess the relationship between the radiologic anthropometry of the lumbar vertebral dimensions and stature in Chinese and to develop regression formulae to estimate stature from these dimensions. A total of 412 normal, healthy volunteers, comprising 206 males and 206 females, were recruited. The linear regression analysis were performed to assess the correlation between the stature and lengths of various segments of the lumbar vertebral column. Among the regression equations created for single variable, the predictive value was greatest for the reconstruction of stature from the lumbar segment in both sexes and subgroup analysis. When individual vertebral body was used, the heights of posterior vertebral body of L3 gave the most accurate results for male group, the heights of central vertebral body of L1 provided the most accurate results for female group and female group with age above 45 years, the heights of central vertebral body of L3 gave the most accurate results for the groups with age from 20-45 years for both sexes and the male group with age above 45 years. The heights of anterior vertebral body of L5 gave the less accurate results except for the heights of anterior vertebral body of L4 provided the less accurate result for the male group with age above 45 years. As expected, multiple regression equations were more successful than equations derived from a single variable. The research observations suggest lumbar vertebral dimensions to be useful in stature estimation among Chinese population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Regression equations for calculation of z scores for echocardiographic measurements of left heart structures in healthy Han Chinese children.

    PubMed

    Wang, Shan-Shan; Hong, Wen-Jing; Zhang, Yu-Qi; Chen, Shu-Bao; Huang, Guo-Ying; Zhang, Hong-Yan; Chen, Li-Jun; Wu, Lan-Ping; Shen, Rong; Liu, Yi-Qing; Zhu, Jun-Xue

    2018-06-01

    Clinical decision making in children with heart disease relies on detailed measurements of cardiac structures using two-dimensional and M-mode echocardiography. However, no echocardiographic reference values are available for the Chinese children. We aimed to establish z-score regression equations for left heart structures in a population-based cohort of healthy Chinese Han children. Echocardiography was performed in 545 children with a normal heart. The dimensions of the aortic valve annulus (AVA), aortic sinuses of Valsalva (ASV), sinotubular junction (STJ), ascending aorta (AAO), left atrium (LA), mitral valve annulus (MVA), interventricular septal end-diastolic thickness (IVSd), interventricular septal end-systolic thickness (IVSs), left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), left ventricular posterior wall end-diastolic thickness (LVPWd), left ventricular posterior wall end-systolic thickness (LVPWs) were measured. Regression analyses were conducted to relate the measurements of left heart structures to body surface area (BSA). Left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were calculated. Several models were used, and the adjusted R2 values were compared for each model. AVA, ASV, STJ, AAO, LA, MVA, IVSd, IVSs, LVIDd, LVIDs, LVPWd, and LVPWs had a cubic relationship with BSA. LVEF and LVFS fell within a narrow range. Our results provide reference values for z scores and regression equations for left heart structures in Han Chinese children. These data may help make a quick and accurate judgment of the routine clinical measurement of left heart structures in children with heart disease. © 2018 Wiley Periodicals, Inc.

  3. Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2004-06-22

    Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

  4. Calculating the Solubilities of Drugs and Drug-Like Compounds in Octanol.

    PubMed

    Alantary, Doaa; Yalkowsky, Samuel

    2016-09-01

    A modification of the Van't Hoff equation is used to predict the solubility of organic compounds in dry octanol. The new equation describes a linear relationship between the logarithm of the solubility of a solute in octanol to its melting temperature. More than 620 experimentally measured octanol solubilities, collected from the literature, are used to validate the equation without using any regression or fitting. The average absolute error of the prediction is 0.66 log units. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. [Factors affecting the DAPI fluorescence direct count in the tidal river sediment].

    PubMed

    Chen, Chen; Huang, Shan; Wu, Qun-he; Li, Rui-yi; Zhang, Ren-duo

    2010-08-01

    The factors affecting the DAPI (4', 6-diamidino-2-phenylidole) fluorescence direct count in the tidal river sediment were examined. Sediment samples were collected from the Guangzhou section of the Pearl River. Besides sediment texture and organic matter, an improved staining procedure and the involved parameters were analyzed. Results showed that the procedure with the sediment with 2000 fold dilution and ultrasonic water bath for 10 min, and with a final DAPI concentration of 10 microg x mL(-1) and staining time for more than 30 min produced the optimum results of DAPI direct count in the sediment. The total bacterial number was correlated to the proportion of the non-nucleoid-containing cells to the total bacterial number (r = 0.587, p = 0.004). The organic matter content also correlated to the ration. The clay content had a strong correlation with the organic matter, through which the clay content also affected the ratio. A multiple regression analysis between the ration versus the organic matter, the total bacterial number, and the clay content showed that the regression equation fit the measure values satisfactorily (r = 0.694). These results indicated that the above factors needed to be considered in the applications of the DAPI fluorescence direct counting method to the tidal river sediment.

  6. Statistical analysis of mixed recurrent event data with application to cancer survivor study

    PubMed Central

    Zhu, Liang; Tong, Xingwei; Zhao, Hui; Sun, Jianguo; Srivastava, Deo Kumar; Leisenring, Wendy; Robison, Leslie L.

    2014-01-01

    Event history studies occur in many fields including economics, medical studies and social science. In such studies concerning some recurrent events, two types of data have been extensively discussed in the literature. One is recurrent event data that arise if study subjects are monitored or observed continuously. In this case, the observed information provides the times of all occurrences of the recurrent events of interest. The other is panel count data, which occur if the subjects are monitored or observed only periodically. This can happen if the continuous observation is too expensive or not practical and in this case, only the numbers of occurrences of the events between subsequent observation times are available. In this paper, we discuss a third type of data, which is a mixture of recurrent event and panel count data and for which there exists little literature. For regression analysis of such data, a marginal mean model is presented and we propose an estimating equation-based approach for estimation of regression parameters. A simulation study is conducted to assess the finite sample performance of the proposed methodology and indicates that it works well for practical situations. Finally it is applied to a motivating study on childhood cancer survivors. PMID:23139023

  7. Determining the spill flow discharge of combined sewer overflows using rating curves based on computational fluid dynamics instead of the standard weir equation.

    PubMed

    Fach, S; Sitzenfrei, R; Rauch, W

    2009-01-01

    It is state of the art to evaluate and optimise sewer systems with urban drainage models. Since spill flow data is essential in the calibration process of conceptual models it is important to enhance the quality of such data. A wide spread approach is to calculate the spill flow volume by using standard weir equations together with measured water levels. However, these equations are only applicable to combined sewer overflow (CSO) structures, whose weir constructions correspond with the standard weir layout. The objective of this work is to outline an alternative approach to obtain spill flow discharge data based on measurements with a sonic depth finder. The idea is to determine the relation between water level and rate of spill flow by running a detailed 3D computational fluid dynamics (CFD) model. Two real world CSO structures have been chosen due to their complex structure, especially with respect to the weir construction. In a first step the simulation results were analysed to identify flow conditions for discrete steady states. It will be shown that the flow conditions in the CSO structure change after the spill flow pipe acts as a controlled outflow and therefore the spill flow discharge cannot be described with a standard weir equation. In a second step the CFD results will be used to derive rating curves which can be easily applied in everyday practice. Therefore the rating curves are developed on basis of the standard weir equation and the equation for orifice-type outlets. Because the intersection of both equations is not known, the coefficients of discharge are regressed from CFD simulation results. Furthermore, the regression of the CFD simulation results are compared with the one of the standard weir equation by using historic water levels and hydrographs generated with a hydrodynamic model. The uncertainties resulting of the wide spread use of the standard weir equation are demonstrated.

  8. A covariance correction that accounts for correlation estimation to improve finite-sample inference with generalized estimating equations: A study on its applicability with structured correlation matrices

    PubMed Central

    Westgate, Philip M.

    2016-01-01

    When generalized estimating equations (GEE) incorporate an unstructured working correlation matrix, the variances of regression parameter estimates can inflate due to the estimation of the correlation parameters. In previous work, an approximation for this inflation that results in a corrected version of the sandwich formula for the covariance matrix of regression parameter estimates was derived. Use of this correction for correlation structure selection also reduces the over-selection of the unstructured working correlation matrix. In this manuscript, we conduct a simulation study to demonstrate that an increase in variances of regression parameter estimates can occur when GEE incorporates structured working correlation matrices as well. Correspondingly, we show the ability of the corrected version of the sandwich formula to improve the validity of inference and correlation structure selection. We also study the relative influences of two popular corrections to a different source of bias in the empirical sandwich covariance estimator. PMID:27818539

  9. A covariance correction that accounts for correlation estimation to improve finite-sample inference with generalized estimating equations: A study on its applicability with structured correlation matrices.

    PubMed

    Westgate, Philip M

    2016-01-01

    When generalized estimating equations (GEE) incorporate an unstructured working correlation matrix, the variances of regression parameter estimates can inflate due to the estimation of the correlation parameters. In previous work, an approximation for this inflation that results in a corrected version of the sandwich formula for the covariance matrix of regression parameter estimates was derived. Use of this correction for correlation structure selection also reduces the over-selection of the unstructured working correlation matrix. In this manuscript, we conduct a simulation study to demonstrate that an increase in variances of regression parameter estimates can occur when GEE incorporates structured working correlation matrices as well. Correspondingly, we show the ability of the corrected version of the sandwich formula to improve the validity of inference and correlation structure selection. We also study the relative influences of two popular corrections to a different source of bias in the empirical sandwich covariance estimator.

  10. Comparative study of contrast-enhanced ultrasound qualitative and quantitative analysis for identifying benign and malignant breast tumor lumps.

    PubMed

    Liu, Jian; Gao, Yun-Hua; Li, Ding-Dong; Gao, Yan-Chun; Hou, Ling-Mi; Xie, Ting

    2014-01-01

    To compare the value of contrast-enhanced ultrasound (CEUS) qualitative and quantitative analysis in the identification of breast tumor lumps. Qualitative and quantitative indicators of CEUS for 73 cases of breast tumor lumps were retrospectively analyzed by univariate and multivariate approaches. Logistic regression was applied and ROC curves were drawn for evaluation and comparison. The CEUS qualitative indicator-generated regression equation contained three indicators, namely enhanced homogeneity, diameter line expansion and peak intensity grading, which demonstrated prediction accuracy for benign and malignant breast tumor lumps of 91.8%; the quantitative indicator-generated regression equation only contained one indicator, namely the relative peak intensity, and its prediction accuracy was 61.5%. The corresponding areas under the ROC curve for qualitative and quantitative analyses were 91.3% and 75.7%, respectively, which exhibited a statistically significant difference by the Z test (P<0.05). The ability of CEUS qualitative analysis to identify breast tumor lumps is better than with quantitative analysis.

  11. Estimation of Gestational Age, Using Neonatal Anthropometry: A Cross-sectional Study in India

    PubMed Central

    Thawani, Rajat; Faridi, M.M.A.; Arora, Shilpa Khanna; Kumar, Rajeev

    2013-01-01

    Prematurity is a significant contributor to neonatal mortality in India. Conventionally, assessment of gestational age of newborns is based on New Ballard Technique, for which a paediatric specialist is needed. Anthropometry of the newborn, especially birthweight, has been used in the past to predict the gestational age of the neonate in peripheral health facilities where a trained paediatrician is often not available. We aimed to determine if neonatal anthropometric parameters, viz. birthweight, crown heel-length, head-circumference, mid-upper arm-circumference, lower segment-length, foot-length, umbilical nipple distance, calf-circumference, intermammary distance, and hand-length, can reliably predict the gestational age. The study also aimed to derive an equation for the same. We also assessed if these neonatal anthropometric parameters had a better prediction of gestational age when used in combination compared to individual parameters. We evaluated 1,000 newborns in a cross-sectional study conducted in Guru Teg Bahadur Hospital in Delhi. Detailed anthropometric estimation of the neonates was done within 48 hours after birth, using standard techniques. Gestational age was estimated using New Ballard Scoring. Out of 1,250 consecutive neonates, 1,000 were included in the study. Of them, 800 randomly-selected newborns were used in devising the model, and the remaining 200 newborns were used in validating the final model. Quadratic regression analysis using stepwise selection was used in building the predictive model. Birthweight (R=0.72), head-circumference (R=0.60), and mid-upper arm-circumference (R=0.67) were found highly correlated with gestation. The final equation to assess gestational age was as follows: Gestational age (weeks)=5.437×W–0.781×W2+2.815×HC–0.041×HC2+0.285×MUAC–22.745 where W=Weight, HC=Head-circumference and MUAC=Mid-upper arm-circumference; Adjusted R=0.76. On validation, the predictability of this equation is 46% (±1 week), 75.5% (+2 weeks), and 91.5% (+3 weeks). This mathematical model may be used in identifying preterm neonates. PMID:24592594

  12. Predictive Temperature Equations for Three Sites at the Grand Canyon

    NASA Astrophysics Data System (ADS)

    McLaughlin, Katrina Marie Neitzel

    Climate data collected at a number of automated weather stations were used to create a series of predictive equations spanning from December 2009 to May 2010 in order to better predict the temperatures along hiking trails within the Grand Canyon. The central focus of this project is how atmospheric variables interact and can be combined to predict the weather in the Grand Canyon at the Indian Gardens, Phantom Ranch, and Bright Angel sites. Through the use of statistical analysis software and data regression, predictive equations were determined. The predictive equations are simple or multivariable best fits that reflect the curvilinear nature of the data. With data analysis software curves resulting from the predictive equations were plotted along with the observed data. Each equation's reduced chi2 was determined to aid the visual examination of the predictive equations' ability to reproduce the observed data. From this information an equation or pair of equations was determined to be the best of the predictive equations. Although a best predictive equation for each month and season was determined for each site, future work may refine equations to result in a more accurate predictive equation.

  13. Avoiding and Correcting Bias in Score-Based Latent Variable Regression with Discrete Manifest Items

    ERIC Educational Resources Information Center

    Lu, Irene R. R.; Thomas, D. Roland

    2008-01-01

    This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…

  14. Odds Ratio, Delta, ETS Classification, and Standardization Measures of DIF Magnitude for Binary Logistic Regression

    ERIC Educational Resources Information Center

    Monahan, Patrick O.; McHorney, Colleen A.; Stump, Timothy E.; Perkins, Anthony J.

    2007-01-01

    Previous methodological and applied studies that used binary logistic regression (LR) for detection of differential item functioning (DIF) in dichotomously scored items either did not report an effect size or did not employ several useful measures of DIF magnitude derived from the LR model. Equations are provided for these effect size indices.…

  15. Methods of Attenuation Correction for Dual-Wavelength and Dual-Polarization Weather Radar Data

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Liao, L.

    2007-01-01

    In writing the integral equations for the median mass diameter and number concentration, or comparable parameters of the raindrop size distribution, it is apparent that the forms of the equations for dual-polarization and dual-wavelength radar data are identical when attenuation effects are included. The differential backscattering and extinction coefficients appear in both sets of equations: for the dual-polarization equations, the differences are taken with respect to polarization at a fixed frequency while for the dual-wavelength equations, the differences are taken with respect to frequency at a fixed polarization. An alternative to the integral equation formulation is that based on the k-Z (attenuation coefficient-radar reflectivity factor) parameterization. This-technique was originally developed for attenuating single-wavelength radars, a variation of which has been applied to the TRMM Precipitation Radar data (PR). Extensions of this method have also been applied to dual-polarization data. In fact, it is not difficult to show that nearly identical equations are applicable as well to dualwavelength radar data. In this case, the equations for median mass diameter and number concentration take the form of coupled, but non-integral equations. Differences between this and the integral equation formulation are a consequence of the different ways in which attenuation correction is performed under the two formulations. For both techniques, the equations can be solved either forward from the radar outward or backward from the final range gate toward the radar. Although the forward-going solutions tend to be unstable as the attenuation out to the range of interest becomes large in some sense, an independent estimate of path attenuation is not required. This is analogous to the case of an attenuating single-wavelength radar where the forward solution to the Hitschfeld-Bordan equation becomes unstable as the attenuation increases. To circumvent this problem, the equations can be expressed in the form of a final-value problem so that the recursion begins at the far range gate and proceeds inward towards the radar. Solving the problem in this way traditionally requires estimates of path attenuation to the final gate: in the case of orthogonal linear polarizations, the attenuations at horizontal and vertical polarizations (same frequency) are required while in the dual-wavelength case, attenuations at the two frequencies (same polarization) are required.

  16. Accuracy of an equation for estimating age from mandibular third molar development in a Thai population

    PubMed Central

    Verochana, Karune; Prapayasatok, Sangsom; Mahasantipiya, Phattaranant May; Korwanich, Narumanas

    2016-01-01

    Purpose This study assessed the accuracy of age estimates produced by a regression equation derived from lower third molar development in a Thai population. Materials and Methods The first part of this study relied on measurements taken from panoramic radiographs of 614 Thai patients aged from 9 to 20. The stage of lower left and right third molar development was observed in each radiograph and a modified Gat score was assigned. Linear regression on this data produced the following equation: Y=9.309+1.673 mG+0.303S (Y=age; mG=modified Gat score; S=sex). In the second part of this study, the predictive accuracy of this equation was evaluated using data from a second set of panoramic radiographs (539 Thai subjects, 9 to 24 years old). Each subject's age was estimated using the above equation and compared against age calculated from a provided date of birth. Estimated and known age data were analyzed using the Pearson correlation coefficient and descriptive statistics. Results Ages estimated from lower left and lower right third molar development stage were significantly correlated with the known ages (r=0.818, 0.808, respectively, P≤0.01). 50% of age estimates in the second part of the study fell within a range of error of ±1 year, while 75% fell within a range of error of ±2 years. The study found that the equation tends to estimate age accurately when individuals are 9 to 20 years of age. Conclusion The equation can be used for age estimation for Thai populations when the individuals are 9 to 20 years of age. PMID:27051633

  17. Accuracy of an equation for estimating age from mandibular third molar development in a Thai population.

    PubMed

    Verochana, Karune; Prapayasatok, Sangsom; Janhom, Apirum; Mahasantipiya, Phattaranant May; Korwanich, Narumanas

    2016-03-01

    This study assessed the accuracy of age estimates produced by a regression equation derived from lower third molar development in a Thai population. The first part of this study relied on measurements taken from panoramic radiographs of 614 Thai patients aged from 9 to 20. The stage of lower left and right third molar development was observed in each radiograph and a modified Gat score was assigned. Linear regression on this data produced the following equation: Y=9.309+1.673 mG+0.303S (Y=age; mG=modified Gat score; S=sex). In the second part of this study, the predictive accuracy of this equation was evaluated using data from a second set of panoramic radiographs (539 Thai subjects, 9 to 24 years old). Each subject's age was estimated using the above equation and compared against age calculated from a provided date of birth. Estimated and known age data were analyzed using the Pearson correlation coefficient and descriptive statistics. Ages estimated from lower left and lower right third molar development stage were significantly correlated with the known ages (r=0.818, 0.808, respectively, P≤0.01). 50% of age estimates in the second part of the study fell within a range of error of ±1 year, while 75% fell within a range of error of ±2 years. The study found that the equation tends to estimate age accurately when individuals are 9 to 20 years of age. The equation can be used for age estimation for Thai populations when the individuals are 9 to 20 years of age.

  18. Analysis of the Magnitude and Frequency of Peak Discharge and Maximum Observed Peak Discharge in New Mexico and Surrounding Areas

    USGS Publications Warehouse

    Waltemeyer, Scott D.

    2008-01-01

    Estimates of the magnitude and frequency of peak discharges are necessary for the reliable design of bridges, culverts, and open-channel hydraulic analysis, and for flood-hazard mapping in New Mexico and surrounding areas. The U.S. Geological Survey, in cooperation with the New Mexico Department of Transportation, updated estimates of peak-discharge magnitude for gaging stations in the region and updated regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites by use of data collected through 2004 for 293 gaging stations on unregulated streams that have 10 or more years of record. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 140 of the 293 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge by having a recurrence interval of less than 1.4 years in the probability-density function. Within each of the nine regions, logarithms of the maximum peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics by using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then were applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction, which includes average sampling error and average standard error of regression, ranged from 38 to 93 percent (mean value is 62, and median value is 59) for the 100-year flood. The 1996 investigation standard error of prediction for the flood regions ranged from 41 to 96 percent (mean value is 67, and median value is 68) for the 100-year flood that was analyzed by using generalized least-squares regression analysis. Overall, the equations based on generalized least-squares regression techniques are more reliable than those in the 1996 report because of the increased length of record and improved geographic information system (GIS) method to determine basin and climatic characteristics. Flood-frequency estimates can be made for ungaged sites upstream or downstream from gaging stations by using a method that transfers flood-frequency data at the gaging station to the ungaged site by using a drainage-area ratio adjustment equation. The peak discharge for a given recurrence interval at the gaging station, drainage-area ratio, and the drainage-area exponent from the regional regression equation of the respective region is used to transfer the peak discharge for the recurrence interval to the ungaged site. Maximum observed peak discharge as related to drainage area was determined for New Mexico. Extreme events are commonly used in the design and appraisal of bridge crossings and other structures. Bridge-scour evaluations are commonly made by using the 500-year peak discharge for these appraisals. Peak-discharge data collected at 293 gaging stations and 367 miscellaneous sites were used to develop a maximum peak-discharge relation as an alternative method of estimating peak discharge of an extreme event such as a maximum probable flood.

  19. Multiple regression technique for Pth degree polynominals with and without linear cross products

    NASA Technical Reports Server (NTRS)

    Davis, J. W.

    1973-01-01

    A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.

  20. Evaluation of drainage-area ratio method used to estimate streamflow for the Red River of the North Basin, North Dakota and Minnesota

    USGS Publications Warehouse

    Emerson, Douglas G.; Vecchia, Aldo V.; Dahl, Ann L.

    2005-01-01

    The drainage-area ratio method commonly is used to estimate streamflow for sites where no streamflow data were collected. To evaluate the validity of the drainage-area ratio method and to determine if an improved method could be developed to estimate streamflow, a multiple-regression technique was used to determine if drainage area, main channel slope, and precipitation were significant variables for estimating streamflow in the Red River of the North Basin. A separate regression analysis was performed for streamflow for each of three seasons-- winter, spring, and summer. Drainage area and summer precipitation were the most significant variables. However, the regression equations generally overestimated streamflows for North Dakota stations and underestimated streamflows for Minnesota stations. To correct the bias in the residuals for the two groups of stations, indicator variables were included to allow both the intercept and the coefficient for the logarithm of drainage area to depend on the group. Drainage area was the only significant variable in the revised regression equations. The exponents for the drainage-area ratio were 0.85 for the winter season, 0.91 for the spring season, and 1.02 for the summer season.

  1. Evaluation and application of regional turbidity-sediment regression models in Virginia

    USGS Publications Warehouse

    Hyer, Kenneth; Jastram, John D.; Moyer, Douglas; Webber, James S.; Chanat, Jeffrey G.

    2015-01-01

    Conventional thinking has long held that turbidity-sediment surrogate-regression equations are site specific and that regression equations developed at a single monitoring station should not be applied to another station; however, few studies have evaluated this issue in a rigorous manner. If robust regional turbidity-sediment models can be developed successfully, their applications could greatly expand the usage of these methods. Suspended sediment load estimation could occur as soon as flow and turbidity monitoring commence at a site, suspended sediment sampling frequencies for various projects potentially could be reduced, and special-project applications (sediment monitoring following dam removal, for example) could be significantly enhanced. The objective of this effort was to investigate the turbidity-suspended sediment concentration (SSC) relations at all available USGS monitoring sites within Virginia to determine whether meaningful turbidity-sediment regression models can be developed by combining the data from multiple monitoring stations into a single model, known as a “regional” model. Following the development of the regional model, additional objectives included a comparison of predicted SSCs between the regional model and commonly used site-specific models, as well as an evaluation of why specific monitoring stations did not fit the regional model.

  2. On Insensitivity of the Chi-Square Model Test to Nonlinear Misspecification in Structural Equation Models

    ERIC Educational Resources Information Center

    Mooijaart, Ab; Satorra, Albert

    2009-01-01

    In this paper, we show that for some structural equation models (SEM), the classical chi-square goodness-of-fit test is unable to detect the presence of nonlinear terms in the model. As an example, we consider a regression model with latent variables and interactions terms. Not only the model test has zero power against that type of…

  3. On One Possible Generalization of the Regression Theorem

    NASA Astrophysics Data System (ADS)

    Bogolubov, N. N.; Soldatov, A. V.

    2018-03-01

    A general approach to derivation of formally exact closed time-local or time-nonlocal evolution equations for non-equilibrium multi-time correlations functions made of observables of an open quantum system interacting simultaneously with external time-dependent classical fields and dissipative environment is discussed. The approach allows for the subsequent treatment of these equations within a perturbative scheme assuming that the system-environment interaction is weak.

  4. Equations relating compacted and uncompacted live crown ratio for common tree species in the South

    Treesearch

    KaDonna C. Randolph

    2010-01-01

    Species-specific equations to predict uncompacted crown ratio (UNCR) from compacted live crown ratio (CCR), tree length, and stem diameter were developed for 24 species and 12 genera in the southern United States. Using data from the US Forest Service Forest Inventory and Analysis program, nonlinear regression was used to model UNCR with a logistic function. Model...

  5. Estimating equations estimates of trends

    USGS Publications Warehouse

    Link, W.A.; Sauer, J.R.

    1994-01-01

    The North American Breeding Bird Survey monitors changes in bird populations through time using annual counts at fixed survey sites. The usual method of estimating trends has been to use the logarithm of the counts in a regression analysis. It is contended that this procedure is reasonably satisfactory for more abundant species, but produces biased estimates for less abundant species. An alternative estimation procedure based on estimating equations is presented.

  6. Evaluation of Piecewise Polynomial Equations for Two Types of Thermocouples

    PubMed Central

    Chen, Andrew; Chen, Chiachung

    2013-01-01

    Thermocouples are the most frequently used sensors for temperature measurement because of their wide applicability, long-term stability and high reliability. However, one of the major utilization problems is the linearization of the transfer relation between temperature and output voltage of thermocouples. The linear calibration equation and its modules could be improved by using regression analysis to help solve this problem. In this study, two types of thermocouple and five temperature ranges were selected to evaluate the fitting agreement of different-order polynomial equations. Two quantitative criteria, the average of the absolute error values |e|ave and the standard deviation of calibration equation estd, were used to evaluate the accuracy and precision of these calibrations equations. The optimal order of polynomial equations differed with the temperature range. The accuracy and precision of the calibration equation could be improved significantly with an adequate higher degree polynomial equation. The technique could be applied with hardware modules to serve as an intelligent sensor for temperature measurement. PMID:24351627

  7. Modeling The Skeleton Weight of an Adult Caucasian Man.

    PubMed

    Avtandilashvili, Maia; Tolmachev, Sergei Y

    2018-05-17

    The reference value for the skeleton weight of an adult male (10.5 kg) recommended by the International Commission on Radiological Protection in Publication 70 is based on weights of dissected skeletons from 44 individuals, including two U.S. Transuranium and Uranium Registries whole-body donors. The International Commission on Radiological Protection analysis of anatomical data from 31 individuals with known values of body height demonstrated significant correlation between skeleton weight and body height. The corresponding regression equation, Wskel (kg) = -10.7 + 0.119 × H (cm), published in International Commission on Radiological Protection Publication 70 is typically used to estimate the skeleton weight from body height. Currently, the U.S. Transuranium and Uranium Registries holds data on individual bone weights from a total of 40 male whole-body donors, which has provided a unique opportunity to update the International Commission on Radiological Protection skeleton weight vs. body height equation. The original International Commission on Radiological Protection Publication 70 and the new U.S. Transuranium and Uranium Registries data were combined in a set of 69 data points representing a group of 33- to 95-y-old individuals with body heights and skeleton weights ranging from 155 to 188 cm and 6.5 to 13.4 kg, respectively. Data were fitted with a linear least-squares regression. A significant correlation between the two parameters was observed (r = 0.28), and an updated skeleton weight vs. body height equation was derived: Wskel (kg) = -6.5 + 0.093 × H (cm). In addition, a correlation of skeleton weight with multiple variables including body height, body weight, and age was evaluated using multiple regression analysis, and a corresponding fit equation was derived: Wskel (kg) = -0.25 + 0.046 × H (cm) + 0.036 × Wbody (kg) - 0.012 × A (y). These equations will be used to estimate skeleton weights and, ultimately, total skeletal actinide activities for biokinetic modeling of U.S. Transuranium and Uranium Registries partial-body donation cases.

  8. The novel application of artificial neural network on bioelectrical impedance analysis to assess the body composition in elderly

    PubMed Central

    2013-01-01

    Background This study aims to improve accuracy of Bioelectrical Impedance Analysis (BIA) prediction equations for estimating fat free mass (FFM) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regression model by using energy dual X-ray absorptiometry (DXA) as reference method. Methods A total of 88 Taiwanese elderly adults were recruited in this study as subjects. Linear regression equations and BP-ANN prediction equation were developed using impedances and other anthropometrics for predicting the reference FFM measured by DXA (FFMDXA) in 36 male and 26 female Taiwanese elderly adults. The FFM estimated by BIA prediction equations using traditional linear regression model (FFMLR) and BP-ANN model (FFMANN) were compared to the FFMDXA. The measuring results of an additional 26 elderly adults were used to validate than accuracy of the predictive models. Results The results showed the significant predictors were impedance, gender, age, height and weight in developed FFMLR linear model (LR) for predicting FFM (coefficient of determination, r2 = 0.940; standard error of estimate (SEE) = 2.729 kg; root mean square error (RMSE) = 2.571kg, P < 0.001). The above predictors were set as the variables of the input layer by using five neurons in the BP-ANN model (r2 = 0.987 with a SD = 1.192 kg and relatively lower RMSE = 1.183 kg), which had greater (improved) accuracy for estimating FFM when compared with linear model. The results showed a better agreement existed between FFMANN and FFMDXA than that between FFMLR and FFMDXA. Conclusion When compared the performance of developed prediction equations for estimating reference FFMDXA, the linear model has lower r2 with a larger SD in predictive results than that of BP-ANN model, which indicated ANN model is more suitable for estimating FFM. PMID:23388042

  9. Can stature be estimated from tooth crown dimensions? A study in a sample of South-East Asians.

    PubMed

    Hossain, Mohammad Zakir; Munawar, Khalil M M; Rahim, Zubaidah H A; Bakri, Marina Mohd

    2016-04-01

    Stature estimation is an important step during medico-legal and forensic examination. Difficulty arises when highly decomposed and mutilated dead bodies with fragmentary remains are brought for forensic identification like in mass disaster or airplane crash. The body remains could be just a jaw with some teeth. The objective of this study was to explore if the stature of an individual can be determined from the tooth crown dimensions. A total of 201 volunteers participated in this study. The stature and clinical crown dimensions (length, mesiodistal and labiolingual diameters) of maxillary anterior teeth were measured. Correlation between crown dimensions and stature was analyzed by Pearson correlation test. Regression analysis was used to get equations for estimation of stature from crown measurements. The regression equations were applied in the same sample of volunteers that was used to obtain the equations. The reliability and accuracy of the equations were checked in another sample of volunteers. Length and mesiodistal diameter of the crown of central incisors and canines showed significant albeit low to moderate correlations (0.35-0.45) with the stature. The correlation co-efficient values were higher (as high as 0.537) when summation of the measurements was taken for analysis. The regression equations when applied to the same and a test sample of volunteers revealed that differences between actual and estimated stature can be as low as 0.01 to as much as 16.50cm. The findings suggest that although there are some degrees of positive correlations between stature and tooth crown dimensions, stature estimation from the tooth crown dimensions cannot provide the accuracy of estimation as required in forensic situations. The stature estimation accuracy using tooth crown dimensions is comparable to that of cephalo-facial dimensions but inferior to that of long bones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Stable boundary conditions and difference schemes for Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Dutt, P.

    1985-01-01

    The Navier-Stokes equations can be viewed as an incompletely elliptic perturbation of the Euler equations. By using the entropy function for the Euler equations as a measure of energy for the Navier-Stokes equations, it was possible to obtain nonlinear energy estimates for the mixed initial boundary value problem. These estimates are used to derive boundary conditions which guarantee L2 boundedness even when the Reynolds number tends to infinity. Finally, a new difference scheme for modelling the Navier-Stokes equations in multidimensions for which it is possible to obtain discrete energy estimates exactly analogous to those we obtained for the differential equation was proposed.

  11. More on a Functional Equation

    ERIC Educational Resources Information Center

    Deakin, Michael A. B.

    2006-01-01

    This classroom note presents a final solution for the functional equation: f(xy)=xf(y) + yf(x). The functional equation if formally similar to the familiar product rule of elementary calculus and this similarity prompted its study by Ren et al., who derived some results concerning it. The purpose of this present note is to extend these results and…

  12. Estimation of low-flow statistics at ungaged sites on streams in the Lower Hudson River Basin, New York, from data in geographic information systems

    USGS Publications Warehouse

    Randall, Allan D.; Freehafer, Douglas A.

    2017-08-02

    A variety of watershed properties available in 2015 from geographic information systems were tested in regression equations to estimate two commonly used statistical indices of the low flow of streams, namely the lowest flows averaged over 7 consecutive days that have a 1 in 10 and a 1 in 2 chance of not being exceeded in any given year (7-day, 10-year and 7-day, 2-year low flows). The equations were based on streamflow measurements in 51 watersheds in the Lower Hudson River Basin of New York during the years 1958–1978, when the number of streamflow measurement sites on unregulated streams was substantially greater than in subsequent years. These low-flow indices are chiefly a function of the area of surficial sand and gravel in the watershed; more precisely, 7-day, 10-year and 7-day, 2-year low flows both increase in proportion to the area of sand and gravel deposited by glacial meltwater, whereas 7-day, 2-year low flows also increase in proportion to the area of postglacial alluvium. Both low-flow statistics are also functions of mean annual runoff (a measure of net water input to the watershed from precipitation) and area of swamps and poorly drained soils in or adjacent to surficial sand and gravel (where groundwater recharge is unlikely and riparian water loss to evapotranspiration is substantial). Small but significant refinements in estimation accuracy resulted from the inclusion of two indices of stream geometry, channel slope and length, in the regression equations. Most of the regression analysis was undertaken with the ordinary least squares method, but four equations were replicated by using weighted least squares to provide a more realistic appraisal of the precision of low-flow estimates. The most accurate estimation equations tested in this study explain nearly 84 and 87 percent of the variation in 7-day, 10-year and 7-day, 2-year low flows, respectively, with standard errors of 0.032 and 0.050 cubic feet per second per square mile. The equations use natural values of streamflow and watershed properties; logarithmic transformations yielded less accurate equations inconsistent with some conceptualized relationships.

  13. Application of nonlinear regression in the development of a wide range formulation for HCFC-22

    NASA Astrophysics Data System (ADS)

    Kamei, A.; Beyerlein, S. W.; Jacobsen, R. T.

    1995-09-01

    An equation of state has been developed for HCFC-22 for temperatures from the triple point (115.73 K) to 550 K, at pressures up to 60 MPa. Based on comparisons between experimental data and calculated properties, the accuracy of the wide-range equation of state is ±0.1% in density, ±0.3% in speed of sound, and ±1.0% in isobaric heat capacity, except in the critical region. Nonlinear fitting techniques were used to fit a liquid equation of state based on P-ρ-T, speed of sound, and isobaric heat capacity data. Properties calculated from the liquid equation of state were then used to expand the range of validity of the wide range equation of state for HCFC-22.

  14. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete

    PubMed Central

    Pour, Sadaf Moallemi; Alam, M. Shahria; Milani, Abbas S.

    2016-01-01

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models. PMID:28773859

  15. Indirect Measurement Of Nitrogen In A Multi-Component Gas By Measuring The Speed Of Sound At Two States Of The Gas.

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2004-10-12

    A methods of indirectly measuring the nitrogen concentration in a gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the speed of sound in the gas is measured at two states and diluent concentrations other than nitrogen (typically carbon dioxide) are known, two equations for molecular weight can be equated and solved for the nitrogen concentration in the gas mixture.

  16. On the equivalence of the dual-wavelength and polarimetric equations for estimation of the raindrop size distribution

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Liao, Liang

    2006-01-01

    In writing the integral equations for the median mass diameter and particle concentration, or comparable parameters of the raindrop size distribution, it is apparent that when attenuation effects are included, the forms of the equations for polarimetric and dual wavelength radars are identical. In both sets of equations, differences in the backscattering and extinction cross sections appear: in the polarimetric equations, the differences are taken with respect polarization at a fixed frequency while for the dual wavelength equations, the differences are taken with respect to wavelength at a fixed polarization. Because the forms of the equations are the same, the ways in which they can be solved are similar as well. To avoid instabilities in the forward recursion procedure, the equations can be expressed in the form of a final-value. Solving the equations in this way traditionally has required estimates of the path attenuations to the final gate: either the attenuations at horizontal and vertical polarizations at the same frequency or attenuations at two frequencies with the same polarization. This has been done for dual-frequency (air/spaceborne case) and polarimetric radars by the respective use of the surface reference technique and the differential phase shift. An alternative to solving the constrained version of the equations is an iterative procedure recently proposed in which independent estimates of path attenuation are not required. Although the procedure has limitations, it appears to be quite useful. Simulations of the retrievals help clarify the relationship between the constrained and unconstrained approaches and their application to the polarimetric and dual-wavelength equations.

  17. Use of streamflow data to estimate base flowground-water recharge for Wisconsin

    USGS Publications Warehouse

    Gebert, W.A.; Radloff, M.J.; Considine, E.J.; Kennedy, J.L.

    2007-01-01

    The average annual base flow/recharge was determined for streamflow-gaging stations throughout Wisconsin by base-flow separation. A map of the State was prepared that shows the average annual base flow for the period 1970-99 for watersheds at 118 gaging stations. Trend analysis was performed on 22 of the 118 streamflow-gaging stations that had long-term records, unregulated flow, and provided aerial coverage of the State. The analysis found that a statistically significant increasing trend was occurring for watersheds where the primary land use was agriculture. Most gaging stations where the land cover was forest had no significant trend. A method to estimate the average annual base flow at ungaged sites was developed by multiple-regression analysis using basin characteristics. The equation with the lowest standard error of estimate, 9.5%, has drainage area, soil infiltration and base flow factor as independent variables. To determine the average annual base flow for smaller watersheds, estimates were made at low-flow partial-record stations in 3 of the 12 major river basins in Wisconsin. Regression equations were developed for each of the three major river basins using basin characteristics. Drainage area, soil infiltration, basin storage and base-flow factor were the independent variables in the regression equations with the lowest standard error of estimate. The standard error of estimate ranged from 17% to 52% for the three river basins. ?? 2007 American Water Resources Association.

  18. Family context and externalizing correlates of childhood animal cruelty in adjudicated delinquents.

    PubMed

    Walters, Glenn D; Noon, Alexandria

    2015-05-01

    The purpose of this study was to determine whether childhood animal cruelty is primarily a feature of family context or of externalizing behavior. Twenty measures of family context and proactive (fearlessness) and reactive (disinhibition) externalizing behavior were correlated with the retrospective accounts of childhood animal cruelty provided by 1,354 adjudicated delinquents. A cross-sectional analysis revealed that all 20 family context, proactive externalizing, and reactive externalizing variables correlated significantly with animal cruelty. Prospective analyses showed that when the animal cruelty variable was included in a regression equation with the 10 family context variables (parental arguing and fighting, parental drug use, parental hostility, and parental knowledge and monitoring of offspring behavior) or in a regression equation with the five reactive externalizing variables (interpersonal hostility, secondary psychopathy, weak impulse control, weak suppression of aggression, and short time horizon), it continued to predict future violent and income (property + drug) offending. The animal cruelty variable no longer predicted offending, however, when included in a regression equation with the five proactive externalizing variables (early onset behavioral problems, primary psychopathy, moral disengagement, positive outcome expectancies for crime, and lack of consideration for others). These findings suggest that while animal cruelty correlates with a wide range of family context and externalizing variables, it may serve as a marker of violent and nonviolent offending by virtue of its position on the proactive subdimension of the externalizing spectrum. © The Author(s) 2014.

  19. Dynamical property analysis of fractionally damped van der pol oscillator and its application

    NASA Astrophysics Data System (ADS)

    Zhong, Qiuhui; Zhang, Chunrui

    2012-01-01

    In this paper, the fractionally damped van der pol equation was studied. Firstly, the fractionally damped van der pol equation was transformed into a set of integer order equations. Then the Lyapunov exponents diagram was given. Secondly, it was transformed into a set of fractional integral equations and solved by a predictor-corrector method. The time domain diagrams and phase trajectory were used to describe the dynamic behavior. Finally, the fractionally damped van der pol equation was used to detect a weak signal.

  20. Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    USGS Publications Warehouse

    Hall, R.O.; Tank, J.L.; Sobota, D.J.; Mulholland, P.J.; O'Brien, J. M.; Dodds, W.K.; Webster, J.R.; Valett, H.M.; Poole, G.C.; Peterson, B.J.; Meyer, J.L.; McDowell, W.H.; Johnson, S.L.; Hamilton, S.K.; Grimm, N. B.; Gregory, S.V.; Dahm, Clifford N.; Cooper, L.W.; Ashkenas, L.R.; Thomas, S.M.; Sheibley, R.W.; Potter, J.D.; Niederlehner, B.R.; Johnson, L.T.; Helton, A.M.; Crenshaw, C.M.; Burgin, A.J.; Bernot, M.J.; Beaulieu, J.J.; Arangob, C.P.

    2009-01-01

    We measured uptake length of 15NO-3 in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO-3 uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO-3 concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO-3 uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S Wtot). Uptake length increased with specific discharge (Q/w) and increasing NO-3 concentrations, showing a loss in removal efficiency in streams with high NO-3 concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO-3 removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO-3 uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO-3 uptake lengths via directly increasing both gross primary production and NO-3 concentration. Gross primary production shortened SWtot, while increasing NO-3 lengthened SWtot resulting in no net effect of land use on NO- 3 removal. ?? 2009.

  1. Comparison of Linear and Non-linear Regression Analysis to Determine Pulmonary Pressure in Hyperthyroidism.

    PubMed

    Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan

    2017-01-01

    This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second degree where the parabola is its graphical representation.

  2. Regression Simulation of Turbine Engine Performance - Accuracy Improvement (TASK IV)

    DTIC Science & Technology

    1978-09-30

    33 21 Generalized Form of the Regression Equation for the Optimized Polynomial Exponent M ethod...altitude, Mach number and power setting combinations were generated during the ARES evaluation. The orthogonal Latin Square selection procedure...pattern. In data generation , the low (L), mid (M), and high (H) values of a variable are not always the same. At some of the corner points where

  3. A Fast Solution of the Lindley Equations for the M-Group Regression Problem. Technical Report 78-3, October 1977 through May 1978.

    ERIC Educational Resources Information Center

    Molenaar, Ivo W.

    The technical problems involved in obtaining Bayesian model estimates for the regression parameters in m similar groups are studied. The available computer programs, BPREP (BASIC), and BAYREG, both written in FORTRAN, require an amount of computer processing that does not encourage regular use. These programs are analyzed so that the performance…

  4. The Effect of Multicollinearity and the Violation of the Assumption of Normality on the Testing of Hypotheses in Regression Analysis.

    ERIC Educational Resources Information Center

    Vasu, Ellen S.; Elmore, Patricia B.

    The effects of the violation of the assumption of normality coupled with the condition of multicollinearity upon the outcome of testing the hypothesis Beta equals zero in the two-predictor regression equation is investigated. A monte carlo approach was utilized in which three differenct distributions were sampled for two sample sizes over…

  5. An Accurate VO[subscript 2]max Nonexercise Regression Model for 18-65-Year-Old Adults

    ERIC Educational Resources Information Center

    Bradshaw, Danielle I.; George, James D.; Hyde, Annette; LaMonte, Michael J.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.

    2005-01-01

    The purpose of this study was to develop a regression equation to predict maximal oxygen uptake (VO[subscript 2]max) based on nonexercise (N-EX) data. All participants (N = 100), ages 18-65 years, successfully completed a maximal graded exercise test (GXT) to assess VO[subscript 2]max (M = 39.96 mL[middle dot]kg[superscript -1][middle…

  6. Two Enhancements of the Logarithmic Least-Squares Method for Analyzing Subjective Comparisons

    DTIC Science & Technology

    1989-03-25

    error term. 1 For this model, the total sum of squares ( SSTO ), defined as n 2 SSTO = E (yi y) i=1 can be partitioned into error and regression sums...of the regression line around the mean value. Mathematically, for the model given by equation A.4, SSTO = SSE + SSR (A.6) A-4 where SSTO is the total...sum of squares (i.e., the variance of the yi’s), SSE is error sum of squares, and SSR is the regression sum of squares. SSTO , SSE, and SSR are given

  7. Anthropometric Survey of US Army Personnel (1988): Correlation Coefficients and Regression Equations. Part 4. Bivariate Regression Tables

    DTIC Science & Technology

    1990-05-01

    THUMBBR THUMB BREADTH NO. VARIABLE CONSTANT REGRESS. COEF. ST.ERROR ADJUQTED (.ERR OF ESTIMATE E4 58 HANDBRTH 7.623 0.183 ( 0.006) 1.124 .319 59 HANDCIRC...945, 956, 965 TRAGION TO TOP OF HEAD (TRAGT, 255) 39,51, 718, 851, 899, 945, 956, 965 Trapezius Post 23 Trochanter 23 TROCHArNTERION HEIGHT (TROQINT...THGHCLR, 105) 33, 40, 673, M08 881,927, 955, 964 Thigh Poia 23 THUMB BREADTH (THUMBBR, 106) 34, 49, 674,88 882,94955, 964 ThumlAip 23 THUMBTIP REACH

  8. Modelling ecological flow regime: an example from the Tennessee and Cumberland River basins

    USGS Publications Warehouse

    Knight, Rodney R.; Gain, W. Scott; Wolfe, William J.

    2012-01-01

    Predictive equations were developed for 19 ecologically relevant streamflow characteristics within five major groups of flow variables (magnitude, ratio, frequency, variability, and date) for use in the Tennessee and Cumberland River basins using stepbackward regression. Basin characteristics explain 50% or more of the variation for 12 of the 19 equations. Independent variables identified through stepbackward regression were statistically significant in 78 of 304 cases (α > 0.0001) and represent four major groups: climate, physical landscape features, regional indicators, and land use. Of these groups, the regional and climate variables were the most influential for determining hydrologic response. Daily temperature range, geologic factor, and rock depth were major factors explaining the variability in 17, 15, and 13 equations, respectively. The equations and independent datasets were used to explore the broad relation between basin properties and streamflow and the implication of streamflow to the study of ecological flow requirements. Key results include a high degree of hydrologic variability among least disturbed Blue Ridge streams, similar hydrologic behaviour for watersheds with widely varying degrees of forest cover, and distinct hydrologic profiles for streams in different geographic regions. Published in 2011. This article is a US Government work and is in the public domain in the USA.

  9. [The importance of handprint morphometry for determining the human body length].

    PubMed

    Grigor'eva, M A

    2018-01-01

    Handprint morphometry for the purpose of personality identification still remains a relatively novel approach. The methods employed for the measurements are not infrequently difficult to reproduce and therefore cause controversy. The objective of the present study was to introduce the system of methods for the measurement of handprints suitable for the reliable determination of the human body length. The study included the measurement of the size of 40 handprints left by124 adult subjects (52 men and 72 women). Two methods of the regression analysis, stepwise and forced inclusion, were applied to the combined group of handprints to select the equations with the high (R>0.800) coefficients of multiple correlation with the body length. 13 equations of multiple regression were obtained and analyzed. The standard error of estimating (SEE) varied from 4.30 to 5.19 cm. The best results were obtained with the equations constructed from the sizes I, II, and III of the rays without their distal phalanges. It was shown that the body length can be successfully reconstructed within the height range from 168 to 183 cm for men and from 157 to 176 cm for women. The examples of the use of the equations for the purpose of expertise of illegible and incomplete handprints are presented.

  10. A proposed method to detect kinematic differences between and within individuals.

    PubMed

    Frost, David M; Beach, Tyson A C; McGill, Stuart M; Callaghan, Jack P

    2015-06-01

    The primary objective was to examine the utility of a novel method of detecting "actual" kinematic changes using the within-subject variation. Twenty firefighters were assigned to one of two groups (lifting or firefighting). Participants performed 25 repetitions of two lifting or firefighting tasks, in three sessions. The magnitude and within-subject variation of several discrete kinematic measures were computed. Sequential averages of each variable were used to derive a cubic, quadratic and linear regression equation. The efficacy of each equation was examined by contrasting participants' sequential means to their 25-trial mean±1SD and 2SD. The magnitude and within-subject variation of each dependent measure was repeatable for all tasks; however, each participant did not exhibit the same movement patterns as the group. The number of instances across all variables, tasks and testing sessions whereby the 25-trial mean±1SD was contained within the boundaries established by the regression equations increased as the aggregate scores included more trials. Each equation achieved success in at least 88% of all instances when three trials were included in the sequential mean (95% with five trials). The within-subject variation may offer a means to examine participant-specific changes without having to collect a large number of trials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Methods for estimating annual exceedance-probability streamflows for streams in Kansas based on data through water year 2015

    USGS Publications Warehouse

    Painter, Colin C.; Heimann, David C.; Lanning-Rush, Jennifer L.

    2017-08-14

    A study was done by the U.S. Geological Survey in cooperation with the Kansas Department of Transportation and the Federal Emergency Management Agency to develop regression models to estimate peak streamflows of annual exceedance probabilities of 50, 20, 10, 4, 2, 1, 0.5, and 0.2 percent at ungaged locations in Kansas. Peak streamflow frequency statistics from selected streamgages were related to contributing drainage area and average precipitation using generalized least-squares regression analysis. The peak streamflow statistics were derived from 151 streamgages with at least 25 years of streamflow data through 2015. The developed equations can be used to predict peak streamflow magnitude and frequency within two hydrologic regions that were defined based on the effects of irrigation. The equations developed in this report are applicable to streams in Kansas that are not substantially affected by regulation, surface-water diversions, or urbanization. The equations are intended for use for streams with contributing drainage areas ranging from 0.17 to 14,901 square miles in the nonirrigation effects region and, 1.02 to 3,555 square miles in the irrigation-affected region, corresponding to the range of drainage areas of the streamgages used in the development of the regional equations.

  12. Regression models of discharge and mean velocity associated with near-median streamflow conditions in Texas: utility of the U.S. Geological Survey discharge measurement database

    USGS Publications Warehouse

    Asquith, William H.

    2014-01-01

    A database containing more than 16,300 discharge values and ancillary hydraulic attributes was assembled from summaries of discharge measurement records for 391 USGS streamflow-gauging stations (streamgauges) in Texas. Each discharge is between the 40th- and 60th-percentile daily mean streamflow as determined by period-of-record, streamgauge-specific, flow-duration curves. Each discharge therefore is assumed to represent a discharge measurement made for near-median streamflow conditions, and such conditions are conceptualized as representative of midrange to baseflow conditions in much of the state. The hydraulic attributes of each discharge measurement included concomitant cross-section flow area, water-surface top width, and reported mean velocity. Two regression equations are presented: (1) an expression for discharge and (2) an expression for mean velocity, both as functions of selected hydraulic attributes and watershed characteristics. Specifically, the discharge equation uses cross-sectional area, water-surface top width, contributing drainage area of the watershed, and mean annual precipitation of the location; the equation has an adjusted R-squared of approximately 0.95 and residual standard error of approximately 0.23 base-10 logarithm (cubic meters per second). The mean velocity equation uses discharge, water-surface top width, contributing drainage area, and mean annual precipitation; the equation has an adjusted R-squared of approximately 0.50 and residual standard error of approximately 0.087 third root (meters per second). Residual plots from both equations indicate that reliable estimates of discharge and mean velocity at ungauged stream sites are possible. Further, the relation between contributing drainage area and main-channel slope (a measure of whole-watershed slope) is depicted to aid analyst judgment of equation applicability for ungauged sites. Example applications and computations are provided and discussed within a real-world, discharge-measurement scenario, and an illustration of the development of a preliminary stage-discharge relation using the discharge equation is given.

  13. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans

    PubMed Central

    Villa, Chiara; Brůžek, Jaroslav

    2017-01-01

    Background Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. Methods We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). Results and Discussion The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results. PMID:28533960

  14. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans.

    PubMed

    Lacoste Jeanson, Alizé; Dupej, Ján; Villa, Chiara; Brůžek, Jaroslav

    2017-01-01

    Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results.

  15. Applicability of linear regression equation for prediction of chlorophyll content in rice leaves

    NASA Astrophysics Data System (ADS)

    Li, Yunmei

    2005-09-01

    A modeling approach is used to assess the applicability of the derived equations which are capable to predict chlorophyll content of rice leaves at a given view direction. Two radiative transfer models, including PROSPECT model operated at leaf level and FCR model operated at canopy level, are used in the study. The study is consisted of three steps: (1) Simulation of bidirectional reflectance from canopy with different leaf chlorophyll contents, leaf-area-index (LAI) and under storey configurations; (2) Establishment of prediction relations of chlorophyll content by stepwise regression; and (3) Assessment of the applicability of these relations. The result shows that the accuracy of prediction is affected by different under storey configurations and, however, the accuracy tends to be greatly improved with increase of LAI.

  16. A study of the effect of selected material properties on the ablation performance of artificial graphite

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1972-01-01

    Eighteen material properties were measured on 45 different, commercially available, artificial graphites. Ablation performance of these same graphites were also measured in a Mach 2 airstream at a stagnation pressure of 5.6 atm. Correlations were developed, where possible, between pairs of the material properties. Multiple regression equations were then formulated relating ablation performance to the various material properties, thus identifying those material properties having the strongest effect on ablation performance. These regression equations reveal that ablation performance in the present test environment depends primarily on maximum grain size, density, ash content, thermal conductivity, and mean pore radius. For optimization of ablation performance, grain size should be small, ash content low, density and thermal conductivity high, and mean pore radius large.

  17. A method of determining bending properties of poultry long bones using beam analysis and micro-CT data.

    PubMed

    Vaughan, Patrick E; Orth, Michael W; Haut, Roger C; Karcher, Darrin M

    2016-01-01

    While conventional mechanical testing has been regarded as a gold standard for the evaluation of bone heath in numerous studies, with recent advances in medical imaging, virtual methods of biomechanics are rapidly evolving in the human literature. The objective of the current study was to evaluate the feasibility of determining the elastic and failure properties of poultry long bones using established methods of analysis from the human literature. In order to incorporate a large range of bone sizes and densities, a small number of specimens were utilized from an ongoing study of Regmi et al. (2016) that involved humeri and tibiae from 3 groups of animals (10 from each) including aviary, enriched, and conventional housing systems. Half the animals from each group were used for 'training' that involved the development of a regression equation relating bone density and geometry to bending properties from conventional mechanical tests. The remaining specimens from each group were used for 'testing' in which the mechanical properties from conventional tests were compared to those predicted by the regression equations. Based on the regression equations, the coefficients of determination for the 'test' set of data were 0.798 for bending bone stiffness and 0.901 for the yield (or failure) moment of the bones. All regression slopes and intercepts values for the tests versus predicted plots were not significantly different from 1 and 0, respectively. The study showed the feasibility of developing future methods of virtual biomechanics for the evaluation of poultry long bones. With further development, virtual biomechanics may have utility in future in vivo studies to assess laying hen bone health over time without the need to sacrifice large groups of animals at each time point. © 2016 Poultry Science Association Inc.

  18. Calibration Adjustment of the Mid-infrared Analyzer for an Accurate Determination of the Macronutrient Composition of Human Milk.

    PubMed

    Billard, Hélène; Simon, Laure; Desnots, Emmanuelle; Sochard, Agnès; Boscher, Cécile; Riaublanc, Alain; Alexandre-Gouabau, Marie-Cécile; Boquien, Clair-Yves

    2016-08-01

    Human milk composition analysis seems essential to adapt human milk fortification for preterm neonates. The Miris human milk analyzer (HMA), based on mid-infrared methodology, is convenient for a unique determination of macronutrients. However, HMA measurements are not totally comparable with reference methods (RMs). The primary aim of this study was to compare HMA results with results from biochemical RMs for a large range of protein, fat, and carbohydrate contents and to establish a calibration adjustment. Human milk was fractionated in protein, fat, and skim milk by covering large ranges of protein (0-3 g/100 mL), fat (0-8 g/100 mL), and carbohydrate (5-8 g/100 mL). For each macronutrient, a calibration curve was plotted by linear regression using measurements obtained using HMA and RMs. For fat, 53 measurements were performed, and the linear regression equation was HMA = 0.79RM + 0.28 (R(2) = 0.92). For true protein (29 measurements), the linear regression equation was HMA = 0.9RM + 0.23 (R(2) = 0.98). For carbohydrate (15 measurements), the linear regression equation was HMA = 0.59RM + 1.86 (R(2) = 0.95). A homogenization step with a disruptor coupled to a sonication step was necessary to obtain better accuracy of the measurements. Good repeatability (coefficient of variation < 7%) and reproducibility (coefficient of variation < 17%) were obtained after calibration adjustment. New calibration curves were developed for the Miris HMA, allowing accurate measurements in large ranges of macronutrient content. This is necessary for reliable use of this device in individualizing nutrition for preterm newborns. © The Author(s) 2015.

  19. On the conservation laws and solutions of a (2+1) dimensional KdV-mKdV equation of mathematical physics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Masood Khalique, Chaudry

    2018-05-01

    In this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.

  20. Lie Symmetry Analysis, Analytical Solutions, and Conservation Laws of the Generalised Whitham-Broer-Kaup-Like Equations

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Bin; Tian, Shou-Fu; Qin, Chun-Yan; Zhang, Tian-Tian

    2017-03-01

    In this article, a generalised Whitham-Broer-Kaup-Like (WBKL) equations is investigated, which can describe the bidirectional propagation of long waves in shallow water. The equations can be reduced to the dispersive long wave equations, variant Boussinesq equations, Whitham-Broer-Kaup-Like equations, etc. The Lie symmetry analysis method is used to consider the vector fields and optimal system of the equations. The similarity reductions are given on the basic of the optimal system. Furthermore, the power series solutions are derived by using the power series theory. Finally, based on a new theorem of conservation laws, the conservation laws associated with symmetries of this equations are constructed with a detailed derivation.

Top